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ABSTRACT

Recent advancements in music source separation (MSS)

have focused in the multi-timbral case, with existing ar-

chitectures tailored for the separation of distinct instru-

ments, overlooking thus the challenge of separating instru-

ments with similar timbral characteristics. Addressing this

gap, our work focuses on monotimbral MSS, specifically

within the context of classical guitar duets. To this end,

we introduce the GuitarDuets dataset, featuring a com-

bined total of approximately three hours of real and syn-

thesized classical guitar duet recordings, as well as note-

level annotations of the synthesized duets. We perform an

extensive cross-dataset evaluation by adapting Demucs, a
state-of-the-art MSS architecture, to monotimbral source

separation. Furthermore, we develop a joint permutation-

invariant transcription and separation framework, to ex-

ploit note event predictions as auxiliary information. Our

results indicate that utilizing both the real and synthesized

subsets of GuitarDuets leads to improved separation per-

formance in an independently recorded test set compared

to utilizing solely one subset. We also find that while the

availability of ground-truth note labels greatly helps the

performance of the separation network, the predicted note

estimates result only in marginal improvement. Finally, we

discuss the behavior of commonly utilized metrics, such as

SDR and SI-SDR, in the context of monotimbral MSS.

1. INTRODUCTION

The task of music source separation (MSS) involves dis-

secting a musical composition into its constituent sources,

typically segregating individual instruments or vocal tracks

from a composite audio mixture [1, 2, 3]. Due to the

multitude of the co-playing sources, as well as its util-

ity in a variety of applications [1], MSS stands as a sig-

nificant challenge in the field of Music Information Re-

© M. Glytsos, C. Garoufis, and A. Zlatintsi and P.Maragos.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: M. Glytsos, C. Garoufis, and A. Zlat-

intsi and P.Maragos, “Classical Guitar Duet Separation using GuitarDuets

- a Dataset of Real and Synthesized Guitar Recordings”, in Proc. of the

25th Int. Society for Music Information Retrieval Conf., San Francisco,

United States, 2024.

trieval (MIR) [4]. The majority of research efforts have fo-

cused on multi-timbral music source separation [5,6,7]. In
this case, the goal is the separation of distinct instrumental

sources from a mixture, where the sources belong to differ-

ent instrument families or types such as vocals, bass, drums

and others, and as such can be framed as an extension of

the task of speech denoising into the music domain [8].

Through the advancement of digital signal process-

ing [9] and deep learning [5, 10], considerable progress

has been made in extracting distinct instrumental tracks

from complex musical compositions. Most recent, deep-

learning based approaches for MSS are divided into

spectrogram-domain approaches [11], waveform-domain

methodologies [10,12,13,14,15] and hybrid ones, working

simultaneously in both domains [5]. Spectrogram-domain

methods typically isolate sources via mask prediction [16],

waveform-domain approaches enhance source separation

by applying spectrogram techniques in a learned latent

space [14, 17], or directly predicting the isolated wave-

forms [12], with the additional advantage of incorporat-

ing phase information, while hybrid architectures [5] lever-

age the strengths of both. Moreover, recent findings have

highlighted the benefits of using static or dynamic activity

labels [18, 19, 20, 21, 22], as well as jointly training tran-

scription and source separation modules [23, 24], which

enhances task performance, paralleling efforts in simulta-

neous speech recognition and separation training [25].

However, an area that remains relatively underexplored

is monotimbral music source separation. This subfield of

MSS focuses on extracting audio components that belong

to the same instrument family, or different builds of the

same instrument. It can be viewed as the counterpart of

the speaker separation problem [31] in the music domain.

While this similarity has led to the development of simi-

lar methodologies for network training [32], speaker sep-

aration, especially within the context of, rarely available

in MSS datasets, multi-microphone recordings [33], can

also rely on spatial cues. The limited exploration in this

area can largely be attributed to the historical focus on iso-

lating the most prominent instruments in popular music,

while the demand for separation of instruments with close

timbral characteristics is less pronounced. Indeed, there

are very few datasets suitable for training algorithms on

the task of separating instrumental tracks from the same
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Datasets Real Data Incl. Monotimbral Polyphonic Note Annotations Duration

musdb18 [7] ✓ ✗ ✓ ✗ ca. 10h

MoisesDB [26] ✓ ✗ ✓ ✗ ca. 14.5h

URMP [27] ✓ ✗ ✓ ✓ 1h 6min

SLAKH [28] ✗ ✗ ✓ ✓ ca. 145h

EnsembleSet [29] ✗ ✓ ✗ ✓ 6h 9min

GuitarSet [30] ✓ ✓ ✓ ✓ 3h 3min

GuitarDuets ✓ ✓ ✓ Partial 2h 44min

Table 1: Comparison of the GuitarDuets dataset with existing datasets in the literature for music source separation; we note

that GuitarSet is strictly monotimbral, since it was entirely recorded using one guitar.

GuitarDuets(R) GuitarDuets(S)

# Tracks 34 35

Dur./Track (mins) 1.72 ±1.35 3.03 ±2.86

Total Dur. (mins) 58 106

Notes/sec. - 7

Table 2: Detailed statistics of the real and synthesized sub-

sets of the GuitarDuets dataset; note statistics are included

for the synthetic subset only.

instrument family in a polyphonic context [30], with the

majority of publicly avalaible datasets covering the case of

separating mixtures of multiple singing voices [34,35,36].

In this paper, we attempt to bridge this gap by intro-

ducing GuitarDuets 1 , a dataset consisting of a total of

ca. 3 hours of real and synthesized guitar duet recordings,

along with partial note-level annotations, which can be

leveraged as auxiliary score information. We benchmark

GuitarDuets in the tasks of i) unconditional guitar duet sep-

aration and ii) score-informed duet separation, using the

hybrid Demucs [5] as our separation model. We also exam-

ine the possibility of integrating note-level predictions into

a joint transcription and separation framework. In more

detail, the main contributions of this work are:

• Introduction of GuitarDuets, a dataset for mono-

timbral music source separation, featuring both real

classical guitar duet recordings and synthetic record-

ings generated from online transcriptions and virtual

instruments. The synthetic portion includes MIDI

representations for each guitar part, enriching the

dataset for algorithm training and detailed analysis.

• Extensive cross-dataset evaluation across various

conditions, including real and generated synthetic

data, as well as the existence or absence of auxil-

iary score information in specific Demucs branches.

• Development of a joint transcription and separation

framework, which incorporates transcription predic-

tions, by adapting existing architectures [5,37] to the

task of monotimbral source separation with the in-

troduction of a permutation-invariant [32] loss. We

show that incorporation of these note-level predic-

tions can improve the separation of real guitar duets.

• Finally, we analyze the behavior of commonly-

utilized source separation metrics in the context of

classical guitar duets to understand their effective-

ness when applied in sources with similar timbres.

1 The dataset is available at: https://zenodo.org/records/12802440

2. DATASETS

2.1 Existing Datasets

Datasets available for music source separation or transcrip-

tion are primarily divided into multitimbral and mono-

timbral ones, each offering instrument-specific tracks or

stems, often accompanied by transcriptions. Multitim-

bral datasets such as musdb18 [7], URMP [27], Med-

leyDB [38], MoisesDB [26] and SLAKH [28] are most

prominent, featuring both real and synthesized data from a
broad spectrum of instruments; some extend to multimodal

forms, including for instance audiovisual elements [27].

In contrast, monotimbral instrumental datasets, notably

fewer in number, include focused collections such as Gui-

tarSet [30] and EnsembleSet [29]. GuitarSet provides de-

tailed annotations for acoustic guitar recordings, consist-

ing of pairs of comping and soloing performances, while

EnsembleSet targets chamber ensembles with high-quality

synthetic reproductions of classical music. Despite their

utility, these monotimbral datasets face some limitations,

namely: GuitarSet’s structure, with distinct solo and ac-

companiment parts, oversimplifies the separation task due

to the distinct role of each guitar. Also, the lack of tim-

bral differences between the two guitars prevents the net-

works from focusing on timbral cues for the separation

task. On the other hand, EnsembleSet’s reliance on syn-

thetic data introduces a realism gap, underscoring the need

for datasets that more accurately capture the dynamics of

live musical performances. Moreover, the instruments it
contains are largely monophonic, which hinders its use for

scenarios with polyphonic co-playing instruments.

2.2 The GuitarDuets Dataset

In this section, we will describe the GuitarDuets dataset,

comprising both real recordings of classical guitar duets

and synthesized recordings, leveraging virtual instruments

and MIDI scores. This approach aimed to provide an orig-

inal and realistic set of guitar duet recordings for training

and evaluating deep learning algorithms on monotimbral

MSS, while simultaneously overcoming their limited du-

ration, granting ample training data and enabling analysis

between real and synthetic datasets. In total, our dataset

comprises 58.6 minutes of real data and 106 minutes of

synthesized data, amounting to 164.6 minutes overall. A

comparison of the GuitarDuets with the most prominent

datasets for MSS in the literature is outlined in Table 1,
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whereas detailed statistics about both the real and synthe-

sized subsets of GuitarDuets are given in Table 2.

Real Recordings: For the recordings featuring real

classical guitars, we utilized a quiet, acoustically treated

room and high-quality condenser microphones (Presonus

PM-2), one for each guitar. During the recording process,

four different classical guitars were used, with some tracks

(16 min.) replayed using different guitars to further en-

hance timbral diversity. Simultaneous play was crucial for

capturing the musical interplay between the two guitarists.

The whole recording process resulted in the recording of

27 guitar duets (per-track duration: 123± 82 sec.), mostly

from the Modern Classical and Nuevo Tango genres and

from the Romantic Period. This approach, while essen-

tial for the integrity and realism of the dataset, introduced

a challenge with cross-microphone sound bleeding. This

crossover of sound presented a significant concern, as it
compromises the isolation of the individual guitar tracks,

impacting the quality of the dataset. In addressing the is-

sue of source bleeding in microphones, we recorded a spe-

cialized test set that is free from such leakage. This set,

consisting of 7 tracks (per-track duration: 39 ± 13 sec.),

was created to ensure the absence of cross-feed between

microphones. Each guitar track was exported as a 44,100

Hz, 16-bit WAV file in stereo format, with mixed audio

files created by averaging individual guitar performances.

Synthetic Recordings: Despite the inherent realism of

the real recordings, their small duration could prove prob-

lematic for network training, whereas the single recording

setup utilized could import biases. A commonly utilized

shortcut to increase the duration of real recordings is to
virtually augment them, by synthesizing additional pieces

based on note-level transcriptions and virtual music instru-

ments, which has proven effective not only in generating

multitrack datasets [28, 29], but also in tasks such as tab-

lature generation [39, 40]. In our case, “Session Guitarist

- Picked Nylon” 2 , a sample-based virtual instrument, was

utilized to generate classical guitar sounds. It offers a wide

range of playing styles, capturing the nuances of nylon-

stringed guitars. We selected guitar duet MIDI scores from

the MuseScore community 3 , representing a broad spec-

trum of pieces. Logic Pro X 4 served as the digital au-

dio workstation (DAW) for transforming MIDI scores into

realistic guitar performances. By configuring multiple in-

stances of the PICKED NYLON plugin with distinct tim-

bral settings, we produced different guitar sounds. The fi-

nal dataset was exported as 44,100 Hz, 16-bit WAV files in
both stereo and mono formats for mixed audio file creation.

3. METHODOLOGY

3.1 Separation Architecture

In this work the Hybrid Transformer Demucs [5] was used

as the separation backbone, consisting of dual U-Nets [16],

operating in both time and spectrogram domains, each

2 https://www.native-instruments.com/en/products/komplete/guitar/
session-guitarist-picked-nylon/

3 https://musescore.com/
4 https://www.apple.com/logic-pro/

Figure 1: Overview of the incorporation of note-level an-

notations into the Demucs Architecture.

featuring four encoder and decoder layers. The tempo-

ral encoder (TEncoder) downsamples the input waveform

through a series of 1D convolutions, whereas the spectral

encoder (ZEncoder) gradually compresses the STFT mag-

nitude of the input by applying convolutions across the

spectral axis. The traditional convolutional layers, posi-

tioned between the encoder and decoder in previous iter-

ations of the Demucs architecture [41] are replaced with

a cross-domain Transformer Encoder, composed of inter-

leaved self-attention and cross-attention Encoder layers,

each equipped with Layer Scale [42]. The attention mecha-

nism operates with eight heads, and the hidden state size of

the feedforward network is four times the dimension of the

transformer. The primary decoder layer is shared, branch-

ing into both temporal and spectral domains, with the re-

spective decoders built symmetrically to the encoders. The

spectral output, post an inverse Short Time Fourier Trans-

form (ISTFT), is merged with the temporal output, pro-

ducing the model’s prediction. We note that in our experi-

ments, the input length is set to 4 seconds.

3.2 Score-Informed Separation

In the context of Score-Informed Separation, the separa-

tion network is conditioned on the note-level transcripts of

the recordings. To this end, binary vectors indicating the

presence or absence of each of the 128 MIDI notes dur-

ing small temporal frames are concatenated with the in-

termediate feature maps in each branch, as indicated in

Fig. 1. In particular, in the temporal branch, the activ-

ity labels of each guitar are inserted after the third TEn-

coder layer. The binary vector for each guitar has a di-

mensionality of 128 × Ns, where Ns corresponds to the

number of samples for each 4-second segment, yielding a
combined shape of 256 × Ns for both guitars. Thus, the

activity labels have to be downsampled across the tempo-

ral axis, to match the resolution of the encoder at this stage.

In a parallel manner, within the frequency branch, these bi-

nary vectors are introduced following the second ZEncoder
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Figure 2: Overview of the proposed methodology for joint

transcription and separation of guitar duets.

layer. The shape of the activity labels for concatenation is
2 × 128 ×Ns, aligning with the two guitars’ MIDI notes.

In this case, the activity labels are concatenated with the

feature maps across the channel dimension; since the fre-

quency resolution of the ZEncoder, at this stage, matches

the number of MIDI notes, resampling occurs only across

the temporal axis, by downsampling the note activity labels

to the respective temporal resolution of the ZEncoder.

If transcriptions are not available, we use a sepa-

rate transcription network to generate them creating a

joint transcription-separation framework.The first network

would intake the combined sounds of the two guitars and

generate a binarized piano roll representation for each in-

dividual guitar. Afterward, the second model combines the

mixed audio and the generated piano rolls to create sepa-

rate estimates for each guitar as depicted in Figure 2. From

a musical endpoint the transcription network could poten-

tially capture note interdependencies and guitar duet pat-

terns through binarized vector features, aiding in note pre-

diction. This transcription informs the separation model,

which refines the output by focusing on timbre.

For the transcription architecture, we utilize the Resid-

ual Shuffle-Exchange Network (RSE) [37], which has

achieved state-of-the-art results in MusicNet [43]. This

network enhances the neural Shuffle-Exchange network

[44] by employing both Switch and Shuffle layers to cap-

ture sequence dependencies effectively, as well as reducing

its computational overhead by incorporating strided convo-

lutions. For further details about the architecture we refer

to [37, 44]. In our implementation, the RSE’s output layer

is modified to produce a binarized 2 × 128-dimensional

representation, to assign activity labels for each of the 128

MIDI notes to the corresponding instrument.

4. EXPERIMENTAL EVALUATION

4.1 Experimental Setup

For the separation experiments, we used both the real

and synthesized subsets of GuitarDuets, which we will

further denote as GuitarDuets(R) and GuitarDuets(S), re-

spectively, as well as the GuitarSet, for which mixtures

were generated via addition of the available comping and

solo excerpts. We adapted the backbone Demucs model

for classical guitar duet separation, modifying it to out-

put two stereo signals, one for each guitar. Data aug-

mentation techniques including channel swapping, time

cropping, amplitude scaling and remixing individual gui-

tar parts from different performances were employed dur-

ing network training to improve generalization. As our loss

function we used the quantity:

α ·min(|ĝ1 − g1|+ |ĝ2 − g2|, |ĝ2 − g1|+ |ĝ1 − g2|)

+β · |(ĝ1 + ĝ2)− (g1 + g2)|, (1)

where the first term corresponds to the traditional

permutation-invariant L1 loss between the ground truth

signals g1, g2 and the output sources ĝ1, ĝ2, and the second

term models the similarity between the sum of the guitar

estimates and the input mixtures, encouraging the network

to provide separate guitar tracks which neither discard nor

duplicate note instances, whereas the weight values were

set, after preliminary experiments, to α = 0.8, β = 0.2.

For the transcription architecture experiments, we em-

ployed GuitarSet and the GuitarDuets(S) dataset, which

contain note-level annotations for individual guitar parts.

We transformed labels from GuitarSet (.jams files) and the

MIDI files from our dataset to CSV format. All audio files,

initially sampled at 44,100 Hz, were resampled to 11,000

Hz and converted to mono, to render them compatible with

the RSE backbone [37]. Similar to the separation case, the

loss function –in this case, the binary cross entropy– was

employed within a permutation invariant framework.

4.2 Cross-Dataset Analysis

For the purposes of the cross-dataset analysis, we con-

sider the GuitarDuets(R) and GuitarDuets(S) subsets as

separate datasets, and train the Demucs backbone on var-

ious combinations of GuitarSet, GuitarDuets(R) and Gui-

tarDuets(S), using the same experimental protocol and an

80-20 training-validation split; all networks are evaluated

on the bleeding-free testing set of GuitarDuets(R). Upon

inspection of the results, presented in Table 3, several

key insights emerge. Namely, the complete GuitarDuets

dataset yielded the highest SDR values for the first gui-

tar. The inclusion of the synthesized subset likely provided

additional information that enhanced the model’s perfor-

mance with regards to the SDR. On the other hand, the

inclusion of these synthetic parts made the model prone

to auditory artifacts, since the highest SAR scores were

achieved for the combination of GuitarDuets(R) with the

GuitarSet. Finally, we observe that the combination of the

complete GuitarDuets dataset with GuitarSet leads in di-

minished performance, probably due to the structural dif-

ferences between the training subsets.
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Source Datasets Metrics

GuitarDuets(R) GuitarDuets(S) GuitarSet SDR SI-SDR SAR SIR

✓ ✓ ✓
G1: 4.297 G1: 3.403 G1: 7.670 G1: 10.766

G2: 0.835 G2: -2.880 G2: 2.062 G2: 4.495

✓ ✗ ✓
G1: 4.522 G1: 4.280 G1: 9.483 G1: 6.273

G2: 1.359 G2: -2.238 G2: 10.898 G2: 7.631

✗ ✓ ✓
G1: 4.493 G1: 1.530 G1: 8.191 G1: 7.038

G2: 1.137 G2: -1.566 G2: 8.305 G2: 8.081

✗ ✗ ✓
G1: 4.632 G1: 3.871 G1: 7.971 G1: 7.321

G2: 1.378 G2: -1.198 G2: 6.332 G2: 8.968

✗ ✓ ✗
G1: 3.472 G1: 1.857 G1: 8.212 G1: 8.217

G2: 0.200 G2: -4.052 G2: 4.502 G2: 4.501

✓ ✗ ✗
G1: 4.952 G1: 3.573 G1: 7.628 G1: 10.413

G2: 1.014 G2: -3.536 G2: 1.424 G2: 4.873

✓ ✓ ✗
G1: 5.882 G1: 4.315 G1: 8.488 G1: 11.706

G2: 0.920 G2: -3.133 G2: 0.896 G2: 4.104

Table 3: Separation results on the testing set of GuitarDuets(R), according to the datasets utilized during training. G1

corresponds to the 1st guitar, G2 to the 2nd. Higher is better for all metrics.

Dataset Note Labels
Branch Conditioning Metrics

Time Frequency SDR SI-SDR SAR SIR

GuitarDuets(S) Ground Truth

✓ ✗
G1: 4.453 G1: 3.117 G1: 4.972 G1: 12.411

G2: 4.355 G2: 0.072 G2: 3.197 G2: 8.292

✗ ✓
G1: 4.547 G1: 3.293 G1: 4.685 G1: 9.523

G2: 3.301 G2: -0.410 G2: 3.451 G2: 9.882

✓ ✓
G1: 4.717 G1: 3.378 G1: 4.362 G1: 12.081

G2: 4.863 G2: 0.154 G2: 4.316 G2: 10.537

GuitarDuets(S)

Estimated ✓ ✓
G1: 3.414 G1: 1.398 G1: 3.455 G1: 10.655

G2: 1.977 G2: -1.511 G2: 3.087 G2: 7.035

None ✗ ✗
G1: 2.575 G1: 2.436 G1: 4.473 G1: 12.795

G2: 2.569 G2: -2.514 G2: 3.473 G2: 5.717

GuitarDuets(R)

Estimated ✓ ✓
G1: 5.313 G1: 4.352 G1: 7.638 G1: 11.110

G2: 1.035 G2: -3.291 G2: 1.998 G2: 5.089

None ✗ ✗
G1: 4.952 G1: 3.573 G1: 7.628 G1: 10.413

G2: 1.014 G2: -3.536 G2: 1.424 G2: 4.873

Table 4: Separation results on the testing sets of GuitarDuets(S), GuitarDuets(R), when using solely the respective training

sets for training, depending on the availability of note-level annotations and the Demucs branches conditioned on them. G1

corresponds to the 1st guitar, G2 to the 2nd. Higher is better for all metrics.

In our analysis, we observed a consistent discrepancy in
the Signal-to-Distortion Ratio (SDR) between the two gui-

tars, where the first guitar exhibited a decent SDR, while

the second often fell below a threshold of 1 dB. This pat-

tern suggests that the algorithm may be effectively sep-

arating the first guitar by identifying it as the primary

source, whereas it perceives the second guitar as back-

ground noise, or merely an auditory artifact. It is impor-

tant to note that the average amplitude of both guitars is
on the same scale, so this observation is not attributed to
amplitude differences. Notably, we observe that the most

consistent SDR values for G2 were achieved when Gui-

tarSet was included in the training set, which we attribute

to its relatively noise-free structure.

4.3 Score-Informed Separation Approaches

For the experiments concerning score-informed separation,

we investigated the integration of activity labels into our

network, considering Demucs’ operation across frequency

and temporal domains, by using the GuitarDuets(S) as our

dataset since it contains note-level annotations. We also in-

vestigate, using both GuitarDuets(R) and GuitarDuets(S),

whether the joint transcription-separation architecture can

aid in effective separation in scenarios where no ground

truth data is available. In both cases, a part of the dataset

(the bleeding-free subset of GuitarDuets(R), and 10% of

GuitarDuets(S)) was used for performance evaluation; the

rest were used for training and validation, at an 80:20 ratio.

The analysis, as detailed in Table 4, reveals that while

using the temporal branch for note label integration leads

to slightly improved results compared to the spectral

branch, the hybrid approach achieves the most promising

outcomes. This performance can be attributed to the in-

herent design of the Demucs architecture, which has his-

torically shown improved efficiency when leveraging both

domains concurrently [41]. It is also noteworthy that while

the integration of ground-truth labels leads to higher SIR

values, presumably due to the guidance that these labels
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Figure 3: Comparison of spectrogram estimates with esti-

mated (top) note-level annotations, and without those (bot-

tom), for an instance from GuitarDuets (R).

provide to the separation network about the identity of each

guitar, the improvement in SAR is marginal.

Regarding the joint transcription and separation frame-

work, the performance does not reach the levels achieved

when ground-truth note-level annotations are available, as

measured in GuitarDuets(S). On the other hand, while in
the case of GuitarDuets(R), the performance is slightly im-

proved when these pseudo-annotations are available, Gui-

tarDuets(S) achieves better results in their absence. A com-

parison of guitar estimates for the models trained with and

without predicted note label information, for an instance

of the GuitarDuets(R) test set, can be depicted in Figure 3;

we assume that the incorporation of note activity labels

enables the separation model to more accurately sustain

notes, enhancing the quality of the isolated melodic and

accompanying parts. On the other hand, we attribute the

performance drop, when using GuitarDuets(S), to the re-

duced generalization of the transcription network. Since

the training set of GuitarDuets(S) was used for its training,

the separation network was trained using mostly correct

labels, but evaluated with note-level annotations of pieces

the transcription network did not use for training.

4.4 Comparative Metric Analysis

In the field of MSS, the evaluation of separation quality

is often quantified using metrics such as SDR [45] and

SI-SDR [46]. While they have been extensively used in
studies focusing on separating different instruments, their

behavior on sources with similar timbral characteristics re-

mains less explored. Given that most prior work involves

instruments with distinct timbres, direct comparison of our

results with SDR values achieved across different datasets

may not be appropriate for our study, which focuses on two

classical guitars with similar timbral properties.

Figure 4: Comparison of the behavior of SDR (left) and

SI-SDR (right) when assessing the separation of monotim-

bral (blue line) or multitimbral (orange line) duets.

In order to identify potential disparities in the behavior

of the metrics that can be attributed to timbral similarities

in the mixture components, we simulated imperfect esti-

mates of a reference signal x1 by creating additive syn-

thetic mixtures of the signals x1, x2 as:

m = α x1 + (1− α)x2, (2)

with α ∈ (0, 1), and measured the values of the SDR, SI-

SDR metrics between these mixtures and x1. We examined

two cases using signals derived from Track 29 of the Gui-

tarDuets(S): i) a monotimbral mixture, where both x1 and

x2 constitute guitar signals, and ii) a multitimbral mixture,

where x2 was synthesized from the second guitar’s notes

using a piano virtual instrument plugin. To guarantee a fair

comparison across all tests, we performed amplitude nor-

malization between the two tracks for each experiment.

The results, displayed in Figure 4, indicate that both

metrics for the guitar mixtures are consistently higher than

those obtained from mixtures of different instruments. For

instance, the mixing ratio α required to reach an SDR value

of 5 approaches 0.8 for the multi-timbral case, while 0.6 for

the mono-timbral case. This suggests that the timbral sim-

ilarity between the two guitars introduces a challenge for

the metrics to accurately assess the quality of separation.

5. CONCLUSIONS

In this paper, we introduced GuitarDuets, a dataset con-

sisting of both real and synthesized classical guitar duets.

We exhibit that our dataset can be utilized for developing

monotimbral source separation algorithms within both tra-

ditional and score-informed frameworks. We further de-

veloped a joint permutation-invariant framework for tran-

scription and separation of monotimbral mixtures, which

we show that can lead to improved performance in sepa-

ration of real guitar duets. In the future, we plan to ex-

tend the recordings of both the real and synthesized subsets

of GuitarDuets, and provide note-level annotations for its
real subset. Furthermore, regarding the joint transcription-

separation architecture, we intend to explore more sophis-

ticated ways for integrating the predicted guitar transcripts

into the separator [47, 48]. Finally, we aim to conduct

extensive listening tests, which will help in further shed-

ding light into both the performance of the various ap-

proaches we compare, and the significance of objective

metrics within the context of monotimbral audio source

separation.
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