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ABSTRACT

Symbolic Music, akin to language, can be encoded in dis-

crete symbols. Recent research has extended the appli-

cation of large language models (LLMs) such as GPT-4

and Llama2 to the symbolic music domain including un-

derstanding and generation. Yet scant research explores

the details of how these LLMs perform on advanced mu-

sic understanding and conditioned generation, especially

from the multi-step reasoning perspective, which is a crit-

ical aspect in the conditioned, editable, and interactive

human-computer co-creation process. This study conducts

a thorough investigation of LLMs’ capability and limita-

tions in symbolic music processing. We identify that cur-

rent LLMs exhibit poor performance in song-level multi-

step music reasoning, and typically fail to leverage learned

music knowledge when addressing complex musical tasks.

An analysis of LLMs’ responses highlights distinctly their

pros and cons. Our findings suggest achieving advanced

musical capability is not intrinsically obtained by LLMs,

and future research should focus more on bridging the gap

between music knowledge and reasoning, to improve the

co-creation experience for musicians.

1. INTRODUCTION

Large language models (LLMs), such as GPT-4, harness

the power of deep learning to produce human-like text.

These models, trained on vast datasets of textual content,

have notably propelled advancements in natural language

processing (NLP). They excel in complex language under-

standing and generation tasks including translation, sen-

timent analysis, question answering, and summarization,

showcasing their reasoning capability with sophistication.

Large language models (LLMs), initially pre-trained on
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extensive textual corpora, can assimilate general linguistic

patterns and structures. They are subsequently fine-tuned

with domain-specific data, such as code and mathemati-

cal symbols, to enhance the adaptation to specific tasks.

This refinement allows LLMs’ proficiency to more accu-

rately manage domain-specific terminology and compli-

cated challenges like multi-step reasoning. Music Reason-

ing refers to the ability to estimate the varying harmonies,

keys, rhythms, and other musical elements that are not ex-

plicitly annotated in a piece of music and are significant

for music themes, progression, and styles [1]. The analogy

between the reasoning process in music and mathemat-

ics suggests their structural similarities. Both disciplines

fundamentally rely on patterns: music in rhythms, scales,

and chord progressions, while mathematics involves se-

quences, symmetries, and geometric configuration. More-

over, music theory utilizes mathematical concepts to artic-

ulate intervals between pitches, chord structures, and the

rhythmic temporal division [2, 3], underscoring the intrin-

sic reasoning nature of the musical components.

Music can be represented as sequences of symbols such

as MIDI or ABC notation, rendering it suitable for process-

ing by LLMs, which excel in long-context understanding

and multi-step reasoning. These models are capable to dis-

sect and generate intricate musical patterns encompassing

melodic, harmonic, and rhythmic structures. LLMs also

play a pivotal role in enhancing interactive music gener-

ation systems, where user inputs tailor the model’s out-

put, enriching the composing experience. While previous

studies [1,4,5] have investigated LLMs in music tasks, de-

tailed interpretations of the process remains less explored.

This paper conduct an evaluation of four LLMs, GPT-

4 [6], Gemma-7B-it [7], Llama2-7B-chat [8], and Qwen-

7B-chat [9], assessing their capabilities on tasks related to

symbolic music understanding and generation:

• Music Understanding: 1) Music theory exercise; 2)

Motif extraction; 3) Musical form extraction.

• Music Generation: 1) Chord-conditioned music gen-

eration; 2) Melody harmonization; 3) Musical-form-

and-motif-conditioned music generation
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The task of "Musical Form & Motif Conditioned Mu-

sic Generation" as described in Chatmusician [1] involves

generating music that adheres to detailed prescribed condi-

tions like form and motif. Figure 1 illustrates this process:

The prompt’s green text specifies conditional constraints

including the musical form, motif, and some musical el-

ements (key, time signature, etc.). Under the prompt, the

left sheet presents the human composer’s work. The right

sheets show ABC notations from different models along-

side the reference. The Gemma-7B-it model merely repli-

cates the provided motif, adding no new elements. Simi-

larly, GPT-4 simply repeats the given condition. Qwen-7B-

chat and Llama-7B-chat include correct musical elements

and the motif but fail to capture the musical form "AB" and

maintain the duration of a measure.

The main contributions of our paper are as follows: (1)

we provide multi-step prompt engineering and explore how

LLMs exhibit their reasoning capabilities with multi-step

instructions in music understanding and generation tasks.

(2) we assess four major LLMs on various symbolic music

tasks, analyzing their reasoning in ABC sequences through

quantitative statistical results and qualitative human as-

sessment, including error analysis. The examples, hand-

crafted prompts, and codes of data preprocessing are avail-

able at github.

2. RELATED WORK

In this section, we summarize related works from two per-

spectives. First, we introduce previous studies on LLMs in

the symbolic music domain, explaining their performance

and evaluation methods in music understanding and gen-

eration tasks. Then, we discuss the application of LLMs

in reasoning math problems and controllable creative text

generation, highlighting similarities between the reasoning

processes in music and math and the conditioned, open-

ended nature of both music and text generation.

2.1 LLMs in Symbolic Music Domain

This subsection reviews the application of LLMs in the

symbolic music domain. Previous studies have focused

on adapting LLMs for music understanding and gener-

ation. Chatmusician [1] uses continual pre-training and

fine-tuning on LLaMA2 to understand and generate ABC

notation music, without specialized music structures or

tokenizers. SongComposer [4] collects a song pretrain-

ing dataset including lyrics, melodies and paired lyrics-

melodies, employing 10K crafted QA pairs to enable

LLMs to perform multiple music-related tasks such as

lyric-to-melody conversion and song continuation. Mu-

sicAgent [10] integrates various music tools into a sin-

gle system, though it lacks interaction among these tools.

Most approaches view music creation as a linear process,

which diverges from the multi-step approach humans use,

limiting their applicability for generating creative works.

To mimic human creative processes, ByteComposer [5]

employs a four-step method to replicate the creative work-

flow of human composers: conception analysis, draft Com-

position, self-evaluation and modification, and human aes-

thetic selection. And designs an interactive agent system

consisting of expert, generator, voter, and memory mod-

ules. What’s more, they construct supervised fine-tuning

data covering tasks of basic music theory conception, con-

trol code generation, music score evaluation and next-step

planning. Despite being a significant step towards multi-

step music creation with LLMs, it lacks a detailed discus-

sion on the limits of LLMs at each stage.

2.2 Reasoning and Controllable Generation with

LLMs

"Reasoning" in NLP involves integrating various knowl-

edge sources or contexts to generate new assertions,

events, or actions [11]. This process often breaks com-

plex questions into sequential steps [12]. Techniques such

as Chain-of-Thoughts (CoT) [13, 14] have shown effec-

tiveness in addressing complex reasoning tasks, particu-

larly in mathematics. The Program-of-Thoughts approach

improves upon CoT by using language models to gener-

ate text and code, enhancing math problem-solving per-

formance [15]. Plan-and-Solve (PS) Prompting, a zero-

shot technique, outperforms zero-shot CoT significantly,

exceeds Zero-shot Program-of-Thoughts, and matches 8-

shot CoT in math reasoning [16].

While music and mathematics share similarities, it is

crucial to recognize that music is not as deterministic. In

controllable music generation, despite given chords, mo-

tifs, and forms, unpredictable elements still significantly

affect the quality of the music, similar to controllable text

generation. Zhang et al. [17], identify three types of con-

trol conditions: semantic, structural, and lexical. Semantic

controls refer to content control such as sentiment [18, 19]

or topic [20, 21], resembling style and emotion in music.

Structural control involves shaping the structure of the gen-

erated text, such as setting a story’s framework or using

data from tables or graphs as input, similar to specifying

musical forms for generation [22, 23]. Lexical controls

manage vocabulary usage, ensuring specific keywords ap-

pear, akin to using musical chords and motifs as guidelines.

LLMs are extensively applied in diverse controllable and

creative generation tasks [24–26]. These systems’ abilities

in long-context and multi-step generation under predefined

conditions are examined, though such analyses are rarely

applied in the music domain.

3. METHODOLOGY

3.1 Datasets

In this paper, we incorporate six tasks covering from mu-

sic understanding to generation. The data is collected

from MusicPile and MusicBench in ChatMusician [1]. The

statistics of the dataset we use are shown in Table 1. Each

model can support the maximum length of tokens of each

task.
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Figure 1. A comparison of different LLMs’ responses with the same instruction of the musical-form-and-motif-conditioned

task as the input. The ABC notation contained in the response is extracted and displayed as scores the quality of all

responses is marked with diverse symbols.

Tasks Numbers Max/Avg. tokens

Music theory exercise 367 733/103.56

Motif extraction (ME) 2470 1165/194.28

Musical form extraction (MFE) 483 650/187.35

Chord-conditioned generation (CCG) 1721 283/94.83

Melody harmonization (MH) 355 551/166.03

Musical-form-and-motif-conditioned generation (MFMC) 4881 285/53.82

Table 1. Statistics of each task. The number of items and the max and average length of tokens are provided.

3.2 Prompt Engineering

Before examining each LLM’s task performance, we con-

ducted preliminary tests to verify their understanding of

the relevant musical concepts. These tests confirmed that

all models possess foundational knowledge of the six mu-

sic tasks assessed in this study.

We employed two prompt modes in our experiments

of all tasks, Default and Chain-of-Thoughts (CoT). De-

fault mode means forcing the model to respond without

any analysis. Additionally, for music theory exercises, to

make the model better understand the questions and op-

tions, and return the answer in a unified format, we also

include the In-Context-Learning (ICL) mode by adding

some question-answer pairs as examples shown to the

models in the prompt. Taking the task of music theory

exercises understanding as an example, three modes of

prompts as the prefix of inputs followed by each item in

the datasets are shown in Figure 2. Different from the mu-

sic theory exercise, we specifically design prompts to sup-

port a multi-round chat conversation with LLMs for the

generation tasks. Figure 3 shows an example of a four-

round prompt set of chord-conditioned generation. We in-

vite graduates who majored in music composition to write

down their multi-step thoughts when completing the gener-

ation tasks involved in this paper. We summarize the com-

mon steps of all answers, adapt them to the prompt set, and

make sure LLMs can understand or at least intend to fol-

low the instructions. An example of GPT-4’s response to

the instruction in Figure 3 is shown on the website 1 .

1 https://github.com/SylviaZiyaZhou/LLMs_music_reasoning/blob/main/
CoT_music_generation_GPT4_response.pdf

Default: "You will see JSON-formatted instruction data followed by
questions. Your responses should only indicate the selected option
(using uppercase letters), without providing any analysis."

CoT: "You will see a JSON-formatted instruction data followed by
questions. Your responses should include an analysis step by step.
The returned JSON format is as follows: {"reason": "Let’s think
step by step", "answer": "A"} "

ICL: CoT + "Here is an example of a question and its answer:
Read the following questions from the four options (A, B, C and D)
given in each question. Choose the best option. Which of the
following is the name of the note in the example?",

"L:1/4 M:4/4 K:Cb, D,4 |]",
Options: {"A": "B-flat", "B": "D", "C": "B", "D": "D-flat"},
Answer: "D".

Music Theory Exercise

Figure 2. A prompt example of the music theory exercise

in different modes.

3.3 Pre-processing Responses

The responses of models are supposed to have correct ABC

notations, but it may have certain syntax or formatting is-

sues, and some outputs may even contain a large amount of

natural language. We select the main features of ABC no-

tation including field names and bar line symbols to help

us extract the ABC sequence. If the extracted ABC se-

quence can be rendered into MIDI files using Music21 2

successfully and can be later rendering into audio file using

midi2audio 3 , we consider it capable of producing valid

ABC notation.

2 https://web.mit.edu/music21
3 https://pypi.org/project/midi2audio

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

105



Default: "Formulate a captivating melody that blend with the given
chord progression. The piece should be represented correctly in ABC
notation format.
'Bb', 'F', 'Gm', 'Dm', 'Eb', 'Bb', 'Eb', 'F', 'Bb', 'Gm', 'Cm', 'D', 'Gm', 'Cm',
'Gm', 'D7', 'Gm', 'Eb', 'F', 'Gm', 'F', 'Bb', 'F', 'Cm', 'F', 'Gm' "

CoT (multi-round):
Round 1: "Separate the following chord progression into several
segments.
'Bb', 'F', 'Gm', 'Dm', 'Eb', 'Bb', 'Eb', 'F', 'Bb', 'Gm', 'Cm', 'D', 'Gm', 'Cm',
'Gm', 'D7', 'Gm', 'Eb', 'F', 'Gm', 'F', 'Bb', 'F', 'Cm', 'F', 'Gm' "

Round 2: "Creating the melody for each segment respectively and
integrate melodies and chords into a complete one based on your
knowledge. Remember to consider the bass note of each chord. The
composition should be represented correctly in ABC notation format.

Round 3: "Revise your composition. Please make sure the key and
tempo is consistent and contain more complex rhythms (e.g. dotted
notes) and various chords."

Round 4: "Continue to elaborate your composition. Please improve
the overall structure of the composition."

Chord-conditioned Generation

Figure 3. A prompt example of the chord-conditioned

generation in different modes.

3.4 Multi-step Reasoning Analysis

In order to compare each model’s reasoning capability on

both understanding and generation tasks, we first conduct

a subjective assessment to evaluate how different models’

reasoning processes influence their performances. Partici-

pants are all familiar with basic music theory and can un-

derstand each task as well as the ABC notation. Secondly,

based on the results of the subjective assessment, we fur-

ther perform an error analysis in detail to show the interme-

diate answers during the reasoning process of each model.

3.4.1 Human Assessment Pipeline

In this section, we will provide a detailed description of our

subjective experiments on four popular and open-source

LLMs, including Gemma-7B-it, Llama2-7B-Chat, GPT-4,

and Qwen-7B-chat. We ask the participants to evaluate

to what extent the model understands the instructions and

correctly answer the questions in the understanding tasks,

and to what extent the responses contain the conditions and

make creative works in the generation tasks. Specifically,

the questions in the human assessment are as follows:

• For both understanding and generation tasks: 1) To

what extent does the model understand and follow

the instructions?

• Specifically for the understanding tasks: 1) To what

extent does the model correctly answer the question?

2) To what extent does the model reason like human

beings?

• Specifically for the generation tasks: 1) AB test:

please choose the better one between a pair of mu-

sic excerpts by considering their "Musicality"; 2) To

what extent does the model contain the conditions?

Except for the AB test in the generation task, each ques-

tion should be rated in a scoring range from 0 to 10 points.

We invited music experts who are familiar with ABC nota-

tions as the participants in the human assessment, ensuring

that each item was evaluated by at least two experts.

4. EVALUATION RESULTS

In this section, we provide the evaluation results based on

the methodology we discussed in the last section. The

quantitative results include the correctly parsing rate of

ABC notation in the generation tasks, and the accuracy of

music theory exercises. The qualitative results include the

statistical analysis of human assessment and the detailed

error analysis. Due to space limitation, we provide the ex-

amples at github and the online links of the corresponding

files will be attached in the illustration.

4.1 Quantitative Results

Figure 4 shows the success rate of rendering valid au-

dio from each LLM’s responses under different generation

tasks. The pre-processing methodology is introduced in

Section 3.3. Except for GPT-4, the other three models all

have an audio generation rate of less than 50%, finding it

difficult to generate the correct ABC notation format to be

converted into audio.

Table 2 displays the accuracy of the music theory exer-

cises in three modes. The reason why some models have

an accuracy rate below 25% in multiple-choice questions

with four options is that most of their responses seek addi-

tional information about the questions rather than answer-

ing them. Gemma-7B-it has a comparable performance

with GPT-4 in the Reason. subset in the Default mode

even with a much smaller model size. However, CoT and

ICL modes, which significantly improve the GPT-4’s per-

formance, show very limited effect or even deficiency in

other models. This may inspire us to reconsider the uti-

lization of classical CoT and ICL approaches in solving

music tasks.

Figure 4. The success rate of rendering audio from each

LLM’s responses in the music generation tasks.
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Model (and Mode) Know. (%) Reas. (%)

GPT-4 (Default) 58.2 25.6

GPT-4 (CoT) 68.4 36.7

GPT-4 (ICL) 69.9 34.9

Llama2-7B-chat (Default) 11.9 10.2

Llama2-7B-chat (CoT) 29.8 16.3

Llama2-7B-chat (ICL) 10.4 15.3

Gemma-7B-it (Default) 45.7 31.6

Gemma-7B-it (CoT) 36.1 17.3

Gemma-7B-it (ICL) 33.1 31.6

Qwen-7B-chat (Default) 42.0 17.4

Qwen-7B-chat (CoT) 40.2 22.4

Qwen-7B-chat (ICL) 35.7 24.5

Table 2. Accuracy of the music theory exercises of each

model. All three modes of results are provided. Know.

means the music knowledge part and Reas. means the

music reasoning part. They are two subsets of which the

former tests the models’ memory of basic music concepts

and the latter needs further reasoning and calculation to be

completed. GPT-4’s results come from [1].

Type Model
Inst. Fl. Correct. Reason.

µ σ µ σ µ σ

ME

GPT-4 10.0 0.0 6.5 2.6 7.8 1.3

Gemma 8.2 2.1 5.1 2.8 7.4 3.2

Llama2 7.8 1.9 4.7 2.8 4.7 2.4

Qwen 7.6 0.7 3.8 1.5 2.1 1.3

MFE

GPT-4 10.0 0.0 5.0 2.5 5.6 2.0

Gemma 3.5 3.6 2.1 2.2 2.9 2.1

Llama2 5.4 1.8 3.2 2.8 4.3 2.3

Qwen 2.6 1.5 2.3 1.9 3.3 2.0

Table 3. The human assessment results of different LLMs

on the understanding task. Inst. Fl., Correct. and Rea-

son. respectively indicate to what extent the model follows

the instructions, correctly answers the questions, and rea-

sons like humans. µ and σ respectively denote the average

scores and the standard variance.

Type Model
Inst. Fl. Condi.

µ σ µ σ

MFMC

GPT-4 5.7 1.4 6.3 1.5

Gemma 4.0 1.8 4.6 2.2

Llama2 4.3 1.6 4.3 2.3

Qwen 4.9 2.1 2.9 2.2

MH
GPT-4 6.5 3.5 5.5 2.5

Gemma 3.0 1.0 4.5 2.5

CCG
GPT-4 5.2 3.3 5.8 3.8

Gemma 1.6 1.0 1.3 0.8

Table 4. The human assessment results of different LLMs

on the generation task. Condi. indicates to what extent the

model contains the condition given in the instructions and

ABC format.

4.2 Qualitative Results

For human assessment, Table 3 shows LLMs on ME and

MFE tasks under the CoT mode. We randomly sampled 40

examples of each task. In the instruction following ques-

tion, GPT-4 demonstrates very good results, while other

LLMs more or less can accomplish the tasks, indicating

a certain level of capability. However, when it comes to

the correctness, even GPT-4 finds it challenging to provide

satisfactory answers to the prompts. When testing the log-

ical reasoning of LLMs, the average scores indicate that all

LLMs encounter difficulties in applying logical reasoning

when answering questions step by step, leading to funda-

mental errors in music theory or illogical conclusions. This

highlights the LLMs’ limitation of involving music back-

ground knowledge.

Table 4 presents the results of human assessment we

conducted on generative tasks. In addition to the results

shown in the table, we also conducted an AB test based

on Musicality. We find that the GPT-4 and Gemma-7B-

it achieve comparable results in MFMCG task, while in

other tasks GPT-4 always wins. This means Gemma-7B-

it has a potential in creating high-quality symbolic music

with limited model size.

As depicted in Figure 4, on MH and CCG tasks, Qwen-

7B-chat and Llama2-7B-chat struggled to effectively out-

put correct ABC sequences to be rendered into audios.

Therefore, for MH and CCG tasks, we only include the AB

test results for GPT-4 and Gemma-7B-it. Despite GPT-4

achieving relatively better scores in generative tasks, it still

falls far away from humans’ expectations. Interestingly,

beyond the data, LLMs’ generative results occasionally ex-

hibit instances of copying motifs provided in the prompt,

as well as displaying unstructured harmonic repetitions or

completely off-key notes. We believe that although LLMs

can adhere to the ABC format condition provided in the

prompt, their lack of musical information and knowledge

makes it challenging to understand the high-level informa-

tion within the condition, resulting in less satisfactory gen-

erated outcomes.

In terms of the results from subjective experiments, we

identified a common issue prevalent in LLMs. Firstly,

LLMs, apart from GPT-4, struggle to generate data in the

correct ABC format with high probability, despite being

able to provide a perfect answer when asked what ABC no-

tation is. This phenomenon led us to speculate that while

LLMs are trained extensively and comprehensively, LLMs

can hardly understand all the information they have been

exposed to and utilize them in different scenarios. Be-

sides, LLMs can generate music in a seemingly appropri-

ate ABC format in generative tasks, but what appears to

be a correctly-formatted response is merely copying the

prompt without grasping the semantic and structural infor-

mation in the given condition.

4.2.1 Multi-step Reasoning Analysis

To better illustrate each model’s reasoning capability when

it is used to complete the music theory exercises, we pro-

vide an example of a question in the music theory exer-
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Figure 5. Human composer’s work for the chord-

conditioned generation task.

cises subset and step-by-step responses of the four mod-

els 4 . The question is about recognizing the interval prop-

erty of an ABC sequence referring to a compound in a mu-

sic sheet. From the responses, we can see that GPT-4 is

the only model which can actually perform the calculation

but still unable to understand the musical notes in the ABC

notation. In the GPT-4’s responses in the CoT mode, "4",

which is mistaken as "a fourth apart", should be a note

duration. Accordingly, this mistake influences the whole

reasoning process of the calculation of intervals. The re-

sponse of Llama2-7B-chat also shows its incapability of

involving correct music knowledge understanding of notes

intervals in the reasoning process. What’s more, Qwen-

7B-chat even accidentally contains Chinese in the English

text and Gemma-7B-it failed to recognize musical notes in

the ABC sequence (see in the supplementary materials), al-

though they can return the correct answer if they are merely

asked about "the definition of note intervals".

Besides, the responses of generation tasks such as

MFMC generation also have similar problems. In the CoT

mode, we find all LLMs except GPT-4, are hard to follow

the multi-step instructions and output music in a correct

ABC format, so we only provide a GPT-4 response respec-

tively in the raw text 5 and music sheet 6 form given the

prompt in Figure 3. Although GPT-4 can well understand

the instructions in every step, it generates repetitive and

simple rhythm without enough progression and variation,

compared to the human composer’s work in Figure 5.

5. CONCLUSION AND DISCUSSION

In conclusion, our experimental analysis highlights current

LLMs’ limitations in the realm of music understanding and

generation, particularly from the perspective of song-level

multi-step reasoning. These findings are crucial as they un-

derline the challenges LLMs face when tasked with gener-

ating coherent and contextually rich musical compositions,

4 https://github.com/SylviaZiyaZhou/LLMs_music_reasoning/blob/
main/CoT_music_theory_exercise_all_LLMs.pdf

5 https://github.com/SylviaZiyaZhou/LLMs_music_reasoning/blob
/main/CoT_music_generation_GPT4_response.pdf

6 https://github.com/SylviaZiyaZhou/LLMs_music_reasoning/blob
/main/Music_Sheet_of_music_generation_GPT4_response.pdf

which often require both complex sequential processing

and creative fineness. From the human assessment results

and the error analysis, we find that all these models failed

to inject correct music theory and knowledge in the mu-

sic understanding, reasoning and generation process. This

knowledge generalization gap is analogous to the reversal

curse problem illustrated in [27] where LLMs trained on

“A is B” fail to learn “B is A”. Without making sure the

fundamental concepts are correctly mentioned in the gen-

erated responses, it is hard to alleviate the LLMs’ hallu-

cination and guarantee the responses’ quality. Therefore,

it is significant to implement the knowledge augmentation

module in the Supervised Fine-Tuning (SFT) stage to en-

sure the LLMs can reason based on correct music knowl-

edge by curating more SFT data with enough knowledge-

based contexts and practical reasoning processes.

Specifically, several insights for the multi-step SFT

dataset construction can be concluded from the process

where professional musicians are asked to create music

following the instructions. Firstly, more expert knowledge

should be involved in the dataset construction to guarantee

its quality. For example, in the chord-conditioned genera-

tion task in Chatmusician’s dataset, the bass note sequence

of the given chords does not conform to the musicians’

expectation of the progression generally. Secondly, some

conditions in the old one-step form are too lengthy and in-

formative with limitations that the human composers feel

difficult to follow. For example, when they are given an

"AB" structure with two different motives in the MFMC

task, all of them find hard to integrate two segments with

different motives into a complete piece of music in an

"AB" form. Therefore, it might not be reasonable to ask

the LLMs to output a completely and well composed mu-

sic in a one-step approach.

What’s more, although four models are all claimed to be

able to handle the input size from 4K to 8K tokens, which

is much longer than the instructions in the dataset we used,

they do not show their long-context processing advantages

in the symbolic music domain. Our experimental results

show that the widely-used CoT and ICL approaches are not

always effective in improving the model’s performance. In

this way, more step-by-step learning strategies should be

specifically developed for instruction-based symbolic mu-

sic tasks by focusing on correctly answering music the-

ory exercises, explicitly extracting motifs and implicitly

extracting musical forms, and consistently following the

conditions in the instructions.
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