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ABSTRACT

Choral music is a musical activity with one of the largest

participant bases, yet it has drawn little attention from au-

tomatic music transcription research. The main reasons

we argue are due to the lack of data and technical diffi-

culties arise from diverse acoustic conditions and unique

properties of choral singing. To address these challenges,

in this paper we propose a Transformer-based framework

for note-level transcription of choral music. This frame-

work bypasses the frame-level processing and directly pro-

duces a sequence of notes with associated timestamps. We

also introduce YouChorale, a novel choral music dataset

in a cappella setting curated from the Internet. YouChorale

contains 452 real-world recordings in diverse acoustic con-

figurations of choral music from over 100 composers as

well as their MIDI scores. Trained on YouChorale, our

proposed model achieves state-of-the-art performance in

choral music transcription, marking a significant advance-

ment in the field.

1. INTRODUCTION

Choral singing stands as one of the most widely engaged

forms of musical expression, uniting voices in harmony

across cultures and communities. Despite its profound

presence in the musical landscape, choral singing has no-

tably been overlooked in the field of Automatic Music

Transcription (AMT), a domain predominantly oriented

towards instrumental music [1–3], leaving choral singing

with scant attention and few dedicated studies [4, 5]. This

oversight not only highlights a gap in AMT research but

also underscores the potential for significant advancements

in the transcription of choral music, an area waiting for ex-

ploration and innovation.

The transcription of choral music introduces unique

challenges compared with its instrumental counterparts.

One of the main characteristics of choral singing is the

soft onset of notes and smooth transitions between notes,

resulting in indistinct boundaries and complicating the

determination of note onsets. Additionally, the com-

plex acoustic environment enriches choral music perfor-

mances with reverberation, further complicates transcrip-
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tion efforts. These factors combined present a formidable

challenge in accurately capturing the note occurrences in

choral music recordings, necessitating novel approaches to

AMT that can handle these specific challenges.

Recent methodologies in AMT fall primarily into two

categories: Onsets and Frames [1], which estimates frame-

level pitch activation informed by note onset predictions,

and then combines such results to note estimates; and the

use of models like MT3 [2], which conceptualize transcrip-

tion as a token prediction task. However, both approaches

exhibit limitations in addressing the soft onset characteris-

tic of choral singing. Onset and frame detection methods

heavily rely on the successful identification of note onsets,

a task made difficult by the blurry beginning of vocal notes.

Conversely, models like MT3 predict notes as a series of

tokens, which can complicate the aggregation of informa-

tion pertaining to individual notes, thereby obscuring the

cohesive representation of choral music.

Another critical hurdle in advancing choral music tran-

scription is the availability of comprehensive and high-

quality datasets. Existing resources include the Dagstuhl

ChoirSet [6], which offers less than one hour of high-

quality recording of two pieces and a set of systematic

exercises. The Erkomaishvili Dataset [7] provides around

seven hours of recordings, but the sound quality is poor

for model training. The Bach Chorale 1 and Barbershop

Quartet 2 datasets provide tracked recordings, but the mu-

sic genre is limited in these datasets. Also, they only in-

volve a small group of singers and a fixed recording en-

vironment. This dearth of datasets impedes field progress

and highlights the need for more robust and accessible re-

sources for choral music transcription.

In response to these challenges, this paper proposes a

novel note-level transcription architecture inspired by ad-

vancements in object detection and sound event detection.

Instead of predicting the frame-level activation or sepa-

rated MIDI-like events, this model directly decodes the

pitch, onset, and duration from a hidden embedding of

each note. To take care of the sequential relationships be-

tween the notes, we integrate the Transformer model as

the backbone of our network, leveraging its proven effi-

cacy in capturing long-term dependencies. Experiment re-

sults show that this model has largely improved the frame-

level recall of the transcription output, indicating that the

proposed model makes better use of the entire process of

note articulation. The proposed model has also shown

1 https://www.pgmusic.com/bachchorales.htm
2 http://www.pgmusic.com/barbershopquartet.htm
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robustness against the distortion caused by reverberation

in the recordings. To address the critical gap in avail-

able resources, we have curated a comprehensive dataset

for choral music transcription, comprising 496 real-world

recordings across a diverse array of acoustic environments

and featuring compositions from over 100 composers, ac-

companied by their corresponding MIDI scores. This

dataset not only facilitates the development of our pro-

posed model but also provides a valuable resource for fu-

ture research in choral music transcription. Through this

work, we aim to bridge the existing gap in AMT research,

offering novel insights and methodologies that enhance our

understanding and capabilities in transcribing choral mu-

sic.

The structure of this paper is as follows: Section 2 cov-

ers the related works of this study; Section 3 describes

the transcription architecture we proposed for the choral

singing task; Section 4 introduces the YouChorale dataset,

the experimental settings and the results; finally, Section 5

concludes the paper.

2. RELATED WORK

Automatic Music Transcription (AMT) has been a largely

investigated task in Music Information Retrieval (MIR),

and people have proposed various methods to address this

problem. Onsets and Frames [1] represents the start of

a group of methods that uses Convolutional Neural Net-

works (CNN) to extract the onset activation and frame ac-

tivation in the spectrogram based on which a final note

prediction output is aggregated through post-processing.

Many other methods have inherited this idea, and sev-

eral methods have been proposed for piano [8] and multi-

instrument transcription [3, 9]. To fully use the activation

detection and produce holistic transcription results, Yan et

al. [10] proposed a neural semi-CRF-based method that

predicts the best interval combinations of the frame-level

estimations.

Another choice is to use sequence-to-sequence mod-

els that transcribe tokens describing different aspects of

the notes, such as note-on and note-off events, velocity,

and time stamps [11]. MT3 [2] expanded this method to

multi-instrument transcription, and Simon et al. [12] fur-

ther augmented the training data of such model by mixing

monophonic recordings. There also exist methods that use

generative diffusion models [13] to perform transcription.

However, the performance of this method is still not com-

parable with other works.

For choral music transcription, Schramm et al. [4] pro-

posed a spectrogram factorization method to transcribe a

cappella performances. McLeod et al. [5] proposed us-

ing extended probabilistic latent component analysis and

music language model to improve the performance further.

There is also literature on score transcription of choral mu-

sic [14], but they focus on producing the music score in-

stead of the precise physical timing of each note in the

recordings.

We can view automatic music transcription as a special

form of sound event detection, which aims to identify the

note entities in the audio recordings. The strong timing

correlations between the notes drive us to detection meth-

ods with sequential modeling abilities. Carion et al. [15]

proposed an end-to-end object detection architecture with

Transformers, which uses the Transformer encoder and de-

coder to attend to the input image to detect sound events

and their corresponding bounding boxes. Such an idea

is also adapted in sound event detection, represented by

works from Kong et al. [16].

3. METHOD

We demonstrate the architecture of the model in Figure

1. The input mel-spectrogram first goes through a pre-

filtering CNN network. After adding the positional en-

coding, two multi-head attention and feed-forward encoder

layers further aggregate information in the spectrogram.

The processed spectrogram then goes into the transformer

decoder to auto-regressively generate an array of note em-

beddings. Finally, we employ three Multi-Layer Percep-

tron (MLP) modules as the feed-forward network to predict

the MIDI pitch, onset time, and duration from the embed-

ding of each note.

Inspired by the Transformer-based object detection

methods and sound event detection methods, we regard

the onset and offset as the “bounding box" of each note.

Like pitch, they are the note’s built-in attributes. Since

Transformer models are well-known for their capability of

learning long-term dependencies, we here let the encoder

and decoder layers fully take care of the aggregation of

information of each note to achieve end-to-end music tran-

scription.

The model’s input is a batch of segmented spectro-

grams with the shape of (B,L,M), where B is the batch

size, L is the length of the segment, and M is the num-

ber of frequency bins. The model’s output is three par-

allel arrays of pitch, onset time, and duration, with the

shapes of (B,N,K), (B,N, 1), (B,N, 1), respectively.

N is the length of the transcribed note sequence, and K
is the number of possible pitch entries. To ensure the

one-dimensional note sequence is unique for a polyphonic

score, we serialize the notes first in chronological order

from earliest to latest and second in pitch order from high-

est to lowest.

3.1 CNN Preprocessing

We use two layers of the 1D-Convolutional Neural Net-

work (CNN) to preprocess the input mel-spectrogram. The

network has a kernel size of 9 and is activated with the

ReLU function, creating a receptive field of around 300

ms at each output frame. After the CNN, the shape of the

output is (B,L,C), where C is the size of the hidden di-

mension. Then, we add the output with positional encod-

ing and feed it into the encoder layers.

3.2 Encoder and Decoder Layers

We inherit the encoder and decoder design in the origi-

nal Transformer [17], which includes multi-head attention
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Figure 1. The overall architecture of the transcription model.

blocks and feed-forward layers. The encoder is conduct-

ing self-attention with the CNN-processed spectrogram;

the decoder also attends to the output of the encoder af-

ter a self-attention layer. In our model, we use two layers

of encoder layers and decoder layers.

During inference, the decoder performs auto-regressive

decoding of the final note sequence. In model implemen-

tation, we normalize the time within one segment to [0, 1]
and calculate the onset time to and duration td accordingly

to reduce the difficulties in training.

3.3 Positional Encoding

After the mel-spectrogram goes through the CNN filter

banks, it will be added to a positional encoding to let the

encoder layers learn the sequential relationship between

the frames. For the positional encoding before the encoder

layers, we adopt the original design in Transformer [17].

Given the frame from the processed spectrogram at pos
out of the L possible positions and denote the dimension-

ality of the Transformer as dmodel, we define the positional

encoding PE at the 2i and 2i+ 1 dimension as

PE(pos,2i) = sin(pos/100002i/dmodel), (1)

PE(pos,2i+1) = cos(pos/100002i/dmodel). (2)

When we encode the continuous onset time and duration

as the input of the decoder layers, we would like to align

the decoder time encoding with the encoder’s positional

encoding. An onset time at to will have the time embed-

ding TE identical to the PE of the corresponding frame

position:

TE(to,i) = PE(to×L,i). (3)

Similarly, the duration of the note td is encoded with the

same equation, replacing to with td in Equation (3). In this

way, we can align the time in the spectrogram and the onset

prediction of the model, which will help the model better

find the relationship between the frames in the spectrogram

and the time in the final transcription result. After we get

the pitch embeddings and time encodings of the previously

generated notes, we concatenate them together and send

them into the decoder layers.

Predicted

Ground Truth

I

C

d

Figure 2. A demonstration of DIoU calculation.

3.4 Training Objectives

We optimize the loss of pitch estimation and timing esti-

mation. For pitch estimation, we use the cross entropy loss

Lp. For time estimation, we first apply the L1 loss:

Ltime =
N∑

i=1

||t̂(i)o − t(i)o ||1 +
N∑

i=1

||t̂
(i)
d − t

(i)
d ||1, (4)

where to is the ground-truth onset time, t̂o is the predicted

onset time; td is the ground-truth duration, t̂d is the pre-

dicted duration.

We also adapt the DIoU (Distance-IoU, Intersection

over Union) loss [18] from object detection to 1D scenario,

as in Figure 2:

LDIoU = 1− IoU +
d2

C2
. (5)

Here, IoU is the ratio between the intersection and the

union of the predicted time span and the ground-truth time

span; d is the distance between the center of the prediction

and the ground truth time span to add more penalties to

the far away predictions; C is the length of the minimum

bounding box that can cover both prediction and ground

truth. Note that when there is an overlap between predic-

tion and ground truth, union= C; when there is no over-

lapping between them, IoU = 0, we define union as the

summation of the length of the two segments.

In the experiments, we trained two models with Ltime

and LDIoU respectively and tested their performances.
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Singers in Each Part Reverberation Time Number of Parts

≤3 >3 long medium short 2∼3 4 5 6 7 8 ≥9

Train 89 303 57 283 52 17 218 54 46 5 39 13

Validation 9 21 3 25 2 0 11 6 1 1 9 1

Test 10 20 5 23 2 0 11 9 4 0 5 1

Total 108 344 65 331 56 17 240 69 51 6 53 15

Table 1. Statistics of the YouChorale dataset.

4. EXPERIMENT

In this section, we describe experiments that evaluate our

models against baselines.

4.1 YouChorale Dataset

In an effort to address the scarcity of resources for

choral music transcription, we curated a dataset, You-

Chorale, from YouTube and a variety of MIDI archive

sources 3 4 5 , focusing exclusively on a cappella choral

singing. With a total length of 22 hours 25 min-

utes, the YouChorale dataset contains 452 recordings

of 261 compositions from 118 composers, representing

a wide range of historical periods, styles, and com-

plexities inherent to choral music. We have made the

dataset publicly available at https://github.com/

ella-granger/YouChorale, enriching a compre-

hensive resource of choral music for further exploration

and development in the field of Automatic Music Tran-

scription (AMT).

We split the dataset into train, validation and test set

by the ratio of 392:30:30. To ensure the intonation of the

evaluation recordings, we only selected performances by

well-known choirs into the validation and the test sets. The

detailed statistics of the dataset are shown in Table 1. The

metric “singers in each part” indicates whether the perfor-

mance is from a small a cappella group (less than or equals

to three singers per part) or a larger ensemble (more than

three singers per part). “Reverberation time” is an indi-

cation of the acoustic environment and how the signal is

blurred or distorted. “Number of parts” indicates the com-

plexity of the piece. Most of the pieces contain four to six

parts, for example SATB or SSATTB, but there are also

extreme cases where over nine parts appear in one compo-

sition.

We are also providing an aligned version of MIDI file

along with the recordings. The alignment is achieved

through the following steps: First, we adjust the key sig-

nature of the MIDI files to match the recording. Next, we

render the waveform of the MIDI notation and align the

Constant-Q Transform [19] feature of the synthesized au-

dio and the performance recording by the soft-DTW al-

gorithm [20]. Finally, we smooth the alignment curve to

remove abrupt tempo changes in the aligned MIDI.

3 www.learnchoralmusic.co.uk
4 gasilvis.net
5 http://www.maennerchor-sg.ch/midi/

4.2 BachChorale Dataset

The accurately labeled BachChorale dataset also serves as

a benchmark for evaluating the transcription performance

of our model and the baselines. This two-volume dataset

contains 53 four-part choral compositions by J.S. Bach,

with a total length of two hours. Note that during the col-

lection of YouChorale, all the Bach pieces we found are

accompanied by organ or orchestra. Therefore, we ex-

cluded Bach pieces to keep the dataset in a cappella set-

tings, which also means that using BachChorale as a test

dataset does not introduce label leakage.

4.3 Training Settings

For the training data, we downsampled the audio to 16

kHz, and extracted the mel-spectrogram with NFFT =
2048, hop length = 256, and number of frequency bins

M = 256. The length of each segment L = 320, which

corresponds to 5.12 seconds of audio. The hidden di-

mension of the model C = 256. During training, we

set the batch size = 8, and use an Adam optimizer with

β1 = 0.9, β2 = 0.98 and ϵ = 10−9. The warmup

step is set to 12000. We use teacher forcing during the

training phase, which provides the ground truth notes as

the context and lets the model predict only the next note.

We have released our code at https://github.com/

ella-granger/NoteTranscription.

4.4 Results

We choose Schramm et al. [4], Onsets and Frames [1] and

MT3 [2] as our baselines. For Schramm et al. [4], we

list their reported frame-level multi-pitch estimation result

which was also evaluated on the BachChorale dataset. For

Onsets and Frames, we train a new model with the You-

Chorale training set from scratch; for MT3, we use the

provided multi-instrument checkpoint. For the Onsets and

Frames, MT3, and the proposed model, we evaluate the

transcription result after they produce the final MIDI notes

output.

We evaluated the frame-level activation detection and

the note onset detection with a tolerance of 50 ms and 100

ms, respectively. The results on the BachChorale dataset

are shown in Table 2, and the results on the YouChorale

test set are shown in Table 3. We can see that compared

with Onsets and Frames or MT3, our proposed model has

a more balanced performance on precision and recall at the

frame level, and produces the highest f1 score among the

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

185



Model
Frame Onset (50ms) Onset (100ms)

Precision Recall F1 Precision Recall F1 Precision Recall F1

Schramm et al. [4] 0.713 0.709 0.710 - - - - - -

Onsets and Frames [1] 0.832 0.440 0.571 0.411 0.130 0.196 0.730 0.231 0.348

MT3 [2] 0.645 0.411 0.502 0.117 0.249 0.157 0.201 0.426 0.269

Proposed-Ltime 0.663 0.616 0.639 0.162 0.225 0.185 0.263 0.368 0.301

Proposed-LDIoU 0.611 0.639 0.624 0.189 0.182 0.183 0.284 0.274 0.275

Table 2. Model performances on BachChorale dataset.

Model
Frame Onset (50ms) Onset (100ms)

Precision Recall F1 Precision Recall F1 Precision Recall F1

Onsets and Frames [1] 0.806 0.326 0.428 0.450 0.178 0.242 0.688 0.248 0.344

MT3 [2] 0.590 0.243 0.344 0.117 0.148 0.127 0.200 0.255 0.217

Proposed-Ltime 0.670 0.596 0.631 0.181 0.221 0.192 0.284 0.339 0.299

Proposed-LDIoU 0.630 0.658 0.644 0.210 0.209 0.203 0.309 0.304 0.297

Table 3. Model performances on YouChorale test set.

Model
Frame Onset (50ms)

Precision Recall F1 ∆ F1 Precision Recall F1 ∆ F1

Onsets and Frames [1] 0.604 0.313 0.406 -0.165 (-28.9%) 0.126 0.094 0.107 -0.089 (-45.4%)

MT3 [2] 0.553 0.398 0.463 -0.039 (-7.8%) 0.022 0.040 0.028 -0.129 (-82.2%)

Proposed-Ltime 0.518 0.518 0.518 -0.121 (-18.9%) 0.089 0.180 0.114 -0.069 (-37.7%)

Table 4. Model performance under reverb distortion on BachChorale dataset.

deep learning methods. Although the Onsets and Frames

model still reaches a higher precision value on the onset

time of the note, the significantly higher recall of our model

at the frame level indicates that it places greater emphasis

on the entire process of note articulation, not just the onset

and offset of the notes, which achieves our goal with holis-

tic note transcription. The deep-learning methods still have

some room for improvement towards Schramm et al. [4] on

the BachChorale dataset, however, since the dataset only

have one singer for each part, Schramm et al. might have

some advantage as it was trained on solo singing.

We would also like to compare the performance of the

two loss function Ltime and LDIoU . From the results

we can see that the Ltime trained model tends to have

high precision and low recall at frame level and low pre-

cision and high recall on note onsets, while the LDIoU

trained model has the opposite behavior. It indicates that

the Ltime trained model usually extracts shorter fragments

of the notes and the LDIoU trained model longer full notes.

This is due to the property of the two loss functions: The

L1 based time loss function focuses more on the absolute

distance between the boundary of the predicted notes and

the ground-truth notes, while the LDIoU based loss func-

tion puts more emphasis on the overall intersection of the

prediction and ground truth, and will have the boundaries

not as precise as the L1 loss.

4.5 Performance Under Reverb Distortion

In real-world choral music performances, reverberation is

an unignorable part of acoustic effects. For example, con-

cert halls create reverb with a long reberveration time,

which introduces distortions into the spectrogram. To eval-

uate the resilience of our model against common distor-

tions encountered in live settings, we apply an artificial

reverb 6 to our test set to simulate the complex acoustic

environmental characteristic of real-world choral perfor-

mances. The performance of each model is shown in Table

4. The findings indicate that our proposed model still holds

a relatively high performance, and the proposed model to-

gether with Onset and Frames trained on the YouChorale

dataset, retains some ability to predict onset timing while

the MT3 model nearly failed to predict any reasonable on-

set of the notes. This resilience highlights the importance

of incorporating diverse, real-world data in training AMT

models, ensuring their applicability and effectiveness in

practical, everyday transcription scenarios.

Through cautious dataset curation and strategic model

design, the experiments have shown our proposed model’s

capabilities in the realm of choral music transcription. By

directly addressing the nuanced challenges of this genre,

6 https://ccrma.stanford.edu/ jos/pasp/Freeverb.html. The roomsize is
set to one.
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Figure 3. The precision/recall v.s. threshold curves of

frame-level and note-level (onset) transcription from On-

sets and Frames.

from soft note onsets to complex acoustic environments,

we not only advance the state of AMT but also pave the

way for future innovations in the transcription of poly-

phonic vocal music.

4.6 Limitations of Onsets and Frames Model

If we take a closer look at the result in Table 5, we may find

that for Onsets and Frames model, there is a big gap be-

tween the frame-level precision and recall. After extracting

the frame activation before post-processing and calculating

its objectives, we get the result in Table 5. We can see that

although post-processing improves prediction precision, it

discards a large amount of true-positive frame activations.

Since the Onsets and Frames model will not transcribe

any new note until it finds a new onset, the model’s capa-

bility of correctly predicting the onset significantly affects

the overall performance. Figure 3 shows the precision and

recall curve of frame and onset prediction with respect to

Model Precision Recall F1

Onsets and Frames [1] 0.851 0.267 0.400

O&F (frame activation) 0.801 0.632 0.704

Table 5. Comparison between the final transcription result

and frame-level activation of Onsets and Frames on Bach-

Chorale dataset.

the onset decision threshold. The curves are unbalanced,

and the reported result in Table 2 is at the threshold value of

0.05, which means we almost extract all the possible onsets

as long as there is a trace amount of activation. All the ev-

idence shows that the limitation of putting too much atten-

tion to onsets becomes especially pronounced in the con-

text of choral music, where soft onsets and smooth tran-

sitions are prevalent. Instead, we should leverage the in-

formation contained in the frame activation and view each

note as a whole, and let the model decide where to locate

the notes, which is the design principle of our proposed

method.

5. CONCLUSIONS

We proposed a novel transcription model architecture for

choral music, which conducts holistic note transcription,

addressing the soft onset and complex acoustic environ-

ment issues. We also introduced a newly curated a cappella

dataset for the development of automatic music transcrip-

tion. Tested on the BachChorale dataset, our model has

shown competent performance on the choral music tran-

scription task, particularly in its robustness against reverb.

By addressing the noted limitations of existing models and

contributing a valuable dataset to the research community,

our work paves the way for future innovations in AMT, en-

hancing the accessibility and understanding of choral mu-

sic through technology.

The next step of this work would be to distinguish and

stream different parts in choral singing, and explore the po-

tential of model architecture to general music transcription

tasks.
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