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ABSTRACT

While most music generation models use textual or para-

metric conditioning (e.g. tempo, harmony, musical genre),

we propose to condition a language model based music

generation system with audio input. Our exploration in-

volves two distinct strategies. The first strategy, termed

textual inversion, leverages a pre-trained text-to-music

model to map audio input to corresponding "pseudowords"

in the textual embedding space. For the second model we

train a music language model from scratch jointly with a

text conditioner and a quantized audio feature extractor. At

inference time, we can mix textual and audio conditioning

and balance them thanks to a novel double classifier free

guidance method. We conduct automatic and human stud-

ies that validates our approach. We will release the code

and we provide music samples on musicgenstyle.github.io

in order to show the quality of our model.

1. INTRODUCTION

In the field of music generation, prior research has predom-

inantly focused on producing brief musical segments [1,2],

MIDI generation [3], while generating long and coherent

waveforms (around 30 seconds) has only recently been

tackled [4–6]. Specifically, most of these recent models

have been designed to perform text-to-music generation,

providing a fascinating tool for creators. Other types of

high-level conditioning have been used in previous work

such as tempo, harmony [7]. For lower-level and aligned

conditioning, the authors of [5] use melody, while [8] uses

chords, piano rolls, or the drum stem. However, music is

hard to describe textually and the scarcity of text-music

pair datasets makes it challenging to generate music in the

style of a specific artist or song, since the artist is probably

not represented in the training dataset. Then a common use

case would be to generate music in the style of a reference

segment. This gives more control to the user since they do

not have to find a textual prompt that describes the music

they want to generate.
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In the computer vision domain, the authors of [9] in-

troduced textual inversion to extract visual concepts that

can then be used to generate new images with a text-to-

image model. Given a few images (3-5) of a concept or

object, one sets them as outputs of a frozen text-to-image

model with a randomly initialized learnable text embed-

ding. Backpropagating the generative model loss on the

text allows to learn new "pseudowords" in the textual em-

bedding space of the model that match the common con-

cept depicted on the images. One can then compose this

learnt pseudoword S∗ in a textual prompt to generate an

image of the learnt concept (for instance "a painting of S∗

in the style of Picasso").

We first adapted this method by using the text-to-music

model MusicGen [5], using crops of a song to depict a con-

cept, and optimizing the cross-entropy loss of the music

language model. This approach does not need to retrain a

model from scratch. However, its inference is very slow

since it requires hundreds of optimization steps of the tex-

tual prompt, including gradient computation through the

language model, before generating music.

To tackle this issue, we present another method where

we design a style conditioner module that we jointly train

with a text-to-music MusicGen model [5]. This style con-

ditioner takes a few seconds of audio and extracts features

out of it. As a result this new model can generate music

using two modalities as input: waveforms and textual de-

scriptions. Our conditioning is high level even if it can

retain some lower level content such as melodic patterns

or rhythm. Designing this style conditioner is challenging

as we need to extract enough features to have a meaningful

conditioning but not too much, to prevent the generative

model to copy and loop the conditioning audio. We thus

need to introduce and tune information bottlenecks in our

conditioning module. Our contributions are the following:

1) We adapt the textual inversion method of [9] to a

pretrained text-to-music MusicGen model. This allows to

perform audio conditioning for music generation without

training a model from scratch.

2) We present our style conditioner method which is

based on a frozen audio feature extractor (Encodec [10],

MERT [11] or MusicFM [12]) followed by a transformer

encoder [13], Residual Vector Quantizer (RVQ) [14] and

temporal downsampling. The number of residual streams

used by RVQ is adjustable at inference time which gives

the user the ability to change the strength of the style con-

ditioning. To our knowledge, we are the first to explore
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this approach for music generation.

3) Since the model is trained with both textual and au-

dio conditioning inputs, we can combine both to gener-

ate music. However, audio contains much more informa-

tion, so that text is ignored by the model at inference. We

propose to balance them with a new double classifier free

guidance [15] which is a general method for merging con-

ditions with various degrees of information.

4) We introduce novel objective metrics for style con-

ditioning, based on nearest neighbors search in the latent

space, validated with human evaluations.

We compare our method to baselines which are: a Mu-

sicGen trained with CLAP embeddings [16] as condition-

ing, a text-to-music MusicGen used with text prompts, and

a MusicGen model without conditioning used in continu-

ation mode. We perform as well some ablation studies in

order to justify the architecture of our style encoder. Based

on results, we show the practicality of our methods and the

musical quality of the generated music.

2. RELATED WORK

2.1 Generative models for music

Music generation models can be categorized into two

types: autoregressive models and non autoregressive ones.

Autoregressive ones are motivated by the successful work

done in natural language modeling. Recent successful

models use a compression model taking the form of a multi

stream quantized autoencoder [10, 14] in order to convert

audio into K parallel discrete streams of tokens. The K

streams are obtained by performing Residual Vector Quan-

tization (RVQ) [14] on the latent space of an autoencoder,

making the first stream contain coarse information and fol-

lowing ones refine the approximation of the latent space.

Then, an autoregressive transformer [13] is used to model

these audio tokens. MusicLM [4] and MusicGen [5] are

built on this principle. MusicLM uses a multi-stage ap-

proach with different models to predict the K streams,

while MusicGen models them in parallel using a delay pat-

tern [5, 17].

Non-autoregressive models such as AudioLDM2 [18],

MusicLDM [19], and Stable Audio [6], are latent diffu-

sion models operating in the latent space of a continuous

variational autoencoder. Some other models use cascaded

diffusion such as Noise2Music [20] to progressively in-

crease the sampling rate of the audio. Moûsai [21] uses

a first diffusion model to compress the music and a second

one to generate music from this representation and textual

descriptions. MusTango [7] uses a latent diffusion model

conditioned on textual description, chord, beat, tempo and

key. Jen-1 [22] combines a diffusion model and a masked

autoencoder trained with multi-tasks objectives. It can per-

form music generation, continuation and inpainting. A

second version [23] uses source separation [24] over their

dataset to allow the user to generate and edit music stem

by stem. VampNet [25] is a masked modeling approach

to music synthesis that uses masking at training and in-

ference time in order to generate discrete audio tokens.

MAGNeT [26] is based on the same masking principle.

It can also combine autoregressive and masking to reach

the same quality as the autoregressive baseline (MusicGen)

but with a 7x faster inference. In MeLoDy [27], a language

model is used to model coarse semantic tokens and a dual

path diffusion model is then used for acoustic modeling.

The authors claim faster than real time generation.

2.2 Jointly trained conditioners for music generative

models

Regarding the conditioning, most of the models focused on

text-to-music [4, 5, 19–22]. Since pairs of text-music data

are rare, most models use a pre-trained contrastive text-

music model such as CLAP [16] or MuLan [28], to condi-

tion their text-to-music models. Then, massive amount of

non-annotated audio data can be used at training time and

text is used at inference time. However, these text-to-music

models never exploit the fact that audio can be used as con-

ditioning. For other types of conditioning, MusTango [7]

is trained with text, beat tempo, key and chords as condi-

tioning, StableAudio [6] takes timing embeddings to con-

trol the length and structure of the generated music. Some

models generate stems while being conditioned on other

stems. For instance, SingSong [29] generates musical

accompaniments from singing and Jen-1 Composer [23]

handles multi-track music generation on 4 different stems

(bass, drums, instrument and melody). MusicGen [5] and

Music ControlNet [30] can handle melody as conditioning

and the latter can also use dynamics and rhythm. Both pa-

pers use chromagrams extraction for melody conditioning.

2.3 Conditioning a pretrained generative model

With finetuning: In Coco-Mulla [8], the authors use

parameter-efficient fine-tuning (PEFT) to specialize a text-

to-music MusicGen model on chords and rhythm. They

finetune on a number of parameter that is 4% the amount

of parameters of the original network with only 300 songs.

Music ControlNet [30] is a finetuned text-to-music diffu-

sion model that operates in the spectral domain. The fine-

tuning strategy comes from the text-to-image method Con-

trolNet [31] and allows to handle melody, dynamics and

rhythm conditioning. The pixel-level control that allows

ControlNet on images gives a pixel-level control on the

mel-spectrogram.

Without finetuning: In [32], the authors use AudioLDM

[18] as a backbone to perform textual inversion [9]. For

each textual inversion they use a group of 5 excerpts of 10

seconds. They also try an experiment where they optimize

the pseudoword S∗ as well as the diffusion neural network

which gives them better results. In [33], the authors use

a diffusion model trained on musical data with no condi-

tioning and perform various interactive tasks at inference

which are infilling, continuation, transition (smooth a tran-

sition between two songs) and guidance. The one that is

the most similar to our audio conditioning is the guidance

where the diffusion model is guided by the PaSST clas-

sifier [34] embedding of an audio prompt. However the

model only generates 5 seconds excerpts of music. Some
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Figure 1. An overview of the Texual Inversion method

based on the pretrained text-to-music MusicGen

other papers involve new control with no finetuning such as

in [35] or DITTO [36] where the authors use a pre-trained

text-to-music diffusion model and control its inference by

optimizing the initial noise latent. In SMITIN [37], the au-

thors control a pretrained MusicGen model by steering the

attention heads in the direction that maximizes the proba-

bility of some features.

3. TEXTUAL INVERSION METHOD

We first present our textual inversion method in the case of

autoregressive modeling (see Fig. 1). It is based on previ-

ous work in the image domain [9] with diffusion models.

Autoregressive modeling aims to estimate the condi-

tional distribution of the next token yt given the preceding

tokens y<t and a conditioning context c, such as a textual

embedding. In the framework of transformer decoder neu-

ral networks parameterized by θ, denoted as pθ, this con-

ditional distribution is typically modeled as a product of

individual probabilities:

pθ(y1:T |c) =

T
∏

t=1

pθ(yt|y<t, c) (1)

Here, y1:T represents the sequence of tokens, and

pθ(yt|y<t, c) denotes the probability of observing token yt
given the preceding tokens and the conditioning context.

During training, with a given sequence y1:T and its asso-

ciated textual description c, we compute the cross-entropy

loss:

LCE(θ, y1:T , c) = −
T
∑

t=1

log pθ(yt|y<t, c) (2)

It is minimized by taking a gradient descent step on

∇θLCE(θ, y1:T , c). This loss quantifies the dissimilarity

between the predicted conditional distribution and the true

distribution of the next token, serving as the optimization

objective for training autoregressive models.

For the textual inversion method, we take a pretrained

text-to-music MusicGen for the transformer decoder. We

initialize the textual embedding (for instance with the tex-

tual embedding of the word "music") c. Given a song Y ,

we cut it into random chunks {yi
1:T }i and optimize the

textual embedding c by taking successive gradient steps

on ∇cLCE(θ, y
i
1:T , c). After a few hundreds iterations the

learnt c is fed into the text-to-music MusicGen model to

generate a song in the style of Y .

4. STYLE CONDITIONING METHOD

4.1 General Architecture

The general architecture, depicted on the left of Fig. 2, is

based on the text-to-music model MusicGen [5] with the

addition of a style conditioner that is jointly trained with

the language model. At train time, a 30 seconds music ex-

cerpt paired with a textual description is input to the model.

The textual description is fed into a frozen T5 tokenizer

and transformer encoder [38]. The style encoder takes a

random subsample (between 1.5 and 4.5 seconds) of the

input audio and encodes it. The text and style latent repre-

sentations are both projected with linear layers to have the

same dimension as the transformer language model, and

provided as prefix to the sequence to model.

The input audio is encoded by a pretrained EnCodec

[10] model and the language model is trained in a autore-

gressive manner with a cross-entropy loss. In addition, the

tokens that correspond to the random subsample fed into

the style encoder are masked in the loss, as we noticed this

reduces the tendency of the model to just copy the style au-

dio input. At inference time, we can use text or/and a short

excerpt of music as a conditioning to generate music.

4.2 Architecture of the Style Conditioner

Our style conditioner is designed with bottlenecks (RVQ

[14] and downsampling) to prevent transmitting all the in-

formation of the conditioning audio excerpt to the model.

Without these bottlenecks, the generative models retrieves

easily the excerpt and copies it (see the ablation study in

Sec. 5.5). The style conditioner depicted on the right of

Fig. 2 takes an audio input of length 1.5 to 4.5 seconds,

passes it through a frozen feature extractor followed by a

trainable transformer encoder and a residual vector quan-

tization (RVQ) module with 6 codebooks. After quanti-

zation, we downsample on the temporal axis to obtain a

conditioning with a 5Hz frame rate which gives a similar

length as a text description (8 to 25 tokens). Finally a linear

layer outputs the same dimension as the language model.

The candidates for the audio encoder are a Encodec

followed by trainable embeddings for each codebook that

are summed, a transformer based music foundation model

from [12] (we now name it MusicFM for the rest of the

paper) where the authors claim state of the art on several

downstream tasks specific to music information retrieval

and a MERT model [11], a transformer based music model

trained in a self-supervised manner. The first one has a

frame rate of 50Hz and 60M parameters, the second one

has a frame rate of 25Hz and 620M parameters and the

third one has a frame rate of 75Hz and 95M parameters

At training time, we use dropout on the conditioning,

keeping both conditions 25% of time, one of the two con-

ditions 25% of time for each (no text or no style) or no con-

dition 25% of time. There is also a dropout on the number

of the codebooks used by the RVQ of the style conditioner:

at each step of the training, the number of used codebooks

is uniformly sampled between 1 and 6. Then, at inference

time, we can control the bottleneck of the style conditioner.
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Figure 2. An overview of the general architecture. Text conditioning and style conditioning are provided to the model as a

prefix. On the right we present the style conditioner.

Setting the number of codebooks to 1 gives more flexibility

to the generative model whereas using 6 levels of quantiza-

tion constraints it more. In practice, this means that music

generated with 6 streams of quantization will sound more

similar to the input condition compared to music generated

with 1 stream of quantization.

4.3 Double Classifier Free Guidance

When doing next token prediction, let’s denote lstyle, text the

logits of the model conditioned on style and textual de-

scription. Classifier free guidance [15] consists of pushing

the logits in the direction predicted with the conditioning,

to increase its importance:

lCFG = l∅ + α(lstyle, text − l∅),with α > 1, (3)

typically, α = 3 is used in previous work [5].

When generating music with a textual description that

contradicts the audio of the style conditioning, we observe

that the description is ignored by the model. This is ex-

plained by the fact that audio is more informative condi-

tioning compared with the text, so that the model weights

it more during training. To counteract this effect, we intro-

duce a double classifier free guidance in which we iterate

the CFG formula: we first push from style only to style and

text and we then push these logits a second time from no

conditioning.

ldouble CFG = l∅+α[lstyle+β(ltext,style− lstyle)− l∅] (4)

We retrieve the simple CFG with β = 1. For β > 1, we

boost the importance of the text conditioning (see Sec. 5.6).

4.4 Objective Metrics

The difficulty with generating samples in the same style of

a song is that we want to generate something that is similar

enough but not too close. This is something that can be

subjectively evaluated. For easing the comparison of vari-

ous approaches and hyper parameters, we also introduce a

novel set of objective metrics.

Nearest Neighbours in Common: Let’s note xC ∈ R
D×T

(D = 1 for mono music) the audio that we input in

the style conditioner and xG ∈ R
D×T ′

the generated se-

quence. We use an encoder E : R
D×T → R

N which

outputs a single vector whatever the input length T is. In

practice, this is done by taking a MusicFM model and av-

eraging on the time dimension. Then, for each song of our

valid and test sets, we cut it into chunks of 30 seconds and

store the embeddings {Ei,j}, i being the index of the song

and j the chunk number. For EC = E(xC), we compute

the cosine similarities cos(EC , Ei,j), ∀i, j and the set of

its K nearest neighbors: {iC1 , ...i
C
K}. We do the same for

EG = E(xG) and obtain a set of K values {iG1 , ...i
G
K}.

We then have found the nearest songs in the dataset. We

define our metric KNNcommon(xC , xG) for a song xG that

has been generated after being conditioned by xC :

KNNcommon(xC , xG) =
|{iC1 , ...i

C
K} ∩ {iG1 , ...i

G
K}|

K
∈ [0, 1].

(5)

The intuition behind this metric is that a model performs

well at recreating a song in the style of another if the gener-

ated song and its conditioning audio have embeddings that

are close enough to share neighbors in the dataset. How-

ever, if a model copies the conditioning (i.e. xG ≈ xC)

the metric will tend to 1, we thus need a second metric to

avoid xG and xC being too similar.

G is the Nearest Neighbor of C: We want EG and EC to

be close while being different. One way to be sure that the

corresponding audios are not too similar is to check that

if we add EG to the set of embeddings {Ei,j}, EG is not

the nearest neighbor of EC . Assuring that another song

from the dataset is closer to the conditioning means that

the model is creative enough and not just copying its input.

Formally, denoting {E∪} = {Ei,j} ∪ {EG}, we define

KNNoverfit(xC , xG) =







1 if argmax
E∈{E∪}

[cos(EC , E)] =EG

0 otherwise.

(6)
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Model FADvgg ↓ KL ↓ CLAP ↑ KNNcommon ↑ KNNoverfit ↓ OVL ↑ SIM ↑ VAR ↓

Textual Inversion 6.07 0.55 0.20 0.20 0.14 78.11 ± 0.93 61.78 ± 1.06 69.53 ± 1.44

MusicGen Continuation 1.22 0.51 0.30 0.26 0.17 83.95 ± 0.83 73.38 ± 0.97 77.24 ± 1.29

MusicGen w. audio CLAP 0.96 0.43 0.31 0.09 0.02 84.76 ± 0.93 62.37 ± 1.04 68.58 ± 1.42

Our Model w. EnCodec, 2 RVQ 0.85 0.49 0.29 0.23 0.12 83.41 ± 1.04 72.16 ± 0.93 72.39 ± 1.33

Table 1. Comparison with baselines. The KNN∗ metrics, introduced in Sec. 4.4, measure how close the generation is from

the style condition, yet different from the matching ground truth. Those are completed with the subjective evaluations from

Sec. 4.5. While using MusicGen for continuation matches well to the style audio, it has limited variation. Using a CLAP

audio encoder as conditioning does the opposite, while using our style encoder gets the right balance between the two.

For our evaluations, we take 1000 samples of 3 seconds xC

from our test set, generate the corresponding xG and aver-

age the two KNN metrics. Intuitively, the two metrics are

positively correlated, but for a similar value for KNNcommon

we will favor the model that minimizes KNNoverfit.

Other Objective Metrics To evaluate the quality of the

generated music, we also use the official implementation of

the Fréchet Audio Distance defined in [39] that uses a VG-

Gish model, the KL-divergence based metric introduced

in [5] that computes the KL-divergence on the probabili-

ties of the labels of a pretrained audio classifier between

the conditioning and the generated music. We noticed that

a high FAD (> 2) often indicates a poor quality of the gen-

erated samples. The CLAP score [5, 16] computes the co-

sine similarity between the description and the audio em-

beddings obtained with the CLAP model. A higher score

indicates that the generated audio aligns well with the tex-

tual description of the conditioning audio.

4.5 Human studies metrics

We follow a similar protocol as in [5] for the human stud-

ies. We ask human raters to evaluate three different aspects

of the generated audio: (1) How would you rate the over-

all quality of this excerpt [OVL]? (2) Without considering

audio quality, how similar are these two excerpts in terms

of style [SIM]? (3) Without considering audio quality, how

likely do you think these two excerpts are from the same

song [VAR]?

We believe that the SIM and VAR scores are the subjec-

tive versions of KNNcommon and KNNoverfit.

5. EXPERIMENTAL RESULTS

5.1 Hyperparameters for the textual inversion

For the textual inversion method we test different parame-

ters sets and retain these ones: we use a 12 tokens sentence

for initialization, a batch size of 8 with 5 seconds segments

randomly sampled from a 30 second excerpt with 200 opti-

mization steps, a learning rate of 0.025 with a vanilla Adam

optimizer. Finally the main issue that we encounter with

this method is its instability. It is hard to find a set of hy-

perparameters that works well for any song. Some songs

seem to be easier to invert for different sets of hyperparam-

eters. For some song, we never achieve to obtain hearable

music as the result suffers from glitches, and tempo insta-

bilities. Finally, it seems beneficial to augment the length

of the text embedding, as well as performing the inversion

over chunks taken from a 30 seconds excerpt rather than

the entire song. The results are shown in Tab. 1.

5.2 Hyperparameters for the style conditioner

All the models that we train are medium size (1.5B param-

eters) MusicGen models built on top of the 4 stream 32kHz

music version of EnCodec [10]. All models are trained for

400K steps on 64 V100 GPUs with the AdamW optimizer

using β1 = 0.9, β2 = 0.95, a batch size of 192, and music

sequences of 30 seconds. For the style conditioner, ex-

cerpts between 1.5 and 4.5 seconds are subsampled from

the original sequence, the transformer encoder has 8 lay-

ers, 8 heads, a dimension of 512 and is non-causal, the

residual vector quantizer has a codebook size of 1024, 6

streams and a variable number of streams is sampled at

each training step, hence allowing the language model to

train on all the levels of quantization. The style tokens are

downsampled to 5Hz. All our evaluations are done on 1000

samples of the test set. Similarly to the MusicGen Melody

model, both the textual description and the style condition

are provided as prefix to the language model.

5.3 Datasets

We use 20K hours of licensed music as in [5]. The train-

ing dataset is composed of 25K and 365K songs from the

ShutterStock and Pond5 music data collections, as well as

10k tracks of an internal dataset. Each song comes with

textual description, and is downsampled to 32kHz mono.

5.4 Comparison with baselines and model selection

Apart from the closed-source model udio [40], there is no

other audio conditioned music generative model. We use

as a baseline a MusicGen model in the continuation set-

ting: given 3 seconds of music, we ask MusicGen to con-

tinue the music with no textual prompt. For the second

one we train a MusicGen model with a pretrained CLAP

audio encoder [16] as conditioning, also taking 3 seconds

of audio as input. In Tab. 1, we compare these two base-

lines with our model with the EnCodec feature extractor

for the style conditioner, a quantization level of 2 and with

a textual inversion model. We notice that the FAD corre-

lates well with the quality metric (OVL) since the textual

inversion model has the worst OVL and FAD scores. Thus

excluding this approach, we observe that the KNNcommon

and the SIM metrics ranks the models in the same orders

as well as the KNNoverfit and VAR metrics.
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Feat. Ext. Quant. FADvgg ↓ KL ↓ CLAP ↑ KNNcommon ↑ KNNoverfit ↓ OVL ↑ SIM ↑ VAR ↓

MERT 1 0.78 0.50 0.29 0.19 0.06 84.07 ± 0.93 70.27 ± 1.22 69.69 ± 1.31

MERT 2 0.75 0.47 0.30 0.24 0.13 84.14 ± 0.96 72.53 ± 1.05 72.81 ± 1.21

MERT 4 0.75 0.45 0.31 0.29 0.18 84.32 ± 1.04 74.15 ± 0.96 75.12 ± 1.35

EnCodec 2 0.85 0.49 0.29 0.23 0.12 84.02 ± 0.89 72.69 ± 0.91 72.47 ± 1.28

MusicFM 2 0.70 0.45 0.31 0.28 0.16 84.45 ± 1.09 73.01 ± 0.95 74.01 ± 1.36

Table 2. Comparison between the 3 feature extractors. The human studies correlate well with the KNN metrics. As

expected, using coarser quantization of the style features leads to more variations in the generated audio. Self-supervised

encoder like MERT and MusicFM outperforms low level acoustic models like EnCodec.

Model FADvgg ↓ KL ↓ CLAP ↑ KNNcommon ↑ KNNoverfit ↓

Our Model 0.75 0.45 0.31 0.29 0.18

Smaller Transformer 0.98 0.48 0.29 0.24 0.13

No Transformer 2.92 0.96 0.13 0.01 0.0

No Masking of the loss 1.11 0.53 0.29 0.22 0.30

Table 3. Ablation Study on our model with a MERT fea-

ture extractor with 4 quantization streams.

Regarding the baselines, the textual inversion method

provides results of poor quality (FAD). The continuation

method provides music that has a high similarity to the

conditioning (high KNNcommon and SIM) but that is too

similar to it (high KNNoverfit and VAR). However, the

CLAP conditioning captures a more vague style of the con-

ditioning and generates music that is too far from it (low

KNNcommon, KNNoverfit, SIM and VAR). Our model with

the EnCodec feature extractor and 2 levels of quantization

strikes the right balance between these two baselines.

In order to strengthen our claim that our KNN met-

rics correlates well with human perception of closeness

between musical excerpts, we showcase a second study

in Tab. 2. In this study we compare the metrics of the

MERT feature extractor with 3 quantization levels 1, 2, 4

(we recall that the models can go up to 6) as well as the

EnCodec and MusicFM feature extractors with a quanti-

zation level of 2. All models generate music of similar

quality (FAD and OVL). We notice that when the bottle-

neck is larger (i.e. when the quantization level is higher),

the KNNcommon augments. This follows the intuition that if

the conditioner transmits more information to the language

model, the generated music will be closer to the input con-

dition. The models follows similar orders for KNNcommon

and SIM as well as for KNNoverfit and VAR.

5.5 Ablation Study

We perform an ablation study in Tab. 3 on the components

of the style conditioner with MERT as a feature extrac-

tor, and 4 RVQ streams. When reducing the size of the

transformer encoder from 8 layers and 512 dimensions to 4

layers and 256 dimensions, the quality of the generated au-

dio is worse. When removing the transformer encoder, the

model generates audio that is far from music (high FAD).

When we don’t mask the music that is input to the style

conditioner in the cross-entropy loss at training time, the

audio quality is slightly worse and the model generates mu-

sic that is too close to the conditioning and tends to loop.

The very high KNNoverfit indicates it since for a KNNcommon

lower than the best model the KNNoverfit is twice its value.

Type α β FADvgg ↓ CLAP ↑ KNNcommon ↑

No CFG ✗ ✗ 1.54 0.25 0.088

simple 3 ✗ 0.92 0.28 0.162

double 3 3 0.80 0.35 0.123

double 3 4 0.78 0.37 0.104

double 3 5 0.84 0.37 0.095

double 3 6 0.97 0.38 0.081

Table 4. Classifier Free Guidance parameters tuning.

Larger β from (4) leads to increasing the importance of the

text conditioning (given by the CLAP score), and decreas-

ing the similarity to the style audio, given by KNNcommon.

5.6 Tuning the Classifier Free Guidance

When style and text conditioning are both used and are not

consistent, it is necessary to use double CFG instead of

simple CFG so that the text is not ignored. To tune the pa-

rameters α, β of the double classifier free guidance given

by (4), we rely on the following protocol. For 1000 sam-

ples of our test set, we randomly shuffle text descriptions

and generate music while conditioning both on text and

music. We track the FAD [39], the KNNcommon and the

CLAP score. In Tab 4 we observe the intuitive fact that the

KNNcommon and CLAP score are negatively correlated: if

the balancing favors the text condition the CLAP score is

higher, if it favors the audio condition the KNNcommon is

higher. The double CFG thus works as expected.

6. CONCLUSION

In this paper we introduced style conditioning for language

model based music generative models: given a few sec-

onds of a musical excerpt, one can generate music in the

same style using our proposed audio encoder with an infor-

mation bottleneck. We introduced new metrics to assess

the equilibrium between generating music that maintains

a similar style to the condition while also being different.

We validated those with human studies. Finally, we can

also mix this style conditioning with inconsistent textual

description and balance them thanks to a new double clas-

sifier free guidance method. This method could be applied

in other generative models with multiple conditions.

Ethical statement: Improving music generation brings

ethical challenges. Through carefully chosen bottlenecks

in our style extractor (RVQ, downsampling) we aim for

the right balance between increasing the model controlla-

bility and possible creative use while ensuring the model

does not copy existing works, and provided new metrics to

measure this. Finally, we only used music we licensed.
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