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ABSTRACT

Automatic piano transcription (APT) transforms piano

recordings into symbolic note events. In recent years,

APT has relied on supervised deep learning, which de-

mands a large amount of labeled data that is often lim-

ited. This paper introduces a semi-supervised approach to

APT, leveraging unlabeled data with techniques originally

introduced in computer vision (CV): pseudo-labeling, con-

sistency regularization, and distribution matching. The

idea of pseudo-labeling is to use the current model for

producing artificial labels for unlabeled data, and consis-

tency regularization makes the model’s predictions for un-

labeled data robust to augmentations. Finally, distribution

matching ensures that the pseudo-labels follow the same

marginal distribution as the reference labels, adding an

extra layer of robustness. Our method, tested on three

piano datasets, shows improvements over purely super-

vised methods and performs comparably to existing semi-

supervised approaches. Conceptually, this work illustrates

that semi-supervised learning techniques from CV can be

effectively transferred to the music domain, considerably

reducing the dependence on large annotated datasets.

1. INTRODUCTION

Automatic music transcription (AMT) converts poly-

phonic music recordings into symbolic representations that

encode which notes are played [1, 2]. The AMT out-

put may be a MIDI-like transcription, containing for ev-

ery note event information about the instrument, onset

time, duration, and velocity. AMT is considered as one

of the fundamental problems in music information re-

trieval (MIR) because its symbolic output can be used for

subsequent tasks such as music synchronization, structure

analysis, or cover song detection [3]. AMT is challenging

since multiple instruments may be active at the same time,

due to possible polyphonic activity per instrument, and be-

cause sound events may have overlapping harmonics [2].

Early approaches to AMT rely, e. g., on non-negative

matrix factorization [4, 5], while most recent approaches
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use deep learning-based models [6–13]. The limiting fac-

tor in training neural networks for AMT, however, is the

scarcity of labeled data. Creating such datasets typically

requires manual labeling of each note present in a record-

ing, which can be time-consuming, or relies on music syn-

chronization techniques to align score information with

recordings [11, 14]. The latter approach, however, may re-

sult in inaccurate labels due to issues such as playing errors

or synchronization inaccuracies. Alternatively, one can

create datasets with highly precise labels by utilizing in-

struments that allow automated playback or recording note

activity. For instance, several piano datasets were auto-

matically created using a Disklavier, which can synthesize

MIDI files or log key activity during performance [15–17].

Since these piano datasets exist, many works [6–9, 12]

focus on the special case of automatic piano transcrip-

tion (APT). Still, it was observed that APT methods cannot

generalize well across datasets due to overfitting [18].

In this work, we aim to improve model generalization

of APT in scenarios with little labeled data by using semi-

supervised learning (SSL), where the idea is to leverage

unlabeled data during training. Unlabeled data can be ob-

tained in large amounts as it does not depend on a labeling

process. SSL has seen limited application in AMT, with

Cheuk et al. [19] among the few to investigate this path.

However, we argue that its full potential remains to be real-

ized, especially when considering the significant achieve-

ments of SSL in computer vision (CV) [20, 21]. As our

main contribution, we adapt techniques originally intro-

duced in CV [22,23] to APT. More specifically, our method

makes use of pseudo-labeling, consistency regularization,

and distribution matching as outlined in the following.

In our approach, we use the extended Onsets and

Frames model [7, 16], which jointly predicts onsets, off-

sets, frame activity, and velocities. The raw model outputs

for onsets, offsets, and frames are each a piano roll-like

representation that can be interpreted as probabilities per

time–pitch bin. Initially, we pre-train this model in a super-

vised fashion using the available labeled data. Thereafter,

the model is used to produce binary pseudo-labels for un-

labeled data. Only sufficiently confident predictions are

converted into pseudo-labels, i. e., those below the lower

threshold are set to zero and those above the upper thresh-

old are set to one, while the remaining predictions are con-

sidered as unreliable. Next, the model makes predictions

for an augmented version of the same recording, where

augmentation involves frequency masking [24] and addi-
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tion of noise to the data. The predictions made for the aug-

mented data are then used in combination with the pseudo-

labels derived from the clean data to compute an additional

unsupervised loss. Using an augmented version instead

of a clean one encourages the model to produce consis-

tent predictions under these kinds of augmentations and

is thus called consistency regularization. As a third tech-

nique, we apply distribution matching, which ensures that

the pseudo-labels follow the same marginal distribution as

the reference labels, preventing the model from collapsing.

To achieve this goal, we use an undersampling strategy.

For reproducibility, we will provide our code 1 .

The rest of this paper is structured as follows: In Sec-

tion 2, we give an overview of related work on AMT,

SSL, and distribution matching in the context of pseudo-

labeling. In Section 3, we describe all steps of the proposed

approach. Section 4 describes our experimental setup as

well as the experimental results. We conclude the paper in

Section 5 with possible future research directions.

2. BACKGROUND AND RELATED WORK

2.1 Automatic Music Transcription

Most research on AMT is based on supervised learning.

Sigtia et al. [6] proposed the the first end-to-end approach

to APT. Hawthorne et al. [7] emphasized the importance of

explicitly predicting onsets alongside frame activity, later

extending their model in [16] to include explicit prediction

of offsets. In [8], onset and offset estimation is formulated

as a regression problem, which yields note predictions with

improved temporal resolution. The attention-based Trans-

former architecture is used for APT [9, 12, 25] and multi-

instrument AMT [10]. In [13], the Perceiver architecture is

employed for multi-instrument AMT. Recently, AMT has

been formulated as a conditional generative task: In [26], a

diffusion model is trained to generate realistic piano rolls,

being conditioned on the corresponding spectrograms.

Weakly supervised methods are proposed in [11], where

unaligned pairs of scores and recordings are used for train-

ing, and in [27], where cross-version targets are used to

replace pitch labels. Cheuk et al. [19] propose a semi-

supervised approach to AMT, utilizing unlabeled data via

virtual adversarial training (VAT). VAT [28] perturbs input

data to induce substantial changes in the model’s predic-

tions and then encourages the model to produce consis-

tent predictions under these perturbations. In [29], a fully

self-supervised method is proposed for frame-level tran-

scription. Their method encourages the concentration of

energy around fundamental frequency candidates, invari-

ance to timbral transformations, and equivariance to input

translations in both time and frequency.

2.2 Semi-Supervised Learning

In SSL, the idea is to jointly learn from labeled and un-

labeled data, and SSL is thus located between supervised

and unsupervised learning [30,31]. The objective is to train

a model that performs better than a reference model only

1 https://github.com/groupmm/onsets_frames_semisup

trained on the labeled data using supervised learning. SSL

has been successfully used in combination with deep learn-

ing, e. g., in CV [20, 21], for text classification [32], and

also in MIR [33, 34]. For an overview of deep learning-

based SSL methods, we refer to [20, 35]. Two important

SSL paradigms relevant to this paper are pseudo-labeling

and consistency regularization.

Pseudo-labeling, introduced in [36], uses the current

classification model to produce artificial labels for unla-

beled data. Continuing training with pseudo-labeled data

encourages the model to make confident predictions for

that data, effectively pushing decision boundaries away

from the data points [35]. Maman and Bermano [11] al-

ready combined pseudo-labeling and weak supervision for

AMT, but the pseudo-labels were updated only at the be-

ginning of every expectation maximization iteration rather

than being calculated on-the-fly as in [36].

Consistency regularization methods [37, 38] encourage

that the model’s predictions do not change if augmenta-

tions (e. g., random translation and addition of noise in the

case of image classification [37, 38]) are applied to the un-

labeled input data. In [37], this is achieved by adding a

consistency loss term which penalizes disagreement in the

predictions made for two augmented versions of the data.

The image classification method FixMatch [22] com-

bines both pseudo-labeling and consistency regularization

by using the current model to produce artificial labels given

a weakly augmented input (e. g., horizontally flipped) to

supervise the predictions made for a strongly augmented

input (e. g., Cutout [39], where a randomly selected rect-

angular region is masked). In [40, 41], FixMatch proved

to be effective for audio classification as well, where

weak and strong augmentations were applied to spectro-

grams. FixMatch was also adapted to pixel-wise classifica-

tion problems such as semantic image segmentation [42],

which is similar to AMT from a technical point of view.

2.3 Distribution Matching

It is well-known that training classification models on

class-imbalanced data is challenging because the models

tend to be biased towards the majority classes [43]. Biased

model predictions which do not follow a similar distribu-

tion as the reference labels are problematic for pseudo-

labeling because the model may suffer from confirmation

bias [44], where wrong predictions are reinforced. To

avoid that problem, several approaches were proposed to

match the class distribution of pseudo-labels with that of

reference labels. Berthelot et al. [23] rescale the predicted

class probabilities for unlabeled data in such a way that

their marginal distribution is close to the marginal distri-

bution of reference labels. Kim et al. [45] refine pseudo-

labels by solving a convex optimization problem that aims

to minimize the distance between pseudo-label distribution

and reference label distribution while trying to preserve

most information in the pseudo-labels. While Maman and

Bermano [11] do not explicitly perform distribution match-

ing for AMT, they set asymmetric thresholds for selecting

pseudo-labels, increasing the impact of the minority class.
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fr)

P
A(U)
fr

A

φ ∆Unlabeled
Data

Labeled
Data

Figure 1: Detailed overview of our semi-supervised approach. The Onsets and Frames transcription model (O&F) [7,16] is

trained using both a supervised (upper branch) and an unsupervised loss (lower branches). Our method uses a clean version

of unlabeled data to produce predictions, which, after thresholding (φ), are considered as pseudo-labels. Distribution

matching (∆) ensures that pseudo-labels and reference labels are similarly distributed. The pseudo-labels are used to

supervise predictions made for an augmented (A) version of the same data. The “interrupted” connection to the predictions

made for the clean unlabeled input indicates that gradients are not backpropagated in this branch. For a better overview, we

only show predictions, labels, and pseudo-labels for frame activity. Red color is used to represent NaN entries.

3. METHOD

In this section, we describe our proposed semi-supervised

approach for learning APT. We first describe in Section 3.1

how the transcription model is trained in a supervised fash-

ion. In Section 3.2, we explain how pseudo-labeling and

consistency regularization can be used for semi-supervised

training, and in Section 3.3, we explain the additional step

of matching the pseudo-label distribution with the refer-

ence label distribution.

3.1 Supervised APT Baseline

We use the modified Onsets and Frames model [7, 16] and

train our supervised APT baseline models similar to the

original methodology. This model takes as input a log mel-

scaled spectrogram with F frequency bins and T frames,

and outputs onset, offset, frame activity, and velocity es-

timates. In this work, we focus on the involved classi-

fication problems and ignore velocity estimation for sim-

plicity. Velocity estimation can be omitted without further

consequences, as it is performed by an independent part

of the model. We briefly explain how supervised learning

is done using labeled data. The model outputs matrices

P
L
on,P

L
off,P

L
fr ∈ [0, 1]P×T for onset, offset, and frame ac-

tivity, respectively. In this notation, P denotes the number

of MIDI pitches considered, and the entries of the matrices

represent probabilities of activities for all time–pitch bins.

For instance, PL
on(p, t) denotes the predicted probability of

an onset with pitch p in frame t. The reference MIDI an-

notations with continuous-time note events are temporally

quantized to match the input frame rate and converted into

binary labels IL
on, I

L
off, I

L
fr ∈ {0, 1}P×T , indicating bin-wise

activities as described in [7, 16]. The supervised loss com-

prises three terms,

Ls = λL
onL

L
on + λL

offL
L
off + λL

frL
L
fr, (1)

with the frame activity loss

LL
fr =

1

PT

P
∑

p=1

T
∑

t=1

ℓBCE(I
L
fr(p, t),P

L
fr(p, t)), (2)

where ℓBCE denotes the binary cross entropy function and

λL
on, λ

L
off, λ

L
fr ∈ [0, 1] are suitable loss weights. Onset and

offset loss terms are defined analogously. Note that, in con-

trast to [7], we leave out the weighting of individual frames

within the frame activity loss in Equation (2) for simplicity.

3.2 Pseudo-Labeling and Consistency Regularization

We now describe how our approach leverages unlabeled

data, which is illustrated in Figure 1. Our method is mainly

inspired by FixMatch [22], with the difference that we do

not apply weak augmentations to produce pseudo-labels.

Instead, we produce pseudo-labels using the unmodified,

clean data, which has been found to yield nearly the same

results in audio classification [40].

To obtain pseudo-labels for unlabeled data, we first

compute the current model’s predictions, PU
on,P

U
off,P

U
fr ∈

[0, 1]P×T , given the clean version of the log mel-scaled

spectrogram as input. For converting soft probabilities into

binary pseudo-labels, we define a thresholding function

φ(x, τlo, τup) =











1, if x ≥ τup,

NaN, if τlo < x < τup,

0, if x ≤ τlo,

(3)

where τlo and τup denote lower and upper threshold, re-

spectively. We obtain the pseudo-labels ĨU
on, Ĩ

U
off, and Ĩ

U
fr by

elementwise application of the thresholding function to the

model predictions, i. e.,

Ĩ
U
fr(p, t) = φ(PU

fr(p, t), τlo, τup) (4)
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fr

(f) ∆(ĨU
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Figure 2: Examples of the representations involved in our

semi-supervised method. Red color is used to represent

NaN entries.

for p ∈ [1 : P ], t ∈ [1 : T ], and similarly for onsets and

offsets. We use thresholds τlo = 0.05 and τup = 0.95 based

on our observations in preliminary experiments, and we

perform an ablation of this choice in Section 4. For illus-

tration purposes, we refer to Figure 2, showing examples

of clean model input, corresponding predictions P
U
fr , and

pseudo-labels Ĩ
U
fr in Figures 2a, 2c, and 2e, respectively,

where NaN entries are represented by red color.

To perform consistency regularization, the pseudo-

labels are used to supervise predictions made for an aug-

mented version of the input. As in [40], we apply aug-

mentations to the spectrograms. We opt for a simple aug-

mentation pipeline which first applies frequency masking

as described in [24], setting a randomly selected contigu-

ous frequency band of up to 30 bins to the mean value

of the spectrogram, and afterwards adds Gaussian noise

with a standard deviation of 0.01 to the entire spectro-

gram. This choice of augmentation is inspired by the

use of Cutout [39] in FixMatch [22] and the proposal

of SpecAugment [24] as similar technique for spectro-

grams. We decided against temporal masking because

this may completely remove information from the spec-

trogram regarding short events such as onsets. An exam-

ple of such an augmented spectrogram is shown in Fig-

ure 2b. We denote the augmentation pipeline by A, and

the model’s predictions for the augmented input are de-

noted by P
A(U)
on ,P

A(U)
off ,P

A(U)
fr ∈ [0, 1]P×T , respectively.

An example of such predictions is shown in Figure 2d. Fi-

nally, the unsupervised loss is given by

Lu = λU
onL

U
on + λU

offL
U
off + λU

frL
U
fr , (5)

with the frame activity loss for unlabeled data,

LU
fr =

1

PT

∑

(p,t)∈[1:P ]×[1:T ] :

Ĩ
U
fr(p,t) ̸=NaN

ℓBCE(Ĩ
U
fr(p, t),P

A(U)
fr (p, t)).

(6)

Onset and offset loss for unlabeled data are defined analo-

gously. Only those time–pitch bins contribute to the loss,

where the pseudo-labels have a value different from NaN.

The loss is normalized by the total number of time–pitch

bins for reducing the impact of the unsupervised loss if

only a few predictions are confident. As for the supervised

loss, we use suitable loss weights λU
on, λ

U
off, λ

U
fr ∈ [0, 1].

Note that the gradient of Lu is not computed with respect to

the predictions made for the clean version of the unlabeled

input, which the “interrupted” connection in Figure 1 indi-

cates. The overall loss function is obtained as the weighted

sum of the supervised and the unsupervised loss,

L = (1− λu)Ls + λuLu, (7)

where λu ∈ [0, 1] controls the relative weighting of both

terms. Following [7], we weight the individual terms in

the supervised loss equally, i. e., λL
on = λL

off = λL
fr = 1.

However, preliminary experiments suggested that better

results may be achieved if the unsupervised offset loss is

not used. Hence, our default setting is λU
on = λU

fr = 1 and

λU
off = 0. The overall weight of the unsupervised loss is set

to λu = 0.05. We explore the impact of these hyperparam-

eter choices through ablation studies in Section 4.

3.3 Distribution Matching

The classification problems involved in training transcrip-

tion models are heavily imbalanced because the labels typ-

ically have only a few non-zero entries. For example, the

training set of the MAPS dataset [15] has labels, where

only about 0.3% of all entries are ones for both onsets and

offsets, and about 3.4% of all entries are ones for frame

activity. Hence, the transcription model may be biased to-

wards predicting zeros. To avoid model collapse, we apply

distribution matching to the pseudo-labels.

In this paper, we employ a simple method to match the

marginal pseudo-label distribution per mini-batch with that

of the reference labels. The marginal distribution of the

reference labels is estimated by counting zeros and ones

across all training examples. These counting operations are

denoted by Γ0 and Γ1. The following distribution match-

ing method, explained using frame activity as an example,

is similarly applied to onsets and offsets.

During training, we count the numbers of zeros and

ones for every mini-batch of pseudo-labels, and will likely

obtain a ratio Γ1(Ĩ
U
fr)/Γ0(Ĩ

U
fr) that differs from the desired

ratio Γ1(I
L
fr)/Γ0(I

L
fr). The objective of the distribution

matching operator, denoted by ∆, is to ensure that the ra-

tio of zeros and ones is identical for reference labels and

pseudo-labels, i. e.,

Γ1(I
L
fr)

Γ0(IL
fr)

=
Γ1(∆(ĨU

fr))

Γ0(∆(ĨU
fr))

. (8)

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

176



MAPS MAESTRO SMD

Thresholds Note Frame Note Frame Note Frame

τon τfr P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Full

RV 0.50 0.50 80.9 70.6 75.1 85.9 72.0 77.9 - - - - - - - - - - - -
OF 0.44 0.57 84.4 77.8 80.8 81.5 61.3 69.4 88.5 80.9 84.2 85.4 43.5 55.8 92.7 82.9 87.3 66.0 61.7 63.1
OF-SS4 0.35 0.34 84.7 79.6 81.9 78.3 67.5 72.0 93.3 82.7 87.5 84.5 53.2 63.5 94.7 85.5 89.7 63.1 69.0 65.2

Small

RV 0.50 0.50 86.2 57.1 68.2 90.0 43.9 58.2 - - - - - - - - - - - -
OF 0.34 0.01 79.3 62.1 69.1 68.7 53.5 59.3 84.3 61.0 69.7 79.0 36.8 48.0 81.0 67.7 73.0 58.4 47.1 51.1
OF-SS4 0.05 0.01 78.2 75.9 76.7 62.3 69.9 65.0 93.8 78.4 85.0 73.6 56.3 61.8 93.6 80.2 85.9 52.3 68.1 58.2

One-Shot

RV 0.50 0.50 77.2 51.1 60.7 86.1 31.4 45.0 - - - - - - - - - - - -
OF 0.02 0.01 66.5 56.0 60.2 67.4 35.3 45.2 76.5 50.9 59.9 76.7 23.3 34.0 69.0 57.9 62.1 56.3 32.3 39.8
OF-SS4 0.03 0.01 66.2 68.0 66.6 49.8 35.0 40.0 73.6 70.2 71.3 57.4 26.1 33.8 72.6 71.5 71.4 40.3 32.4 34.9

MB 0.50 0.50 88.2 86.5 87.3 84.4 76.7 79.6 92.6 87.2 89.7 77.4 76.1 76.0 - - - - - -

Table 1: Performance metrics in percentages evaluated on the test sets of MAPS (ENSTDkAm and ENSTDkCl) and

MAESTRO, and on the entire SMD dataset. Performance metrics are calculated per piece and then averaged over all pieces

in the respective sets. As for the transcription models, RV is ReconVAT [19], OF is Onsets and Frames [16], OF-SS4 is our

proposed semi-supervised method, and MB stands for Maman and Bermano [11]. Decision thresholds of OF and OF-SS4

are tuned using the group SptkBGAm of the MAPS dataset. F1 scores are highlighted in red for better readability.

To define ∆, we use undersampling as it is frequently

used for class-imbalanced learning [46]. The distribution

matching works as follows:

1. Determine whether the ratio Γ1(Ĩ
U
fr)/Γ0(Ĩ

U
fr) is

smaller or larger than the ratio Γ1(I
L
on)/Γ0(I

L
on), i. e.,

whether there is an excess of zeros or ones, respec-

tively, among the pseudo-labels.

2. Randomly select the required number of excess ze-

ros or ones and convert them to NaN entries to ob-

tain the desired ratio.

Distribution matching reduces the number of available

pseudo-labels but ensures that the pseudo-labels within a

mini-batch follow the same marginal distribution as the

reference labels. An example of distribution-matched

pseudo-labels is shown in Figure 2f.

4. EXPERIMENTS

4.1 Implementation Details

For our experiments, we use an open-source Pytorch im-

plementation 2 of Onsets and Frames [7, 16]. Input repre-

sentation and model architecture are unchanged compared

to [7]. However, we do not ensure that input segments do

not start in the middle of a note as it is done in [7]. We use a

batch size of 8 each for labeled and unlabeled data and av-

erage losses across batches. We train our models using the

Adam optimizer [47] with an initial learning rate of 6e−5
and multiply the learning rate by a factor of 0.98 every 5k
iterations. Also, we apply gradient clipping with norm 3.

All audio recordings were downsampled to 16 kHz.

4.2 Datasets

We train and evaluate our models on three piano datasets:

MAPS [15], MAESTRO V3.0.0 [16], and SMD [17].

2 https://github.com/jongwook/onsets-and-frames

MAPS [15] contains isolated notes, chords, and com-

plete piano pieces, but we only make use of the complete

pieces. This dataset contains nine groups with 30 record-

ings each, where seven of the groups contain synthesized

recordings, and the remaining two groups (ENSTDkAm and

ENSTDkCl) contain real recordings which were automat-

ically generated from MIDI files using a Disklavier. Fol-

lowing previous work [6, 7, 19], we use the groups with

synthetic data as training data, and the real recordings as

test data, and we remove the pieces from the training data

which are also contained in the test data. This yields train-

ing and test sets of 139 and 60 recordings, respectively.

MAESTRO [16] and SMD [17] provide recordings to-

gether with the corresponding MIDI annotations automati-

cally captured by a Disklavier. Both MAESTRO and SMD

contain actual recordings of live performances, from the

International Piano-e-Competition and played by music

students, respectively. MAESTRO comprises 1276 perfor-

mances, with the official data split assigning 962, 137, and

177 performances to the training, validation, and test set,

respectively, and SMD comprises 50 performances.

4.3 Evaluation and Threshold Tuning

During inference, a decoding step is performed to obtain

estimated note events from the network outputs [7, 16].

Two thresholds, τon and τfr, are applied to binarize onset

and frame activity predictions. A note event is only recog-

nized if an onset was detected, and the length of the note

is determined based on the frame activity prediction. The

offset prediction is not explicitly used during decoding.

Following existing literature, we evaluate model perfor-

mance using note-based and frame-based metrics includ-

ing precision (P), recall (R), and F1 score. Note-based met-

rics are computed using the mir_eval library [48], where a

predicted note is considered as correct if its pitch matches

that of a reference note and the onset is within ±50ms of

that reference note’s onset.
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Instead of using fixed thresholds τon and τfr, we tune

these thresholds using a labeled validation set [27,49]. We

first determine an optimum τon via grid search so as to

maximize the note F1 score, which does not depend on τfr.

Since the frame-based metrics are computed based on the

decoded note events, the frame F1 score is affected by both

τon and τfr. We fix the previously found τon and determine

the τfr that maximizes the frame F1 score.

4.4 Experimental Scenarios

To compare with [19], we adopt their three experimen-

tal scenarios which differ in the choice of the labeled

data. The first scenario (Full) uses the full MAPS train-

ing set, the second scenario (Small) uses only the group

AkPnBcht of the MAPS training set, which contains

23 non-overlapping piano pieces, and the third scenario

(One-Shot) uses only a single recording (chp_op31 from

AkPnBcht) as labeled data. Note that for One-Shot, the

batch size for labeled data needs to be reduced to 1. In all

scenarios, the MAESTRO training set is used as unlabeled

data. We use the group SptkBGAm of the MAPS train-

ing set as validation data—which overlaps with the labeled

training data in the Full scenario.

In all scenarios, we start training the transcription model

from scratch following the training strategy described in

Section 3.1 for 50k iterations, using only the labeled data

and supervised learning. After that pre-training stage, we

train for another 50k iterations using our proposed semi-

supervised method as described in Section 3.2. We refer

to this model as OF-SS4. For a fair supervised baseline

in each scenario, we also continue training the pre-trained

model for another 50k iterations on only the labeled data,

which we will refer to as OF.

4.5 Main Results

The main results of our experiments are provided in Ta-

ble 1, where the models of all scenarios are evaluated

on the test sets of MAPS and MAESTRO, and also on

the independent SMD dataset. First, we can observe that

OF-SS4 achieves better F1 scores than OF almost in all

scenarios and across all datasets, with the frame F1 score

in the One-Shot scenario being the exception. Most no-

tably, OF-SS4 achieves a note F1 score of 85.0 on the

MAESTRO test set in the scenario Small, which slightly

exceeds the note F1 score 84.2 of OF in the scenario Full.

This shows that our semi-supervised approach is indeed

effective, reducing the number of labeled performances

by more than 80% for achieving comparable performance

in this case. We further note that the optimum decision

thresholds of OF and OF-SS4 are extremely low for the

scenarios Small and One-Shot, indicating that threshold

tuning is an important step if labeled training data is scarce.

For ReconVAT (RV) [19], we report for every sce-

nario the performance of their semi-supervised method that

achieved the highest note F1 score. Still, we observe that

OF-SS4 achieves higher note F1 scores than RV in all sce-

narios, e. g., 76.7 for OF-SS4 compared to 68.2 for RV in

the scenario Small. Regarding the frame F1 score, no clear

τlo τup A ∆ λU
off

λu N-F1 F-F1

OF - - - - - - 73.0 51.1
OF-SS1 0.05 0.95 - - 0.0 0.05 0.1 3.0
OF-SS2 0.05 0.95 - ✓ 0.0 0.05 82.4 9.4
OF-SS3 0.05 0.95 ✓ - 0.0 0.05 82.7 57.6
OF-SS4 0.05 0.95 ✓ ✓ 0.0 0.05 85.9 58.2

OF-SS5 0.25 0.75 ✓ ✓ 0.0 0.05 74.6 51.6
OF-SS6 0.05 0.95 ✓ ✓ 1.0 0.05 85.6 56.3
OF-SS7 0.05 0.95 ✓ ✓ 0.0 0.01 72.8 51.5

Table 2: Results of an ablation study performed in

the scenario Small, evaluated on the independent SMD

dataset [17]. N-F1 and F-F1 are note F1 score and frame

F1 score in percentage, respectively.

trend can be observed, with OF-SS4 achieving a higher

value for Small, but lower values for Full and One-Shot.

As another reference, we include the weakly-supervised

method by Maman and Bermano (MB) [11], which also re-

lies on the Onsets and Frames transcription model [7, 16]

but benefits from training on much more data and across

various instrumentations. Our method does not reach the

performance of MB in any scenario, but the performance

gap is reasonably small given the difference in amount of

training data, e. g., a note F1 score of 85.0 for OF-SS4 in

scenario Small compared to 89.7 for MB on MAESTRO.

4.6 Ablation Study

We perform an ablation study to evaluate the efficacy of

the individual components of our semi-supervised method.

The results of this study are shown in Table 2. The

method OF-SS1 performs pseudo-labeling without con-

sistency regularization and distribution matching, where

the performance metrics indicate potential model collapse.

Better results are achieved when additionally using either

distribution matching (OF-SS2) or consistency regulariza-

tion (OF-SS3), achieving already better note F1 scores

than the supervised baseline OF. The performance is fur-

ther improved by combining both techniques, which re-

sults in our proposed method OF-SS4. The remaining ab-

lations change the hyperparameter setting of our method,

where less restrictive thresholds for selecting pseudo-

labels (OF-SS5), calculating the unsupervised loss also

for offsets (OF-SS6), or a reduced overall weight of the

unsupervised loss (OF-SS7) yield worse results.

5. CONCLUSION

In this paper, we successfully transferred SSL techniques

from CV to the MIR domain. More specifically, we ap-

plied pseudo-labeling, consistency regularization, and dis-

tribution matching for the task of APT, enabling the option

to leverage unlabeled data during training. Thereby, the

dependence on large annotated datasets is considerably re-

duced. For instance, using our semi-supervised approach,

we observed reductions in the required amount of labeled

data by up to 80% for achieving similar performance as a

purely supervised baseline.

In future work, we plan to investigate other augmenta-

tion strategies, e. g., musically meaningful augmentations

as in [18], to perform consistency regularization, and the

extension of the method to the multi-instrument setting.
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