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ABSTRACT

Methods based on deep learning have emerged as a domi-

nant approach for cover song identification (CSI) literature

over the past years, among which ByteCover systems have

consistently delivered state-of-the-art performance across

major CSI datasets in the field. Despite its steady im-

provements along previous generations from audio fea-

ture dimensionality reduction to short query identification,

the system is found to be vulnerable to audios with noise

and ambiguous melody when extracting musical informa-

tion from constant-Q transformation (CQT) spectrograms.

Although some recent studies suggest that incorporating

lyric-related features can enhance the overall performance

of CSI systems, this approach typically requires training a

separate automatic lyric recognition (ALR) model to ex-

tract lyric-related features from music recordings. In this

work, we introduce X-Cover, the latest CSI system that

incorporates a pre-trained automatic speech recognition

(ASR) module, Whisper, to extract and integrate lyrics-

related features into modelling. Specifically, we jointly

fine-tune the ASR block and the previous ByteCover3 sys-

tem in a parameter-efficient fashion, which largely reduces

the cost of using lyric information compared to training a

new ALR model from scratch. In addition, a bag of tricks

is further applied to the training of this new generation, as-

sisting X-Cover to achieve strong performance across var-

ious datasets.

1. INTRODUCTION

In the rapidly evolving field of music information retrieval,

Cover Song Identification (CSI), which aims to identify

different versions of a specific musical composition within

a large database, remains a complex and computationally

challenging task [1, 2]. This problem has received consid-
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erable interest for its wide-ranging applications such as in-

tellectual property management and enhancing music rec-

ommendation systems [3, 4].

With the advancements in deep learning, CSI systems

based on neural networks gradually replace traditional

models based on handcrafted features [5, 6] and become a

new paradigm for real-world deployment. Existing meth-

ods typically frame CSI as either a classification prob-

lem [7–9], a metric learning problem [10], or a combina-

tion of both [11,12]. On the other hand, the proliferation of

social video platforms like TikTok has also led to a surge

in short-form videos, which often contain remixed or cov-

ered segments of original compositions and hence involve

copyright infringement issues. Unfortunately, as most of

the existing works above contain a global pooling layer to

directly aggregate the information from all time sections,

they are found to suffer from identifying these seconds-

long short segments.

To address this problem, the latest ByteCover3 sys-

tem [13] first splits each full audio track into a set of short

spectrogram chunks and then uses a neural-network-based

extractor (i.e. the ResNet-IBN module introduced in the

first ByteCover generation [11]) to encode them into latent

embeddings. These low-dimensional embeddings are later

sent to calculate a Local Alignment Loss (LAL) that uses

the matching of local embeddings to identify short queries

against full songs.

Despite the progress in detecting short cover songs, the

ByteCover3 system is still found to be vulnerable to non-

musical information in real-world scenarios. For instance,

musical segments in short videos are frequently overlaid

with ambient noise, speech, or poorly composed user-

generated melodies. The presence of these non-musical

elements that mask or distort the musical elements can mis-

lead the feature extraction phase of ByteCover3, leading to

inaccurate or ambiguous representations of the audio con-

tent. This misrepresentation can degrade the system’s abil-

ity to correctly match the audio sample against its database

of known songs, reducing both the accuracy and reliability

of the system in operational settings.

To enhance the robustness of existing CSI systems, an

intuitive approach is to incorporate more discriminative in-

formation into model training. Recent research [14,15] has

demonstrated that lyric-related features are less susceptible

to being masked by unrelated noise sources and can serve
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as auxiliary inputs to bolster CSI systems. For example,

one recent work [14] utilizes latent embeddings from an

automatic lyrics recognition model (ALR) as lyric-related

features for CSI. However, this approach requires train-

ing an extra ALR module from the beginning and employs

Dali [16] as its training dataset, which implies that it only

supports the recognition of English lyrics.

In this paper, we extend the current ByteCover3 system

by leveraging a pre-trained Automatic Speech Recognition

(ASR) model to jointly model both lyric and musical fea-

tures for short-query identification, which eliminates the

need for training an additional ALR model from scratch.

Specifically, we use Whisper [17] as the pre-trained ASR

module for its inherent scalability and robust recognition

capabilities across multiple languages. However, the train-

ing is still quite challenging in terms of GPU memory con-

sumption and inference time given the large parameter size

of Whisper and its autoregressive nature at the text decod-

ing stage. To counter these issues, we employ a prefix-

tuning fashion that adapts the output of Whisper to CSI

training. A trainable prefix latent is added before each text

decoder block in Whisper to reprogram the model to ex-

tract features specific to CSI task without extensive retrain-

ing of the entire model. Finally, the fusion model is trained

using the local alignment loss (LAL) scheme introduced in

ByteCover3, and together with a bag of new techniques,

we further improve the current ByteCover system to be

more efficient and accurate in CSI tasks with controllable

training GPU memory and reasonable inference time.

2. PRELIMINARIES

This paper builds on ByteCover series [11–13] training

framework and model structure. The primary motivation

of ByteCover series is to develop a highly accurate, robust

and efficient cover song detection system for real-world

industrial-level tasks with various query types and large

music corpora, beyond typical laboratory settings.

ByteCover1 [11] introduced a streamlined framework

designed to train a neural network that extracts version-

related embeddings from the CQT spectrogram of input

audio recordings. This model utilized Instance Batch Nor-

malization (IBN) layer [18] within its ResNet architecture,

which enhances the model’s capability to learn invariant

features while preserving discrimination and is critical for

handling diverse musical styles. Additionally, a General-

ized Mean (GeM) pooling layer was employed to compress

local features into a global feature, optimizing the model’s

training objectives. Furthermore, ByteCover1 adopted a

multi-loss training paradigm that combined classification

loss and triplet loss, fostering a more robust representation

and improved accuracy.

For improved throughput, the authors of Byte-

Cover2 [12] identified an anisotropy in the embedding dis-

tribution of ByteCover1, which led to inefficient utiliza-

tion of the embedding dimension size. To address this is-

sue, ByteCover2 introduced a Principal Component Anal-

ysis - Fully Connected (PCA-FC) layer. The weights of

this layer are informed by the transformation matrix de-

rived from a PCA analysis of the original ByteCover1 em-

beddings. This strategic adjustment effectively alleviated

the anisotropy problem, enabling ByteCover2 to match

the performance of ByteCover1 while only requiring one-

eighth of the dimension size. Consequently, this reduction

drastically accelerated the retrieval of query embeddings

and linearly decreased the storage costs of the embedding

database relative to the magnitude of the dimension size

reduction.

With the emergence of short video content, more

queries in CSI systems appear to be short audio clips.

However, the authors of ByteCover3 [13] observed that

state-of-the-art CSI methods performed suboptimally on

these short queries, where the accuracy of previous deep

learning CSI models [10–12, 19] degraded significantly as

the duration of query audio decreased. This issue was

linked to the global pooling modules employed in previous

works that often neglected local features, which compli-

cates the task of matching segments of songs to complete

tracks. Traditional audio matching algorithms, such as the

"shingling" method referenced in [20], slice inputs into

segments and extract features separately to preserve local

details. Unfortunately, this straightforward strategy strug-

gled when applied to deep learning-based CSI methods,

which are inherently data-driven rather than handcrafted.

Consequently, there is a misalignment between training

and inference objectives: while softmax and triplet losses

focus on matching pairs of embedding vectors, the model

deals with sequences of local embeddings at the inference

phase.

To bridge this gap, ByteCover3 introduced a novel

training paradigm known as Local-Aware Losses (LAL)

for metric learning on sequence data. This approach ex-

tends softmax and triplet losses into a more general form

that directly optimizes the metrics between two sequences

of embeddings. Specifically, ByteCover3 employs the

MaxMean Measure to assess the similarity between two

sequences of vectors, consequently ensuring better align-

ment of the training and inference targets and enhancing

performance. This measure calculates the similarity be-

tween each segment in the query audio and the most sim-

ilar segment in the candidate song, averaging these simi-

larities to produce a final similarity score. This method is

computationally efficient and differentiable. With the use

of LAL and the MaxMean measure, ByteCover3 demon-

strated significant improvements in retrieval capabilities

with 30-second queries.

The subsequent method section, Section 3, describes the

details of X-Cover and is organized as follows:

• Subsection 3.1 introduces the overall framework of

X-Cover, which retains a high-level similarity to

ByteCover3.

• Subsection 3.2 discusses the incorporation of the

pretrained ASR model, Whisper [17], to enhance

the robustness of the CSI system. It also describes

a non-autoregressive decoding method designed to

accelerate Whisper’s decoding. Compared to previ-

ous methods that relied solely on cover song data,
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Figure 1. The input CQT spectrogram and Mel spectrogram are split into n equal-sized chunks with overlap in temporal

dimension. Subsequently, the ResNet-IBN extractor derived from [13] generates an embedding Xm that contains N

local features corresponding to N input chunks with the CQT spectrogram. The optimized Whisper variant generates an

embedding Xl that contains N local features corresponding to N input chunks with the log Mel spectrogram. Then, we

optimize the model with a multi-loss objective that consists of a classification loss Llac and a triplet loss Llat using the

MaxMean measure, where Xp and Xn represent the positive sample and negative sample in triplet loss.

X-Cover achieved superior performance without the

necessity of pretraining on additional lyric data.

This simplification and streamlining of the training

process significantly enhance the efficiency of model

preparation.

• Subsection 3.3 introduces a bag of tricks to improve

the performance of the CSI model, covering aspects

such as data augmentation, model architecture, and

loss function design details.

3. X-Cover

In this section, we delineate the architecture and training

paradigms of X-Cover, emphasizing its novelties: efficient

adaption of Whisper and a bag of tricks for improving

ByteCover3 in Cover Song Identification (CSI) tasks. The

overall architecture is depicted in Fig. 1.

3.1 Overall Framework of X-Cover

The architecture of X-Cover is an evolutionary extension

of ByteCover3, delineated in Section 3. X-Cover retains

the multi-objective learning paradigm and the ResNet-

Based Feature Extractor from ByteCover3. To incorpo-

rate lyric-related features, X-Cover introduces a pretrained

ASR model, Whisper, alongside the existing ResNet-IBN

architecture [11].

In ByteCover3, local features are extracted by initially

resampling the audio to 22, 050 Hz and partitioning it into

N overlapping segments of 20 seconds each, with a 10-

second hop. These segments are subsequently transformed

into CQT spectrograms, serving as the input to the ResNet-

IBN model. The model outputs a 4-D embedding, which

undergoes GeM pooling to yield a compact final local em-

bedding Xm ∈ R
N×Cm , comprising N local features.

To facilitate the integration of Whisper as an additional

feature extractor, mel spectrograms are extracted from the

input audio. To temporally align the features from both

branches, the same chunking strategy as in ByteCover3 is

employed. Post chunking, the specialized Whisper model

for CSI utilizes these mel spectrograms to extract lyric-

related embeddings Xl ∈ R
N×Cl . Upon obtaining the

two sets of latent embeddings, Xm and Xl, a straight-

forward feature-dimensional concatenation is performed

to generate the fused embedding Xf ∈ R
N×(Cm+Cl),

for the simplicity, we redefine it as X ∈ R
N×C where

C = Cf = Cm + Cl. This is feasible due to the temporal

alignment and identical lengths of Xm and Xl. X-Cover

leverages the Local Alignment Loss (LAL) methodology,

originally proposed in ByteCover3, to enhance local seg-

ments matching capabilities. The LAL comprises a classi-

fication loss Llac and a triplet loss Llat, defined as follows:

logitk = MaxMean(X,Wk), (1)

Llac = CE(σ({logitk}
K
k=1), y), (2)

Llat = [MaxMean(Xn,X)−MaxMean(Xp,X)]+,
(3)

where CE(·, ·) is the cross entropy, σ(·) is the softmax

function, Xn,Xp ∈ R
N×C is the fused embedding of

the negative sample and postive sample while calculating

triplet loss. W ∈ R
K×L×C is a trainable weight matrix in

the linear layer before softmax, and Wk ∈ R
L×C denotes

the proxy representation for class k. L is a hyperparameter

which is set to 9 in ByteCover3 and X-Cover. These loss

functions serve as a robust optimization objective, fortify-
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ing the model’s performance and adaptability for emerg-

ing challenges in music information retrieval. The subse-

quent subsections will expound upon these enhancements

and their contributions to the overarching efficacy of X-

Cover.

3.2 Efficient Adaption of Whisper for CSI

Whisper [17] serves as a state-of-the-art ASR framework,

exhibiting robust scalability through its Transformer-based

encoder-decoder architecture. Its efficacy in ASR tasks

has been corroborated by numerous studies [21, 22]. The

encoder processes normalized spectrograms via an initial

stem, consisting of two convolutional layers, before rout-

ing the output through multiple Transformer blocks em-

ploying pre-activation residual connections.

On the decoder end, learned positional embeddings are

integrated with tied input-output token representations to

generate the final transcript. To maintain architectural co-

herence, the encoder and decoder are structured to have

an identical number of Transformer blocks and the same

width.

In the Whisper decoder, an autoregressive approach is

adopted, similar to the GPT series of language models. The

probability each token is sequentially determined based

on the preceding context. Nonetheless, extensive param-

eter count of Whisper renders it challenging for down-

stream applications. Conventional fine-tuning strategies

are computationally expensive, leading us to adopt prefix-

tuning [23], a more efficient alternative that utilizes a

smaller set of trainable parameters.

Motivated by these advances, we introduce an opti-

mized Whisper variant for lyric-based feature extraction

from audio recordings. The detailed structure of it is shown

in Figure 2. The audio encoder ingests chunked log mel

spectrograms Smel ∈ R
N×F×T and comprises blocks with

self-attention and MLP layers. Residual connections are

employed in both layers, culminating in audio features

Xae ∈ R
N×Cae .

For every segment, the text decoder process the corre-

sponding audio feature Xae(i) ∈ R
Cae independently for

transcribing. The text decoder starts with four initial to-

kens tinit ∈ R
4, which serve specific purposes such as

indicating the start of prediction, speech presence, task

specification, and timestamp prediction. These tokens

pass through an embedding layer to yield embedded to-

kens Einit ∈ R
4×Cl , defined during the pretrain phase.

A trainable suffix latent Ee ∈ R
Le×Cl is appended to

these initial tokens. Additionally, before each text de-

coder block, a trainable prefix latent Epj
∈ R

Lp×Cl is

added, forming the input for the first text decoder block

as Ein1 = [Ep1
;Einit;Ee] ∈ R

(Lp+4+Le)×Cl . The prefix

embeddings are learned to overwrite the instruction car-

ried by init tokens, to reprogram Whisper to extract fea-

tures that assit in the CSI task. Compared with the audio

encoder block, the text decoder block incorporates an ad-

ditional cross-attention layer. The decoder block consists

of self-attention, cross-attention, and MLP layers, sequen-

tially connected. The self-attention layer accepts the out-
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Figure 2. The detailed structure of modified Whisper

Model.

put of the preceding text decoder block, while the cross-

attention layer uses both the audio encoder output Xae(i)
as its key and value and the output of self-attention layer

as its query. The MLP layer subsequently processes the

cross-attention output. After processing through the first

text decoder block and subsequent truncation, we obtain

Eout1 ∈ R
(4+Le)×Cl . The same process is repeated for

subsequent text decoder blocks, each time adding a new set

of trainable prefix latents. Since the first Lp output embed-

dings of each text decoder block are truncated, the input

dimensions of each decoder block remain consistent even

after adding a new set of prefix latents. The outputs of each

text decoder block are stored to form an lyric-based feature

group G = [Eout1 ,Eout2 , ...,EoutB ] ∈ R
((4+Le)×B)×Cl .

Finally, We select the last 70% to 80% of the audio-lyric

feature group and the mean across the second dimension

is taken to get the audio-lyric feature Xl(i) ∈ R
Cl . The

medium version of the whisper we adopted contains 24 text

decoder blocks, and the hidden size is 1024.

In terms of computational efficiency, the introduction of

prefix latents enables the Whisper model to generate multi-

ple embeddings in a single forward pass, thereby obviating

the need for autoregressive operations during the decod-

ing phase. This can be regarded as a Non-Autoregressive

(NAR) method for efficient inference [24]. Despite this,

certain studies [24] indicate that NAR performance is gen-

erally inferior to that of Autoregressive (AR) methods.

To explore the performance upper bound of Whisper in

CSI tasks, we also propose an AR-based feature extrac-

tion method. Importantly, in this AR approach, there are

no modifications required to the Whisper model, and its
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parameters are kept frozen throughout the process. The

Whisper model transcribes each audio segment and col-

lects the final hidden states from each inference pass.

These states are then aggregated using a mean operation

to form the lyric-based feature Xl(i). Since the shape of

the embeddings outputted by both NAR and AR methods is

consistent, they can be used interchangeably. In section 4 ,

we refer to the strategy using efficient Whisper adaptation

as "E" and the original Whisper-based strategy as "AR".

Lastly, we introduce a trainable linear projection layer sub-

sequent to the Whisper output to map the embedding di-

mensions Cl to 512. For clarity, the symbol Cl continues

to denote the dimensions of these projected embeddings.

3.3 A Bag of Tricks for Improving ByteCover3

We enhance our model’s performance by incorporating

three techniques: Sparse Softmax, Non-local Operations,

and Grid Distortion. Due to the crowdsourced nature of

the labels in the SHS100k dataset [9], mislabeling of ver-

sion categories is inevitable. Additionally, the SHS100k

dataset contains 8,858 cliques of music, indicating a high

number of classes to distinguish when training models us-

ing softmax loss. Sun et al. [25] demonstrated that an in-

crease in the number of classes raises the risk of overfitting

with softmax loss, particularly when incorrect labels are

present, as it may further degrade model performance by

fitting these erroneous labels. Therefore, in X-Cover, we

have opted to use Sparse Softmax [25] loss instead of the

original softmax loss. Sparse Softmax loss retains only the

top-K logits and the logits for the ground truth class during

probability computation, effectively reducing the number

of classes to distinguish to K + 1. However, a smaller

K value during the initial phase of training might impair

the model’s ability to fit. Through tuning, we found that

fine-tuning with K = 1024 after training with the original

softmax loss achieves optimal results.

As demonstrated in [26], capturing global spectrogram

information is crucial for understanding the complex com-

positions in music, characterized by varied spectral char-

acteristics over time. However, the limited receptive field

size of conventional CNNs restricts their ability to capture

long-range dependencies across different parts of the spec-

trogram effectively. To address this limitation, we integrate

Non-Local modules [27] into the ResNet-IBN architecture.

These modules utilize the strength of Non-Local opera-

tions to compute interactions directly between any two po-

sitions in the input data, irrespective of their physical dis-

tance. This feature is particularly advantageous for ana-

lyzing music tracks, where distant sections may share the-

matic but transformed material, a characteristic common in

cover songs.

Finally, Grid Distortion is borrowed from computer vi-

sion field, involves random scaling transformations in both

the frequency and time dimensions of the spectrogram to

simulate time-stretching and pitch shift.

4. EXPERIMENTS

We evaluated X-Cover using two publicly available

datasets: SHS100K, which consists of 8,858 cover groups

and 108,523 individual recordings [9], and Covers80, fea-

turing 160 recordings that include two covers of each

of the 80 songs [5]. The training and test division of

SHS100K adheres to previous work [8,11–13], while Cov-

ers80 serves exclusively for testing. We convert all audio to

CQT and Mel spectrograms before training. For CQT, we

set the bins per octave to 12 and use a Hann window during

extraction with a hop size of 512. All audio is resampled

to 22,050 Hz before CQT conversion. We then downsam-

ple the CQT temporally by averaging over 100 adjacent

frames to enhance computational efficiency and reduce la-

tency. For Mel spectrograms, we follow the configuration

in Whisper [17], resampling audio to 16,000 Hz and com-

puting an 80-channel log-magnitude Mel spectrogram with

25-millisecond windows and a 10-millisecond stride. X-

Cover’s training phase uses weights from ByteCover3 for

initialization. For the Whisper branch, we adopt configura-

tions from the Whisper-Medium setup [17], and its initial

weights are also sourced from pre-trained models.

Model #Dims. ↓ mAP ↑ MR1 ↓

Covers80

Me+Ha+Ly [14] 1536 0.993 1.02

ByteCover3 [13] 512 0.927 3.32

X-Cover-E 2560 0.992 1.04

X-Cover-AR 2560 1.000 1.00

SHS100K-TEST

MOVE [10] 512 0.519 154.5

Me+Ha+Ly [14] 1536 0.794 39.3

ByteCover3 [13] 512 0.824 37.0

Whisper-E 512 0.437 150

Whisper-AR 512 0.708 145.4

ByteCover3.5 2048 0.857 22.7

X-Cover-E 2560 0.889 14.9

X-Cover-AR + PCA-FC [12] 512 0.924 14.7

X-Cover-AR 2560 0.924 14.9

Table 1. Performance on different datasets.

4.1 Comparison on Performance and Efficiency

As shown in Table 1, we benchmark the performance of

various models, including our X-Cover, on two datasets:

Covers80 and SHS100K-TEST. Metrics reported include

the number of dimensions (Dims.), mean Average Pre-

cision (mAP), and Mean Rank 1 (MR1). For compara-

tive analysis, we include MOVE [10], Me+Ha+Ly [14],

and ByteCover3 [13]. Our X-Cover incorporate Whisper

models trained with LAL loss, with and without efficient

adaptation. By integrating these Whisper-based models

with ByteCover3.5, we produce two hybrid solutions: X-

Cover-E and X-Cover-AR. Notably ByteCover3.5 is an im-

proved version over ByteCover3 which incorporates a se-

ries of enhancements described in Section 3.3. Addition-
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ByteCover3.5 Whisper-E Whisper-AR X-Cover-E X-Cover-AR

Feature Extraction(ms) 21 402 10467 452 10522

Table 2. The average inference time per audio

ally, the Me+Ha+Ly model [14] included in the compar-

ison is not a strict replication of the original work which

is a composite system comprised with a melody extrac-

tion model, the ALR model, and the MOVE [10]. Due to

limited information in the original paper and the smaller

size of ALR model compared to Whisper, our version of

Me+Ha+Ly uses Basic-Pitch [28] and our Whisper-AR,

ensuring a more equitable comparison. We will release

the implementation publicly. All models are trained with

the Adam Optimizer and a batch size of 128. Table 2

presents the average inference time for X-Cover variants

on SHS100K-TEST using an NVIDIA A100 GPU.
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Figure 3. Length of Queries vs. Performance.

Figure 3 displays the mAP results of X-Cover-E for dif-

ferent query lengths on SHS100K-TEST, using Re-MOVE

[19], ByteCover2 [12] and ByteCover3 [13] as compared

methods. As illustrated in the figure, our X-Cover-E model

achieves the best mAPs for all query lengths except for the

6-second length. This clearly indicates the effectiveness of

X-Cover-E. The poorer performance at the 6-second sce-

nario is likely due to the shortness of the queries, which

may not contain enough meaningful lyric information, thus

not highlighting the strengths of X-Cover-E.

Overall, X-Cover-AR consistently outperforms other

models on both datasets. Remarkably, X-Cover-AR, X-

Cover-E and Me+Ha+Ly achieve nearly 100% accuracy

on Covers80. Both methods employ Whisper-AR, mak-

ing this high accuracy expected given Covers80 which is

dataset with a limited size and predominantly consisting

of recordings with vocal components. Therefore, we be-

lieve SHS100K-TEST is a more robust test of model per-

formance. On this dataset, both X-Cover-AR and X-Cover-

E achieve state-of-the-art performance. The performance

gap between X-Cover-E and X-Cover-AR can be attributed

to the differences in Whisper-AR and Whisper-E. The com-

parable performance and significantly faster speed of X-

Cover-E validate our efficient adaptation. Surprisingly,

Whisper-AR, cloned from an ASR model except for the

final linear layer, shows comparable performance to other

SoTA methods on SHS100K, highlighting the potential of

large-scale pretrained ASR models in CSI tasks. However,

the second-level inference time for individual samples in

X-Cover-AR poses a challenge for its practical deployment

in real-life scenarios. Finally, we employ the PCA-FC di-

mensionality reduction module from ByteCover2 to com-

press X-Cover-AR features from 2560 to 512 dimensions,

finding negligible performance loss. This suggests that the

performance gains in X-Cover variants are not due to in-

creased feature size.

5. CONCLUSION

This paper has enhanced the robustness and efficiency of

the ByteCover3 system in CSI by integrating lyric-related

features using a pre-trained Automatic Speech Recognition

model, Whisper. This integration addresses the issue of

non-musical elements that distort musical characteristics

essential for accurate CSI, without the need for training an

additional lyrics recognition module from scratch.

The use of Whisper, adapted via prefix-tuning, signif-

icantly reduces the computational demands typically as-

sociated with large-scale ASR systems, thereby improving

efficiency in both training and inference stages. Our results

demonstrate improved accuracy and reliability of CSI, par-

ticularly in handling short queries against full songs.

In conclusion, our approach contributes to the devel-

opment of more robust, efficient, and scalable CSI sys-

tems, enhancing both intellectual property management

and music recommendation systems, especially in social

video platforms. Future work will aim to further optimize

these methods and explore additional features to increase

resilience against noise in practical applications.
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