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ABSTRACT

Probabilistic representation learning provides intricate and

diverse representations of music content by characterizing

the latent features of each content item as a probability dis-

tribution within a certain space. However, typical Music

Information Retrieval (MIR) methods based on representa-

tion learning utilize a feature vector of each content item,

thereby missing some details of their distributional proper-

ties. In this study, we propose a probabilistic representation

learning method for multimodal MIR based on contrastive

learning and optimal transport. Our method trains encoders

that map each content item to a hypersphere so that the

probability distributions of a positive pair of content items

become close to each other, while those of an irrelevant pair

are far apart. To achieve such training, we design novel loss

functions that utilize both probabilistic contrastive learning

and spherical sliced-Wasserstein distances. We demonstrate

our method’s effectiveness on benchmark datasets as well

as its suitability for multimodal MIR through both a quanti-

tative evaluation and a qualitative analysis.

1. INTRODUCTION

Multimodal representation learning of music content, such

as music audio and a video [1] and music audio and text [2],

has been an important topic of research, given its wide ap-

plications to Music Information Retrieval (MIR) tasks. Pre-

vious studies have typically used a deterministic approach

to train encoders, where the trained encoders are utilized to

map each content item to a latent space as a single vector.

However, representing an arbitrary content item as a vec-

tor has various drawbacks. For example, one-to-many and

many-to-many relationships need to be handled in multi-

modal content, such as those between an album cover image

and a set of songs in that album, and between different songs

that have the same title and their title text. It is difficult

to represent such complex relationships in vectors. To ad-

dress this challenge, probabilistic representation learning,
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Figure 1. Probabilistic representation learning on hyper-

sphere. (Left) Encoders are trained so that the probability

distributions of the positive instances (music audio, an im-

age, and text for the same song) are close to each other on

the shared hyper-spherical surface, while those of irrelevant

instances (different songs, artists, etc.) are far apart. (Right)

The trained encoders are helpful for multimodal MIR. Given

a single-modal query or a multimodal query such as a query

that combines an image and text, our method can retrieve

content items that match the query by calculating the dis-

tance between their probability distributions.

in which each content item is represented as a probability

distribution in a latent space, has been studied [3–5].

Probabilistic representation learning (Figure 1) is a

promising approach that can provide intricate and diverse

representations by characterizing each content item as a

probability distribution. This approach requires training

encoders that estimate the optimal distribution for each con-

tent item. The key here is how to design an appropriate loss

function for that training. In the literature, three approaches

have been proposed, and in this paper, we propose a fourth

approach. The first approach uses the probability product

kernel [6], which calculates the expected value between

distributions. This is used in probabilistic word embed-

ding [7], face recognition [8], and image classification [9].

The second approach uses Hedged Instance Embeddings

(HIB) [10]. It formulates a contrastive loss of the match

probability, which calculates the distance between a pair of

vectors randomly sampled from each distribution. This is

used in cross-modal retrieval of text and images [3, 4], as

well as in self-supervised video representation learning [11].

The third approach is to replace variables in an existing loss

function (e.g., triplet loss) with probability distributions.

For example, a loss function designed for deterministic

methods can be calculated by using samples obtained from

a Gaussian distribution [5, 12, 13] or a von Mises-Fisher

distribution [14–16] via a reparameterization trick [17, 18].
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Figure 2. Advantage of optimal transport. (Left) To match

two positive instance pairs of distributions, A and B, ex-

isting approaches ( [4, 5, 16], etc.) simply calculate dis-

tances between randomly sampled pairs and cannot pre-

cisely match distributional shapes, possibly resulting in an

undesirable single point when distances of positive sample

pairs are minimized for probabilistic representation learning.

(Right) Optimal transport can select optimal sample pairs

to appropriately match their distributional shapes, thereby

harnessing the power of rich probability distributions.

These approaches have been applied to text-to-image (or

vice versa) cross-modal retrieval [3, 4], and more recently,

to multimodal image retrieval [5]. Chun et al. [4] proposed

Probabilistic Cross-Modal Embedding (PCME), which is

a pioneering work on probabilistic representation learning

for cross-modal retrieval. Li et al. [3] proposed Average

Semantic Precision (ASP), which can calculate the seman-

tic correlation scores of a dataset, and differentiable ASP

approximation, which utilizes ASP as a loss function. Nec-

ulai et al. [5] proposed Multimodal Probabilistic Composer

(MPC), which can use a multimodal query combining im-

age and text for image retrieval. However, these approaches

calculate distances based on sample-wise similarity, with

an arbitrary sample pair randomly selected from each dis-

tribution (left side of Figure 2). This manner often results

in most sample pairs being non-optimal, and as a result,

the details of the distributional properties are lost. This

disadvantage leads to a decrease in performance.

In light of this background, we propose two novel loss

functions, one based on contrastive learning and the other

on optimal transport, to be used together for multimodal

MIR on a hypersphere. Contrastive learning is an effective

tool to jointly map each content item of multiple modal-

ities to a shared latent space [19, 20]. In the context of

probabilistic representation learning, utilizing the angular

distance between distributions has proven more effective

than using their Euclidean distance [15]. Furthermore, the

von Mises-Fisher (vMF) distribution (i.e., the distribution

on a hypersphere) exhibits a better performance than the

Gaussian distribution since vMF-based methods simplify

the variance estimation by using a single scalar κ, thereby

avoiding the dimension-wise estimation in Gaussian-based

methods [14]. Given these insights, we propose a con-

trastive loss function on a hypersphere for multiple modali-

ties based on probabilistic contrastive learning [16]. In addi-

tion, optimal transport [21] offers a robust and effective tool

for calculating distances between probability distributions.

It allows encoders to bring the probability distributions of

a positive pair closer together, thus ensuring a more accu-

rate representation learning (right side of Figure 2). This

unique attribute of optimal transport can benefit multimodal

MIR tasks. Hence, we propose a loss function based on a

Spherical Sliced-Wasserstein (SSW) [22] p-distance, con-

templating the compatibility between contrastive learning

and optimal transport on a hypersphere.

By using the proposed loss functions, we can train en-

coders that map each content item to a hypersphere, as

shown in Figure 1. During training, we assume that pair-

wise combinations of music audio of a song, a cover image

for the song, and text generated from the song’s metadata

are positive, and that those for irrelevant ones (different

songs, music genres, or artists, etc.) are negative (left side

of Figure 1). Once the encoders are trained, we can uti-

lize them to obtain the probabilistic representation of each

content item for multimodal MIR (right side of Figure 1).

The main advantage of probabilistic representation lies in

its ability to seamlessly integrate multiple content items

in a latent space as a multimodal query, which is a great

benefit in retrieval tasks. We conduct both a quantitative

evaluation and a qualitative analysis on the public YT8M-

MusicVideo dataset and a private dataset to demonstrate the

effectiveness of our proposed method.

2. PRELIMINARY

2.1 Problem Specification

We use a mel spectrogram of music audio as the input of

an audio encoder, an RGB image as the input of an image

encoder, and a tokenized text as the input of a text encoder.

We follow previous studies [19, 20] regarding the setup of

the input representations.

Let A = {an ∈ R
Da

}Nn=1, I = {in ∈ R
Di

}Nn=1, and

T = {tn ∈ R
Dt

}Nn=1 be a set of spectrograms, a set of

images corresponding to A, and a set of tokenized texts

corresponding to A, respectively, where Da is the number

of dimensions of each spectrogram, Di is the number of

dimensions of each image, Dt is the number of dimensions

of each tokenized text, and N is the number of songs.

Next, let ZA = {zan ∈ R
d}Nn=1, ZI = {zin ∈ R

d}Nn=1,

and Z
T = {ztn ∈ R

d}Nn=1 be sets of the latent variables

of spectrograms, images, and tokenized texts, respectively,

where d is the number of dimensions of each latent variable.

We train the audio encoder fA that maps A to Z
A, the

image encoder fI that maps I to Z
I, and the text encoder

fT that maps T to Z
T so that probability distributions

p(zan|an), p(z
i
n|in), and p(ztn|tn) are close to each other

on a shared hyper-spherical surface Sd−1
shared={||z·n||=1}.

2.2 Probabilistic Contrastive Learning

Contrastive learning is an established deep learning tech-

nique widely utilized in recent research [23]. In particular,

methods like N -pairs loss [24], InfoNCE loss [25], and

MoCo [26], which calculate the loss based on N -pairs of

instances (i.e., one positive pair and N−1 negative (or irrel-

evant) pairs), serve as powerful tools for multimodal repre-

sentation learning [1, 2, 19, 20]. However, these contrastive

loss functions are designed for deterministic methods and

cannot be directly applied to probabilistic approaches.
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Recently, Kirchhof et al. [16] introduced MCInfoNCE,

an adaptation of InfoNCE for probabilistic contrastive learn-

ing that uses Monte-Carlo samples from each distribution.

The MCInfoNCE loss LMC is defined as follows:

LMC=−
1

m

m
∑

j=1

L
∑

l=1

log
esim(zl

j ,z
l
+)/τ

esim(zl
j
,zl

+
)/τ+

∑

z−

esim(zl
j ,z

l
−
)/τ

,

(1)

where m is a mini-batch size, L is the number of samples, τ

is a hyperparameter called temperature scaling, which con-

trols the scale of the loss function, zn ∼ p(zn) is an anchor,

z+ ∼ p(z+|zn) and z− ∼ p(z−|zn) respectively indicate

positive and negative samples of the anchor, and sim(·, ·)
is a function that calculates the similarity (such as cosine

similarity) between two distributions. Since MCInfoNCE

is originally designed as the single-modal loss, we are the

first to modify it for our multimodal loss in Section 3.1.

2.3 Optimal Transport

Optimal transport has been gaining popularity for a variety

of computer vision tasks [27–29], but calculating the opti-

mal transport distance between distributions is known to be

computationally intensive [30]. This problem can be solved

when the distributions are on a particular manifold [22, 30].

We therefore delve into a recent powerful innovation, the

Spherical Sliced-Wasserstein (SSW) [22] p-distance, which

is specialized on a hypersphere and is highly efficient and

useful, but has not yet been used for representation learning.

2.3.1 Definition of Spherical Sliced-Wasserstein (SSW)

The SSW p-distance for p ≥ 1 is defined between two prob-

ability measures µ, ν ∈ Pp,ac(S
d−1), the set of absolutely

continuous probability measures on a hypersphere Sd−1

with a finite p-th moment, as follows:

SSWp(µ, ν) =

∫

Vd,2

Wp

(

µ ◦ PU−1
, ν ◦ PU−1

)

dσ, (2)

where Vd,2 = {U ∈ R
d×2, U⊤U = I2} is the Stiefel

manifold [31], σ is the uniform distribution over Vd,2, PU

is the function that projects a point z ∈ Sd−1 onto a great

circle S1 generated by U (for a.e. z ∈ Sd−1, PU can be

written in a practical form of PU (z) = U⊤
z

∥U⊤z∥2
[22]), and

Wp is the optimal transport distance on S1 [32, 33]. To

avoid any effects stemming from the choice of U , Bonet

et al. [22] calculated the SSW distance several times for a

set of random U , and we also calculate it in the same way.

2.3.2 Optimal Transport Distance on Great Circle

We focus on the simplest p = 1 in Equation (2) to calculate

Wp|p=1 between two probability measures µ′, ν′ ∈ P(S1)
that are after being projected from a hypersphere Sd−1 onto

one of the generated great circles S1. The W1 is defined as

W1(µ
′, ν′) =

∫ 1

0

|Fµ′(t)−Fν′(t)−LevMed(Fµ′−Fν′)| dt,

(3)

where Fµ′ , Fν′ are the cumulative distribution function of

µ′, ν′, respectively, and LevMed(·) is the level median [34],

defined as follows:

LevMed(f) = min

{

argmin
α∈R

∫ 1

0

|f(t)− α|dt

}

, (4)

where α is a shift parameter. The SSW1, which is utilized

in our proposed loss functions (Section 3), can thus be

calculated by using Equations (2)–(4). Surprisingly, we

can approximate the integral in Equation (3) simply by

sorting the samples on S1 in order to calculate Fµ′ , Fν′ , and

LevMed(·). To illustrate this intuitively, the optimal sample

pairing on the right of Figure 2 is dramatically expedited

by this sorting on the one-dimensional great circle without

examining many pairings. We present the algorithm and

pseudocode of SSW1 in our supplementary materials 1 .

3. PROPOSED METHOD FOR MULTIMODAL MIR

We design two novel loss functions for probabilistic repre-

sentation learning: a multimodal probabilistic contrastive

loss function for multiple modalities (Section 3.1) and an

SSW-based loss function (Section 3.2) based on optimal

transport. To train the encoders as shown in Figure 1, we

assign them different roles. The former loss is designed

for distancing irrelevant instance pairs of probability dis-

tributions on Sd−1
shared, resulting in closer positive instance

pairs. The latter loss focuses on placing positive instance

pairs close to each other by matching their distributional

shapes, and does not deal with irrelevant pairs at all. Their

integration is therefore important. The trained encoders can

be applied to multimodal MIR (Section 3.3).

The standard approach for probabilistic representation

learning assumes that the latent variables of each content

item have a probability distribution of a given form, such

as a Gaussian distribution [5, 12, 13] or a von Mises-Fisher

(vMF) distribution [14–16]. We use the vMF distribution

as the probability distribution on Sd−1
shared as follows:

p(zan|an) = vMF(zan;µ(an), κ(an)), (5)

p(zin|in) = vMF(zin;µ(in), κ(in)), (6)

p(ztn|tn) = vMF(ztn;µ(tn), κ(tn)), (7)

where the variables are as defined in Section 2.1. Using the

proposed loss functions, we train three encoders so that they

can estimate the appropriate parameters, the mean direction

µ(·) and the concentration κ(·), of each vMF distribution.

During training, we utilize L samples taken from each

vMF distribution via a rejection-sampling reparameteriza-

tion trick [18] in practice. Our proposed loss functions in

Sections 3.1 and 3.2 use the following notations:

ζn ∼ vMF(z∗n;µ(∗n), κ(∗n)), (8)

ηn ∼ vMF(z⋆n;µ(⋆n), κ(⋆n)), (9)

where ζn and ηn (∗, ⋆ ∈ {a, i, t}, ∗ ̸= ⋆) are L samples

from the vMF distribution of respective content items.

3.1 Multimodal Probabilistic Contrastive Loss

Function for Probabilistic Contrastive Learning

Contrastive learning is an effective approach to jointly train

encoders for the representation learning of multiple modal-

1 https://github.com/T39Nakatsuka/ISMIR2024
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ities [1, 2, 19, 20]. By modifying Equation (1), we design

our own multimodal loss function LC for all pairwise com-

binations of multiple modalities (we name this multimodal

probabilistic contrastive loss) as follows:

LC = −
1

m

∑

<ζ,η>

m
∑

j=1

log
esim(ζj ,η+)/τ

m
∑

k=1

esim(ζj ,ηk)/τ

, (10)

where m is a mini-batch size, τ is a temperature scaling,

+ indicates a positive sample of an anchor, and sim(·, ·)
is a function that calculates the similarity between two

distributions by leveraging the L samples as follows:

sim(ζj , ηk) ≃ sim

(

{

z
∗,l
j

}L

l=1
,
{

z
⋆,l
k

}L

l=1

)

=
1

L

L
∑

l=1

z
∗,l
j

⊤
z
⋆,l
k

∥z∗,lj ∥∥z⋆,lk ∥
. (11)

This loss LC can thus distance the centroids of the distribu-

tions of irrelevant instance pairs for the contrastive learning.

3.2 SSW-based Loss Function for Optimal Transport

We formulate our SSW-based loss function LS using the

SSW1 distance (Equations (2)–(4)) as follows:

LS =
1

m

∑

<ζ,η>

m
∑

j=1

SSW1(ζj , ηj). (12)

Intuitively, both the L samples from ζj and the L samples

from ηj on Sd−1
shared are projected onto S1, sorted (paired),

and used to calculate the cumulative distribution functions,

resulting in the optimal transport distance between those

positive instance pairs. This loss LS can thus make the

distributions of positive instance pairs closer.

To leverage the advantages of both LC and LS , our

method uses a loss function that integrates them as follows:

L = LC + λSLS , (13)

where λS is a weight.

3.3 Probabilistic Multimodal MIR

Once the encoders have been trained, we can leverage them

to map each content item as a probability distribution on

Sd−1
shared and calculate the distances between their distribu-

tions. For a single-modal query, we calculate the cosine

similarity between the mean (i.e., Fréchet mean [35, 36])

over samples obtained from the distribution of a query and

that of each content item in a dataset. For a multimodal

query, we calculate the Fréchet mean over all samples ob-

tained from the distribution of each query and use it like

a single-modal query. When the similarity score between

a pair of content items is high, it indicates that they are

matched. We thus sort the similarity scores in descending

order and retrieve the content item in the dataset that scored

higher with respect to the query.

4. EXPERIMENTS AND RESULTS

This section describes comparison experiments to quantita-

tively evaluate how closely the probability distributions of

positive instances were located on Sd−1
shared, and a qualitative

analysis of the proposed method to further investigate the

nature of the learned representation of each content item.

4.1 Experimental Setup

4.1.1 Dataset

For the experiments, we used the following two benchmark

datasets with different characteristics. We determined the

size of each test set by following the setup in [1, 37].

YT8M-MusicVideo dataset [1] is a subset of the

YouTube-8M dataset [38], comprising videos tagged as

“music video.” We collected 73,113 triplets consisting of

music audio (average length of 4 min with a 48 kHz sam-

pling rate), its thumbnail image (an RGB image with an

aspect ratio of 16:9), and its metadata including title, chan-

nel name, and upload date from 60,785 YouTube channels.

We randomly split the dataset into training (64,001 songs),

validation (7,112 songs), and test (2,000 songs) sets with

no YouTube channels overlapping across these sets. For

evaluation, we conducted our experiments three times with

different seed values when training the encoders.

AS5M dataset (Album Songs 5 Million dataset) is a pri-

vate dataset that contains triplets of a music audio excerpt

(a 30 s audio preview for trial listening, with a 44.1 kHz

sampling rate), its cover image (a square RGB image), and

its metadata including song title, artist name, collection

name, music genre, and release date. The dataset contains

5,920,828 audio excerpts and their metadata by 174,629

artists, and 1,115,668 cover images. Because multiple ex-

cerpts from a music album are associated with a single cover

image, each image corresponds to about 5.3 excerpts on av-

erage. The songs encompass a variety of music genres (over

250). We randomly split the dataset into training, validation,

and test sets with an eight-one-one ratio and with no artists

or images overlapping across these sets. For evaluation, we

constructed ten folds of test subsets by randomly selecting

2,000 triplets of an audio excerpt, a cover image, and a text

prompt for each fold from the test set.

4.1.2 Implementation Details

Encoder architecture: We used an audio model of con-

trastive language-audio pretraining (CLAP) [20] as the

backbone network for the audio encoder, and used image

and text models of contrastive language-image pretrain-

ing (CLIP) [19] as the backbone network for the image

and text encoders. Before training, we set the parameters

of the pre-trained models available at Transformers [39]

(i.e., “laion/clap-htsat-fused” for CLAP (audio model) and

“vit_base_patch16_224” for CLIP (vision and text models))

to the encoders. During training, we updated the projection

layers of the encoders.

Audio: The music audio of each song was converted

to a mel spectrogram through a CLAP feature extractor

available at Transformers [39], and the audio encoder was

trained using the spectrogram as input. In training the audio

encoder, we applied a masking technique including fre-

quency masking and time masking [40] and a random crop
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technique regarding the time domain to the spectrogram for

data augmentation [41].

Image: We used an RGB image resized to 224 px ×
224 px as the input of the image encoder. In training the im-

age encoder, we applied a random resized crop (scale=[0.08,

1.0], ratio=[0.75, 1.33]), random horizontal flip (probabil-

ity=0.5), and random erasing (probability=0.2) [42] to all

images for data augmentation.

Text: We tokenized text generated by using a keyword-

to-caption augmentation technique [20] 2 with a maximum

length of 77, which is the same setup as CLIP [19]. In train-

ing the text encoder, words corresponding to metadata are

randomly dropped [43] at a ratio of 0.05 for each metadata.

Training: We used 16 NVIDIA A100 GPUs under each

experimental condition, and each GPU computed 64 triplets

of audio, images, and text per iteration. Our implementation

was based on PyTorch [44]. In training the encoders, we

used the Adam optimizer [45] with a learning rate of 1.0×
10−4. We used d = 512 (dimensions of latent variables)

following the setup in [5]. For the vMF distribution, we set

κ(·) ∈ (64, 128) to obtain a clear distribution following the

setup of [16]. We empirically set the number of samples

L to 16. For LC , we set the temperature-scaling value

(Equation (10)) to τ = 0.07, which was originally used in

MoCo [26]. For LS , we calculated the SSW1 distance 100

times for a set of random U , following [22] (i.e., 16 samples

from ζj and 16 samples from ηj were projected onto 100

different great circles to match distributional shapes from

100 different views). On the basis of preliminary studies,

we set the weight λS to 1.0.

4.1.3 Ranking-Based Evaluation Metrics

We used three standard evaluation metrics for retrieval tasks:

the mean reciprocal rank (MRR) [46], the recall@k (R@k),

and the median rank (MR) [1]. MRR is a statistic measure

utilized to evaluate the quality of retrieval results. Given

a set of queries, MRR calculates the average of reciprocal

ranks of the first correct (i.e., original) content item. A

higher MRR value indicates a more accurate and efficient

retrieval method. R@k evaluates how correctly content

items are retrieved in the top results. For retrieval tasks,

a higher R@k means that the retrieval method is more

practical. We set k = 1 for the R@k and displayed R@1 as

a percentage. MR represents the median value of the ranks

of the retrieved correct content item. In our context, a lower

MR is desirable because it indicates that the correct content

item is ranked closer to the top of the retrieval results.

4.2 Conditions

We compared our method (Proposed based on L) with two

competitive methods that utilize probabilistic representation

learning for text-image retrieval, PCME [4] and MPC [5].

2 Since the text prompt generation using a template sentence with
metadata is known to be effective for retrieval tasks [19], for the YT8M-
MusicVideo dataset, we generated a text prompt using: “title” is a music
video uploaded by “channel name” on “upload date.” For the AS5M
dataset, we generated a text prompt using: “song title” is a(n) “music
genre” song by “artist name”, released on “release date.” “song title” is
collected to “collection name.”

Figure 3. Visualization of the learned representations of

audio, images, and text in the test subsets of the AS5M

dataset with respect to music genre tags using t-SNE [51].

For music audio and other modalities, probabilistic repre-

sentation learning for multimodal MIR has not yet been

investigated, so we solely used the multimodal probabilis-

tic contrastive loss LC (Section 3.1) as a baseline method

(Baseline) in order to investigate the effectiveness of LS .

4.3 Results

As shown in Tables 1–6, our method outperformed

PCME [4] and MPC [5], which are competitive methods

for text-image retrieval, in all the retrieval tasks on both

datasets. Likewise, our method was superior to the base-

line method based on the modified MCInfoNCE [16] in

nearly all retrieval tasks. We thus confirmed that LS was

effective in achieving better performances. The results also

showed that a multimodal query outperformed a single-

modal query for most tasks. Our method can seamlessly

create multimodal queries from multiple probability distri-

butions, bringing benefits to multimodal MIR.

The performance differences between the datasets can be

partly explained by their sizes since our method uses trans-

former models as the encoders. Several studies have shown

that the performance of transformer models follows a scal-

ing law [47–50]. This scaling law has been confirmed in ex-

periments with data from various modalities [47–49] and in

transfer learning [50]. In practice, the YT8M-MusicVideo

dataset is two orders of magnitude smaller than the AS5M

dataset, resulting in a decrease in performance. The perfor-

mance differences between the tasks, as well as between the

datasets, can also be explained on the basis of the scaling

law. In our experiments, we used the CLAP audio model,

which was trained on the LAION-Audio-630K dataset [20].

This dataset is several orders of magnitude smaller than the

one used for training the CLIP models, which can lead to

the decreased performance in audio-related retrieval tasks.

We provide additional comparison experiments that

demonstrate the effectiveness of our proposed method in

our supplementary materials 1.

4.4 Qualitative Analysis

We investigated the nature of the learned representations of

music audio, images, and text by visualizing them regarding

music genres. We utilized music audio, images, and text

for 12,180 songs for the top 10 most popular genres in test

subsets of the AS5M dataset. We calculated the Fréchet

mean over all samples obtained from the distribution of each

content item and mapped each of them to a two-dimensional
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Table 1. Comparison on YT8M-MusicVideo dataset for multimodal image retrieval.

Audio → Image Text → Image Audio & Text → Image

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

PCME − − − 0.025± 0.003 0.73± 0.08 369 − − −

MPC − − − 0.014± 0.001 0.2± 0.11 425 − − −

Baseline 0.024± 0.001 0.73± 0.09 272 0.048± 0.001 1.92± 0.12 166 0.044± 0.001 1.55± 0.11 166

Proposed 0.028± 0.001 0.65± 0.08 247 0.115± 0.0 6.68± 0.1 92 0.119± 0.002 6.8± 0.29 72

Table 2. Comparison on YT8M-MusicVideo dataset for multimodal text retrieval.

Audio → Text Image → Text Audio & Image → Text

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

PCME − − − 0.023± 0.002 0.73± 0.16 372 − − −

MPC − − − 0.013± 0.001 0.13± 0.05 427 − − −

Baseline 0.026± 0.001 0.6± 0.18 226 0.046± 0.001 1.47± 0.1 167 0.054± 0.002 1.83± 0.3 131

Proposed 0.039± 0.001 1.17± 0.09 180 0.118± 0.002 6.87± 0.21 89 0.139± 0.002 7.97± 0.46 55

Table 3. Comparison on YT8M-MusicVideo dataset for multimodal audio retrieval.

Image → Audio Text → Audio Image & Text → Audio

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

Baseline 0.021± 0.001 0.52± 0.05 263 0.028± 0.001 0.68± 0.08 219 0.032± 0.002 0.83± 0.26 191

Proposed 0.027± 0.001 0.58± 0.06 235 0.041± 0.003 1.25± 0.37 173 0.05± 0.002 1.75± 0.25 141

Table 4. Comparison on AS5M dataset for multimodal image retrieval.

Audio → Image Text → Image Audio & Text → Image

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

PCME − − − 0.069± 0.004 2.82± 0.34 131 − − −

MPC − − − 0.026± 0.002 0.62± 0.15 240 − − −

Baseline 0.046± 0.002 1.37± 0.19 141 0.125± 0.005 6.21± 0.56 50 0.1± 0.004 4.39± 0.53 60

Proposed 0.074± 0.004 2.94± 0.46 94 0.539± 0.005 45.37± 0.65 2 0.508± 0.008 41.35± 1.12 2

Table 5. Comparison on AS5M dataset for multimodal text retrieval.

Audio → Text Image → Text Audio & Image → Text

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

PCME − − − 0.067± 0.003 2.73± 0.27 131 − − −

MPC − − − 0.025± 0.002 0.57± 0.13 239 − − −

Baseline 0.062± 0.002 1.93± 0.27 82 0.126± 0.006 5.99± 0.59 47 0.146± 0.007 6.96± 0.76 30

Proposed 0.113± 0.004 4.99± 0.37 46 0.541± 0.007 44.21± 0.99 2 0.58± 0.009 47.75± 1.19 2

Table 6. Comparison on AS5M dataset for multimodal audio retrieval.

Image → Audio Text → Audio Image & Text → Audio

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

Baseline 0.045± 0.002 1.32± 0.2 138 0.067± 0.003 2.11± 0.24 77 0.069± 0.003 2.43± 0.32 74

Proposed 0.072± 0.004 2.62± 0.33 92 0.115± 0.005 4.86± 0.47 44 0.126± 0.006 5.54± 0.62 37

space using t-SNE [51]. Figure 3 shows that their learned

representations form clusters regarding music genres. That

is, audio, images, and text in each of these genres are closely

associated with each other.

5. CONCLUSION

We proposed a method for multimodal MIR that leverages

the probabilistic representations of content items. Our

contributions can be summarized as follows. First, we

leveraged the von Mises-Fisher (vMF) distribution, which

has been used for single-modal tasks [14–16] but has not

been used for multimodal retrieval tasks. In addition, the

recently-invented spherical sliced-Wasserstein (SSW) [22]

p-distance for optimal transport is surprisingly computa-

tionally efficient and useful, but has not yet been used in the

MIR community. Moreover, we designed the two novel loss

functions, LC and LS , using both probabilistic contrastive

learning and optimal transport to facilitate probabilistic mul-

timodal representation learning. To our knowledge, this is

the first work to utilize these reusable insights for proba-

bilistic representation learning. Second, we confirmed the

effectiveness of integrating the contrastive loss function LC

with the loss function LS based on the optimal transport

distance through quantitative evaluations, and showed that

the proposed method can retrieve more appropriate content

items for single-modal and multimodal queries. Third, we

conducted a qualitative analysis, showing that music audio,

images, and text for the same music style are located close

to each other on Sd−1
shared. These results demonstrated that

the proposed method is effective for multimodal MIR.

The underlying principles of the proposed method can

work for any retrieval tasks regardless of modalities, which

will lead to a broader scope of application. As such, we

believe that the proposed method will shed light on other

challenging retrieval tasks and usher in practical solutions.
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