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ABSTRACT

Repetition is central to musical structure as it gives rise

both to piece-wise and stylistic coherence. Identifying

repetitions in music is computationally not trivial, espe-

cially when they are varied or deeply hidden within tree-

like structures. Rather than focusing on repetitions of mu-

sical events, we propose to pursue repeated structural rela-

tions between events. More specifically, given a context-

free grammar that describes a tonal structure, we aim to

computationally identify such relational repetitions within

the derivation tree of the grammar. To this end, we first

introduce the Template, a grammar-generic structure for

generating trees that contain structural repetitions. We then

approach the discovery of structural repetitions as a search

for optimally compressible Templates that describe a cor-

pus of pieces in the form of production-rule-labeled trees.

To make it tractable, we develop a heuristic, inspired by

tree compression algorithms, to approximate the optimally

compressible Templates of the corpus. After implement-

ing the algorithm in Haskell 1 , we apply it to a corpus of

jazz harmony trees, where we assess its performance based

on the compressibility of the resulting Templates and the

music-theoretical relevance of the identified repetitions.

1. INTRODUCTION

Repetition has been widely recognized as an essential

means of establishing effects of coherence in music [1–5].

In Western music, at least, it operates at multiple levels

of structure—whether within individual compositions or

across different pieces—and takes the shape of musical

motifs, themes [6–9], and sectional forms [10–14], among

others.

In formalizing repetition in, we need to clarify the ob-

ject, the means, and the scope of repetition. The object

specifies the kind of entities being repeated—for instance

concrete pitch events or abstract relations between them.

By means of repetition we refer to processes via which the

1 https://github.com/ren-zeng/

formal-modeling-of-structural-repetition.git
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objects are repeated.The scope specifies the musical con-

text in which any repetitions are identified.

This paper focuses on structural repetitions whose ob-

jects are not the musical events themselves but rather rela-

tions among them. By way of a musical example, consider

the first eight bars in the jazz standard “Satin Doll.” In

common form-theory [10] terms, is sentential; its first half

(“presentation”) establishes and repeats a “basic idea” one

step higher, whereas the second half (“continuation”) ac-

celerates the harmonic rhythm towards a closing gesture. 2

A parse tree of the piece (see Figure 1a) based on the jazz

harmony grammar by Rohrmeier [15] clarifies the chord

dependency and constituency. Here we may observe that

the varied repetition of the basic idea in the presentation

is reflected in the parallelism between the respective tree

components. 3

One might think that the tree topology suffices to cap-

ture the musical intuition of the parallel structures within

this phrase. Further observation reveals that the equality

in topology is at most a necessary but not sufficient con-

dition for parallelism. Equality between tree topologies

can only express sameness of grouping structure (“con-

stituency”), irrespective of group contents. This is not

enough to describe common pattern-like tonal structures

such as sequences. The essence of the phenomenon in this

example lies also in the equality of the relations (edge la-

bels). Listeners familiar with the genre would identify the

repeating objects as “ii-V”-type motions. To make the re-

lations explicit, we construct a production-rule-labeled tree

as shown in Figure 1b. this representation, the parallelism

is reflected in the equality of labeled tree components. This

notion of repetition, now construed as equality of abstract

relations, is crucial in formally capturing parallelism in

music.

The means of repetition can be informally understood

as the coloring present in the rule-labeled tree, which de-

marcates different rule types. This coloring imposes on

the derivation of the piece a repetition constraint that is re-

cursively constrained: indeed, one challenge is to express

repetition not just between tree leaves or sub-trees, but also

between connected subgraphs of the tree. This generaliza-

tion would enable us to express deep-level repetitions of

tonal frameworks despite non-parallel operations close to

2 This hearing becomes obvious after considering the parallelism
within the melody (not shown in the figure).

3 “Tree component” here refers not just to subtrees but also to con-
nected subgraphs within the tree.
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(a) Harmony tree of Satin Doll mm. 1-8.
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(b) The rule-labeled tree corresponding to the harmonic analy-
sis. “↷” indicates applied dominant relation. “←→”indicates
prolongation. “↘5” indicates diatonic descending fifth relation.
“◦/♭5” indicates tritone substitution.

Figure 1: Hierarchical harmonic analysis of “Satin Doll”

mm. 1-8 using the jazz harmony grammar [15] under two

representations.

the surface (e.g. ornaments). A constructive definition of

repetition means is provided in section 3.

Finally, we distinguish two kinds of scopes for repeti-

tion: piece-wise and corpus-wise. This distinction is im-

portant for characterizing musical styles. For instance, the

“ii-V-I” chord progression in jazz is a recurrent harmonic

device across the corpus. In contrast, the two descend-

ing thirds arranged one descending step apart, which open

Beethoven’s Fifth Symphony, establish themselves as a

motive through specific processes of repetition within the

piece (and not outside it).

2. RELATED WORK

Leaving aside historical texts, a plethora of contemporary

theoretical studies have examined the phenomenon of rep-

etition in music [16], as well as the distinction between—

borrowing Eugene Narmour’s terms [17]—“style struc-

tures” [18, 19] and piece-specific “idiostructures” [7, 20].

To computationally model the repetition phenomena in

the “Satin Doll” example of section 1, we coordinate two

kinds of hierarchical structures: one that explains musical

entities in terms of a context-free grammar(CFG), and an-

other that explains the the repetition of grammar rule appli-

cations. Hierarchical models of tonal structure are not new

[21–25]. The same can be said about the hierarchical un-

derstanding of repetition itself such as the String Pattern-

Induction Algorithm (SPIA) [26]. Methods for repetition

identification have primarily focused on the repeated ma-

terial itself by searching for exact or inexact successions

[27–32] (also see [33] for an overview of this body of re-

search). However, to the best of our knowledge, and out-

side the sphere of purely music-theoretical contributions,

little attention has been paid to computational models of

repetition whose objects are relations (generative proce-

dures). Variation, for example, is often understood as a

departure from exact repetition by means of ad-hoc or sys-

tematic transformations on a concrete entity. In this paper,

by constrast, we understand variation as a different elabo-

ration of the same abstract entity. Building upon the work

by Finkensiep at el. on repetition structure inference [34],

we extend its notion of “formal prototypes” to accommo-

date non-exact repetitions.

In the field of computer science, grammar-based com-

pression algorithms aim to compress data by factoring out

repeated information and storing it only once. Grammar-

based compression algorithms have been developed and

studied both for strings [35] and trees [36–40]. With string-

like input data, the Sequitur algorithm [41] encodes a com-

pressed string by constructing a straight-line grammar—a

subclass of CFGs—whose language size is equal to one.

When the input data have tree or forest form, algorithms

such as [35–37, 39, 40] construct a straight-line tree pro-

gram by iteratively constructing repeated units using “di-

grams,” which assemble a unit of repetition from two adja-

cent units. In the case of tree patterns, a digram consists of

a root plus one of its children. Among the related research,

the TreeRepair algorithm by Markus Lohrey et al. [37] is

relevant as it is specifically concerned with the notion of

“deep-level repetition”, i.e. of connected graphs within a

tree.

In this paper, we formalize repetition patterns as func-

tions operating on generic abstract syntax trees. Using a

new approach that is based on tree compression algorithms

and formal prototypes, we introduce a model that can dis-

cover piece-specific and stylistic patterns from a forest of

abstract syntax trees.

3. FORMALISM

Meta-rule. A meta-rule is a list of symbols in N
+∪{_, ⋆}

where “_” denotes a new symbol, “⋆” denotes the recur-

rence of the parent symbol (“parent repeat”), and “n” de-

notes the recurrence of the n-th argument (“sibling re-

peat”). In the rest of the paper, we use M to denote the

space of meta-rules. Each m ∈ M induces a repetition

function repm : (X,Xn) → Xm+k where the first argu-

ment represents the root of a sub-tree and the second repre-

sents its children. Here are two examples of the workings
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of the repm function:

rep⟨_,_,1,⋆⟩(5, [3, 1])) = [3, 1, 3, 5]

rep⟨⋆,_,2,_,_,4⟩(t, [a, b, c]) = [t, a, a, b, c, b].

Intuitively, a meta-rule encodes the atomic “means” of

repetition within a tree structure without specifying the

object of repetition. 4 In addition, for m ∈ M, we de-

fine sizeIn(m) to be the number of “_” symbols and the

sizeOut(m) to be the length of the meta-rule.

Template. Given a context-free Grammar G where PG

is the set of production rules, we define its corresponding

Template TG constructively using following axioms:

1. (Rule Lifting)

∀f ∈ PG. f ∈ TG

2. (Composition) 5

∀f, g ∈ TG, i ≤ arity(g). (i, g, f) ∈ TG

3. (Replication)

∀g ∈ TG,m ∈M, f⃗ ∈ T
sizeIn(m)
G . (g,m, f⃗) ∈ TG

TG is effectively a context-free grammar that generates

PG-labeled trees. The template is a structured representa-

tion of a rule-labeled tree; each template can be mapped

to a unique rule-labeled tree but each rule-labeled tree can

be assigned to multiple templates. Each rule-labeled tree

can be embedded as a template in a trivial way using the

axioms Rule Lifting and Replication with the meta-rules

containing only “_”.

We view the problem of discovering objects and means

of repetition as one of inferring optimally compressible

templates that generate the given production-rule-labeled

trees. Given a collection of rule-labeled trees, we want to

parse them as templates, so that the total size of the list of

templates is minimized under memoization. 6

3.1 Atomic parsing operations for TG

P-rewrite. Given a pattern of form (i, f, xi), referred to

as a “digram” in [37], the rewrite procedure operates as

depicted in Figure 2 in a post-order fashion, replacing all

non-overlapping instances of the pattern within the tree.

Through iterative application, P-rewrite facilitates the ab-

straction of a connected subgraph of a tree in the form of a

single node. 7

4 Visualizing meta-rules as strings of literal symbols, for instance
“ABAT”, would be more intuitive and readable. Here we opt for a ref-
erential representation as it facilitates the computational implementation.

5 Here the notion of composition extends single-argument function
composition to multiple arguments. g ◦i f denotes the function ob-
tained by passing the output of f to the i-th argument of g. For com-

position and replication we also require the functions involved to have
compatible types. The arity of a template, informally speaking, is the
number of arguments needed to form a complete tree. For a template
lifted from a production rule, its arity is the number of child sym-
bols. For templates constructed using composition, arity((i, f, g)) =
arity(f) + arity(g) − 1. For templates constructed using replication,

arity((g,m, f⃗)) =
∑

x∈repm(g,f⃗)
arity(x).

6 This connection to memoization is inspired by [42].
7 P-rewrite mirrors the “replacement step” described in [37]. To the

best of our knowledge, this is the first application of this notion in the
analysis of musical structure.

g
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(3, g, f)
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Figure 2: A single step of P-rewrite using the template

(3, g, f) arise from the composition axiom.

f
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a 7−→
(f, ⟨_, ⋆, _, 1⟩, (a, b))

wvuyx

Figure 3: A single step of R-rewrite using the meta-rule

m = ⟨_, ⋆, _, 1⟩.

R-rewrite. R-rewrite is responsible for abstracting

means of repetition. Given a m ∈ M, R-rewrite ap-

plies to the tree whose first-level children are of the form

repm(g, f⃗) for some g and f⃗ . For example if m =
⟨_, ⋆, _, 1⟩, then the rewrite procedure is the operation

shown in Figure (3). R-rewrite corresponds to the repli-

cation case of TG.

Figure 4 demonstrates the relationship between a rule-

labeled tree and the template that generates it. Note that

at the most abstract level (Figure 4d) the template shows

that the entire dominant region of the Satin Doll theme fol-

lows a “AABB” repetition pattern (indicated by the meta-

rule m3 = ⟨_, 1, _, 2⟩) where “A” and “B” are templates

T2 and T1 respectively. It is worth noting that the ob-

jects of this particular repetition pattern do not appear at

the same structural level in the original rule-labeled tree.

In general, the Template formalism allows us to coordinate

tonal structure and repetition structure in a single hierar-

chical framework. It is the Composition axiom that makes

this possible, since it can abstractly represent a connected

graph of a tree as a single node. This mechanism is re-

lated to tree adjunction and substitution in Tree Adjoining

Grammar (TAG) [43, 44]. 8

4. ALGORITHMS

The algorithm draws insights from [37] and [34], in par-

ticular their methods for tree and repetition pattern extrac-

tion. Departing from [37], our proposed algorithm intro-

duces an additional replacement (R-rewrite) step to sum-

marize repetition configurations. In comparison to [34],

which operates with strings rather than trees, we introduce

a mechanism that handles structural variations, and also

derive meta-rules from data instead of prescribing a col-

lection thereof. Furthermore, our algorithm differentiates

8 A template of the form (i, g, f) simulates tree adjunction when g is
a non-trivial template, and tree substitution when f is a non-trivial tem-
plate.
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(d)

T1 := (↘5,m1, ∗) m1 = ⟨_, 1⟩

T2 := (←→,m1, [T1])

T3 := (↷,m2, [◦/♭5]) m2 = ⟨⋆, _⟩

T4 := (2,←→, T3) m3 = ⟨_, 1, _, 2⟩

(e)

Figure 4: One possible parse of the rule-labeled tree in

Figure 1b. Figures (a-d) demonstrate parsing steps (in

bottom-up direction) using P and R rewrites, while figure

(e) shows the definition of binded variables, which are col-

ored accordingly.

repetition patterns by their scopes.

The algorithm works by incrementally constructing a

table of mined patterns, whether templates or meta-rules.

Its shape is identical to that of Table 1. Given a forest of

rule-labeled trees, a pattern is global if it occurs at least in

two trees, and local if it occurs at least twice in a single

tree (but not in any other tree).

4.1 The Compression Algorithms

The goal is to find the minimal encoding achievable

through a series of P-Rewrite and R-Rewrite operations.

An exact solution would require us to try out all the possi-

ble rewrite steps (including all possible choices of patterns

or meta-rules to write on), with each rewrite generating a

new state dependent on the previous state of the program.

Even with dynamic programming techniques, such an ap-

proach would be computationally intractable. To tame the

computational complexity of the optimization problem, we

define two ‘greedy’ heuristics that help find rewrite candi-

dates: a Local Compression for single trees (Algorithm 1)

and a Global Compression for forests (Algorithm 2). The

complete compression algorithm consists in an iteration of

Algorithms 1 and 2 until a fixed-point is reached (when the

result convergence).

Algorithm 1 The Local Compression Algorithm (a Single

Step)

1: Input

t : Rule-labeled tree

dP : Dictionary from symbols to templates

dM : Dictionary from symbols to meta-rules

2: function compressL(t, dP, dM )

3: (oP , or)← occurrenceL(t)
4: c← bestCandidate(op, or)
5: if c = Nothing then

6: return (t, tP, dM)
7: else if c ∈ op then

8: t′ ← p-Rewrite(c, t)
9: dP ′ ← update(dP, c)

10: dM ′ ← dM
11: else if c ∈ or then

12: t′ ← r-Rewrite(c, t)
13: dP ′ ← dP
14: dM ′ ← update(dM, c)
15: end if

16: return (t′, dP ′, dM ′)
17: end function

The function occuranceL/occuranceG constructs a

dictionary of all the patterns and their locations in

the tree/forest for potential rewrite. The function

bestCandidate in both algorithms is defined by compar-

ing the net memory savings of the rewrite. 9 Given a tree

t, the local frequency of a composition template of the

form p = (i, g, f), FreqPL (t, p), is equal to the maxi-

mal non-overlapping occurrences of the pattern within a

tree. Its global frequency within a forest T , denoted as

FreqPG(T, p) is the number of pieces where it is present; if

it occurs multiple times in a tree of the forest, it still con-

tributes 1 to the global frequency.

The local frequency of m ∈ M, FreqRL (m) is the sum

of all local frequencies of the patterns that match a repli-

cation template (g,m, f⃗) within a tree. 10 The global fre-

quency FreqRG(T,m) simply counts the number of pieces

where it occurs.

FreqRL (t,m) =
∑

g∈label(t)

FreqPL ((g,m, children(g)))

(1)

9 A net memory saving of a pattern defined as its unit memory saving
multiplied by its number of occurrence minus the storage cost. If a pattern
is already in the dictionary, then the storage cost is zero.

10 Similarly with the “non-overlapping” constraint of derivation pat-
terns, we do not count re-occurrences of a meta-rule in a node if the same
meta-rule also occurs in any of its children on a repeating position.
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Algorithm 2 The Global Compression Algorithm (a single

step)

1: Input

dE : Dictionary from piece-id to (t, dP, dM)

dPG : Dictionary from symbols to global templates

dMG : Dictionary from symbols to global meta-rules

2: function compressG(dE, dPG, dMG)

3: (doP , d
o
M )← occurrenceG(dE)

4: c← bestCandidate(doP , d
o
M )

5: if c = Nothing then

6: dE′ ← compressL over dE, only update

7: local tables if the rule is not in dPG or dMG

8: dP ′
G ← dPG

9: dM ′
G ← dMG

10: else if c ∈ dop then

11: dE′ ← apply p-Rewrite(c) over trees in dE
12: dP ′

G ← update(dPG, c)
13: dM ′

G ← dMG

14: else if c ∈ doM then

15: dE′ ← apply r-Rewrite(c) over trees in dE
16: dP ′

G ← dPG

17: dM ′
G ← update(dMG, c)

18: end if

19: return (dE′, dP ′, dM ′)
20: end function

As an example, in the tree in Fig 1b, the meta-rule m1 =
⟨_, 1⟩ occurs six times 11 while the template T1 = (↘5

,m1, ∗) occurs four times. 12

The size for a composition template (i, g, f) is always 3
when g and f are stored in memory, because we only need

two symbols to represent them, and an integer to specify

the location at which they are composed. The unitSave
of a composition template is always 1, as it replaces two

nodes in the tree with one, thus decreasing the tree size

by 1. The size of a replication template (g,m, f⃗) is 2 +
sizeIn(m) for similar reason. The unitSave of meta-rule

m is sizeOut(m)−sizeIn(m) as the difference represents

the number of symbol repeats.

5. EXAMPLE APPLICATION: REPETITION

MINING ON THE JAZZ HARMONY TREE BANK

To exemplify an application of the proposed model, we

turned to the Jazz Harmony Tree Bank dataset [45], which

contains 150 pieces with annotated harmony labels. The

annotations are in accordance with the formal-grammar

trees of [15]. Since our focus is on modeling repeated

relations among chords, rather than the chords alone, we

need to transform our input from chord-labeled trees to

rule-labeled trees in the same fashion as in Figure 1b. To

this end, for every node in the tree we match chord labels

with abstract production rules of [15]. The resulting rule-

11 as opposed to eight times because of the non-overlapping constraint
12 This is made more explicit by the reduced tree in Figure 4a.
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7,500
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50 100 150 200
step →

Figure 5: Corpus size plotted against the number of global

compression steps. The overall reduction in corpus size is

from 7948 to 3385.

labeled trees are ranked trees, 13 which is a required prop-

erty for the compression algorithms (see [37]).

5.1 Results

In global compression, the decrease in tree size in the cor-

pus is partly offset by the expansion of the global-rule ta-

ble. 14 In initial iterations, this trade-off is highly advan-

tageous, as only few instances of certain patterns in the

corpus are needed to offset the cost of storing rules. There-

after, as shown in Figure 5, the compression size rapidly

converges, demonstrating the efficiency of this process. It

is worth noting a slight upward trend in the curve towards

the end. This is because the algorithm does not mandate

a reduction of the corpus size at each step; rather, it ex-

tracts patterns as long as they occur twice, whether locally

or globally.

Following global compression, each piece is repre-

sented in a significantly more condensed format, utilizing

the global-rule table. As shown in Figure 6, all pieces are

compressed to at least 2/3 of their original size. In particu-

lar, four pieces are compressed to the size of one. 15 These

pieces and their changes are the following: “Equinox” (23

to 1), “Mr. P.C.” (23 to 1), “Subconscious Lee” (63 to 1),

and “Hot House” (63 to 1). Notably, the first two pieces

and the last two have the same rule-labeled tree represen-

tations respectively, indicating that they are derived in the

same manner despite differences in chord labels. They

compress to size 1, because their entire “piece” patterns

occur at least twice and the algorithm therefore identifies

13 A ranked tree guarantees that the same symbol has the same arity. In
a chord-labeled tree, a chord symbol can occur in both branching node
(arity > 0) or leaf (arity = 0); such a tree is thus not ranked.

14 The size of a piece is defined by the sum of the size of the template
nodes in the tree.

15 Only two of the pieces whose compressed size is equal to one are
visible in the plot due to overlaying.
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them as global templates. Table 1 summarizes the number

of rules obtained after global compression of the corpus.

The majority of the rules extracted are global, suggesting

many common derivation patterns and meta-rules repeated

in multiple pieces. To our surprise, all meta-rules found

are global. 16

0

5

10

15

20

25

30

35

40

45

↑ compressedSize

0 20 40 60
originalSize →

Figure 6: Distribution of piece size before (x-axis) and

after (y-axis) global compression. Each dot corresponds

to a piece in the corpus. The indicator line represents 1-1

compression rate. Sizes refer to the individual compressed

trees alone, not counting the size of global rule tables.

Global (stylistic) Local (piece-specific)

Template 198 20

Meta-rule 36 0

Table 1: The numbers of rules after global compression.

6. DISCUSSION AND CONCLUSION

We have presented a formal description and computational

model of structural repetition in music, which also ac-

counts for variations. In seeking a compressed represen-

tation of a forest of abstracted syntax trees, our goal has

been to unveil what is actually repeated in a fundamental

sense, and how entities recur within a specific style. To this

end, we proposed a forest compression algorithm based on

two rewrite operations, each catering to distinct musical

abstractions.

The discovered global meta-rules (see Figure 7) include

some of the hand-coded meta-rules outlined in [34] in

line with musical intuition: αα (M1), ααβ (M64) and

ααβα (M62). Also discovered are meta-rules such as

αβαγ (M20), akin to (but not necessarily identical with)

the “period” in standard contemporary form theory [10],

16 We think this is due to the abstract, general nature of meta-rules,
which makes their recurrence in 150 pieces highly probable.

M1 = ⟨_, 1⟩ M4 = ⟨⋆, _⟩ M9 = ⟨_, _, 1, 2⟩
M13 = ⟨⋆⟩ M16 = ⟨_, ⋆⟩ M17 = ⟨_, 1, 1, 1⟩
M20 = ⟨_, _, 1, _⟩ M27 = ⟨_, _, _, 2⟩ M62 = ⟨_, 1, _, 1⟩
M63 = ⟨_, 1, _, _⟩ M64 = ⟨_, 1, _⟩ M65 = ⟨_, _, _, 1⟩
M100 = ⟨_, _, 1, 1⟩ M101 = ⟨_, _, _, 3⟩ M148 = ⟨_, _, 2, _⟩

Figure 7: The first 15 discovered global meta-rules (whose

length is less than 5) out of total 36. The index n indicates

the n-th discovered global pattern, including both template

and meta rules.

as well as αβγα (M65), which resembles an expanded

ternary structure. Meta-rules with parent-child repeats

(e.g. M4,M13,M16) emerge quite early in the compres-

sion process. The meta-rule ⟨⋆⟩ is the simplest way to nest

a pattern. For example, applying it to the template “V re-

gion followed by I chord” results in the template “V/V re-

gion followed by V chord followed by I chord.” 17 We

believe such recursive repetitions of the same pattern are,

in general, highly meaningful in music. By analyzing the

compression rate of the individual pieces after global com-

pression, one could argue that pieces with higher compres-

sion rates are generally likely to correspond to more “con-

ventional” expressions of a style. In future research, con-

sidering the compression rate of individual pieces could

shed light onto their stylistic attributes and patterns of in-

teraction between style and structure.

We consider the distinction between global and local

abstraction meaningful both for music interpretation and

its computational representation. Global abstractions en-

able the creation of more efficient representations of an en-

tire corpus in comparison with intra-piece, local compres-

sion. From a music-theoretical perspective, intertextual

study is inextricable from the notion of style. For instance,

while a ternary form may appear only once within a piece,

analysts would still recognize it as a conventional entity be-

cause it recurs across the style. Galant schemata [18] can

similarly be thought of as collections of stylistic patterns.

Form archetypes such as AABA and ABA can likewise

be seen as global meta-rules.

By integrating additional types of constraints, the model

has the potential, with certain extensions, to express more

sophisticated repetitions. For example, Schoenberg’s no-

tion of “liquidation” [46] could be recast as the repetition

of abstract relations constrained by decreasing elaboration

depth. The notion of “fragmentation” [10] could also be

modeled as repetition with a constraint on ordering, so that

fragments appear only after the initial, integral structure.

Our framework could also find use in algorithmic music

generation under grammatical constraints. For instance,

one could generate a piece in top-down fashion by sam-

pling patterns and meta-rules discovered within a stylisti-

cally homogeneous corpus.

17 “Region” here indicates non-terminal symbol while “chord” indi-
cates terminal symbol.
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