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ABSTRACT

This study presents FruitsMusic, a metadata corpus of

Japanese idol-group songs in the real world, precisely an-

notated with who sings what and when. Japanese idol-

group songs, vital to Japanese pop culture, feature a unique

vocal arrangement style, where songs are divided into sev-

eral segments, and a specific individual or multiple singers

are assigned to each segment. To enhance singer diariza-

tion methods for recognizing such structures, we con-

structed FruitsMusic as a resource using 40 music videos

of Japanese idol groups from YouTube. The corpus in-

cludes detailed annotations, covering songs across various

genres, division and assignment styles, and groups rang-

ing from 4 to 9 members. FruitsMusic also facilitates the

development of various music information retrieval tech-

niques, such as lyrics transcription and singer identifica-

tion, benefiting not only Japanese idol-group songs but

also a wide range of songs featuring single or multiple

singers from various cultures. This paper offers a com-

prehensive overview of FruitsMusic, including its creation

methodology and unique characteristics compared to con-

versational speech. Additionally, this paper evaluates the

efficacy of current methods for singer embedding extrac-

tion and diarization in challenging real-world conditions

using FruitsMusic. Furthermore, this paper examines po-

tential improvements in automatic diarization performance

through evaluating human performance.

1. INTRODUCTION

In Japanese pop culture, an idol is a performer who en-

gages in dancing, singing, and entertaining fans [1]. In

the culture, idols frequently participate in activities, such

as concerts and television programs, as members of idol

groups. One of the most renowned contemporary idol

groups is AKB48, which has 40 single compact discs

(CDs) that are million-sellers, as certified by The Record-

ing Industry Association of Japan 1 . FRUITS ZIPPER has

1 https://www.riaj.or.jp/f/data/cert/gd_search.
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emerged as another notable group comprising seven girls

and being awarded the Best New Artist at the Japan Record

Awards 2023, the most prestigious accolade in Japanese

music culture [2]. Not only can fans attend concerts, but

they can also interact with the idols at handshaking events

(Akushukai) or bonus events (Tokutenkai), where the fans

can forge deep connections with the idols [3].

Idol-group songs feature several unique characteristics.

One notable characteristic is song division, also called

utawari in Japanese [4, 5]. This approach involves a dy-

namic vocal arrangement where the singing roles shift

throughout the song; individual members may take turns

singing solo lines, or multiple members may sing together

in unison. In particular, the entire group often sings to-

gether in the chorus sections, known as sabi. Song division

is chosen intentionally to maximize the charm and attrac-

tiveness of each idol and song. Therefore, the analysis of

song division is crucial for understanding the structure and

expression of songs, as well as the creators’ intentions.

Song division plays a crucial role also in shaping au-

dience participation through chants and shouts, known as

calls and mixes, which are indispensable elements of idol-

group concerts [6]. Fans spontaneously create these chants

and shouts, reflecting the song’s structure, musical inten-

sity, and song division, specifically which member is as-

signed to sing at any given moment. Furthermore, song

division significantly influences music videos and concert

recordings produced by idol groups, demonstrating its piv-

otal role in producing and appreciating idol music content.

As previously described, song division is crucial for un-

derstanding and enjoying the musical compositions of idol

groups. To aid fans’ comprehension, some idol groups re-

lease official charts showing how songs are divided among

members. For Korean pop groups with similar features

to Japanese idol groups, several fans create line distribu-

tion videos. These videos, widely viewed on platforms like

YouTube and TikTok, visualize the structures of song divi-

sion, facilitating a deeper understanding. Therefore, devel-

oping techniques for recognizing song division will help

fans enjoy the music compositions and enhance their in-

teraction with idols. In addition, such advancements will

support creators in promoting idol groups.

The task to estimate song division, i.e., who sings when,

within a music signal is known as singer diarization. This

technique has been inspired by speaker diarization, which

identifies who speaks when in conversational speech [7–9].

The singer diarization technique was initially introduced
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to analyze folk music and has been adapted for Japanese

idol-group songs [4]. However, existing research has not

examined songs from real-world idol groups but from idol-

themed games and anime. These game and anime songs

generally belong to narrower genres, feature simpler song

division structures, and have vocals that are easier to distin-

guish, thanks to the distinctive voice qualities of the voice

actors. Further research indicates that in-the-wild audio

signals can improve diarization performance in real-world

settings, even with small datasets [4, 10]. Consequently,

compiling a dataset featuring songs from real-world idol

groups is critical for developing practical applications tar-

geting pop culture.

This study addresses the demand for a practical dataset

in music information retrieval (MIR) by constructing a

new corpus, FruitsMusic. This corpus consists of de-

tailed annotations about who sings what and when in

real-world songs performed by Japanese idol groups from

YouTube, enabling the advancement of singer diarization

techniques and their assessments. Beyond singer diariza-

tion, FruitsMusic also advances various MIR techniques

such as lyrics transcription [11, 12], emotion classifica-

tion [13, 14], singer identification [15, 16], and singer-

based music search [17], for not only Japanese idol-group

songs but also a wide array of musical pieces featuring

single or multiple singers from different cultures. A sig-

nificant advantage of FruitsMusic is its focus on real idol

groups, allowing for evaluations in challenging scenarios

and enhancing the applicability of MIR techniques in the

real world. This paper details the structure, development

methodology, and unique characteristics of FruitsMusic.

The paper also demonstrates the applications of evaluat-

ing existing methods in two MIR tasks, singer embedding

extraction and diarization, in real-world scenarios.

2. STRUCTURE AND CONSTRUCTION

METHODOLOGY OF FRUITSMUSIC

In this study, we constructed FruitsMusic (Corpus of Fully

Real-World Popular Idol-group Songs from YouTube

Videos for Music Information Processing) aimed at devel-

oping and evaluating various MIR techniques. This cor-

pus is a collection of annotations for 163 minutes of mu-

sic video content on YouTube, detailing who sings what

and when. The corpus includes annotations for 40 songs

performed by 18 different groups, featuring a total of 122

unique female singers, all approximately 20 years of age.

The corpus is available at https://huggingface.

co/datasets/fruits-music/fruits-music 2 .

2.1 Related Works

Several corpora derived from YouTube have been con-

structed across various research fields. The key advantage

of this approach is the utilization of a wide range of real-

world video and audio content.

For example, ActivityNet and YouTube-8M are bench-

mark datasets widely used in video processing [18, 19].

2 This paper has been written based on FruitsMusic version 1.2.0.

� �
{

"id": "XXm01",

"youtubeId": "YouTube ID",

"type": "music_video",

"singerIds": ["XXs01", "XXs02", "XXs04", "XXs05", "XXs06"],

"title": "Song Title",

"songStartsAt": 0,

"duration": 216128,

"states": [

{

"start": 1869,

"end": 17233,

"singers": [0, 1, 2, 3, 4],

"lyrics": "Lyrics 1",

"realLyrics": null

},

{

"start": 22543,

"end": 26930,

"singers": [1],

"lyrics": "Lyrics 2",

"realLyrics": null

}

]

}

� �
(a) JSON file� �

SPEAKER XXm01 1 1.869 15.364 <NA> <NA> XXs01 <NA> <NA>

SPEAKER XXm01 1 1.869 15.364 <NA> <NA> XXs02 <NA> <NA>

SPEAKER XXm01 1 1.869 15.364 <NA> <NA> XXs04 <NA> <NA>

SPEAKER XXm01 1 1.869 15.364 <NA> <NA> XXs05 <NA> <NA>

SPEAKER XXm01 1 1.869 15.364 <NA> <NA> XXs06 <NA> <NA>

SPEAKER XXm01 1 22.543 4.387 <NA> <NA> XXs02 <NA> <NA>

� �
(b) RTTM file

Table 1. An example of JSON and RTTM files.

Similarly, YouTube-ASL, a large-scale American Sign

Language corpus, originates from YouTube [20].

In the field of audio processing, several corpora have

utilized YouTube videos. AudioSet, for instance, is widely

adopted for recognizing and detecting audio events [21].

VoxLingua107 covers 6,628 hours of speech across 107

languages and is helpful to language detection [22]. Fur-

ther, JTubeSpeech consists of extensive Japanese speech

data from YouTube and helps the development of diverse

speech processing techniques [23]. Similarly, YODAS

consists of 500,000 hours of speech in over 100 languages

and makes multilingual speech processing techniques ap-

plicable in the wild [23, 24]. Coco-Nut is another corpus

with subjective descriptions of voices, designed for con-

trolling speaker identity based on text prompts [25].

These prior works underscore the effectiveness of

YouTube-based corpora, which we also adopted in this

study. Our corpus focuses especially on accuracy and re-

liability, which are less emphasized in these prior corpora.

In addition, the video-based nature of FruitsMusic facili-

tates multimodal processing, such as multimodal diariza-

tion [26]. Note that these prior corpora have been curated

to protect individual privacy rights by excluding personal

information, and FruitsMusic also maintains these ethical

standards.

2.2 Structure of the Corpus

FruitsMusic includes annotations in JavaScript Object No-

tation (JSON) format, Rich Transcription Time Marked

(RTTM) files for diarization, and text files of lyrics. Ta-

ble 1 presents an example of JSON and RTTM files.
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2.2.1 JSON Files

The JSON files include the following information:

• Song ID. This field is formed by combining a two-

character idol-group ID, the letter “m”, and a two-

digit ID.

• Video ID on YouTube.

• Type of the video. This field is either of music_v

ideo, middle_music_video, or dance_pra

ctice. The names of these types are derived from

traditions in Japanese idol culture.

• List of singer IDs. Each ID is formed by combining

a two-character idol-group ID, the letter “s”, and a

two-digit ID.

• Song title. This field aims at natural language pro-

cessing (NLP) tasks.

• Start time and duration of the song. The videos

may contain content beyond songs, such as com-

ments from idols. This information is provided to

help filter out such content.

• Singing states. This is a list of the start and end

times of the segment, the singers assigned to the seg-

ment, and the lyrics. The lyrics field contains

the official lyrics, which may differ from the actual

lyrics sung. In such cases, the realLyrics field

is used.

The time and duration fields are annotated in milliseconds.

2.2.2 RTTM Files

The RTTM format is specially designed for speaker di-

arization tasks, identifying who speaks when [27]. Table 1b

presents an example of an RTTM file. Within this format,

each line details the start time and duration of the segment,

as well as the singer’s ID. For simultaneous singing, the

format allocates a separate line to each singer, resulting in

multiple lines corresponding to the number of singers.

2.2.3 Text Files of Lyrics

Lyrics lines may be duplicated in the JSON files to pre-

cisely represent who sings what and when (e.g., DRm03).

As a result, extracting lyrics from JSON files is not

straightforward. To support the development and assess-

ment of techniques involving lyrics, such as lyrics tran-

scription, FruitsMusic provides separate text files of lyrics.

2.3 Subsets

FruitsMusic is split into Subset A and Subset B. Subset A

is designed mainly for training, and Subset B is for eval-

uation. However, both subsets can be arbitrarily used for

various purposes. Subset A contains 32 songs, while Sub-

set B has 8 songs. To ensure unbiased evaluation, Subset

B does not contain any singers from Subset A, and each

group in Subset B contributes only one song. The songs in

Subset B were chosen to cover various genres (dance, rock,

synthpop, etc.) and division styles. Also, groups in Subset

B are generally less famous than those in Subset A, which

helps ensure fairer and less biased human evaluation.

CHiME-5 FruitsMusic

Average audio length 9031 s 244 s

# Speakers 4 4–9

Average segment length 2.11 s 4.44 s

Total length per speaker 1159.6 s 15.9 s

Segments without speakers 22.3% 23.9%

Solo segments 51.4% 42.6%

Multiple-speaker segments 26.4% 33.5%

Segments with 3+ speakers 6.4% 26.5%

Table 2. Comparison of FruitsMusic with the CHiME-5

dataset [28], a conversational speech dataset. The “Total

length per speaker” row indicates the average total duration

per speaker in each audio.

2.4 Song Selection

We meticulously selected the songs for FruitsMusic to en-

sure the corpus’s reliability and usefulness. To achieve ac-

curate annotations, we initially gathered extensive knowl-

edge about the idol groups. We then used reliable sources,

including concert recordings and official announcements,

for information. Additionally, to support applications like

singer diarization, each singer has at least one solo section

within the database. Moreover, we assign each singer to

only one group in FruitsMusic. While idols may partici-

pate in multiple groups or move between groups in reality,

we avoid such complexities in this database. FruitsMusic

focuses solely on contemporary songs released from 2022

onwards to reflect the latest music trends.

2.5 Rules

This corpus has been constructed using copyrighted ma-

terials. Users are required to follow the licensing agree-

ment specified in the corpus documentation to protect the

rights of creators and idols. The agreement sets three ma-

jor rules. First, the copyrighted content of this corpus, such

as lyrics texts, is not intended for appreciation or entertain-

ment. Second, the corpus cannot be used to develop or

enhance generative artificial intelligence (AI) techniques,

such as singing voice synthesis, voice conversion, lyrics

generation, and music creation. However, users can utilize

the corpus for recognition or information extraction tasks,

including lyrics recognition, singer embedding extraction,

and assessing the naturalness of lyrics or music. Third,

when citing this corpus in any media, including academic

works and presentations, users are required to identify both

the groups and the singers using the provided IDs and re-

frain from using their real names. If the mention of song

names is not essential for the discussion, users are also re-

quired to refer to them by their respective IDs.

3. COMPARISON WITH CONVERSATIONAL

DATASET

This section compares FruitsMusic with the CHiME-5

dataset, a conversational speech dataset designed for The
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5th CHiME Speech Separation and Recognition Chal-

lenge [28], to explore the differences between conversa-

tional speech and songs with song division. The CHiME-5

dataset contains 20 conversational speech instances, each

from four speakers. Table 2 shows the comparison results,

considering all subsets of both CHiME-5 and FruitsMusic.

Initially, the average audio length in FruitsMusic is sig-

nificantly shorter than in CHiME-5. Unlike conversational

speech, which is not limited by specific length constraints,

the duration of songs is tightly controlled by the structure

of the musical compositions. Furthermore, the average to-

tal duration of speech segments per speaker in FruitsMu-

sic is extremely shorter than in CHiME-5. This difference

arises from the shorter overall audio length and the larger

number of singers in FruitsMusic. Since solo segments

play a key role in capturing singer characteristics, develop-

ing singer identification techniques under these challeng-

ing conditions, different from conversational speech, is es-

sential for improving singer diarization and other MIR sys-

tems for songs featuring multiple singers.

The comparison reveals a noteworthy difference in the

frequency of simultaneous speakers between CHiME-5

and FruitsMusic. In particular, sections featuring 3 or

more singers in FruitsMusic are significantly longer than

in CHiME-5. This indicates that the methods that treat

overlapping speech as segments with two speakers, often

adopted in speaker diarization [29], cannot be directly ap-

plied to singer diarization. Furthermore, about 60% of

segments with multiple singers feature vocals from only

a subset of the entire group. Hence, the assumption that

all singers are present in overlapped segments proves inef-

fective for singer diarization; it is crucial to accurately and

independently determine the vocal activity of each singer.

4. APPLICATION 1: SINGER EMBEDDINGS

Singer embeddings are multidimensional vectors that cap-

ture each singer’s unique vocal traits. In singing infor-

mation processing, high-quality singer embeddings are

crucial for enhancing the performance of tasks involving

singers, such as singer identification, voice matching, and

singer diarization. This section evaluates two types of

embeddings extracted from song segments by a specific

group and discusses the effectiveness of each extraction

technique in real-world scenarios. This section visualizes

these embeddings to understand their effectiveness in dis-

tinguishing singers and provides a numerical analysis of

the clustering performance based on singers.

In our evaluation, we compare two types of singer

embeddings. The first type involves x-vectors, tradi-

tional yet effective speaker embeddings derived from

deep neural networks (DNNs) for speaker identifica-

tion [30]. Specifically, we utilize an x-vector extractor

microsoft/wavlm-base-plus-sv 3 , which incor-

porates WavLM, a large-scale pre-trained model based on

self-supervised learning [31]. Second, we evaluated em-

beddings based on ECAPA-TDNN, an enhanced time de-

3 https://huggingface.co/microsoft/

wavlm-base-plus-sv

lay neural network (TDNN) in x-vector extractors [32].

ECAPA-TDNN-based embeddings have been proven to

show remarkable performance in speaker recognition and

diarization [32–34]. We used an ECAPA-TDNN model

provided by SeechBrain 4 [35]. In addition, this evalua-

tion considers both mixed and vocal signals, with the lat-

ter extracted using Demucs, an open-source music source

separation tool [36, 37]. We utilized the htdemucs_ft

model, a fine-tuned version of the Hybrid Transformer De-

mucs, renowned for its state-of-the-art performance in mu-

sic source separation.

We focus on the group KF, which comprises seven

members and has eight songs, the most available on

FruitsMusic. For this study, we selected segments where

a singer performs solo for over 2 seconds. On average,

each singer has 20 segments, totaling approximately 101

seconds of solo performance.

As objective evaluation metrics, F values are calculated

to benchmark clustering efficacy [38]. Here, the F value

is the harmonic mean of two metrics: purity P and inverse

purity I . The P and I are defined as follows:

P =
1

N

∑

i

max
j

|Ci ∩ Sj |, and (1)

I =
1

N

∑

j

max
i

|Ci ∩ Sj |. (2)

In these equations, Ci is the i-th cluster, and Sj is the set

of the j-th singer’s samples. High F values indicate su-

perior performance, with a theoretical maximum of 1. For

this evaluation, spectral clustering [39] was performed to

create 7 clusters, matching the number of singers. All the

embeddings were L2-normalized in advance.

Figure 1 shows the visualizations of the acquired em-

beddings by reducing their dimensions into two using t-

SNE. The effectiveness of Demucs is confirmed across

both extraction methods. Compared to x-vectors, embed-

dings derived with ECAPA-TDNN provide more expres-

sive singer representations. Specifically, Figure 1d reveals

that samples from certain singers, specifically KFs01 (rep-

resented in red circles) and KFs06 (in pink stars), tend to

gather by singer identity. Hence, ECAPA-TDNN-based

embeddings are proved to effectively capture singers’

unique identities even from short singing segments. This

shows the advantages of the ECAPA-TDNN methodology

over conventional TDNN in x-vector extractors. However,

none of the plots show distinct clusters visibly forming,

and the highest F value was only 0.64. This indicates

that tasks like singer diarization and number estimation

remain challenging using any embedding extractor eval-

uated. Since the ECAPA-TDNN model is trained with

speech datasets, fine-tuning it with singing voice datasets

will enhance its performance. Note that the separated vo-

cal signals are distorted; therefore, using datasets with both

clean and mixed or separated signals from real-world con-

ditions will be effective.

4 https://huggingface.co/speechbrain/

spkrec-ecapa-voxceleb
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KFs01
KFs02
KFs03
KFs04
KFs05
KFs06
KFs07

(a) x-vector, mixed (0.32) (b) x-vector, separated (0.40)

(c) ECAPA-TDNN, mixed (0.59) (d) ECAPA-TDNN, separated (0.64)

Figure 1. t-SNE visualizations of singer embeddings from

the idol group KF’s songs, where each color and shape

represents a different singer. Captions detail the extrac-

tion methods and whether Demucs was applied. Values in

parentheses represent F values, measuring the clustering

performance.

5. APPLICATION 2: SINGER DIARIZATION

To evaluate the efficacy of FruitsMusic in training singer

diarization models, we trained several models with Sub-

set A of FruitsMusic and assessed their performance using

Subset B. In this comparison, the number of singers was

not given to the systems. Furthermore, we engaged a hu-

man evaluator to perform the manual diarization of songs

in Subset B and discuss the potential advancements in au-

tomatic diarization performance.

5.1 Construction of a Synthesized Dataset

To improve the diarization performance, we utilized songs

from commercial CDs in addition to FruitsMusic. This

dataset consists of 272 songs performed by multiple

singers, with a separate recording for each song and singer

combination. For example, if three singers perform song

A, each of the three singers has solo recordings: one by

singer 1, another by singer 2, and a third by singer 3. On

average, each song features 4.1 singers, resulting in a total

of 1126 recordings. All the songs were sourced from idol-

themed games and anime, and the singers were 129 unique

female voice actresses. We executed source separation on

all 1126 recordings using Demucs to generate isolated vo-

cal and accompaniment signals.

We generated five song division patterns for each song,

capping the number of singers to a maximum of seven.

We applied voice activity detection (VAD) first and ran-

domly assigned singers to each segment. During the as-

signment, a single singer was allocated to 60% of the

segments, all singers to 23%, and random singers to

the remaining 17%. We mixed the vocal signals based

on the generated song division and combined the sepa-

rated accompaniment with the mixed vocal tracks to cre-

ate the final mixture. In these generated songs with

song division, singers perform in unison during seg-

ments with multiple singers. The VAD process used

pyannote/voice-activity-detection 5 .

5.2 Evaluated Systems

In this experiment, the following systems are compared.

5.2.1 SA-EEND with EDA

The first approach adopted Self-Attentive End-to-End

Neural Diarization (SA-EEND) [10]. Since the number of

singers for the evaluated signals was unknown, we used en-

hanced SA-EEND with Encoder-Decoder-based Attractors

(EDA) [40]. The hyperparameters matched those of the

CALLHOME dataset, as specified in the original publica-

tion [40]. The input signals were downsampled to 8000Hz

and were converted to monaural signals.

5.2.2 pyannote.audio

The second method used pyannote.audio 6 , an open-

source toolkit for speech processing tasks [29, 41]. The

diarization workflow is structured as a pipeline process, in-

corporating PyanNet-based modules. To conduct this ex-

periment, we fine-tuned the publicly available pre-trained

model pyannote/speaker-diarization-3.1 7

using the prepared song datasets. This fine-tuning pro-

cess adapted the segmentation models and optimized the

thresholds for both segmentation and clustering. The input

signals were downsampled to 16 000Hz and converted to

monaural signals.

5.2.3 Human Evaluator

In addition to the automatic diarization approaches, we

also engaged a human evaluator to perform manual singer

diarization to gauge the achievable performance. The indi-

vidual understands Japanese and often listens to Japanese

pop music (about 60 hours a month), yet was completely

unfamiliar with any of the songs in Subset B of FruitsMu-

sic. To maintain the experiment’s integrity, we presented

only the audio signals of the songs without any correspond-

ing videos. The participant was allowed to use any external

tool to aid in the diarization process but was explicitly re-

stricted from searching for the songs on the internet.

5.3 Experimental Setup

As a training dataset, Subset A from FruitsMusic was used.

The songs DRm01, KFm01, RGm01, SBm01, and SYm01

were designated for validation. The remaining songs, ex-

cluding three songs featuring nine singers, were allocated

for training. Due to the highly extended training time re-

quired for SA-EEND with EDA for songs featuring more

than seven singers, three songs with nine singers, VYm02,

5 https://huggingface.co/pyannote/

voice-activity-detection
6 https://github.com/pyannote/pyannote-audio
7 https://huggingface.co/pyannote/

speaker-diarization-3.1
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System Mixed Separated

SA-EEND with EDA

Synthesized only 99.5% 101.3%

Synthesized + FruitsMusic 103.2% 83.8%

pyannote.audio

Synthesized only 92.9% 69.9%

Synthesized + FruitsMusic 91.3% 50.3%

Human 22.7% —

Table 3. DER for Subset B in FruitsMusic with the several

diarization systems.

VYm03, and XSm02, were excluded from the dataset. The

loudness of all songs was normalized to −14LUFS.

The evaluation metric used was the diarization error rate

(DER) [27], defined as:

DER =

∑S

s=1 ds

[

max

(

N
(ref)
s , N

(hyp)
s

)

−N
(correct)
s

]

∑S

s=1 dsN
(ref)
s

.

(3)

Here, S is the total number of segments, ds represents

the duration of the s-th segment, and N
(ref)
s , N

(hyp)
s ,

and N
(correct)
s correspond to the number of ground-truth

singers, estimated singers, and accurately identified singers

in the s-th segment, respectively. According to this def-

inition, DER can exceed 100%. The calculation of DER

was performed with dscore 8 , an open-source tool. Due

to the implementation of dscore, self-overlapped segments,

which contain multiple recordings of the same singer, were

normalized in the calculation process. The collar size, the

time ignored in DER calculation around segment bound-

aries, was set to zero.

The model selection criterion was achieving the min-

imum DER on the validation set. For each condition,

we developed two versions of the system: one trained on

mixed signals and another trained on extracted vocal sig-

nals. The vocal signal extraction was performed using the

htdemucs_ft model of Demucs [36, 37].

5.4 Results

Table 3 shows the DER of all the systems. The perfor-

mance of the mixed signal systems is significantly inferior

to that of the separated signal systems. In other words,

across evaluated systems, Demucs effectively improved di-

arization performance; hence, a pipeline system combin-

ing source separation and diarization proved more effec-

tive than using a single system on mixed signals in the

case of this evaluation. In both approaches, SA-EEND

and pyannote.audio, training with FruitsMusic sig-

nificantly improved the overall performance, particularly

for the separated signal systems. The results suggest that

FruitsMusic, despite its smaller size, can significantly en-

hance diarization performance rather than relying solely on

large-scale synthesized datasets.

8 https://github.com/nryant/dscore

System BD BI JA JY MG QD SL TJ

SA-EEND with EDA

w/o FruitsMusic 1 3 2 2 4 0 6 2

w/ FruitsMusic 2 2 2 2 2 2 2 2

pyannote.audio

w/o FruitsMusic 3 5 3 3 3 3 3 3

w/ FruitsMusic 7 7 7 7 7 6 7 7

Human 8 6 6 5 7 5 6 4

Ground truth 9 4 7 5 7 5 6 4

Table 4. Estimated total number of singers derived from

diarization results. All the systems used separated vocal

signals using Demucs. Each column shows a song in Sub-

set B. The suffixes “m01” of song IDs are omitted.

Table 4 shows the estimated number of singers included

in the diarization results. The SA-EEND-based systems

struggled to distinguish singers accurately. This seems due

to the difficulties of naive DNN-based methods in distin-

guishing singer identities, as discussed in Section 4. On the

other hand, pyannote.audio demonstrated an almost

invariant estimation of the number of singers. This indi-

cates a potential overfitting to the training datasets, with the

most common number of singers in the training set tending

to dominate the predictions.

Among the evaluated systems, human performance was

remarkably superior to the automatic diarization systems

in terms of DER. Notably, a human evaluator accurately

estimated the number of singers in 5 out of 8 songs. This

demonstrates that humans can effectively distinguish in-

dividual singers’ voices even within mixed music signals.

Therefore, these results proved a significant potential for

improving both automatic singer identification and diariza-

tion performance.

6. CONCLUSION

This paper presents FruitsMusic, a novel corpus of pre-

cise annotations on who sings what and when in Japanese

idol-group songs. The song selection and subset creation

were meticulously conducted to facilitate unbiased evalu-

ation and ensure usefulness across a wide range of genres,

song division styles, and idol groups. The corpus can be

applied to various MIR tasks, such as singer diarization,

singer identification, and lyrics transcription. This paper

showcases its applications in evaluating singer embedding

extraction and diarization techniques. The results showed

that distinguishing singers from short singing segments

remains challenging, despite effective methods in speech

processing. The paper also suggests potential advance-

ments in automatic diarization performance by assessing

human performance. We acknowledge significant existing

areas for performance improvement in diverse MIR tasks,

and we are confident that FruitsMusic has the potential to

advance various techniques among them.
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