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ABSTRACT

Variation in music is defined as repetition of a theme, but

with various modifications, playing an important role in

many musical genres in developing core music ideas into

longer passages. Existing research on variation in mu-

sic is mostly confined to datasets consisting of classical

theme-and-variation pieces, and generative models lim-

ited to melody-only representations. In this paper, to ad-

dress the problem of the lack of datasets, we propose an

algorithm to extract theme-and-variation pairs automati-

cally, and use it to annotate two datasets called POP909-

TVar (2,871 theme-and-variation pairs) and VGMIDI-

TVar (7,830 theme-and-variation pairs). We propose both

non-deep learning and deep learning based symbolic mu-

sic variation generation models, and report the results of a

listening study and feature-based evaluation for these mod-

els. One of our two newly proposed models, called Varia-

tion Transformer, outperforms all other models that listen-

ers evaluated for “variation success”, including non-deep

learning and deep learning based approaches. An impli-

cation of this work for the wider field of music making is

that we now have a model that can generate material with

stronger and perceivably more successful relationships to

some given prompt or theme. 1

1. INTRODUCTION

The term variation refers to “a form founded on repetition,

and as such an outgrowth of a fundamental musical and

rhetorical principle, in which a discrete theme is repeated

several or many times with various modifications” [1]. In

western music, variation is a technique in which the theme

is repeated but in an alternate form with various modifica-

tions in one or more aspects of melody, rhythm, harmony,

1 Demos: https://variation-transformer.glitch.me.
Code and datasets: https://github.com/ChenyuGAO-CS/

Variation-Transformer.
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bution: C. Gao, F. Reuben, and T. Collins, “Variation Transformer: New

datasets, models, and comparative evaluation for symbolic music varia-
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Retrieval Conf., San Francisco, United States, 2024.

texture, instrumentation, etc. An example from game mu-

sic is provided in Figures 1(a) and (b), where the top and

bottom staves in (b) are embellished compared to (a), but

the melodic and harmonic structure is largely the same.

In recent years, a number of music generation algo-

rithms and commercialised artificial intelligence (AI) mu-

sic generation systems have emerged [2–9], but there are

only a few studies focusing on symbolic music varia-

tion generation [10–14]. Although some infilling sys-

tems claim that they have the potential to generate vari-

ations [7, 8, 15, 16], an infilling system may sometimes

work to continue writing [17] rather than always varying

the theme (i.e., generate content with a strong relationship

to the given prompt). Accepting a musical input prompt

but destroying the original music idea is a “lack of con-

trol” issue, and could frustrate composers [18, 19]. It also

leaves the presence and perception of rhetorical or narra-

tive content to serendipity (chance), which goes against the

rhetorical principle of the definition of musical variation.

Existing music variation research is mostly confined

to datasets consisting of classical theme-and-variation

pieces [20] or monophonic folk music [21], and most of

existing music variation generation models are also limited

to varying melody only [11, 12, 14].

To address the issues above, in this paper we develop

both new datasets and models for symbolic polyphonic

music variation generation. For data annotation, we de-

velop an algorithm for theme-and-variation extraction, and

apply it to annotate two datasets: POP909 [22], and VG-

MIDI [23]. For model design, we propose both deep and

non-deep learning-based models, as another shortcoming

of recent research is that evaluations ignore models pub-

lished prior to c. 2015 – assuming, rather than actually

testing whether, deep learning approaches are superior for

music generation [13,14,24]. Three research questions are

addressed: RQ1: To what extent can AI models gener-

ate successful music variations? RQ2: Can deep learning

approaches outperform non-deep learning approaches on

music variation generation? RQ3: Would variation gener-

ation tools be useful? We conduct a listening study and

feature-based evaluation to address these research ques-

tions, and finish by discussing the implications of the

study’s findings for music generation and the field of MIR.
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(a) Theme from “Loneliness” by Kenji Hiramatsu, Xenoblade Chronicles 2.

(b) A variation of (a) from “Loneliness ” by Kenji Hiramatsu, Xenoblade Chronicles 2. (c) Measure-level encodings.

Figure 1. (a) Theme from “Loneliness” by Kenji Hiramatsu, Xenoblade Chronicles 2; (b) Variation from the same piece;

(c) Measure-level encodings based on this theme-variation example, discussed in a subsequent section. Tm denotes the

encoding of the mth measure of the theme, while Vm denotes the encoding of the mth measure of the variation. The shaded

areas are filled with 1s, while the blank areas are filled with 0s, indicating how we condition the model to attend to specific

parts of the theme when generating a variation.

2. RELATED WORK

2.1 Symbolic music generation approaches

Before deep learning models became a popular approach

for music generation, many models were based on Markov

chains [25–28]. Markov models assume that the cur-

rent state prediction depends on one (first-order Markov

model) or more (second-, third-order models) previous

states. They have been used to generate music in many

styles, and recent work [29] finds evidence that ratings of

the stylistic success of their outputs are on a par with deep

learning models such as Music Transformer [30].

Among a large number of deep learning approaches

to symbolic music generation [30–40], the most popu-

lar architectures are the generative adversarial network

(GAN) [41], variational autoencoder (VAE) [31, 42, 43],

and transformer [44]. More recently, there are also some

attempts to adopt the diffusion model [45, 46] to generate

music [39, 40]. But to date, we observed these diffusion-

based algorithms suffer from the problem of a lack of struc-

ture in long-term music generation.

2.2 Symbolic music variation generation

As a sub-task of symbolic music generation, symbolic mu-

sic variation generation takes a prompt/theme as input, and

aims to generate variations where the new material is dif-

ferent to the theme but remains musically relatable. Some

variation generation approaches are based on genetic algo-

rithms [10,11], but drawbacks are that they have only been

applied to sequential representations of monophonic music

and are reliant on manually designed rules [47].

There are also variation generation methods based on

probabilistic methods. For example, an algorithm men-

tioned in [48] starts with the same first beat as the theme,

and subsequent beats are generated by a Markov model.

To ensure the generated variation begins and ends some-

where “sensible”, the Markov process can be run forwards

and backwards from such start and end points, with a join

in the middle of a generated phrase that may break the

Markov property [26, 48]. Compared to variation genera-

tion, these two methods are more like style-composing. In

contrast, an idea in [49] is to decide if each of the states in

an existing sequence (such as a theme) should be replaced

by another state according to a corresponding probability

distribution. However, this approach has only ever been

applied to monophonic variation generation.

Compared to non-deep learning approaches, an advan-

tage of deep learning for music generation is that it places

less emphasis on the domain knowledge/expertise of the

programmer – the trained network weights should take

on responsibility for generalizing the style/structure of the

training data.

There are only a few studies for music variation gen-

eration that have adopted deep learning methods. This is

because most deep learning approaches are data-driven,

and existing theme-and-variation datasets are either rela-

tively small classical music datasets (e.g., the TAVERN

dataset [20] with 17 works by Beethoven and 10 by Mozart

for a total of 281 variations) or monophonic folk mu-

sic datasets [21], which restricts the development of deep

methods for music variation generation. Although Music

Transformer is adopted in [13] for jazz variation gener-

ation, the JAZZVAR dataset (502 theme-variation pairs)

proposed in this study is still relatively small for deep

learning model training. Besides, the lack of listening stud-

ies and comparative evaluation makes it difficult to con-

clude to what extent these models are effective in generat-

ing musical variations [13, 14, 24].

3. DATASET

In this section, we introduce our algorithm for automatic

extraction of variations from a collection containing anno-

tated themes. We use it to extract theme-and-variations

(TVar) pairs from the POP909 [22] and VGMIDI [23]

datasets. As a result, two new datasets (POP909-TVar, and

VGMIDI-TVar) are constructed.

3.1 Construction of the POP909-TVar dataset

The POP909 dataset [22] contains piano arrangements of

909 Chinese popular songs in MIDI format. We use 809
pieces (∼90%) for training, and 100 (∼10%) for testing.
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As repetitive phrase annotations are provided in the

POP909 dataset [50], we use these to estimate the lower

and upper bounds of the similarity between human-

composed themes and variations by utilizing a symbolic

fingerprinting-based similarity calculation [51, 52]. The

first occurrence of each repetitive pattern is regarded as the

theme, and the following occurrences are regarded as vari-

ations. For each theme, we record the minimum and max-

imum similarity scores between it and its variations. The

similarity lower bound is the average of the per-theme min-

imum scores, and the upper bound is defined correspond-

ingly, with values of 53.03 and 70.95, respectively.

Algorithm 1 TVar extraction on the POP909 dataset

Input: Repetitive pattern labels (P) and MIDIs (M) of the

dataset, similarity upper bound u and lower bound l
Output: TVar pairs

1: for p ∈ P do

2: Separate the first occurrence of p as the theme t, and

the subsequent occurrences as an array VRep

3: VMatch ← match_occ(t,M, u, l)
4: Push VMatch into VRep

5: for v ∈ VRep do

6: if similarity(t, v) > u then

7: Filter out v
8: else

9: if Similarity score between v and the previous

occurrence > u then

10: Filter out v
11: else

12: Push v into VOut

13: if Occurrence count of VOut ≥ 1 then

14: return t,VOut

The pseudocode for TVar extraction is given in Algo-

rithm 1. We take the first occurrence of repetitive pat-

terns as themes when applying our algorithm to POP909

(line 2). 2 Variations are extracted from both human-

annotated patterns (line 2) and the whole dataset (line 3).

When extracting variations from human annotations, we

exclude variations whose similarity score is larger than

the similarity upper-bound (lines 6-7), since we aim to

train models to generate variations where there is new

but theme-relatable material. When extracting variations

of a theme on the whole dataset, we run a symbolic

fingerprinting-based pattern-matching approach [51–53]

using the same lower and upper bounds mentioned previ-

ously to retain variations (line 3). We also filter out varia-

tions that are too similar to existing variations (lines 9-12).

The POP909-TVar dataset is constructed by applying

our TVar extraction algorithm to POP909, giving 2,609

TVar pairs in the training set, and 262 TVar pairs in the

test set.

2 First occurrences are not always the archetypal occurrence, but it is
a reasonable assumption [17].

3.2 Construction of the VGMIDI-TVar dataset

The VGMIDI dataset [23] contains piano arrangements of

game music in MIDI format recorded by human perform-

ers. 3 There are three subsets in VGMIDI: the largest has

2,520 MIDI files for music generation model training, the

second one has 136 MIDI files with emotion labels, and the

third one (272 MIDI files) is for music discriminator train-

ing, which involves both human-composed music and fake

data. Here, we merged the largest subset and the subset

with emotional labels and adhered to the original train-test

split, obtaining 2,301 MIDI files for training and 355 for

testing.

Compared to popular music, we infer there could be

greater scope for new material in variations in game mu-

sic, so we reduce the similarity lower bound to 30 but keep

the similarity upper bound as 70.95. Also, we restrict the

extracted variation and the theme to come from the same

song. Then, we follow the steps as in Section 3.1 to ob-

tain variations. In contrast to the POP909 dataset, repet-

itive patterns are not annotated in the VGMIDI dataset,

so we run a slice window with size = 8 measures and

step = 4 measures from the beginning to the end of the

song to extract theme samples. The similarity between

each new theme and previous themes is calculated to filter

out theme samples that are too similar (similarity score >
upper-bound) to existing themes. The variation extraction

function match_occ() is applied to each of the theme

samples, and then the matched occurrences will be filtered

by the same processes as that in Algorithm 1 (lines 5-12).

Only theme samples with more than one variation will be

retained (lines 13-14 in Algorithm 1).

The VGMIDI-TVar dataset is constructed by applying

the above steps to VGMIDI, giving 6,790 TVar pairs in the

training set, and 1,040 in the test set.

4. MUSIC VARIATION GENERATION MODELS

In this section, we introduce two new music variation gen-

eration models: one is a deep-learning model called Varia-

tion Transformer, and the other acts as a non-deep learning

baseline called Variation Markov.

4.1 Variation Transformer

Variation Transformer builds on Music Transformer [30],

utilizing the REMI representation [54] to encode incom-

ing MIDI files. The design of the relative positional self-

attention [55] alleviates the problems of the regular self-

attention that attends only locally or at the beginning for

a sequence [56] – Music Transformer is used for jazz

variation generation in [13]. However, while developing

and testing these models, we observed that Music Trans-

former’s ability to understand the measure-wise relation-

ship between theme and variation was not strong enough.

For example, when generating a variation of an 8-measure

theme, Music Transformer might generate something new

in the first 2 measures, but copy large sections of the theme

3 Sources for this dataset are https://www.vgmusic.com and
https://www.ninsheetmusic.org.
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in the following measures [52, 57], showing the failure

of the Music Transformer model to learn the theme-and-

variation relationship. When a human composer creates

a variation, commonly each bar of the variation is relat-

able to the corresponding measure of the theme (recall

Figures 1(a) and (b)). Thus, in this study, we propose

the measure-level encodings (Figure 1 (c)) and theme-and-

variation Attention (tvAttn) to force the transformer ar-

chitecture to take into account more information about a

specific measure of an existing theme when generating the

corresponding measure of a new variation, calling our new

model the Variation Transformer.

Figure 1(c) shows the measure-level encoding (which

we will notate Ebar) to capture the relationship between

corresponding measures of theme and variation, with a size

of N ×N , where N is the length of the encoding of theme

concatenated with variation. The formula for tvAttn is then

tvAttn = Softmax

(

(1 +wEbar)
QK⊤ + Srel

√
Dh

)

V, (1)

where w is a learnable parameter, and Ebar is the measure-

level encodings. Q represents the queries, K is the set

of keys, V is the set of values, 1/
√
Dh is a scale factor,

and Srel is to encode the relative positional information be-

tween each pair of tokens in a sequence.

4.2 Variation Markov

Based on [26, 58] and inspired by [12, 48], we propose

a non-deep learning music variation generation strategy

based on Markov models. Polyphonic MIDI inputs are rep-

resented as states in a state space consisting of beat in the

measure and MIDI note numbers relative to estimated tonal

center. The transitions between states observed across our

training data are stored in a directed graph.

When generating variations, we extract the beginning

and end states of each measure of the theme, and run a

“scenic pathfinding algorithm” to find replacement states.

This algorithm is adapted from Dijkstra’s shortest path al-

gorithm [59]. When finding the shortest path between con-

nected vertices u and v in a graph G, Dijkstra’s method

always updates the distance from the starting vertex u to

other vertices with shorter distances. In our scenic version,

we insert an extra piece of logic to determine whether the

distance from the starting vertex u to another vertex will

be updated to a shorter distance with probability p = .5.

In this way, more varied musical content is generated, be-

cause the path connecting u to v that results on each occa-

sion is not necessarily the shortest. We replace each mea-

sure from the theme with the scenic path alternative with

probability q = .5, and if u and v are not connected (due

to not being observed in a training data sequence), then we

retain the original measure from the theme.

5. EVALUATION

5.1 Experimental design

We conduct a listening study and feature-based evaluation

on both POP909-TVar and VGMIDI-TVar datasets. The

variation generation ability of three transformer-type mod-

els (TTMs) – fast-Transformer (FaTr) [37, 60, 61], Music

Transformer (MuTr) [13, 30], and Variation Transformer

(VaTr) – and Variation Markov (VaMa) is compared.

For fair comparison, we use the REMI representa-

tion [54] to represent MIDI files for all three TTMs, which

were trained on A40 GPUs with a batch size of 16 for

10 epochs on each of the two training sets. The learn-

ing rate is set as 1 × 10−4 for the first 5 epochs, then de-

creased to 5× 10−5 for the last 5 epochs. For model train-

ing, we concatenate each theme-and-variation pair, with a

[Separate] token inserted between the theme and vari-

ation. Ten variations were generated by each algorithm

with using each theme in the test set as an initial prompt to

provide the pool of stimuli for evaluation.

For hypothesis testing, we utilize a Bayes factor analy-

sis (BFA, [62]), where the ratio of the marginal likelihoods

of the alternative hypothesis H1 to the null hypothesis H0

is calculated, and notated BF10. A large value of BF10

suggests there is strong evidence for H1. Conversely, a

small BF10 suggests strong evidence for H0. A table for

interpreting BF10 values is provided in [63]. BFA is supe-

rior to classical (frequentist) hypothesis testing, because of

this ability to find evidence in favor of the null, which in

(computational) systems testing corresponds to a meaning-

ful non-difference between systems.

5.2 Listening study

Our listening study is approved by the Ethics Committee of

the School of Arts and Creative Technologies at the Uni-

versity of York. Our overall design builds on previous lis-

tening studies in this domain (e.g., [49]), and our hypothe-

ses are as follows:

1. In terms of variation success, we predict the following

ordering of systems: VaTr > MuTr > FaTr > VaMa.

2. TTMs (VaTr, MuTr, and FaTr) achieve better music

quality than VaMa.

5.2.1 Participants

We aim to recruit participants with a relatively high level

of music knowledge, using student email lists at the Uni-

versity of York, and the C4DM group of the Queen Mary

University of London. 4 Participants are compensated £10

Amazon vouchers for the 30 mins it takes to complete the

study. After removing responses that were unfinished or

submitted too quickly to fully listen to the music, there are

25 responses under analysis.

Participants’ mean age is 25 years old, and their mean

years of formal musical training is 10 years. Over 90% of

participants listen to music daily, and 80% of participants

play music/sing at least weekly.

5.2.2 Stimuli

For the listening study, 15 groups of stimuli were picked

randomly from POP909-TVar generated outputs, and 15

4 We follow the consensual assessment technique [49,64] to design our
study, which requires participants be experienced in the relevant domain.
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from VGMIDI-TVar outputs. In each group, there are one

theme and five variations, in which one is composed by

a human, and the other four are generated by the mod-

els (VaTr, MuTr, FaTr, and VaMa). Each music excerpt

is about 30-sec rendered using a piano sound. Each partic-

ipant listens to 3 groups of music.

5.2.3 Procedure

After informed consent, instructions, and TVar examples,

participants listen to a theme and then each variation, rat-

ing the musical dimensions of variation success, stylistic

consistency, similarity, creativity, and musical quality on

a 1–7 Likert scale, as well as two additional questions –

willingness to use a system that generates this variation

(willingness), and the extent to which this variation sounds

like it is composed by a human (is human). 5 An optional

free text box for any comments follows the rating scales.

After completing the evaluation of all 3 groups of materi-

als, the extent to which the participant finds an algorithmic

variation generation tool useful for their creative practice is

rated (same scale), and a final optional free text box for any

comments is provided. Given the participant and stimulus

numbers, each TVar stimulus group was heard by approxi-

mately 3 participants, and all presentation orders were ran-

domized to mitigate ordering and fatigue effects.

5.2.4 Results

Participants’ ratings for the features mentioned in Sec-

tion 5.2.2 are shown as violin plots in Figure 2. For the

BFA addressing our hypotheses at the top of Section 5.2,

results for Hyp. 1 demonstrate that VaTr outperforms all

three other algorithms (MuTr, FaTr, and VaMa) on vari-

ation success ratings, and MuTr outperforms FaTr and

VaMa. But there is no difference between FaTr and VaMa.

Results for Hyp. 2 indicate that TTMs (VaTr, MuTr, and

FaTr) perform better than VaMa on musical quality ratings.

In terms of observations of results not tied to par-

ticular hypotheses, human-composed variations (Hu) ap-

pear to outperform algorithms on all metrics. In addi-

tion to variation success mentioned above, VaTr achieves

higher ratings than other algorithms for willingness on both

POP909-TVar and VGMIDI-TVar. The TMMs have higher

ratings for stylistic consistency, musical quality, and is hu-

man than VaMa, but VaMa shows potential for generating

creative variations. For POP909-TVar, VaMa and VaTr re-

ceive similar creativity, which is higher than that of MuTr

and FaTr. For VGMIDI-TVar, although VaMa gets lower

creativity than VaTr, it is still on par with MuTr and FaTr.

Approximately 100 comments are provided explaining

the reasons for ratings, from which we find that partici-

pants usually consider the success of a variation according

to the musical dimensions of pitch, rhythm, structure, dy-

namics, key signature, and texture, as well as the four more

holistic dimensions mentioned in Section 5.2.2 (stylistic

consistency, similarity, musical quality, and is human). As

5 The variation success is mainly to address RQ1 and RQ2. Follow-
ing existing research [37, 40, 65], we also include other music dimension
metrics and is human. The willingness metric is to address RQ3.

such, deviations in these musical dimensions (e.g., disso-

nance, discordant dynamics, confusing structure) during

the generation process could lead to unsatisfactory results.

Usually, a lack of stylistic consistency or being too simi-

lar/different to the theme will also result in an unsuccessful

variation, but sometimes slight alterations (P11) or varying

a lot from the theme (P21) can still lead to high ratings.

When considering whether a variation is written by a

human composer or generated by AI, participants usually

evaluate it in terms of the musical dimensions of rhyth-

mic repetition, and appearance of dissonance, as well as

overall musical quality. Lower-quality music seems to be

associated with thoughts of being created by machines.

But sometimes, even if the variation is recognised as AI-

generated, participants are still receptive to it if the creativ-

ity and/or quality of the variation is good (P14 and P21).

The distribution of the extent to which participants find

an algorithmic variation generation tool useful for their

creative practice is: lower quartile = 3, median = 4, upper

quartile = 5 on a 1–7 Likert scale. Corresponding com-

ments comprise the following categories: i) benefit of mu-

sic variation generation AI (MVG-AI) [18, 19, 66], with 8

out of 25 participants mentioning MVG-AI could be ben-

eficial especially for inspiration; ii) concerns about MVG-

AI [18, 19, 66], such as the quality and consistency not be-

ing sufficient to replace human composers (P7); iii) the

clash between “creative ego” and MVG-AI [19], where

for example P1 considers composing as creating art that

is meaningful to the individual, which should not be done

by AI instead. Similarly, P9 and P15 demonstrate wari-

ness of the implications of AI and reluctance to use genera-

tive AI [18]; iv) further support/functionality required [18],

such as P14 expecting MVG-AI to be able to produce vari-

ations that reflect a composers’ own style, and P24 think-

ing composers may have extra requirements for the MVG-

AI in terms of emotional or style targets.

5.3 Feature-based evaluation

We use the whole pool of evaluation materials here, in

which ten variations were generated by each algorithm for

each theme drawn from the test sets. Three musical fea-

tures are extracted and evaluated at the measure level:

Similarity score (SS) [67] gives the similarity between

each measure of the generated variation and the corre-

sponding measure of the theme in terms of pitch and

rhythm.

Translational coefficient consistency(TC) [68] estimates

the complexity or music-repetitive structure of an excerpt.

A lower TC value means a music excerpt is highly repet-

itive, and vice versa. Here we calculate the absolute dif-

ference between the TC of each measure of the generated

variation and the theme.

Key signature consistency (KSC) [69] captures the per-

centage of measures of the generated variation that have

the same estimated key as the theme.

The evaluation results are shown in Table 1. We found

that VaMa has the highest SS and KSC for both datasets.

Among the TTMs, VaTr has higher values than MuTr and
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Figure 2. Violin plots for rating (1–7) distributions of seven dimensions on two datasets, where the envelope represents

the distribution of responses; the lines indicate rating scales; the horizontal line goes from the lower quartile through the

median (point) to the upper quartile.

POP909-TVar

Feat. Hu VaTr MuTr FaTr VaMa

SS 26.1 (20.6) 19.0 (18.0) 12.0 (15.2) 6.8 (6.6) 15.8 (9.5)
TC 0.10 (0.09) 0.11 (0.10) 0.12 (0.10) 0.12 (0.09) 0.15 (0.11)
KSC 51.7 41.0 29.0 22.4 52.6

VGMIDI-TVar

Feat. Hu VaTr MuTr FaTr VaMa

SS 25.2 (19.1) 9.7 (16.7) 7.2 (12.9) 4.2 (8.0) 17.4 (14.6)
TC 0.12 (0.13) 0.16 (0.15) 0.17 (0.15) 0.14 (0.13) 0.14 (0.13)
KSC 32.8 22.4 19.7 19.5 52.0

Table 1. The feature evaluation results, with mean and

standard deviation (in brackets) for each feature.

FaTr on all three metrics for POP909-TVar, and higher

than MuTr and FaTr on SS and KSC for VGMIDI-TVar.

But, VaMa is outperformed by TMMs in most of metrics in

the listening study (Section 5.2.4), reflecting that feature-

based metrics alone cannot evaluate the performance of

models from the human-aesthetic perception of music [70].

6. DISCUSSSION

In this paper, we propose datasets and models for sym-

bolic variation generation. To address our research ques-

tions, we run a listening study and feature-based evaluation

for both deep and non-deep learning models, as most re-

cent music generation research only compares deep learn-

ing approaches. According to our listening study results,

human-composed variations outperform algorithms on all

metrics, indicating that there is still a gap between human-

composed variations and those generated by our proposed

algorithms (RQ1). One of our proposed models (VaTr) is

the strongest for variation generation, which demonstrates

the superiority of a deep learning over a non-deep learn-

ing approach when the task is as specific as “generate a

successful variation of this theme". But our experiment re-

sults also show that not all deep learning approaches out-

perform the non-deep learning approach, especially in cre-

ativity (RQ2). And so for the less specific task of “gen-

erate music in a target style", more research and compar-

ative evaluation is required to establish the superiority of

deep learning over alternative music generation methods.

We hope that our study encourages researchers to revisit

non-deep learning approaches, as well as to test experi-

mentally whether deep learning methods are broadly su-

perior to non-deep learning methods for music-generative

tasks. To address RQ3, we further explore the extent to

which participants in our listening study find MVG-AI use-

ful for their creative practice, with an average rating of 4 on

a 1–7 Likert scale, and some of the comments suggest that

MVG-AI could lead to powerful tools for inspiration. One

of our proposed models VaTr achieves the higher ratings

for willingness than other models, and a comparable rating

for willingness as that for human-composed variations on

POP909-TVar (Figure 2).

Although the results are promising, there is still plenty

of work to do in order to bridge technology and musical

creativity. To increase the willingness of users to adopt

MVG-AI, it is necessary to improve the quality of music

generation and to consider the expectations of users. For

example, to mitigate deviations in musical dimensions like

dissonance, which lead to unsatisfactory results, adding a

post-processing stage could be useful. Some participants

mentioned their expectations about personalized AI in our

study as well, as in [18, 19]. Using low-rank adaptation

techniques [71, 72] to fine-tune a pre-trained model could

be a strategy to explore in future. Another topic for future

work entails further investigation of the quality of the pro-

vided datasets, to validate the reliability of the extracted

theme-variation pairs.

Future applications of this work include: being inte-

grated into AI music making systems to enable these sys-

tems to generate music with a stronger relationship to the

user’s music prompt; being used in video game music

domain, either as a tool to provide inspirations for com-

posers, or for in-game generation to reduce listener fa-

tigue [73,74]; and structured music generation [12,24,75].
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7. ETHICS STATEMENT

The listening study in this paper is approved by the Ethics

Committee of The School of Arts and Creative Technol-

ogy, University of York. A Participant Consent Form and

a Participant Project Information Sheet is included prior

to the start of the questionnaire to inform participants of

the project and obtain their consent. Participants have the

right to withdraw at any time. Each participant’s data is

protected by anonymization. The data collected involves

ratings and comments as described in Section 5.2.2. The

demographic information collected only involves partici-

pants’ age in years, years of formal music training, regu-

larity of playing music or signing, and regularity of listen-

ing to music, which are not sufficiently detailed for partic-

ipants to be identified. No other identifying data are col-

lected. Researchers shuffle the order of their responses,

and then record these responses and use anonymized new

IDs, which are person 1, person 2, etc. This way, even the

researchers will not be able to identify the person after the

survey.

Previous work demonstrates that some deep learning

approaches that generate music from scratch tend to copy

large sections from the training set with a high risk of copy-

right infringement [52]. In order to mitigate this issue, our

models vary the input prompt. Moreover, future work in-

cludes further experiments regarding originality of the gen-

eration results. Although the training materials come from

open-source datasets (POP909 [22], and VGMIDI [23]), it

does not mean all the contents are copyright free. There

is a possibility of our models to output copyrighted mu-

sic. Therefore, our models and data are used for academic

research only, not for commercially usages.
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