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Ondřej Cífka
Alice Cohen-Hadria
Graham K. Coleman
Nathaniel Condit-Schultz

Guillem Cortès
Louis Couturier
Laura Cros Vila
Frank Cwitkowitz
Alexandre D’Hooge
Shuqi Dai
Roger B. Dannenberg
Reinier de Valk
Alessio Degani
Andrew M. Demetriou
Ninon Devis
Bruno Di Giorgi
Sivan Ding
Christian Dittmar
Seungheon Doh
Guillaume Doras
Jonathan Driedger
Xingjian Du
Simon Durand
Morwaread Farbood
Andres Ferraro
Flavio Figueiredo
Hugo Flores García
Frederic Font
Francesco Foscarin
Dominique Fourer
Klaus Frieler
Satoru Fukayama
Diego Furtado Silva
Giovanni Gabbolini
Nick Gang
Kaustuv Kanti Ganguli
Chenyu Gao
Joshua Gardner
Roman B. Gebhardt

Elena Georgieva
Riccardo Giampiccolo
Jon Gillick
Matan Gover
Niccolo Granieri
Carlos Guedes
Siddharth Gururani
Ranjani H G
Gaëtan Hadjeres
Jan Hajič, jr.
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Preface

Message from the General Chairs

We are delighted to present the proceedings of the 25th International Society for Music Information Retrieval Conference,
which took place in hybrid format in the vibrant city of San Francisco and online from November 10–14, 2024. This event
marked a significant culmination of the efforts of the organizing team, transforming our ambitious vision into a memorable
reality. The conference brought together a diverse and dynamic group of researchers, practitioners, and enthusiasts from
around the globe, all united by a passion for music information research.

The planning for ISMIR 2024 began with a conviction that the San Francisco Bay Area, with its rich legacy in both AI
and music, would provide an ideal background for the conference. Our team of organizers worked to ensure that every
detail was meticulously planned, from selecting ideal venues (including a legendary music hall for the jam!) to managing
logistics and securing sponsorships. Despite the high costs associated with the location, our commitment to inclusivity
and accessibility allowed us to welcome a broad spectrum of attendees at the conference venue and online.

The 25th ISMIR conference introduced several exciting new elements. We embraced a Special Theme, "Bridging Tech-
nology and Musical Creativity", which was reflected in Creative Practice sessions designed to connect creative and
research communities. We also implemented a form of Open Review, making several reviews and meta-reviews publicly
available alongside accepted papers. We proudly presented the first-ever Test of Time Award and included presentations
of recent Transactions of the International Society for Music Information Retrieval (TISMIR) publications in the
scientific program. Finally, we appointed an Accessibility Chair who made significant cross-functional contributions in
areas that are often overlooked.

The success of ISMIR 2024 is a testament to the collaborative spirit and innovative thinking that define the MIR commu-
nity. We are proud to share the insights, research, and discussions that emerged from this conference, and we look forward
to the continued growth and evolution of the field. Thank you to everyone who contributed to this year’s ISMIR. We had
a wonderful time organizing this busy yet epic event, and we sincerely hope that attendees enjoyed it as much as we did.

Blair Kaneshiro, Gautham Mysore, and Oriol Nieto
Anchorage, AK and San Francisco, CA
December 2024

Hybrid Conference

Recent virtual and hybrid ISMIR conferences have shown that remote participation options make the conference accessi-
ble to a broader range of participants. Accordingly, this year’s conference was organized in a hybrid format, with goals of
enabling all attendees—whether attending in person or online—to engage with the conference program, share their work,
and interact with other attendees.

The hybrid format of ISMIR 2024 included the following:

• The organizing team included a dedicated Virtual Chair and Virtual Logistics Chairs.

• Remote presentation was freely offered—that is, without needing to request special permission—for ISMIR paper,
TISMIR, and LBD submissions. Presenting authors were assigned to poster sessions according to their preferred
availability. Tutorial presenters could also participate remotely, as long as at least one presenter for each Tutorial
was onsite.

• The virtual conference ran on a 24-hour schedule so that each participant could attend from their preferred time
zone. The program was designed around a primarily synchronous online experience to foster community and en-
gagement amongst attendees. Both the original and replay sessions included a live Slack backchannel for Oral
sessions (see “Diversity and Inclusion” section, below) as well as live online sessions. The virtual conference of-
fered asynchronous options as well, including session recordings shared amongst attendees; the ability for attendees
to access all papers and LBD materials via MiniConf; and dedicated Slack channels for each presentation so that
attendees could interact with authors and keynotes.

xiii
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• For the first time, the ISMIR conference included a Virtual Pre-Conference. This two-day event included keynotes
and other sessions across global time zones.

• The organizers aimed to support each attendee’s preferred mode of presentation as much as possible, maximizing
financial support to those wishing to attend in person and offering lower registration fees (and additional need-based
discounts) for virtual attendees.

• Virtual platforms of the conference were streamlined to Slack, Zoom, and the online MiniConf program hosted on
the conference website.

• Finally, onsite attendees were granted full virtual access to the conference, enabling them to attend original and
replay sessions online, interact via Slack, and access session recordings.

Scientific Program

The ISMIR 2024 scientific program comprised 123 papers. A total of 346 submissions (up from 229 in 2023) were
reviewed out of 410 abstracts that were registered on the submission system (up from 272 in 2023). In keeping with the
practices of the previous years, a two-tier double-blind review process was conducted involving a total of 256 reviewers
and 70 meta-reviewers. Each paper was assigned to a single meta-reviewer and at least three reviewers, and replacement
reviewers were found when the originally assigned reviewer was unable to complete their review. Meta-reviewers were
also instructed to complete a full review of each of their assigned papers, in addition to the final meta-review summarizing
the individual reviews. Each meta-reviewer and reviewer was responsible for no more than 5 papers, in order that the
reviewing load would be manageable, thus promoting careful and thorough reviews. The initial reviewing phase was
followed by a discussion period, in which reviewers and meta-reviewers could discuss and revise their assessments of each
paper. Meta-reviewers were then instructed to summarize the discussion and reviews in the final report. The Scientific
Program Chairs (SPC) made the final decisions on each paper, based on the recommendations of meta-reviewers and
reviewers. 124 papers were accepted (one of which was later withdrawn by the authors), giving an acceptance rate of
35.84%. The SPC would like to express their thanks to the ISMIR community of reviewers and meta-reviewers for their
wholehearted support of this critical aspect of a successful ISMIR technical program.

Table 1 summarizes the number of reviewed and accepted papers in each subject area (as selected by authors during
the submission process) together with the corresponding proportion of papers in the program. Table 2 summarizes the
publication statistics over the 24-year history of the conference. In this table, we add the “Unique Authors” column to
illustrate how many authors appear on more than one paper (i.e., if the columns “Authors” and “Unique Authors” would
have the same number, then all authors would only appear on exactly one paper).

Table 1: Papers submitted and accepted by subject area

Subject Area Submitted Accepted Accepted %

MIR tasks 94 35 37.2%
MIR fundamentals and methodology 38 13 34.2%
Musical features and properties 36 12 33.3%
Evaluation, datasets, reproducibility 34 13 38.2%
Generative Tasks 32 15 46.9%
Knowledge-driven approaches to MIR 30 9 30.0%
Applications 28 8 28.6%
Computational musicology 16 7 43.8%
Human-centered MIR 16 2 12.5%
Creativity 12 6 50.0%
Philosophical and ethical discussions 6 3 50.0%
MIR and machine learning for musical acoustics 4 0 0.0%

Total 346 123 35.5%
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Table 2: Summary of publication statistics over the 25-year-history of the ISMIR conference

Year Location Oral Poster Total Authors Unique Authors Authors
Paper

Unique Authors
Paper

2000 Plymouth 19 16 35 68 63 1.9 1.8
2001 Indiana 25 16 41 100 86 2.4 2.1
2002 Paris 35 22 57 129 117 2.3 2.1
2003 Baltimore 26 24 50 132 111 2.6 2.2
2004 Barcelona 61 44 105 252 214 2.4 2.0
2005 London 57 57 114 316 233 2.8 2.0
2006 Victoria 59 36 95 246 198 2.6 2.1
2007 Vienna 62 65 127 361 267 2.8 2.1
2008 Philadelphia 24 105 105 296 253 2.8 2.4
2009 Kobe 38 85 123 375 292 3.0 2.4
2010 Utrecht 24 86 110 314 263 2.0 2.4
2011 Miami 36 97 133 395 322 3.0 2.4
2012 Porto 36 65 101 324 264 3.2 2.6
2013 Curitiba 31 67 98 395 236 3.0 2.4
2014 Taipei 33 73 106 343 271 3.2 2.6
2015 Málaga 24 90 114 370 296 3.2 2.6
2016 New York 25 88 113 341 270 3.0 2.4
2017 Suzhou 24 73 97 324 248 3.3 2.6
2018 Paris 104 337 265 3.2 2.5
2019 Delft 114 390 315 3.4 2.8
2020 Virtual 115 426 343 3.7 3.0
2021 Virtual 104 334 269 3.2 2.6
2022 Bengaluru 113 423 355 3.8 3.0
2023 Milan 103 374 311 3.6 3.0
2024 San Francisco 123 497 433 4.0 3.5

Open Review

In recent years, the ISMIR community has discussed whether implementing an Open Review process would be of benefit.
This year, the ISMIR 2024 General Chairs and Scientific Program Chairs, in consultation with the ISMIR Board, launched
a pilot of Open Review, in which reviews of accepted papers were published when all authors, reviewers, and meta-
reviewers of a given paper opted in. To do so, we discussed a potential Open Review framework, described as follows:

• Consent for Publication: We sought consent from all reviewers, meta-reviewers, and authors to publish their
reviews and meta-reviews during the peer review process.

• Anonymity: All content was published anonymously to protect the identities of the reviewers and meta-reviewers.

• Soft Release: We conducted a soft release of the reviews to gauge the community’s reception.

• Positive Reception: The response was overwhelmingly positive. A total of 32 papers had all authors, reviewers,
and meta-reviewers consenting to share their reviews and meta-reviews. These are now published and available in
the official program.

• Historical Milestone: This marks the first time ISMIR has published some of its reviews, setting a precedent for
future transparency in the review process.
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Best Paper Awards

The selection process for Best Paper Awards varies from year to year, depending on the organizers of the conference.
One goal of the ISMIR 2024 selection process was to come up with a model that can be applied more consistently in
the future. Given the growth in the number of papers, we wanted to give awards to a more reasonable number of papers
to acknowledge people’s contributions. We recommend aiming to award Best Paper Awards to the top 3% of accepted
papers and Honorable Mentions to the remaining papers in the top 10%. Unlike some past ISMIR conferences, we do not
distinguish between Best Paper and Best Student Paper.

This year, the SPC selected 33 candidate papers (approximately 10% of all submissions) based on reviewers’ and meta-
reviewers’ nominations as well as the paper review scores and comments. This year, given 123 accepted papers, we aimed
for 3–4 Best Papers and 7–8 honorable mentions. We awarded 3 papers for Best Paper Award and 4 papers for Honorable
Mention. The final selections were made by the SPCs, all of whom were MIR researchers who had no conflict of interest
with any of the award candidates.

The following papers received the Best Paper Awards:

• Six Dragons Fly Again: Reviving 15th-Century Korean Court Music with Transformers and Novel Encoding, Dan-
binaerin Han, Mark R. H. Gotham, DongMin Kim, Hannah Park, Sihun Lee, Dasaem Jeong

• ST-ITO: Controlling Audio Effects for Style Transfer with Inference-Time Optimization, Christian J. Steinmetz,
Shubhr Singh, Marco Comunità, Ilias Ibnyahya, Shanxin Yuan, Emmanouil Benetos, Joshua D. Reiss

• MuChoMusic: Evaluating Music Understanding in Multimodal Audio-Language Models, Benno Weck, Ilaria
Manco, Emmanouil Benetos, Elio Quinton, George Fazekas, Dmitry Bogdanov

Honorable Mentions were given to the following papers:

• Cluster and Separate: A GNN Approach to Voice and Staff Prediction for Score Engraving, Francesco Foscarin,
Emmanouil Karystinaios, Eita Nakamura, Gerhard Widmer

• Green MIR? Investigating Computational Cost of Recent Music-AI Research in ISMIR, Andre Holzapfel, Anna-
Kaisa Kaila, Petra Jääskeläinen

• Formal Modeling of Structural Repetition using Tree Compression, Zeng Ren, Yannis Rammos, Martin A. Rohrmeier

• Scoring Intervals Using Non-Hierarchical Transformer for Automatic Piano Transcription, Yujia Yan and Zhiyao
Duan

Best Paper Awards or Honorable Mention awardees will be invited to submit extended versions of their ISMIR papers to
the TISMIR journal; accepted papers will be published at no cost to the authors.

Best Reviewer Awards

The Best Reviewer Awards were determined based on specific criteria to ensure fairness and recognition of excellence.
Award recipients achieved an average rating of 3/3, indicating they exceeded expectations across at least two reviews.
Alternatively, reviewers could qualify with an average rating greater than 2/3, meaning they consistently met or exceeded
expectations, over a minimum of five reviews. This dual-criteria approach ensured that both consistently high-performing
reviewers and those who excelled in fewer but impactful reviews were acknowledged.

Congratulations to this year’s Best Reviewer Awardees (listed in alphabetical order of first name):

• Akira Maezawa

• Alon Ziv

• Christian Steinmetz

• Dasaem Jeong

• Emilia Parada-Cabaleiro

• Fabian-Robert Stöter

• Jaehun Kim

• Lorenzo Porcaro

• Maximilian Schmitt

• Pablo Alonso-Jiménez

• Simon Durand

• Simon Schwär

• William Wilson
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Test of Time Award

To commemorate the 25th anniversary of ISMIR, we introduced the Test of Time Award for the first time. This award
aims to recognize research that has had a significant long-term impact on MIR.

Eligible candidates for this award included all ISMIR papers published from 2000, the year of the first ISMIR conference,
to 2004. A total of 261 papers were considered. This year’s recipient was selected by the ISMIR 2024 General Chairs.

For ISMIR 2024, the inaugural Test of Time Award was given to the paper titled "Automatic Musical Genre Classification
of Audio Signals" by George Tzanetakis, George Essl, and Perry Cook, published at ISMIR 2001. This paper has had a
profound impact on MIR and beyond, defining classic MIR tasks, remaining highly relevant to this day.

During the awards ceremony, the first author of the winning paper delivered a 10-minute presentation, highlighting the
paper’s contributions and its enduring influence on the field.

Accessibility

One goal of ISMIR 2024 was to make accessibility an intentional facet of the conference planning: We wanted to ensure
that all attendees experienced a sense of inclusivity and belonging, whether attending in person or online. To this end,
ISMIR 2024 welcomed its first-ever Accessibility Chair, who worked cross-functionally to ensure a number of accessibil-
ity factors were implemented for the conference:

• Publication best practices included recommendations and instructions for alt-text, color choice, and fonts; a cap-
tioning requirement and instructions for video submissions; and captioning of any session recordings that will be
posted online.

• Various onsite accessibility features were confirmed with the conference venue including wheelchair accessibil-
ity, assistive listening devices available upon request, service animal accommodation, food labels, gender-neutral
bathrooms, reader boards on every floor, and nearby public transportation options.

• Attendees’ name tags included pronouns and language(s) spoken in order to communicate identities and how
attendees would like to be addressed, and help attendees find others who speak their language.

• The conference supported onsite attendees who wished to take safety measures with regard to COVID-19 by pro-
viding written guidelines for all attendees as well as freely available COVID-19 tests, KN95 masks, and hand
sanitizer at the conference venue.

• Finally, a virtual registration discount program was implemented separately from the Grants program in order to
make virtual attendance more accessible.

Diversity & Inclusion

The mission of Diversity, Equity, and Inclusion (DEI) work at ISMIR is to highlight the research contributions of MIR
researchers from marginalized and underrepresented intersectional identities. As part of that work, the DEI efforts at the
ISMIR conference seek to support, encourage, and advocate for researchers in MIR who occupy marginalized identities.
Initiatives include highlighting work by MIR researchers through keynotes and talks, supporting conference registrations
and accommodation grants at the conference hotel, bringing DEI experts from adjacent fields to help our community
think more expansively, and periodically re-evaluating our efforts towards creating a more inclusive and equitable ISMIR
conference and society.

This year as we thought about the 25th ISMIR, we wanted to take stock of our efforts as a conference towards inclusion
and assess if we were engaging in Equity or Equality. As a result of those conversations, we decided it was time to
“grow the I”, shifting to the acronym at the conference level from WiMIR (meaning Women in MIR) to WIMIR (meaning
Widening Inclusion in MIR), and to include many axes of diversity including geographic location and racial diversity. In
truth we had already been doing that work to some degree, but we felt it was time to be more explicit.

This year, the DEI initiatives included programming both before and during the main conference. The overarching theme
of this programming was the “Growing the I”: Kicking off the rebranding of WiMIR → WIMIR. We had a DEI Session
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in the Virtual Pre-Conference (see “Virtual Pre-Conference” section, below) and welcomed Dr. Valerie Joseph as the DEI
Keynote speaker (see “Main Conference Keynotes” section, below). We introduced the new Slack Backchannel initiative
to engage with our virtual attendees in a new way. We continued providing financial support through accommodation and
registration grants, welcoming new attendees through Newcomer Initiatives, and mentoring prospective new authors in
the New-to-ISMIR Paper Mentoring Program.

Slack Backchannel

New to ISMIR this year was the Slack Backchannel. For each of the 7 paper sessions, plus the replays, there was a host
who offered running commentary on each session over Slack in real time. Paper authors were asked to submit interesting
behind-the-scenes factoids about their papers, fun facts about themselves, and/or relevant background information about
their work to help those new to the field contextualize their work. While not identical to a “hallway” track at the in-
person conference, these hosts helped virtual attendees learn more about the presenters themselves as well as connect
with in-person participants. There were numerous fun conversations had on the backchannel. We thank our backchannel
hosts:

• Amélie Anglade

• Stefan Balke

• Dan Ellis

• Arthur Flexer

• Youngmoo Kim

• Katherine M. Kinnaird

• Alia Morsi

• Lalit Mohan

• Zafar Rafii

• Doug Turnbull

• Christof Weiß

Grants

As part of ISMIR’s continued commitment to supporting new and diverse voices in the community, ISMIR 2024 offered
the opportunity for presenters and attendees to apply for registration, accommodation, and childcare grants. Though
anyone could apply, grants were awarded based on financial need, student and Diversity & Inclusion eligibility, and
availability of funds. For registration waiver grants, the following funding categories were prioritized:

• Student: Applicants enrolled in a degree-granting academic program in the 2023-2024 and/or 2024-2025 academic
year(s)

• Minorities in MIR: Applicants identifying as Black, African, African-American, or an ethnic/racial minority (of the
applicant’s region)

• Applicant’s professional affiliation is in a low- or middle-income country

• Queer in MIR: Applicants identifying as LGBTQIA+

• Unaffiliated researcher: Applicants who currently have no professional affiliation that will cover the conference
registration fee

• Women in MIR: Applicants identifying as a woman or other gender minority

• Caregiver: Applicants seek financial support to cover childcare costs so that they may attend the conference

This year, 91 people applied for financial support from the conference, for a total nearly double that of available funds. For
ISMIR 2024, we were able to support 10 virtual registrations, 30 in-person registrations, and 12 accommodation grants.

Newcomer Initiatives

Multiple Newcomer Initiatives were carried out during ISMIR 2024, with the goal of helping less-experienced attendees
get the most out of the conference and gain a foothold in the MIR community.

The first of these initiatives was a “Navigating the Conference” session that took place during the virtual pre-conference
program. This session, led by the Newcomer Initiatives Chair, contained information about the ISMIR Society, the field
of MIR, ISMIR 2024 online resources, as well as general advice on networking and attending an academic conference.
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The “Newcomer Squads” initiative assigned groups of new attendees to experienced community members for the duration
of the conference. The squads were connected via Slack and conducted meetups during the conference (either virtually or
in-person). The 2024 Newcomer Squads featured 8 leaders and over 75 newcomers!

Finally, the “Anonymous Question Board” initiative provided a public space for attendees to ask questions anonymously.
Question were submitted via a Google Form link, and could be viewed/answered in a Google Sheet.

We thank the following individuals (listed in alphabetical order of last name) for generously volunteering to lead New-
comer Squads at this year’s conference:

• Stefan Balke

• SeungHeon Doh

• Nick Gang

• Blair Kaneshiro

• Jin Ha Lee

• Brian McFee

• Ajay Srinivasamurthy

• Daniel Wolff

Late Breaking/Demo Session

As a forum for presenting prototype systems, initial concepts, and early research results, the Late Breaking/Demo (LBD)
session has been growing steadily. This year, we accepted a record total of 81 submissions for both in-person and virtual
presentations. We rejected 3 submissions that failed to adhere to the submission guidelines. It is worth noting that 50
submissions were self-identified as first-time attendees to ISMIR, showcasing the importance of LBD as the entry point
for newcomers to engage with the ISMIR community. Based on the feedback from last year’s LBD chairs, we explicitly
instructed the in-person presenters to interact with virtual attendees towards the end of the allocated presentation time.
This change aimed to make LBD a more inclusive space for both in-person and virtual attendees. Despite not being part
of the official proceedings, LBD offers a unique opportunity for both senior and junior members of the ISMIR community
to socialize over exciting and interesting demos.

MIREX

The Music Information Retrieval Evaluation eXchange (MIREX) was established in 2005 to provide a platform for MIR
researchers to compare and discuss their results. MIREX became an annual event at the ISMIR conference but paused
after 2021 due to hosting challenges. Given its significance and community interest, MIREX is being revived in 2024
with plans to modernize it by introducing new platforms, tasks, and evaluation methods to keep pace with advancements
in computer music research.

In this year’s MIREX, modern MIR tasks were added to reflect new directions in the MIR community. A Call for
Challenges was also released to collect new tasks that the community was interested in. Two submissions were received
that year, and one was selected for the MIREX 2024 task list (Singing Voice Deepfake Detection).

Since MIREX 2024 ran on limited scalability, the final MIREX 2024 task list included eight tasks as shown in Table 1,
with three traditional MIR tasks and five modern MIR tasks.

Table 3: MIREX 2024 tasks. # Teams and # Subs denote the number of teams and submissions, respectively.

Tasks Submission Platform # Teams # Sub.

Traditional MIR Tasks
Audio Chord Estimation Forum 0 0

Lyrics-to-Audio Alignment Forum 1 1
Cover Song Identification Email 3 3

Modern MIR Tasks

Symbolic Music Generation Email 1 1
Music Audio Generation Email 1 1

Music Description & Captioning Codabench 4 15
Polyphonic Transcription Forum 3 3

Singing Voice Deepfake Detection Codabench 4 7

Instead of using the IMIRSEL submission system, new submission platforms were explored. A new submission forum
was built for submissions and discussions, but task captains could freely choose their preferred method of receiving
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submissions. In the end, three tasks adopted forum submission (i.e., submitting by posting on the forum), three tasks
adopted email submission to the task captain, and two tasks adopted the Codabench platform.

Codabench is an online platform to organize AI benchmarks and host custom competitions. The task captain created an
automatic evaluation system that could be used to update the leaderboard in real time. Participants did not have to upload
their models to the platform. Instead, they received a public test set from the task captain and ran model inference on their
own computational resources. The inference results were uploaded to Codabench for metric calculation and leaderboard
updates.

This new submission process had many advantages. For example, it eliminated potential issues in sharing code with the
task captain or configuring the model on the task captain’s environment. It also showed popularity in practice. The two
tasks using Codabench received 21 submissions from eight teams in total, surpassing all other submission platforms. It
should be noted that Codabench is not suitable for some tasks. The fact that the test set is shared with participants may
raise potential concerns, including difficulty in distributing proprietary test sets and test set contamination. Many tasks
may have to adopt other methods of submission.

Since generative tasks were included that year, the idea of subjective evaluation was also explored. The task captain of
symbolic music generation created a questionnaire containing samples of the submission and baselines generated under the
same conditions. Listeners were asked to score the generated pieces according to their coherency, naturalness, creativity,
and musicality in a blind listening test. Twenty-two responses were received and were used to calculate the results.

Out of eight tasks in MIREX 2024, seven tasks successfully received at least one submission. Among the tasks that
received submissions, four tasks reported significantly better performance compared to baselines:

• In cover song detection, ByteDance’s submission achieved the best performance using a ResNet architecture with
a dimensional reduction module, while other systems also achieved impressive performance, like Discog-VI from
MTG-Sony.

• In music audio generation, the team S1-CodecLM achieved better overall performance compared to baselines using
a transformer decoder structure with two-stage semantic tokenization.

• In music description and captioning, the team ee895 achieved the highest ROUGE-L score among all entries using
Llama and the Joint Music and Language Attention (JMLA) architecture. The architecture was also used in other
entries like CUHKDSP.

• In singing voice deepfake detection, the submission UNIBS1 achieved the lowest error rate on both test sets with a
ResNet model that received a log-spectrogram of the vocal sound as input. Other submissions also used WavLM,
SingGraph, or ensemble methods.

The Future of MIREX

We want to gradually recover the scalability of MIREX and make it a yearly event for the ISMIR community. More tasks
are planned for MIREX 2025 with a new call for challenge proposals. The submission platform will be more formal with
better guidance. Besides that, we also want to gradually introduce other improvements over the years.

• Open: To make the evaluation process transparent and open-sourced, and also to encourage (but not force) submis-
sions to be open-sourced.

• Interactive: To make the evaluation process more interactive, e.g., automatic evaluation for real-time leaderboards
on more tasks.

• Modernized: To host more emergent MIR tasks while refining traditional tasks, making MIREX keep pace with
the community’s rapid advancements.

Finally, the time and efforts of the ISMIR organizers, all task captains, participants, and MIREX 2024 organizers are
greatly appreciated.
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Unconference

An Unconference was held both during the pre-conference and on the last day of the conference, immediately following
the Society Meeting. Discussion topics were proposed using the Dotstorming platform, and participants voted live using
the Wooclap platform. Two rounds of discussions took place, each lasting 45 minutes. Afterward, the secretary of each
discussion group presented a summary of their group’s discussion results to all participants, including those attending via
Zoom. The following topics were discussed:

• Safety and human rights considerations for selecting ISMIR conference venues for members of the community

• What will be the next direction in Music Research?

• Change our name from Music Information Retrieval to Music Information Research?

• Moving away from Twitter (and other questionable organizations)

• GenAI Copyright/ GenAI Cultural Diversity

• Open Review

Social Program

The Social Program this year contained the following activities:

• Concert by Camilo y Los Cruzers at the Welcome Reception during the first night at ISMIR

• Concert by Wil Blades during the official ISMIR Banquet

• Jam Session during the Banquet, with over 40 sets of performers sign ups

Additionally, the Social Chairs assembled a list of restaurants/bars/music venues near the conference hotel, which was
published on the ISMIR website.

Hackathon

HAMR: Hacking Audio and Music Research was rebranded as Highlighting Audio and Music Researchathon for 2024.
HAMR took place after the conference on Saturday, November 16 in San Francisco. The event applied the hackathon
model to the development of new techniques for analyzing, processing, and synthesizing audio and music signals. This
was a free event open to researchers and hackers from any stage in their career.

The hackathon was an all-day event with around 20 participants. Individuals and teams worked on research projects, or
took time to catch up on personal work, review conference materials, and socialize and brainstorm for future projects.

The organizers thank Replicate (https://replicate.com/) for offering up their hackspace for the ISMIR 2024 Hackathon.
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Satellite Events

In addition to the main conference, ISMIR 2024 included the following satellite events hosted around the dates of the
conference:

• 3rd Workshop on NLP for Music and Audio (NLP4MusA 2024)
November 15, 2024, Oakland, CA, USA
Website: https://sites.google.com/view/nlp4musa-2024

• HAMR 2024: Music and Audio Hackathon
November 16, 2024, San Francisco, CA, USA
Website: https://partiful.com/e/pnNRBcvgLBf0Jej9QX36

• 6th International Workshop on Reading Music Systems (WoRMS 2024)
November 22, 2024, Online
Website: https://sites.google.com/view/worms2024

• 1st Latin American Music Information Retrieval Workshop (LAMIR)
December 9–11, 2024, Rio de Janeiro, BR
Website: https://lamir-workshop.github.io/
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The Virtual Pre-Conference was a new initiative this year and took place completely online from October 28–30 across
global time zones. The Virtual Pre-Conference was organized with the goals of giving all attendees an opportunity to
begin networking—whether attending the main conference online or in person; and helping newcomers gain context on
the ISMIR conference and broader community.

The ISMIR 2024 Virtual Pre-Conference was organized by the General Chairs and Virtual Chair, and featured two keynote
talks, invited presentations from conference and community organizers, social events, and informal topic-based discussion
sessions.

Keynote Talks

Keynote Talk – 1

The Advent of Quantum Computer Music

Eduardo Miranda
University of Plymouth, UK

Abstract

Quantum computing technology is developing at a fast pace. The impact of quantum computing on the music industry
is inevitable. The emerging field of Quantum Computer Music investigates and develops applications and methods to
process music using quantum computing technology. This talk will discuss examples of approaches to leverage quantum
computing to learn, process and generate music. The methods discussed range from rendering music using data from
physical quantum mechanical systems and quantum mechanical simulations to computational quantum algorithms to
generate music, including quantum AI. The ambition to develop techniques to encode audio quantumly for making sound
synthesisers and audio signal processing systems is also discussed.

Biography

Eduardo Reck Miranda is a classically trained composer and computer scientist. He has composed for renowned en-
sembles such as the BBC Concert Orchestra, Scottish Chamber Orchestra and London Sinfonietta. He is a Professor of
Computer Music at the University of Plymouth, UK, and works with at Moth, a quantum technology company building
the next era of music, gaming and the arts. Prof Miranda published over 100 research papers in learned journals and
16 books. He is world-renowned for his groundbreaking work in AI and music. He is a pioneer of quantum computing
with a focus on creativity and music composition. His latest book, Quantum Computer Music, comprising a collection of
chapters by leading practitioners in the field, was published in 2022 by Springer Nature.
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Keynote Talk – 2

The MIR Field: From Knowledge to Data-Driven, from Features to Ethical
and Regulatory Considerations

Emilia Gómez
European Commission’s Joint Research Centre, ES

Abstract

This talk focuses on audio-based music information retrieval (MIR) and reflects on the origins of the field, the different
MIR eras, and the recent developments. I will first focus on the paradigm shift from knowledge-driven to data-driven
algorithmic design, thanks to recent developments in machine learning. After that, I will discuss the current challenges
that the MIR field addresses and the current and future research challenges, notably on the social and ethical impact of
MIR algorithmic systems.

Biography

Dr. Emilia Gómez (MSc. Telecommunication Engineering, PhD in Computer Science, Full professor accreditation) is a
senior scientist at the European Commission’s Joint Research Centre, where she leads the Human Behaviour and Machine
Intelligence (HUMAINT) team that provides scientific support to EU AI policies as part of the European Centre for
Algorithmic Transparency, notably the AI Act and the Digital Services Act. She is also a guest professor in Music
Technology at Universitat Pompeu Fabra in Barcelona, Spain.

Dr. Gómez has a long academic experience in the field of Music Information Retrieval, where she has contributed to
different approaches for music content description, notably in pitch-content description. Starting from the music domain,
she now studies the impact of AI in human behaviour, notably how AI affects jobs, decisions, fundamental rights and
children. She was the first female president of ISMIR, is currently a member of the OECD One AI expert group, an
ELLIS (European Laboratory for Learning and Intelligent systems) fellow, and her work has been recognized by means
of citations and honors, e.g. EUWomen4Future, Red Cross Award to Humanitarian Technologies or ICREA Academia.
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Invited Presentations and Sessions

DEI and “Growing the I”
Presenter: Katherine M. Kinnaird (ISMIR 2024 DEI Chair)

Ideation Session
Session host: Vinoo Alluri (ISMIR 2024 Virtual Chair)

ISMIR Board
Presenters: Emmanouil Benetos, Carlos Cancino-Chacón, Ajay Srinivasamurthy (representing the ISMIR Board)

ISMIR Ethics Working Group
Presenters: Fabio Morreale, Pedro Sarmento (representing the ISMIR Ethics Working Group Organizers)

Open Review at ISMIR
Presenters: Magdalena Fuentes, Blair Kaneshiro, Oriol Nieto, Geoffroy Peeters (representing the ISMIR Open Review
Working Group)

Navigating the ISMIR Conference
Presenter: Nick Gang (ISMIR 2024 Newcomer Initiatives Chair)

New-to-ISMIR Paper Mentoring Program
Presenter: Ajay Srinivasamurthy (representing the ISMIR 2024 New-to-ISMIR Paper Mentoring Program Chairs)

TISMIR
Presenter: Meinard Müller (representing the TISMIR Editors-in-Chief)

Unconference
Session host: Geoffroy Peeters (ISMIR 2024 Unconference Chair)

WiMIR Mentoring Program
Presenters: Yun-Ning (Amy) Hung, Zafar Rafii (representing the WiMIR Mentoring Program Organizers)
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Keynote Talk – 1

Towards a Fairer Approach to Generative AI Training

Ed Newton-Rex
Fairly Trained

Abstract

Ed will discuss the issues that arise when generative AI companies scrape training data without consent, and the alternative
- licensing training data - that is being embraced by many AI music companies.

Biography

Ed Newton-Rex is the founder of Fairly Trained, a non-profit that certifies generative AI companies for fair training data
practices. He is also a Visiting Scholar at Stanford University.

In 2010, Ed founded Jukedeck, one of the first AI music generation startups. Jukedeck let video creators generate music
for their videos, and was used to create more than a million pieces of music. It was acquired by ByteDance in 2019. At
ByteDance, Ed led the AI Music lab, then led Product for TikTok in Europe.

In 2022 Ed joined Stability AI, the company behind Stable Diffusion, to lead their Audio team. His team launched Stable
Audio, Stability’s music generation product, which was named one of TIME Magazine’s best inventions of the year in
2023. He resigned from Stability in November 2023 due to the company’s policy of training AI models on copyrighted
work without consent, and in 2024 founded Fairly Trained. He is a published composer of choral music.
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DEI Keynote

Listening For Diversity: The Ways in Which Critical Attention to Words
Helps Move Us Closer Towards Realizing Our Full Humanity

Valerie Joseph
Smith College

Abstract

Using her experience as a dancer, therapist, mediator, diversity trainer, anthropologist, college educator, and originator
of Grounded Knowledge Panels®, Valerie Joseph distills lessons learned about the power of intentional and principled
listening. She offers ideas on how to harness the energy derived from listening differently to fuel the capacity to have
uncomfortable, rich, dynamic and productive thinking. This forms the basis upon which we are challenged to make
transformative choices about how we operate with those other humans with whom we share the planet.

Biography

Valerie Joseph earned a Ph.D. in Cultural Anthropology from the University of Massachusetts at Amherst. Her doctoral
research investigated the enduring legacies of British colonialism and African heritage memory among the members of
the African Diaspora in Carriacou, Grenada. Specifically, she mapped how the game songs and dance play of Carriacouan
Black girls as well as their words, beliefs, and attitudes reflected both the detrimental internalization of colonial ideology
and the restorative nature of African retentions.

Prior to her fieldwork in Carriacou, Dr. Joseph lived and worked in Botswana for seven years starting as a Peace Corps Vol-
unteer science teacher in a junior secondary school, then as a training coordinator at the Cheshire Foundation’s Mogodit-
shane Rehabilitation Center. She closed out her years in the country by working as co-director of the School for Inter-
national Training’s college semester abroad program. During her time in Botswana, Dr. Joseph sharpened her interest in
cross-cultural conflicts, including those that seemed to be intractable, though traceable, in part, to cultural mores as well
as historical and social patterns embedded in racial or ethnic bias and discrimination.

Dr. Joseph has a Masters in Movement Therapy with a concentration in counseling psychology and a Masters in Social
Justice Education. Her supplemental training, work and experience in several fields includes gymnastics coaching, dance
performance, diversity training, Authentic Movement (a contemplative dance form), mediation, teaching and management
in higher education.

Dr. Joseph is an educator-interventionist working at Smith College as the Mentoring Administrative Director for AEMES
(Achieving Excellence in Math Engineering and Science). In that role, she manages programs to support the most
marginalized students who are pursuing STEM. She also teaches college success seminars within the AEMES Schol-
ars Program.

Dr. Joseph is co-founder of the Smith Roundtable Group. Started in 2020, the SRG is a small contingent of staff, faculty,
and students dedicated to creating opportunities for information sharing and conversation about important current events.
Past Roundtable offerings included: “Daring to be Hopeful: A Critical Response to the White Supremacist Storming of
Our Capitol” and “Why is the Power of Young People so Threatening to the Status Quo?” The most recent Roundtable
event took place in September of this year: "’Calling In’ for Democracy and Human Rights: A Consideration of Project
2025."

In and outside of Smith, Dr. Joseph convenes a unique form of public discourse that she originated. Grounded Knowledge
Panels® are public conversations by small groups of people who have realistic, authentic and personal experience and
understanding of a particular topic or question. Emerging from core Black culture, Grounded Knowledge Panels are
a synthesis of Dr. Joseph’s study and work in various fields including anthropology, Authentic Movement, education
and mediation. As panelists converse among themselves, audience members are invited as “witnesses” to observe the
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discussion. Both groups - panelists and witnesses – bring a distinctive power, depth and responsibility to the experience
of speaking and listening.

Dr. Joseph is a five time recipient of the Smith College Spotlight Award, an honor presented to staff members, chosen by
peers, in appreciation of exceptional service. She is a 2020 recipient of the Elizabeth B. Wyant Gavel Award awarded by
students to staff members who have performed outstanding work in the Smith community.

Dr. Joseph’s first children’s book, This is What Maisie Believes, is published by 619 Wreath Publishing.
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Keynote Talk – 2

Navigating the Intersection of AI and Music: Innovation, Ethics, and the
Future of the Industry

Elizabeth Moody
Granderson Des Rochers, LLP’s New Media Group

Abstract

This speech explores the complex relationship between artificial intelligence and the music industry, tracing the evolution
from early digital disruptions like Napster to today’s AI-driven landscape. It examines how streaming platforms revolu-
tionized music consumption and distribution, while also introducing new challenges such as streaming fraud. The speech
delves into AI’s multifaceted impact on music creation, production, and personalization, highlighting both its transforma-
tive potential and ethical concerns. The presentation also addresses controversial uses of voice AI technology and the legal
and ethical considerations surrounding AI training data, including a fair use arguments and budding internal laws. Finally,
we address proposed solutions, including the use of transparent attribution systems modeled after YouTube’s Content ID
and policies for opt-in/out rights management. This keynote calls for a balanced approach, urging collaboration between
artists, technologists, and policymakers to ensure that AI’s integration into music creation and distribution respects artistic
integrity and promotes innovation.

Biography

Elizabeth Moody, partner and chair of Granderson Des Rochers, LLP’s New Media Group, is a pioneer in the digital
media world. Moody has been spearheading digital music and video initiatives since the post-Napster era, both as outside
counsel, and as a business executive in-house at companies like YouTube and Pandora. Today, Moody remains positioned
at the intersection of technology and music rights and continues to advise her technology and rightsholder clients toward
new and innovative business models and licensing deals.

Moody is at the forefront of the developing issues and opportunities that AI presents to the music and entertainment
industries. She counsels several prominent generative voice and audio AI companies, advises the non-profit Fairly Trained,
which certifies AI companies who are training the data sets with fairly acquired, licensed or owned data, and Audioshake,
an AI-based stem separation tool in use by record labels, movie studios, and entertainment companies today to ease
production and marketing.

She is also keyed into the gaming and the web 3.0 world. She is partnerships counsel for the gaming company Roblox
and also works closely with Wave XR, a virtual reality concerts start-up that works with artists to create unique live
performances as avatar versions of themselves in imaginative digital landscapes. She developed and continues to grow
Styngr’s efforts to power music in video games and online gaming experiences.

Along with gaming and the metaverse, she is passionate about the opportunities web 3.0 will bring to the music community
and creators. She represents Audius, the blockchain-based music streaming service, in its efforts to help creators and their
fans connect more authentically by embracing the opportunities offered through a decentralized network and Revelator,
an all-in-one music platform providing digital distribution, analytics, and web 3.0 services to artists, record labels and
publishers. She advises Copyright Delta, providing data connections to rights holders and AI tech platforms.

Moody is excited to bring opportunities to the music industry by forging deals with those in industries outside of music,
including at the intersection of music and fitness. She represents connected fitness, yoga, pilates, mindfulness, cycling,
and dance services to help them integrate music into their services. She has worked closely with Hydrow, the successful
Peloton-style live reality-connected rowing experience, since its launch in 2019. She believes that VR plays an important
role in fitness and works with Litesport and FitXR to ensure they have access to top-notch music experiences. She has
also been working in the medical and wellness space exploring licensing structures to use music in the treatment of pain,
dementia, and mental illness concerns through her work with MediMusic and her advisory participation on the board of
Music Health.
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Keynote Talk – 3

Status Report: AI Music in Q1 of the 21st Century

Douglas Eck
Google DeepMind

Abstract

I finished my PhD in 2000; a lot has happened over the ensuing ∼25 years in the field of music and computation. It
seems like an appropriate moment to look back at where we were, how far we’ve come, and where we’re going next. I
will discuss early experiments in RNN-generated music, the open-source Magenta project, the rise of LLM and diffusion
models for music generation, and more recent work we’ve done at Google DeepMind in text, image, video and music
generation. I’ll also address the question of how AI might help us better understand music and maybe even give rise to
new forms of musical expression.

Biography

Doug is a Senior Research Director at Google, and leads research efforts at Google DeepMind in Generative Media,
including image, video, 3D, music and audio generation. His own research lies at the intersection of machine learning
and human-computer interaction (HCI). In 2015, Doug created Magenta, an ongoing research project exploring the role
of AI in art and music creation. Before joining Google in 2010, Doug did research in music perception, aspects of
music performance, machine learning for large audio datasets and music recommendation. He completed his PhD in
Computer Science and Cognitive Science at Indiana University in 2000 and went on to a postdoctoral fellowship with
Juergen Schmidhuber at IDSIA in Lugano Switzerland. From 2003-2010, Doug was faculty in Computer Science in the
University of Montreal machine learning group (now MILA machine learning lab), where he became Associate Professor.
For more information see http://g.co/research/douglaseck.
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Tutorial 1

Connecting Music Audio and Natural Language

Seung Heon Doh, Ilaria Manco, Zachary Novack, Jong Wook Kim and Ke Chen

Abstract

Language serves as an efficient interface for communication between humans as well as between humans and machines.
Through the integration of recent advancements in deep learning-based language models, the understanding, search, and
creation of music is becoming capable of catering to user preferences with better diversity and control. This tutorial
will start with an introduction to how machines understand natural language, alongside recent advancements in language
models, and their application across various domains. We will then shift our focus to MIR tasks that incorporate these
cutting-edge language models. The core of our discussion will be segmented into three pivotal themes: music under-
standing through audio annotation and beyond, text-to-music retrieval for music search, and text-to-music generation to
craft novel sounds. In parallel, we aim to establish a solid foundation for the emergent field of music-language research,
and encourage participation from new researchers by offering comprehensive access to 1) relevant datasets, 2) evaluation
methods, and 3) coding best practices.

Biographies of the Presenters

SeungHeon Doh is a Ph.D. student at the Music and Audio Computing Lab, KAIST, under the guidance of Juhan Nam.
His research focuses on conversational music annotation, retrieval, and generation. SeungHeon has published papers
related to music & language models at ISMIR, ICASSP and IEEE TASLP. He aims to enable machines to comprehend
diverse modalities during conversations, thus facilitating the understanding and discovery of music through dialogue.
SeungHeon has interned at Adobe Research, Chartmetric, NaverCorp, and ByteDance, applying his expertise in real-
world scenarios.

Ilaria Manco is a Ph.D. student at the Centre for Doctoral Training in Artificial Intelligence and Music (Queen Mary
University of London), under the supervision of Emmanouil Benetos, George Fazekas, and Elio Quinton (UMG). Her
research focuses on multimodal deep learning for music information retrieval, with an emphasis on audio-and-language.
Her contributions to the field have been published at ISMIR and ICASSP and include the first captioning model for
music, and representation learning approaches to connect music and language for a variety of music understanding tasks.
Previously, she was a research intern at Google DeepMind, Adobe and Sony, and obtained an MSci in physics from
Imperial College London.

Zachary Novack is a Ph.D. Student at the University of California – San Diego, where he is advised by Julian McAuley
and Taylor Berg-Kirkpatrick. His research is primarily aimed at controllable music and audio generation. Zachary seeks to
build generative music models that allow for arbitrary musically-salient control mechanisms and enable stable multi-round
generative audio editing, publishing such work at ICML, ICLR, and NeurIPS. Zachary has interned at Adobe Research,
contributing such works as DITTO to be deployed in end-user applications. Outside of academics, Zachary is passionate
about music education and teaches percussion in the southern California area.

Jongwook Kim is a Member of Technical Staff at OpenAI where he has worked on multimodal deep learning models
such as Jukebox, CLIP, Whisper, and GPT-4. He has published at ICML, CVPR, ICASSP, IEEE SPM, and ISMIR,
and he co-presented a tutorial on self-supervised learning at the NeurIPS 2021 conference. He completed a Ph.D. in
Music Technology at New York University with a thesis focusing on automatic music transcription, and he has an M.S.
in Computer Science and Engineering from the University of Michigan, Ann Arbor. He interned at Pandora and Spotify
during the Ph.D. study, and he worked as a software engineer at NCSOFT and Kakao.

Ke Chen is a Ph.D. Candidate in the department of computer science and engineering at University of California San
Diego. His research interests span across the music and audio representation learning, with a particular focus on its
downstream applications of music generative AI, audio source separation, multi-modal learning, and music information
retrieval. He has interned at Apple, Mitsubishi, Tencent, Bytedance, and Adobe, to further explore his research directions.
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During his PhD study, Ke Chen has published more than 20 papers in top-tier conferences in the fields of artificial
intelligence, signal processing, and music, such as AAAI, ICASSP, and ISMIR. Outside of academics, he indulges in
various music-related activities, including piano performance, singing, and music composition.
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Tutorial 2

Exploring 25 Years of Music Information Retrieval: Perspectives and In-
sights

Masataka Goto, Jin Ha Lee, and Meinard Muller

Abstract

This tutorial reflects on the journey of Music Information Retrieval (MIR) over the last 25 years, offering insights from
three distinct perspectives: research, community, and education. Drawing from the presenters’ personal experiences and
reflections, it provides a holistic view of MIR’s evolution, covering historical milestones, community dynamics, and
pedagogical insights. Through this approach, the tutorial aims to give attendees a nuanced understanding of MIR’s past,
present, and future directions, fostering a deeper appreciation for the field and its interdisciplinary and educational aspects.

The tutorial is structured into three parts, each based on one of the aforementioned perspectives. The first part delves into
the research journey of MIR. It covers the inception of query-by-humming and the emergence of MP3s, discusses the
establishment of standard tasks such as beat tracking and genre classification, and highlights significant advancements,
applications, and future challenges in the field. The second part explores the community aspect of ISMIR. It traces the
growth of the society from a small symposium to a well-recognized international community, emphasizing core values
such as interdisciplinary collaboration and diversity, and invites the audience to imagine the future of the ISMIR com-
munity together. Lastly, the third part discusses the role of music as an educational domain. It examines the broad
implications of MIR research, the value of pursuing a PhD in MIR, and the significant educational resources available.

Each part invites audience interaction, aiming to provide attendees with a deeper appreciation of MIR’s past achievements
and insights into its potential future directions. This tutorial is not just a historical overview but also a platform for
fostering a deeper understanding of the interplay between technology and music.

Biographies of the Presenters

Masataka Goto received the Doctor of Engineering degree from Waseda University, Tokyo, Japan, in 1998. He is cur-
rently a Principal Researcher at the National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba,
Japan. In 1992 he was one of the first to start working on automatic music understanding and has since been at the fore-
front of research in music technologies and music interfaces based on those technologies. Over the past 32 years he has
published more than 300 papers in refereed journals and international conferences and has received 68 awards, including
several best paper awards, best presentation awards, the Tenth Japan Academy Medal, and Tenth JSPS PRIZE. He has
served as a committee member of over 120 scientific societies and conferences, including the General Chair of ISMIR
2009 and 2014, the Program Chair of ISMIR 2022, and the Member-at-large of the ISMIR Board from 2009 to 2011.
As the research director, he began the OngaACCEL project in 2016 and the RecMus project in 2021, which are five-year
JST-funded research projects (ACCEL and CREST) related to music technologies. He gave tutorials at major conferences,
including ISMIR 2015, ACM Multimedia 2013, ICML 2013, ICPR 2012, and ICMR 2012.

Jin Ha Lee is a Professor and the Founder and Director of the GAMER (GAME Research) Group at the University
of Washington Information School. She holds an M.S. (2002) and a Ph.D. (2008) in Library and Information Science
from the University of Illinois at Urbana-Champaign. Her research focuses on exploring new ideas and approaches for
organizing and providing access to popular music, multimedia, and interactive media, understanding user behavior related
to the creation and consumption of these media, and using these media for informal learning in venues such as libraries
and museums. She has been actively engaging with the ISMIR community from the early days of ISMIR, and was at the
forefront of user-centered MIR research at ISMIR, contributing a number of papers on user perception of music similarity
and mood, music listening and sharing behavior, cross-cultural aspects of MIR, and human-AI collaboration. She served
as the Secretary of the ISMIR Board from the inception to 2015, and also as the General Co-Chair of ISMIR 2021, and
the Scientific Program Co-Chair of ISMIR 2014, 2020, and 2024. She also serves as an Editorial Board Member for the
Transactions of the International Society for Music Information Retrieval.
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Meinard Müller received the Diploma degree (1997) in mathematics and the Ph.D. degree (2001) in computer science
from the University of Bonn, Germany. Since 2012, he has held a professorship for Semantic Audio Signal Processing at
the International Audio Laboratories Erlangen, a joint institute of the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU) and the Fraunhofer Institute for Integrated Circuits IIS. His recent research interests include music processing,
music information retrieval, audio signal processing, and motion processing. He was a member of the IEEE Audio and
Acoustic Signal Processing Technical Committee (2010-2015), a member of the Senior Editorial Board of the IEEE Signal
Processing Magazine (2018-2022), and a member of the Board of Directors, International Society for Music Information
Retrieval (2009-2021, being its president in 2020/2021). In 2020, he was elevated to IEEE Fellow for contributions to
music signal processing. Currently, he also serves as Editor-in-Chief for the Transactions of the International Society for
Music Information Retrieval (TISMIR). Besides his scientific research, Meinard Müller has been very active in teaching
music and audio processing. He gave numerous tutorials at major conferences, including ICASSP (2009, 2011, 2019) and
ISMIR (2007, 2010, 2011, 2014, 2017, 2019, 2023). Furthermore, he wrote a monograph titled “Information Retrieval
for Music and Motion” (Springer 2007) as well as a textbook titled “Fundamentals of Music Processing” (Springer-Verlag
2015).
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Tutorial 3

From White Noise to Symphony: Diffusion Models for Music and Sound

Chieh-Hsin Lai, Koichi Saito, Bac Nguyen Cong, Yuki Mitsufuji, and Stefano Er-
mon

Abstract

This tutorial will cover the theory and practice of diffusion models for music and sound. We will explain the methodology,
explore its history, and demonstrate music and sound-specific applications such as real-time generation and various other
downstream tasks. By bridging the gap from computer vision techniques and models, we aim to spark further research
interest and democratize access to diffusion models for the music and sound domains.

The tutorial comprises four sections. The first provides an overview of deep generative models and delves into the
fundamentals of diffusion models. The second section explores applications such as sound and music generation, as well
as utilizing pre-trained models for music/sound editing and restoration. In the third section, a hands-on demonstration
will focus on training diffusion models and applying pre-trained models for music/sound restoration. The final section
outlines future research directions.

We anticipate that this tutorial, emphasizing both the foundational principles and practical implementation of diffusion
models, will stimulate interest among the music and sound signal processing community. It aims to illuminate insights
and applications concerning diffusion models, drawn from methodologies in computer vision.

Biographies of the Presenters

Chieh-Hsin Lai earned his Ph.D. in Mathematics from University of Minnesota in 2021. Currently, he is a research
scientist at Sony AI and a visiting assistant professor at the Department of Applied Mathematics of National Yang
Ming Chiao Tung University, Taiwan. His expertise is in deep generative models, especially diffusion models and
its application for media content restoration. He has organized an EXPO workshop at NeurIPS 2023 on “Media Con-
tent Restoration and Editing with Deep Generative Models and Beyond”. Please refer here for his detailed information
https://chiehhsinjesselai.github.io/.

Koichi Saito is an AI engineer at Sony AI. He has been working on deep generative models for music and sound, espe-
cially, solving inverse problems for music signals based on diffusion models and diffusion-based text-to-sound generation.
He has extensive experience in showcasing advanced diffusion model technologies to businesses and industries related to
music.

Bac Nguyen Cong earned his M.Sc. degree (summa cum laude) in computer science from Universidad Central de Las
Villas in 2015, followed by a Ph.D. from Ghent University in 2019. He joined Sony in 2019, focusing his research
on representation learning, vision-language models, and generative modeling. With four years of hands-on professional
industry experience in deep learning and machine learning, his work spans various application domains, such as text-to-
speech and voice conversion, showing his important contributions to the field.

Yuki Mitsufuji holds dual roles at Sony, leading two departments, and is a specially appointed associate professor at
TokyoTech, where he lectures on generative models. He’s achieved Senior Member status in IEEE and serves on the
IEEE AASP Technical Committee 2023-2026. He chaired “Diffusion-based Generative Models for Audio and Speech” at
ICASSP 2023 and “Generative Semantic Communication: How Generative Models Enhance Semantic Communications”
at ICASSP 2024. Please refer here for his detailed information https://www.yukimitsufuji.com/.

Stefano Ermon is an associate professor at Stanford, specializing in probabilistic data modeling with a focus on com-
putational sustainability. He has received Best Paper Awards from ICLR, AAAI, UAI, CP, and an NSF Career Award.
He also organized a course on Diffusion Models at SIGGRAPH 2023. Please refer here for his detailed information
https://cs.stanford.edu/~ermon/.
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Tutorial 4

Humans at the Center of MIR: Human-subjects Research Best Practices

Claire Arthur, Nat Condit-Schultz, David R. W. Sears, John Ashley Burgoyne, and
Joshua Albrecht

Abstract

In one form or another, most MIR research depends on the judgment of humans. Humans provide our ground-truth data,
whether through explicit annotation or through observable behavior (e.g., listening histories); Humans also evaluate our
results, whether in academic research reports or in the commercial marketplace. Will users like it? Will customers buy it?
Does it sound good? These are all critical questions for MIR researchers which can only be answered by asking people.
Unfortunately, measuring and interpreting the judgments and experiences of humans in a rigorous manner is difficult.
Human responses can be fickle, changeable, and inconsistent—they are, by definition, subjective. There are many factors
that influence human responses, some of which can be controlled or accounted for in experimental design, and others
which must be tolerated but ameliorated through statistical analysis. Fortunately, researchers in the field of behavioral
psychology have amassed extensive expertise and institutional knowledge related to the practice and pedagogy of human-
subject research, but MIR researchers receive little exposure to research methods involving human subjects. This tutorial,
led by MIR researchers with training (and publications) in psychological research, aims to share these insights with the
ISMIR community. The tutorial will introduce key concepts, terminology, and concerns in carrying out human-subject
research, all in the context of MIR. Through the discussion of real and hypothetical human research, we will explore the
nuances of experiment and survey design, stimuli creation, sampling, psychometric modeling, and statistical analysis. We
will review common pitfalls and confounds in human research, and present guidelines for best practices in the field. We
will also cover fundamental ethical and legal requirements of human research. Any and all ISMIR members are welcome
and encouraged to attend: it is never too early, or too late, in one’s research career to learn (or practice) these essential
skills.

Biographies of the Presenters

Claire Arthur is an assistant professor in the School of Music and co-director of the Computational and Cognitive
Musicology Lab at the Georgia Institute of Technology, and adjunct faculty in the School of Psychology. She received
her PhD in music theory and cognition from Ohio State University under David Huron. Her research largely focuses on
modeling musical structure from a statistical perspective, as well as examining the cognitive and behavioral correlates
of those structures, especially as it relates to musical expectations and emotional responses. Her MIR-related research
interests lie in the intersection of music perception, computational musicology, and emotion prediction, with an emphasis
on melody, voice-leading, and harmony.

Nat Condit-Schultz is a Lecturer and the Director of the Graduate Program for the Georgia Tech School of Music. Nat is
a musician, composer, and scientist, specializing in the statistical modeling of musical structure. Nat directs the Georgia
Tech rock and pop bands, and teaches courses in research methodology, music psychology, and music production. Nat’s
research interests include rhythm and tonality in popular music, the perceptual and structural roles of language and lyrics
in music, and the music theory of hip-hop. Nat is a performer and composer, specializing in electric and classical guitar: as
a composer, he specializes in imitative counterpoint and complex rhythmic/metric ideas like polyrhythm, “tempo spirals,”
and irama, realized through classical guitar, rock instrumentation, and Indonesian Gamelan.

David R. W. Sears is Associate Professor of Interdisciplinary Arts and Co-Director of the Performing Arts Research
Lab at Texas Tech University, where he teaches courses in arts psychology, arts informatics, and music theory. His
current research examines the structural parallels between music and language using both behavioral and computational
methods, with a particular emphasis on the many topics associated with pitch structure, including scale theory, tonality,
harmony, cadence, and musical form. He also has ancillary interests in music on the global radio, music and emotion, and
cross-cultural research. Recent publications appear in his Google Scholar profile.
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John Ashley Burgoyne is Assistant Professor in Computational Musicology at the University of Amsterdam, teaching
in the Musicology and Artificial Intelligence and conducting research in the Language and Music Cognition unit at the
Institute for Logic, Language, and Computation. His current research focuses on using psychometric approaches in
combination with representations and embeddings from deep learning models to improve the interpretability of AI models
and flexibility in the design of musical stimuli and experiments. As director of the Amsterdam Music Lab, he is also
interested in citizen science and online experimentation, and leads a team developing the MUSCLE infrastructure for
facilitating online experiments requiring fine control of audio and music.

Joshua Albrecht is an Assistant Professor of Music Theory at the University of Iowa, and directs the Iowa Cognitive
and Empirical Musicology lab. His current research blends statistical and computational musical analysis with behavioral
studies to model listeners’ perception of musical affect, melodic and harmonic complexity, and intonation. Working in
a traditional School of Music, his research also focused on applying computational methods to traditional historical and
analytical problems, using compositional output as proxies for investigating the cognition of historical compositional
practices.
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Tutorial 5

Deep Learning 101 for Audio-based MIR

Geoffroy Peeters, Gabriel Meseguer Brocal, Alain Riou, and Stefan Lattner

Abstract

Audio-based MIR (MIR based on the processing of audio signals) covers a broad range of tasks, including analysis (pitch,
chord, beats, tagging), similarity/cover identification, and processing/generation of samples or music fragments. A wide
range of techniques can be employed for solving each of these tasks, spanning from conventional signal processing and
machine learning algorithms to the whole zoo of deep learning techniques.

This tutorial aims to review the various elements of this deep learning zoo commonly applied in Audio-based MIR
tasks. We review typical audio front-ends (such as waveform, Log-Mel-Spectrogram, HCQT, SincNet, LEAF, quantiza-
tion using VQ-VAE, RVQ), as well as projections (including 1D-Conv, 2D-Conv, Dilated-Conv, TCN, WaveNet, RNN,
Transformer, Conformer, U-Net, VAE), and examine the various training paradigms (such as supervised, self-supervised,
metric-learning, adversarial, encoder-decoder, diffusion). Rather than providing an exhaustive list of all of these elements,
we illustrate their use within a subset of (commonly studied) Audio-based MIR tasks such as multi-pitch/chord-estimation,
cover-detection, auto-tagging, source separation, music-translation or music generation. This subset of Audio-based MIR
tasks is designed to encompass a wide range of deep learning elements. For each tack we address a) the goal of the tasks,
b) how it is evaluated, c) provide some popular datasets to train a system, and d) explain (using slides and pytorch code)
how we can solve it using deep learning.

The objective is to provide a 101 lecture (introductory lecture) on deep learning techniques for Audio-based MIR. It
does not aim at being exhaustive in terms of Audio-based MIR tasks nor on deep learning techniques but to provide an
overview for newcomers to Audio-Based MIR on how to solve the most common tasks using deep learning. It will provide
a portfolio of codes (Colab notebooks and Jupyter book) to help newcomers achieve the various Audio-based MIR Tasks.

Biographies of the Presenters

Geoffroy Peeters is a full professor in the Image-Data-Signal (IDS) department of Télécom Paris. Before that (from 2001
to 2018), he was Senior Researcher at IRCAM, leading research related to Music Information Retrieval. He received his
Ph.D. in signal processing for speech processing in 2001 and his Habilitation (HDR) in Music Information Retrieval in
2013 from the University Paris VI. His research topics concern signal processing and machine learning (including deep
learning) for audio processing, with a strong focus on music. He has participated in many national or European projects,
published numerous articles and several patents in these areas, and co-authored the ISO MPEG-7 audio standard. He
has been co-general-chair of the DAFx-2011 and ISMIR-2018 conferences, member and president of the ISMIR society,
and is the current AASP review chair for ICASSP. At Telecom-Paris, he created the 40-hour program "Audio and Music
Information Retrieval" for the Master-2 level "Data Science" which deals mostly with deep learning applied to MIR that
inspired this tutorial.

Gabriel Meseguer Brocal is a research scientist at Deezer with over two years of experience at the company. Be-
fore joining Deezer, he completed postdoctoral research at Centre National de la Recherche Scientifique (CNRS) in
France. In 2020, he earned his Ph.D. in Computer Science, Telecommunications, and Electronics with a focus on the
Sciences & Technologies of Music and Sound at IRCAM. His research interests include signal processing and deep learn-
ing techniques for music processing, with a focus on areas such as source separation, dataset creation, multi-tagging,
self-supervised learning, and multimodal analysis.

Alain Riou is a PhD student working on self-supervised learning of musical representations at Télécom-Paris and Sony
CSL Paris, under the supervision of Stefan Lattner, Gaëtan Hadjeres and Geoffroy Peeters. Before that, he obtained a
master degree in mathematics for machine learning at Ecole Normale Supérieure de Cachan (2020) and another one in
signal processing and computer science applied to music at IRCAM (2021). His main research interests are related to
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deep representation learning, with a strong focus on self-supervised methods for music information retrieval and control-
lable music generation. His work "PESTO: Pitch Estimation with Self-supervised Transposition-equivariant Objective"
received the Best Paper Award at ISMIR 2023.

Stefan Lattner serves as a researcher leader at the music team at Sony CSL Paris, where he focuses on generative AI
for music production, music information retrieval, and computational music perception. He earned his PhD in 2019 from
Johannes Kepler University (JKU) in Linz, Austria, following his research at the Austrian Research Institute for Artificial
Intelligence in Vienna and the Institute of Computational Perception Linz. His studies centered on the modeling of
musical structure, encompassing transformation learning and computational relative pitch perception. His current interests
include human-computer interaction in music creation, live staging, and information theory in music. He specializes in
generative sequence models, computational short-term memories, (self-supervised) representation learning and musical
audio generation. In 2019, Lattner received the best paper award at ISMIR for his work, “Learning Complex Basis
Functions for Invariant Representations of Audio.”
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Tutorial 6

Lyrics and Singing Voice Processing in Music Information Retrieval: Anal-
ysis, Alignment, Transcription and Applications

Daniel Stoller, Emir Demirel, Kento Watanabe, and Brendan O’Connor

Abstract

Singing, a universal human practice, intertwines with lyrics to form a core part of profound musical experiences, convey-
ing emotions, narratives, and real-world connections. This tutorial explores the commonly used techniques and practices
in lyrics and singing voice processing, which are vital in numerous music information retrieval tasks and applications.

Despite the importance of song lyrics in MIR and the industry, high-quality paired audio & transcript annotations are
often scarce. In the first part of this tutorial, we’ll delve into automatic lyrics transcription and alignment techniques,
which significantly reduce the annotation cost and enable more performant solutions. Our tutorial provides insights into
the current state-of-the-art methods for transcription and alignment, highlighting their capabilities and limitations while
fostering further research into these systems.

Moreover, we present "lyrics information processing", which encompasses lyrics generation and leveraging lyrics to
discern musically relevant aspects such as emotions, themes, and song structure. Understanding the rich information
embedded in lyrics opens avenues for enhancing audio-based tasks by incorporating lyrics as supplementary input.

Finally, we discuss singing voice conversion as one such task, which involves the conversion of acoustic features em-
bedded in a vocal signal, often relating to timbre and pitch. We explore how lyric-based features can facilitate a model’s
inherent disentanglement between acoustic and linguistic content, which leads to more convincing conversions. This
section closes with a brief discussion on the ethical concerns and responsibilities that should be considered in this area.

This tutorial caters especially to new researchers with an interest in lyrics and singing voice modeling, or those involved
in improving lyrics alignment and transcription methodologies. It can also inspire researchers to leverage lyrics for
improved performance on tasks like singing voice separation, music and singing voice generation, and cover song and
emotion recognition.

Biographies of the Presenters

Daniel Stoller is a research scientist at MIQ, the music intelligence team at Spotify. He obtained his PhD from Queen
Mary University in 2020, before researching causal machine learning at the German center for neurodegenerative diseases
(DZNE). Experienced in audio source separation as well as generative modeling and representation learning, he develops
machine learning models and techniques scalable to high-dimensional data such as raw audio signals, publishing in both
machine learning and audio-related venues. With a special passion for music, he also worked extensively on lyrics
alignment, and singing voice processing including separation, detection and classification.

Emir Demirel is a Senior Data Scientist at Music.ai / Moises, leading projects on lyrics and vocal processing. He obtained
his Ph.D. at Queen Mary University of London, as a fellow to the "New Frontiers in Music Information Processing ”
project under EU’s Marie Curie/Skladowska Actions. After completing his Ph.D, he joined Spotify’s Music Intelligence
team, enhancing his expertise before moving to Music.ai. His research interests span lyric transcription and alignment,
speech recognition, and natural language processing, along with generative AI models.

Kento Watanabe is a senior researcher at the National Institute of Advanced Industrial Science and Technology (AIST),
Japan. He received his Ph.D. from Tohoku University in 2018, and his work focuses on Lyrics Information Processing
(LIP), natural language processing, and machine learning. He aims to bridge the gap between humans and computers in
the field of music and language, and to improve interactions through advanced algorithms.
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Brendan O’Connor has worked in music as a performer, composer, producer, teacher, and sound installation artist. He
earned his Bachelor’s in classical music at the MTU Cork School of Music (Ireland), followed by his Master’s in music
technology at the University of West London, specialising in the voice as the principal instrument in electroacoustic
compositions. He then worked towards his Ph.D. in the field of singing voice conversion via neural networks at Queen
Mary University of London. His research interests include the disentanglement of scarcely labelled vocal attributes, such
as singing techniques. After completing his PhD, Brendan began working for a startup company in voice conversion,
allowing him to continue working in his area of expertise with other researchers of the same field using SOTA machine
learning techniques.
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Host: Zhiyao Duan

Don Byrd, the General Chair of the very first ISMIR conference in 2000, has recently left us. This session remembered
and celebrated the vision and contributions of this legend of the ISMIR community.
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Creative Practice Sessions





Hosts: Cynthia Liem, Tomas Peire

On the occasion of ISMIR 2024’s special focus on ‘Bridging Technology and Musical Creativity’, a dedicated Creative
Practices track was initiated to especially focus on these bridging aspects. With this, we wanted to facilitate dialogues
and collaborations on the bridge between technology and creativity, addressing the mutual needs and interests of artists,
technologists, and industry professionals.

Leading up to ISMIR, a community call was published, allowing anyone with interest in music, technology and creativity
to propose topics they wanted to collaborate on. In response, 15 proposals were submitted by a wide and international
audience, including artists and a high school student.

At the main conference, the Creative Practices track organized several activities. First of all, two panel discussions were
organized, featuring invited guests that have professionally been active on the bridge between technology and creative
practice:

• Session 1 largely featured artists who have been working with technology:

– Carlos Mosquera - Musician, Programmer, CEO at CM MEDIA LLC
– Michelle Alexander - Musician, Music Analyst & Mood Specialist at Pandora
– Mark Goldstein - Percussionist, programmer, teacher, inventor; with an interest in the nexus of musical

gesture, sound, and expression.

• Session 2 featured guests (several having an artistic background) with strong connections to commercial and prac-
tical applications:

– Eyal Amir - musician, software developer and musical instruments creator. Co-founder and CTO of the audio
plugins company Modalics.

– Ben Cantil aka Encanti - electronic music producer, software designer, educator, and scholar
– Seth Forsgren - Amateur Musician, CEO at Riffusion
– Spencer Salazar - Principal Engineer (formerly CTO) at Output

At the start of session 1, special attention was drawn to the community proposals, where proposers physically present at
ISMIR also presented their projects/proposals:

• Nicole Brady - Music Performer, music producer, composer, music teacher. Project: Memory of Sun: Inspired
by Anna Akhmatova’s poignant poem "Memory of Sun," this project is a multisensory installation that explores
themes of memory, transformation, and fading light through light, audio-visual, and interactive technologies

• Jin Ha Lee, Michele Newman, Lidia Morris - a team of researchers at the University of Washington, coming
from a background of information science, with interest in MIR research. Interested in dialogues on Understanding
the Creative Processes of Human-AI Music Collaboration, with particular interest in the role and viewpoint of the
human creator.

The intention is to keep advertising for the community proposals until Spring 2025, where interested parties can directly
engage with proposers. From resulting collaborations, we wish to draw practical lessons on how collaborations can be
effective, and where vocabulary matches or does not yet match across disciplinary viewpoints.

Finally, a Creative Practice social was hosted by Riffusion at the Riffusion HQ and Phonobar, providing an informal
networking platform, technical demos, and live performances. Apart from invited artists, there also were performances
by the long-time ISMIR community members Dadabots and panelist Encanti.

The Creative Practice track was well received, with ISMIR audience members indicating they appreciated both the com-
munity call and the elements programmed at the conference. As for points to keep in mind for possible future continua-
tions, it will be good to be aware early on that a track like this will especially attract an audience (both in terms of invitees
to panels, as well as proposers to the community call) that would not normally attend ISMIR. As such, these attendees
are not obviously having resources for conference attendance, nor will they naturally ‘speak the language and know the
culture’ of ISMIR. It will thus be good to provide support for them, both in terms of travel/registration support, but also on
a more translational note with regard to the work presented at the conference (this year’s backchannel in the Slack com-
munity may have served that purpose). Furthermore, it will be good to more proactively rotate the community call early
on and directly link possible collaborators, although this will need considerable chairing capacity and good knowledge of
the ISMIR network.
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Hosts: Brandi Frisbie, Minz Won

Sponsor presentation

Eleven ISMIR sponsors gave presentations on their vision, goals, research topics, demos, and potential job opportunities
in two sessions.

Panel discussion

Five panelists and a moderator engaged in a discussion about the past, present, and future of music and technology. The
session included insights from the panelists, followed by a Q&A and an opportunity for social networking. This event
was open to the public.

Theme: Bridging Technology and Musical Creativity

Moderator: Jessica Powell (CEO and Co-founder of AudioShake)

Panelists:

• Stephen White (CPO of EMPIRE)

• Douglas McCausland (TAC Studio Manager and Faculty Lecturer at SFCM)

• Tony Brooke (Independent Consultant for Music Data Companies)

• Heidi Trefethen (Adjunct Professor at SFCM TAC, FOH/Monitor Engineer at SF Jazz)

• Cheng-Zhi Anna Huang (Assistant Professor at MIT)
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Live Online Sessions





Mindfulness Sessions

Virtual Mindfulness Sessions were programmed during onsite lunch breaks (in live and replay time zones) to give online
participants a chance to unwind between plenary sessions. The experiences presented in the ISMIR 2024 Mindfulness
sessions were designed to help guide attendees into a deeper sense of Calm. All visuals were naturally produced and
captured, with no AI intervention.

The ISMIR 2024 Organizers thank soundBrilliance (https://www.soundbrilliance.com/) for creating custom au-
diovisual experiences for these sessions.

Online Social Events

Participants met over Zoom for informal conversation and contributed to the ISMIR 2024 Collaborative Playlist.

Online Special Sessions

Host: Vinoo Alluri

Five invited researchers from MIR and neighboring communities joined virtual sessions to give short presentations of
their work and engage in informal conversation with attendees.

Kathleen Rose Agres: Affective Music Generation for Emotion Regulation in Listeners

There has been a surge of interest in automatic music generation in recent years, particularly in affective music generation.
Numerous systems now offer controllable AI-based affective music generation (AI-AMG), as highlighted in Dash &
Agres (2024). While these systems have been developed for various applications—including soundtrack creation in
gaming and virtual reality, co-creativity, and health and well-being—this talk focuses on the use of AI-AMG to support
emotion regulation in listeners. One such system, AffectMachine (Agres, Dash, & Chua, 2023), is designed to generate
affective music in real time, and is capable of composing in both classical and pop-music styles. Recent findings across
several studies demonstrate AffectMachine’s efficacy in producing music perceived as emotional and capable of inducing
emotions, as shown by subjective emotion ratings and physiological responses. This talk will explore the implications of
systems like AffectMachine for supporting emotion self-regulation.

Bio: Dr. Kat Agres is an Assistant Professor at the Yong Siew Toh Conservatory of Music at the National University
of Singapore (NUS), and Founding Director of the Centre for Music and Health, the first dedicated research centre in
Southeast Asia to spearhead evidence-based research leveraging the efficacy of music for health and well-being. Kat
received her PhD in Cognitive Psychology from Cornell University and completed her postdoctoral fellowships in Music
Cognition and Computational Creativity at the University of London. She also holds a bachelor’s degree in Cello Perfor-
mance and Psychology from Carnegie Mellon University. Kat’s research explores music interventions and technologies
for healthcare and well-being, music perception and cognition, and computational creativity. She has received numerous
grants to support her research in Singapore, the US, and UK. Kat has presented her research in over twenty countries
around the world, and has also performed professionally as a cellist.

Kaustuv Kanti Ganguli: Harmonic Convergence: Orchestrating the Synergy of Human Intuition and Machine
Intelligence in Music

In the rapidly evolving landscape of computational musicology, we stand at a fascinating crossroads where human per-
ception intertwines with machine-driven analysis. This convergence offers unprecedented opportunities to unravel the

https://www.soundbrilliance.com/
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complexities of musical structures, particularly in rich non-Eurogenetic traditions such as Indian art music. By harmoniz-
ing human cognition with artificial intelligence, we can decode the intricate artifacts of audio signal processing, revealing
new dimensions in our understanding of music. This approach not only enhances our appreciation of musical nuances but
also challenges us to rethink the boundaries between human creativity and computational analysis.

As we navigate this confluence, we must consider the profound implications for music education, composition, and
appreciation. How can we leverage machine learning to augment human musical intuition? What new insights into
musical cognition can emerge from this synthesis? By exploring these questions, we open doors to innovative pedagogical
tools, more nuanced music recommendation systems, and perhaps even new forms of musical expression. The future of
music analysis lies not in choosing between human expertise and artificial intelligence but in orchestrating a symphony
where both play in perfect harmony, each enhancing the other’s strengths and compensating for limitations.

Bio: Dr. Kaustuv Kanti Ganguli is an Associate Professor of Artificial Intelligence at Zayed University and a Scholar
at New York University Abu Dhabi Scholar, spearheading computational musicology and machine learning research. His
innovative work bridges AI and music, focusing on Arabian Gulf and South Indian repertoires. Dr. Ganguli develops AI
models that enhance music understanding, preservation, and education by combining engineering approaches with human
cognition. A President’s Gold Medal recipient and accomplished Hindustani vocal performer, his expertise spans machine
learning, virtual reality, and audio processing. His groundbreaking projects include Raga/Makam characterization, multi-
sensory perception, and crossmodal correspondence that collectively foster a deeper appreciation for diverse musical
traditions through the lens of artificial intelligence. Kaustuv envisions blending humanistic and computational methods
in a cross-disciplinary environment within a liberal arts framework, focusing on cutting-edge research and sustainable,
innovative teaching.

Martin Hartmann: Music and Movement: Exploring Social and Multimodal Dimensions of Rhythmic Entrain-
ment

The talk addresses key challenges in the field of music and movement through two ongoing studies at the Centre of Excel-
lence in Music, Mind, Body and Brain at the University of Jyväskylä. The first challenge explores rhythmic-social entrain-
ment within the context of free dyadic dance. We present a study that examines the relationship between rhythmic-social
entrainment and social as well as musical affiliation during adolescence, using markerless motion capture technology.
Following a 2x2 factorial design, participants dance freely in dyads with a friend and with a stranger to music of their
choice and to music selected by us. The second challenge focuses on the multimodality of rhythmic-social entrainment.
We discuss a study that employs motion capture and surface electromyography to investigate the impact of visual cues
and performed activities on acoustic features, physiological responses, and kinematic responses in choir singing. The goal
is to understand how the visibility of other choir members and the performed activities (chat, homophony, polyphony, and
musical improvisation) influence different types of individual and group responses. In addition to exploring the social
aspects of rhythmic entrainment in dance and its multimodal nature in choir singing, we emphasize the extraction of mu-
sical features and individual and social acoustic and kinematic features. We also consider potential take-home messages
from these studies for the music information retrieval community and beyond.

Bio: Martin Hartmann is an Assistant Professor of Musicology at the University of Jyväskylä, where he works for the
Centre of Excellence in Music, Mind, Body, and Brain and for the European Research Council project MUSICONNECT.
His research encompasses music and movement, perception, information retrieval, and therapy. Currently, he specializes
in the computational modeling of multimodal interactions in music and dance contexts. He is an executive group member
of the Finnish Doctoral Network for Music Research and the local coordinator of the EU-funded FORTHEM Alliance
Lab for Arts and Aesthetics in Contemporary Society. He led the project “Interaction in Music Therapy for Depression”,
maintains the MoCap (Motion Capture) Toolbox for MATLAB, and holds editorial roles for the journals Music Perception
and Psychology of Music.

Amanda Krause: Can We Categorise Younger Adult Listeners?

The evolution of digital listening technologies continues to impact the way we think about music consumption and music
listening practices. Krause and North’s (2016) findings suggest that, in addition to demographic characteristics, psycho-
logical constructs should be considered when investigating listening practices and technology use. The present study uses
latent profile analysis (LPA), which is a statistical technique that focuses on identifying latent subgroups within a popu-
lation based on a set of variables. With this study, LPA affords us the opportunity to attempt to categorise types of music
listeners. To explore this possibility, we draw on data collected from a sample of 584 younger adults residing in Australia

44



Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

(Mage = 19.62; 74.10% female). Participants were asked to complete an online questionnaire that included demograph-
ics, the musicianship module of the MUSEBAQ (Chin, et al., 2018), the Music Engagement Test (MET; Greenberg &
Rentfrow, 2015), Langford’s (2003) Big Five proxy personality scale, Krause and Hargreave’s (2013) Music Self-Images
Questionnaire, and Krause and Brown’s (2021) format use measure. With analyses underway, preliminary indications
suggest that format use and MET scores may differentiate listener typologies. Study findings further our theoretical
understanding of how individuals consume music in everyday life.

Bio: Dr. Amanda E. Krause is a Senior Lecturer (Psychology) in the College of Healthcare Sciences at James Cook
University (Queensland, Australia). As a music psychology scholar based at James Cook University, she studies how we
experience music in our everyday lives.

Her passion for researching the social and applied psychology of music has led her to give guest lectures and public
talks and serve as President of the Australian Music & Psychology Society (AMPS). She is the author of numerous peer-
reviewed academic publications and has spoken on her research to academics and industry leaders at conferences around
the world. Her research has made significant contributions to understanding how listening technologies influence people’s
experiences and how musical engagement impacts well-being. Dr Krause’s current programs of research concern how
everyday music and radio experiences influence people’s well-being.

Sebastian Stober: Generative AI Training and Copyright Law

Training generative AI models requires extensive amounts of data. A common practice is to collect such data through web
scraping. In the USA, AI developers rely on "fair use" and in Europe, the prevailing view is that the exception for "Text
and Data Mining" (TDM) applies. In a recent interdisciplinary tandem-study with a legal expert, I have argued in detail
that this is actually not the case because generative AI training fundamentally differs from TDM. In this talk, I will share
our main findings and the implications for both public and corporate research on generative models. I will further discuss
how the phenomenon of training data memorization leads to copyright issues independently from the "fair use" and TDM
exceptions. Finally, I would like to outline how the ISMIR could contribute to the ongoing discussion about fair practices
with respect to generative AI that satisfy all stakeholders.

Bio: Sebastian Stober is professor for Artificial Intelligence at the Otto-von-Guericke-University Magdeburg, Germany.
He studied computer science with focus on intelligent systems in Magdeburg until 2005 and received his PhD with
distinction on the topic of adaptive methods for user-centered organization of music collections in 2011. From 2013 to
2015, he was postdoctoral fellow at the Brain and Mind Institute in London, Ontario where he pioneered deep learning
techniques for studying brain activity during music perception and imagination. Afterwards, he was head of the Machine
Learning in Cognitive Science Lab at the University of Potsdam, before returning to Magdeburg in 2018. In his current
research, he investigates and develops generative models for music and speech as well as methods to better understand
what an artificial intelligence has learned and how it solves specific problems. To this end, he combines the fields of
artificial intelligence and machine learning with cognitive neuroscience and music information retrieval.
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TISMIR Presentations





This year marks the first time we have included presentations from the journal Transactions of the International Society
for Music Information Retrieval (TISMIR) in the ISMIR conference program. This initiative aims to enhance the visibility
of TISMIR and encourage more submissions and participation in the journal.

Any TISMIR paper published between June 1, 2023 and May 31, 2024 qualified for presentation, provided the authors
registered during the regular registration period. We are pleased to announce that 10 TISMIR papers were registered and
presented at this year’s ISMIR conference (see list below).

These 10 papers were integrated into the Oral and Poster sessions, ensuring they received the same level of attention and
relevance as regular ISMIR papers.

The ISMIR 2024 General Chairs extend our thanks to the TISMIR Editors-in-Chief and the ISMIR Board for their support
and collaboration in making this possible.

The papers below are not included in the ISMIR 2024 proceedings, but can be accessed by visiting the TISMIR website
(https://transactions.ismir.net/).

Papers presented (sorted alphabetically by first author):

1. Edwards, D., Dixon, S. and Benetos, E., 2023. PiJAMA: Piano Jazz with Automatic MIDI Annotations. TISMIR,
6(1), p.89–102.

2. Fabbro, G., Uhlich, S., Lai, C.-H., Choi, W., Martínez-Ramírez, M., Liao, W., Gadelha, I., Ramos, G., Hsu, E., Ro-
drigues, H., Stöter, F.-R., Défossez, A., Luo, Y., Yu, J., Chakraborty, D., Mohanty, S., Solovyev, R., Stempkovskiy,
A., Habruseva, T., Goswami, N., Harada, T., Kim, M., Lee, J.H., Dong, Y., Zhang, X., Liu, J. and Mitsufuji, Y.
(2024) ‘The Sound Demixing Challenge 2023 – Music Demixing Track’, TISMIR, 7(1), p. 63–84.

3. Maia, L.S., Rocamora, M., Biscainho, L.W.P. and Fuentes, M. (2024) ‘Selective Annotation of Few Data for Beat
Tracking of Latin American Music Using Rhythmic Features’, TISMIR, 7(1), p. 99–112.

4. Özer, Y., Schwär, S., Arifi-Müller, V., Lawrence, J., Sen, E. and Müller, M. (2023) ‘Piano Concerto Dataset (PCD):
A Multitrack Dataset of Piano Concertos’, TISMIR, 6(1), p. 75–88.

5. Peter, S.D., Cancino-Chacón, C.E., Foscarin, F., McLeod, A.P., Henkel, F., Karystinaios, E. and Widmer, G. (2023)
‘Automatic Note-Level Score-to-Performance Alignments in the ASAP Dataset’, TISMIR, 6(1), p. 27–42.

6. Plaja-Roglans, G., Nuttall, T., Pearson, L., Serra, X. and Miron, M. (2023) ‘Repertoire-Specific Vocal Pitch Data
Generation for Improved Melodic Analysis of Carnatic Music’, TISMIR, 6(1), p. 13–26.

7. Schwär, S., Krause, M., Fast, M., Rosenzweig, S., Scherbaum, F. and Müller, M. (2024) ‘A Dataset of Larynx
Microphone Recordings for Singing Voice Reconstruction’, TISMIR, 7(1), p. 30–43.

8. Uhlich, S., Fabbro, G., Hirano, M., Takahashi, S., Wichern, G., Le Roux, J., Chakraborty, D., Mohanty, S., Li, K.,
Luo, Y., Yu, J., Gu, R., Solovyev, R., Stempkovskiy, A., Habruseva, T., Sukhovei, M. and Mitsufuji, Y. (2024) ‘The
Sound Demixing Challenge 2023 – Cinematic Demixing Track’, TISMIR, 7(1), p. 44–62.

9. Weiß, C., Arifi-Müller, V., Krause, M., Zalkow, F., Klauk, S., Kleinertz, R. and Müller, M. (2023) ‘Wagner Ring
Dataset: A Complex Opera Scenario for Music Processing and Computational Musicology’, TISMIR, 6(1), p.
135–149.

10. Zhang, Y., Zhou, Z., Li, X., Yu, F. and Sun, M. (2023) ‘CCOM-HuQin: An Annotated Multimodal Chinese Fiddle
Performance Dataset’, TISMIR, 6(1), p. 60–74.
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ABSTRACT

Repetition is central to musical structure as it gives rise

both to piece-wise and stylistic coherence. Identifying

repetitions in music is computationally not trivial, espe-

cially when they are varied or deeply hidden within tree-

like structures. Rather than focusing on repetitions of mu-

sical events, we propose to pursue repeated structural rela-

tions between events. More specifically, given a context-

free grammar that describes a tonal structure, we aim to

computationally identify such relational repetitions within

the derivation tree of the grammar. To this end, we first

introduce the Template, a grammar-generic structure for

generating trees that contain structural repetitions. We then

approach the discovery of structural repetitions as a search

for optimally compressible Templates that describe a cor-

pus of pieces in the form of production-rule-labeled trees.

To make it tractable, we develop a heuristic, inspired by

tree compression algorithms, to approximate the optimally

compressible Templates of the corpus. After implement-

ing the algorithm in Haskell 1 , we apply it to a corpus of

jazz harmony trees, where we assess its performance based

on the compressibility of the resulting Templates and the

music-theoretical relevance of the identified repetitions.

1. INTRODUCTION

Repetition has been widely recognized as an essential

means of establishing effects of coherence in music [1–5].

In Western music, at least, it operates at multiple levels

of structure—whether within individual compositions or

across different pieces—and takes the shape of musical

motifs, themes [6–9], and sectional forms [10–14], among

others.

In formalizing repetition in, we need to clarify the ob-

ject, the means, and the scope of repetition. The object

specifies the kind of entities being repeated—for instance

concrete pitch events or abstract relations between them.

By means of repetition we refer to processes via which the

1 https://github.com/ren-zeng/

formal-modeling-of-structural-repetition.git

© Z. Ren, Y. Rammos, and M. Rohrmeier. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: Z. Ren, Y. Rammos, and M. Rohrmeier, “Formal Modeling

of Structural Repetition using Tree Compression”, in Proc. of the 25th

Int. Society for Music Information Retrieval Conf., San Francisco, United

States, 2024.

objects are repeated.The scope specifies the musical con-

text in which any repetitions are identified.

This paper focuses on structural repetitions whose ob-

jects are not the musical events themselves but rather rela-

tions among them. By way of a musical example, consider

the first eight bars in the jazz standard “Satin Doll.” In

common form-theory [10] terms, is sentential; its first half

(“presentation”) establishes and repeats a “basic idea” one

step higher, whereas the second half (“continuation”) ac-

celerates the harmonic rhythm towards a closing gesture. 2

A parse tree of the piece (see Figure 1a) based on the jazz

harmony grammar by Rohrmeier [15] clarifies the chord

dependency and constituency. Here we may observe that

the varied repetition of the basic idea in the presentation

is reflected in the parallelism between the respective tree

components. 3

One might think that the tree topology suffices to cap-

ture the musical intuition of the parallel structures within

this phrase. Further observation reveals that the equality

in topology is at most a necessary but not sufficient con-

dition for parallelism. Equality between tree topologies

can only express sameness of grouping structure (“con-

stituency”), irrespective of group contents. This is not

enough to describe common pattern-like tonal structures

such as sequences. The essence of the phenomenon in this

example lies also in the equality of the relations (edge la-

bels). Listeners familiar with the genre would identify the

repeating objects as “ii-V”-type motions. To make the re-

lations explicit, we construct a production-rule-labeled tree

as shown in Figure 1b. this representation, the parallelism

is reflected in the equality of labeled tree components. This

notion of repetition, now construed as equality of abstract

relations, is crucial in formally capturing parallelism in

music.

The means of repetition can be informally understood

as the coloring present in the rule-labeled tree, which de-

marcates different rule types. This coloring imposes on

the derivation of the piece a repetition constraint that is re-

cursively constrained: indeed, one challenge is to express

repetition not just between tree leaves or sub-trees, but also

between connected subgraphs of the tree. This generaliza-

tion would enable us to express deep-level repetitions of

tonal frameworks despite non-parallel operations close to

2 This hearing becomes obvious after considering the parallelism
within the melody (not shown in the figure).

3 “Tree component” here refers not just to subtrees but also to con-
nected subgraphs within the tree.
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D♭7
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A7
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A7E-7
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G7D-7
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G7D-7

(a) Harmony tree of Satin Doll mm. 1-8.

↷

∗←→

↷

◦/♭5

↘5

∗∗

↷

↘5

∗∗

←→

↘5

∗∗

↘5

∗∗

←→

↘5

∗∗

↘5

∗∗

(b) The rule-labeled tree corresponding to the harmonic analy-
sis. “↷” indicates applied dominant relation. “←→”indicates
prolongation. “↘5” indicates diatonic descending fifth relation.
“◦/♭5” indicates tritone substitution.

Figure 1: Hierarchical harmonic analysis of “Satin Doll”

mm. 1-8 using the jazz harmony grammar [15] under two

representations.

the surface (e.g. ornaments). A constructive definition of

repetition means is provided in section 3.

Finally, we distinguish two kinds of scopes for repeti-

tion: piece-wise and corpus-wise. This distinction is im-

portant for characterizing musical styles. For instance, the

“ii-V-I” chord progression in jazz is a recurrent harmonic

device across the corpus. In contrast, the two descend-

ing thirds arranged one descending step apart, which open

Beethoven’s Fifth Symphony, establish themselves as a

motive through specific processes of repetition within the

piece (and not outside it).

2. RELATED WORK

Leaving aside historical texts, a plethora of contemporary

theoretical studies have examined the phenomenon of rep-

etition in music [16], as well as the distinction between—

borrowing Eugene Narmour’s terms [17]—“style struc-

tures” [18, 19] and piece-specific “idiostructures” [7, 20].

To computationally model the repetition phenomena in

the “Satin Doll” example of section 1, we coordinate two

kinds of hierarchical structures: one that explains musical

entities in terms of a context-free grammar(CFG), and an-

other that explains the the repetition of grammar rule appli-

cations. Hierarchical models of tonal structure are not new

[21–25]. The same can be said about the hierarchical un-

derstanding of repetition itself such as the String Pattern-

Induction Algorithm (SPIA) [26]. Methods for repetition

identification have primarily focused on the repeated ma-

terial itself by searching for exact or inexact successions

[27–32] (also see [33] for an overview of this body of re-

search). However, to the best of our knowledge, and out-

side the sphere of purely music-theoretical contributions,

little attention has been paid to computational models of

repetition whose objects are relations (generative proce-

dures). Variation, for example, is often understood as a

departure from exact repetition by means of ad-hoc or sys-

tematic transformations on a concrete entity. In this paper,

by constrast, we understand variation as a different elabo-

ration of the same abstract entity. Building upon the work

by Finkensiep at el. on repetition structure inference [34],

we extend its notion of “formal prototypes” to accommo-

date non-exact repetitions.

In the field of computer science, grammar-based com-

pression algorithms aim to compress data by factoring out

repeated information and storing it only once. Grammar-

based compression algorithms have been developed and

studied both for strings [35] and trees [36–40]. With string-

like input data, the Sequitur algorithm [41] encodes a com-

pressed string by constructing a straight-line grammar—a

subclass of CFGs—whose language size is equal to one.

When the input data have tree or forest form, algorithms

such as [35–37, 39, 40] construct a straight-line tree pro-

gram by iteratively constructing repeated units using “di-

grams,” which assemble a unit of repetition from two adja-

cent units. In the case of tree patterns, a digram consists of

a root plus one of its children. Among the related research,

the TreeRepair algorithm by Markus Lohrey et al. [37] is

relevant as it is specifically concerned with the notion of

“deep-level repetition”, i.e. of connected graphs within a

tree.

In this paper, we formalize repetition patterns as func-

tions operating on generic abstract syntax trees. Using a

new approach that is based on tree compression algorithms

and formal prototypes, we introduce a model that can dis-

cover piece-specific and stylistic patterns from a forest of

abstract syntax trees.

3. FORMALISM

Meta-rule. A meta-rule is a list of symbols in N
+∪{_, ⋆}

where “_” denotes a new symbol, “⋆” denotes the recur-

rence of the parent symbol (“parent repeat”), and “n” de-

notes the recurrence of the n-th argument (“sibling re-

peat”). In the rest of the paper, we use M to denote the

space of meta-rules. Each m ∈ M induces a repetition

function repm : (X,Xn) → Xm+k where the first argu-

ment represents the root of a sub-tree and the second repre-

sents its children. Here are two examples of the workings
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of the repm function:

rep⟨_,_,1,⋆⟩(5, [3, 1])) = [3, 1, 3, 5]

rep⟨⋆,_,2,_,_,4⟩(t, [a, b, c]) = [t, a, a, b, c, b].

Intuitively, a meta-rule encodes the atomic “means” of

repetition within a tree structure without specifying the

object of repetition. 4 In addition, for m ∈ M, we de-

fine sizeIn(m) to be the number of “_” symbols and the

sizeOut(m) to be the length of the meta-rule.

Template. Given a context-free Grammar G where PG

is the set of production rules, we define its corresponding

Template TG constructively using following axioms:

1. (Rule Lifting)

∀f ∈ PG. f ∈ TG

2. (Composition) 5

∀f, g ∈ TG, i ≤ arity(g). (i, g, f) ∈ TG

3. (Replication)

∀g ∈ TG,m ∈M, f⃗ ∈ T
sizeIn(m)
G . (g,m, f⃗) ∈ TG

TG is effectively a context-free grammar that generates

PG-labeled trees. The template is a structured representa-

tion of a rule-labeled tree; each template can be mapped

to a unique rule-labeled tree but each rule-labeled tree can

be assigned to multiple templates. Each rule-labeled tree

can be embedded as a template in a trivial way using the

axioms Rule Lifting and Replication with the meta-rules

containing only “_”.

We view the problem of discovering objects and means

of repetition as one of inferring optimally compressible

templates that generate the given production-rule-labeled

trees. Given a collection of rule-labeled trees, we want to

parse them as templates, so that the total size of the list of

templates is minimized under memoization. 6

3.1 Atomic parsing operations for TG

P-rewrite. Given a pattern of form (i, f, xi), referred to

as a “digram” in [37], the rewrite procedure operates as

depicted in Figure 2 in a post-order fashion, replacing all

non-overlapping instances of the pattern within the tree.

Through iterative application, P-rewrite facilitates the ab-

straction of a connected subgraph of a tree in the form of a

single node. 7

4 Visualizing meta-rules as strings of literal symbols, for instance
“ABAT”, would be more intuitive and readable. Here we opt for a ref-
erential representation as it facilitates the computational implementation.

5 Here the notion of composition extends single-argument function
composition to multiple arguments. g ◦i f denotes the function ob-
tained by passing the output of f to the i-th argument of g. For com-

position and replication we also require the functions involved to have
compatible types. The arity of a template, informally speaking, is the
number of arguments needed to form a complete tree. For a template
lifted from a production rule, its arity is the number of child sym-
bols. For templates constructed using composition, arity((i, f, g)) =
arity(f) + arity(g) − 1. For templates constructed using replication,

arity((g,m, f⃗)) =
∑

x∈repm(g,f⃗)
arity(x).

6 This connection to memoization is inspired by [42].
7 P-rewrite mirrors the “replacement step” described in [37]. To the

best of our knowledge, this is the first application of this notion in the
analysis of musical structure.

g

cf

yx

ba 7−→
(3, g, f)

cyxba

Figure 2: A single step of P-rewrite using the template

(3, g, f) arise from the composition axiom.

f

ab

w

f

vuyx

a 7−→
(f, ⟨_, ⋆, _, 1⟩, (a, b))

wvuyx

Figure 3: A single step of R-rewrite using the meta-rule

m = ⟨_, ⋆, _, 1⟩.

R-rewrite. R-rewrite is responsible for abstracting

means of repetition. Given a m ∈ M, R-rewrite ap-

plies to the tree whose first-level children are of the form

repm(g, f⃗) for some g and f⃗ . For example if m =
⟨_, ⋆, _, 1⟩, then the rewrite procedure is the operation

shown in Figure (3). R-rewrite corresponds to the repli-

cation case of TG.

Figure 4 demonstrates the relationship between a rule-

labeled tree and the template that generates it. Note that

at the most abstract level (Figure 4d) the template shows

that the entire dominant region of the Satin Doll theme fol-

lows a “AABB” repetition pattern (indicated by the meta-

rule m3 = ⟨_, 1, _, 2⟩) where “A” and “B” are templates

T2 and T1 respectively. It is worth noting that the ob-

jects of this particular repetition pattern do not appear at

the same structural level in the original rule-labeled tree.

In general, the Template formalism allows us to coordinate

tonal structure and repetition structure in a single hierar-

chical framework. It is the Composition axiom that makes

this possible, since it can abstractly represent a connected

graph of a tree as a single node. This mechanism is re-

lated to tree adjunction and substitution in Tree Adjoining

Grammar (TAG) [43, 44]. 8

4. ALGORITHMS

The algorithm draws insights from [37] and [34], in par-

ticular their methods for tree and repetition pattern extrac-

tion. Departing from [37], our proposed algorithm intro-

duces an additional replacement (R-rewrite) step to sum-

marize repetition configurations. In comparison to [34],

which operates with strings rather than trees, we introduce

a mechanism that handles structural variations, and also

derive meta-rules from data instead of prescribing a col-

lection thereof. Furthermore, our algorithm differentiates

8 A template of the form (i, g, f) simulates tree adjunction when g is
a non-trivial template, and tree substitution when f is a non-trivial tem-
plate.
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↷

∗←→

↷

◦/♭5

T1

↷

T1(←→,m1, [T1])

(←→,m1, [T1])

(a)

↷

∗←→

(↷,m2, [◦/♭5])

T1T1T2

T2

(b)

↷

∗(2,←→, T3)

T1T1T2T2

(c)

↷

∗(T4,m3, [T2, T1])

(d)

T1 := (↘5,m1, ∗) m1 = ⟨_, 1⟩

T2 := (←→,m1, [T1])

T3 := (↷,m2, [◦/♭5]) m2 = ⟨⋆, _⟩

T4 := (2,←→, T3) m3 = ⟨_, 1, _, 2⟩

(e)

Figure 4: One possible parse of the rule-labeled tree in

Figure 1b. Figures (a-d) demonstrate parsing steps (in

bottom-up direction) using P and R rewrites, while figure

(e) shows the definition of binded variables, which are col-

ored accordingly.

repetition patterns by their scopes.

The algorithm works by incrementally constructing a

table of mined patterns, whether templates or meta-rules.

Its shape is identical to that of Table 1. Given a forest of

rule-labeled trees, a pattern is global if it occurs at least in

two trees, and local if it occurs at least twice in a single

tree (but not in any other tree).

4.1 The Compression Algorithms

The goal is to find the minimal encoding achievable

through a series of P-Rewrite and R-Rewrite operations.

An exact solution would require us to try out all the possi-

ble rewrite steps (including all possible choices of patterns

or meta-rules to write on), with each rewrite generating a

new state dependent on the previous state of the program.

Even with dynamic programming techniques, such an ap-

proach would be computationally intractable. To tame the

computational complexity of the optimization problem, we

define two ‘greedy’ heuristics that help find rewrite candi-

dates: a Local Compression for single trees (Algorithm 1)

and a Global Compression for forests (Algorithm 2). The

complete compression algorithm consists in an iteration of

Algorithms 1 and 2 until a fixed-point is reached (when the

result convergence).

Algorithm 1 The Local Compression Algorithm (a Single

Step)

1: Input

t : Rule-labeled tree

dP : Dictionary from symbols to templates

dM : Dictionary from symbols to meta-rules

2: function compressL(t, dP, dM )

3: (oP , or)← occurrenceL(t)
4: c← bestCandidate(op, or)
5: if c = Nothing then

6: return (t, tP, dM)
7: else if c ∈ op then

8: t′ ← p-Rewrite(c, t)
9: dP ′ ← update(dP, c)

10: dM ′ ← dM
11: else if c ∈ or then

12: t′ ← r-Rewrite(c, t)
13: dP ′ ← dP
14: dM ′ ← update(dM, c)
15: end if

16: return (t′, dP ′, dM ′)
17: end function

The function occuranceL/occuranceG constructs a

dictionary of all the patterns and their locations in

the tree/forest for potential rewrite. The function

bestCandidate in both algorithms is defined by compar-

ing the net memory savings of the rewrite. 9 Given a tree

t, the local frequency of a composition template of the

form p = (i, g, f), FreqPL (t, p), is equal to the maxi-

mal non-overlapping occurrences of the pattern within a

tree. Its global frequency within a forest T , denoted as

FreqPG(T, p) is the number of pieces where it is present; if

it occurs multiple times in a tree of the forest, it still con-

tributes 1 to the global frequency.

The local frequency of m ∈ M, FreqRL (m) is the sum

of all local frequencies of the patterns that match a repli-

cation template (g,m, f⃗) within a tree. 10 The global fre-

quency FreqRG(T,m) simply counts the number of pieces

where it occurs.

FreqRL (t,m) =
∑

g∈label(t)

FreqPL ((g,m, children(g)))

(1)

9 A net memory saving of a pattern defined as its unit memory saving
multiplied by its number of occurrence minus the storage cost. If a pattern
is already in the dictionary, then the storage cost is zero.

10 Similarly with the “non-overlapping” constraint of derivation pat-
terns, we do not count re-occurrences of a meta-rule in a node if the same
meta-rule also occurs in any of its children on a repeating position.
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Algorithm 2 The Global Compression Algorithm (a single

step)

1: Input

dE : Dictionary from piece-id to (t, dP, dM)

dPG : Dictionary from symbols to global templates

dMG : Dictionary from symbols to global meta-rules

2: function compressG(dE, dPG, dMG)

3: (doP , d
o
M )← occurrenceG(dE)

4: c← bestCandidate(doP , d
o
M )

5: if c = Nothing then

6: dE′ ← compressL over dE, only update

7: local tables if the rule is not in dPG or dMG

8: dP ′
G ← dPG

9: dM ′
G ← dMG

10: else if c ∈ dop then

11: dE′ ← apply p-Rewrite(c) over trees in dE
12: dP ′

G ← update(dPG, c)
13: dM ′

G ← dMG

14: else if c ∈ doM then

15: dE′ ← apply r-Rewrite(c) over trees in dE
16: dP ′

G ← dPG

17: dM ′
G ← update(dMG, c)

18: end if

19: return (dE′, dP ′, dM ′)
20: end function

As an example, in the tree in Fig 1b, the meta-rule m1 =
⟨_, 1⟩ occurs six times 11 while the template T1 = (↘5

,m1, ∗) occurs four times. 12

The size for a composition template (i, g, f) is always 3
when g and f are stored in memory, because we only need

two symbols to represent them, and an integer to specify

the location at which they are composed. The unitSave
of a composition template is always 1, as it replaces two

nodes in the tree with one, thus decreasing the tree size

by 1. The size of a replication template (g,m, f⃗) is 2 +
sizeIn(m) for similar reason. The unitSave of meta-rule

m is sizeOut(m)−sizeIn(m) as the difference represents

the number of symbol repeats.

5. EXAMPLE APPLICATION: REPETITION

MINING ON THE JAZZ HARMONY TREE BANK

To exemplify an application of the proposed model, we

turned to the Jazz Harmony Tree Bank dataset [45], which

contains 150 pieces with annotated harmony labels. The

annotations are in accordance with the formal-grammar

trees of [15]. Since our focus is on modeling repeated

relations among chords, rather than the chords alone, we

need to transform our input from chord-labeled trees to

rule-labeled trees in the same fashion as in Figure 1b. To

this end, for every node in the tree we match chord labels

with abstract production rules of [15]. The resulting rule-

11 as opposed to eight times because of the non-overlapping constraint
12 This is made more explicit by the reduced tree in Figure 4a.
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Figure 5: Corpus size plotted against the number of global

compression steps. The overall reduction in corpus size is

from 7948 to 3385.

labeled trees are ranked trees, 13 which is a required prop-

erty for the compression algorithms (see [37]).

5.1 Results

In global compression, the decrease in tree size in the cor-

pus is partly offset by the expansion of the global-rule ta-

ble. 14 In initial iterations, this trade-off is highly advan-

tageous, as only few instances of certain patterns in the

corpus are needed to offset the cost of storing rules. There-

after, as shown in Figure 5, the compression size rapidly

converges, demonstrating the efficiency of this process. It

is worth noting a slight upward trend in the curve towards

the end. This is because the algorithm does not mandate

a reduction of the corpus size at each step; rather, it ex-

tracts patterns as long as they occur twice, whether locally

or globally.

Following global compression, each piece is repre-

sented in a significantly more condensed format, utilizing

the global-rule table. As shown in Figure 6, all pieces are

compressed to at least 2/3 of their original size. In particu-

lar, four pieces are compressed to the size of one. 15 These

pieces and their changes are the following: “Equinox” (23

to 1), “Mr. P.C.” (23 to 1), “Subconscious Lee” (63 to 1),

and “Hot House” (63 to 1). Notably, the first two pieces

and the last two have the same rule-labeled tree represen-

tations respectively, indicating that they are derived in the

same manner despite differences in chord labels. They

compress to size 1, because their entire “piece” patterns

occur at least twice and the algorithm therefore identifies

13 A ranked tree guarantees that the same symbol has the same arity. In
a chord-labeled tree, a chord symbol can occur in both branching node
(arity > 0) or leaf (arity = 0); such a tree is thus not ranked.

14 The size of a piece is defined by the sum of the size of the template
nodes in the tree.

15 Only two of the pieces whose compressed size is equal to one are
visible in the plot due to overlaying.
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them as global templates. Table 1 summarizes the number

of rules obtained after global compression of the corpus.

The majority of the rules extracted are global, suggesting

many common derivation patterns and meta-rules repeated

in multiple pieces. To our surprise, all meta-rules found

are global. 16

0

5

10

15

20

25

30

35

40

45

↑ compressedSize

0 20 40 60
originalSize →

Figure 6: Distribution of piece size before (x-axis) and

after (y-axis) global compression. Each dot corresponds

to a piece in the corpus. The indicator line represents 1-1

compression rate. Sizes refer to the individual compressed

trees alone, not counting the size of global rule tables.

Global (stylistic) Local (piece-specific)

Template 198 20

Meta-rule 36 0

Table 1: The numbers of rules after global compression.

6. DISCUSSION AND CONCLUSION

We have presented a formal description and computational

model of structural repetition in music, which also ac-

counts for variations. In seeking a compressed represen-

tation of a forest of abstracted syntax trees, our goal has

been to unveil what is actually repeated in a fundamental

sense, and how entities recur within a specific style. To this

end, we proposed a forest compression algorithm based on

two rewrite operations, each catering to distinct musical

abstractions.

The discovered global meta-rules (see Figure 7) include

some of the hand-coded meta-rules outlined in [34] in

line with musical intuition: αα (M1), ααβ (M64) and

ααβα (M62). Also discovered are meta-rules such as

αβαγ (M20), akin to (but not necessarily identical with)

the “period” in standard contemporary form theory [10],

16 We think this is due to the abstract, general nature of meta-rules,
which makes their recurrence in 150 pieces highly probable.

M1 = ⟨_, 1⟩ M4 = ⟨⋆, _⟩ M9 = ⟨_, _, 1, 2⟩
M13 = ⟨⋆⟩ M16 = ⟨_, ⋆⟩ M17 = ⟨_, 1, 1, 1⟩
M20 = ⟨_, _, 1, _⟩ M27 = ⟨_, _, _, 2⟩ M62 = ⟨_, 1, _, 1⟩
M63 = ⟨_, 1, _, _⟩ M64 = ⟨_, 1, _⟩ M65 = ⟨_, _, _, 1⟩
M100 = ⟨_, _, 1, 1⟩ M101 = ⟨_, _, _, 3⟩ M148 = ⟨_, _, 2, _⟩

Figure 7: The first 15 discovered global meta-rules (whose

length is less than 5) out of total 36. The index n indicates

the n-th discovered global pattern, including both template

and meta rules.

as well as αβγα (M65), which resembles an expanded

ternary structure. Meta-rules with parent-child repeats

(e.g. M4,M13,M16) emerge quite early in the compres-

sion process. The meta-rule ⟨⋆⟩ is the simplest way to nest

a pattern. For example, applying it to the template “V re-

gion followed by I chord” results in the template “V/V re-

gion followed by V chord followed by I chord.” 17 We

believe such recursive repetitions of the same pattern are,

in general, highly meaningful in music. By analyzing the

compression rate of the individual pieces after global com-

pression, one could argue that pieces with higher compres-

sion rates are generally likely to correspond to more “con-

ventional” expressions of a style. In future research, con-

sidering the compression rate of individual pieces could

shed light onto their stylistic attributes and patterns of in-

teraction between style and structure.

We consider the distinction between global and local

abstraction meaningful both for music interpretation and

its computational representation. Global abstractions en-

able the creation of more efficient representations of an en-

tire corpus in comparison with intra-piece, local compres-

sion. From a music-theoretical perspective, intertextual

study is inextricable from the notion of style. For instance,

while a ternary form may appear only once within a piece,

analysts would still recognize it as a conventional entity be-

cause it recurs across the style. Galant schemata [18] can

similarly be thought of as collections of stylistic patterns.

Form archetypes such as AABA and ABA can likewise

be seen as global meta-rules.

By integrating additional types of constraints, the model

has the potential, with certain extensions, to express more

sophisticated repetitions. For example, Schoenberg’s no-

tion of “liquidation” [46] could be recast as the repetition

of abstract relations constrained by decreasing elaboration

depth. The notion of “fragmentation” [10] could also be

modeled as repetition with a constraint on ordering, so that

fragments appear only after the initial, integral structure.

Our framework could also find use in algorithmic music

generation under grammatical constraints. For instance,

one could generate a piece in top-down fashion by sam-

pling patterns and meta-rules discovered within a stylisti-

cally homogeneous corpus.

17 “Region” here indicates non-terminal symbol while “chord” indi-
cates terminal symbol.
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ABSTRACT

Carnatic music is a style of South Indian art music

whose analysis using computational methods is an active

area of research in Music Information Research (MIR). A

core, open dataset for such analysis is the Saraga dataset,

which includes multi-stem audio, expert annotations, and

accompanying metadata. However, it has been noted that

there are several limitations to the Saraga collections, and

that additional relevant aspects of the tradition still need

to be covered to facilitate musicologically important re-

search lines. In this work, we present Saraga Audiovi-

sual, a dataset that includes new and more diverse rendi-

tions of Carnatic vocal performances, totalling 42 concerts

and more than 60 hours of music. A major contribution of

this dataset is the inclusion of video recordings for all con-

certs, allowing for a wide range of multimodal analyses.

We also provide high-quality human pose estimation data

of the musicians extracted from the video footage, and per-

form benchmarking experiments for the different modali-

ties to validate the utility of the novel collection. Saraga

Audiovisual, along with access tools and results of our ex-

periments, is made available for research purposes.

1. INTRODUCTION

In recent years, there has been an increasing empha-

sis on representing non-Western classical music styles

within computational musicology [1, 2], an interdisci-

plinary research area involving musicology and computer

science. To facilitate this research, many repertoire-

specific datasets have been proposed that take into account

the melodic, rhythmic and structural complexities of these

traditions. Several of them are consolidated within the

scope of Dunya, a collection of large music corpora ded-

icated to fuelling research of five major non-Western mu-

sic traditions: Carnatic music, Hindustani music, Turkish

Makam, Beijing Opera and Arab-Andalusian music [1].

© A. Shankar, G. Plaja-Roglans, T. Nuttall, M. Rocamora,

and X. Serra. Licensed under a Creative Commons Attribution 4.0 In-

ternational License (CC BY 4.0). Attribution: A. Shankar, G. Plaja-

Roglans, T. Nuttall, M. Rocamora, and X. Serra, “Saraga Audiovisual: a

large multimodal open data collection for the analysis of Carnatic Music”,

in Proc. of the 25th Int. Society for Music Information Retrieval Conf.,

San Francisco, United States, 2024.

One style of particular interest is Carnatic music, for

which there has been numerous computational musicolog-

ical studies carried out using the Saraga dataset, a subset

of the Dunya corpora dedicated to the Indian Art Music

(IAM) traditions of Hindustani and Carnatic music [3–6].

The Carnatic portion of this dataset comprises performance

audio, expert/automatically extracted annotations, and as-

sociated relevant metadata [7].

The audio data includes the mixture and, for a number

of recordings, multi-track signals for all instrument sources

except the tānpūrā. Since Carnatic music is primarily per-

formed and enjoyed in a live performance setting, the audio

recordings gathered for the Saraga dataset are all recorded

in this context, and hence contain some leakage interfer-

ence in the individual stem signals.

Alongside these audio recordings, Saraga provides au-

tomatically extracted annotations, such as the predominant

pitch track of the vocalist’s melody and rhythmic beats,

and manual annotations, such as melodic patterns and mu-

sical sections. Finally, the dataset includes editorial meta-

data such as performer names, concert/composition titles,

and musical tags such as melodic (rāga) and rhythmic (tāla)

modes, which are crucial for this repertoire.

Whilst Saraga has proven to be a valuable resource for

the analysis of IAM, there are nonetheless many challenges

and important research questions for Carnatic music for

which Saraga is insufficient. Some of these deficiencies –

such as representativeness (e.g., instrument diversity, num-

ber of rāgas, demographics), completeness of annotations,

and data access – have been pointed out in its open peer-

review [8]. However, no new version of the dataset ad-

dressing said problems has been made available, and hence

such deficiencies persist. Furthermore, Saraga contains au-

tomatically extracted features, which although may have

been state-of-the-art at the time, could well be improved

using more modern algorithms [9] and models [10].

In this work, we introduce Saraga Audiovisual, a new

dataset built according to the principles of the original

Saraga, that encompasses 42 new concerts totalling more

than 60 hours of Carnatic music recordings. By including

new artists, compositions, rāgas, and tālas, we improve the

diversity and representativeness of the data. The new col-

lection comprises multi-track audio, video recordings, and

human pose estimation data, the latter two of which are en-

tirely new modalities which are currently not considered in

the first Saraga dataset. We hope that this multimodal data
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will power further research of musically relevant problems

in Carnatic music and encourage the development of un-

derexplored research strands, particularly in music’s visual

and kinetic aspects [11–13]. We also improve documenta-

tion, access, and tools, considering the issues raised for

Saraga [8], and provide a detailed description of the new

dataset regarding musical metadata and coverage.

To showcase the value of the new dataset we present

two benchmarking experiments to (a) demonstrate that the

features extracted from the new audio-visual data are use-

ful for the analysis of codependencies between performer

body movement and vocalisations, an active research area

in IAM analysis [14–21]; and (b) show that the novel

multi-track audio is valuable for Music Source Separation

(MSS) in Carnatic music, a low-level feature extraction

task for which distributed pre-trained models in the liter-

ature do not generalize [22].

2. BACKGROUND AND RELATED WORK

Digital technology has brought new research methods to

musicology [23, 24]. With digital archives and computer

science techniques, researchers can study music corpora

more systematically and quantitatively [25, 26]. Hence,

creating appropriate datasets and research corpora for dif-

ferent music traditions is a fundamental concern in music

information research (MIR) [27–32]. Computational musi-

cological studies have used various data sources: scanned

sheet music, symbolic scores, audio/video recordings, and

motion capture data [11–13, 21, 33–36].

With few exceptions [36, 37], 1 almost all openly avail-

able datasets in the literature for Carnatic and Hindustani

music are compiled from the IAM corpora in CompMu-

sic [28], and more recently, from the Saraga dataset, for

which multi-track audio recordings and manual and auto-

matically extracted annotations are available [7].

Dataset distribution is a major concern in the music in-

formation research community [38], in which data plays

a key role, especially given the advent of DL models.

Saraga is currently accessed through Python notebooks,

but the process is complex, not standardized, and hindered

by bugs and dependency incompatibilities. Such a distri-

bution method requires regular maintenance, which is ex-

pensive and time-consuming. A unified and functioning

access point for the canonical version of the dataset, and a

documented toolkit to browse through the recordings and

annotations are not available.

One other important limitation of Saraga is that it con-

tains only audio recordings. However, music is not only

an auditory experience; multiple lines of research have

demonstrated that the visual and kinetic aspects are all part

of what music fundamentally is [39–41]. Thus, a com-

prehensive study of music performance requires auditory,

visual and kinetic components [11].

In the case of Carnatic music, visual cues like hand/head

gestures and performer gaze can provide the artists con-

1 Using the IEMP North Indian Rāga: https://osf.io/ks325/,
and Karnatak ālāpana multimodal dataset: https://osf.io/

6huvd/ respectively

textual information for an improved dynamic on stage,

whilst also playing a more individualistic expressive role.

This has been investigated in various IAM studies using

motion capture data and pose estimation extracted from

video [14–21]. For this reason, a dataset of Carnatic mu-

sic should ideally include as much of this multimodality as

possible, which we are enabling through the contribution

of the video recordings in the proposed dataset.

3. DATASET DESCRIPTION

Saraga Audiovisual aims to address some of the aforemen-

tioned issues attributed to the first version of Saraga. In this

section, we present the proposed improvements, which are

mainly based on fixes, new recordings, and the novel vi-

sual modality. Although the new dataset falls entirely in

the Carnatic repertoire, the proposed pipeline could be ex-

tended to Hindustani Music in the future.

3.1 New concerts

A total of 42 new concerts are released as part of Saraga

Audiovisual, including multi-track audio and video for all

concerts. The multi-track audio covers three main stems:

vocals, violin, and mr.daṅgam for all renditions, with the

addition of ghat.am and tānpūrā for 9 other concerts. The

audios are all stereophonic and encoded at 44.1 kHz. Since

the audio is recorded during live performances, the individ-

ual stems contain interference from the other sources.

These 42 concerts consist of a total of 235 individual

performances of 223 unique compositions from 131 lead

and accompanying artists. All performances include man-

ually annotated section annotations. 10 distinct tālas and

113 distinct rāgas are represented, an increase of 55 on

the existing Saraga dataset. Figure 1 shows the combined

statistics for the case of the frequency of occurrence of the

same rāga performances over Saraga and Saraga Audiovi-

sual. Our aim is to increase the representation of existing

rāgas whilst including unrepresented rāgas.

Figure 1. Number of occurrences of individual rāgas com-

bining the two datasets. X-axis represents number of oc-

currences, whilst Y-axis indicates how many rāgas there

are with 1, 2, ..., 8 occurrences.
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Figure 2. A video frame fragment from Saraga Audiovi-

sual. The lead singer is VR Raghava Krishna, the violinist

is VV Ravi and the mridangist is Guru Raghavendra.

Content Saraga Saraga AV

Total number of recordings 249 235

Total number of artists 64 131

Number of compositions 202 223

Total number of rāgas 110 235

Unique rāgas in collection 96 113

Total number of tālas 10 10

Total duration of the dataset 52.7 64.8

Table 1. Content comparison of the Carnatic subset of

Saraga and the Saraga Audiovisual dataset (Saraga AV).

The most popular performance format today is vocal-

led, either by a single or multiple vocalists. Despite the fair

criticism of the shortage of instrumental recordings [8], we

decide to consider only concerts led by a singer in Saraga

Audiovisual. Moreover, the singing voice is extensively

explored in the MIR literature, with numerous models de-

signed to address various problems and research questions,

offering opportunities for leveraging, training, and fine-

tuning functional systems. We refine the statement around

representativeness of Saraga to clarify that our dataset is

intentionally vocal-centered.

3.2 Video recordings and human pose estimation

The videos corresponding to the concerts are rendered at

1080p and have a frame rate of 25 fps. They are recorded

with a fixed wide-view position to frame all performing

artists throughout the concert.

Figure 2 depicts the recording setting. The videos are

recorded in a traditional concert set up with microphones

occluding the view of the artists at most times. For ex-

ample, if we observe a singer in this setting, they are in

a seated position with the microphone directed towards

their mouth. Consequently, the microphone head occludes

the mouth, and the stand hampers the view of the singer’s

hands in several instances. In general, occlusions can hin-

der human pose estimation by a very large margin. Af-

ter careful examination of several human pose estimation

models, we choose MMPose [42], a DL model which per-

forms extremely well, given the tricky setting. We extract

human skeletons with 17 key points through its 2-D model.

See Figure 3 for an example of the gesture estimation on a

Saraga Audiovisual example video recording.

Figure 3. Gesture extraction with MMPose. The artist

depicted in the figure is VR Raghava Krishna

3.3 Improving dataset access

Hassle-free and canonical access to the Saraga audio, an-

notations, and also metadata is an issue raised by the com-

munity [8]. We implement a mirdata 2 loader for Saraga

Audiovisual to download, load, and browse through the

canonical dataset and easily filter the data by musically im-

portant aspects such as rāga, tāla, artist, and tonic. These

functions are also available through compIAM 3 , where

models and algorithms for the computational analysis of

Carnatic music are also available.

3.4 Further improvements

Note that some of the features in Saraga are automatically

extracted. Despite not being manually collected, these al-

low for faster, consistent, and reproducible research as we

bypass the need to compute them multiple times. Since

Saraga was first published, much research has been carried

out by the MIR community, and new models to more reli-

ably extract such features are available. Within the context

of this work we compute the melody curves of the novel

recordings using the Carnatic-optimized FTA-Net [10].

4. EXPERIMENTS

In this section we present two experiments using the audio

and visual components of Saraga Audiovisual.

4.1 Multimodal study

There exists various studies that demonstrate the relation-

ship between gesture and musical motifs in an IAM context

[14–21]. Whilst most focus on the North Indian, Hindus-

tani style, a recent study by Pearson et al. presents a quan-

titative attempt at characterising codependencies between

the body movement and vocalisations of Carnatic perform-

ers using a combination of predominant pitch tracks ex-

tracted from audio, and motion tracking data captured us-

ing an inertial measurement system on the body during per-

formance [37]. In an effort to demonstrate the value of

2 https://github.com/mir-dataset-loaders/mirdata
3 https://github.com/MTG/compIAM
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Performer Rāga Dur.

Ashwin Srikant Siṁhēndramadhyamam 09:17

Raghava Krishna Siṁhēndramadhyamam 05:36

Aditi Prahlad Pūrvīkalyāni. 08:15

Prithvi Harish Pūrvīkalyāni. 08:01

Table 2. Saraga Audiovisual performances used for multi-

modal experiment in Section 4.1. Duration’s (mm:ss) cor-

respond to the rāga ālāpana section of the performance, the

rest of the performance is not used for analysis.

Saraga Audiovisual in supporting such studies, we repro-

duce a part of Pearson et al’s analysis here using data ex-

tracted from the proposed multimodal dataset. In the origi-

nal study, performer gesture data is extracted using motion

capture equipment, since here we rely on inferring this in-

formation from video, we make some changes to that part

of the process, outlined in the following section. All other

steps remain identical to the original study and we refer the

reader to the paper for more details.

4.1.1 Experimental setup

We reproduce Pearson et al’s Analysis 1: Do sonic mo-

tif DTW distances covary with spatiotemporal patterns of

gesture? Our sonic data for such analysis is extracted from

4 performances (Table 2) in Saraga Audiovisual, from

which we extract 4 time series corresponding to the rāga

ālāpana section of the performance audio; (1) f0 – the

predominant vocal melodic line, measured in cents above

the performer tonic, extracted using a Carnatic-specific

methodology [10], (2) ∆f0 – the first derivative of f0, (3)

loudness, L, computed as L = 10·log10
S

ref
, where S is the

power spectrum of the raw audio signal and ref is its max-

imum value, and (4) the spectral centroid of the raw audio

signal. Our gestural data is extracted using MMPose and

limited to the performer’s left and right hands (see Section

3.1, and Figure 3), from which we compute the first and

second derivatives to obtain two subsequent time series of

velocity and acceleration, respectively, resulting in 6 ges-

tural time series. The 6 time series are resampled so as to

have identical sampling rates of 24 Hz, and all 10 time se-

ries are smoothed using a 2nd-order Savitzky-Golay filter

with a window length of 125 ms.

In each of the 4 performances, we identify regions of re-

peated melodic motifs using a Carnatic-specific methodol-

ogy [4]. For each motif, we isolate the corresponding seg-

ment in our 4 sonic and 6 gestural time series, and discard

the gestural time series corresponding to the non-dominant

hand. The dominant hand of the performer for each pat-

tern is determined as that which has the highest kinetic en-

ergy, K.E, computed from the velocity tracks, v, where

K.E =
mv2

2 and m is the mass of the moving body part,

assumed equal for both sides. We note that for over 98%

of the identified motifs, the ratio in K.E between the dom-

inant and non-dominant hand is greater than 1.2, i.e. there

is almost always a clear dominant hand. 70% of motifs

are identified as left-handed and 30% as right-handed. The

gesture space for each motif is transformed such that left

and right-hand gestures occur in the same space by mirror-

ing all right-handed gestures in the y-axis, and such that

the gestural space origin corresponds to the centroid of the

body of the performer. This centroid is determined for each

motif as the centroid of the trapezoid corresponding to the

performer’s body, provided by MMPose and visible in Fig-

ure 3.2. The result is a selection of 269 non-overlapping

motifs across the 4 performances, each represented by 4

sonic time series (f0, ∆f0, loudness and spectral centroid)

and 3 gestural time series (position, velocity and accelera-

tion of the dominant hand).

For each pairwise combination of our 269 motifs, we

compute the dynamic time warping (DTW) distance be-

tween each of their 6 sonic time series and 4 gestural time

series, i.e. f0 compared to f0, hand position compared

to hand position etc... Motifs are not compared to them-

selves and as such this constitutes 36,046 motif pairs. This

analysis is concerned with whether there exists a relation-

ship between the DTW distances of sonic and gestural fea-

tures (sonic features: f0, ∆f0, loudness and spectral cen-

troid; gestural features: hand position, velocity and accel-

eration). For each combination of sonic to gestural fea-

tures, we compute Spearman’s rank correlation coefficient

to quantify this relationship, both on a performer level and

across all performers.

4.1.2 Results

The correlation analysis results are presented in Figure

4. Tests for which the p-value is greater than our signif-

icance level of 0.0001 are excluded and replaced with a

grey square in the heatmap. It is not within the scope of

this paper to discuss the results of this analysis in detail,

nor do we consider the size of the data analysed sufficient

to make any meaningful conclusions (0.5 hours of perfor-

mance compared to 3.8 in the original study). We do, how-

ever, emphasize that even with this limited scope, we are

able to identify significant relationships between sonic mo-

tif distances and spatiotemporal patterns of gesture using

the Saraga Audiovisual dataset, corroborating the results of

Pearson et al.’s study. As in that study, we show loudness

as having the strongest correlation with gestural features

across the performers and demonstrate how distinct the in-

dividual performer gesturing styles are, with great varia-

tion in the extent to which performers’ gestures correlate

with f0 and spectral centroid.

4.2 Fine-tuning MSS models with data with bleeding

The current state-of-the-art MSS models are based on

DL architectures which are trained using multi-track

recordings. Some models that are widely used, namely

Spleeter [43] or Demucs [44], are trained with multi-track

stems available through datasets like MUSDB18HQ [45]

or MoisesDB [46], mainly including Western pop styles or

related genres. Although many research works on the anal-

ysis of IAM use the available Spleeter model for source

separation [13,47,48], these models do not generalize well

for Carnatic music due to its varied instrumentation and
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Figure 4. Spearman’s rank correlation coefficient for all performers and on an individual level. Insignificant test results are

represented by a grey square.

Figure 5. Spearman’s rank correlation coefficient for all

performers in the dataset. Insignificant test results are rep-

resented by a grey square.

idiosyncratic singing technique. In Carnatic music, the vi-

olin usually replicates or closely follows the melody of

the singing voice. The tānpūrā provides an ambient can-

vas, and the mr.daṅgam, a pitched percussion instrument,

is strongly present. Existing MSS models are unfamiliar

with such music styles and struggle to give a clean, sepa-

rated singing voice stem.

There have been some efforts by the community to im-

prove MSS for the use case of Carnatic music [22], since

much research is done on top of vocals. Therefore the

availability of isolated vocal recordings is highly valuable

for the computational research of Carnatic music. Datasets

like Saraga offer multi-track audio data, but given the fact

that these recordings are from live concerts, there is leak-

age between sources that are part of the ensemble. The

lack of clean multi-tracks for these music styles has been

reported consistently, but Carnatic music is normally per-

formed and recorded in a live setting. Therefore, recording

musicians separately is not representative of how the tradi-

tion is generally performed. However, there has been some

research on training MSS models with data with bleeding

and some methods have been proposed to show the utility

of data with bleeding [22].

Spleeter is a model based on a U-Net architecture

that operates on the time-frequency domain. It is com-

posed of a 6-layer encoder-decoder structure with skip-

connections. Similar to most spectrogram-based separa-

tion models, Spleeter estimates n separation masks that are

multiplied by the input mixture spectrogram to separate the

sources. The official implementation of Spleeter provides

a framework to fine-tune the available pre-trained models

in order to adapt the system to a specific domain [43].

In an ideal case, clean Carnatic multi-track stems would

be essential to fine-tune Spleeter. However, we utilize

the data with leakage that is part of the Saraga Audiovi-

sual dataset in an attempt to set up a baseline for bespoke

Carnatic vocal separation. We use the provided 2-stem

Spleeter model, trained on a private dataset of 25k sam-

ples of 30s. We fine-tune Spleeter using Saraga and Saraga

Audiovisual, aiming also to study the effect of the newly

collected multi-track data. The models are fine-tuned for
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600k steps with a constant learning rate of 1e-5. The fine-

tuning process takes about a week in a TITAN XP GPU.

4.2.1 Experimental setup

Perceptual tests for MSS have gained interest in the re-

search community, as objective metrics in [49] have been

reported to not always correlate with the perceptual qual-

ity of MSS estimations [50]. Moreover, there is not a stan-

dardized and completely clean testing set for Carnatic sep-

aration. For that reason, we run a listening test with hu-

man subjects, including separations from recordings that

we randomly collect from the Dunya dataset.

The listening test is based on the MUSHRA frame-

work [51]. Subjects are asked to evaluate the vocal quality

and the intrusiveness of other sources in separate stages.

The scores are given on a scale from 1 to 5, with 5 be-

ing the maximum score. In each example, the subject is

shown the original mixture as the reference stimuli, and

the separations are shown unnamed and in a randomized

order. The proposed subjective evaluation follows closely

the ITU-T P.835 recommendation. We select and sepa-

rate 6 Carnatic music concerts, ensuring diversity in au-

dio quality and singer gender. Then, we randomly select a

rendition from each concert, from which we collect a 30s

chunk starting at a random point in time [22].

4.2.2 Results

We collect the results of the perceptual experiments and re-

port the Mean Opinion Scores (MOS) per each model. We

also report the Confidence Intervals (CIs) with α = 0.05.

A total of 20 subjects participated in the survey. Results

are given in Table 3. While Spleeter samples are rated as

having better vocal quality, Spleeter-FT-Sar improves over

interference removal, while Spleeter-FT-SarAV is the most

balanced solution among the three.

From the perceptual experiment, we conclude that

Spleeter can better preserve the quality of the singing voice

over the fine-tuned models. Using noisy data to fine-tune

may be causing the model to lose some ability to properly

discriminate the singing voice components. On the other

hand, as the fine-tuned models improve on interference re-

moval, we argue that it is possible for the pre-trained model

to learn the instrumentation and vocal concepts of Carnatic

music while preserving the knowledge to estimate separa-

tion masks for clean sources. In this particular experiment,

Spleeter-FT-SarAV provides a balanced trade-off between

artifacts and interferences. However, the overall perfor-

mance is comparable to the other systems, suggesting that

the multi-stem recordings have been obtained following

the same peer-reviewed process in Saraga [7]. While estab-

lishing the baseline for Carnatic vocal separation, we also

observe that leakage-aware systems such as [22] are still to

be explored to take complete advantage of the multi-track

data with leakage in both Saraga and Saraga Audiovisual,

and outperform out of domain pre-trained models.

Artifacts Interferences

Spleeter [43] 3.89[3.75,4.04] 2.17[2.04,2.30]

Spleeter-FT-Sar 2.76[2.60,2.93] 3.80[3.68,3.93]

Spleeter-FT-SarAV 3.41[3.27,3.57] 2.88[2.74,3.02]

Table 3. MOS rating comparison between the default

Spleeter [43] and a fine-tuned Spleeter using Saraga (FT-

Sar) and Saraga Audiovisual (FT-SarAV). The higher, the

better; 5 is the maximum rating. 95% CIs are also reported.

5. CONCLUSIONS

In this paper, we introduce Saraga Audiovisual, a multi-

modal dataset for the analysis of Indian Art Music, specifi-

cally of the Carnatic style. The dataset includes multi-track

audio, fundamental frequency extractions from that audio,

performance videos, and human pose estimation extracted

from the video footage. The dataset also includes metadata

like rāga, tāla, composition, and structural annotations like

the ālāpana, kalpanā svara, niraval, and thani āvartana. The

dataset is made available as a mirdata dataloader for easy

and standardized access.

We perform two benchmarking experiments using the

extracted audio and video features: (1) a multimodal anal-

ysis investigating the relationship between performer ges-

ture and vocalisation, and (2) a fine-tuning experiment for

Carnatic vocal source separation with audio data induced

with leakage. Both experiments demonstrate the value of

this data for music analysis in spite of imperfections in the

automatically extracted feature data, such as audio leak-

age in the isolated instrument stems, or instability in the

extracted pose estimations.

We expect Saraga Audiovisual to be a valuable resource

for future work on tasks such as both vocal and instru-

ment based leakage-aware source separation or predom-

inant pitch extraction; and further multimodal studies of

Carnatic music.
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forum, vol. 18, no. 2. Taylor & Francis, 2009, pp.

185–206.

[18] M. Charulatha, “Gesture in musical declamation: An

intercultural approach,” Musicologist, vol. 1, no. 1, pp.

6–31, 2017.

[19] P.-S. Paschalidou, “Effort in gestural interactions with

imaginary objects in hindustani dhrupad vocal music,”

Ph.D. dissertation, Durham University, 2017.

[20] S. Paschalidou, T. Eerola, and M. Clayton, “Voice and

movement as predictors of gesture types and physical

effort in virtual object interactions of classical indian

singing,” in Proc. of the 3rd Int. Symposium on Move-

ment and Computing (SMC), Thessaloniki, Greece,

2016, pp. 1–2.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

67



[21] L. Pearson and W. Pouw, “Gesture–vocal coupling

in karnatak music performance: A neuro–bodily dis-

tributed aesthetic entanglement,” Annals of the New

York Academy of Sciences, vol. 1515, no. 1, pp. 219–

236, 2022.

[22] G. Plaja-Roglans, M. Miron, A. Shankar, and X. Serra,

“Carnatic singing voice separation using cold diffusion

on training data with bleeding,” in 24th Int. Society for

Music Information Retrieval Conf. (ISMIR), Milano,

Italy, 2023.

[23] E. Clarke and N. Cook, Eds., Empirical musicology:

Aims, methods, prospects. Oxford University Press,

2004.

[24] T. Crawford and L. Gibson, Eds., Modern methods for

musicology: prospects, proposals, and realities. Rout-

ledge, 2016.

[25] M. Müller, Information retrieval for music and motion.

Springer Berlin, Heidelberg, 2007.

[26] D. Meredith, Ed., Computational Music Analysis.

Springer Cham, 2016.

[27] R. Caro Repetto and X. Serra, “Creating a corpus

of Jingju (beijing opera) music and possibilities for

melodic analysis,” in Proc. of the 15th Conf. of the

Int. Society for Music Information Retrieval (ISMIR),

Taipei, Taiwan, 2014.

[28] A. Srinivasamurthy, G. K. Koduri, S. Gulati, V. Ishwar,

and X. Serra, “Corpora for music information research

in indian art music,” in Proc. of the Int. Computer Mu-

sic Conf. (ICMC), Athens, Greece, 2014.

[29] B. Uyar, H. S. Atli, S. Şentürk, B. Bozkurt, and
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ABSTRACT

Methods based on deep learning have emerged as a domi-

nant approach for cover song identification (CSI) literature

over the past years, among which ByteCover systems have

consistently delivered state-of-the-art performance across

major CSI datasets in the field. Despite its steady im-

provements along previous generations from audio fea-

ture dimensionality reduction to short query identification,

the system is found to be vulnerable to audios with noise

and ambiguous melody when extracting musical informa-

tion from constant-Q transformation (CQT) spectrograms.

Although some recent studies suggest that incorporating

lyric-related features can enhance the overall performance

of CSI systems, this approach typically requires training a

separate automatic lyric recognition (ALR) model to ex-

tract lyric-related features from music recordings. In this

work, we introduce X-Cover, the latest CSI system that

incorporates a pre-trained automatic speech recognition

(ASR) module, Whisper, to extract and integrate lyrics-

related features into modelling. Specifically, we jointly

fine-tune the ASR block and the previous ByteCover3 sys-

tem in a parameter-efficient fashion, which largely reduces

the cost of using lyric information compared to training a

new ALR model from scratch. In addition, a bag of tricks

is further applied to the training of this new generation, as-

sisting X-Cover to achieve strong performance across var-

ious datasets.

1. INTRODUCTION

In the rapidly evolving field of music information retrieval,

Cover Song Identification (CSI), which aims to identify

different versions of a specific musical composition within

a large database, remains a complex and computationally

challenging task [1, 2]. This problem has received consid-

© X. Du, M. Liu, P. Zou, X. Liang, Z. Wang, H. Liang, and

B. Zhu. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: X. Du, M. Liu, P. Zou, X. Liang, Z.

Wang, H. Liang, and B. Zhu, “X-Cover: Better Music Version Identifica-

tion system by integrating pretrained ASR model”, in Proc. of the 25th

Int. Society for Music Information Retrieval Conf., San Francisco, United

States, 2024.

erable interest for its wide-ranging applications such as in-

tellectual property management and enhancing music rec-

ommendation systems [3, 4].

With the advancements in deep learning, CSI systems

based on neural networks gradually replace traditional

models based on handcrafted features [5, 6] and become a

new paradigm for real-world deployment. Existing meth-

ods typically frame CSI as either a classification prob-

lem [7–9], a metric learning problem [10], or a combina-

tion of both [11,12]. On the other hand, the proliferation of

social video platforms like TikTok has also led to a surge

in short-form videos, which often contain remixed or cov-

ered segments of original compositions and hence involve

copyright infringement issues. Unfortunately, as most of

the existing works above contain a global pooling layer to

directly aggregate the information from all time sections,

they are found to suffer from identifying these seconds-

long short segments.

To address this problem, the latest ByteCover3 sys-

tem [13] first splits each full audio track into a set of short

spectrogram chunks and then uses a neural-network-based

extractor (i.e. the ResNet-IBN module introduced in the

first ByteCover generation [11]) to encode them into latent

embeddings. These low-dimensional embeddings are later

sent to calculate a Local Alignment Loss (LAL) that uses

the matching of local embeddings to identify short queries

against full songs.

Despite the progress in detecting short cover songs, the

ByteCover3 system is still found to be vulnerable to non-

musical information in real-world scenarios. For instance,

musical segments in short videos are frequently overlaid

with ambient noise, speech, or poorly composed user-

generated melodies. The presence of these non-musical

elements that mask or distort the musical elements can mis-

lead the feature extraction phase of ByteCover3, leading to

inaccurate or ambiguous representations of the audio con-

tent. This misrepresentation can degrade the system’s abil-

ity to correctly match the audio sample against its database

of known songs, reducing both the accuracy and reliability

of the system in operational settings.

To enhance the robustness of existing CSI systems, an

intuitive approach is to incorporate more discriminative in-

formation into model training. Recent research [14,15] has

demonstrated that lyric-related features are less susceptible

to being masked by unrelated noise sources and can serve
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as auxiliary inputs to bolster CSI systems. For example,

one recent work [14] utilizes latent embeddings from an

automatic lyrics recognition model (ALR) as lyric-related

features for CSI. However, this approach requires train-

ing an extra ALR module from the beginning and employs

Dali [16] as its training dataset, which implies that it only

supports the recognition of English lyrics.

In this paper, we extend the current ByteCover3 system

by leveraging a pre-trained Automatic Speech Recognition

(ASR) model to jointly model both lyric and musical fea-

tures for short-query identification, which eliminates the

need for training an additional ALR model from scratch.

Specifically, we use Whisper [17] as the pre-trained ASR

module for its inherent scalability and robust recognition

capabilities across multiple languages. However, the train-

ing is still quite challenging in terms of GPU memory con-

sumption and inference time given the large parameter size

of Whisper and its autoregressive nature at the text decod-

ing stage. To counter these issues, we employ a prefix-

tuning fashion that adapts the output of Whisper to CSI

training. A trainable prefix latent is added before each text

decoder block in Whisper to reprogram the model to ex-

tract features specific to CSI task without extensive retrain-

ing of the entire model. Finally, the fusion model is trained

using the local alignment loss (LAL) scheme introduced in

ByteCover3, and together with a bag of new techniques,

we further improve the current ByteCover system to be

more efficient and accurate in CSI tasks with controllable

training GPU memory and reasonable inference time.

2. PRELIMINARIES

This paper builds on ByteCover series [11–13] training

framework and model structure. The primary motivation

of ByteCover series is to develop a highly accurate, robust

and efficient cover song detection system for real-world

industrial-level tasks with various query types and large

music corpora, beyond typical laboratory settings.

ByteCover1 [11] introduced a streamlined framework

designed to train a neural network that extracts version-

related embeddings from the CQT spectrogram of input

audio recordings. This model utilized Instance Batch Nor-

malization (IBN) layer [18] within its ResNet architecture,

which enhances the model’s capability to learn invariant

features while preserving discrimination and is critical for

handling diverse musical styles. Additionally, a General-

ized Mean (GeM) pooling layer was employed to compress

local features into a global feature, optimizing the model’s

training objectives. Furthermore, ByteCover1 adopted a

multi-loss training paradigm that combined classification

loss and triplet loss, fostering a more robust representation

and improved accuracy.

For improved throughput, the authors of Byte-

Cover2 [12] identified an anisotropy in the embedding dis-

tribution of ByteCover1, which led to inefficient utiliza-

tion of the embedding dimension size. To address this is-

sue, ByteCover2 introduced a Principal Component Anal-

ysis - Fully Connected (PCA-FC) layer. The weights of

this layer are informed by the transformation matrix de-

rived from a PCA analysis of the original ByteCover1 em-

beddings. This strategic adjustment effectively alleviated

the anisotropy problem, enabling ByteCover2 to match

the performance of ByteCover1 while only requiring one-

eighth of the dimension size. Consequently, this reduction

drastically accelerated the retrieval of query embeddings

and linearly decreased the storage costs of the embedding

database relative to the magnitude of the dimension size

reduction.

With the emergence of short video content, more

queries in CSI systems appear to be short audio clips.

However, the authors of ByteCover3 [13] observed that

state-of-the-art CSI methods performed suboptimally on

these short queries, where the accuracy of previous deep

learning CSI models [10–12, 19] degraded significantly as

the duration of query audio decreased. This issue was

linked to the global pooling modules employed in previous

works that often neglected local features, which compli-

cates the task of matching segments of songs to complete

tracks. Traditional audio matching algorithms, such as the

"shingling" method referenced in [20], slice inputs into

segments and extract features separately to preserve local

details. Unfortunately, this straightforward strategy strug-

gled when applied to deep learning-based CSI methods,

which are inherently data-driven rather than handcrafted.

Consequently, there is a misalignment between training

and inference objectives: while softmax and triplet losses

focus on matching pairs of embedding vectors, the model

deals with sequences of local embeddings at the inference

phase.

To bridge this gap, ByteCover3 introduced a novel

training paradigm known as Local-Aware Losses (LAL)

for metric learning on sequence data. This approach ex-

tends softmax and triplet losses into a more general form

that directly optimizes the metrics between two sequences

of embeddings. Specifically, ByteCover3 employs the

MaxMean Measure to assess the similarity between two

sequences of vectors, consequently ensuring better align-

ment of the training and inference targets and enhancing

performance. This measure calculates the similarity be-

tween each segment in the query audio and the most sim-

ilar segment in the candidate song, averaging these simi-

larities to produce a final similarity score. This method is

computationally efficient and differentiable. With the use

of LAL and the MaxMean measure, ByteCover3 demon-

strated significant improvements in retrieval capabilities

with 30-second queries.

The subsequent method section, Section 3, describes the

details of X-Cover and is organized as follows:

• Subsection 3.1 introduces the overall framework of

X-Cover, which retains a high-level similarity to

ByteCover3.

• Subsection 3.2 discusses the incorporation of the

pretrained ASR model, Whisper [17], to enhance

the robustness of the CSI system. It also describes

a non-autoregressive decoding method designed to

accelerate Whisper’s decoding. Compared to previ-

ous methods that relied solely on cover song data,
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Figure 1. The input CQT spectrogram and Mel spectrogram are split into n equal-sized chunks with overlap in temporal

dimension. Subsequently, the ResNet-IBN extractor derived from [13] generates an embedding Xm that contains N

local features corresponding to N input chunks with the CQT spectrogram. The optimized Whisper variant generates an

embedding Xl that contains N local features corresponding to N input chunks with the log Mel spectrogram. Then, we

optimize the model with a multi-loss objective that consists of a classification loss Llac and a triplet loss Llat using the

MaxMean measure, where Xp and Xn represent the positive sample and negative sample in triplet loss.

X-Cover achieved superior performance without the

necessity of pretraining on additional lyric data.

This simplification and streamlining of the training

process significantly enhance the efficiency of model

preparation.

• Subsection 3.3 introduces a bag of tricks to improve

the performance of the CSI model, covering aspects

such as data augmentation, model architecture, and

loss function design details.

3. X-Cover

In this section, we delineate the architecture and training

paradigms of X-Cover, emphasizing its novelties: efficient

adaption of Whisper and a bag of tricks for improving

ByteCover3 in Cover Song Identification (CSI) tasks. The

overall architecture is depicted in Fig. 1.

3.1 Overall Framework of X-Cover

The architecture of X-Cover is an evolutionary extension

of ByteCover3, delineated in Section 3. X-Cover retains

the multi-objective learning paradigm and the ResNet-

Based Feature Extractor from ByteCover3. To incorpo-

rate lyric-related features, X-Cover introduces a pretrained

ASR model, Whisper, alongside the existing ResNet-IBN

architecture [11].

In ByteCover3, local features are extracted by initially

resampling the audio to 22, 050 Hz and partitioning it into

N overlapping segments of 20 seconds each, with a 10-

second hop. These segments are subsequently transformed

into CQT spectrograms, serving as the input to the ResNet-

IBN model. The model outputs a 4-D embedding, which

undergoes GeM pooling to yield a compact final local em-

bedding Xm ∈ R
N×Cm , comprising N local features.

To facilitate the integration of Whisper as an additional

feature extractor, mel spectrograms are extracted from the

input audio. To temporally align the features from both

branches, the same chunking strategy as in ByteCover3 is

employed. Post chunking, the specialized Whisper model

for CSI utilizes these mel spectrograms to extract lyric-

related embeddings Xl ∈ R
N×Cl . Upon obtaining the

two sets of latent embeddings, Xm and Xl, a straight-

forward feature-dimensional concatenation is performed

to generate the fused embedding Xf ∈ R
N×(Cm+Cl),

for the simplicity, we redefine it as X ∈ R
N×C where

C = Cf = Cm + Cl. This is feasible due to the temporal

alignment and identical lengths of Xm and Xl. X-Cover

leverages the Local Alignment Loss (LAL) methodology,

originally proposed in ByteCover3, to enhance local seg-

ments matching capabilities. The LAL comprises a classi-

fication loss Llac and a triplet loss Llat, defined as follows:

logitk = MaxMean(X,Wk), (1)

Llac = CE(σ({logitk}
K
k=1), y), (2)

Llat = [MaxMean(Xn,X)−MaxMean(Xp,X)]+,
(3)

where CE(·, ·) is the cross entropy, σ(·) is the softmax

function, Xn,Xp ∈ R
N×C is the fused embedding of

the negative sample and postive sample while calculating

triplet loss. W ∈ R
K×L×C is a trainable weight matrix in

the linear layer before softmax, and Wk ∈ R
L×C denotes

the proxy representation for class k. L is a hyperparameter

which is set to 9 in ByteCover3 and X-Cover. These loss

functions serve as a robust optimization objective, fortify-
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ing the model’s performance and adaptability for emerg-

ing challenges in music information retrieval. The subse-

quent subsections will expound upon these enhancements

and their contributions to the overarching efficacy of X-

Cover.

3.2 Efficient Adaption of Whisper for CSI

Whisper [17] serves as a state-of-the-art ASR framework,

exhibiting robust scalability through its Transformer-based

encoder-decoder architecture. Its efficacy in ASR tasks

has been corroborated by numerous studies [21, 22]. The

encoder processes normalized spectrograms via an initial

stem, consisting of two convolutional layers, before rout-

ing the output through multiple Transformer blocks em-

ploying pre-activation residual connections.

On the decoder end, learned positional embeddings are

integrated with tied input-output token representations to

generate the final transcript. To maintain architectural co-

herence, the encoder and decoder are structured to have

an identical number of Transformer blocks and the same

width.

In the Whisper decoder, an autoregressive approach is

adopted, similar to the GPT series of language models. The

probability each token is sequentially determined based

on the preceding context. Nonetheless, extensive param-

eter count of Whisper renders it challenging for down-

stream applications. Conventional fine-tuning strategies

are computationally expensive, leading us to adopt prefix-

tuning [23], a more efficient alternative that utilizes a

smaller set of trainable parameters.

Motivated by these advances, we introduce an opti-

mized Whisper variant for lyric-based feature extraction

from audio recordings. The detailed structure of it is shown

in Figure 2. The audio encoder ingests chunked log mel

spectrograms Smel ∈ R
N×F×T and comprises blocks with

self-attention and MLP layers. Residual connections are

employed in both layers, culminating in audio features

Xae ∈ R
N×Cae .

For every segment, the text decoder process the corre-

sponding audio feature Xae(i) ∈ R
Cae independently for

transcribing. The text decoder starts with four initial to-

kens tinit ∈ R
4, which serve specific purposes such as

indicating the start of prediction, speech presence, task

specification, and timestamp prediction. These tokens

pass through an embedding layer to yield embedded to-

kens Einit ∈ R
4×Cl , defined during the pretrain phase.

A trainable suffix latent Ee ∈ R
Le×Cl is appended to

these initial tokens. Additionally, before each text de-

coder block, a trainable prefix latent Epj
∈ R

Lp×Cl is

added, forming the input for the first text decoder block

as Ein1 = [Ep1
;Einit;Ee] ∈ R

(Lp+4+Le)×Cl . The prefix

embeddings are learned to overwrite the instruction car-

ried by init tokens, to reprogram Whisper to extract fea-

tures that assit in the CSI task. Compared with the audio

encoder block, the text decoder block incorporates an ad-

ditional cross-attention layer. The decoder block consists

of self-attention, cross-attention, and MLP layers, sequen-

tially connected. The self-attention layer accepts the out-
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Figure 2. The detailed structure of modified Whisper

Model.

put of the preceding text decoder block, while the cross-

attention layer uses both the audio encoder output Xae(i)
as its key and value and the output of self-attention layer

as its query. The MLP layer subsequently processes the

cross-attention output. After processing through the first

text decoder block and subsequent truncation, we obtain

Eout1 ∈ R
(4+Le)×Cl . The same process is repeated for

subsequent text decoder blocks, each time adding a new set

of trainable prefix latents. Since the first Lp output embed-

dings of each text decoder block are truncated, the input

dimensions of each decoder block remain consistent even

after adding a new set of prefix latents. The outputs of each

text decoder block are stored to form an lyric-based feature

group G = [Eout1 ,Eout2 , ...,EoutB ] ∈ R
((4+Le)×B)×Cl .

Finally, We select the last 70% to 80% of the audio-lyric

feature group and the mean across the second dimension

is taken to get the audio-lyric feature Xl(i) ∈ R
Cl . The

medium version of the whisper we adopted contains 24 text

decoder blocks, and the hidden size is 1024.

In terms of computational efficiency, the introduction of

prefix latents enables the Whisper model to generate multi-

ple embeddings in a single forward pass, thereby obviating

the need for autoregressive operations during the decod-

ing phase. This can be regarded as a Non-Autoregressive

(NAR) method for efficient inference [24]. Despite this,

certain studies [24] indicate that NAR performance is gen-

erally inferior to that of Autoregressive (AR) methods.

To explore the performance upper bound of Whisper in

CSI tasks, we also propose an AR-based feature extrac-

tion method. Importantly, in this AR approach, there are

no modifications required to the Whisper model, and its
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parameters are kept frozen throughout the process. The

Whisper model transcribes each audio segment and col-

lects the final hidden states from each inference pass.

These states are then aggregated using a mean operation

to form the lyric-based feature Xl(i). Since the shape of

the embeddings outputted by both NAR and AR methods is

consistent, they can be used interchangeably. In section 4 ,

we refer to the strategy using efficient Whisper adaptation

as "E" and the original Whisper-based strategy as "AR".

Lastly, we introduce a trainable linear projection layer sub-

sequent to the Whisper output to map the embedding di-

mensions Cl to 512. For clarity, the symbol Cl continues

to denote the dimensions of these projected embeddings.

3.3 A Bag of Tricks for Improving ByteCover3

We enhance our model’s performance by incorporating

three techniques: Sparse Softmax, Non-local Operations,

and Grid Distortion. Due to the crowdsourced nature of

the labels in the SHS100k dataset [9], mislabeling of ver-

sion categories is inevitable. Additionally, the SHS100k

dataset contains 8,858 cliques of music, indicating a high

number of classes to distinguish when training models us-

ing softmax loss. Sun et al. [25] demonstrated that an in-

crease in the number of classes raises the risk of overfitting

with softmax loss, particularly when incorrect labels are

present, as it may further degrade model performance by

fitting these erroneous labels. Therefore, in X-Cover, we

have opted to use Sparse Softmax [25] loss instead of the

original softmax loss. Sparse Softmax loss retains only the

top-K logits and the logits for the ground truth class during

probability computation, effectively reducing the number

of classes to distinguish to K + 1. However, a smaller

K value during the initial phase of training might impair

the model’s ability to fit. Through tuning, we found that

fine-tuning with K = 1024 after training with the original

softmax loss achieves optimal results.

As demonstrated in [26], capturing global spectrogram

information is crucial for understanding the complex com-

positions in music, characterized by varied spectral char-

acteristics over time. However, the limited receptive field

size of conventional CNNs restricts their ability to capture

long-range dependencies across different parts of the spec-

trogram effectively. To address this limitation, we integrate

Non-Local modules [27] into the ResNet-IBN architecture.

These modules utilize the strength of Non-Local opera-

tions to compute interactions directly between any two po-

sitions in the input data, irrespective of their physical dis-

tance. This feature is particularly advantageous for ana-

lyzing music tracks, where distant sections may share the-

matic but transformed material, a characteristic common in

cover songs.

Finally, Grid Distortion is borrowed from computer vi-

sion field, involves random scaling transformations in both

the frequency and time dimensions of the spectrogram to

simulate time-stretching and pitch shift.

4. EXPERIMENTS

We evaluated X-Cover using two publicly available

datasets: SHS100K, which consists of 8,858 cover groups

and 108,523 individual recordings [9], and Covers80, fea-

turing 160 recordings that include two covers of each

of the 80 songs [5]. The training and test division of

SHS100K adheres to previous work [8,11–13], while Cov-

ers80 serves exclusively for testing. We convert all audio to

CQT and Mel spectrograms before training. For CQT, we

set the bins per octave to 12 and use a Hann window during

extraction with a hop size of 512. All audio is resampled

to 22,050 Hz before CQT conversion. We then downsam-

ple the CQT temporally by averaging over 100 adjacent

frames to enhance computational efficiency and reduce la-

tency. For Mel spectrograms, we follow the configuration

in Whisper [17], resampling audio to 16,000 Hz and com-

puting an 80-channel log-magnitude Mel spectrogram with

25-millisecond windows and a 10-millisecond stride. X-

Cover’s training phase uses weights from ByteCover3 for

initialization. For the Whisper branch, we adopt configura-

tions from the Whisper-Medium setup [17], and its initial

weights are also sourced from pre-trained models.

Model #Dims. ↓ mAP ↑ MR1 ↓

Covers80

Me+Ha+Ly [14] 1536 0.993 1.02

ByteCover3 [13] 512 0.927 3.32

X-Cover-E 2560 0.992 1.04

X-Cover-AR 2560 1.000 1.00

SHS100K-TEST

MOVE [10] 512 0.519 154.5

Me+Ha+Ly [14] 1536 0.794 39.3

ByteCover3 [13] 512 0.824 37.0

Whisper-E 512 0.437 150

Whisper-AR 512 0.708 145.4

ByteCover3.5 2048 0.857 22.7

X-Cover-E 2560 0.889 14.9

X-Cover-AR + PCA-FC [12] 512 0.924 14.7

X-Cover-AR 2560 0.924 14.9

Table 1. Performance on different datasets.

4.1 Comparison on Performance and Efficiency

As shown in Table 1, we benchmark the performance of

various models, including our X-Cover, on two datasets:

Covers80 and SHS100K-TEST. Metrics reported include

the number of dimensions (Dims.), mean Average Pre-

cision (mAP), and Mean Rank 1 (MR1). For compara-

tive analysis, we include MOVE [10], Me+Ha+Ly [14],

and ByteCover3 [13]. Our X-Cover incorporate Whisper

models trained with LAL loss, with and without efficient

adaptation. By integrating these Whisper-based models

with ByteCover3.5, we produce two hybrid solutions: X-

Cover-E and X-Cover-AR. Notably ByteCover3.5 is an im-

proved version over ByteCover3 which incorporates a se-

ries of enhancements described in Section 3.3. Addition-
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ByteCover3.5 Whisper-E Whisper-AR X-Cover-E X-Cover-AR

Feature Extraction(ms) 21 402 10467 452 10522

Table 2. The average inference time per audio

ally, the Me+Ha+Ly model [14] included in the compar-

ison is not a strict replication of the original work which

is a composite system comprised with a melody extrac-

tion model, the ALR model, and the MOVE [10]. Due to

limited information in the original paper and the smaller

size of ALR model compared to Whisper, our version of

Me+Ha+Ly uses Basic-Pitch [28] and our Whisper-AR,

ensuring a more equitable comparison. We will release

the implementation publicly. All models are trained with

the Adam Optimizer and a batch size of 128. Table 2

presents the average inference time for X-Cover variants

on SHS100K-TEST using an NVIDIA A100 GPU.
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Figure 3. Length of Queries vs. Performance.

Figure 3 displays the mAP results of X-Cover-E for dif-

ferent query lengths on SHS100K-TEST, using Re-MOVE

[19], ByteCover2 [12] and ByteCover3 [13] as compared

methods. As illustrated in the figure, our X-Cover-E model

achieves the best mAPs for all query lengths except for the

6-second length. This clearly indicates the effectiveness of

X-Cover-E. The poorer performance at the 6-second sce-

nario is likely due to the shortness of the queries, which

may not contain enough meaningful lyric information, thus

not highlighting the strengths of X-Cover-E.

Overall, X-Cover-AR consistently outperforms other

models on both datasets. Remarkably, X-Cover-AR, X-

Cover-E and Me+Ha+Ly achieve nearly 100% accuracy

on Covers80. Both methods employ Whisper-AR, mak-

ing this high accuracy expected given Covers80 which is

dataset with a limited size and predominantly consisting

of recordings with vocal components. Therefore, we be-

lieve SHS100K-TEST is a more robust test of model per-

formance. On this dataset, both X-Cover-AR and X-Cover-

E achieve state-of-the-art performance. The performance

gap between X-Cover-E and X-Cover-AR can be attributed

to the differences in Whisper-AR and Whisper-E. The com-

parable performance and significantly faster speed of X-

Cover-E validate our efficient adaptation. Surprisingly,

Whisper-AR, cloned from an ASR model except for the

final linear layer, shows comparable performance to other

SoTA methods on SHS100K, highlighting the potential of

large-scale pretrained ASR models in CSI tasks. However,

the second-level inference time for individual samples in

X-Cover-AR poses a challenge for its practical deployment

in real-life scenarios. Finally, we employ the PCA-FC di-

mensionality reduction module from ByteCover2 to com-

press X-Cover-AR features from 2560 to 512 dimensions,

finding negligible performance loss. This suggests that the

performance gains in X-Cover variants are not due to in-

creased feature size.

5. CONCLUSION

This paper has enhanced the robustness and efficiency of

the ByteCover3 system in CSI by integrating lyric-related

features using a pre-trained Automatic Speech Recognition

model, Whisper. This integration addresses the issue of

non-musical elements that distort musical characteristics

essential for accurate CSI, without the need for training an

additional lyrics recognition module from scratch.

The use of Whisper, adapted via prefix-tuning, signif-

icantly reduces the computational demands typically as-

sociated with large-scale ASR systems, thereby improving

efficiency in both training and inference stages. Our results

demonstrate improved accuracy and reliability of CSI, par-

ticularly in handling short queries against full songs.

In conclusion, our approach contributes to the devel-

opment of more robust, efficient, and scalable CSI sys-

tems, enhancing both intellectual property management

and music recommendation systems, especially in social

video platforms. Future work will aim to further optimize

these methods and explore additional features to increase

resilience against noise in practical applications.
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ABSTRACT 

The study investigates hip-hop music producer Scott 
Storch’s approach to tonality, where the song’s key is trans-

posed to fit the Roland TR-808 bass drum instead of tun-

ing the drums to the song’s key. This process, involving the 
adjustment of all tracks except the bass drum, suggests sig-

nificant production motives. The primary constraint stems 
from the limited usable pitch range of the TR-808 bass 
drum if its characteristic sound is to be preserved. The 
research examines drum tuning practices, the role of the 
Roland TR-808 in music, and the sub-bass qualities of its 
bass drum. Analysis of TR-808 samples reveals their char-

acteristics and their integration into modern genres like 
trap and hip-hop. The study also considers the impact of 
loudspeaker frequency response and human ear sensitiv-

ity on bass drum perception. The findings suggest that 
Storch’s method prioritizes the spectral properties of the 
bass drum over traditional pitch values to enhance the bass 
response. The need to maintain the unique sound of the 
TR-808 bass drum underscores the importance of spectral 
formants and register in contemporary popular music pro-

duction. 

1. INTRODUCTION 

In popular music, a common practice is to tune the drums 
to the song’s key [1]. However, in a 2007 interview [2], 
R&B producer Scott Storch suggests that during the pro-

duction of music involving a Roland TR-808 drum ma-

chine, it may be beneficial to do the opposite and trans-

pose the song’s key to fit the 808 bass drum [3]. The pro-

cess involves transposing all the tracks but the bass drum. 
Storch’s motive for undertaking such a potentially time-

consuming set of operations is to conserve the characteris-

tic sound of the 808 bass drum. 
The present study investigates aspects of the music pro-

duction process that may explain Storch’s position. In 
Section 2, we shortly address the issue of drum tuning in 
popular music. In Section 3, we provide an overview of 
the importance and usage of the Roland TR-808 in pop-

ular music production, focusing on its bass drum voice. 

© E. Deruty. Licensed under a Creative Commons Attribu-

tion 4.0 International License (CC BY 4.0). Attribution: E. Deruty, 
“Harmonic and Transposition Constraints Arising from the Use of the 
Roland TR-808 Bass Drum”, in Proc. of the 25th Int. Society for Music 
Information Retrieval Conf., San Francisco, United States, 2024. 

In Section 4.1, we analyze the content of TR-808 bass 
drum samples. In Section 4.2, we relate spectral features 
of TR-808 bass drum samples to a diachronic analysis of 
the power spectrum in popular music. In Section 5, we can 
understand Storch’s position by involving the frequency re-

sponse of loudspeakers and the sensitivity of the human 
ear. Finally, in Section 6, we discuss how the practice sug-

gested by Storch may be a particular case of how properties 
of the spectrum might be considered more important than 
pitch values. 

2. DRUMS AND TUNING 

The musical signal has been divided into two categories: 
“percussion has a short temporal duration and is rich in 
noise, while harmonic elements have a long temporal du-

ration with most of the signal energy concentrated in pitch 
spikes” [4]. “The harmonic and percussive components of 
music signals have much different structures in the power 
spectrogram domain, the former is horizontal, while the 
latter is vertical” [5]. These observations are the basis for 
source separation methods distinguishing “drums” from 
“pitched instruments” [6, 7]. 

Yet, drums can contain pitched content [8]. In drum 
sounds, relations between eigenfrequencies are not nec-

essarily harmonic [9]. “The tonal elements in drums are 
usually not structured like partials in a harmonic series. 
Instead, their frequency relationship can range from in-

harmonic to chaotic” [10]. From a music producer’s per-

spective, “drums make several different notes simultane-

ously” [11]. 

Recent source separation methods don’t involve prior 
hypotheses. They’re based on models trained on actual 
data. Listening to the audio output stemming from such 
technology indicates that drum stems extracted from pop-

ular music do contain pitch. Demonstrations of Stein-

berg’s SpectraLayers [12], Native Instruments’ iZotope 
RX 8 [12], iZotope RX 9 [13], and StemRoller [14], pro-

vide relevant examples. 

If drums contain pitched content, they can be tuned. In 
popular music, the “[i]ntricate tuning of acoustic drums 
can have a significant impact on the quality and contex-

tuality of the instrument” [1]. There is no consensus on 
how to tune drums: “[t]alk to ten different drummers and 
you’ll get ten different ways to tune drums [...] there’s ac-

tually no wrong or right way to tune a drum, or right or 
wrong pitches to tune it to” [15]. 
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Scott Storch is an American record producer and song-

writer. Storch has been referred to as a “producer that 
changed the R&B game” [16], a “superproducer” [17], 
i.e. a wave of artists “who have established a new de-

gree of visibility for the rap producer, earning star billings 
virtually equal in prominence to the artists that they pro-

duce” [18]. For Scott Storch, drum tuning is an integral 
part of the music production process: 

“I know there’s a lot of producers [who will] 
put an 808 in the song, and there will be 
chords and stuff clashing with it, and [...] if 
[...] your ears are really in tune with that stuff, 
you realize it’s just like [“not so convincing” 
kind of gesture]... Sometimes, it actually does 
something cool to the track, but [...] I like to 
[...] get into that and tune the kick to match 
[...] the bass line or whatever the chords are 
doing [...], I just try different stuff... then... 
[even when there is] not an incredible amount 
of tune that carries over regular kicks, like 
short kicks, and I find myself sometimes at 
least even trying to tune [...] a regular [...] kick 
drum sound, and get it close to where most of 
the chords are in the song...” [2, 0:30] 

In the above, Storch mentions the Roland TR-808 bass 
drum and testifies to tuning bass drums to match the mu-

sic’s key. 

3. THE ROLAND TR-808 

The Roland TR-808 Rhythm Composer is an analog drum 
machine manufactured between 1980 and 1983 [19]. It 
is “one of the most influential and unique drum machines 
of its time” [20]. “To this day, the 808 remains a bench-

mark against which all other analog drum machines are 
measured” [21]. It can be found in many music genres. 
The TR-808’s distinctive presets are classic sounds in hip-

hop, techno, electro, R&B, and house music [22]. The 
808 “play[ed] a central role in the development of acid 
house” [21]. Pop music star Phil Collins used it through-

out his entire career [23, 1:21:28]. It is “a fixture in hip-hop 
culture, not only as a tool for producers but as a defining 
sound of the genre” [19]. According to Scott Storch, in 
modern trap music, producers “live in an 808 world” [24]. 
One reason for the success of the 808 resides in the fact that 
“it sounded like nothing else [...] and this is what made it 
so distinctive” [25]. Perhaps as a result, the 808 has been 
seen not only as a drum machine but as an “instrument in 
its own right” [23, 0:06:51]. 

One notable voice of the 808 is its “long and velvet 
deep, almost subsonic” bass drum [25], which can be made 
into a “multi-second-long decaying pseudo-sinusoid with a 
characteristic sighing pitch” [21]. According to producer 
Pharrell Williams, the 808 bass drum “filled a massive void 
in the sound spectrum that wasn’t there [...] once the 808 
started to occupy that space, it became like something that 
you missed if you didn’t have it” [23, 1:20:52]. 

Over time, the 808 bass drum became used as both 
kick drum and bass. According to producer Remi Kabaka 
Jr., “the kick drum would play the bass at the same time 
[...] there was drums and there was bass, but now the 
two were sort of fused, so the fill was not just complex 
and rhythmical, but it was also tonal” [23, 1:11:11]. Mu-

sician and writer Alex Lavoie notes that “[i]n most con-

temporary music genres, especially in trap and hip-hop, 
the 808 often carries the bassline, providing both the low-

end foundation and outlining the harmonic progression of 
the song” [26]. Musician and producer Charles Burchell 
writes that the TR-808 “brings a sound closer to a tradi-

tional bass line while retaining the power of a drum [...] 
In many cases, producers will not use a kick drum sample. 
Instead, they program drum patterns with a tuned 808 as 
the kick drum” [27]. 

As a tonal instrument, the 808 bass drum can be tuned: 
as Lavoie states, “[a]n 808 kick, particularly when it has 
a long decay, effectively functions as a bass instrument. 
That’s why tuning your 808s is so crucial” [26]. Lavoie 
warns that “[i]f the pitch of your 808 kick doesn’t match 
the key of your song, it can create a dissonant effect” [26]. 

4. THE 808 BASS DRUM 

4.1 Signal analysis of 808 bass drum samples 

Figure 1 shows the waveform corresponding to the “TR808 
BD Bass Drum Long 01” preset. All samples considered 
in this paper originate from the TR-808 Trisample library 
[28]. The waveform confirms that the sample is tonal. The 
tonal aspect derives from the TR-808 generation technique, 
during which an oscillator produces a sawtooth wave that 
is filtered to make it close to a sine wave [29]. 

Figure 1. “TR808 BD Bass Drum Long 01” sample, wave-

form. 

Figure 2 shows the STFT for the same sample. Har-

monics are present near the start of the sample and then 
fade out. The sample’s pitch value is briefly higher near 
the beginning, then decreases to a stable value. A study 
of the 37 “long” samples from the Trisample library shows 
that the median range for the initial frequency sweep is 
close to one half-tone. 

The Tristar library features “driven” samples (a refer-

ence to the slang term “drive” for “overdrive”, i.e. “distor-

tion”). Figure 3 shows the STFT for one “driven” sample. 
The threshold conditioning the display of the partials as 
red lines is the same as in Figure 2, which indicates that 
the distortion boosts the level of the overtones. 
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Figure 2. “TR808 BD Bass Drum Long 01” sample, STFT. 
The horizontal lines follow the fundamental and harmon-

ics. The blue line stops when the energy of the correspond-

ing bin is lower than 0.7 times the peak energy of all bins. 
The red lines stop when the energy of the corresponding 
bin is lower than 0.5 times the peak energy of all bins. 

Figure 3. “TR808 BD Bass Drum Driven 01” sample, 
STFT. 

Figure 4 shows the STFT for an extract from the 2017 
song “Mask Off”, by the American rapper Future. The 
track has been described as an example of heavy 808 
use [19]. The initial frequency sweep on each bass drum 
occurrence is similar to the samples shown in Figures 2 
and 3. The vertical distribution of high energy values at 
the beginning of each bass drum occurrence suggests that 
the 808 is superimposed with a noisier kick drum. The 808 
samples are tuned to the song’s tonality (D minor). The 
pitch values (D1 and B♭0) are very low: they stand one mi-

nor second and one perfect fourth above the piano’s lowest 
note. The corresponding frequency range (ca. 40Hz) re-

calls the “almost subsonic” aspect of the 808 bass drum 
samples [25]. 

Figure 4. Future, “Mask Off”, 8 beats from 0’25 to 0’30, 
STFT. The vertical lines denote the kick drum’s onsets. The 
horizontal lines follow the TR’s fundamental and harmon-

ics. The corresponding pitch values are shown at the top. 

4.2 Sub-bass frequencies and the 808 bass drum 

Producers recognize three distinct regions of sub-bass: the 
“boom” (ca. 30Hz), the “thump” (ca. 50Hz) and the 

“punch” (ca. 80Hz) [30, pp. 88–118] [31, p. 282]. Fig-

ure 5 confirms that 50Hz (the “thump”) is the “frequency 
range occupied by the Roland TR-808 analog kick” [31]. 

Before the advent of digital audio, low frequencies were 
attenuated to protect amplifiers and speakers from the ad-

verse effects of mechanical noise and harmonic distortion 
[31, p. 282] [32,33]. Musical information in this frequency 
range only became possible by using digital audio as a 
medium. Figure 6 shows the evolution of the power spec-

trum in popular music. The measures were derived from 
a dataset containing 30435 tracks released between 1961 
and 2022. The choice of the tracks stems from the “Best 
Ever Albums” website, a review aggregator that proposes 
the best-rated albums for each year of production [34]. For 
each year, we select the best-rated albums. The overall 
spectral profile is consistent with Pestana’s results [35]. 
The increase of energy in the lower band, also testified by 
Hove et al. [36], is concomitant to the advent of digital au-

dio. 

Figure 5. Distribution of fundamental frequencies of 
TR-808 bass drum samples. The fundamental frequen-

cies are evaluated on 0.2-second windows. The contri-

bution of each window is weighted according to the en-

ergy at the fundamental frequency. In the non-“driven” 
presets, the maximum of the distribution corresponds to 
f0 = 49.48 Hz. The f0 values for the “driven” presets are 
higher. “Short” presets involve a secondary local maxi-

mum (f0 = 51.05 Hz) corresponding to the samples’ ear-

liest windows. 

Figure 6. Evolution of the power spectrum in popular mu-

sic. Top, raw energy values. Bottom, values for each fre-

quency band are normalized to the same mean. 

The analysis results shown in Figure 2 indicate that after 
the initial 0.4s-long attack, “long” 808 samples are based 
on a single low-frequency sine wave. The sine wave’s fre-

quency is ca. 50 Hz according to Figure 5. The results 
shown in Figures 3 and 4 suggest that this very low fre-

quency remains an essential component of the 808 bass 
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drum with added harmonics. Confronting these observa-

tions with the power spectrum evolution in popular mu-

sic (Figure 6), it follows that the sound of the 808 bass 
drum wasn’t fully reproduced before the end of the ’90s, 
even though the machine itself was sold between 1980 and 
1983. 

After 2009, “the characteristic 808-kick drums [...] 
started entering mainstream music in general”, and trap 
music, a “tradition of rap that developed during the 1990s”, 
an “808 world” according to Scott Storch (see Section 3), 
“began to reach strong presence on the mainstream Bill-

board music charts” [37]. So strong is the presence of trap 
in the charts that this formerly underground genre has been 
qualified as “pop”, in the sense that “[p]eople’s ears have 
adjusted” to it [38]. 

The extended bandwidth provided by the emergence of 
digital audio made possible the faithful restitution of the 
entire spectrum of the 808 bass drum, which favored the 
birth and rise of a music genre that became mainstream 
and influenced popular music in general. 

5. TUNING THE SONG’S KEY TO THE TR-808 
BASS DRUM 

In Section 2, Scott Storch describes how he tries to tune the 
bass drum (808 in particular) to the music’s key. Later in 
the same interview, Storch suggests that instead of tuning 
the 808 bass drum sample to the song’s tonality, one can 
do the opposite and adjust the song’s key to the 808 bass 
drum sample: 

“[S]ometimes, producers will program a song 
in a certain key, and they’ll try to program an 
808 under it, and it’s like the key of the song is 
almost too low to really let speakers do what 
they need to do with the bass so, I recommend 
[...] modulating the song up, transposing it 
up a couple of keys, and you’ll be surprised 
how much more level you can get out of the 
song. [Because] anything really below [. . . ] 
a low E [...], it’s like the speakers are gonna 
not, let you turn it up, you don’t feel the bass 
response.” [2, 1:37] 

Storch describes a situation in which a producer previ-

ously set the key for a song, tunes an 808 bass drum to 
make it fit the key, and, as a result, the 808 bass drum does 
not sound “right”. 

5.1 Transposition of the TR-808 bass drum: effect on 
the lowest partial 

Let us consider an example where the song’s key is D, as 
in the extract from Figure 4. We focus on the fundamen-

tal, the only lasting component in samples from the “long” 
type (Figure 2). As seen in Figure 5, the f0 of an 808 bass 
drum is ca. 49.5Hz, corresponding to a G1. The producer, 
therefore, transposes the 808 bass drum one perfect fourth 
down (5 semitones) to a D1 – one tone below the “low E” 

mentioned by Storch. Storch states that the loudspeakers 
may not reproduce the bass correctly in such a situation. 

Professional mixing engineers mainly use near-field 
monitors [39, p. 3]. With such monitors, they can pro-

duce “masters which ‘travel’ well to their use by the record 
buyers” [40]. The use of near-field monitors extends to 
producers. Nigel Godrich testifies that during the produc-

tion of Radiohead’s “OK Computer”, he always used near-

field monitors, but never the studios’ main monitors, which 
“don’t relate to anything” and are “fairly useless” [41]. In 
the many videos documenting his work, Storch can be seen 
using near-field monitors. 

Newell et al. [40] provide the frequency response for 36 
near-field monitoring loudspeakers. Figure 7 graphs the 
median frequency response for these loudspeakers against 
the median f0 for the 808 bass drum samples (49.5Hz / G1) 
and the TR bass drum median frequency transposed down 
one perfect fourth (37Hz / D1). The downward transposi-

tion results in a gain loss of 6.3 dB. Following Storch’s sug-

gestion and transposing up the song key instead of trans-

posing down the 808 sample would avoid the 6.3dB loss. 
In Storch’s terms, transposing the song up may “let speak-

ers do what they need to do with the bass”. 

Figure 7. near field loudspeaker responses as a function 
of frequency. The center horizontal line in each box repre-

sents the median, and the two surrounding horizontal lines 
represent the 25th and 75th percentiles. The blue line shows 
the smoothed median response. The red vertical line repre-

sents the median f0 for the 808 bass drum as shown in Sec-

tion 4.2, Figure 5. The gray rectangle denotes a -5 semi-

tone transposition of the median f0. The textual represen-

tation displays the difference in the response that occurs. 

Loudspeakers are not the only frequency-dependent 
transducers involved in the listening process. The human 
ear is also sensitive to frequency. In particular, as the 
frequencies get closer to the lower limit of human hear-

ing, a sine wave with the same sound pressure level but a 
lower frequency will be perceived as less loud. The phe-

nomenon is accounted for by equal loudness contours, rep-

resenting the sound pressure levels at different frequencies 
that are perceived as equally loud [42]. Figure 8 graphs 
the ISO226-2003 [43] equal loudness contours against the 
median 808 bass drum f0, and the same frequency trans-

posed down one perfect fourth. If we choose a loudness 
of 60 phon, a +5.5dB gain would be required so that the 
transposed f0 remains at the same loudness. Therefore, 
considering the human ear as one of the transducers in the 
signal path, the gain it applies to the signal when transpos-

ing down the original median f0 is ca. -5.5dB. As a result, 
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the overall gain loss following the downward transposition 
originating from both the loudspeakers and the ear can be 
estimated to be ca. 11.8 dB. 

Figure 8. Equal-loudness contours according to [43]. The 
numbers superimposed on each contour indicate the loud-

ness value corresponding to the contour (in phon). The 
red vertical line represents the median f0 for the 808 bass 
drum as shown in Section 4.2, Figure 5. The gray rectangle 
indicates a -5 semitone transposition of the median f0 (one 
perfect fourth down). The textual representation displays 
the gain that would be required so that the transposed f0 

remains at the same 60-phon loudness. 

If different 808 bass drum notes result in different gains, 
then a sequence of different 808 bass drum notes will re-

sult in gain changes within the sequence. Quoting Storch, 
“for 808s [. . . ] I try to stay in the comfort zone of the 
speaker, so I don’t [...] have the volumes jumping out 
for different notes” [44]. In other words, 808 bass drum 
parts’ pitch should remain largely static to achieve a stable 
gain. In turn, largely static bass pitch values may result 
in a limited variety of chords. The phenomenon illustrates 
how loudness stability may take precedence over harmonic 
complexity. 

5.2 Transposition of the TR-808 bass drum: 
involvement of the harmonics 

The 808 bass drum samples corresponding to Figures 3 
and 4 involve lasting harmonics. Figure 9 shows the com-

bined response deriving from both the near field loud-

speakers and the ear’s sensitivity at 60 phon. The lower 
the frequency, the greater the influence of transposition on 
the overall gain. The gain loss diminishes with each har-

monic. It is almost zero for the fifth harmonic. 

We generate a 49.5Hz five-partial harmonic complex 
tone. The amplitudes of the partials are the same as in 
the “TR808 BD Bass Drum Driven 01” sample when the 
frequency values reach a static regime (see Figure 3). The 
overall power change following a 5-semitone downward 
transposition is -4.5dB. It is much less than the -11.8 dB 
gain brought by the downward transposition of the lone 
fundamental. The result suggests that the issues men-

tioned by Scott Storch (gain conservation and gain sta-

bility) mainly concern the fundamental or, at least, the 
lowest harmonics. In other words, Storch is specifically 
concerned with the audibility and stability of the 808 bass 
drum’s bottom partials. 

The phenomenon known as the "missing fundamental" 
[45] suggests that even if a negative gain is applied to lower 

Figure 9. The black line shows the combined response de-

riving from both the near field loudspeakers and the ear’s 
sensitivity at 60 phon (Figures 7 and 8). The red vertical 
lines represent the median values for the 808 bass drum’s 
fundamental and harmonics. The textual representations 
display the difference in the response that occurs from a -5 
semitone transposition. 

harmonics, the perceived pitch remains unchanged due to 
the auditory system’s temporal pitch processing. Only tim-

bre is affected. In the case of the sub-bass register, i.e. fre-

quencies lower than 100Hz according to Fink [31, p. 281], 
another perceptual aspect may be mentioned. In relation 
to findings by Takahashi et al. [46], Fink et al. [30, pp. 
88-118] suggest that one aspect of the perceptual effects 
of bass stems from small body surface displacements. Ac-

cording to the author, each sub-bass range can be associ-

ated with a body region in which the corresponding fre-

quencies are imaginatively felt. The “boom” (ca. 30Hz) 
is “the semi-audible vibration in the gut felt during the 
deepest drops in dancehall and dubstep”. The “thump” (ca. 
50Hz) is felt in the stomach, and the “punch” (ca. 80Hz) in 
the chest. Even when listeners use headphones, bass fre-

quencies may be associated with a “tactile sensation” [47]. 
Fink [31] and Hove et al. [47]’s views suggest that low fre-

quencies may play a role beyond pitch and timbre, in this 
case, a haptic role. 

A downward transposition and the resulting negative 
gain applied to these frequencies may affect both the re-

sulting timbre and bodily sensation. As a result, they may 
be prejudicial to at least some music genres, independently 
from the presence of upper harmonics. 

6. PITCH AND REGISTER 

Scott Storch’s advice according to which a song’s key may 
be adjusted to the 808 bass drum sample is based on the 
following premise: the transposition of the elements of the 
music that are not the 808 bass drum is less problematic 
than the transposition of the 808 bass drum. The change 
in pitch values doesn’t affect the musical intervals, but the 
shift in register affects the perceived spectral profile. The 
change in perceived spectral profile is more important in 
the case of the TR-808 bass drum due to its low-frequency 
content. 

Following Frisius [48, p. 81], “a [music] theory [that] 
posits a principle of neutral transposition, according to 
which groups of pitches essentially do not change their 
character if one transposes them”, doesn’t take into ac-

count the transposition of the sounds themselves. Frisius 
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remarks that such a theory may not be suited to music from 
the 20th century. He mentions the composer Luigi Rus-

solo, who found it difficult to “transpos[e] sonic gestures 
into other registers without losing their identity”. Accord-

ing to Frisius, this difficulty is “felt above all when pitch 
is not clearly definable”. One way to understand the phe-

nomenon is that transposed melodies are only the “same 
as” each other because they are constructed using a set of 
pitches whose chromas repeat at the octave. The listener 
encodes them in terms of pitch sequences. If two sounds 
are “transpositions” of each other but are not perceived in 
terms of pitch, then they are just different sounds. 

Pitch intervals may be robust to transposition, but the 
register will change, and so will timbre. The phenomenon 
has been described in orchestration treatises [49–51]. Ac-

cording to Hector Berlioz, as far as the violin is concerned, 
C major may be “grave, mais sourd et terne” (rich in low 
frequencies, but dull and muted), and F# minor “tragique, 
sonore, incisif ” (tragic, resonant, incisive) [49]. More re-

cently, Reymore et al. [52] have studied the relation be-

tween pitch height and timbre in acoustic instruments. 
Personal interviews with music producers from the 

production company Hyper-Music (https://www. 
hyper-music.com/) suggest that in recent popular 
music, the simultaneous consideration for pitch values and 
register when considering transposition is paramount. Ac-

cording to one of Hyper-Music producers, Storch prioritiz-

ing the register of an instrument over particular pitch val-

ues is a “basic rule” of modern music production. Pitch 
is subservient to spectral formants. Priority is given to the 
absolute position of the formants in the spectrum. If pitch 
has to be changed so that the formants of the sound carry-

ing the pitch reach the desired positions, it will be changed. 
Another producer from the same company claims to be al-

ways cautious with transposition, as it may affect timbre. 
In accordance with Frisius’ point of view, if the pitch con-

tent of the part is not too strong, the same producer may 
simply forego transposition, even if the pitched content of 
the sample conflicts with other tonal elements. 

In productions involving a TR-808 bass drum, Hyper-

Music’s producers often set the tonality to D or Eb to take 
full advantage of the bass drum’s character. Such tonalities 
neighbor that of the example shown in Figure 4. 

7. CONCLUSION 

According to Section 2, some authors have previously di-

vided the musical signal into two categories: percussion 
(rich in noise, short duration), and harmonic elements 
(long duration, most of the energy concentrated in spikes in 
the spectrum) [4, 5, 7]. However, other authors have stud-

ied the existence of pitch in percussion [8–10]. In mu-

sic production, drum tuning has been seen as essential [1] 
but sometimes difficult [8]. Scott Storch, a renowned mu-

sic producer, has emphasized the importance of fine-tuning 
drums to match the music’s key despite the inherent chal-

lenges in doing so. 
In Section 3, we showed that the Roland TR-808 

Rhythm Composer has been deemed an influential analog 

drum machine [19–21], primarily known for its distinctive 
and deep bass drum sound [25]. Producers and musicians 
from various music genres have testified to its efficiency 
in providing low-end foundation. They use the 808 bass 
drum not only as a kick drum but also as a tonal instrument 
that plays basslines, thus emphasizing the importance of its 
tuning. 

Signal analyses of 808 bass drum samples reported 
in Section 4 show that its fundamental frequency can be 
found ca. 50Hz and may or may not have lasting harmon-

ics. The measured evolution of the power spectrum in pop-

ular music suggests that digital audio technology enabled 
the faithful reproduction of the 808 bass drum’s extended 
bandwidth, which played a crucial role in the rise of trap 
music’s popularity and its subsequent influence on main-

stream music [37]. 

In Section 5, we discussed tuning the song’s key to the 
808 bass drum. Producers often try to tune the bass drum 
to match the song’s key. However, Scott Storch suggests 
an alternative approach: adjusting the song’s key to fit the 
808 bass drum sample. Storch explains that some songs 
might have a key that is too low for the bass to be cor-

rectly reproduced by speakers. Instead, he recommends 
transposing the music up to achieve a more balanced and 
powerful bass response. If, for instance, the bass drum 
is transposed down one perfect fourth to match the song’s 
key, its fundamental frequency loses ca. 11.8 dB in overall 
gain, considering the response of near field loudspeakers of 
the type that producers customarily use [39,40] and the hu-

man ear’s sensitivity to frequency [43]. The loss may affect 
the instrument’s timbre and invalidate the specific bodily 
sensations the sub-bass range may evoke [30, 31, 47]. The 
analysis also suggests that the gain loss primarily affects 
the fundamental frequency and lower harmonics. The dis-

cussion emphasizes the importance of controlling the level 
of bass in music production. It suggests that adjusting the 
song’s key to the 808 bass drum can indeed be a helpful 
technique to achieve this goal. 

In Section 6, we briefly discussed the relationship be-

tween pitch and register in music and how transposition 
may affect these elements. While classical Western mu-

sic theory emphasizes the robustness of pitch intervals to 
transposition, other perspectives [48,52] suggest that trans-

position has significant consequences on timbre. Orches-

tration treatises have long associated specific timbral char-

acteristics with different keys, highlighting the importance 
of considering both pitch and register [49–51]. Recent 
interviews with popular music producers suggest the ap-

proach is significant in modern music production. 

An intriguing research direction may stem from the as-

sessment of one of the interviewees, according to which 
spectral formants have precedence over pitch values in 
modern popular music. Storch’s handling of the 808 bass 
drum is an example of this principle. If such a claim proves 
to have merit, it may have consequences on music analysis 
and user interaction in generative systems applied to pop-

ular music. 
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ABSTRACT

This study presents FruitsMusic, a metadata corpus of

Japanese idol-group songs in the real world, precisely an-

notated with who sings what and when. Japanese idol-

group songs, vital to Japanese pop culture, feature a unique

vocal arrangement style, where songs are divided into sev-

eral segments, and a specific individual or multiple singers

are assigned to each segment. To enhance singer diariza-

tion methods for recognizing such structures, we con-

structed FruitsMusic as a resource using 40 music videos

of Japanese idol groups from YouTube. The corpus in-

cludes detailed annotations, covering songs across various

genres, division and assignment styles, and groups rang-

ing from 4 to 9 members. FruitsMusic also facilitates the

development of various music information retrieval tech-

niques, such as lyrics transcription and singer identifica-

tion, benefiting not only Japanese idol-group songs but

also a wide range of songs featuring single or multiple

singers from various cultures. This paper offers a com-

prehensive overview of FruitsMusic, including its creation

methodology and unique characteristics compared to con-

versational speech. Additionally, this paper evaluates the

efficacy of current methods for singer embedding extrac-

tion and diarization in challenging real-world conditions

using FruitsMusic. Furthermore, this paper examines po-

tential improvements in automatic diarization performance

through evaluating human performance.

1. INTRODUCTION

In Japanese pop culture, an idol is a performer who en-

gages in dancing, singing, and entertaining fans [1]. In

the culture, idols frequently participate in activities, such

as concerts and television programs, as members of idol

groups. One of the most renowned contemporary idol

groups is AKB48, which has 40 single compact discs

(CDs) that are million-sellers, as certified by The Record-

ing Industry Association of Japan 1 . FRUITS ZIPPER has

1 https://www.riaj.or.jp/f/data/cert/gd_search.

html

© H. Suda, S. Yoshida, T. Nakamura, S. Fukayama, and J.

Ogata. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: H. Suda, S. Yoshida, T. Naka-

mura, S. Fukayama, and J. Ogata, “FruitsMusic: A Real-World Corpus

of Japanese Idol-Group Songs”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

emerged as another notable group comprising seven girls

and being awarded the Best New Artist at the Japan Record

Awards 2023, the most prestigious accolade in Japanese

music culture [2]. Not only can fans attend concerts, but

they can also interact with the idols at handshaking events

(Akushukai) or bonus events (Tokutenkai), where the fans

can forge deep connections with the idols [3].

Idol-group songs feature several unique characteristics.

One notable characteristic is song division, also called

utawari in Japanese [4, 5]. This approach involves a dy-

namic vocal arrangement where the singing roles shift

throughout the song; individual members may take turns

singing solo lines, or multiple members may sing together

in unison. In particular, the entire group often sings to-

gether in the chorus sections, known as sabi. Song division

is chosen intentionally to maximize the charm and attrac-

tiveness of each idol and song. Therefore, the analysis of

song division is crucial for understanding the structure and

expression of songs, as well as the creators’ intentions.

Song division plays a crucial role also in shaping au-

dience participation through chants and shouts, known as

calls and mixes, which are indispensable elements of idol-

group concerts [6]. Fans spontaneously create these chants

and shouts, reflecting the song’s structure, musical inten-

sity, and song division, specifically which member is as-

signed to sing at any given moment. Furthermore, song

division significantly influences music videos and concert

recordings produced by idol groups, demonstrating its piv-

otal role in producing and appreciating idol music content.

As previously described, song division is crucial for un-

derstanding and enjoying the musical compositions of idol

groups. To aid fans’ comprehension, some idol groups re-

lease official charts showing how songs are divided among

members. For Korean pop groups with similar features

to Japanese idol groups, several fans create line distribu-

tion videos. These videos, widely viewed on platforms like

YouTube and TikTok, visualize the structures of song divi-

sion, facilitating a deeper understanding. Therefore, devel-

oping techniques for recognizing song division will help

fans enjoy the music compositions and enhance their in-

teraction with idols. In addition, such advancements will

support creators in promoting idol groups.

The task to estimate song division, i.e., who sings when,

within a music signal is known as singer diarization. This

technique has been inspired by speaker diarization, which

identifies who speaks when in conversational speech [7–9].

The singer diarization technique was initially introduced
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to analyze folk music and has been adapted for Japanese

idol-group songs [4]. However, existing research has not

examined songs from real-world idol groups but from idol-

themed games and anime. These game and anime songs

generally belong to narrower genres, feature simpler song

division structures, and have vocals that are easier to distin-

guish, thanks to the distinctive voice qualities of the voice

actors. Further research indicates that in-the-wild audio

signals can improve diarization performance in real-world

settings, even with small datasets [4, 10]. Consequently,

compiling a dataset featuring songs from real-world idol

groups is critical for developing practical applications tar-

geting pop culture.

This study addresses the demand for a practical dataset

in music information retrieval (MIR) by constructing a

new corpus, FruitsMusic. This corpus consists of de-

tailed annotations about who sings what and when in

real-world songs performed by Japanese idol groups from

YouTube, enabling the advancement of singer diarization

techniques and their assessments. Beyond singer diariza-

tion, FruitsMusic also advances various MIR techniques

such as lyrics transcription [11, 12], emotion classifica-

tion [13, 14], singer identification [15, 16], and singer-

based music search [17], for not only Japanese idol-group

songs but also a wide array of musical pieces featuring

single or multiple singers from different cultures. A sig-

nificant advantage of FruitsMusic is its focus on real idol

groups, allowing for evaluations in challenging scenarios

and enhancing the applicability of MIR techniques in the

real world. This paper details the structure, development

methodology, and unique characteristics of FruitsMusic.

The paper also demonstrates the applications of evaluat-

ing existing methods in two MIR tasks, singer embedding

extraction and diarization, in real-world scenarios.

2. STRUCTURE AND CONSTRUCTION

METHODOLOGY OF FRUITSMUSIC

In this study, we constructed FruitsMusic (Corpus of Fully

Real-World Popular Idol-group Songs from YouTube

Videos for Music Information Processing) aimed at devel-

oping and evaluating various MIR techniques. This cor-

pus is a collection of annotations for 163 minutes of mu-

sic video content on YouTube, detailing who sings what

and when. The corpus includes annotations for 40 songs

performed by 18 different groups, featuring a total of 122

unique female singers, all approximately 20 years of age.

The corpus is available at https://huggingface.

co/datasets/fruits-music/fruits-music 2 .

2.1 Related Works

Several corpora derived from YouTube have been con-

structed across various research fields. The key advantage

of this approach is the utilization of a wide range of real-

world video and audio content.

For example, ActivityNet and YouTube-8M are bench-

mark datasets widely used in video processing [18, 19].

2 This paper has been written based on FruitsMusic version 1.2.0.

� �
{

"id": "XXm01",

"youtubeId": "YouTube ID",

"type": "music_video",

"singerIds": ["XXs01", "XXs02", "XXs04", "XXs05", "XXs06"],

"title": "Song Title",

"songStartsAt": 0,

"duration": 216128,

"states": [

{

"start": 1869,

"end": 17233,

"singers": [0, 1, 2, 3, 4],

"lyrics": "Lyrics 1",

"realLyrics": null

},

{

"start": 22543,

"end": 26930,

"singers": [1],

"lyrics": "Lyrics 2",

"realLyrics": null

}

]

}

� �
(a) JSON file� �

SPEAKER XXm01 1 1.869 15.364 <NA> <NA> XXs01 <NA> <NA>

SPEAKER XXm01 1 1.869 15.364 <NA> <NA> XXs02 <NA> <NA>

SPEAKER XXm01 1 1.869 15.364 <NA> <NA> XXs04 <NA> <NA>

SPEAKER XXm01 1 1.869 15.364 <NA> <NA> XXs05 <NA> <NA>

SPEAKER XXm01 1 1.869 15.364 <NA> <NA> XXs06 <NA> <NA>

SPEAKER XXm01 1 22.543 4.387 <NA> <NA> XXs02 <NA> <NA>

� �
(b) RTTM file

Table 1. An example of JSON and RTTM files.

Similarly, YouTube-ASL, a large-scale American Sign

Language corpus, originates from YouTube [20].

In the field of audio processing, several corpora have

utilized YouTube videos. AudioSet, for instance, is widely

adopted for recognizing and detecting audio events [21].

VoxLingua107 covers 6,628 hours of speech across 107

languages and is helpful to language detection [22]. Fur-

ther, JTubeSpeech consists of extensive Japanese speech

data from YouTube and helps the development of diverse

speech processing techniques [23]. Similarly, YODAS

consists of 500,000 hours of speech in over 100 languages

and makes multilingual speech processing techniques ap-

plicable in the wild [23, 24]. Coco-Nut is another corpus

with subjective descriptions of voices, designed for con-

trolling speaker identity based on text prompts [25].

These prior works underscore the effectiveness of

YouTube-based corpora, which we also adopted in this

study. Our corpus focuses especially on accuracy and re-

liability, which are less emphasized in these prior corpora.

In addition, the video-based nature of FruitsMusic facili-

tates multimodal processing, such as multimodal diariza-

tion [26]. Note that these prior corpora have been curated

to protect individual privacy rights by excluding personal

information, and FruitsMusic also maintains these ethical

standards.

2.2 Structure of the Corpus

FruitsMusic includes annotations in JavaScript Object No-

tation (JSON) format, Rich Transcription Time Marked

(RTTM) files for diarization, and text files of lyrics. Ta-

ble 1 presents an example of JSON and RTTM files.
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2.2.1 JSON Files

The JSON files include the following information:

• Song ID. This field is formed by combining a two-

character idol-group ID, the letter “m”, and a two-

digit ID.

• Video ID on YouTube.

• Type of the video. This field is either of music_v

ideo, middle_music_video, or dance_pra

ctice. The names of these types are derived from

traditions in Japanese idol culture.

• List of singer IDs. Each ID is formed by combining

a two-character idol-group ID, the letter “s”, and a

two-digit ID.

• Song title. This field aims at natural language pro-

cessing (NLP) tasks.

• Start time and duration of the song. The videos

may contain content beyond songs, such as com-

ments from idols. This information is provided to

help filter out such content.

• Singing states. This is a list of the start and end

times of the segment, the singers assigned to the seg-

ment, and the lyrics. The lyrics field contains

the official lyrics, which may differ from the actual

lyrics sung. In such cases, the realLyrics field

is used.

The time and duration fields are annotated in milliseconds.

2.2.2 RTTM Files

The RTTM format is specially designed for speaker di-

arization tasks, identifying who speaks when [27]. Table 1b

presents an example of an RTTM file. Within this format,

each line details the start time and duration of the segment,

as well as the singer’s ID. For simultaneous singing, the

format allocates a separate line to each singer, resulting in

multiple lines corresponding to the number of singers.

2.2.3 Text Files of Lyrics

Lyrics lines may be duplicated in the JSON files to pre-

cisely represent who sings what and when (e.g., DRm03).

As a result, extracting lyrics from JSON files is not

straightforward. To support the development and assess-

ment of techniques involving lyrics, such as lyrics tran-

scription, FruitsMusic provides separate text files of lyrics.

2.3 Subsets

FruitsMusic is split into Subset A and Subset B. Subset A

is designed mainly for training, and Subset B is for eval-

uation. However, both subsets can be arbitrarily used for

various purposes. Subset A contains 32 songs, while Sub-

set B has 8 songs. To ensure unbiased evaluation, Subset

B does not contain any singers from Subset A, and each

group in Subset B contributes only one song. The songs in

Subset B were chosen to cover various genres (dance, rock,

synthpop, etc.) and division styles. Also, groups in Subset

B are generally less famous than those in Subset A, which

helps ensure fairer and less biased human evaluation.

CHiME-5 FruitsMusic

Average audio length 9031 s 244 s

# Speakers 4 4–9

Average segment length 2.11 s 4.44 s

Total length per speaker 1159.6 s 15.9 s

Segments without speakers 22.3% 23.9%

Solo segments 51.4% 42.6%

Multiple-speaker segments 26.4% 33.5%

Segments with 3+ speakers 6.4% 26.5%

Table 2. Comparison of FruitsMusic with the CHiME-5

dataset [28], a conversational speech dataset. The “Total

length per speaker” row indicates the average total duration

per speaker in each audio.

2.4 Song Selection

We meticulously selected the songs for FruitsMusic to en-

sure the corpus’s reliability and usefulness. To achieve ac-

curate annotations, we initially gathered extensive knowl-

edge about the idol groups. We then used reliable sources,

including concert recordings and official announcements,

for information. Additionally, to support applications like

singer diarization, each singer has at least one solo section

within the database. Moreover, we assign each singer to

only one group in FruitsMusic. While idols may partici-

pate in multiple groups or move between groups in reality,

we avoid such complexities in this database. FruitsMusic

focuses solely on contemporary songs released from 2022

onwards to reflect the latest music trends.

2.5 Rules

This corpus has been constructed using copyrighted ma-

terials. Users are required to follow the licensing agree-

ment specified in the corpus documentation to protect the

rights of creators and idols. The agreement sets three ma-

jor rules. First, the copyrighted content of this corpus, such

as lyrics texts, is not intended for appreciation or entertain-

ment. Second, the corpus cannot be used to develop or

enhance generative artificial intelligence (AI) techniques,

such as singing voice synthesis, voice conversion, lyrics

generation, and music creation. However, users can utilize

the corpus for recognition or information extraction tasks,

including lyrics recognition, singer embedding extraction,

and assessing the naturalness of lyrics or music. Third,

when citing this corpus in any media, including academic

works and presentations, users are required to identify both

the groups and the singers using the provided IDs and re-

frain from using their real names. If the mention of song

names is not essential for the discussion, users are also re-

quired to refer to them by their respective IDs.

3. COMPARISON WITH CONVERSATIONAL

DATASET

This section compares FruitsMusic with the CHiME-5

dataset, a conversational speech dataset designed for The
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5th CHiME Speech Separation and Recognition Chal-

lenge [28], to explore the differences between conversa-

tional speech and songs with song division. The CHiME-5

dataset contains 20 conversational speech instances, each

from four speakers. Table 2 shows the comparison results,

considering all subsets of both CHiME-5 and FruitsMusic.

Initially, the average audio length in FruitsMusic is sig-

nificantly shorter than in CHiME-5. Unlike conversational

speech, which is not limited by specific length constraints,

the duration of songs is tightly controlled by the structure

of the musical compositions. Furthermore, the average to-

tal duration of speech segments per speaker in FruitsMu-

sic is extremely shorter than in CHiME-5. This difference

arises from the shorter overall audio length and the larger

number of singers in FruitsMusic. Since solo segments

play a key role in capturing singer characteristics, develop-

ing singer identification techniques under these challeng-

ing conditions, different from conversational speech, is es-

sential for improving singer diarization and other MIR sys-

tems for songs featuring multiple singers.

The comparison reveals a noteworthy difference in the

frequency of simultaneous speakers between CHiME-5

and FruitsMusic. In particular, sections featuring 3 or

more singers in FruitsMusic are significantly longer than

in CHiME-5. This indicates that the methods that treat

overlapping speech as segments with two speakers, often

adopted in speaker diarization [29], cannot be directly ap-

plied to singer diarization. Furthermore, about 60% of

segments with multiple singers feature vocals from only

a subset of the entire group. Hence, the assumption that

all singers are present in overlapped segments proves inef-

fective for singer diarization; it is crucial to accurately and

independently determine the vocal activity of each singer.

4. APPLICATION 1: SINGER EMBEDDINGS

Singer embeddings are multidimensional vectors that cap-

ture each singer’s unique vocal traits. In singing infor-

mation processing, high-quality singer embeddings are

crucial for enhancing the performance of tasks involving

singers, such as singer identification, voice matching, and

singer diarization. This section evaluates two types of

embeddings extracted from song segments by a specific

group and discusses the effectiveness of each extraction

technique in real-world scenarios. This section visualizes

these embeddings to understand their effectiveness in dis-

tinguishing singers and provides a numerical analysis of

the clustering performance based on singers.

In our evaluation, we compare two types of singer

embeddings. The first type involves x-vectors, tradi-

tional yet effective speaker embeddings derived from

deep neural networks (DNNs) for speaker identifica-

tion [30]. Specifically, we utilize an x-vector extractor

microsoft/wavlm-base-plus-sv 3 , which incor-

porates WavLM, a large-scale pre-trained model based on

self-supervised learning [31]. Second, we evaluated em-

beddings based on ECAPA-TDNN, an enhanced time de-

3 https://huggingface.co/microsoft/

wavlm-base-plus-sv

lay neural network (TDNN) in x-vector extractors [32].

ECAPA-TDNN-based embeddings have been proven to

show remarkable performance in speaker recognition and

diarization [32–34]. We used an ECAPA-TDNN model

provided by SeechBrain 4 [35]. In addition, this evalua-

tion considers both mixed and vocal signals, with the lat-

ter extracted using Demucs, an open-source music source

separation tool [36, 37]. We utilized the htdemucs_ft

model, a fine-tuned version of the Hybrid Transformer De-

mucs, renowned for its state-of-the-art performance in mu-

sic source separation.

We focus on the group KF, which comprises seven

members and has eight songs, the most available on

FruitsMusic. For this study, we selected segments where

a singer performs solo for over 2 seconds. On average,

each singer has 20 segments, totaling approximately 101

seconds of solo performance.

As objective evaluation metrics, F values are calculated

to benchmark clustering efficacy [38]. Here, the F value

is the harmonic mean of two metrics: purity P and inverse

purity I . The P and I are defined as follows:

P =
1

N

∑

i

max
j

|Ci ∩ Sj |, and (1)

I =
1

N

∑

j

max
i

|Ci ∩ Sj |. (2)

In these equations, Ci is the i-th cluster, and Sj is the set

of the j-th singer’s samples. High F values indicate su-

perior performance, with a theoretical maximum of 1. For

this evaluation, spectral clustering [39] was performed to

create 7 clusters, matching the number of singers. All the

embeddings were L2-normalized in advance.

Figure 1 shows the visualizations of the acquired em-

beddings by reducing their dimensions into two using t-

SNE. The effectiveness of Demucs is confirmed across

both extraction methods. Compared to x-vectors, embed-

dings derived with ECAPA-TDNN provide more expres-

sive singer representations. Specifically, Figure 1d reveals

that samples from certain singers, specifically KFs01 (rep-

resented in red circles) and KFs06 (in pink stars), tend to

gather by singer identity. Hence, ECAPA-TDNN-based

embeddings are proved to effectively capture singers’

unique identities even from short singing segments. This

shows the advantages of the ECAPA-TDNN methodology

over conventional TDNN in x-vector extractors. However,

none of the plots show distinct clusters visibly forming,

and the highest F value was only 0.64. This indicates

that tasks like singer diarization and number estimation

remain challenging using any embedding extractor eval-

uated. Since the ECAPA-TDNN model is trained with

speech datasets, fine-tuning it with singing voice datasets

will enhance its performance. Note that the separated vo-

cal signals are distorted; therefore, using datasets with both

clean and mixed or separated signals from real-world con-

ditions will be effective.

4 https://huggingface.co/speechbrain/

spkrec-ecapa-voxceleb
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KFs01
KFs02
KFs03
KFs04
KFs05
KFs06
KFs07

(a) x-vector, mixed (0.32) (b) x-vector, separated (0.40)

(c) ECAPA-TDNN, mixed (0.59) (d) ECAPA-TDNN, separated (0.64)

Figure 1. t-SNE visualizations of singer embeddings from

the idol group KF’s songs, where each color and shape

represents a different singer. Captions detail the extrac-

tion methods and whether Demucs was applied. Values in

parentheses represent F values, measuring the clustering

performance.

5. APPLICATION 2: SINGER DIARIZATION

To evaluate the efficacy of FruitsMusic in training singer

diarization models, we trained several models with Sub-

set A of FruitsMusic and assessed their performance using

Subset B. In this comparison, the number of singers was

not given to the systems. Furthermore, we engaged a hu-

man evaluator to perform the manual diarization of songs

in Subset B and discuss the potential advancements in au-

tomatic diarization performance.

5.1 Construction of a Synthesized Dataset

To improve the diarization performance, we utilized songs

from commercial CDs in addition to FruitsMusic. This

dataset consists of 272 songs performed by multiple

singers, with a separate recording for each song and singer

combination. For example, if three singers perform song

A, each of the three singers has solo recordings: one by

singer 1, another by singer 2, and a third by singer 3. On

average, each song features 4.1 singers, resulting in a total

of 1126 recordings. All the songs were sourced from idol-

themed games and anime, and the singers were 129 unique

female voice actresses. We executed source separation on

all 1126 recordings using Demucs to generate isolated vo-

cal and accompaniment signals.

We generated five song division patterns for each song,

capping the number of singers to a maximum of seven.

We applied voice activity detection (VAD) first and ran-

domly assigned singers to each segment. During the as-

signment, a single singer was allocated to 60% of the

segments, all singers to 23%, and random singers to

the remaining 17%. We mixed the vocal signals based

on the generated song division and combined the sepa-

rated accompaniment with the mixed vocal tracks to cre-

ate the final mixture. In these generated songs with

song division, singers perform in unison during seg-

ments with multiple singers. The VAD process used

pyannote/voice-activity-detection 5 .

5.2 Evaluated Systems

In this experiment, the following systems are compared.

5.2.1 SA-EEND with EDA

The first approach adopted Self-Attentive End-to-End

Neural Diarization (SA-EEND) [10]. Since the number of

singers for the evaluated signals was unknown, we used en-

hanced SA-EEND with Encoder-Decoder-based Attractors

(EDA) [40]. The hyperparameters matched those of the

CALLHOME dataset, as specified in the original publica-

tion [40]. The input signals were downsampled to 8000Hz

and were converted to monaural signals.

5.2.2 pyannote.audio

The second method used pyannote.audio 6 , an open-

source toolkit for speech processing tasks [29, 41]. The

diarization workflow is structured as a pipeline process, in-

corporating PyanNet-based modules. To conduct this ex-

periment, we fine-tuned the publicly available pre-trained

model pyannote/speaker-diarization-3.1 7

using the prepared song datasets. This fine-tuning pro-

cess adapted the segmentation models and optimized the

thresholds for both segmentation and clustering. The input

signals were downsampled to 16 000Hz and converted to

monaural signals.

5.2.3 Human Evaluator

In addition to the automatic diarization approaches, we

also engaged a human evaluator to perform manual singer

diarization to gauge the achievable performance. The indi-

vidual understands Japanese and often listens to Japanese

pop music (about 60 hours a month), yet was completely

unfamiliar with any of the songs in Subset B of FruitsMu-

sic. To maintain the experiment’s integrity, we presented

only the audio signals of the songs without any correspond-

ing videos. The participant was allowed to use any external

tool to aid in the diarization process but was explicitly re-

stricted from searching for the songs on the internet.

5.3 Experimental Setup

As a training dataset, Subset A from FruitsMusic was used.

The songs DRm01, KFm01, RGm01, SBm01, and SYm01

were designated for validation. The remaining songs, ex-

cluding three songs featuring nine singers, were allocated

for training. Due to the highly extended training time re-

quired for SA-EEND with EDA for songs featuring more

than seven singers, three songs with nine singers, VYm02,

5 https://huggingface.co/pyannote/

voice-activity-detection
6 https://github.com/pyannote/pyannote-audio
7 https://huggingface.co/pyannote/

speaker-diarization-3.1

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

90



System Mixed Separated

SA-EEND with EDA

Synthesized only 99.5% 101.3%

Synthesized + FruitsMusic 103.2% 83.8%

pyannote.audio

Synthesized only 92.9% 69.9%

Synthesized + FruitsMusic 91.3% 50.3%

Human 22.7% —

Table 3. DER for Subset B in FruitsMusic with the several

diarization systems.

VYm03, and XSm02, were excluded from the dataset. The

loudness of all songs was normalized to −14LUFS.

The evaluation metric used was the diarization error rate

(DER) [27], defined as:

DER =

∑S

s=1 ds

[

max

(

N
(ref)
s , N

(hyp)
s

)

−N
(correct)
s

]

∑S

s=1 dsN
(ref)
s

.

(3)

Here, S is the total number of segments, ds represents

the duration of the s-th segment, and N
(ref)
s , N

(hyp)
s ,

and N
(correct)
s correspond to the number of ground-truth

singers, estimated singers, and accurately identified singers

in the s-th segment, respectively. According to this def-

inition, DER can exceed 100%. The calculation of DER

was performed with dscore 8 , an open-source tool. Due

to the implementation of dscore, self-overlapped segments,

which contain multiple recordings of the same singer, were

normalized in the calculation process. The collar size, the

time ignored in DER calculation around segment bound-

aries, was set to zero.

The model selection criterion was achieving the min-

imum DER on the validation set. For each condition,

we developed two versions of the system: one trained on

mixed signals and another trained on extracted vocal sig-

nals. The vocal signal extraction was performed using the

htdemucs_ft model of Demucs [36, 37].

5.4 Results

Table 3 shows the DER of all the systems. The perfor-

mance of the mixed signal systems is significantly inferior

to that of the separated signal systems. In other words,

across evaluated systems, Demucs effectively improved di-

arization performance; hence, a pipeline system combin-

ing source separation and diarization proved more effec-

tive than using a single system on mixed signals in the

case of this evaluation. In both approaches, SA-EEND

and pyannote.audio, training with FruitsMusic sig-

nificantly improved the overall performance, particularly

for the separated signal systems. The results suggest that

FruitsMusic, despite its smaller size, can significantly en-

hance diarization performance rather than relying solely on

large-scale synthesized datasets.

8 https://github.com/nryant/dscore

System BD BI JA JY MG QD SL TJ

SA-EEND with EDA

w/o FruitsMusic 1 3 2 2 4 0 6 2

w/ FruitsMusic 2 2 2 2 2 2 2 2

pyannote.audio

w/o FruitsMusic 3 5 3 3 3 3 3 3

w/ FruitsMusic 7 7 7 7 7 6 7 7

Human 8 6 6 5 7 5 6 4

Ground truth 9 4 7 5 7 5 6 4

Table 4. Estimated total number of singers derived from

diarization results. All the systems used separated vocal

signals using Demucs. Each column shows a song in Sub-

set B. The suffixes “m01” of song IDs are omitted.

Table 4 shows the estimated number of singers included

in the diarization results. The SA-EEND-based systems

struggled to distinguish singers accurately. This seems due

to the difficulties of naive DNN-based methods in distin-

guishing singer identities, as discussed in Section 4. On the

other hand, pyannote.audio demonstrated an almost

invariant estimation of the number of singers. This indi-

cates a potential overfitting to the training datasets, with the

most common number of singers in the training set tending

to dominate the predictions.

Among the evaluated systems, human performance was

remarkably superior to the automatic diarization systems

in terms of DER. Notably, a human evaluator accurately

estimated the number of singers in 5 out of 8 songs. This

demonstrates that humans can effectively distinguish in-

dividual singers’ voices even within mixed music signals.

Therefore, these results proved a significant potential for

improving both automatic singer identification and diariza-

tion performance.

6. CONCLUSION

This paper presents FruitsMusic, a novel corpus of pre-

cise annotations on who sings what and when in Japanese

idol-group songs. The song selection and subset creation

were meticulously conducted to facilitate unbiased evalu-

ation and ensure usefulness across a wide range of genres,

song division styles, and idol groups. The corpus can be

applied to various MIR tasks, such as singer diarization,

singer identification, and lyrics transcription. This paper

showcases its applications in evaluating singer embedding

extraction and diarization techniques. The results showed

that distinguishing singers from short singing segments

remains challenging, despite effective methods in speech

processing. The paper also suggests potential advance-

ments in automatic diarization performance by assessing

human performance. We acknowledge significant existing

areas for performance improvement in diverse MIR tasks,

and we are confident that FruitsMusic has the potential to

advance various techniques among them.
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ABSTRACT

Recent advancements in music source separation (MSS)

have focused in the multi-timbral case, with existing ar-

chitectures tailored for the separation of distinct instru-

ments, overlooking thus the challenge of separating instru-

ments with similar timbral characteristics. Addressing this

gap, our work focuses on monotimbral MSS, specifically

within the context of classical guitar duets. To this end,

we introduce the GuitarDuets dataset, featuring a com-

bined total of approximately three hours of real and syn-

thesized classical guitar duet recordings, as well as note-

level annotations of the synthesized duets. We perform an

extensive cross-dataset evaluation by adapting Demucs, a
state-of-the-art MSS architecture, to monotimbral source

separation. Furthermore, we develop a joint permutation-

invariant transcription and separation framework, to ex-

ploit note event predictions as auxiliary information. Our

results indicate that utilizing both the real and synthesized

subsets of GuitarDuets leads to improved separation per-

formance in an independently recorded test set compared

to utilizing solely one subset. We also find that while the

availability of ground-truth note labels greatly helps the

performance of the separation network, the predicted note

estimates result only in marginal improvement. Finally, we

discuss the behavior of commonly utilized metrics, such as

SDR and SI-SDR, in the context of monotimbral MSS.

1. INTRODUCTION

The task of music source separation (MSS) involves dis-

secting a musical composition into its constituent sources,

typically segregating individual instruments or vocal tracks

from a composite audio mixture [1, 2, 3]. Due to the

multitude of the co-playing sources, as well as its util-

ity in a variety of applications [1], MSS stands as a sig-

nificant challenge in the field of Music Information Re-

© M. Glytsos, C. Garoufis, and A. Zlatintsi and P.Maragos.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: M. Glytsos, C. Garoufis, and A. Zlat-

intsi and P.Maragos, “Classical Guitar Duet Separation using GuitarDuets

- a Dataset of Real and Synthesized Guitar Recordings”, in Proc. of the

25th Int. Society for Music Information Retrieval Conf., San Francisco,

United States, 2024.

trieval (MIR) [4]. The majority of research efforts have fo-

cused on multi-timbral music source separation [5,6,7]. In
this case, the goal is the separation of distinct instrumental

sources from a mixture, where the sources belong to differ-

ent instrument families or types such as vocals, bass, drums

and others, and as such can be framed as an extension of

the task of speech denoising into the music domain [8].

Through the advancement of digital signal process-

ing [9] and deep learning [5, 10], considerable progress

has been made in extracting distinct instrumental tracks

from complex musical compositions. Most recent, deep-

learning based approaches for MSS are divided into

spectrogram-domain approaches [11], waveform-domain

methodologies [10,12,13,14,15] and hybrid ones, working

simultaneously in both domains [5]. Spectrogram-domain

methods typically isolate sources via mask prediction [16],

waveform-domain approaches enhance source separation

by applying spectrogram techniques in a learned latent

space [14, 17], or directly predicting the isolated wave-

forms [12], with the additional advantage of incorporat-

ing phase information, while hybrid architectures [5] lever-

age the strengths of both. Moreover, recent findings have

highlighted the benefits of using static or dynamic activity

labels [18, 19, 20, 21, 22], as well as jointly training tran-

scription and source separation modules [23, 24], which

enhances task performance, paralleling efforts in simulta-

neous speech recognition and separation training [25].

However, an area that remains relatively underexplored

is monotimbral music source separation. This subfield of

MSS focuses on extracting audio components that belong

to the same instrument family, or different builds of the

same instrument. It can be viewed as the counterpart of

the speaker separation problem [31] in the music domain.

While this similarity has led to the development of simi-

lar methodologies for network training [32], speaker sep-

aration, especially within the context of, rarely available

in MSS datasets, multi-microphone recordings [33], can

also rely on spatial cues. The limited exploration in this

area can largely be attributed to the historical focus on iso-

lating the most prominent instruments in popular music,

while the demand for separation of instruments with close

timbral characteristics is less pronounced. Indeed, there

are very few datasets suitable for training algorithms on

the task of separating instrumental tracks from the same

95



Datasets Real Data Incl. Monotimbral Polyphonic Note Annotations Duration

musdb18 [7] ✓ ✗ ✓ ✗ ca. 10h

MoisesDB [26] ✓ ✗ ✓ ✗ ca. 14.5h

URMP [27] ✓ ✗ ✓ ✓ 1h 6min

SLAKH [28] ✗ ✗ ✓ ✓ ca. 145h

EnsembleSet [29] ✗ ✓ ✗ ✓ 6h 9min

GuitarSet [30] ✓ ✓ ✓ ✓ 3h 3min

GuitarDuets ✓ ✓ ✓ Partial 2h 44min

Table 1: Comparison of the GuitarDuets dataset with existing datasets in the literature for music source separation; we note

that GuitarSet is strictly monotimbral, since it was entirely recorded using one guitar.

GuitarDuets(R) GuitarDuets(S)

# Tracks 34 35

Dur./Track (mins) 1.72 ±1.35 3.03 ±2.86

Total Dur. (mins) 58 106

Notes/sec. - 7

Table 2: Detailed statistics of the real and synthesized sub-

sets of the GuitarDuets dataset; note statistics are included

for the synthetic subset only.

instrument family in a polyphonic context [30], with the

majority of publicly avalaible datasets covering the case of

separating mixtures of multiple singing voices [34,35,36].

In this paper, we attempt to bridge this gap by intro-

ducing GuitarDuets 1 , a dataset consisting of a total of

ca. 3 hours of real and synthesized guitar duet recordings,

along with partial note-level annotations, which can be

leveraged as auxiliary score information. We benchmark

GuitarDuets in the tasks of i) unconditional guitar duet sep-

aration and ii) score-informed duet separation, using the

hybrid Demucs [5] as our separation model. We also exam-

ine the possibility of integrating note-level predictions into

a joint transcription and separation framework. In more

detail, the main contributions of this work are:

• Introduction of GuitarDuets, a dataset for mono-

timbral music source separation, featuring both real

classical guitar duet recordings and synthetic record-

ings generated from online transcriptions and virtual

instruments. The synthetic portion includes MIDI

representations for each guitar part, enriching the

dataset for algorithm training and detailed analysis.

• Extensive cross-dataset evaluation across various

conditions, including real and generated synthetic

data, as well as the existence or absence of auxil-

iary score information in specific Demucs branches.

• Development of a joint transcription and separation

framework, which incorporates transcription predic-

tions, by adapting existing architectures [5,37] to the

task of monotimbral source separation with the in-

troduction of a permutation-invariant [32] loss. We

show that incorporation of these note-level predic-

tions can improve the separation of real guitar duets.

• Finally, we analyze the behavior of commonly-

utilized source separation metrics in the context of

classical guitar duets to understand their effective-

ness when applied in sources with similar timbres.

1 The dataset is available at: https://zenodo.org/records/12802440

2. DATASETS

2.1 Existing Datasets

Datasets available for music source separation or transcrip-

tion are primarily divided into multitimbral and mono-

timbral ones, each offering instrument-specific tracks or

stems, often accompanied by transcriptions. Multitim-

bral datasets such as musdb18 [7], URMP [27], Med-

leyDB [38], MoisesDB [26] and SLAKH [28] are most

prominent, featuring both real and synthesized data from a
broad spectrum of instruments; some extend to multimodal

forms, including for instance audiovisual elements [27].

In contrast, monotimbral instrumental datasets, notably

fewer in number, include focused collections such as Gui-

tarSet [30] and EnsembleSet [29]. GuitarSet provides de-

tailed annotations for acoustic guitar recordings, consist-

ing of pairs of comping and soloing performances, while

EnsembleSet targets chamber ensembles with high-quality

synthetic reproductions of classical music. Despite their

utility, these monotimbral datasets face some limitations,

namely: GuitarSet’s structure, with distinct solo and ac-

companiment parts, oversimplifies the separation task due

to the distinct role of each guitar. Also, the lack of tim-

bral differences between the two guitars prevents the net-

works from focusing on timbral cues for the separation

task. On the other hand, EnsembleSet’s reliance on syn-

thetic data introduces a realism gap, underscoring the need

for datasets that more accurately capture the dynamics of

live musical performances. Moreover, the instruments it
contains are largely monophonic, which hinders its use for

scenarios with polyphonic co-playing instruments.

2.2 The GuitarDuets Dataset

In this section, we will describe the GuitarDuets dataset,

comprising both real recordings of classical guitar duets

and synthesized recordings, leveraging virtual instruments

and MIDI scores. This approach aimed to provide an orig-

inal and realistic set of guitar duet recordings for training

and evaluating deep learning algorithms on monotimbral

MSS, while simultaneously overcoming their limited du-

ration, granting ample training data and enabling analysis

between real and synthetic datasets. In total, our dataset

comprises 58.6 minutes of real data and 106 minutes of

synthesized data, amounting to 164.6 minutes overall. A

comparison of the GuitarDuets with the most prominent

datasets for MSS in the literature is outlined in Table 1,
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whereas detailed statistics about both the real and synthe-

sized subsets of GuitarDuets are given in Table 2.

Real Recordings: For the recordings featuring real

classical guitars, we utilized a quiet, acoustically treated

room and high-quality condenser microphones (Presonus

PM-2), one for each guitar. During the recording process,

four different classical guitars were used, with some tracks

(16 min.) replayed using different guitars to further en-

hance timbral diversity. Simultaneous play was crucial for

capturing the musical interplay between the two guitarists.

The whole recording process resulted in the recording of

27 guitar duets (per-track duration: 123± 82 sec.), mostly

from the Modern Classical and Nuevo Tango genres and

from the Romantic Period. This approach, while essen-

tial for the integrity and realism of the dataset, introduced

a challenge with cross-microphone sound bleeding. This

crossover of sound presented a significant concern, as it
compromises the isolation of the individual guitar tracks,

impacting the quality of the dataset. In addressing the is-

sue of source bleeding in microphones, we recorded a spe-

cialized test set that is free from such leakage. This set,

consisting of 7 tracks (per-track duration: 39 ± 13 sec.),

was created to ensure the absence of cross-feed between

microphones. Each guitar track was exported as a 44,100

Hz, 16-bit WAV file in stereo format, with mixed audio

files created by averaging individual guitar performances.

Synthetic Recordings: Despite the inherent realism of

the real recordings, their small duration could prove prob-

lematic for network training, whereas the single recording

setup utilized could import biases. A commonly utilized

shortcut to increase the duration of real recordings is to
virtually augment them, by synthesizing additional pieces

based on note-level transcriptions and virtual music instru-

ments, which has proven effective not only in generating

multitrack datasets [28, 29], but also in tasks such as tab-

lature generation [39, 40]. In our case, “Session Guitarist

- Picked Nylon” 2 , a sample-based virtual instrument, was

utilized to generate classical guitar sounds. It offers a wide

range of playing styles, capturing the nuances of nylon-

stringed guitars. We selected guitar duet MIDI scores from

the MuseScore community 3 , representing a broad spec-

trum of pieces. Logic Pro X 4 served as the digital au-

dio workstation (DAW) for transforming MIDI scores into

realistic guitar performances. By configuring multiple in-

stances of the PICKED NYLON plugin with distinct tim-

bral settings, we produced different guitar sounds. The fi-

nal dataset was exported as 44,100 Hz, 16-bit WAV files in
both stereo and mono formats for mixed audio file creation.

3. METHODOLOGY

3.1 Separation Architecture

In this work the Hybrid Transformer Demucs [5] was used

as the separation backbone, consisting of dual U-Nets [16],

operating in both time and spectrogram domains, each

2 https://www.native-instruments.com/en/products/komplete/guitar/
session-guitarist-picked-nylon/

3 https://musescore.com/
4 https://www.apple.com/logic-pro/

Figure 1: Overview of the incorporation of note-level an-

notations into the Demucs Architecture.

featuring four encoder and decoder layers. The tempo-

ral encoder (TEncoder) downsamples the input waveform

through a series of 1D convolutions, whereas the spectral

encoder (ZEncoder) gradually compresses the STFT mag-

nitude of the input by applying convolutions across the

spectral axis. The traditional convolutional layers, posi-

tioned between the encoder and decoder in previous iter-

ations of the Demucs architecture [41] are replaced with

a cross-domain Transformer Encoder, composed of inter-

leaved self-attention and cross-attention Encoder layers,

each equipped with Layer Scale [42]. The attention mecha-

nism operates with eight heads, and the hidden state size of

the feedforward network is four times the dimension of the

transformer. The primary decoder layer is shared, branch-

ing into both temporal and spectral domains, with the re-

spective decoders built symmetrically to the encoders. The

spectral output, post an inverse Short Time Fourier Trans-

form (ISTFT), is merged with the temporal output, pro-

ducing the model’s prediction. We note that in our experi-

ments, the input length is set to 4 seconds.

3.2 Score-Informed Separation

In the context of Score-Informed Separation, the separa-

tion network is conditioned on the note-level transcripts of

the recordings. To this end, binary vectors indicating the

presence or absence of each of the 128 MIDI notes dur-

ing small temporal frames are concatenated with the in-

termediate feature maps in each branch, as indicated in

Fig. 1. In particular, in the temporal branch, the activ-

ity labels of each guitar are inserted after the third TEn-

coder layer. The binary vector for each guitar has a di-

mensionality of 128 × Ns, where Ns corresponds to the

number of samples for each 4-second segment, yielding a
combined shape of 256 × Ns for both guitars. Thus, the

activity labels have to be downsampled across the tempo-

ral axis, to match the resolution of the encoder at this stage.

In a parallel manner, within the frequency branch, these bi-

nary vectors are introduced following the second ZEncoder
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Figure 2: Overview of the proposed methodology for joint

transcription and separation of guitar duets.

layer. The shape of the activity labels for concatenation is
2 × 128 ×Ns, aligning with the two guitars’ MIDI notes.

In this case, the activity labels are concatenated with the

feature maps across the channel dimension; since the fre-

quency resolution of the ZEncoder, at this stage, matches

the number of MIDI notes, resampling occurs only across

the temporal axis, by downsampling the note activity labels

to the respective temporal resolution of the ZEncoder.

If transcriptions are not available, we use a sepa-

rate transcription network to generate them creating a

joint transcription-separation framework.The first network

would intake the combined sounds of the two guitars and

generate a binarized piano roll representation for each in-

dividual guitar. Afterward, the second model combines the

mixed audio and the generated piano rolls to create sepa-

rate estimates for each guitar as depicted in Figure 2. From

a musical endpoint the transcription network could poten-

tially capture note interdependencies and guitar duet pat-

terns through binarized vector features, aiding in note pre-

diction. This transcription informs the separation model,

which refines the output by focusing on timbre.

For the transcription architecture, we utilize the Resid-

ual Shuffle-Exchange Network (RSE) [37], which has

achieved state-of-the-art results in MusicNet [43]. This

network enhances the neural Shuffle-Exchange network

[44] by employing both Switch and Shuffle layers to cap-

ture sequence dependencies effectively, as well as reducing

its computational overhead by incorporating strided convo-

lutions. For further details about the architecture we refer

to [37, 44]. In our implementation, the RSE’s output layer

is modified to produce a binarized 2 × 128-dimensional

representation, to assign activity labels for each of the 128

MIDI notes to the corresponding instrument.

4. EXPERIMENTAL EVALUATION

4.1 Experimental Setup

For the separation experiments, we used both the real

and synthesized subsets of GuitarDuets, which we will

further denote as GuitarDuets(R) and GuitarDuets(S), re-

spectively, as well as the GuitarSet, for which mixtures

were generated via addition of the available comping and

solo excerpts. We adapted the backbone Demucs model

for classical guitar duet separation, modifying it to out-

put two stereo signals, one for each guitar. Data aug-

mentation techniques including channel swapping, time

cropping, amplitude scaling and remixing individual gui-

tar parts from different performances were employed dur-

ing network training to improve generalization. As our loss

function we used the quantity:

α ·min(|ĝ1 − g1|+ |ĝ2 − g2|, |ĝ2 − g1|+ |ĝ1 − g2|)

+β · |(ĝ1 + ĝ2)− (g1 + g2)|, (1)

where the first term corresponds to the traditional

permutation-invariant L1 loss between the ground truth

signals g1, g2 and the output sources ĝ1, ĝ2, and the second

term models the similarity between the sum of the guitar

estimates and the input mixtures, encouraging the network

to provide separate guitar tracks which neither discard nor

duplicate note instances, whereas the weight values were

set, after preliminary experiments, to α = 0.8, β = 0.2.

For the transcription architecture experiments, we em-

ployed GuitarSet and the GuitarDuets(S) dataset, which

contain note-level annotations for individual guitar parts.

We transformed labels from GuitarSet (.jams files) and the

MIDI files from our dataset to CSV format. All audio files,

initially sampled at 44,100 Hz, were resampled to 11,000

Hz and converted to mono, to render them compatible with

the RSE backbone [37]. Similar to the separation case, the

loss function –in this case, the binary cross entropy– was

employed within a permutation invariant framework.

4.2 Cross-Dataset Analysis

For the purposes of the cross-dataset analysis, we con-

sider the GuitarDuets(R) and GuitarDuets(S) subsets as

separate datasets, and train the Demucs backbone on var-

ious combinations of GuitarSet, GuitarDuets(R) and Gui-

tarDuets(S), using the same experimental protocol and an

80-20 training-validation split; all networks are evaluated

on the bleeding-free testing set of GuitarDuets(R). Upon

inspection of the results, presented in Table 3, several

key insights emerge. Namely, the complete GuitarDuets

dataset yielded the highest SDR values for the first gui-

tar. The inclusion of the synthesized subset likely provided

additional information that enhanced the model’s perfor-

mance with regards to the SDR. On the other hand, the

inclusion of these synthetic parts made the model prone

to auditory artifacts, since the highest SAR scores were

achieved for the combination of GuitarDuets(R) with the

GuitarSet. Finally, we observe that the combination of the

complete GuitarDuets dataset with GuitarSet leads in di-

minished performance, probably due to the structural dif-

ferences between the training subsets.
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Source Datasets Metrics

GuitarDuets(R) GuitarDuets(S) GuitarSet SDR SI-SDR SAR SIR

✓ ✓ ✓
G1: 4.297 G1: 3.403 G1: 7.670 G1: 10.766

G2: 0.835 G2: -2.880 G2: 2.062 G2: 4.495

✓ ✗ ✓
G1: 4.522 G1: 4.280 G1: 9.483 G1: 6.273

G2: 1.359 G2: -2.238 G2: 10.898 G2: 7.631

✗ ✓ ✓
G1: 4.493 G1: 1.530 G1: 8.191 G1: 7.038

G2: 1.137 G2: -1.566 G2: 8.305 G2: 8.081

✗ ✗ ✓
G1: 4.632 G1: 3.871 G1: 7.971 G1: 7.321

G2: 1.378 G2: -1.198 G2: 6.332 G2: 8.968

✗ ✓ ✗
G1: 3.472 G1: 1.857 G1: 8.212 G1: 8.217

G2: 0.200 G2: -4.052 G2: 4.502 G2: 4.501

✓ ✗ ✗
G1: 4.952 G1: 3.573 G1: 7.628 G1: 10.413

G2: 1.014 G2: -3.536 G2: 1.424 G2: 4.873

✓ ✓ ✗
G1: 5.882 G1: 4.315 G1: 8.488 G1: 11.706

G2: 0.920 G2: -3.133 G2: 0.896 G2: 4.104

Table 3: Separation results on the testing set of GuitarDuets(R), according to the datasets utilized during training. G1

corresponds to the 1st guitar, G2 to the 2nd. Higher is better for all metrics.

Dataset Note Labels
Branch Conditioning Metrics

Time Frequency SDR SI-SDR SAR SIR

GuitarDuets(S) Ground Truth

✓ ✗
G1: 4.453 G1: 3.117 G1: 4.972 G1: 12.411

G2: 4.355 G2: 0.072 G2: 3.197 G2: 8.292

✗ ✓
G1: 4.547 G1: 3.293 G1: 4.685 G1: 9.523

G2: 3.301 G2: -0.410 G2: 3.451 G2: 9.882

✓ ✓
G1: 4.717 G1: 3.378 G1: 4.362 G1: 12.081

G2: 4.863 G2: 0.154 G2: 4.316 G2: 10.537

GuitarDuets(S)

Estimated ✓ ✓
G1: 3.414 G1: 1.398 G1: 3.455 G1: 10.655

G2: 1.977 G2: -1.511 G2: 3.087 G2: 7.035

None ✗ ✗
G1: 2.575 G1: 2.436 G1: 4.473 G1: 12.795

G2: 2.569 G2: -2.514 G2: 3.473 G2: 5.717

GuitarDuets(R)

Estimated ✓ ✓
G1: 5.313 G1: 4.352 G1: 7.638 G1: 11.110

G2: 1.035 G2: -3.291 G2: 1.998 G2: 5.089

None ✗ ✗
G1: 4.952 G1: 3.573 G1: 7.628 G1: 10.413

G2: 1.014 G2: -3.536 G2: 1.424 G2: 4.873

Table 4: Separation results on the testing sets of GuitarDuets(S), GuitarDuets(R), when using solely the respective training

sets for training, depending on the availability of note-level annotations and the Demucs branches conditioned on them. G1

corresponds to the 1st guitar, G2 to the 2nd. Higher is better for all metrics.

In our analysis, we observed a consistent discrepancy in
the Signal-to-Distortion Ratio (SDR) between the two gui-

tars, where the first guitar exhibited a decent SDR, while

the second often fell below a threshold of 1 dB. This pat-

tern suggests that the algorithm may be effectively sep-

arating the first guitar by identifying it as the primary

source, whereas it perceives the second guitar as back-

ground noise, or merely an auditory artifact. It is impor-

tant to note that the average amplitude of both guitars is
on the same scale, so this observation is not attributed to
amplitude differences. Notably, we observe that the most

consistent SDR values for G2 were achieved when Gui-

tarSet was included in the training set, which we attribute

to its relatively noise-free structure.

4.3 Score-Informed Separation Approaches

For the experiments concerning score-informed separation,

we investigated the integration of activity labels into our

network, considering Demucs’ operation across frequency

and temporal domains, by using the GuitarDuets(S) as our

dataset since it contains note-level annotations. We also in-

vestigate, using both GuitarDuets(R) and GuitarDuets(S),

whether the joint transcription-separation architecture can

aid in effective separation in scenarios where no ground

truth data is available. In both cases, a part of the dataset

(the bleeding-free subset of GuitarDuets(R), and 10% of

GuitarDuets(S)) was used for performance evaluation; the

rest were used for training and validation, at an 80:20 ratio.

The analysis, as detailed in Table 4, reveals that while

using the temporal branch for note label integration leads

to slightly improved results compared to the spectral

branch, the hybrid approach achieves the most promising

outcomes. This performance can be attributed to the in-

herent design of the Demucs architecture, which has his-

torically shown improved efficiency when leveraging both

domains concurrently [41]. It is also noteworthy that while

the integration of ground-truth labels leads to higher SIR

values, presumably due to the guidance that these labels
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Figure 3: Comparison of spectrogram estimates with esti-

mated (top) note-level annotations, and without those (bot-

tom), for an instance from GuitarDuets (R).

provide to the separation network about the identity of each

guitar, the improvement in SAR is marginal.

Regarding the joint transcription and separation frame-

work, the performance does not reach the levels achieved

when ground-truth note-level annotations are available, as

measured in GuitarDuets(S). On the other hand, while in
the case of GuitarDuets(R), the performance is slightly im-

proved when these pseudo-annotations are available, Gui-

tarDuets(S) achieves better results in their absence. A com-

parison of guitar estimates for the models trained with and

without predicted note label information, for an instance

of the GuitarDuets(R) test set, can be depicted in Figure 3;

we assume that the incorporation of note activity labels

enables the separation model to more accurately sustain

notes, enhancing the quality of the isolated melodic and

accompanying parts. On the other hand, we attribute the

performance drop, when using GuitarDuets(S), to the re-

duced generalization of the transcription network. Since

the training set of GuitarDuets(S) was used for its training,

the separation network was trained using mostly correct

labels, but evaluated with note-level annotations of pieces

the transcription network did not use for training.

4.4 Comparative Metric Analysis

In the field of MSS, the evaluation of separation quality

is often quantified using metrics such as SDR [45] and

SI-SDR [46]. While they have been extensively used in
studies focusing on separating different instruments, their

behavior on sources with similar timbral characteristics re-

mains less explored. Given that most prior work involves

instruments with distinct timbres, direct comparison of our

results with SDR values achieved across different datasets

may not be appropriate for our study, which focuses on two

classical guitars with similar timbral properties.

Figure 4: Comparison of the behavior of SDR (left) and

SI-SDR (right) when assessing the separation of monotim-

bral (blue line) or multitimbral (orange line) duets.

In order to identify potential disparities in the behavior

of the metrics that can be attributed to timbral similarities

in the mixture components, we simulated imperfect esti-

mates of a reference signal x1 by creating additive syn-

thetic mixtures of the signals x1, x2 as:

m = α x1 + (1− α)x2, (2)

with α ∈ (0, 1), and measured the values of the SDR, SI-

SDR metrics between these mixtures and x1. We examined

two cases using signals derived from Track 29 of the Gui-

tarDuets(S): i) a monotimbral mixture, where both x1 and

x2 constitute guitar signals, and ii) a multitimbral mixture,

where x2 was synthesized from the second guitar’s notes

using a piano virtual instrument plugin. To guarantee a fair

comparison across all tests, we performed amplitude nor-

malization between the two tracks for each experiment.

The results, displayed in Figure 4, indicate that both

metrics for the guitar mixtures are consistently higher than

those obtained from mixtures of different instruments. For

instance, the mixing ratio α required to reach an SDR value

of 5 approaches 0.8 for the multi-timbral case, while 0.6 for

the mono-timbral case. This suggests that the timbral sim-

ilarity between the two guitars introduces a challenge for

the metrics to accurately assess the quality of separation.

5. CONCLUSIONS

In this paper, we introduced GuitarDuets, a dataset con-

sisting of both real and synthesized classical guitar duets.

We exhibit that our dataset can be utilized for developing

monotimbral source separation algorithms within both tra-

ditional and score-informed frameworks. We further de-

veloped a joint permutation-invariant framework for tran-

scription and separation of monotimbral mixtures, which

we show that can lead to improved performance in sepa-

ration of real guitar duets. In the future, we plan to ex-

tend the recordings of both the real and synthesized subsets

of GuitarDuets, and provide note-level annotations for its
real subset. Furthermore, regarding the joint transcription-

separation architecture, we intend to explore more sophis-

ticated ways for integrating the predicted guitar transcripts

into the separator [47, 48]. Finally, we aim to conduct

extensive listening tests, which will help in further shed-

ding light into both the performance of the various ap-

proaches we compare, and the significance of objective

metrics within the context of monotimbral audio source

separation.
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ABSTRACT

Symbolic Music, akin to language, can be encoded in dis-

crete symbols. Recent research has extended the appli-

cation of large language models (LLMs) such as GPT-4

and Llama2 to the symbolic music domain including un-

derstanding and generation. Yet scant research explores

the details of how these LLMs perform on advanced mu-

sic understanding and conditioned generation, especially

from the multi-step reasoning perspective, which is a crit-

ical aspect in the conditioned, editable, and interactive

human-computer co-creation process. This study conducts

a thorough investigation of LLMs’ capability and limita-

tions in symbolic music processing. We identify that cur-

rent LLMs exhibit poor performance in song-level multi-

step music reasoning, and typically fail to leverage learned

music knowledge when addressing complex musical tasks.

An analysis of LLMs’ responses highlights distinctly their

pros and cons. Our findings suggest achieving advanced

musical capability is not intrinsically obtained by LLMs,

and future research should focus more on bridging the gap

between music knowledge and reasoning, to improve the

co-creation experience for musicians.

1. INTRODUCTION

Large language models (LLMs), such as GPT-4, harness

the power of deep learning to produce human-like text.

These models, trained on vast datasets of textual content,

have notably propelled advancements in natural language

processing (NLP). They excel in complex language under-

standing and generation tasks including translation, sen-

timent analysis, question answering, and summarization,

showcasing their reasoning capability with sophistication.

Large language models (LLMs), initially pre-trained on

© Z. Zhou, Y. Wu, and Z. Wu. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribu-

tion: Z. Zhou, Y. Wu, and Z. Wu, “Can LLMs "Reason" in Music?

An Evaluation of LLMs’ Capability of Music Understanding and Gener-

ation”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

extensive textual corpora, can assimilate general linguistic

patterns and structures. They are subsequently fine-tuned

with domain-specific data, such as code and mathemati-

cal symbols, to enhance the adaptation to specific tasks.

This refinement allows LLMs’ proficiency to more accu-

rately manage domain-specific terminology and compli-

cated challenges like multi-step reasoning. Music Reason-

ing refers to the ability to estimate the varying harmonies,

keys, rhythms, and other musical elements that are not ex-

plicitly annotated in a piece of music and are significant

for music themes, progression, and styles [1]. The analogy

between the reasoning process in music and mathemat-

ics suggests their structural similarities. Both disciplines

fundamentally rely on patterns: music in rhythms, scales,

and chord progressions, while mathematics involves se-

quences, symmetries, and geometric configuration. More-

over, music theory utilizes mathematical concepts to artic-

ulate intervals between pitches, chord structures, and the

rhythmic temporal division [2, 3], underscoring the intrin-

sic reasoning nature of the musical components.

Music can be represented as sequences of symbols such

as MIDI or ABC notation, rendering it suitable for process-

ing by LLMs, which excel in long-context understanding

and multi-step reasoning. These models are capable to dis-

sect and generate intricate musical patterns encompassing

melodic, harmonic, and rhythmic structures. LLMs also

play a pivotal role in enhancing interactive music gener-

ation systems, where user inputs tailor the model’s out-

put, enriching the composing experience. While previous

studies [1,4,5] have investigated LLMs in music tasks, de-

tailed interpretations of the process remains less explored.

This paper conduct an evaluation of four LLMs, GPT-

4 [6], Gemma-7B-it [7], Llama2-7B-chat [8], and Qwen-

7B-chat [9], assessing their capabilities on tasks related to

symbolic music understanding and generation:

• Music Understanding: 1) Music theory exercise; 2)

Motif extraction; 3) Musical form extraction.

• Music Generation: 1) Chord-conditioned music gen-

eration; 2) Melody harmonization; 3) Musical-form-

and-motif-conditioned music generation
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The task of "Musical Form & Motif Conditioned Mu-

sic Generation" as described in Chatmusician [1] involves

generating music that adheres to detailed prescribed condi-

tions like form and motif. Figure 1 illustrates this process:

The prompt’s green text specifies conditional constraints

including the musical form, motif, and some musical el-

ements (key, time signature, etc.). Under the prompt, the

left sheet presents the human composer’s work. The right

sheets show ABC notations from different models along-

side the reference. The Gemma-7B-it model merely repli-

cates the provided motif, adding no new elements. Simi-

larly, GPT-4 simply repeats the given condition. Qwen-7B-

chat and Llama-7B-chat include correct musical elements

and the motif but fail to capture the musical form "AB" and

maintain the duration of a measure.

The main contributions of our paper are as follows: (1)

we provide multi-step prompt engineering and explore how

LLMs exhibit their reasoning capabilities with multi-step

instructions in music understanding and generation tasks.

(2) we assess four major LLMs on various symbolic music

tasks, analyzing their reasoning in ABC sequences through

quantitative statistical results and qualitative human as-

sessment, including error analysis. The examples, hand-

crafted prompts, and codes of data preprocessing are avail-

able at github.

2. RELATED WORK

In this section, we summarize related works from two per-

spectives. First, we introduce previous studies on LLMs in

the symbolic music domain, explaining their performance

and evaluation methods in music understanding and gen-

eration tasks. Then, we discuss the application of LLMs

in reasoning math problems and controllable creative text

generation, highlighting similarities between the reasoning

processes in music and math and the conditioned, open-

ended nature of both music and text generation.

2.1 LLMs in Symbolic Music Domain

This subsection reviews the application of LLMs in the

symbolic music domain. Previous studies have focused

on adapting LLMs for music understanding and gener-

ation. Chatmusician [1] uses continual pre-training and

fine-tuning on LLaMA2 to understand and generate ABC

notation music, without specialized music structures or

tokenizers. SongComposer [4] collects a song pretrain-

ing dataset including lyrics, melodies and paired lyrics-

melodies, employing 10K crafted QA pairs to enable

LLMs to perform multiple music-related tasks such as

lyric-to-melody conversion and song continuation. Mu-

sicAgent [10] integrates various music tools into a sin-

gle system, though it lacks interaction among these tools.

Most approaches view music creation as a linear process,

which diverges from the multi-step approach humans use,

limiting their applicability for generating creative works.

To mimic human creative processes, ByteComposer [5]

employs a four-step method to replicate the creative work-

flow of human composers: conception analysis, draft Com-

position, self-evaluation and modification, and human aes-

thetic selection. And designs an interactive agent system

consisting of expert, generator, voter, and memory mod-

ules. What’s more, they construct supervised fine-tuning

data covering tasks of basic music theory conception, con-

trol code generation, music score evaluation and next-step

planning. Despite being a significant step towards multi-

step music creation with LLMs, it lacks a detailed discus-

sion on the limits of LLMs at each stage.

2.2 Reasoning and Controllable Generation with

LLMs

"Reasoning" in NLP involves integrating various knowl-

edge sources or contexts to generate new assertions,

events, or actions [11]. This process often breaks com-

plex questions into sequential steps [12]. Techniques such

as Chain-of-Thoughts (CoT) [13, 14] have shown effec-

tiveness in addressing complex reasoning tasks, particu-

larly in mathematics. The Program-of-Thoughts approach

improves upon CoT by using language models to gener-

ate text and code, enhancing math problem-solving per-

formance [15]. Plan-and-Solve (PS) Prompting, a zero-

shot technique, outperforms zero-shot CoT significantly,

exceeds Zero-shot Program-of-Thoughts, and matches 8-

shot CoT in math reasoning [16].

While music and mathematics share similarities, it is

crucial to recognize that music is not as deterministic. In

controllable music generation, despite given chords, mo-

tifs, and forms, unpredictable elements still significantly

affect the quality of the music, similar to controllable text

generation. Zhang et al. [17], identify three types of con-

trol conditions: semantic, structural, and lexical. Semantic

controls refer to content control such as sentiment [18, 19]

or topic [20, 21], resembling style and emotion in music.

Structural control involves shaping the structure of the gen-

erated text, such as setting a story’s framework or using

data from tables or graphs as input, similar to specifying

musical forms for generation [22, 23]. Lexical controls

manage vocabulary usage, ensuring specific keywords ap-

pear, akin to using musical chords and motifs as guidelines.

LLMs are extensively applied in diverse controllable and

creative generation tasks [24–26]. These systems’ abilities

in long-context and multi-step generation under predefined

conditions are examined, though such analyses are rarely

applied in the music domain.

3. METHODOLOGY

3.1 Datasets

In this paper, we incorporate six tasks covering from mu-

sic understanding to generation. The data is collected

from MusicPile and MusicBench in ChatMusician [1]. The

statistics of the dataset we use are shown in Table 1. Each

model can support the maximum length of tokens of each

task.
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Figure 1. A comparison of different LLMs’ responses with the same instruction of the musical-form-and-motif-conditioned

task as the input. The ABC notation contained in the response is extracted and displayed as scores the quality of all

responses is marked with diverse symbols.

Tasks Numbers Max/Avg. tokens

Music theory exercise 367 733/103.56

Motif extraction (ME) 2470 1165/194.28

Musical form extraction (MFE) 483 650/187.35

Chord-conditioned generation (CCG) 1721 283/94.83

Melody harmonization (MH) 355 551/166.03

Musical-form-and-motif-conditioned generation (MFMC) 4881 285/53.82

Table 1. Statistics of each task. The number of items and the max and average length of tokens are provided.

3.2 Prompt Engineering

Before examining each LLM’s task performance, we con-

ducted preliminary tests to verify their understanding of

the relevant musical concepts. These tests confirmed that

all models possess foundational knowledge of the six mu-

sic tasks assessed in this study.

We employed two prompt modes in our experiments

of all tasks, Default and Chain-of-Thoughts (CoT). De-

fault mode means forcing the model to respond without

any analysis. Additionally, for music theory exercises, to

make the model better understand the questions and op-

tions, and return the answer in a unified format, we also

include the In-Context-Learning (ICL) mode by adding

some question-answer pairs as examples shown to the

models in the prompt. Taking the task of music theory

exercises understanding as an example, three modes of

prompts as the prefix of inputs followed by each item in

the datasets are shown in Figure 2. Different from the mu-

sic theory exercise, we specifically design prompts to sup-

port a multi-round chat conversation with LLMs for the

generation tasks. Figure 3 shows an example of a four-

round prompt set of chord-conditioned generation. We in-

vite graduates who majored in music composition to write

down their multi-step thoughts when completing the gener-

ation tasks involved in this paper. We summarize the com-

mon steps of all answers, adapt them to the prompt set, and

make sure LLMs can understand or at least intend to fol-

low the instructions. An example of GPT-4’s response to

the instruction in Figure 3 is shown on the website 1 .

1 https://github.com/SylviaZiyaZhou/LLMs_music_reasoning/blob/main/
CoT_music_generation_GPT4_response.pdf

Default: "You will see JSON-formatted instruction data followed by
questions. Your responses should only indicate the selected option
(using uppercase letters), without providing any analysis."

CoT: "You will see a JSON-formatted instruction data followed by
questions. Your responses should include an analysis step by step.
The returned JSON format is as follows: {"reason": "Let’s think
step by step", "answer": "A"} "

ICL: CoT + "Here is an example of a question and its answer:
Read the following questions from the four options (A, B, C and D)
given in each question. Choose the best option. Which of the
following is the name of the note in the example?",

"L:1/4 M:4/4 K:Cb, D,4 |]",
Options: {"A": "B-flat", "B": "D", "C": "B", "D": "D-flat"},
Answer: "D".

Music Theory Exercise

Figure 2. A prompt example of the music theory exercise

in different modes.

3.3 Pre-processing Responses

The responses of models are supposed to have correct ABC

notations, but it may have certain syntax or formatting is-

sues, and some outputs may even contain a large amount of

natural language. We select the main features of ABC no-

tation including field names and bar line symbols to help

us extract the ABC sequence. If the extracted ABC se-

quence can be rendered into MIDI files using Music21 2

successfully and can be later rendering into audio file using

midi2audio 3 , we consider it capable of producing valid

ABC notation.

2 https://web.mit.edu/music21
3 https://pypi.org/project/midi2audio
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Default: "Formulate a captivating melody that blend with the given
chord progression. The piece should be represented correctly in ABC
notation format.
'Bb', 'F', 'Gm', 'Dm', 'Eb', 'Bb', 'Eb', 'F', 'Bb', 'Gm', 'Cm', 'D', 'Gm', 'Cm',
'Gm', 'D7', 'Gm', 'Eb', 'F', 'Gm', 'F', 'Bb', 'F', 'Cm', 'F', 'Gm' "

CoT (multi-round):
Round 1: "Separate the following chord progression into several
segments.
'Bb', 'F', 'Gm', 'Dm', 'Eb', 'Bb', 'Eb', 'F', 'Bb', 'Gm', 'Cm', 'D', 'Gm', 'Cm',
'Gm', 'D7', 'Gm', 'Eb', 'F', 'Gm', 'F', 'Bb', 'F', 'Cm', 'F', 'Gm' "

Round 2: "Creating the melody for each segment respectively and
integrate melodies and chords into a complete one based on your
knowledge. Remember to consider the bass note of each chord. The
composition should be represented correctly in ABC notation format.

Round 3: "Revise your composition. Please make sure the key and
tempo is consistent and contain more complex rhythms (e.g. dotted
notes) and various chords."

Round 4: "Continue to elaborate your composition. Please improve
the overall structure of the composition."

Chord-conditioned Generation

Figure 3. A prompt example of the chord-conditioned

generation in different modes.

3.4 Multi-step Reasoning Analysis

In order to compare each model’s reasoning capability on

both understanding and generation tasks, we first conduct

a subjective assessment to evaluate how different models’

reasoning processes influence their performances. Partici-

pants are all familiar with basic music theory and can un-

derstand each task as well as the ABC notation. Secondly,

based on the results of the subjective assessment, we fur-

ther perform an error analysis in detail to show the interme-

diate answers during the reasoning process of each model.

3.4.1 Human Assessment Pipeline

In this section, we will provide a detailed description of our

subjective experiments on four popular and open-source

LLMs, including Gemma-7B-it, Llama2-7B-Chat, GPT-4,

and Qwen-7B-chat. We ask the participants to evaluate

to what extent the model understands the instructions and

correctly answer the questions in the understanding tasks,

and to what extent the responses contain the conditions and

make creative works in the generation tasks. Specifically,

the questions in the human assessment are as follows:

• For both understanding and generation tasks: 1) To

what extent does the model understand and follow

the instructions?

• Specifically for the understanding tasks: 1) To what

extent does the model correctly answer the question?

2) To what extent does the model reason like human

beings?

• Specifically for the generation tasks: 1) AB test:

please choose the better one between a pair of mu-

sic excerpts by considering their "Musicality"; 2) To

what extent does the model contain the conditions?

Except for the AB test in the generation task, each ques-

tion should be rated in a scoring range from 0 to 10 points.

We invited music experts who are familiar with ABC nota-

tions as the participants in the human assessment, ensuring

that each item was evaluated by at least two experts.

4. EVALUATION RESULTS

In this section, we provide the evaluation results based on

the methodology we discussed in the last section. The

quantitative results include the correctly parsing rate of

ABC notation in the generation tasks, and the accuracy of

music theory exercises. The qualitative results include the

statistical analysis of human assessment and the detailed

error analysis. Due to space limitation, we provide the ex-

amples at github and the online links of the corresponding

files will be attached in the illustration.

4.1 Quantitative Results

Figure 4 shows the success rate of rendering valid au-

dio from each LLM’s responses under different generation

tasks. The pre-processing methodology is introduced in

Section 3.3. Except for GPT-4, the other three models all

have an audio generation rate of less than 50%, finding it

difficult to generate the correct ABC notation format to be

converted into audio.

Table 2 displays the accuracy of the music theory exer-

cises in three modes. The reason why some models have

an accuracy rate below 25% in multiple-choice questions

with four options is that most of their responses seek addi-

tional information about the questions rather than answer-

ing them. Gemma-7B-it has a comparable performance

with GPT-4 in the Reason. subset in the Default mode

even with a much smaller model size. However, CoT and

ICL modes, which significantly improve the GPT-4’s per-

formance, show very limited effect or even deficiency in

other models. This may inspire us to reconsider the uti-

lization of classical CoT and ICL approaches in solving

music tasks.

Figure 4. The success rate of rendering audio from each

LLM’s responses in the music generation tasks.
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Model (and Mode) Know. (%) Reas. (%)

GPT-4 (Default) 58.2 25.6

GPT-4 (CoT) 68.4 36.7

GPT-4 (ICL) 69.9 34.9

Llama2-7B-chat (Default) 11.9 10.2

Llama2-7B-chat (CoT) 29.8 16.3

Llama2-7B-chat (ICL) 10.4 15.3

Gemma-7B-it (Default) 45.7 31.6

Gemma-7B-it (CoT) 36.1 17.3

Gemma-7B-it (ICL) 33.1 31.6

Qwen-7B-chat (Default) 42.0 17.4

Qwen-7B-chat (CoT) 40.2 22.4

Qwen-7B-chat (ICL) 35.7 24.5

Table 2. Accuracy of the music theory exercises of each

model. All three modes of results are provided. Know.

means the music knowledge part and Reas. means the

music reasoning part. They are two subsets of which the

former tests the models’ memory of basic music concepts

and the latter needs further reasoning and calculation to be

completed. GPT-4’s results come from [1].

Type Model
Inst. Fl. Correct. Reason.

µ σ µ σ µ σ

ME

GPT-4 10.0 0.0 6.5 2.6 7.8 1.3

Gemma 8.2 2.1 5.1 2.8 7.4 3.2

Llama2 7.8 1.9 4.7 2.8 4.7 2.4

Qwen 7.6 0.7 3.8 1.5 2.1 1.3

MFE

GPT-4 10.0 0.0 5.0 2.5 5.6 2.0

Gemma 3.5 3.6 2.1 2.2 2.9 2.1

Llama2 5.4 1.8 3.2 2.8 4.3 2.3

Qwen 2.6 1.5 2.3 1.9 3.3 2.0

Table 3. The human assessment results of different LLMs

on the understanding task. Inst. Fl., Correct. and Rea-

son. respectively indicate to what extent the model follows

the instructions, correctly answers the questions, and rea-

sons like humans. µ and σ respectively denote the average

scores and the standard variance.

Type Model
Inst. Fl. Condi.

µ σ µ σ

MFMC

GPT-4 5.7 1.4 6.3 1.5

Gemma 4.0 1.8 4.6 2.2

Llama2 4.3 1.6 4.3 2.3

Qwen 4.9 2.1 2.9 2.2

MH
GPT-4 6.5 3.5 5.5 2.5

Gemma 3.0 1.0 4.5 2.5

CCG
GPT-4 5.2 3.3 5.8 3.8

Gemma 1.6 1.0 1.3 0.8

Table 4. The human assessment results of different LLMs

on the generation task. Condi. indicates to what extent the

model contains the condition given in the instructions and

ABC format.

4.2 Qualitative Results

For human assessment, Table 3 shows LLMs on ME and

MFE tasks under the CoT mode. We randomly sampled 40

examples of each task. In the instruction following ques-

tion, GPT-4 demonstrates very good results, while other

LLMs more or less can accomplish the tasks, indicating

a certain level of capability. However, when it comes to

the correctness, even GPT-4 finds it challenging to provide

satisfactory answers to the prompts. When testing the log-

ical reasoning of LLMs, the average scores indicate that all

LLMs encounter difficulties in applying logical reasoning

when answering questions step by step, leading to funda-

mental errors in music theory or illogical conclusions. This

highlights the LLMs’ limitation of involving music back-

ground knowledge.

Table 4 presents the results of human assessment we

conducted on generative tasks. In addition to the results

shown in the table, we also conducted an AB test based

on Musicality. We find that the GPT-4 and Gemma-7B-

it achieve comparable results in MFMCG task, while in

other tasks GPT-4 always wins. This means Gemma-7B-

it has a potential in creating high-quality symbolic music

with limited model size.

As depicted in Figure 4, on MH and CCG tasks, Qwen-

7B-chat and Llama2-7B-chat struggled to effectively out-

put correct ABC sequences to be rendered into audios.

Therefore, for MH and CCG tasks, we only include the AB

test results for GPT-4 and Gemma-7B-it. Despite GPT-4

achieving relatively better scores in generative tasks, it still

falls far away from humans’ expectations. Interestingly,

beyond the data, LLMs’ generative results occasionally ex-

hibit instances of copying motifs provided in the prompt,

as well as displaying unstructured harmonic repetitions or

completely off-key notes. We believe that although LLMs

can adhere to the ABC format condition provided in the

prompt, their lack of musical information and knowledge

makes it challenging to understand the high-level informa-

tion within the condition, resulting in less satisfactory gen-

erated outcomes.

In terms of the results from subjective experiments, we

identified a common issue prevalent in LLMs. Firstly,

LLMs, apart from GPT-4, struggle to generate data in the

correct ABC format with high probability, despite being

able to provide a perfect answer when asked what ABC no-

tation is. This phenomenon led us to speculate that while

LLMs are trained extensively and comprehensively, LLMs

can hardly understand all the information they have been

exposed to and utilize them in different scenarios. Be-

sides, LLMs can generate music in a seemingly appropri-

ate ABC format in generative tasks, but what appears to

be a correctly-formatted response is merely copying the

prompt without grasping the semantic and structural infor-

mation in the given condition.

4.2.1 Multi-step Reasoning Analysis

To better illustrate each model’s reasoning capability when

it is used to complete the music theory exercises, we pro-

vide an example of a question in the music theory exer-
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Figure 5. Human composer’s work for the chord-

conditioned generation task.

cises subset and step-by-step responses of the four mod-

els 4 . The question is about recognizing the interval prop-

erty of an ABC sequence referring to a compound in a mu-

sic sheet. From the responses, we can see that GPT-4 is

the only model which can actually perform the calculation

but still unable to understand the musical notes in the ABC

notation. In the GPT-4’s responses in the CoT mode, "4",

which is mistaken as "a fourth apart", should be a note

duration. Accordingly, this mistake influences the whole

reasoning process of the calculation of intervals. The re-

sponse of Llama2-7B-chat also shows its incapability of

involving correct music knowledge understanding of notes

intervals in the reasoning process. What’s more, Qwen-

7B-chat even accidentally contains Chinese in the English

text and Gemma-7B-it failed to recognize musical notes in

the ABC sequence (see in the supplementary materials), al-

though they can return the correct answer if they are merely

asked about "the definition of note intervals".

Besides, the responses of generation tasks such as

MFMC generation also have similar problems. In the CoT

mode, we find all LLMs except GPT-4, are hard to follow

the multi-step instructions and output music in a correct

ABC format, so we only provide a GPT-4 response respec-

tively in the raw text 5 and music sheet 6 form given the

prompt in Figure 3. Although GPT-4 can well understand

the instructions in every step, it generates repetitive and

simple rhythm without enough progression and variation,

compared to the human composer’s work in Figure 5.

5. CONCLUSION AND DISCUSSION

In conclusion, our experimental analysis highlights current

LLMs’ limitations in the realm of music understanding and

generation, particularly from the perspective of song-level

multi-step reasoning. These findings are crucial as they un-

derline the challenges LLMs face when tasked with gener-

ating coherent and contextually rich musical compositions,

4 https://github.com/SylviaZiyaZhou/LLMs_music_reasoning/blob/
main/CoT_music_theory_exercise_all_LLMs.pdf

5 https://github.com/SylviaZiyaZhou/LLMs_music_reasoning/blob
/main/CoT_music_generation_GPT4_response.pdf

6 https://github.com/SylviaZiyaZhou/LLMs_music_reasoning/blob
/main/Music_Sheet_of_music_generation_GPT4_response.pdf

which often require both complex sequential processing

and creative fineness. From the human assessment results

and the error analysis, we find that all these models failed

to inject correct music theory and knowledge in the mu-

sic understanding, reasoning and generation process. This

knowledge generalization gap is analogous to the reversal

curse problem illustrated in [27] where LLMs trained on

“A is B” fail to learn “B is A”. Without making sure the

fundamental concepts are correctly mentioned in the gen-

erated responses, it is hard to alleviate the LLMs’ hallu-

cination and guarantee the responses’ quality. Therefore,

it is significant to implement the knowledge augmentation

module in the Supervised Fine-Tuning (SFT) stage to en-

sure the LLMs can reason based on correct music knowl-

edge by curating more SFT data with enough knowledge-

based contexts and practical reasoning processes.

Specifically, several insights for the multi-step SFT

dataset construction can be concluded from the process

where professional musicians are asked to create music

following the instructions. Firstly, more expert knowledge

should be involved in the dataset construction to guarantee

its quality. For example, in the chord-conditioned genera-

tion task in Chatmusician’s dataset, the bass note sequence

of the given chords does not conform to the musicians’

expectation of the progression generally. Secondly, some

conditions in the old one-step form are too lengthy and in-

formative with limitations that the human composers feel

difficult to follow. For example, when they are given an

"AB" structure with two different motives in the MFMC

task, all of them find hard to integrate two segments with

different motives into a complete piece of music in an

"AB" form. Therefore, it might not be reasonable to ask

the LLMs to output a completely and well composed mu-

sic in a one-step approach.

What’s more, although four models are all claimed to be

able to handle the input size from 4K to 8K tokens, which

is much longer than the instructions in the dataset we used,

they do not show their long-context processing advantages

in the symbolic music domain. Our experimental results

show that the widely-used CoT and ICL approaches are not

always effective in improving the model’s performance. In

this way, more step-by-step learning strategies should be

specifically developed for instruction-based symbolic mu-

sic tasks by focusing on correctly answering music the-

ory exercises, explicitly extracting motifs and implicitly

extracting musical forms, and consistently following the

conditions in the instructions.
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ABSTRACT

Efficient audio representations in a compressed continu-
ous latent space are critical for generative audio modeling
and Music Information Retrieval (MIR) tasks. However,
some existing audio autoencoders have limitations, such
as multi-stage training procedures, slow iterative sampling,
or low reconstruction quality. We introduce Music2Latent,
an audio autoencoder that overcomes these limitations by
leveraging consistency models. Music2Latent encodes
samples into a compressed continuous latent space in a
single end-to-end training process while enabling high-
fidelity single-step reconstruction. Key innovations in-
clude conditioning the consistency model on upsampled
encoder outputs at all levels through cross connections,
using frequency-wise self-attention to capture long-range
frequency dependencies, and employing frequency-wise
learned scaling to handle varying value distributions across
frequencies at different noise levels. We demonstrate that
Music2Latent outperforms existing continuous audio au-
toencoders in sound quality and reconstruction accuracy
while achieving competitive performance on downstream
MIR tasks using its latent representations. To our knowl-
edge, this represents the first successful attempt at training
an end-to-end consistency autoencoder model. Pretrained
weights are available under [this link]. 1

1. INTRODUCTION

The ability to faithfully and efficiently represent high-
dimensional audio data in a compressed latent space is cru-
cial for a variety of applications, including generative mod-
eling, music information retrieval (MIR), and audio com-
pression. Generative models trained on latent representa-
tions of audio can be significantly more efficient than mod-
els trained directly on the data space, especially consider-
ing the high dimensionality of high-sample rate waveform
samples. Additionally, a well-designed latent space can fa-
cilitate downstream MIR tasks by including musically rel-
evant features in low-dimensional embeddings. However,

1 https://github.com/SonyCSLParis/music2latent

© M. Pasini, S. Lattner, and G. Fazekas. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: M. Pasini, S. Lattner, and G. Fazekas, “Music2Latent:
Consistency Autoencoders for Latent Audio Compression”, in Proc. of

the 25th Int. Society for Music Information Retrieval Conf., San Fran-
cisco, United States, 2024.

existing state-of-the-art audio autoencoders often present
limitations, such as a multi-stage training process, the use
of an unstable adversarial objective that requires multiple
discriminators, and slow iterative sampling to reconstruct
audio waveforms.

In this work, we introduce Music2Latent, a novel con-
sistency autoencoder that encodes audio samples into a
continuous latent space with a high compression ratio. Mu-
sic2Latent is trained fully end-to-end using a single con-
sistency loss function, making it easier to train than many
existing audio autoencoders that require a careful balance
between multiple competing loss terms [1–4]. Addition-
ally, considering the underlying consistency model [5, 6],
Music2Latent can reconstruct samples with high fidelity
in a single step, enabling fast and efficient decoding. We
evaluate Music2Latent on audio compression metrics, that
measure the discrepancy between input and reconstructed
samples, and on audio quality metrics, that establish the
general audio quality of the reconstructions. Despite not
being the primary focus of our model, we also investi-
gate the downstream performance of encoded represen-
tations on standard Music Information Retrieval (MIR)
tasks. Our experiments demonstrate that Music2Latent re-
constructs samples more accurately and with higher audio
quality compared to existing continuous autoencoder base-
lines while providing comparable or better performance on
downstream tasks. Our contributions are as follows:

• We introduce Music2Latent, a consistency autoen-
coder that encodes waveforms into a continuous la-
tent space with a 4096x time compression ratio.

• We show how it is possible to achieve high-quality
reconstructions with a fully end-to-end training pro-
cess relying on a single loss function.

• We introduce a frequency-wise self-attention and a
frequency learned scaling mechanism, and demon-
strate how they improve audio quality.

• We demonstrate that Music2Latent surpasses ex-
isting continuous autoencoder models in terms of
reconstruction accuracy and audio quality while
achieving competitive performance on downstream
MIR tasks.

To the best of our knowledge, we are the first to suc-
cessfully use consistency training in the music and audio
field, and we are the first across all fields to successfully
train an end-to-end consistency autoencoder model.
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2. RELATED WORK

2.1 Autoencoders for Latent Generative Modeling

Several autoencoder approaches have been explored in
both the image and audio domains.

Image Domain: Vector Quantized Variational Autoen-
coders (VQ-VAE) [7] introduced the concept of learning
discrete latent representations of images through vector
quantization. VQ-VAE-2 [8] extended this approach to hi-
erarchical codebooks, enabling the generation of realistic
images using autoregressive models trained on the learned
discrete latent codes. Vector Quantized Generative Ad-
versarial Networks (VQGAN) [9] combine the VQ-VAE
framework with adversarial training, incorporating a dis-
criminator network to improve the perceptual quality of
generated images. Latent Diffusion Models (LDMs) [10]
leverage diffusion models trained on the latent space of a
pre-trained autoencoder. By operating on a compressed
representation of the data, LDMs achieve high-quality im-
age synthesis with reduced computational requirements
compared to pixel-based diffusion models. Diffusion au-
toencoders [11] combine a learnable encoder with a diffu-
sion model as the decoder, aiming to learn a meaningful
and decodable representation of images in a fully end-to-
end manner. However, they still require a slow iterative
sampling process to reconstruct samples.

Audio Domain: The audio autoencoder proposed in the
Musika music generation system [1] encodes audio into a
continuous latent space by reconstructing the magnitude
and phase components of a spectrogram. While Musika
achieves fast inference, it requires a two-stage training
process combined with an unstable adversarial objective.
Moûsai introduces a diffusion autoencoder [12] to learn a
compressed invertible audio representation. However, it
requires multiple sampling steps for reconstruction. Sev-
eral audio autoencoders employ Residual Vector Quanti-
zation (RVQ) to learn discrete latent representations. Ex-
amples include SoundStream [2], EnCodec [3], and De-
script Audio Codec (DAC) [4]. These models are well-
suited for training autoregressive models on the latent rep-
resentations but are less suitable for other generative mod-
els such as diffusion, consistency, or GAN-based methods.
They also generally produce (discrete) representations at a
significantly lower time compression ratio than continuous
models, and are thus not directly comparable to our work.

2.2 Consistency Models

Consistency models [5, 6] offer a novel approach for ef-
ficient generative modeling by learning a mapping from
any point on a diffusion trajectory to the trajectory’s start-
ing point. They have been successfully applied to image
generation tasks [13], achieving high-quality results with
single-step sampling. The application of consistency mod-
els to audio generation is still relatively unexplored. Co-
MoSpeech [14] explores consistency distillation for speech
synthesis, but it requires a pre-trained diffusion model to be
trained.

3. BACKGROUND

3.1 Consistency Models

Consistency models represent a novel family of generative
models capable of producing high-quality samples in a sin-
gle step, without the need for adversarial training or itera-
tive sampling. They are grounded in the probability flow
ordinary differential equation (ODE) introduced by [15]:

dx

dσ
= −σ∇x log pσ(x), σ ∈ [σmin, σmax] (1)

Here, pσ(x) represents the perturbed data distribution ob-
tained by adding Gaussian noise with zero mean and stan-
dard deviation σ to the original data distribution pdata(x).
The term ∇x log pσ(x) is known as the score function,
which plays a crucial role in score-based generative mod-
els [16–18]. The probability flow ODE establishes a bijec-
tive mapping between a noisy data sample xσ ∼ pσ(x) and
xσmin ∼ pσmin(x) ≈ x ∼ pdata(x). This mapping, denoted
as f(xσ, σ) 7→ xσmin , is termed the consistency function,
which satisfies the boundary condition f(xσmin , σmin) =
xσmin . A consistency model fθ(xσ, σ) is a neural network
trained to approximate the consistency function f(xσ, σ).
To meet the boundary condition, consistency models are
parameterised as:

fθ(xσ, σ) = cskip(σ)xσ + cout(σ)Fθ(xσ, σ) (2)

where Fθ(xσ, σ) is a free-form neural network, and
cskip(σ) and cout(σ) are differentiable functions such that
cskip(σmin) = 1 and cout(σmin) = 0.

Consistency models can be trained using either consis-
tency distillation (CD) or consistency training (CT). CD re-
quires pre-training a diffusion model to estimate the score
function∇x log pσ(x) via score matching [19]. CT, on the
other hand, allows training consistency models in isolation
and is the method that is considered in this work.

3.2 Consistency Training

In consistency training, the probability flow ODE is discre-
tised using a sequence of noise levels σmin = σ1 < σ2 <

· · · < σN = σmax. The consistency model fθ(xσ, σ) is
then trained by minimising the following consistency train-
ing loss over θ:

LCT = E
[

λ(σi, σi+1)d
(

fθ(xσi+1
, σi+1), fθ−(xσi

, σi)
)]

(3)
where d(x, y) is a metric function such as mean squared
error and λ(σi, σi+1) is a noise level-dependent loss scal-
ing. In the above equations, fθ and fθ− are referred to as
the student network and the teacher network respectively.
The teacher’s parameters θ− are obtained by applying a
stop-gradient operation to the student’s parameters θ dur-
ing training:

θ− ← stopgrad(θ) (4)

After training, the consistency model fθ(x, σ) can directly
generate a sample x by starting with z ∼ N (0, I) and com-
puting x = fθ(σmaxz, σmax). This enables efficient one-
step sampling, a key advantage of consistency models over
diffusion models.
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Figure 1. Training process of Music2Latent. The input sample is first encoded into a sequence of latent vectors. The latents
are then upsampled with a decoder model. The consistency model is trained via consistency training, with an additional
information leakage coming from the cross connections.

4. MUSIC2LATENT

In the following sections, we provide a detailed explana-
tion of the audio representation, architecture, and training
framework underlying Music2Latent.

4.1 Audio Representation

Music2Latent utilises complex-valued STFT spectrograms
as the representation of waveform audio. This choice is
motivated by several factors. First, previous works [20,21]
have demonstrated the effectiveness of complex spectro-
grams in capturing the intricate structure of audio signals
and enabling the generation of high-fidelity audio. Second,
2-dimensional spectrograms allow for the direct applica-
tion of UNet architectures [22] that have been successfully
used in the image domain with diffusion and consistency
models. However, the distribution of values across differ-
ent frequencies in a STFT spectrogram can vary signif-
icantly, with substantially higher magnitudes in low fre-
quencies compared to high frequencies. This can hinder
the ability of the model to accurately reconstruct all fre-
quency components, as the learning signal for high fre-
quencies may be overshadowed by the stronger signal from
lower frequencies. To address this issue, we apply the
amplitude transformation proposed in [23] and later used
in [24] which scales up lower energy components in the
spectrogram:

c̃ = β|c|αei∠(c) (5)

where c is the original complex STFT coefficient, c̃ is the
transformed coefficient, α ∈ (0, 1] is a compression expo-
nent that emphasizes lower-energy frequency components,
∠(c) represents the phase angle of c, and β ∈ R

+ is a scal-
ing factor to normalize amplitudes within a desired range
(e.g., [0, 1]). This transformation ensures that the model
receives a more balanced representation of the audio sig-
nal, facilitating accurate reconstruction across all frequen-
cies. We consider the complex STFT spectrogram as a
2-channel representation, with each channel representing
real and imaginary components respectively.

4.2 Architecture

The architecture of Music2Latent consists of an encoder, a
decoder, and a consistency model.

Encoder: The encoder receives as input the audio sample
in the form of an STFT spectrogram with real and imagi-
nary components in each channel. It then gradually down-
samples the feature maps along the time axis and outputs
a sequence of latent vectors with dimensionality dlat. In-
stead of being trained with a VAE objective [10,25] to keep
the distribution of latent values under control, the latent en-
codings of the model are kept in the (−1, 1) range using a
tanh activation function, which was proven to be a suc-
cessful approach in previous works for downstream latent
generative modeling tasks [1, 12].

Decoder: The decoder mirrors the encoder architecture but
performs upsampling instead of downsampling. The de-
coder takes as input a sequence of latent vectors from the
encoder and progressively upsamples them to match the di-
mensionality of the feature maps of the consistency model.
The only purpose of the decoder is to ensure that the condi-
tioning information from the latent encodings is available
to the consistency model at all levels of its architecture (the
reason for this architectural choice is provided in the next
section).

Consistency Model: The consistency model uses a UNet
architecture with a downsampling branch and an upsam-
pling branch connected via additive skip connections. The
output of the decoder at each upsampling layer is also
added to the corresponding layer of the consistency model.
This provides cross connections that allow the consis-
tency model to directly access the conditioning informa-
tion about the sample it is attempting to reconstruct at all
levels of its architecture. This design choice is crucial for
single-step reconstruction, as it ensures that the model has
access to the necessary information to accurately recon-
struct the target sample from the very beginning of the
UNet architecture.

Adaptive Frequency Scaling: The distribution of values
along the frequency axis in the input spectrograms changes
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significantly with respect to the noise level σ. Specifically,
when σ is close to σmin, the magnitudes at low frequencies
are on average much higher than the ones at high frequen-
cies, while with σ approaching σmax, there is an equal dis-
tribution of values across all frequencies since the sample
is pure noise. To address this, we introduce a frequency-
wise scaling mechanism that adaptively scales the input
and output of the consistency model based on the current
noise level. Specifically, we employ a Multi-Layer Percep-
tron (MLP) that takes as input the noise level σ in the form
of a sinusoidal embedding [26] and outputs a scaling factor
for each frequency bin:

sf (σ) = MLP(σ), (6)

where sf (σ) ∈ R
F is a vector of scaling factors, one for

each of the F frequency bins of the noisy spectrogram. We
calculate different scaling factors to scale both the input xσ

and the output of the consistency model Fθ(xσ) as follows:

x̃σ = xσ ⊙ sf,in(σ) F̃θ(xσ) = Fθ(xσ)⊙ sf,out(σ) (7)

where ⊙ denotes element-wise multiplication.

Frequency-wise self-attention: To capture long-range de-
pendencies within the frequency domain while keeping a
memory footprint that scales linearly with the time axis,
Music2Latent employs frequency-wise self-attention. This
mechanism allows the model to attend to information from
all frequency bins at a given time step, enabling it to learn
complex relationships between different frequency compo-
nents. Considering that only the time dimension of the in-
put can vary at inference time, using frequency-wise at-
tention compared to full self-attention does not incur in a
memory requirement that scales quadratically with time.
After computing the query Q, key K, and value V via lin-
ear projections of the input features, we calculate the atten-
tion matrix A by performing an outer product on individual
timesteps t:

At = softmax

(

QtK
T
t√
d

)

(8)

where d is the channel dimension, and after concatenat-
ing the attention weights from all timesteps together we
have A ∈ R

T×F×F . The softmax operation is then applied
across the frequency dimension, ensuring that the attention
weights for each frequency bin sum to one.

4.3 Training Process

Music2Latent is trained using the consistency training
(CT) objective [5, 6]. As described in Sec. 3.2, the ob-
jective minimizes the discrepancy between the outputs of
the consistency model at adjacent noise levels σi and σi+1.
As for the distance metric in the consistency training loss
function (Eq. 3), we use the Pseudo-Huber loss function
[27] which smoothly transitions from the ℓ1 to the squared
ℓ2 metrics:

d(x, y) =
√

|x− y|2 + c2 − c, (9)

where c is a hyperparameter that controls the transition.
In [6], it was shown that for image generation with consis-
tency models, this loss provides smoother gradients during
training and performs substantially better compared to the
more common squared ℓ2 loss. The consistency model is
parameterised as described in Eq. 2, with the exception
that in addition to providing as input the noisy sample xσ ,
we allow for information leakage of the clean sample x

through the features yx provided by the decoder via cross
connections:

latx = Encθ(x) yx = Decθ(latx)

fθ(xσ, σ,yx) = cskip(σ)xσ + cout(σ)Fθ(xσ, σ,yx)
(10)

which results in the following consistency loss that is
used to train the system fully end-to-end:

L = E
[

λ(σi, σi+1)d
(

fθ(xσi+1
, σi+1,yx), fθ−(xσi

, σi,yx)
)]

(11)
With respect to the noise level-dependent loss scaling
λ(σi, σi+1), we follow [6] and use:

λ(σi, σi+1) =
1

σi+1 − σi

(12)

which assigns a higher weight to the loss when there is
a small gap between consecutive noise levels. We also
adopt the lognormal sampling of σ introduced by [28] and
adopted for consistency training by [6] to focus training on
a more relevant range of noise levels.

Continuous Noise Levels: Unlike the formulation pre-
sented in previous consistency model literature [5, 6],
which use a discrete set of noise levels for training, Mu-
sic2Latent employs a continuous noise schedule. This
change is inspired by recent state-of-the-art diffusion mod-
els which notably sample noise levels from a continuous
distribution [28]. Parallel work on improving the perfor-
mance of consistency models also demonstrates how em-
ploying a continuous noise schedule improves results com-
pared to the original discrete schedule [29]. Specifically,
we use an exponential schedule during training to deter-
mine the step size between consecutive noise levels used
for the consistency loss:

∆tk = ∆t
k
K

(eK−1)+1
0 (13)

where ∆tk is the step size at training iteration k, ∆t0 is the
initial step size at iteration 0, and eK is the exponent at fi-
nal iteration K. This schedule ensures that the step size de-
creases exponentially as training progresses, allowing the
model to gradually learn finer details of the data distribu-
tion. In order to calculate σi and σi+1, we first sample
a timestep ti+1 ∈ [0, 1] with the sampling weights given
by the lognormal distribution, and calculate the adjacent
timestep ti = max(ti+1−∆tk, 0). Finally we calculate σi

using the time step-to-noise level mapping from [28]:

σi =

(

σ
1
ρ

min + ti

(

σ
1
ρ

max − σ
1
ρ

min

))ρ

(14)

where ρ = 7. We use the same mapping to calculate σi+1.
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MagnaTagATune Beatport TinySOL-pitchclass TinySOL-instrument
AUC-ROC AUC-PR Micro Acc. Macro Acc. Micro F1 Macro F1 Micro F1 Macro F1

Musika 84.8 32.9 45.2 41.0 93.5 93.4 93.3 84.5
LatMusic 85.9 34.9 37.4 30.2 88.9 88.8 92.6 80.7
Moûsai_v2 86.2 35.4 48.2 42.0 95.1 95.1 82.8 68.6
Moûsai_v3 85.8 34.5 39.8 31.9 95.5 95.6 93.1 82.3
Music2Latent 88.6 40.0 65.5 60.1 99.8 99.8 92.6 81.0

MusiCNN-MSD 87.6 37.5 13.5 7.3 17.2 15.7 68.2 60.8
CLMR 89.9 42.6 13.9 7.8 16.8 16.2 93.5 89.7
MERT-v1-95M 90.8 44.9 50.7 44.3 98.3 98.3 97.1 95.8

Table 1. Downstream task performance on MagnaTagATune (autotagging), Beatport (key estimation), TinySOL (pitch and
instrument classification). Best results among autoencoder baselines are underlined.

4.4 Implementation Details

With respect to the UNet architecture of the consistency
model, we use the NCSN++ architecture introduced in
[17], which consists of convolutional residual blocks with
3x3 kernels, Swish activation function [30] and Group
Normalisation layers. The same residual blocks are used
in both the encoder and decoder. We use sinusoidal em-
beddings to encode the noise level, using log(σ)

4 as the in-
put. The skip connections between the downsampling and
the upsampling branches of the UNet are added instead
of being concatenated, as recent works on diffusion mod-
els [31] show that addition provides better performance.
Consequently, the cross connections from the decoder are
also added to the corresponding UNet features, following
a linear projection layer. In the encoder, before the final
bottleneck layer with a tanh activation function, used to
constrain the latent encodings to the (-1,1) range, the 2D
features are reshaped into 1D features by flattening the fre-
quency dimension into the channel dimension, and a se-
ries of 4 residual blocks with 1D convolutions with ker-
nel size of 3 are used. We choose dlat = 64, which re-
sults in a 4096x time compression ratio and a 64x total
compression ratio. The decoder perfectly mirrors the ar-
chitecture of the encoder, while not receiving any incom-
ing skip connections, since all the information necessary
to reconstruct the clean input sample must be contained
in the latent encodings. For the consistency model and
encoder/decoder models we use 5 levels corresponding to
4 upsampling/downsampling operations, and in each level
we use 2 residual blocks for the consistency model, and
1 residual block for the encoder and decoder. The base
channels for all models are set to 64 and the channel mul-
tiplier for each of the 5 levels is set to [1, 2, 4, 4, 4] for all
models. We use 512 channels for the 1D convolutional
blocks in the encoder and decoder. We use frequency-wise
self-attention layers with 4 heads in the 3 last levels for
all models, in order not to use it with higher frequency di-
mensions. The channels used for sinusoidal embeddings
and the MLPs used for both noise level embeddings and
frequency scalings are set to 256. The model has ∼ 58
million parameters. The consistency training framework
follows the same implementation of [6] with respect to
the scaling factors cin, cskip, cout, the parameter c for the
pseudo-Huber loss function, the minimum and maximum
noise parameters σmin, σmax, the standard deviation of the
data samples σdata, and the lognormal distribution values

of Pmean, Pstd. Regarding the input STFT spectrograms,
we extract them using hop = 512,window = 4 · hop and
we transform them using the formula presented in Sec. 4.1,
with α = 0.65, β = 0.35. Regarding the step size schedule
for the continuous noise levels, we choose ∆t0 = 0.1 and
eK = 3. We train the model on waveforms of 34, 304 sam-
ples, which correspond to ∼ 0.78 s of 44.1 kHz audio. The
model thus produces latent representations of 44.1 kHz au-
dio at a sampling rate of∼ 11Hz. We use a batch size of 16
and train for K = 800k iterations using the RAdam opti-
mizer [32] with lr0 = 1e−4, β1 = 0.9, β2 = 0.999. We use
a cosine learning rate decay with lrK = 1e−6 and we keep
an Exponential Moving Average (EMA) of the parameters
of all models with a momentum of 0.9999. Training takes
∼ 5 days on a single RTX 3090 GPU.

Figure 2. Audio quality of reconstructed samples with re-
spect to the number of denoising steps of the consistency
model.

5. EXPERIMENTS AND RESULTS

5.1 Datasets

We train the model on MTG Jamendo [33] and on the
clean speech segments from DNS Challenge 4 [34], sam-
pling from each dataset with equal probability. We keep
the original sample rates of 44.1 kHz and 48 kHz. We in-
clude speech in the training data to both improve the recon-
struction of vocal content in music samples, and to make
Music2Latent useful also for speech-related tasks. We use
MusicCaps [35] as our evaluation dataset.

5.2 Baselines

We compare Music2Latent to different audio autoencoders
that encode audio samples into a continuous latent space
to enable downstream latent generative modeling. We in-
clude the autoencoder introduced in Musika [1] and the
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autoencoder introduced by [36] to train a latent diffusion
model for music accompaniment generation (we name this
model LatMusic in our comparison). Both models encode
audio samples with the same compression ratio of 64x as
Music2Latent. We also include the diffusion autoencoder
introduced in Moûsai [12], which has a compression ratio
of 32x (Moûsai_v3), and a different autoencoder model
that is made available by the authors of Moûsai 2 with a
comparable compression ratio of 64x (Moûsai_v2).

5.3 Audio Compression and Quality

SI-SDR ↑ ViSQOL ↑ FADclap ↓ FAD ↓

Musika -25.81 3.80 0.103 2.308
LatMusic -27.32 3.95 0.050 1.630
Moûsai_v2 -21.44 2.36 0.731 4.687
Moûsai_v3 -17.47 2.28 0.647 4.473
Music2Latent -3.85 3.84 0.036 1.176

DAC 9.48 4.21 0.041 0.966

Table 2. Audio compression and quality results.

We adopt the same objective evaluation metrics as in [3]
and use Scale-Invariant Signal-to-Noise Ratio (SI-SDR)
[37] and ViSQOL [38–40]. SI-SDR is a distance calcu-
lated between input and reconstructed waveforms, while
ViSQOL estimates a MOS-like score on perceptual quality
from the difference between the two signals. Consider-
ing that Music2Latent is trained as a generative model, we
also use Frechét Audio Distance (FAD [41]) to evaluate
the general audio quality of reconstructed samples with-
out relying on paired samples. In addition to the original
FAD implementation, we also evaluate on FADclap using
CLAP [42] features, which was shown to correlate signif-
icantly better with perceived audio quality [43]. In Tab.
2 we show that Music2Latent is competitive with respect
to ViSQOL to Musika and LatMusic, while vastly outper-
forming all baselines on the remaining metrics. Note that
all four baselines discard phase information from the input
of the autoencoder, which may explain the poor SI-SDR
performance. DAC, while not being directly comparable,
scores favourably in reconstruction metrics, while matches
Music2Latent in terms of audio quality. In Fig. 2 we also
show that the audio quality of reconstructions remains al-
most constant when using more than a single denoising
step. We provide audio samples and additional supplemen-
tary material on the accompanying website 3 .

5.4 Ablation Study

FADclap ↓ FAD ↓

Base Model 0.0563 1.808
+ Freq-wise Attention 0.0547 1.710
+ Adaptive Freq Scaling 0.0537 1.665

Table 3. Ablation study. Base Model is trained without
frequency-wise attention and adaptive frequency scaling.

2 https://github.com/archinetai/archisound
3 https://sonycslparis.github.io/music2latent-companion/

To demonstrate the effectiveness of both frequency-
wise attention and learned frequency scaling, we perform
an ablation study and report the FAD and FADclap results
in Table 3. With respect to the model with no attention
and no scaling, we use channel multipliers [1, 2, 4, 4, 5] to
roughly match the number of parameters that are lost. All
ablated models are trained for 200k iterations. The remain-
ing training details are the ones described in Sec. 4.4.

5.5 Downstream Performance

Since training representation learning models on com-
pressed audio representations instead of raw data was
shown to be a promising approach [44–47], our goal is to
investigate whether there are well disentangled audio fea-
tures in the feature space of audio autoencoders. We eval-
uate downstream performance on MagnaTagATune [48]
for auto-tagging, Beatport [49] for key estimation, and
TinySOL [50] for instrument and pitch class classifica-
tion. For each dataset, we extract the encoder features
from the layer with the highest number of output channels
from each of the models (after flattening the 2D features
for Music2Latent and before the last linear layer for the
remaining models), average them along the time axis, and
train a 2-layer MLP with [256, 128] units. We also show
the results obtained by performing the same evaluation
on features from the classification model MusiCNN-MSD
[51] and well-established representation learning models
CLMR [52] and MERT-v1-95M [47] (with averaged fea-
tures from layers 9 to 12). We extract features from these
models following [53] and perform all evaluations using
the mir_ref library 4 [54]. In Tab. 1 we show how Mu-
sic2Latent outperforms autoencoder baselines in almost
all tasks, and in the case of key and pitch classification
it even outperforms state-of-the-art representation learning
models. We hypothesize that the loss is more sensitive to
pitch information than timbre content (explaining the weak
comparison on TinySOL-instrument to the representation
learning models).

6. CONCLUSION

In this work we introduced Music2Latent, a consistency
autoencoder that efficiently compresses high-dimensional
audio waveforms into a continuous latent space. By lever-
aging consistency training, Music2Latent achieves high-
fidelity single-step reconstruction, and enables efficient
downstream latent generative modeling. We propose a
learned frequency scaling mechanism to handle varying
frequency distributions across diffusion noise levels. Ex-
periments show Music2Latent matches or outperforms
baselines in reconstruction accuracy and audio quality,
while having comparable or better performance on down-
stream tasks. To our knowledge, Music2Latent represents
the first successful end-to-end consistency autoencoder.
Future work could explore extensions to other modalities
and higher compression ratios. Overall, we believe Mu-
sic2Latent is a significant contribution to audio generative
modeling and representation learning.

4 https://github.com/chrispla/mir_ref
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ABSTRACT

In music information retrieval (MIR), precise synchro-
nization of musical events is crucial for tasks like aligning
symbolic information with music recordings or transfer-
ring annotations between audio versions. To achieve high
temporal accuracy, synchronization approaches integrate
onset-related information extracted from music recordings
using either traditional signal processing techniques or ex-
ploiting symbolic representations obtained by data-driven
automated music transcription (AMT) approaches. In line
with this research direction, our paper introduces a high-
resolution synchronization approach that combines recent
AMT techniques with traditional synchronization meth-
ods. Rather than relying on the final symbolic AMT re-
sults, we show how to exploit raw onset and frame pre-
dictions obtained as intermediate outcomes from a state-
of-the-art AMT approach. Through extensive evaluations
conducted on piano recordings under varied acoustic con-
ditions across different transcription models, audio fea-
tures, and dynamic time warping variants, we illustrate the
advantages of our proposed method in both audio–audio
and audio–score synchronization tasks. Specifically, we
emphasize the effectiveness of our approach in aligning
historical piano recordings with poor audio quality. We
underscore how additional fine-tuning steps of the tran-
scription model on the target dataset enhance alignment
robustness, even in challenging acoustic environments.

1. INTRODUCTION AND RELATED WORK

Aligning different versions of a musical piece is a com-
mon task in music information retrieval (MIR). For ex-
ample, score–audio synchronization with the objective to
align score-based note information with time positions of
an audio recording is used in automatic score following
[1,2], score-informed audio decomposition techniques [3],
or the derivation of note labels for the training and evalua-
tion of automated music transcription (AMT) systems [4].
Aligning different audio recordings of the same musical
piece (audio–audio synchronization) enables applications

© J. Zeitler, B. Maman and M. Müller. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: J. Zeitler, B. Maman and M. Müller, “Robust and Accurate
Audio Synchronization Using Raw Features From Transcription Mod-
els”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.
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Figure 1: Schematic overview of the proposed audio–
score synchronization pipeline using raw features from a
transcription model.

like track switching [5], cross-version analysis [6], auto-
mated accompaniment of instrumentalists using existing
backing tracks [7, 8], and the transfer of annotations from
one recording to another [9, 10].

Alignment pipelines based on dynamic time warping
(DTW) typically use chroma or onset features, or a com-
bination of both [11, 12]. While such features can easily
be obtained from symbolic score information, they need to
be estimated from audio recordings. Traditionally, many
alignment pipelines rely on features estimated with clas-
sical signal processing methods, e.g., using a constant-Q
transform [13] or a multirate filterbank [11, 14]. With the
advancements in deep learning (DL) techniques, several
systems for multi-pitch estimation (MPE) [15–20] as well
as learning-based methods for onset estimation [21–24]
have been introduced. Along with the creation of large
datasets of pairs of audio recordings and note labels such
as MAESTRO [25] or MusicNet [16], modern transcrip-
tion models precisely estimate note on- and offset, as well
as velocity and pedaling information [26–28].

In this work, we investigate the advantages of using
features estimated by AMT systems for audio–audio and
audio–score alignment tasks. We demonstrate how to
leverage intermediate predictions from transcription mod-
els for aligning audio recordings and symbolic represen-
tations, as illustrated in Figure 1. In particular, we inves-
tigate alignments within a carefully curated dataset of the
first movements of the 32 piano sonatas by Ludwig van
Beethoven, with all sonatas performed by eleven artists,
encompassing live performances, historic recordings with
low audio quality, performances on historic instruments,
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Figure 2: Chroma (left) and DLNCO (right) features for
Beethoven’s Appassionata (Op. 57-1) played by F. Dupree.
(a) FB_RAW. (b) T1_RAW. (c) T1_SYM. (d) DK_SYM.

and modern studio-quality recordings. By analyzing the
alignment precision and robustness across different fea-
ture extractors and representations, synchronization algo-
rithms, and audio versions, we demonstrate that our ap-
proach allows for robust synchronization of real-world
data.

The outline of this paper is as follows. First, in Sec-
tion 2, we describe the synchronization pipeline and dis-
cuss its components, followed by an introduction to our
dataset of Beethoven’s piano sonatas in Section 3. Since
there are no reference alignments available for the audio
recordings in this real-world dataset, we rely on heuristics
for evaluation, see Section 4. In Section 5, we experimen-
tally show how using raw intermediate features from tran-
scription models increases the alignment stability, as com-
pared to using the final symbolic transcription results. Fur-
thermore, we give detailed insights into the peculiarities of
aligning datasets encompassing historic music recordings
and demonstrate how to adapt to such data. We conclude
in Section 6 with an outlook on future work.

2. SYNCHROZINATION PIPELINE

In this section, we provide an overview of the synchro-
nization pipeline. First, we describe the feature extractors
and types of feature representations, before we outline the
DTW-based alignment step. An overview of all elements
in the pipeline and their abbreviations is provided in Ta-
ble 1. Following the notation in [26], we distinguish be-
tween two types of features: frame features encode when
a note is active (in the piano case, this corresponds to the
time until a key is released, or until the sustain phase ends),
and onset features encode only the beginning of a note (in
the piano case when a key is pressed).

Feature Extraction Model

FB Filterbank
T1 Onsets and frames transcription model [4]
T2 High-resolution transcription model [27]
DK Disklavier

Feature Representation

RAW Continuous pitch and onset probabilities
SYM Thresholded and discretized pitches and onsets

Alignment Technique

O Onset features using standard DTW
OF Onset and frame features using MrMsDTW from [14]

Table 1: Overview of short notation for all components of
the processing chain.

2.1 Feature Extraction Model

Filterbank. Before the advent of today’s DL-based feature
extraction models, traditional signal processing techniques
were a common way to extract features from audio record-
ings. For example, the standard implementation of Sync
Toolbox [14] uses a multirate filterbank (FB) to estimate
frame-wise note activity and onsets.

Transcription Model. In recent years, AMT systems
based on DL have shown significant improvements in per-
formance [29]. One of the ground-breaking architectures
is the Onsets and Frames architecture by Hawthorne et
al. [26], which has separate prediction heads to estimate
onsets and frames. Maman et al. [4] proposed a strategy
to train a model based on the onsets and frames archi-
tecture on diverse and unaligned pairs of audio data and
musical scores. This has led to improved performance
on unseen datasets, generalizing across instrumentations,
acoustic conditions, and styles. In the following, we re-
fer to the transcription model from [4], trained on Music-
Net [16] with re-aligned labels, as T1. Kong et al. [27]
extend the onsets and frames architecture by additionally
modeling sustain pedal activity, therefore providing more
robust training in the presence of misaligned offset infor-
mation. We refer to the transcription system from [27],
trained on MAESTRO [25], as T2. 1

Disklavier. Certain datasets such as MAESTRO [25]
include pairs of audio recordings and reference note in-
formation by having the pieces performed on a Disklavier.
We refer to features directly extracted from the symbolic
Disklavier track as DK, and use them as an upper bound
for the performance of an MPE feature extractor.

2.2 Feature Representation

Raw features. For each sequence of input audio, the fea-
ture extractors FB, T1, and T2 predict continuous pitch-
and frame-wise probabilities P

frame
raw ,Ponset

raw ∈ [0, 1]88×N

for frame activity and note onset, respectively. These fea-
ture matrices can be thought of as RAW features and are
commonly stored in a pianoroll-like representation for 88
pitches and N time frames (T1 and T2 additionally predict

1 Note that we do not include transcription models that directly output
a tokenized sequence of MIDI messages (where we can not access raw
pitch probabilities), such as the MT3 model by Hawthorne et al. [30].
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such probabilities for note velocity and offset). Figure 2a/b
illustrates RAW features for a piece from the ASAP dataset
[31], computed by the FB and T1 feature extractors .

Symbolic features. In AMT, the raw predictions for
frames, onsets, and offsets are fused and quantized in a
postprocessing step, yielding binary estimates about which
keys have been pressed. In particular, note sustain (frame
activity) is conditioned on a previously occurring note on-
set [26,27]. This postprocessing step outputs a sequence of
symbolic control messages for note onset and offset events,
with additional control messages for pedal information in
the case of T2. We denote these binary and symbolic-like
features as SYM features and, for usage in our synchro-
nization pipeline, store these in the form of two discretized
pianorolls P

frame
sym ,Ponset

sym ∈ {0, 1}88×N for frame activ-
ity and onset events, respectively. Note that in the case
of Disklavier (DK), no RAW features are available and thus
only SYM features are used. Figure 2c/d illustrates SYM
features for T1 and DK.

Comparison. In Figure 2 we qualitatively compare
RAW features from FB and T1 as well as SYM features from
T1 to the DK reference. While FB_RAW in Figure 2a shows
many false positive chroma events and misses many on-
sets compared to DK in Figure 2d, the chroma features of
T1_RAW in Figure 2b are relatively stable and onsets per-
fectly coincide with DK. Thresholding the RAW transcrip-
tion results to T1_SYM features (Figure 2c) yields varying
and often shortened note durations in the chroma repre-
sentation compared to DK, indicating possible instabilities
when using these features for computing an alignment.

2.3 Alignment Technique

We use two variants of DTW to compute the optimal align-
ment between two feature sequences.

Onset features. As a first approach and in line with
previous work [4, 32], we use only onset features and con-
vert them to a twelve-dimensional pitch class representa-
tion. Using the Euclidean distance function, we compute
the cost matrix between the onset feature sequences of the
two versions to be aligned. We use standard DTW with
unit steps in the horizontal, vertical, and diagonal direction
with step weights (1.5, 1.5, 2) to compute the minimum
cost path between the two sequences [12]. We refer to this
approach, using only onset features, as O.

Onset and frame features. As a second alignment
variant, we choose a high-resolution approach [11] that
combines frame and onset features. Using frame features
yields robustness on the coarse temporal level, while on-
set features provide precision on the fine level by precisely
aligning note onsets [24]. In this approach, we again con-
vert frame and onset features into pitch class representa-
tions and additionally add a decay to the onset features. We
refer to [11] for a description of these decaying locally nor-
malized chroma onset (DLNCO) features. Next, we com-
pute separate cost matrices for frame features (using the
cosine distance) and for onset features (using the Euclidean
distance). Afterward, we add the two cost matrices for
frame and onset features and use DTW with step weights

ID Performer Year Duration

AS35 Artur Schnabel 1935 03:33:35
FG58 Friedrich Gulda 1958 03:34:00
FJ62 Fritz Jank 1962 03:41:26
WK64 Wilhelm Kempff 1964 03:45:31
FG67 Friedrich Gulda 1967 03:25:02
VA81 Vladimir Ashkenazy 1981 03:46:27
DB84 Daniel Barenboim 1984 03:58:37
JJ90 Jeno Jando 1990 03:39:14
AB96 Alfred Brendel 1996 03:52:28
MB97 Malcolm Bilson et al. 1997 03:46:08
MC22 Muriel Chemin 2022 04:05:11

Total 41:07:45

Table 2: Overview of audio versions in the BPSD. The
versions with identifiers AS35, FG58, FJ62, and WK64

are in the public domain and are freely accessible within
the BPSD. Durations given in hh:mm:ss.

(1.5, 1.5, 2) to compute the optimum alignment path on the
combined cost matrix. We refer to [14, 33] for an efficient
multi-resolution and multi-scale implementation of DTW.
We denote the described approach, using a combination of
onset and frame features, as OF. Note that we do not con-
sider using only frame features (commonly called chroma
features), as previous work has shown a lack of precision
in this case. For example, Ewert et al. observe a 100% in-
crease of the alignment error when using frame features
instead of combined frame and onset features for the case
of piano music, where onsets are clearly defined [11].

3. DATASETS

In our experiments, we consider the case of piano mu-
sic, as there are large-scale datasets available [25, 31, 34],
note onsets are well-defined, reference note information
can be obtained from performances on a Disklavier, and
many transcription models are primarily trained on piano
music [26, 27]. To this end, we evaluate alignment ac-
curacy not only in acoustically controlled scenarios such
as MAESTRO. Instead, we consider a much more chal-
lenging scenario using real-world piano recordings under
complex acoustic conditions, which we find in a dataset
of Beethoven’s piano sonatas [35]. The 32 piano sonatas
by Ludwig van Beethoven are recognized as pivotal works
in Western classical music and hold a significant place in
cultural history. Being one of the most performed and
recorded corpus of classical music, alignments between a
multitude of different versions can be studied.

3.1 Beethoven Piano Sonata Dataset

As a main evaluation corpus, we choose the Beethoven Pi-
ano Sonata Dataset (BPSD) [35], which comprises eleven
complete audio recordings of the first movements of all 32
piano sonatas, along with sheet music in machine-readable
format. An aspect of central importance is the coherent
structure of the dataset: all audio versions and the sym-
bolic sheet music share the same musical timeline, which
was enforced by manually editing the score and audio ver-
sions. Thus, there is no incoherence due to, e.g., additional
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or missing repetitions. The BPSD includes over 41 h of au-
dio recorded under various acoustic conditions, being far
more diverse than common piano datasets [25, 34]. For
example, MAESTRO was entirely performed on Yamaha
Disklaviers, and training on MAESTRO does not provide
good generalization on other datasets [4, 32, 36]. In con-
trast, the BPSD comprises modern studio recordings in
high audio quality, vintage recordings published on vinyl,
including pitch drift due to wobbling of the vinyl records,
performances on historical instruments such as the fortepi-
ano, and significant deviations from today’s standard tun-
ing frequency of 440Hz (A4). Measure positions were an-
notated manually for all 32 sonatas recorded by Wilhelm
Kempff in 1964 (WK64). An overview of the eleven audio
versions in the BPSD is provided in Table 2.

3.2 ASAP

To be able to use reference note information from
Disklavier recordings in our experiments, we additionally
leverage the ASAP dataset [31].To achieve consistency
across all experiments, we identify the performances of
the first movements of Beethoven’s piano sonatas in ASAP
which share the same structure as recordings in the BPSD.
This subset consists of 13 individual recordings with a total
length of 103min.

4. QUANTIFYING SYNCHRONIZATION

ACCURACY

In this section, we describe the heuristics used to assess
the accuracy of our score–audio and audio–audio synchro-
nization pipelines. We refer to [37] for a detailed discus-
sion about the analysis of synchronization accuracy with-
out ground-truth annotations.

4.1 Notation

We first introduce some notation for aligning time points
between two different versions V1 and V2 of a piece.
We assume that these versions have continuous time axes
[0, T1] and [0, T2], which can either be in physical time
(for audio recordings, in seconds) or in musical time (for
score-related data, in measures). From the alignment algo-
rithms described in Section 2.3, we obtain a monotonous
mapping function MV1→V2 : [0, T1] → [0, T2] to transfer
time instants from the timeline of one version to the other.
Note that even though the alignment result obtained from
DTW maps discrete time axes, our assumption of having
continuous time axes can be obtained by using suitable in-
terpolation techniques, see [37].

4.2 BPSD: Measure Transfer

In the following, we consider three versions: V1 = S be-
ing a score, and V2 = A1 and V3 = A2 being different
audio versions of the same piece. We choose A2 to be
the recordings by Wilhelm Kempff (WK64), for which we
have access to manually annotated measure positions tA2

.
Using audio–audio synchronization, we obtain a mapping
MA2→A1 to transfer these measure positions to the first

S

A1

A2

MS→A1

MA2→A1

Ref. measure of score (S)

Ref. measure of WK64 (A2)

ϵϵϵ

(a)

A1

S

A2

M
S→A1

M
S→A2

M
A1→A2

ϵ

(b)

Figure 3: Schematic illustration of (a) measure transfer
and (b) note onset transfer heuristics.

audio version A1. Similarly, we transfer measure posi-
tions tS obtained from the score S to the first audio A1

using a mapping MS→A1 . In a last step, as illustrated in
Figure 3a, we calculate the absolute error of the measure
positions transferred from S and A2:

ϵ =
∣

∣MS→A1(tS)−MA2→A1(tA2
)
∣

∣ . (1)

4.3 ASAP: Note Onset Transfer

In order to evaluate score–audio synchronization on the
ASAP dataset, we can not resort to the heuristic described
in Section 4.2, as there are no reliable manual measure an-
notations available. Therefore, we use an approach that
transfers note onsets, illustrated in Figure 3b, to assess the
synchronization accuracy.

First, we obtain audio features for two different audio
recordings A1, A2 of the same piece, as well as features
for the score S. For each version, we perform score–audio
synchronization to obtain alignment functions MS→A1

and MS→A2 from musical to physical time. Using these
mapping functions, we map note event onsets tS in musi-
cal time from the score to the physical time of the audio
recordings. In a second step, we transfer the aligned onset
positions from the first to the second audio using audio–
audio synchronization via the mapping function MA1→A2

and compute the absolute error

ϵ =
∣

∣MS→A2(tS)−MA1→A2

(

MS→A1(tS)
)
∣

∣ (2)

between these transferred time points and the ones ob-
tained from score–audio synchronization.

In both heuristics, we assume that the synchronization
accuracy is high if the time instances transferred via two
different branches have small deviations. Note that this is
only a necessary and not a sufficient condition for align-
ment quality; nevertheless, this metric gives a good indica-
tor of the alignment performance (see also [37]).

5. EVALUATION

While our main focus is on the BPSD due to its realism and
diversity, we first analyze synchronization accuracy on the
ASAP dataset in order to compare features estimated from
audio recordings to those derived from the Disklavier ref-
erence. In the next step, we evaluate the alignment perfor-
mance on the BPSD across all audio versions. Finally, we
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Feature Mean Median Conf. 90 Conf. 95

T1_SYM_O 89 0 281 467
T1_SYM_OF 66 12 153 293
T1_RAW_OF 29 8 64 146

T2_SYM_O 31 0 102 192
T2_SYM_OF 22 2 49 111
T2_RAW_OF 21 7 43 99

DK_SYM_O 37 0 130 216
DK_SYM_OF 25 2 57 123

FB_RAW_OF 64 20 146 268

Table 3: ASAP: Absolute error in milliseconds for note
onset transfer heuristic.

conduct a detailed analysis of the performance on individ-
ual versions, identify problematic recordings, and illustrate
how to improve alignment robustness by adapting a tran-
scription model to the target data.

5.1 ASAP: Estimated Features vs. Reference Notes

First, we evaluate synchronization accuracy on the ASAP
dataset using our note onset transfer approach described in
Section 4.3. For each pair of audio files, we calculate the
mean, median, 90 and 95 percentiles of the absolute align-
ment error in ms, and report averaged results in Table 3.

Analyzing the median absolute error, which we con-
sider an indicator for the achievable accuracy under av-
erage conditions, we find perfect alignments (ϵ = 0ms)
for at least 50% of all note onsets when using only sym-
bolic onset features (SYM_O) for the transcription models
T1 and T2, as well as the Disklavier DK. To assess the
methods’ robustness and the severeness of outliers, we next
investigate the 95% quantiles of the absolute alignment er-
ror. Using only symbolic onset features and standard DTW
(SYM_O) yields the highest errors for all T1 (467ms), T2
(192ms), and DK (216ms) variants, indicating a lack of
robustness despite excellent median accuracy.

In the next step, we jointly use the frame and onset in-
formation from the symbolic features (SYM_OF) and ob-
serve a slight rise in the median error to 12ms for T1, and
to 2ms for T2 and DK, respectively. While this indicates
that the best achievable precision slightly deteriorates, we
monitor a significant reduction of the 90% and 95% con-
fidence intervals by approximately 50% for all SYM_OF
variants, indicating a vastly improved robustness towards
outliers when combining frame and onset features in the
computation of the alignment.

Lastly, we directly use the intermediate predictions for
frames and onsets (RAW_OF) in our alignment pipeline.
While the median absolute error is comparable to the one
based on symbolic features, we again observe a significant
decrease in the 90% and 95% confidence intervals. Using
RAW_OF features in the T2 transcriber yields the lowest
mean (21ms) and confidence intervals (43 and 99ms),
even outperforming the usage of reference note informa-

Feature Mean Median Conf. 90 Conf. 95

T1_SYM_O 66 17 115 234
T1_SYM_OF 52 20 102 160
T1_RAW_OF 41 12 70 121

T2_SYM_O 109 20 272 466
T2_SYM_OF 56 14 138 251
T2_RAW_OF 47 15 97 207

FB_RAW_OF 44 20 70 128

Table 4: BPSD: Absolute error in milliseconds for mea-
sure transfer heuristic.

tion obtained from the Disklavier. 2 We illustrate this find-
ing with the intuitive example of a chord where notes are
not played simultaneously, either due to a playing mistake
or as a stylistic element, leading to a deviation of symbolic
and actually performed note order. While the DK features
strictly assign each note onset to one particular time frame
and thus cause alignment instabilities in the given example,
the continuous RAW predictions can smoothly cover neigh-
boring time frames and thus allow for a robust alignment.

5.2 BPSD: General Performance

Next, we analyze the overall matching of score–audio
and audio–audio synchronization on the more realistic and
more diverse BPSD by using the measure-transfer heuris-
tic as described in Section 4.2. In Table 4, we again re-
port the mean, median, 90 and 95% confidence intervals
for the absolute error between measure positions obtained
from score–audio and audio–audio transfer.

Analyzing the median absolute error in Table 4, all fea-
tures yield a precision between approximately 12ms and
20ms, without a clear tendency towards one particular
method. However, it is the robustness (measured by the
90% and 95% confidence intervals) where we find a clear
trend: using only onsets from symbolic features (SYM_O)
yields large alignment outliers, with the 95% confidence
interval of the absolute error being 234ms for T1 and even
466ms for T2. Using additional frame features (SYM_OF)
lowers the 95% confidence interval to 160ms and 251ms,
respectively. In line with our observations on the ASAP
dataset, using intermediate transcription results (RAW_OF)
further reduces the mean as well as the confidence inter-
vals for both transcription models. The T1 transcriber,
which was trained on audio from the acoustically diverse
MusicNet [16] dataset, exhibits significantly lower errors
than T2 (121ms vs. 207ms for the 95% conf. interval),
which was trained only on MAESTRO. While using fil-
terbank features (FB) resulted in relatively high errors on
ASAP, on the BPSD we observe metrics that are similar
to those of the T1 transcriber, and considerably better than
those of the T2 model. This indicates a lack of robustness
of the DL-based transcription models on the diverse acous-
tic conditions of the BPSD, which we will investigate and
mitigate in the following section.

2 We note that the T2 model was trained on MAESTRO [25], which
is the basis of ASAP [31]. Therefore, a separation for train and test data
is not guaranteed for T2 in the experiments on ASAP. However, the DK
features nevertheless are the upper limit of the achievable transcription
accuracy.
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5.3 BPSD: Detailed Analysis and Finetuning

To further investigate why the alignment pipelines using
transcription features (T1,T2) do not yield significantly
better results on the BPSD than those features using the
filterbank baseline (FB), we further break down the inves-
tigation to the BPSD’s individual audio versions. Tran-
scription models (and DL systems in general) are known
to exhibit a degraded performance when there is a domain
shift between the test data and the training data [32, 36].
Such effects can be caused by poor audio quality in gen-
eral, or, for music data, by a difference in timbre or tuning.

Identifying problematic versions. We restrict our
analysis to raw frame and onset features (RAW_OF) from
the filterbank (FB) and the T1 transcriber, as these showed
the overall most robust results on the complete BPSD (see
Section 5.2) and illustrate the median and 95% confidence
intervals for all audio versions of the BPSD in Table 5.
Analyzing the 95% confidence values for T1_RAW_OF in
Table 5, we identify two problematic versions, namely the
1958 recordings by Friedrich Gulda (FG58) with 788ms
and the 1997 recordings by Malcolm Bilson et al. (MB97)
with 146ms. By inspection of the recorded pieces, we find
two different reasons for the alignment instabilities.

Musical and acoustic reasons for instabilities.

Friedrich Gulda recorded his first cycle of Beethoven’s Pi-
ano Sonatas (FG58) over a relatively long time span be-
tween 1950 and 1958, playing different pianos in differ-
ent environments. Among the FG58 recordings, we iden-
tify Sonata No. 26 (“Les adieux”) and No. 29 (“Ham-
merklavier”) as especially problematic, showing large dif-
ferences in tuning, along with high background noise.

The pianist Malcolm Bilson (MB97) is committed to
historically informed performance practice. His interpreta-
tions on historical instruments introduce a novel approach
to performance in an era predominantly defined by the use
of modern instruments. Malcolm Bilson and colleagues
recorded their 1997 cycle of Beethoven’s Piano Sonatas
on nine fortepianos, including original historical instru-
ments. Compared to modern pianos, the overall sound of
fortepianos is significantly different, due to different me-
chanics, strings, and resonance bodies. Furthermore, the
timbre varies across registers, e.g., bass notes sound funda-
mentally different compared to high-octave notes, and the
reference pitch deviates from today’s standard of 440Hz
(A4). In summary, these deviations in timbre, tuning, and
recording noise lead to a so-called “domain shift”, i.e., the
FG58 and MB97 recordings are not close enough to the
transcriber’s training data. As a result, the model’s predic-
tions are highly unstable and do often not correspond to the
actually played notes.

Fine-tuning the transcriber. Despite the aforemen-
tioned issues, our goal is to obtain highly accurate align-
ments on the BPSD. Therefore, we choose to adapt the T1
transcriber to the BPSD’s audio versions by fine-tuning the
model on the target data itself. Note that this is a valid pro-
cedure for the purpose of this study, as we do not evaluate
the transcription accuracy itself, and we only use unaligned
pairs of audio and score data for finetuning (see [4] for a

FB_RAW_OF T1_RAW_OF T3_RAW_OF
Version med. cf 95. med. cf. 95 med. cf. 95

AB96 19 132 11 58 12 58
AS35 20 157 11 62 12 76
DB84 20 149 12 71 14 93

FG58 19 137 27 788 12 80

FG67 20 138 10 49 11 59
FJ62 22 185 11 80 13 84
JJ90 17 102 10 56 12 56

MB97 23 217 12 146 12 103

MC22 22 178 13 80 14 89
VA81 19 143 11 61 12 69
WK64 16 99 10 49 11 45

average 20 128 12 121 12 62

Table 5: Median and 95% confidence interval of the abso-
lute synchronization error for individual performances in
the BPSD. All experiments use raw frame and onset fea-
tures (RAW_OF). Values are given in milliseconds.

detailed description of the training process using unaligned
pairs of audio and score data). Therefore, we do not overfit
the model towards a reference alignment. We denote the
fine-tuned transcriber as T3.

Results with fine-tuned transcriber. After fine-tuning
on the BPSD, the T3 model significantly improves the
95% confidence interval for the two problematic versions
FG58 and MB97 from 788ms to 80ms and from 146ms to
103ms, respectively. For all other audio versions, the me-
dian absolute error and the 95% confidence interval of the
fine-tuned transcriber T3 remain in a similar range as the
original model T1. We note that the averaged 95% con-
fidence interval of 62ms for the fine-tuned transcriber T3
is in the range of the typical tolerance in beat-tracking ap-
plications (70ms), making the proposed synchronization
approach with raw features even useful for the creation of
datasets with high demands regarding timing.

6. CONCLUSION AND OUTLOOK

In this paper, we analyzed audio synchronization using raw
features from transcription models. By conducting quan-
titative analysis on two different datasets of piano music,
we show that the amount of alignment outliers is vastly re-
duced when using raw instead of symbolic features. We
put a particular emphasis on the analysis of synchroniza-
tion robustness of real-world audio recordings including
historic instruments and recordings of low quality, and
outline which acoustic conditions lead to alignment mis-
match. By fine-tuning a transcription model on the target
dataset and using the predicted raw features, we achieve
synchronization accuracy that enables usage of the datasets
even in time-critical applications such as beat tracking. As
the raw features are computed anyway when using tran-
scription models, we propose to use these raw features by
default in synchronization pipelines. While raw features
from transcription models yield excellent synchronization
robustness for piano music, a yet unanswered question that
we plan to address in future work is the performance in
other genres, e.g., vocal or orchestral music.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

125



7. ACKNOWLEDGEMENTS

This work was funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) un-
der Grant No. 521420645 (MU 2686/17-1) and Grant
No. 500643750 (MU 2686/15-1). The International
Audio Laboratories Erlangen are a joint institution of
the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU) and Fraunhofer Institute for Integrated Circuits IIS.

8. REFERENCES

[1] D. Schwarz, N. Orio, and N. Schnell, “Robust poly-
phonic midi score following with hidden Markov mod-
els,” in International Computer Music Conference

(ICMC), Miami, Florida, USA, 2004.

[2] A. Arzt, G. Widmer, and S. Dixon, “Automatic page
turning for musicians via real-time machine listening,”
in ECAI 2008 - 18th European Conference on Artificial

Intelligence, Patras, Greece, July 21-25, 2008, Pro-

ceedings, ser. Frontiers in Artificial Intelligence and
Applications, vol. 178. IOS Press, 2008, pp. 241–
245.

[3] S. Ewert, B. Pardo, M. Müller, and M. Plumbley,
“Score-informed source separation for musical audio
recordings: An overview,” IEEE Signal Processing

Magazine, vol. 31, no. 3, pp. 116–124, April 2014.

[4] B. Maman and A. H. Bermano, “Unaligned supervi-
sion for automatic music transcription in the wild,” in
Proceedings of the International Conference on Ma-

chine Learning (ICML), 2022, pp. 14 918–14 934.

[5] F. Zalkow, S. Rosenzweig, J. Graulich, L. Dietz, E. M.
Lemnaouar, and M. Müller, “A web-based interface
for score following and track switching in choral mu-
sic,” in Demos and Late Breaking News of the Interna-

tional Society for Music Information Retrieval Confer-

ence (ISMIR), Paris, France, 2018.

[6] C. Dittmar, B. Lehner, T. Prätzlich, M. Müller, and
G. Widmer, “Cross-version singing voice detection in
classical opera recordings,” in Proceedings of the Inter-

national Society for Music Information Retrieval Con-

ference (ISMIR), Málaga, Spain, October 2015, pp.
618–624.

[7] R. B. Dannenberg, “An on-line algorithm for real-time
accompaniment,” in Proceedings of the International

Computer Music Conference (ICMC), Paris, France,
1984, pp. 193–198.

[8] Y. Özer, S. Schwär, V. Arifi-Müller, J. Lawrence,
E. Sen, and M. Müller, “Piano concerto dataset (PCD):
A multitrack dataset of piano concertos,” Transaction

of the International Society for Music Information Re-

trieval (TISMIR), vol. 6, no. 1, pp. 75–88, 2023.

[9] C. Weiß, F. Zalkow, V. Arifi-Müller, M. Müller, H. V.
Koops, A. Volk, and H. Grohganz, “Schubert Winter-
reise dataset: A multimodal scenario for music anal-
ysis,” ACM Journal on Computing and Cultural Her-

itage (JOCCH), vol. 14, no. 2, pp. 25:1–18, 2021.

[10] C. Weiß, V. Arifi-Müller, M. Krause, F. Zalkow,
S. Klauk, R. Kleinertz, and M. Müller, “Wagner Ring
Dataset: A complex opera scenario for music process-
ing and computational musicology,” Transaction of the

International Society for Music Information Retrieval

(TISMIR), vol. 6, no. 1, pp. 135–149, 2023.

[11] S. Ewert, M. Müller, and P. Grosche, “High resolution
audio synchronization using chroma onset features,”
in Proceedings of IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP),
Taipei, Taiwan, 2009, pp. 1869–1872.

[12] M. Müller, Fundamentals of Music Processing – Au-

dio, Analysis, Algorithms, Applications. Springer Ver-
lag, 2015.

[13] C. Schörkhuber and A. P. Klapuri, “Constant-Q trans-
form toolbox for music processing,” in Proceedings of

the Sound and Music Computing Conference (SMC),
Barcelona, Spain, 2010.

[14] M. Müller, Y. Özer, M. Krause, T. Prätzlich, and
J. Driedger, “Sync Toolbox: A Python package for ef-
ficient, robust, and accurate music synchronization,”
Journal of Open Source Software (JOSS), vol. 6,
no. 64, pp. 3434:1–4, 2021.

[15] R. Kelz, M. Dorfer, F. Korzeniowski, S. Böck, A. Arzt,
and G. Widmer, “On the potential of simple framewise
approaches to piano transcription,” in Proceedings of

the International Society for Music Information Re-

trieval Conference (ISMIR), New York City, New York,
USA, 2016, pp. 475–481.

[16] J. Thickstun, Z. Harchaoui, and S. M. Kakade, “Learn-
ing features of music from scratch,” in Proceedings of

the International Conference on Learning Representa-

tions (ICLR), Toulon, France, 2017.

[17] F. Korzeniowski and G. Widmer, “Feature learning for
chord recognition: The deep chroma extractor,” in Pro-

ceedings of the International Society for Music Infor-

mation Retrieval Conference (ISMIR), New York City,
New York, USA, 2016, pp. 37–43.

[18] J. Thickstun, Z. Harchaoui, D. P. Foster, and S. M.
Kakade, “Invariances and data augmentation for super-
vised music transcription,” in Proceedings of the IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Calgary, Canada, 2018,
pp. 2241–2245.

[19] Y. Wu, B. Chen, and L. Su, “Polyphonic music tran-
scription with semantic segmentation,” in Proceedings

of the IEEE International Conference on Acoustics,

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

126



Speech, and Signal Processing (ICASSP), Brighton,
UK, 2019, pp. 166–170.

[20] C. Weiß, J. Zeitler, T. Zunner, F. Schuberth, and
M. Müller, “Learning pitch-class representations from
score–audio pairs of classical music,” in Proceedings

of the International Society for Music Information Re-

trieval Conference (ISMIR), Online, 2021, pp. 746–
753.

[21] J. Schlüter and S. Böck, “Improved musical onset de-
tection with convolutional neural networks,” in Pro-

ceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP),
Florence, Italy, May 2014, pp. 6979–6983.

[22] S. Böck, A. Arzt, F. Krebs, and M. Schedl, “Online
real-time onset detection with recurrent neural net-
works,” in Proceedings of the International Conference

on Digital Audio Effects (DAFx), York, UK, September
2012.

[23] S. Böck, F. Krebs, and G. Widmer, “Joint beat and
downbeat tracking with recurrent neural networks,” in
Proceedings of the International Society for Music In-

formation Retrieval Conference (ISMIR), New York
City, New York, USA, 2016, pp. 255–261.

[24] Y. Özer, M. Istvanek, V. Arifi-Müller, and M. Müller,
“Using activation functions for improving measure-
level audio synchronization,” in Proceedings of the

23rd International Society for Music Information Re-

trieval Conference, ISMIR 2022, Bengaluru, India, De-

cember 4-8, 2022, 2022, pp. 749–756.

[25] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C. A.
Huang, S. Dieleman, E. Elsen, J. H. Engel, and D. Eck,
“Enabling factorized piano music modeling and gener-
ation with the MAESTRO dataset,” in Proceedings of

the International Conference on Learning Representa-

tions (ICLR), New Orleans, Louisiana, USA, 2019.

[26] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Si-
mon, C. Raffel, J. H. Engel, S. Oore, and D. Eck, “On-
sets and frames: Dual-objective piano transcription,”
in Proceedings of the International Society for Mu-

sic Information Retrieval Conference, (ISMIR), Paris,
France, 2018, pp. 50–57.

[27] Q. Kong, B. Li, X. Song, Y. Wan, and Y. Wang, “High-
resolution piano transcription with pedals by regress-
ing onset and offset times,” IEEE ACM Trans. Audio

Speech Lang. Process., vol. 29, pp. 3707–3717, 2021.

[28] J. Gardner, I. Simon, E. Manilow, C. Hawthorne, and
J. H. Engel, “MT3: multi-task multitrack music tran-
scription,” Computing Research Repository (CoRR),
vol. abs/2111.03017, 2021.

[29] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, “Auto-
matic music transcription: An overview,” IEEE Signal

Processing Magazine, vol. 36, no. 1, pp. 20–30, 2019.

[30] C. Hawthorne, I. Simon, R. Swavely, E. Manilow, and
J. H. Engel, “Sequence-to-sequence piano transcription
with transformers,” pp. 246–253, 2021.

[31] F. Foscarin, A. McLeod, P. Rigaux, F. Jacquemard, and
M. Sakai, “ASAP: a dataset of aligned scores and per-
formances for piano transcription,” in Proceedings of

the 21th International Society for Music Information

Retrieval Conference, ISMIR 2020, Montreal, Canada,

October 11-16, 2020, 2020, pp. 534–541.

[32] X. Riley, D. Edwards, and S. Dixon, “High resolu-
tion guitar transcription via domain adaptation,” in
Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP),
Seoul, South Korea, 2024, pp. 1051–1055.

[33] T. Prätzlich, J. Driedger, and M. Müller, “Memory-
restricted multiscale dynamic time warping,” in Pro-

ceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP),
Shanghai, China, March 2016, pp. 569–573.

[34] V. Emiya, R. Badeau, and B. David, “Multipitch esti-
mation of piano sounds using a new probabilistic spec-
tral smoothness principle,” IEEE Transactions on Au-

dio, Speech, and Language Processing, vol. 18, no. 6,
pp. 1643–1654, 2010.

[35] J. Zeitler, C. Weiß, V. Arifi-Müller, and M. Müller,
“BPSD: A coherent multi-version dataset for analyz-
ing the first movements of Beethoven’s piano sonatas.”
Transactions of the International Society for Music In-

formation Retrieval (TISMIR), submitted 2024.

[36] D. Edwards, S. Dixon, E. Benetos, A. Maezawa, and
Y. Kusaka, “A data-driven analysis of robust auto-
matic piano transcription,” IEEE Signal Process. Lett.,
vol. 31, pp. 681–685, 2024.

[37] T. Prätzlich and M. Müller, “Triple-based analysis of
music alignments without the need of ground-truth an-
notations,” in Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Process-

ing (ICASSP), Shanghai, China, March 2016, pp. 266–
270.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

127



HARNESSING THE POWER OF DISTRIBUTIONS:
PROBABILISTIC REPRESENTATION LEARNING ON HYPERSPHERE

FOR MULTIMODAL MUSIC INFORMATION RETRIEVAL

Takayuki Nakatsuka Masahiro Hamasaki Masataka Goto

National Institute of Advanced Industrial Science and Technology (AIST), Japan

{takayuki.nakatsuka, masahiro.hamasaki, m.goto}@aist.go.jp

ABSTRACT

Probabilistic representation learning provides intricate and

diverse representations of music content by characterizing

the latent features of each content item as a probability dis-

tribution within a certain space. However, typical Music

Information Retrieval (MIR) methods based on representa-

tion learning utilize a feature vector of each content item,

thereby missing some details of their distributional proper-

ties. In this study, we propose a probabilistic representation

learning method for multimodal MIR based on contrastive

learning and optimal transport. Our method trains encoders

that map each content item to a hypersphere so that the

probability distributions of a positive pair of content items

become close to each other, while those of an irrelevant pair

are far apart. To achieve such training, we design novel loss

functions that utilize both probabilistic contrastive learning

and spherical sliced-Wasserstein distances. We demonstrate

our method’s effectiveness on benchmark datasets as well

as its suitability for multimodal MIR through both a quanti-

tative evaluation and a qualitative analysis.

1. INTRODUCTION

Multimodal representation learning of music content, such

as music audio and a video [1] and music audio and text [2],

has been an important topic of research, given its wide ap-

plications to Music Information Retrieval (MIR) tasks. Pre-

vious studies have typically used a deterministic approach

to train encoders, where the trained encoders are utilized to

map each content item to a latent space as a single vector.

However, representing an arbitrary content item as a vec-

tor has various drawbacks. For example, one-to-many and

many-to-many relationships need to be handled in multi-

modal content, such as those between an album cover image

and a set of songs in that album, and between different songs

that have the same title and their title text. It is difficult

to represent such complex relationships in vectors. To ad-

dress this challenge, probabilistic representation learning,

© T. Nakatsuka, M. Hamasaki, and M. Goto. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: T. Nakatsuka, M. Hamasaki, and M. Goto, “Harnessing

the Power of Distributions: Probabilistic Representation Learning on

Hypersphere for Multimodal Music Information Retrieval”, in Proc. of

the 25th Int. Society for Music Information Retrieval Conf., San Francisco,

United States, 2024.

Training Retrieval

Shared hyper-spherical surface 

Positive 
instances Song B

Text

Audio

Song A Query

Audio

Image

Text Audio

Image

Text

Audio

Image

Retrieval
result

Image

Figure 1. Probabilistic representation learning on hyper-

sphere. (Left) Encoders are trained so that the probability

distributions of the positive instances (music audio, an im-

age, and text for the same song) are close to each other on

the shared hyper-spherical surface, while those of irrelevant

instances (different songs, artists, etc.) are far apart. (Right)

The trained encoders are helpful for multimodal MIR. Given

a single-modal query or a multimodal query such as a query

that combines an image and text, our method can retrieve

content items that match the query by calculating the dis-

tance between their probability distributions.

in which each content item is represented as a probability

distribution in a latent space, has been studied [3–5].

Probabilistic representation learning (Figure 1) is a

promising approach that can provide intricate and diverse

representations by characterizing each content item as a

probability distribution. This approach requires training

encoders that estimate the optimal distribution for each con-

tent item. The key here is how to design an appropriate loss

function for that training. In the literature, three approaches

have been proposed, and in this paper, we propose a fourth

approach. The first approach uses the probability product

kernel [6], which calculates the expected value between

distributions. This is used in probabilistic word embed-

ding [7], face recognition [8], and image classification [9].

The second approach uses Hedged Instance Embeddings

(HIB) [10]. It formulates a contrastive loss of the match

probability, which calculates the distance between a pair of

vectors randomly sampled from each distribution. This is

used in cross-modal retrieval of text and images [3, 4], as

well as in self-supervised video representation learning [11].

The third approach is to replace variables in an existing loss

function (e.g., triplet loss) with probability distributions.

For example, a loss function designed for deterministic

methods can be calculated by using samples obtained from

a Gaussian distribution [5, 12, 13] or a von Mises-Fisher

distribution [14–16] via a reparameterization trick [17, 18].
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Distribution A
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Samples from Distribution A Samples from Distribution B

Our approach (optimal transport)

Distribution A
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Figure 2. Advantage of optimal transport. (Left) To match

two positive instance pairs of distributions, A and B, ex-

isting approaches ( [4, 5, 16], etc.) simply calculate dis-

tances between randomly sampled pairs and cannot pre-

cisely match distributional shapes, possibly resulting in an

undesirable single point when distances of positive sample

pairs are minimized for probabilistic representation learning.

(Right) Optimal transport can select optimal sample pairs

to appropriately match their distributional shapes, thereby

harnessing the power of rich probability distributions.

These approaches have been applied to text-to-image (or

vice versa) cross-modal retrieval [3, 4], and more recently,

to multimodal image retrieval [5]. Chun et al. [4] proposed

Probabilistic Cross-Modal Embedding (PCME), which is

a pioneering work on probabilistic representation learning

for cross-modal retrieval. Li et al. [3] proposed Average

Semantic Precision (ASP), which can calculate the seman-

tic correlation scores of a dataset, and differentiable ASP

approximation, which utilizes ASP as a loss function. Nec-

ulai et al. [5] proposed Multimodal Probabilistic Composer

(MPC), which can use a multimodal query combining im-

age and text for image retrieval. However, these approaches

calculate distances based on sample-wise similarity, with

an arbitrary sample pair randomly selected from each dis-

tribution (left side of Figure 2). This manner often results

in most sample pairs being non-optimal, and as a result,

the details of the distributional properties are lost. This

disadvantage leads to a decrease in performance.

In light of this background, we propose two novel loss

functions, one based on contrastive learning and the other

on optimal transport, to be used together for multimodal

MIR on a hypersphere. Contrastive learning is an effective

tool to jointly map each content item of multiple modal-

ities to a shared latent space [19, 20]. In the context of

probabilistic representation learning, utilizing the angular

distance between distributions has proven more effective

than using their Euclidean distance [15]. Furthermore, the

von Mises-Fisher (vMF) distribution (i.e., the distribution

on a hypersphere) exhibits a better performance than the

Gaussian distribution since vMF-based methods simplify

the variance estimation by using a single scalar κ, thereby

avoiding the dimension-wise estimation in Gaussian-based

methods [14]. Given these insights, we propose a con-

trastive loss function on a hypersphere for multiple modali-

ties based on probabilistic contrastive learning [16]. In addi-

tion, optimal transport [21] offers a robust and effective tool

for calculating distances between probability distributions.

It allows encoders to bring the probability distributions of

a positive pair closer together, thus ensuring a more accu-

rate representation learning (right side of Figure 2). This

unique attribute of optimal transport can benefit multimodal

MIR tasks. Hence, we propose a loss function based on a

Spherical Sliced-Wasserstein (SSW) [22] p-distance, con-

templating the compatibility between contrastive learning

and optimal transport on a hypersphere.

By using the proposed loss functions, we can train en-

coders that map each content item to a hypersphere, as

shown in Figure 1. During training, we assume that pair-

wise combinations of music audio of a song, a cover image

for the song, and text generated from the song’s metadata

are positive, and that those for irrelevant ones (different

songs, music genres, or artists, etc.) are negative (left side

of Figure 1). Once the encoders are trained, we can uti-

lize them to obtain the probabilistic representation of each

content item for multimodal MIR (right side of Figure 1).

The main advantage of probabilistic representation lies in

its ability to seamlessly integrate multiple content items

in a latent space as a multimodal query, which is a great

benefit in retrieval tasks. We conduct both a quantitative

evaluation and a qualitative analysis on the public YT8M-

MusicVideo dataset and a private dataset to demonstrate the

effectiveness of our proposed method.

2. PRELIMINARY

2.1 Problem Specification

We use a mel spectrogram of music audio as the input of

an audio encoder, an RGB image as the input of an image

encoder, and a tokenized text as the input of a text encoder.

We follow previous studies [19, 20] regarding the setup of

the input representations.

Let A = {an ∈ R
Da

}Nn=1, I = {in ∈ R
Di

}Nn=1, and

T = {tn ∈ R
Dt

}Nn=1 be a set of spectrograms, a set of

images corresponding to A, and a set of tokenized texts

corresponding to A, respectively, where Da is the number

of dimensions of each spectrogram, Di is the number of

dimensions of each image, Dt is the number of dimensions

of each tokenized text, and N is the number of songs.

Next, let ZA = {zan ∈ R
d}Nn=1, ZI = {zin ∈ R

d}Nn=1,

and Z
T = {ztn ∈ R

d}Nn=1 be sets of the latent variables

of spectrograms, images, and tokenized texts, respectively,

where d is the number of dimensions of each latent variable.

We train the audio encoder fA that maps A to Z
A, the

image encoder fI that maps I to Z
I, and the text encoder

fT that maps T to Z
T so that probability distributions

p(zan|an), p(z
i
n|in), and p(ztn|tn) are close to each other

on a shared hyper-spherical surface Sd−1
shared={||z·n||=1}.

2.2 Probabilistic Contrastive Learning

Contrastive learning is an established deep learning tech-

nique widely utilized in recent research [23]. In particular,

methods like N -pairs loss [24], InfoNCE loss [25], and

MoCo [26], which calculate the loss based on N -pairs of

instances (i.e., one positive pair and N−1 negative (or irrel-

evant) pairs), serve as powerful tools for multimodal repre-

sentation learning [1, 2, 19, 20]. However, these contrastive

loss functions are designed for deterministic methods and

cannot be directly applied to probabilistic approaches.
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Recently, Kirchhof et al. [16] introduced MCInfoNCE,

an adaptation of InfoNCE for probabilistic contrastive learn-

ing that uses Monte-Carlo samples from each distribution.

The MCInfoNCE loss LMC is defined as follows:

LMC=−
1

m

m
∑

j=1

L
∑

l=1

log
esim(zl

j ,z
l
+)/τ

esim(zl
j
,zl

+
)/τ+

∑

z−

esim(zl
j ,z

l
−
)/τ

,

(1)

where m is a mini-batch size, L is the number of samples, τ

is a hyperparameter called temperature scaling, which con-

trols the scale of the loss function, zn ∼ p(zn) is an anchor,

z+ ∼ p(z+|zn) and z− ∼ p(z−|zn) respectively indicate

positive and negative samples of the anchor, and sim(·, ·)
is a function that calculates the similarity (such as cosine

similarity) between two distributions. Since MCInfoNCE

is originally designed as the single-modal loss, we are the

first to modify it for our multimodal loss in Section 3.1.

2.3 Optimal Transport

Optimal transport has been gaining popularity for a variety

of computer vision tasks [27–29], but calculating the opti-

mal transport distance between distributions is known to be

computationally intensive [30]. This problem can be solved

when the distributions are on a particular manifold [22, 30].

We therefore delve into a recent powerful innovation, the

Spherical Sliced-Wasserstein (SSW) [22] p-distance, which

is specialized on a hypersphere and is highly efficient and

useful, but has not yet been used for representation learning.

2.3.1 Definition of Spherical Sliced-Wasserstein (SSW)

The SSW p-distance for p ≥ 1 is defined between two prob-

ability measures µ, ν ∈ Pp,ac(S
d−1), the set of absolutely

continuous probability measures on a hypersphere Sd−1

with a finite p-th moment, as follows:

SSWp(µ, ν) =

∫

Vd,2

Wp

(

µ ◦ PU−1
, ν ◦ PU−1

)

dσ, (2)

where Vd,2 = {U ∈ R
d×2, U⊤U = I2} is the Stiefel

manifold [31], σ is the uniform distribution over Vd,2, PU

is the function that projects a point z ∈ Sd−1 onto a great

circle S1 generated by U (for a.e. z ∈ Sd−1, PU can be

written in a practical form of PU (z) = U⊤
z

∥U⊤z∥2
[22]), and

Wp is the optimal transport distance on S1 [32, 33]. To

avoid any effects stemming from the choice of U , Bonet

et al. [22] calculated the SSW distance several times for a

set of random U , and we also calculate it in the same way.

2.3.2 Optimal Transport Distance on Great Circle

We focus on the simplest p = 1 in Equation (2) to calculate

Wp|p=1 between two probability measures µ′, ν′ ∈ P(S1)
that are after being projected from a hypersphere Sd−1 onto

one of the generated great circles S1. The W1 is defined as

W1(µ
′, ν′) =

∫ 1

0

|Fµ′(t)−Fν′(t)−LevMed(Fµ′−Fν′)| dt,

(3)

where Fµ′ , Fν′ are the cumulative distribution function of

µ′, ν′, respectively, and LevMed(·) is the level median [34],

defined as follows:

LevMed(f) = min

{

argmin
α∈R

∫ 1

0

|f(t)− α|dt

}

, (4)

where α is a shift parameter. The SSW1, which is utilized

in our proposed loss functions (Section 3), can thus be

calculated by using Equations (2)–(4). Surprisingly, we

can approximate the integral in Equation (3) simply by

sorting the samples on S1 in order to calculate Fµ′ , Fν′ , and

LevMed(·). To illustrate this intuitively, the optimal sample

pairing on the right of Figure 2 is dramatically expedited

by this sorting on the one-dimensional great circle without

examining many pairings. We present the algorithm and

pseudocode of SSW1 in our supplementary materials 1 .

3. PROPOSED METHOD FOR MULTIMODAL MIR

We design two novel loss functions for probabilistic repre-

sentation learning: a multimodal probabilistic contrastive

loss function for multiple modalities (Section 3.1) and an

SSW-based loss function (Section 3.2) based on optimal

transport. To train the encoders as shown in Figure 1, we

assign them different roles. The former loss is designed

for distancing irrelevant instance pairs of probability dis-

tributions on Sd−1
shared, resulting in closer positive instance

pairs. The latter loss focuses on placing positive instance

pairs close to each other by matching their distributional

shapes, and does not deal with irrelevant pairs at all. Their

integration is therefore important. The trained encoders can

be applied to multimodal MIR (Section 3.3).

The standard approach for probabilistic representation

learning assumes that the latent variables of each content

item have a probability distribution of a given form, such

as a Gaussian distribution [5, 12, 13] or a von Mises-Fisher

(vMF) distribution [14–16]. We use the vMF distribution

as the probability distribution on Sd−1
shared as follows:

p(zan|an) = vMF(zan;µ(an), κ(an)), (5)

p(zin|in) = vMF(zin;µ(in), κ(in)), (6)

p(ztn|tn) = vMF(ztn;µ(tn), κ(tn)), (7)

where the variables are as defined in Section 2.1. Using the

proposed loss functions, we train three encoders so that they

can estimate the appropriate parameters, the mean direction

µ(·) and the concentration κ(·), of each vMF distribution.

During training, we utilize L samples taken from each

vMF distribution via a rejection-sampling reparameteriza-

tion trick [18] in practice. Our proposed loss functions in

Sections 3.1 and 3.2 use the following notations:

ζn ∼ vMF(z∗n;µ(∗n), κ(∗n)), (8)

ηn ∼ vMF(z⋆n;µ(⋆n), κ(⋆n)), (9)

where ζn and ηn (∗, ⋆ ∈ {a, i, t}, ∗ ̸= ⋆) are L samples

from the vMF distribution of respective content items.

3.1 Multimodal Probabilistic Contrastive Loss

Function for Probabilistic Contrastive Learning

Contrastive learning is an effective approach to jointly train

encoders for the representation learning of multiple modal-

1 https://github.com/T39Nakatsuka/ISMIR2024
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ities [1, 2, 19, 20]. By modifying Equation (1), we design

our own multimodal loss function LC for all pairwise com-

binations of multiple modalities (we name this multimodal

probabilistic contrastive loss) as follows:

LC = −
1

m

∑

<ζ,η>

m
∑

j=1

log
esim(ζj ,η+)/τ

m
∑

k=1

esim(ζj ,ηk)/τ

, (10)

where m is a mini-batch size, τ is a temperature scaling,

+ indicates a positive sample of an anchor, and sim(·, ·)
is a function that calculates the similarity between two

distributions by leveraging the L samples as follows:

sim(ζj , ηk) ≃ sim

(

{

z
∗,l
j

}L

l=1
,
{

z
⋆,l
k

}L

l=1

)

=
1

L

L
∑

l=1

z
∗,l
j

⊤
z
⋆,l
k

∥z∗,lj ∥∥z⋆,lk ∥
. (11)

This loss LC can thus distance the centroids of the distribu-

tions of irrelevant instance pairs for the contrastive learning.

3.2 SSW-based Loss Function for Optimal Transport

We formulate our SSW-based loss function LS using the

SSW1 distance (Equations (2)–(4)) as follows:

LS =
1

m

∑

<ζ,η>

m
∑

j=1

SSW1(ζj , ηj). (12)

Intuitively, both the L samples from ζj and the L samples

from ηj on Sd−1
shared are projected onto S1, sorted (paired),

and used to calculate the cumulative distribution functions,

resulting in the optimal transport distance between those

positive instance pairs. This loss LS can thus make the

distributions of positive instance pairs closer.

To leverage the advantages of both LC and LS , our

method uses a loss function that integrates them as follows:

L = LC + λSLS , (13)

where λS is a weight.

3.3 Probabilistic Multimodal MIR

Once the encoders have been trained, we can leverage them

to map each content item as a probability distribution on

Sd−1
shared and calculate the distances between their distribu-

tions. For a single-modal query, we calculate the cosine

similarity between the mean (i.e., Fréchet mean [35, 36])

over samples obtained from the distribution of a query and

that of each content item in a dataset. For a multimodal

query, we calculate the Fréchet mean over all samples ob-

tained from the distribution of each query and use it like

a single-modal query. When the similarity score between

a pair of content items is high, it indicates that they are

matched. We thus sort the similarity scores in descending

order and retrieve the content item in the dataset that scored

higher with respect to the query.

4. EXPERIMENTS AND RESULTS

This section describes comparison experiments to quantita-

tively evaluate how closely the probability distributions of

positive instances were located on Sd−1
shared, and a qualitative

analysis of the proposed method to further investigate the

nature of the learned representation of each content item.

4.1 Experimental Setup

4.1.1 Dataset

For the experiments, we used the following two benchmark

datasets with different characteristics. We determined the

size of each test set by following the setup in [1, 37].

YT8M-MusicVideo dataset [1] is a subset of the

YouTube-8M dataset [38], comprising videos tagged as

“music video.” We collected 73,113 triplets consisting of

music audio (average length of 4 min with a 48 kHz sam-

pling rate), its thumbnail image (an RGB image with an

aspect ratio of 16:9), and its metadata including title, chan-

nel name, and upload date from 60,785 YouTube channels.

We randomly split the dataset into training (64,001 songs),

validation (7,112 songs), and test (2,000 songs) sets with

no YouTube channels overlapping across these sets. For

evaluation, we conducted our experiments three times with

different seed values when training the encoders.

AS5M dataset (Album Songs 5 Million dataset) is a pri-

vate dataset that contains triplets of a music audio excerpt

(a 30 s audio preview for trial listening, with a 44.1 kHz

sampling rate), its cover image (a square RGB image), and

its metadata including song title, artist name, collection

name, music genre, and release date. The dataset contains

5,920,828 audio excerpts and their metadata by 174,629

artists, and 1,115,668 cover images. Because multiple ex-

cerpts from a music album are associated with a single cover

image, each image corresponds to about 5.3 excerpts on av-

erage. The songs encompass a variety of music genres (over

250). We randomly split the dataset into training, validation,

and test sets with an eight-one-one ratio and with no artists

or images overlapping across these sets. For evaluation, we

constructed ten folds of test subsets by randomly selecting

2,000 triplets of an audio excerpt, a cover image, and a text

prompt for each fold from the test set.

4.1.2 Implementation Details

Encoder architecture: We used an audio model of con-

trastive language-audio pretraining (CLAP) [20] as the

backbone network for the audio encoder, and used image

and text models of contrastive language-image pretrain-

ing (CLIP) [19] as the backbone network for the image

and text encoders. Before training, we set the parameters

of the pre-trained models available at Transformers [39]

(i.e., “laion/clap-htsat-fused” for CLAP (audio model) and

“vit_base_patch16_224” for CLIP (vision and text models))

to the encoders. During training, we updated the projection

layers of the encoders.

Audio: The music audio of each song was converted

to a mel spectrogram through a CLAP feature extractor

available at Transformers [39], and the audio encoder was

trained using the spectrogram as input. In training the audio

encoder, we applied a masking technique including fre-

quency masking and time masking [40] and a random crop
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technique regarding the time domain to the spectrogram for

data augmentation [41].

Image: We used an RGB image resized to 224 px ×
224 px as the input of the image encoder. In training the im-

age encoder, we applied a random resized crop (scale=[0.08,

1.0], ratio=[0.75, 1.33]), random horizontal flip (probabil-

ity=0.5), and random erasing (probability=0.2) [42] to all

images for data augmentation.

Text: We tokenized text generated by using a keyword-

to-caption augmentation technique [20] 2 with a maximum

length of 77, which is the same setup as CLIP [19]. In train-

ing the text encoder, words corresponding to metadata are

randomly dropped [43] at a ratio of 0.05 for each metadata.

Training: We used 16 NVIDIA A100 GPUs under each

experimental condition, and each GPU computed 64 triplets

of audio, images, and text per iteration. Our implementation

was based on PyTorch [44]. In training the encoders, we

used the Adam optimizer [45] with a learning rate of 1.0×
10−4. We used d = 512 (dimensions of latent variables)

following the setup in [5]. For the vMF distribution, we set

κ(·) ∈ (64, 128) to obtain a clear distribution following the

setup of [16]. We empirically set the number of samples

L to 16. For LC , we set the temperature-scaling value

(Equation (10)) to τ = 0.07, which was originally used in

MoCo [26]. For LS , we calculated the SSW1 distance 100

times for a set of random U , following [22] (i.e., 16 samples

from ζj and 16 samples from ηj were projected onto 100

different great circles to match distributional shapes from

100 different views). On the basis of preliminary studies,

we set the weight λS to 1.0.

4.1.3 Ranking-Based Evaluation Metrics

We used three standard evaluation metrics for retrieval tasks:

the mean reciprocal rank (MRR) [46], the recall@k (R@k),

and the median rank (MR) [1]. MRR is a statistic measure

utilized to evaluate the quality of retrieval results. Given

a set of queries, MRR calculates the average of reciprocal

ranks of the first correct (i.e., original) content item. A

higher MRR value indicates a more accurate and efficient

retrieval method. R@k evaluates how correctly content

items are retrieved in the top results. For retrieval tasks,

a higher R@k means that the retrieval method is more

practical. We set k = 1 for the R@k and displayed R@1 as

a percentage. MR represents the median value of the ranks

of the retrieved correct content item. In our context, a lower

MR is desirable because it indicates that the correct content

item is ranked closer to the top of the retrieval results.

4.2 Conditions

We compared our method (Proposed based on L) with two

competitive methods that utilize probabilistic representation

learning for text-image retrieval, PCME [4] and MPC [5].

2 Since the text prompt generation using a template sentence with
metadata is known to be effective for retrieval tasks [19], for the YT8M-
MusicVideo dataset, we generated a text prompt using: “title” is a music
video uploaded by “channel name” on “upload date.” For the AS5M
dataset, we generated a text prompt using: “song title” is a(n) “music
genre” song by “artist name”, released on “release date.” “song title” is
collected to “collection name.”

Figure 3. Visualization of the learned representations of

audio, images, and text in the test subsets of the AS5M

dataset with respect to music genre tags using t-SNE [51].

For music audio and other modalities, probabilistic repre-

sentation learning for multimodal MIR has not yet been

investigated, so we solely used the multimodal probabilis-

tic contrastive loss LC (Section 3.1) as a baseline method

(Baseline) in order to investigate the effectiveness of LS .

4.3 Results

As shown in Tables 1–6, our method outperformed

PCME [4] and MPC [5], which are competitive methods

for text-image retrieval, in all the retrieval tasks on both

datasets. Likewise, our method was superior to the base-

line method based on the modified MCInfoNCE [16] in

nearly all retrieval tasks. We thus confirmed that LS was

effective in achieving better performances. The results also

showed that a multimodal query outperformed a single-

modal query for most tasks. Our method can seamlessly

create multimodal queries from multiple probability distri-

butions, bringing benefits to multimodal MIR.

The performance differences between the datasets can be

partly explained by their sizes since our method uses trans-

former models as the encoders. Several studies have shown

that the performance of transformer models follows a scal-

ing law [47–50]. This scaling law has been confirmed in ex-

periments with data from various modalities [47–49] and in

transfer learning [50]. In practice, the YT8M-MusicVideo

dataset is two orders of magnitude smaller than the AS5M

dataset, resulting in a decrease in performance. The perfor-

mance differences between the tasks, as well as between the

datasets, can also be explained on the basis of the scaling

law. In our experiments, we used the CLAP audio model,

which was trained on the LAION-Audio-630K dataset [20].

This dataset is several orders of magnitude smaller than the

one used for training the CLIP models, which can lead to

the decreased performance in audio-related retrieval tasks.

We provide additional comparison experiments that

demonstrate the effectiveness of our proposed method in

our supplementary materials 1.

4.4 Qualitative Analysis

We investigated the nature of the learned representations of

music audio, images, and text by visualizing them regarding

music genres. We utilized music audio, images, and text

for 12,180 songs for the top 10 most popular genres in test

subsets of the AS5M dataset. We calculated the Fréchet

mean over all samples obtained from the distribution of each

content item and mapped each of them to a two-dimensional
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Table 1. Comparison on YT8M-MusicVideo dataset for multimodal image retrieval.

Audio → Image Text → Image Audio & Text → Image

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

PCME − − − 0.025± 0.003 0.73± 0.08 369 − − −

MPC − − − 0.014± 0.001 0.2± 0.11 425 − − −

Baseline 0.024± 0.001 0.73± 0.09 272 0.048± 0.001 1.92± 0.12 166 0.044± 0.001 1.55± 0.11 166

Proposed 0.028± 0.001 0.65± 0.08 247 0.115± 0.0 6.68± 0.1 92 0.119± 0.002 6.8± 0.29 72

Table 2. Comparison on YT8M-MusicVideo dataset for multimodal text retrieval.

Audio → Text Image → Text Audio & Image → Text

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

PCME − − − 0.023± 0.002 0.73± 0.16 372 − − −

MPC − − − 0.013± 0.001 0.13± 0.05 427 − − −

Baseline 0.026± 0.001 0.6± 0.18 226 0.046± 0.001 1.47± 0.1 167 0.054± 0.002 1.83± 0.3 131

Proposed 0.039± 0.001 1.17± 0.09 180 0.118± 0.002 6.87± 0.21 89 0.139± 0.002 7.97± 0.46 55

Table 3. Comparison on YT8M-MusicVideo dataset for multimodal audio retrieval.

Image → Audio Text → Audio Image & Text → Audio

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

Baseline 0.021± 0.001 0.52± 0.05 263 0.028± 0.001 0.68± 0.08 219 0.032± 0.002 0.83± 0.26 191

Proposed 0.027± 0.001 0.58± 0.06 235 0.041± 0.003 1.25± 0.37 173 0.05± 0.002 1.75± 0.25 141

Table 4. Comparison on AS5M dataset for multimodal image retrieval.

Audio → Image Text → Image Audio & Text → Image

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

PCME − − − 0.069± 0.004 2.82± 0.34 131 − − −

MPC − − − 0.026± 0.002 0.62± 0.15 240 − − −

Baseline 0.046± 0.002 1.37± 0.19 141 0.125± 0.005 6.21± 0.56 50 0.1± 0.004 4.39± 0.53 60

Proposed 0.074± 0.004 2.94± 0.46 94 0.539± 0.005 45.37± 0.65 2 0.508± 0.008 41.35± 1.12 2

Table 5. Comparison on AS5M dataset for multimodal text retrieval.

Audio → Text Image → Text Audio & Image → Text

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

PCME − − − 0.067± 0.003 2.73± 0.27 131 − − −

MPC − − − 0.025± 0.002 0.57± 0.13 239 − − −

Baseline 0.062± 0.002 1.93± 0.27 82 0.126± 0.006 5.99± 0.59 47 0.146± 0.007 6.96± 0.76 30

Proposed 0.113± 0.004 4.99± 0.37 46 0.541± 0.007 44.21± 0.99 2 0.58± 0.009 47.75± 1.19 2

Table 6. Comparison on AS5M dataset for multimodal audio retrieval.

Image → Audio Text → Audio Image & Text → Audio

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

Baseline 0.045± 0.002 1.32± 0.2 138 0.067± 0.003 2.11± 0.24 77 0.069± 0.003 2.43± 0.32 74

Proposed 0.072± 0.004 2.62± 0.33 92 0.115± 0.005 4.86± 0.47 44 0.126± 0.006 5.54± 0.62 37

space using t-SNE [51]. Figure 3 shows that their learned

representations form clusters regarding music genres. That

is, audio, images, and text in each of these genres are closely

associated with each other.

5. CONCLUSION

We proposed a method for multimodal MIR that leverages

the probabilistic representations of content items. Our

contributions can be summarized as follows. First, we

leveraged the von Mises-Fisher (vMF) distribution, which

has been used for single-modal tasks [14–16] but has not

been used for multimodal retrieval tasks. In addition, the

recently-invented spherical sliced-Wasserstein (SSW) [22]

p-distance for optimal transport is surprisingly computa-

tionally efficient and useful, but has not yet been used in the

MIR community. Moreover, we designed the two novel loss

functions, LC and LS , using both probabilistic contrastive

learning and optimal transport to facilitate probabilistic mul-

timodal representation learning. To our knowledge, this is

the first work to utilize these reusable insights for proba-

bilistic representation learning. Second, we confirmed the

effectiveness of integrating the contrastive loss function LC

with the loss function LS based on the optimal transport

distance through quantitative evaluations, and showed that

the proposed method can retrieve more appropriate content

items for single-modal and multimodal queries. Third, we

conducted a qualitative analysis, showing that music audio,

images, and text for the same music style are located close

to each other on Sd−1
shared. These results demonstrated that

the proposed method is effective for multimodal MIR.

The underlying principles of the proposed method can

work for any retrieval tasks regardless of modalities, which

will lead to a broader scope of application. As such, we

believe that the proposed method will shed light on other

challenging retrieval tasks and usher in practical solutions.
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ABSTRACT

Most music widely consumed in Western Countries con-

tains song lyrics, with U.S. samples reporting almost all

of their song libraries contain lyrics. In parallel, social

science theory suggests that personal values - the abstract

goals that guide our decisions and behaviors - play an im-

portant role in communication: we share what is important

to us to coordinate efforts, solve problems and meet chal-

lenges. Thus, the values communicated in song lyrics may

be similar or different to those of the listener, and by ex-

tension affect the listener’s reaction to the song. This sug-

gests that working towards automated estimation of values

in lyrics may assist in downstream MIR tasks, in particular,

personalization. However, as highly subjective text, song

lyrics present a challenge in terms of sampling songs to be

annotated, annotation methods, and in choosing a method

for aggregation. In this project, we take a perspectivist ap-

proach, guided by social science theory, to gathering an-

notations, estimating their quality, and aggregating them.

We then compare aggregated ratings to estimates based on

pre-trained sentence/word embedding models by employ-

ing a validated value dictionary. We discuss conceptually

’fuzzy’ solutions to sampling and annotation challenges,

promising initial results in annotation quality and in auto-

mated estimations, and future directions.

1. INTRODUCTION

Popular music in Western countries almost always con-

tains lyrics, making song lyrics a widely, repeatedly con-

sumed [1] form of text. Over 616 million people subscribe

to streaming services worldwide 1 , many of whom stream

more than an hour of music every day 2 . Lyrics have been

shown to be a salient component of music [2], and out

1 https://www.musicbusinessworldwide.com/files/2022/12/
f23d5bc086957241e6177f054507e67b.png

2 https://www.gwi.com/reports/music-streaming-around-the-world
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Figure 1. Distribution of self-reported percentage of music

library containing lyrics from two representative US sam-

ples, n=505 and n=600 respectively.

of over 1400 number-1 singles in the UK charts, only 30

were instrumental 3 . The two representative US popula-

tion samples that were our annotators indicate a median

90% of songs in their libraries contain lyrics (Figure 1).

It is thus not surprising that informative relationships

between popular songs and their lyrical content have been

shown: e.g., country music lyrics rarely include polit-

ical concepts [3], and songs with more typical [4] and

more negative [5] lyrics appear to be more successful. [6]

showed that patients are more likely to choose music with

lyrics when participating in music-based pain reduction

interventions, although melody had an overall larger ef-

fect [7] showed that lyrics enhance self reported emotional

responses to music, and [8] showed a number of additional

brain regions were active during the listening of sad music

with lyrics, vs. sad music without lyrics. In fields closer

to MIR, [9] show that estimating psychological concepts

from lyrics showed a small benefit in a number of MIR

tasks, and [10] showed a correlation between moral princi-

ples estimated from song lyrics and music preferences.

A connection between music lyrics and music prefer-

ences anticipated by theory involves the personal values

perceived in the lyrics by listeners. Prior work has shown

correlations between an individual’s values, and the mu-

sic they listen to [10–13], suggesting that we seek music in

3 https://en.wikipedia.org/wiki/List_of_instrumental_number_ones_
on_the_UK_Singles_Chart
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line with our principles. Yet we have not seen an attempt to

measure perceived personal values expressed in the lyrics

themselves via human annotation or automated methods.

In this work we take a first step towards the automated

estimating the values perceived in song lyrics. As artis-

tic and expressive language, lyrics are ambiguous text:

they contain different forms of analogy and wordplay [14].

Thus we take a perspectivist approach to the annotations:

because we expect that perceptions will vary substantially

more than in other annotation tasks, we aim to represent

the general perceptions of only one population. We ac-

count for the subjectivity by gathering a large number of

ratings (median 27) per song from a targeted population

sample (U.S.), of 360 carefully sampled song lyrics, us-

ing a psychometric questionnaire that we adjust for this

purpose. We treat values in line with theory: as ranked

lists, using Robust Ranking Aggregation (RRA) to arrive

at our ’ground truth’. We then gather estimates from word

embedding models, by measuring semantic similarity be-

tween the lyrics and a validated dictionary. We show that

ranked lists from estimates correlate moderately with an-

notation aggregates. We then discuss the implications of

our results, the limitations of this project, and anticipated

future work.

2. PERSONAL VALUES

The modern study of human values spans over 500 sam-

ples in nearly 100 countries over the past 30 years, and

has shown a relatively stable structure [15], as illustrated

in Figure 2. Personal values are a component of person-

ality, defined as the hierarchy of principles that guide a

person’s thoughts, behaviors, and the way they evaluate

events [16, 17]. Basic human values can be used to de-

scribe people or groups: social science theory suggests

that each person uses a hierarchical list of values as life-

guiding principles [18], such that we prioritize some values

over others as we make decisions. Schwartz’s theory is the

most widely used in social and cultural psychology, and

has shown correlations with important behaviors, ranging

from political affiliation to personal preferences [15].

We communicate our values in order to gain cooper-

ation and coordinate our efforts, according to Schwartz

[19]. Thus our values will manifest in the words that we

use [20]. Although personal values are traditionally mea-

sured by having individual people complete validated psy-

chological questionnaires, it has been argued that values

may be clearly expressed in the speech and text that we

produce [20].

A common approach to measuring psychological as-

pects in text is to validate dictionaries: curated sets of

words, with subsets aimed at measuring each component

of the psychological aspect in question [22–25]. Some

work estimating the values of the authors of text has been

conducted on individuals who have written personal es-

says and social media posts e.g. [25, 26], and in arguments

abstracted from various forms of public facing text [27].

However, we have not seen work aimed at measuring val-

ues perceived in text, measuring them along a scale as in

Figure 2. Visualization of the Schwartz 10-value inven-

tory from [19] used in this paper, such that more abstract

values of Conservation, vs. Openness to Change, and Self-

transcendence vs. Self-enhancement form 4 higher-order

abstract values. Illustration adapted from [21].

prior work [19], or ultimately treating them as a hierarchi-

cal list in line with theory [18].

3. PRIMARY LYRICS DATA

We aim to collect a sample of lyric data where the lyrics are

as accurate as possible, and our sample is as representative

as possible. We sampled from the population of songs in

the Million Playlist Dataset (MPD) 4 as it is large and re-

cent compared to other similar datasets. The lyrics them-

selves were obtained through the API of Musixmatch 5 , a

lyrics and music language platform. Musixmatch lyrics are

crowdsourced by users who add, correct, sync, and trans-

late them. Musixmatch then engages in several steps to

verify quality of content, including spam detection, for-

matting, spelling and translation checking, as well as man-

ual verification by over 2000 community curators, and a

local team of Musixmatch editors. Via their API, Musix-

match provided us with an estimated first 30% of the lyrics

of each song.

Using the ‘fuzzy’ stratified sampling method described

below, we sampled 2200 songs. Three members of the re-

search team manually screened approximately 600 of the

2200 songs for inclusion. Each set of lyrics was confirmed

to be a match to the actual song, and for suitability 6 .

Lyrics were unsuitable if they were: 1) not English, 2)

completely onomatopoetic, 3) repetitions of single words

or phrases, 4) too few words to estimate values present or,

5) were not a match to the meta-data of the song, e.g. artist

title, song name. This resulted in 380 songs, 20 of which

were used in a pilot study to determine the number of rat-

ings to gather per song, and 360 were used for annotation.

4 https://research.atspotify.com/2020/09/
the-million-playlist-dataset-remastered/

5 https://www.musixmatch.com/
6 Each member independently screened each lyric and the screening

process overall was discussed at length.
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3.1 Fuzzy Stratified Sampling

An initial challenge is determining how to represent a cor-

pus. In our case, the population of songs is known to be

very large 7 . An ideal scenario would be one in which we

aim for a known number of songs, randomly sampled from

within clearly defined strata, i.e. relevant subgroups, also

known as stratified random sampling [28]. However, for

music, we do not know how many songs we would need to

sample in order to reach saturation, what the relevant strata

to randomly sample within should be, and how to measure

relevant parameters from each stratum.

Some measurable strata that affect the use of language

in song lyrics are clear: e.g., the year of release, which may

reflect different events or time-specific colloquial slang.

Others are less clear: e.g., there is no single metric of pop-

ularity for music, although it can be estimated from various

sources such as hit charts. Some may be very subjective,

such as genre, for which there may be some overlap of hu-

man labelling, but no clear taxonomy exists in the eyes of

musicological domain experts [29].

Based upon these considerations, we aimed for a strati-

fied random sampling procedure, based on strata that we

acknowledge to be justifiable given our purpose, yet in

some cases conceptually ‘fuzzy’: (1) release date; (2) pop-

ularity, operationalized as artist playlist frequency from

the MPD [30]; (3) genre, estimated from topic modeling

on Million Song Dataset artist tags [31]; (4) lyric topic,

through a bag-of-words representation of the lyrics data.

Popularity and Release date were divided into equally

spaced bins; e.g. we divided release year into decades (60s,

70s, 80s, and so on), and genre and lyric topic were divided

into categories.

Release date was quantized into 14 bins in 10-year in-

crements from 1890-2030. Popularity was exponentially

distributed, and thus manually binned, to make the quan-

tiles per each of the 7 bins as similar as possible. Thus,

the first bin contained the lowest 40% of the population in

terms of popularity, while the 7th bin contained the highest

9%. Topic modelling was applied on a bag-of-word repre-

sentation of the lyrics data and artist-tag data to yield 25

estimated genres and 9 lyrics topic strata, respectively.

We observed a skewness of data concentration with re-

gard to several of our strata, e.g., songs that are recent and

widely popular are most likely be drawn. To correct for

this and thus get a more representative sample of an overall

song catalogue, we oversample from less populated bins.

For this, we use the maximum-a-posteriori (MAP) estimate

of the categorical distribution of each stratum. The over-

sampling is controlled by concentration parameter a of the

symmetric Dirichlet distribution. We heuristically set this

parameter such that songs in underpopulated bins still will

make up up 5-10 % of our overall pool 8 . Through this

method, we subsampled our initial 2200 songs lyrics.

7 e.g., Spotify reports over 100 million songs in its cataloguehttps://
newsroom.spotify.com/company-info/

8 Full code of our sampling procedure is at https://anonymous.4open.
science/r/lyrics-value-estimators-CE33/1_stimulus_sampling/stratified_
sampling.py

Figure 3. MDS plots derived from the correlation plot re-

ported in [32], and our participant responses as confidence-

weighted means

4. GROUND-TRUTHING PROCEDURE

We chose to obtain our annotations from samples of the

US population, representative in terms of self-reported sex,

ethnicity and age, through the Prolific 9 platform. Annota-

tor pools comprised of two samples, the first n=505 wave

participated in a pilot study to estimate the number of rat-

ings per song needed on average, and the second n=600

wave comprised our main data collection. Participants

completed the survey on the Qualtrics 10 platform.

We clearly differentiate between the Author and the

Speaker of lyrics by explaining to participants that the

Author of song lyrics may write from the perspective of

someone or something else (the Speaker). 17 randomly

selected sets of lyrics were then shown to each partici-

pant along with instructions to annotate each with the val-

ues of the Speaker. We adapted the 10-item questionnaire

used in [33] for the value annotations, as it is the shortest

questionnaire for assessing personal values whose valid-

ity and reliability have been assessed 11 . As in [33], each

questionnaire item is a specific value along with additional

descriptive words e.g. POWER (social power, authority,

wealth). We adjusted it by asking participants to indicate

the values of the Speaker of the lyrics, and by having them

indicate on a bar with -100 (opposed to their principles) on

one end, and +100 (of supreme importance) on the other

end instead of a likert scale. In addition, we asked partici-

pants to indicate how confident they were in their ratings,

on a scale of 0 (not at all confident) to 100 (extremely con-

fident), inspired by work that has shown that self-reported

confidence in ratings can be used to estimate the accuracy

of individual ratings [34].

We used a procedure similar to [35] in order to deter-

mine the number of raters. Specifically, we recruited a rep-

resentative 500+ participant sample of the US using the

Prolific platform, who completed our survey for 20 songs.

We then computed canonical mean ratings of each of the 10

9 https://prolific.co
10 https://qualtrics.com
11 It has shown correlations ranging from .45-.70 per value with longer

more established procedures, test-retest reliability, as well as the typical
values structure shown in Figure 2
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values per song, and inter-rater reliability using Cronbach’s

Alpha. We then estimated Cronbach’s alpha for a range of

subsample sizes (5 to 50 participants in increments of 5),

for each of the 10 values. We repeated this procedure 10

times per increment, separately for each of the 10 values,

and examined the distribution of Cronbach’s Alpha. We

specifically looked for the sample size with which Alpha

exceeded .7 12 . We arrived at a conservative estimate of

25 ratings per set of lyrics, with songs receiving a median

27 ratings (range 22-30).

4.1 Reliability, Agreement and Initial Validation

The rater reliability was estimated via intra-class corre-

lation for each personal value, (type 2k: see [36]) using

the ‘psych’ package in R [37], all of which exceeded .9

(excellent reliability). As an initial validation, we com-

pare data simulated from values in the upper triangle of a

correlation matrix reported in [32] to those derived from

our study. To aggregate our participants rankings for this

purpose, we compute confidence-weighted means inspired

by [34]: we estimate confidence-weights by dividing par-

ticipant’s self-reported confidence of a given rating by the

highest possible response (100), and then compute aggre-

gated means weighted by these. For both the simulated

data and confidence-weighted mean scores, we generate a

multi-dimensional scaling plot (MDS) [38] for visual com-

parison, which has previously been used as method to as-

sess measurements conform to theory [25, 33]. Note: the

interpretation is to observe whether each of the values ap-

pears next to expected neighboring values, and not each

value’s orientation. From these plots (Figure 3), in as lit-

tle as our 360 annotated lyrics, we surprisingly see simi-

lar clusters and relative positioning relations emerging as

those obtained from a formal cross-cultural study.

We coerced the annotated scores to ranked lists of val-

ues, such that the highest scoring value was at the top.

We derived ranked lists per participant per song, and then

used Robust Ranking Aggregation (RRA) to extract a sin-

gle ranked list per song. Aggregation was conducted us-

ing R version 4.2.2. [39], and the RobustRankAggreg

package [40]. Briefly, RRA produces a ranked list by com-

paring the probability of the observed ranking of items to

rankings from a uniform distribution. Essentially, scores

are determined by comparing the height of an item on a set

of lists to where it would appear if its rank were randomly

distributed across lists. These scores are then subjected to

statistical tests, where the resulting p value is Bonferronni

corrected by the number of input lists [41]. Thus, when an

item appears in different positions on a list, the resulting p

value is high, as its position appears randomly distributed.

As lyrics are ambiguous, we expect that some songs’

values are completely subjective. We operationalize these

as randomly distributed rankings for all personal values for

completely subjective songs, i.e. p values above .05 for all

10 items on the ranked list. Results from the RRA show

62 songs with p values above .05 for all 10 values, and 96

12 .7 is a commonly considered an acceptable level of reliability in the
form of internal consistency

Figure 4. Rank correlations between NLP systems / word

counts and Robust Ranking Aggregation lists, by normal-

ization scheme.

songs with only 1 value ranked. At most, 5 values were

ranked, which occurred for 35 songs. Thus, we confirm

that although there was correspondence in the scores that

participants assigned per value per song, ranked lists did

not always agree.

5. AUTOMATED SCORING

For automated scoring, we use a dictionary of words as-

sociated with the 10 Schwartz values [25]. With this dic-

tionary as reference, we computationally estimate the de-

gree to which each value is reflected in the lyrics text ac-

cording to traditional word counting [25], as well as by

assessing cosine similarity between dictionary words and

lyrics texts using four classes of pre-trained word em-

beddings: word2vec, a generic English word embed-

ding trained on Google News dataset [42]; glove, an-

other generic English word embedding trained on Com-

mon Crawl dataset [43]; mxm-far-[1∼10], trained

on the collected initial lyrics candidate pool, employing

the Glove model [43] (using ten models populated from

ten cross-validation folds, whose parameters are tuned

based on English word similarity judgement data [44].);

mxm-cv-[1∼10], ten variants of lyrics based word-

embeddings from cross-validation folds selected by Glove

loss values on the validation set; and finally, sent-bert,

a transformer model that encodes sentence into a embed-

ding vector, fine-tuning of a generic self-supervised lan-

guage model called MPNet, which is trained on a large

scale English corpus [45]. Our process thus resulted in 24

sets of scores: 5 from models and one from word-counting,

normalized using four methods.

We take the perspective from theory that that value as-

sessments should be seen as ranked lists, and thus coerce

scores to ranked lists per model per song. We then compute

rank correlations between ranked lists derived from model

scores and RRA lists from participants. As RRA lists as-

sess lack of consensus on rankings, personal values with

high p values received tied rankings, at the bottom of the

list. Correlations were computed using Kendall’s τ which

is robust to ties (Figure 4).
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Figure 5. Rank correlations between word2vec scores Ro-

bust Ranking Aggregation lists, per genre grouping opera-

tionalized as Artist Tag Topic.

In earlier work [25, 46], Pearson correlations of 0.1-0.2

were considered as moderate evidence of the validity of a

proposed dictionary in relation to a psychometrically vali-

dated instrument. Although we are using a different met-

ric, we observe several models whose mean rank correla-

tions exceed the .10 mark. The mean Kendall’s τ values

were highest for the word2vec, sent-bert, and wordcount

models with null normalization (SD=.24, .30, and .34 re-

spectively). We further observe that 76% of the rank cor-

relations for word2vec exceed the .10 mark, followed by

56.1% from sent-bert, and 47.8% from wordcounts. Al-

though none of these models had been thoroughly opti-

mized and thus this cannot be interpreted as a thorough

benchmark, we do see evidence of higher than expected

correlations.

We also explored whether our fuzzy strata might hint to-

wards more or less automatically scorable lyrics. We found

most strata to be uninformative. However, when examin-

ing the rank correlations for our overall best performing

model, word2vec, we did observe higher mean correlations

for some artist tag topics than others (Figure 5). In particu-

lar, topics 10 (which included the tags: ‘jazz’, ‘chillout’,

‘lounge’, ‘trip-hop’, ‘downtempo’), 11 (which included

the tags like: ‘metal’, ‘celtic’, ‘thrash metal’, ‘dutch’, ‘seen

live’), and 16 (which included tags like: ’country’, ‘Sound-

track’, ‘americana’, ‘danish’, ‘Disney’). Although specu-

lative, we do expect that certain genres are more difficult

to interpret than others, in particular for people who are

generally unfamiliar with such music.

6. DESCRIPTIVE ANALYSES

We conduct a further exploratory data analysis by examin-

ing the gathered value annotations with respect to the song

strata introduced in Section 3.1. To better understand the

overall patterns of value rankings in songs we visualize the

average ranking of each value for each level of each stra-

tum. To reflect the uncertainty of aggregated ranking from

RRA, we employ ‘truncated’ rankings: the values within

each aggregated ranked list are considered ties if their p-

values higher than the threshold (p = 0.05), hence with
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Figure 6. Average value ranking from ‘release year’ (A)

and ‘artist-playlist frequency’ (B). x and y axis represent

the strata and average ranking measure from RRA, respec-

tively. Each point in different point shapes and vertical bars

denote the average ranking value and its confidence inter-

val (at 95% level). For visual convenience, we connected

the same values with lines.

high uncertainty in their ranking positions. 13

In all results, we observe that there is a tendency of

overall value ranking: 1) a generally strong presence

of HEDONISM in higher ranks in all cases, followed

by STIMULATION and SELF (SELF-DIRECTION). 2)

ACHIEVEMENT and POWER generally follow next

across all figures, and 3) the rest of the values, including

BENEVOLENCE, UNIVERSALISM, SECURITY, CON-

FORMITY, and TRADITION overall rank lower, but

show higher variability across strata. We refer to these

three groups of values as Group1 (HEDONISM, STIM-

ULATION and SELF), Group2 (ACHIEVEMENT and

POWER), and Group3 (the rest) for the rest of the section.

Zooming in each to stratum, in Figure 6, we observe

that the ‘release year’ (sub-figure A) strata show the most

consistent and visible trend especially for Group3, which

generally declines over time. Such a trend is not as obvious

in Group1 and only partially observed in Group2. The low

presence of Group3 is especially noticeable in the 1990s,

although it regained its presence to some degree, a pattern

which the SELF value from Group1 partially shares. Such

visible movements suggest that the rank of specific values

may evolve over time. In sub-figure B, we observe the

most flat response across all strata considered: beyond the

fluctuation pattern that is shared by all groups, there is no

substantial variability among groups, which implies that

popularity might not be as correlated as the ‘release year’.

Moving onto Figure 7, we discuss the value presence

pattern in two ‘topic’ strata. First, in sub-figure C, we ob-

serve that Group3 values show overall higher variability

than ‘artist playlist frequency’. It is notable that there are a

few distinct topics in which Group3 values show a signif-

icant difference; the sixth, seventh and fourteenth topics,

which correspond to the ‘under 2000 listeners/musical’,

‘folk/singer-songwriter’, and ‘Hip-Hop/rap’ topics when

represented in primary topic terms. Specifically, we see

13 We assume that the adjusted exact p-value from RRA monotonically
decreases as the rank position ascends (i.e., the lower the p-value is, the
higher the ranking position is).
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Figure 7. Average value ranking from ‘artist-tag topic’ (C)

and ‘lyrics topic’ (D).

that first two topics show a high presence of Group3 values,

while the latter topics show the least presence of Group3

values. It suggests that the artists in these styles/genres

were perceived on average to present clearly different sets

of values through their lyrics, distinguished by the inclu-

sion/exclusion of values such as BENEVOLENCE or UNI-

VERSALISM.

Finally, considering sub-figure D, we observe a simi-

lar pattern as ‘artist playlist frequency’ in 6, albeit with

relatively more variability in Group3 values. Notably,

the ‘rap/hip-hop’ lyrics topic shows the least presence of

Group3 values, which aligns to the observation from pre-

vious sub-figure. The ‘sad/romantic1’ topic, on the other

hand, shows the highest ranking of Group3 values. An-

other remarkable topic is ‘gospel/reggae’ topic, where HE-

DONISM value is least present, which semantically aligns

well with the typical lyrical theme of those songs.

7. LIMITATIONS AND FUTURE WORK

In this work we attempt to ground-truth perceptions of

ambiguous song lyrics for perceived human values. We

adopt a validated questionnaire from the social sciences

for this purpose, in addition to a purposeful, if conceptu-

ally ’fuzzy’, stratified sampling strategy, and estimate the

average number of ratings needed to estimate the average

perception of values in a song. We acknowledge our cur-

rent sample of 360 lyrics is small and may need expansion

for more typical work, and that, while we had a represen-

tative population sample, not every member of the sam-

ple rated every song. We thus did gather diverse opinions,

but cannot claim they fully represent the target population.

In addition, the small sample of songs allowed for only

limited observation of patterns that might emerge in larger

samples with relation to our defined strata, and indefinite

conclusions given the overall massive population of songs

in existence. We also did not assess whether variations on

the annotation instrument might result in substantial dif-

ferences in the annotations we received [47], nor did we

repeat our procedure [48]. In addition, we acknowledge

that participants from different groups will perceive and

thus annotate corpora differently [49,50]. Thus, we expect

that lyrics may be especially sensitive to varying percep-

tions, which we did not explore in this work. Finally, we

only provide a preliminary comparison to automated scor-

ing methods, and did not leverage the most contemporary

tools for this purpose (e.g. Large Language Models). All

of these are rich and promising avenues for future work.

The most interesting avenues are potential relationships

that could be revealed with more annotated songs, and

eventual automated scoring methods. In particular, we

see potential in understanding music consumption more

broadly from patterns revealed in the dominant value hi-

erarchies in specific music genres, popularity segments,

lyrical topics, and even release year. And for understand-

ing music consumption more narrowly, from patterns re-

vealed in an individual’s music preferences, and the degree

to which they conform with their own value hierarchy.

8. CONCLUSION

Song lyrics remain a widely and repeatedly consumed, yet

ambiguous form of text, and thus a promising and chal-

lenging avenue for research into better understanding the

people that consume them. We observe promising ini-

tial results for the annotation of personal values in songs,

despite our limitations. MDS plots of aggregated ratings

showed the beginnings of the expected structure of values,

conforming more closely than might be expected from as

little as 360 songs. We also observed high inter-rater re-

liability in the raw scores, suggesting a sufficiently reli-

able annotation procedure with 25 ratings. Thus, we see

promise on our method for ground-truthing lyrics despite

their ambiguity. A post-hoc procedure revealed that 15 rat-

ings may be enough on average: we repeatedly subsam-

pled 5, 10, 15 and 20 ratings for each value within each

song, and calculated pearson correlations between subsam-

ple means and canonical means. From this, we see Pearson

correlations to the canonical mean exceed 0.9 for all val-

ues from 15 subsampled ratings. Further lyric annotation

may thus require fewer annotations per song than what was

gathered in this work. In addition, we observe promising

rank correlations between ranked rater scores and our auto-

mated methods, with over 75% of the rankings in our best

performing model above a minimal threshold of .10. De-

spite inherent challenges in the task, our method shows ini-

tial promise, and multiple fruitful avenues for future work.
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ABSTRACT

While most music generation models use textual or para-

metric conditioning (e.g. tempo, harmony, musical genre),

we propose to condition a language model based music

generation system with audio input. Our exploration in-

volves two distinct strategies. The first strategy, termed

textual inversion, leverages a pre-trained text-to-music

model to map audio input to corresponding "pseudowords"

in the textual embedding space. For the second model we

train a music language model from scratch jointly with a

text conditioner and a quantized audio feature extractor. At

inference time, we can mix textual and audio conditioning

and balance them thanks to a novel double classifier free

guidance method. We conduct automatic and human stud-

ies that validates our approach. We will release the code

and we provide music samples on musicgenstyle.github.io

in order to show the quality of our model.

1. INTRODUCTION

In the field of music generation, prior research has predom-

inantly focused on producing brief musical segments [1,2],

MIDI generation [3], while generating long and coherent

waveforms (around 30 seconds) has only recently been

tackled [4–6]. Specifically, most of these recent models

have been designed to perform text-to-music generation,

providing a fascinating tool for creators. Other types of

high-level conditioning have been used in previous work

such as tempo, harmony [7]. For lower-level and aligned

conditioning, the authors of [5] use melody, while [8] uses

chords, piano rolls, or the drum stem. However, music is

hard to describe textually and the scarcity of text-music

pair datasets makes it challenging to generate music in the

style of a specific artist or song, since the artist is probably

not represented in the training dataset. Then a common use

case would be to generate music in the style of a reference

segment. This gives more control to the user since they do

not have to find a textual prompt that describes the music

they want to generate.

© S. Rouard, Y. Adi, J. Copet, A. Roebel, A. Défossez. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: S. Rouard, Y. Adi, J. Copet, A. Roebel, A.

Défossez, “Audio Conditioning for Music Generation via Discrete Bot-

tleneck Features”, in Proc. of the 25th Int. Society for Music Information

Retrieval Conf., San Francisco, United States, 2024.

In the computer vision domain, the authors of [9] in-

troduced textual inversion to extract visual concepts that

can then be used to generate new images with a text-to-

image model. Given a few images (3-5) of a concept or

object, one sets them as outputs of a frozen text-to-image

model with a randomly initialized learnable text embed-

ding. Backpropagating the generative model loss on the

text allows to learn new "pseudowords" in the textual em-

bedding space of the model that match the common con-

cept depicted on the images. One can then compose this

learnt pseudoword S∗ in a textual prompt to generate an

image of the learnt concept (for instance "a painting of S∗

in the style of Picasso").

We first adapted this method by using the text-to-music

model MusicGen [5], using crops of a song to depict a con-

cept, and optimizing the cross-entropy loss of the music

language model. This approach does not need to retrain a

model from scratch. However, its inference is very slow

since it requires hundreds of optimization steps of the tex-

tual prompt, including gradient computation through the

language model, before generating music.

To tackle this issue, we present another method where

we design a style conditioner module that we jointly train

with a text-to-music MusicGen model [5]. This style con-

ditioner takes a few seconds of audio and extracts features

out of it. As a result this new model can generate music

using two modalities as input: waveforms and textual de-

scriptions. Our conditioning is high level even if it can

retain some lower level content such as melodic patterns

or rhythm. Designing this style conditioner is challenging

as we need to extract enough features to have a meaningful

conditioning but not too much, to prevent the generative

model to copy and loop the conditioning audio. We thus

need to introduce and tune information bottlenecks in our

conditioning module. Our contributions are the following:

1) We adapt the textual inversion method of [9] to a

pretrained text-to-music MusicGen model. This allows to

perform audio conditioning for music generation without

training a model from scratch.

2) We present our style conditioner method which is

based on a frozen audio feature extractor (Encodec [10],

MERT [11] or MusicFM [12]) followed by a transformer

encoder [13], Residual Vector Quantizer (RVQ) [14] and

temporal downsampling. The number of residual streams

used by RVQ is adjustable at inference time which gives

the user the ability to change the strength of the style con-

ditioning. To our knowledge, we are the first to explore
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this approach for music generation.

3) Since the model is trained with both textual and au-

dio conditioning inputs, we can combine both to gener-

ate music. However, audio contains much more informa-

tion, so that text is ignored by the model at inference. We

propose to balance them with a new double classifier free

guidance [15] which is a general method for merging con-

ditions with various degrees of information.

4) We introduce novel objective metrics for style con-

ditioning, based on nearest neighbors search in the latent

space, validated with human evaluations.

We compare our method to baselines which are: a Mu-

sicGen trained with CLAP embeddings [16] as condition-

ing, a text-to-music MusicGen used with text prompts, and

a MusicGen model without conditioning used in continu-

ation mode. We perform as well some ablation studies in

order to justify the architecture of our style encoder. Based

on results, we show the practicality of our methods and the

musical quality of the generated music.

2. RELATED WORK

2.1 Generative models for music

Music generation models can be categorized into two

types: autoregressive models and non autoregressive ones.

Autoregressive ones are motivated by the successful work

done in natural language modeling. Recent successful

models use a compression model taking the form of a multi

stream quantized autoencoder [10, 14] in order to convert

audio into K parallel discrete streams of tokens. The K

streams are obtained by performing Residual Vector Quan-

tization (RVQ) [14] on the latent space of an autoencoder,

making the first stream contain coarse information and fol-

lowing ones refine the approximation of the latent space.

Then, an autoregressive transformer [13] is used to model

these audio tokens. MusicLM [4] and MusicGen [5] are

built on this principle. MusicLM uses a multi-stage ap-

proach with different models to predict the K streams,

while MusicGen models them in parallel using a delay pat-

tern [5, 17].

Non-autoregressive models such as AudioLDM2 [18],

MusicLDM [19], and Stable Audio [6], are latent diffu-

sion models operating in the latent space of a continuous

variational autoencoder. Some other models use cascaded

diffusion such as Noise2Music [20] to progressively in-

crease the sampling rate of the audio. Moûsai [21] uses

a first diffusion model to compress the music and a second

one to generate music from this representation and textual

descriptions. MusTango [7] uses a latent diffusion model

conditioned on textual description, chord, beat, tempo and

key. Jen-1 [22] combines a diffusion model and a masked

autoencoder trained with multi-tasks objectives. It can per-

form music generation, continuation and inpainting. A

second version [23] uses source separation [24] over their

dataset to allow the user to generate and edit music stem

by stem. VampNet [25] is a masked modeling approach

to music synthesis that uses masking at training and in-

ference time in order to generate discrete audio tokens.

MAGNeT [26] is based on the same masking principle.

It can also combine autoregressive and masking to reach

the same quality as the autoregressive baseline (MusicGen)

but with a 7x faster inference. In MeLoDy [27], a language

model is used to model coarse semantic tokens and a dual

path diffusion model is then used for acoustic modeling.

The authors claim faster than real time generation.

2.2 Jointly trained conditioners for music generative

models

Regarding the conditioning, most of the models focused on

text-to-music [4, 5, 19–22]. Since pairs of text-music data

are rare, most models use a pre-trained contrastive text-

music model such as CLAP [16] or MuLan [28], to condi-

tion their text-to-music models. Then, massive amount of

non-annotated audio data can be used at training time and

text is used at inference time. However, these text-to-music

models never exploit the fact that audio can be used as con-

ditioning. For other types of conditioning, MusTango [7]

is trained with text, beat tempo, key and chords as condi-

tioning, StableAudio [6] takes timing embeddings to con-

trol the length and structure of the generated music. Some

models generate stems while being conditioned on other

stems. For instance, SingSong [29] generates musical

accompaniments from singing and Jen-1 Composer [23]

handles multi-track music generation on 4 different stems

(bass, drums, instrument and melody). MusicGen [5] and

Music ControlNet [30] can handle melody as conditioning

and the latter can also use dynamics and rhythm. Both pa-

pers use chromagrams extraction for melody conditioning.

2.3 Conditioning a pretrained generative model

With finetuning: In Coco-Mulla [8], the authors use

parameter-efficient fine-tuning (PEFT) to specialize a text-

to-music MusicGen model on chords and rhythm. They

finetune on a number of parameter that is 4% the amount

of parameters of the original network with only 300 songs.

Music ControlNet [30] is a finetuned text-to-music diffu-

sion model that operates in the spectral domain. The fine-

tuning strategy comes from the text-to-image method Con-

trolNet [31] and allows to handle melody, dynamics and

rhythm conditioning. The pixel-level control that allows

ControlNet on images gives a pixel-level control on the

mel-spectrogram.

Without finetuning: In [32], the authors use AudioLDM

[18] as a backbone to perform textual inversion [9]. For

each textual inversion they use a group of 5 excerpts of 10

seconds. They also try an experiment where they optimize

the pseudoword S∗ as well as the diffusion neural network

which gives them better results. In [33], the authors use

a diffusion model trained on musical data with no condi-

tioning and perform various interactive tasks at inference

which are infilling, continuation, transition (smooth a tran-

sition between two songs) and guidance. The one that is

the most similar to our audio conditioning is the guidance

where the diffusion model is guided by the PaSST clas-

sifier [34] embedding of an audio prompt. However the

model only generates 5 seconds excerpts of music. Some

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

147



Figure 1. An overview of the Texual Inversion method

based on the pretrained text-to-music MusicGen

other papers involve new control with no finetuning such as

in [35] or DITTO [36] where the authors use a pre-trained

text-to-music diffusion model and control its inference by

optimizing the initial noise latent. In SMITIN [37], the au-

thors control a pretrained MusicGen model by steering the

attention heads in the direction that maximizes the proba-

bility of some features.

3. TEXTUAL INVERSION METHOD

We first present our textual inversion method in the case of

autoregressive modeling (see Fig. 1). It is based on previ-

ous work in the image domain [9] with diffusion models.

Autoregressive modeling aims to estimate the condi-

tional distribution of the next token yt given the preceding

tokens y<t and a conditioning context c, such as a textual

embedding. In the framework of transformer decoder neu-

ral networks parameterized by θ, denoted as pθ, this con-

ditional distribution is typically modeled as a product of

individual probabilities:

pθ(y1:T |c) =

T
∏

t=1

pθ(yt|y<t, c) (1)

Here, y1:T represents the sequence of tokens, and

pθ(yt|y<t, c) denotes the probability of observing token yt
given the preceding tokens and the conditioning context.

During training, with a given sequence y1:T and its asso-

ciated textual description c, we compute the cross-entropy

loss:

LCE(θ, y1:T , c) = −
T
∑

t=1

log pθ(yt|y<t, c) (2)

It is minimized by taking a gradient descent step on

∇θLCE(θ, y1:T , c). This loss quantifies the dissimilarity

between the predicted conditional distribution and the true

distribution of the next token, serving as the optimization

objective for training autoregressive models.

For the textual inversion method, we take a pretrained

text-to-music MusicGen for the transformer decoder. We

initialize the textual embedding (for instance with the tex-

tual embedding of the word "music") c. Given a song Y ,

we cut it into random chunks {yi
1:T }i and optimize the

textual embedding c by taking successive gradient steps

on ∇cLCE(θ, y
i
1:T , c). After a few hundreds iterations the

learnt c is fed into the text-to-music MusicGen model to

generate a song in the style of Y .

4. STYLE CONDITIONING METHOD

4.1 General Architecture

The general architecture, depicted on the left of Fig. 2, is

based on the text-to-music model MusicGen [5] with the

addition of a style conditioner that is jointly trained with

the language model. At train time, a 30 seconds music ex-

cerpt paired with a textual description is input to the model.

The textual description is fed into a frozen T5 tokenizer

and transformer encoder [38]. The style encoder takes a

random subsample (between 1.5 and 4.5 seconds) of the

input audio and encodes it. The text and style latent repre-

sentations are both projected with linear layers to have the

same dimension as the transformer language model, and

provided as prefix to the sequence to model.

The input audio is encoded by a pretrained EnCodec

[10] model and the language model is trained in a autore-

gressive manner with a cross-entropy loss. In addition, the

tokens that correspond to the random subsample fed into

the style encoder are masked in the loss, as we noticed this

reduces the tendency of the model to just copy the style au-

dio input. At inference time, we can use text or/and a short

excerpt of music as a conditioning to generate music.

4.2 Architecture of the Style Conditioner

Our style conditioner is designed with bottlenecks (RVQ

[14] and downsampling) to prevent transmitting all the in-

formation of the conditioning audio excerpt to the model.

Without these bottlenecks, the generative models retrieves

easily the excerpt and copies it (see the ablation study in

Sec. 5.5). The style conditioner depicted on the right of

Fig. 2 takes an audio input of length 1.5 to 4.5 seconds,

passes it through a frozen feature extractor followed by a

trainable transformer encoder and a residual vector quan-

tization (RVQ) module with 6 codebooks. After quanti-

zation, we downsample on the temporal axis to obtain a

conditioning with a 5Hz frame rate which gives a similar

length as a text description (8 to 25 tokens). Finally a linear

layer outputs the same dimension as the language model.

The candidates for the audio encoder are a Encodec

followed by trainable embeddings for each codebook that

are summed, a transformer based music foundation model

from [12] (we now name it MusicFM for the rest of the

paper) where the authors claim state of the art on several

downstream tasks specific to music information retrieval

and a MERT model [11], a transformer based music model

trained in a self-supervised manner. The first one has a

frame rate of 50Hz and 60M parameters, the second one

has a frame rate of 25Hz and 620M parameters and the

third one has a frame rate of 75Hz and 95M parameters

At training time, we use dropout on the conditioning,

keeping both conditions 25% of time, one of the two con-

ditions 25% of time for each (no text or no style) or no con-

dition 25% of time. There is also a dropout on the number

of the codebooks used by the RVQ of the style conditioner:

at each step of the training, the number of used codebooks

is uniformly sampled between 1 and 6. Then, at inference

time, we can control the bottleneck of the style conditioner.
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Figure 2. An overview of the general architecture. Text conditioning and style conditioning are provided to the model as a

prefix. On the right we present the style conditioner.

Setting the number of codebooks to 1 gives more flexibility

to the generative model whereas using 6 levels of quantiza-

tion constraints it more. In practice, this means that music

generated with 6 streams of quantization will sound more

similar to the input condition compared to music generated

with 1 stream of quantization.

4.3 Double Classifier Free Guidance

When doing next token prediction, let’s denote lstyle, text the

logits of the model conditioned on style and textual de-

scription. Classifier free guidance [15] consists of pushing

the logits in the direction predicted with the conditioning,

to increase its importance:

lCFG = l∅ + α(lstyle, text − l∅),with α > 1, (3)

typically, α = 3 is used in previous work [5].

When generating music with a textual description that

contradicts the audio of the style conditioning, we observe

that the description is ignored by the model. This is ex-

plained by the fact that audio is more informative condi-

tioning compared with the text, so that the model weights

it more during training. To counteract this effect, we intro-

duce a double classifier free guidance in which we iterate

the CFG formula: we first push from style only to style and

text and we then push these logits a second time from no

conditioning.

ldouble CFG = l∅+α[lstyle+β(ltext,style− lstyle)− l∅] (4)

We retrieve the simple CFG with β = 1. For β > 1, we

boost the importance of the text conditioning (see Sec. 5.6).

4.4 Objective Metrics

The difficulty with generating samples in the same style of

a song is that we want to generate something that is similar

enough but not too close. This is something that can be

subjectively evaluated. For easing the comparison of vari-

ous approaches and hyper parameters, we also introduce a

novel set of objective metrics.

Nearest Neighbours in Common: Let’s note xC ∈ R
D×T

(D = 1 for mono music) the audio that we input in

the style conditioner and xG ∈ R
D×T ′

the generated se-

quence. We use an encoder E : R
D×T → R

N which

outputs a single vector whatever the input length T is. In

practice, this is done by taking a MusicFM model and av-

eraging on the time dimension. Then, for each song of our

valid and test sets, we cut it into chunks of 30 seconds and

store the embeddings {Ei,j}, i being the index of the song

and j the chunk number. For EC = E(xC), we compute

the cosine similarities cos(EC , Ei,j), ∀i, j and the set of

its K nearest neighbors: {iC1 , ...i
C
K}. We do the same for

EG = E(xG) and obtain a set of K values {iG1 , ...i
G
K}.

We then have found the nearest songs in the dataset. We

define our metric KNNcommon(xC , xG) for a song xG that

has been generated after being conditioned by xC :

KNNcommon(xC , xG) =
|{iC1 , ...i

C
K} ∩ {iG1 , ...i

G
K}|

K
∈ [0, 1].

(5)

The intuition behind this metric is that a model performs

well at recreating a song in the style of another if the gener-

ated song and its conditioning audio have embeddings that

are close enough to share neighbors in the dataset. How-

ever, if a model copies the conditioning (i.e. xG ≈ xC)

the metric will tend to 1, we thus need a second metric to

avoid xG and xC being too similar.

G is the Nearest Neighbor of C: We want EG and EC to

be close while being different. One way to be sure that the

corresponding audios are not too similar is to check that

if we add EG to the set of embeddings {Ei,j}, EG is not

the nearest neighbor of EC . Assuring that another song

from the dataset is closer to the conditioning means that

the model is creative enough and not just copying its input.

Formally, denoting {E∪} = {Ei,j} ∪ {EG}, we define

KNNoverfit(xC , xG) =







1 if argmax
E∈{E∪}

[cos(EC , E)] =EG

0 otherwise.

(6)
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Model FADvgg ↓ KL ↓ CLAP ↑ KNNcommon ↑ KNNoverfit ↓ OVL ↑ SIM ↑ VAR ↓

Textual Inversion 6.07 0.55 0.20 0.20 0.14 78.11 ± 0.93 61.78 ± 1.06 69.53 ± 1.44

MusicGen Continuation 1.22 0.51 0.30 0.26 0.17 83.95 ± 0.83 73.38 ± 0.97 77.24 ± 1.29

MusicGen w. audio CLAP 0.96 0.43 0.31 0.09 0.02 84.76 ± 0.93 62.37 ± 1.04 68.58 ± 1.42

Our Model w. EnCodec, 2 RVQ 0.85 0.49 0.29 0.23 0.12 83.41 ± 1.04 72.16 ± 0.93 72.39 ± 1.33

Table 1. Comparison with baselines. The KNN∗ metrics, introduced in Sec. 4.4, measure how close the generation is from

the style condition, yet different from the matching ground truth. Those are completed with the subjective evaluations from

Sec. 4.5. While using MusicGen for continuation matches well to the style audio, it has limited variation. Using a CLAP

audio encoder as conditioning does the opposite, while using our style encoder gets the right balance between the two.

For our evaluations, we take 1000 samples of 3 seconds xC

from our test set, generate the corresponding xG and aver-

age the two KNN metrics. Intuitively, the two metrics are

positively correlated, but for a similar value for KNNcommon

we will favor the model that minimizes KNNoverfit.

Other Objective Metrics To evaluate the quality of the

generated music, we also use the official implementation of

the Fréchet Audio Distance defined in [39] that uses a VG-

Gish model, the KL-divergence based metric introduced

in [5] that computes the KL-divergence on the probabili-

ties of the labels of a pretrained audio classifier between

the conditioning and the generated music. We noticed that

a high FAD (> 2) often indicates a poor quality of the gen-

erated samples. The CLAP score [5, 16] computes the co-

sine similarity between the description and the audio em-

beddings obtained with the CLAP model. A higher score

indicates that the generated audio aligns well with the tex-

tual description of the conditioning audio.

4.5 Human studies metrics

We follow a similar protocol as in [5] for the human stud-

ies. We ask human raters to evaluate three different aspects

of the generated audio: (1) How would you rate the over-

all quality of this excerpt [OVL]? (2) Without considering

audio quality, how similar are these two excerpts in terms

of style [SIM]? (3) Without considering audio quality, how

likely do you think these two excerpts are from the same

song [VAR]?

We believe that the SIM and VAR scores are the subjec-

tive versions of KNNcommon and KNNoverfit.

5. EXPERIMENTAL RESULTS

5.1 Hyperparameters for the textual inversion

For the textual inversion method we test different parame-

ters sets and retain these ones: we use a 12 tokens sentence

for initialization, a batch size of 8 with 5 seconds segments

randomly sampled from a 30 second excerpt with 200 opti-

mization steps, a learning rate of 0.025 with a vanilla Adam

optimizer. Finally the main issue that we encounter with

this method is its instability. It is hard to find a set of hy-

perparameters that works well for any song. Some songs

seem to be easier to invert for different sets of hyperparam-

eters. For some song, we never achieve to obtain hearable

music as the result suffers from glitches, and tempo insta-

bilities. Finally, it seems beneficial to augment the length

of the text embedding, as well as performing the inversion

over chunks taken from a 30 seconds excerpt rather than

the entire song. The results are shown in Tab. 1.

5.2 Hyperparameters for the style conditioner

All the models that we train are medium size (1.5B param-

eters) MusicGen models built on top of the 4 stream 32kHz

music version of EnCodec [10]. All models are trained for

400K steps on 64 V100 GPUs with the AdamW optimizer

using β1 = 0.9, β2 = 0.95, a batch size of 192, and music

sequences of 30 seconds. For the style conditioner, ex-

cerpts between 1.5 and 4.5 seconds are subsampled from

the original sequence, the transformer encoder has 8 lay-

ers, 8 heads, a dimension of 512 and is non-causal, the

residual vector quantizer has a codebook size of 1024, 6

streams and a variable number of streams is sampled at

each training step, hence allowing the language model to

train on all the levels of quantization. The style tokens are

downsampled to 5Hz. All our evaluations are done on 1000

samples of the test set. Similarly to the MusicGen Melody

model, both the textual description and the style condition

are provided as prefix to the language model.

5.3 Datasets

We use 20K hours of licensed music as in [5]. The train-

ing dataset is composed of 25K and 365K songs from the

ShutterStock and Pond5 music data collections, as well as

10k tracks of an internal dataset. Each song comes with

textual description, and is downsampled to 32kHz mono.

5.4 Comparison with baselines and model selection

Apart from the closed-source model udio [40], there is no

other audio conditioned music generative model. We use

as a baseline a MusicGen model in the continuation set-

ting: given 3 seconds of music, we ask MusicGen to con-

tinue the music with no textual prompt. For the second

one we train a MusicGen model with a pretrained CLAP

audio encoder [16] as conditioning, also taking 3 seconds

of audio as input. In Tab. 1, we compare these two base-

lines with our model with the EnCodec feature extractor

for the style conditioner, a quantization level of 2 and with

a textual inversion model. We notice that the FAD corre-

lates well with the quality metric (OVL) since the textual

inversion model has the worst OVL and FAD scores. Thus

excluding this approach, we observe that the KNNcommon

and the SIM metrics ranks the models in the same orders

as well as the KNNoverfit and VAR metrics.
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Feat. Ext. Quant. FADvgg ↓ KL ↓ CLAP ↑ KNNcommon ↑ KNNoverfit ↓ OVL ↑ SIM ↑ VAR ↓

MERT 1 0.78 0.50 0.29 0.19 0.06 84.07 ± 0.93 70.27 ± 1.22 69.69 ± 1.31

MERT 2 0.75 0.47 0.30 0.24 0.13 84.14 ± 0.96 72.53 ± 1.05 72.81 ± 1.21

MERT 4 0.75 0.45 0.31 0.29 0.18 84.32 ± 1.04 74.15 ± 0.96 75.12 ± 1.35

EnCodec 2 0.85 0.49 0.29 0.23 0.12 84.02 ± 0.89 72.69 ± 0.91 72.47 ± 1.28

MusicFM 2 0.70 0.45 0.31 0.28 0.16 84.45 ± 1.09 73.01 ± 0.95 74.01 ± 1.36

Table 2. Comparison between the 3 feature extractors. The human studies correlate well with the KNN metrics. As

expected, using coarser quantization of the style features leads to more variations in the generated audio. Self-supervised

encoder like MERT and MusicFM outperforms low level acoustic models like EnCodec.

Model FADvgg ↓ KL ↓ CLAP ↑ KNNcommon ↑ KNNoverfit ↓

Our Model 0.75 0.45 0.31 0.29 0.18

Smaller Transformer 0.98 0.48 0.29 0.24 0.13

No Transformer 2.92 0.96 0.13 0.01 0.0

No Masking of the loss 1.11 0.53 0.29 0.22 0.30

Table 3. Ablation Study on our model with a MERT fea-

ture extractor with 4 quantization streams.

Regarding the baselines, the textual inversion method

provides results of poor quality (FAD). The continuation

method provides music that has a high similarity to the

conditioning (high KNNcommon and SIM) but that is too

similar to it (high KNNoverfit and VAR). However, the

CLAP conditioning captures a more vague style of the con-

ditioning and generates music that is too far from it (low

KNNcommon, KNNoverfit, SIM and VAR). Our model with

the EnCodec feature extractor and 2 levels of quantization

strikes the right balance between these two baselines.

In order to strengthen our claim that our KNN met-

rics correlates well with human perception of closeness

between musical excerpts, we showcase a second study

in Tab. 2. In this study we compare the metrics of the

MERT feature extractor with 3 quantization levels 1, 2, 4

(we recall that the models can go up to 6) as well as the

EnCodec and MusicFM feature extractors with a quanti-

zation level of 2. All models generate music of similar

quality (FAD and OVL). We notice that when the bottle-

neck is larger (i.e. when the quantization level is higher),

the KNNcommon augments. This follows the intuition that if

the conditioner transmits more information to the language

model, the generated music will be closer to the input con-

dition. The models follows similar orders for KNNcommon

and SIM as well as for KNNoverfit and VAR.

5.5 Ablation Study

We perform an ablation study in Tab. 3 on the components

of the style conditioner with MERT as a feature extrac-

tor, and 4 RVQ streams. When reducing the size of the

transformer encoder from 8 layers and 512 dimensions to 4

layers and 256 dimensions, the quality of the generated au-

dio is worse. When removing the transformer encoder, the

model generates audio that is far from music (high FAD).

When we don’t mask the music that is input to the style

conditioner in the cross-entropy loss at training time, the

audio quality is slightly worse and the model generates mu-

sic that is too close to the conditioning and tends to loop.

The very high KNNoverfit indicates it since for a KNNcommon

lower than the best model the KNNoverfit is twice its value.

Type α β FADvgg ↓ CLAP ↑ KNNcommon ↑

No CFG ✗ ✗ 1.54 0.25 0.088

simple 3 ✗ 0.92 0.28 0.162

double 3 3 0.80 0.35 0.123

double 3 4 0.78 0.37 0.104

double 3 5 0.84 0.37 0.095

double 3 6 0.97 0.38 0.081

Table 4. Classifier Free Guidance parameters tuning.

Larger β from (4) leads to increasing the importance of the

text conditioning (given by the CLAP score), and decreas-

ing the similarity to the style audio, given by KNNcommon.

5.6 Tuning the Classifier Free Guidance

When style and text conditioning are both used and are not

consistent, it is necessary to use double CFG instead of

simple CFG so that the text is not ignored. To tune the pa-

rameters α, β of the double classifier free guidance given

by (4), we rely on the following protocol. For 1000 sam-

ples of our test set, we randomly shuffle text descriptions

and generate music while conditioning both on text and

music. We track the FAD [39], the KNNcommon and the

CLAP score. In Tab 4 we observe the intuitive fact that the

KNNcommon and CLAP score are negatively correlated: if

the balancing favors the text condition the CLAP score is

higher, if it favors the audio condition the KNNcommon is

higher. The double CFG thus works as expected.

6. CONCLUSION

In this paper we introduced style conditioning for language

model based music generative models: given a few sec-

onds of a musical excerpt, one can generate music in the

same style using our proposed audio encoder with an infor-

mation bottleneck. We introduced new metrics to assess

the equilibrium between generating music that maintains

a similar style to the condition while also being different.

We validated those with human studies. Finally, we can

also mix this style conditioning with inconsistent textual

description and balance them thanks to a new double clas-

sifier free guidance method. This method could be applied

in other generative models with multiple conditions.

Ethical statement: Improving music generation brings

ethical challenges. Through carefully chosen bottlenecks

in our style extractor (RVQ, downsampling) we aim for

the right balance between increasing the model controlla-

bility and possible creative use while ensuring the model

does not copy existing works, and provided new metrics to

measure this. Finally, we only used music we licensed.
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ABSTRACT

Variation in music is defined as repetition of a theme, but

with various modifications, playing an important role in

many musical genres in developing core music ideas into

longer passages. Existing research on variation in mu-

sic is mostly confined to datasets consisting of classical

theme-and-variation pieces, and generative models lim-

ited to melody-only representations. In this paper, to ad-

dress the problem of the lack of datasets, we propose an

algorithm to extract theme-and-variation pairs automati-

cally, and use it to annotate two datasets called POP909-

TVar (2,871 theme-and-variation pairs) and VGMIDI-

TVar (7,830 theme-and-variation pairs). We propose both

non-deep learning and deep learning based symbolic mu-

sic variation generation models, and report the results of a

listening study and feature-based evaluation for these mod-

els. One of our two newly proposed models, called Varia-

tion Transformer, outperforms all other models that listen-

ers evaluated for “variation success”, including non-deep

learning and deep learning based approaches. An impli-

cation of this work for the wider field of music making is

that we now have a model that can generate material with

stronger and perceivably more successful relationships to

some given prompt or theme. 1

1. INTRODUCTION

The term variation refers to “a form founded on repetition,

and as such an outgrowth of a fundamental musical and

rhetorical principle, in which a discrete theme is repeated

several or many times with various modifications” [1]. In

western music, variation is a technique in which the theme

is repeated but in an alternate form with various modifica-

tions in one or more aspects of melody, rhythm, harmony,

1 Demos: https://variation-transformer.glitch.me.
Code and datasets: https://github.com/ChenyuGAO-CS/

Variation-Transformer.

© C. Gao, F. Reuben, and T. Collins. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-

bution: C. Gao, F. Reuben, and T. Collins, “Variation Transformer: New

datasets, models, and comparative evaluation for symbolic music varia-

tion generation”, in Proc. of the 25th Int. Society for Music Information

Retrieval Conf., San Francisco, United States, 2024.

texture, instrumentation, etc. An example from game mu-

sic is provided in Figures 1(a) and (b), where the top and

bottom staves in (b) are embellished compared to (a), but

the melodic and harmonic structure is largely the same.

In recent years, a number of music generation algo-

rithms and commercialised artificial intelligence (AI) mu-

sic generation systems have emerged [2–9], but there are

only a few studies focusing on symbolic music varia-

tion generation [10–14]. Although some infilling sys-

tems claim that they have the potential to generate vari-

ations [7, 8, 15, 16], an infilling system may sometimes

work to continue writing [17] rather than always varying

the theme (i.e., generate content with a strong relationship

to the given prompt). Accepting a musical input prompt

but destroying the original music idea is a “lack of con-

trol” issue, and could frustrate composers [18, 19]. It also

leaves the presence and perception of rhetorical or narra-

tive content to serendipity (chance), which goes against the

rhetorical principle of the definition of musical variation.

Existing music variation research is mostly confined

to datasets consisting of classical theme-and-variation

pieces [20] or monophonic folk music [21], and most of

existing music variation generation models are also limited

to varying melody only [11, 12, 14].

To address the issues above, in this paper we develop

both new datasets and models for symbolic polyphonic

music variation generation. For data annotation, we de-

velop an algorithm for theme-and-variation extraction, and

apply it to annotate two datasets: POP909 [22], and VG-

MIDI [23]. For model design, we propose both deep and

non-deep learning-based models, as another shortcoming

of recent research is that evaluations ignore models pub-

lished prior to c. 2015 – assuming, rather than actually

testing whether, deep learning approaches are superior for

music generation [13,14,24]. Three research questions are

addressed: RQ1: To what extent can AI models gener-

ate successful music variations? RQ2: Can deep learning

approaches outperform non-deep learning approaches on

music variation generation? RQ3: Would variation gener-

ation tools be useful? We conduct a listening study and

feature-based evaluation to address these research ques-

tions, and finish by discussing the implications of the

study’s findings for music generation and the field of MIR.
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(a) Theme from “Loneliness” by Kenji Hiramatsu, Xenoblade Chronicles 2.

(b) A variation of (a) from “Loneliness ” by Kenji Hiramatsu, Xenoblade Chronicles 2. (c) Measure-level encodings.

Figure 1. (a) Theme from “Loneliness” by Kenji Hiramatsu, Xenoblade Chronicles 2; (b) Variation from the same piece;

(c) Measure-level encodings based on this theme-variation example, discussed in a subsequent section. Tm denotes the

encoding of the mth measure of the theme, while Vm denotes the encoding of the mth measure of the variation. The shaded

areas are filled with 1s, while the blank areas are filled with 0s, indicating how we condition the model to attend to specific

parts of the theme when generating a variation.

2. RELATED WORK

2.1 Symbolic music generation approaches

Before deep learning models became a popular approach

for music generation, many models were based on Markov

chains [25–28]. Markov models assume that the cur-

rent state prediction depends on one (first-order Markov

model) or more (second-, third-order models) previous

states. They have been used to generate music in many

styles, and recent work [29] finds evidence that ratings of

the stylistic success of their outputs are on a par with deep

learning models such as Music Transformer [30].

Among a large number of deep learning approaches

to symbolic music generation [30–40], the most popu-

lar architectures are the generative adversarial network

(GAN) [41], variational autoencoder (VAE) [31, 42, 43],

and transformer [44]. More recently, there are also some

attempts to adopt the diffusion model [45, 46] to generate

music [39, 40]. But to date, we observed these diffusion-

based algorithms suffer from the problem of a lack of struc-

ture in long-term music generation.

2.2 Symbolic music variation generation

As a sub-task of symbolic music generation, symbolic mu-

sic variation generation takes a prompt/theme as input, and

aims to generate variations where the new material is dif-

ferent to the theme but remains musically relatable. Some

variation generation approaches are based on genetic algo-

rithms [10,11], but drawbacks are that they have only been

applied to sequential representations of monophonic music

and are reliant on manually designed rules [47].

There are also variation generation methods based on

probabilistic methods. For example, an algorithm men-

tioned in [48] starts with the same first beat as the theme,

and subsequent beats are generated by a Markov model.

To ensure the generated variation begins and ends some-

where “sensible”, the Markov process can be run forwards

and backwards from such start and end points, with a join

in the middle of a generated phrase that may break the

Markov property [26, 48]. Compared to variation genera-

tion, these two methods are more like style-composing. In

contrast, an idea in [49] is to decide if each of the states in

an existing sequence (such as a theme) should be replaced

by another state according to a corresponding probability

distribution. However, this approach has only ever been

applied to monophonic variation generation.

Compared to non-deep learning approaches, an advan-

tage of deep learning for music generation is that it places

less emphasis on the domain knowledge/expertise of the

programmer – the trained network weights should take

on responsibility for generalizing the style/structure of the

training data.

There are only a few studies for music variation gen-

eration that have adopted deep learning methods. This is

because most deep learning approaches are data-driven,

and existing theme-and-variation datasets are either rela-

tively small classical music datasets (e.g., the TAVERN

dataset [20] with 17 works by Beethoven and 10 by Mozart

for a total of 281 variations) or monophonic folk mu-

sic datasets [21], which restricts the development of deep

methods for music variation generation. Although Music

Transformer is adopted in [13] for jazz variation gener-

ation, the JAZZVAR dataset (502 theme-variation pairs)

proposed in this study is still relatively small for deep

learning model training. Besides, the lack of listening stud-

ies and comparative evaluation makes it difficult to con-

clude to what extent these models are effective in generat-

ing musical variations [13, 14, 24].

3. DATASET

In this section, we introduce our algorithm for automatic

extraction of variations from a collection containing anno-

tated themes. We use it to extract theme-and-variations

(TVar) pairs from the POP909 [22] and VGMIDI [23]

datasets. As a result, two new datasets (POP909-TVar, and

VGMIDI-TVar) are constructed.

3.1 Construction of the POP909-TVar dataset

The POP909 dataset [22] contains piano arrangements of

909 Chinese popular songs in MIDI format. We use 809
pieces (∼90%) for training, and 100 (∼10%) for testing.
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As repetitive phrase annotations are provided in the

POP909 dataset [50], we use these to estimate the lower

and upper bounds of the similarity between human-

composed themes and variations by utilizing a symbolic

fingerprinting-based similarity calculation [51, 52]. The

first occurrence of each repetitive pattern is regarded as the

theme, and the following occurrences are regarded as vari-

ations. For each theme, we record the minimum and max-

imum similarity scores between it and its variations. The

similarity lower bound is the average of the per-theme min-

imum scores, and the upper bound is defined correspond-

ingly, with values of 53.03 and 70.95, respectively.

Algorithm 1 TVar extraction on the POP909 dataset

Input: Repetitive pattern labels (P) and MIDIs (M) of the

dataset, similarity upper bound u and lower bound l
Output: TVar pairs

1: for p ∈ P do

2: Separate the first occurrence of p as the theme t, and

the subsequent occurrences as an array VRep

3: VMatch ← match_occ(t,M, u, l)
4: Push VMatch into VRep

5: for v ∈ VRep do

6: if similarity(t, v) > u then

7: Filter out v
8: else

9: if Similarity score between v and the previous

occurrence > u then

10: Filter out v
11: else

12: Push v into VOut

13: if Occurrence count of VOut ≥ 1 then

14: return t,VOut

The pseudocode for TVar extraction is given in Algo-

rithm 1. We take the first occurrence of repetitive pat-

terns as themes when applying our algorithm to POP909

(line 2). 2 Variations are extracted from both human-

annotated patterns (line 2) and the whole dataset (line 3).

When extracting variations from human annotations, we

exclude variations whose similarity score is larger than

the similarity upper-bound (lines 6-7), since we aim to

train models to generate variations where there is new

but theme-relatable material. When extracting variations

of a theme on the whole dataset, we run a symbolic

fingerprinting-based pattern-matching approach [51–53]

using the same lower and upper bounds mentioned previ-

ously to retain variations (line 3). We also filter out varia-

tions that are too similar to existing variations (lines 9-12).

The POP909-TVar dataset is constructed by applying

our TVar extraction algorithm to POP909, giving 2,609

TVar pairs in the training set, and 262 TVar pairs in the

test set.

2 First occurrences are not always the archetypal occurrence, but it is
a reasonable assumption [17].

3.2 Construction of the VGMIDI-TVar dataset

The VGMIDI dataset [23] contains piano arrangements of

game music in MIDI format recorded by human perform-

ers. 3 There are three subsets in VGMIDI: the largest has

2,520 MIDI files for music generation model training, the

second one has 136 MIDI files with emotion labels, and the

third one (272 MIDI files) is for music discriminator train-

ing, which involves both human-composed music and fake

data. Here, we merged the largest subset and the subset

with emotional labels and adhered to the original train-test

split, obtaining 2,301 MIDI files for training and 355 for

testing.

Compared to popular music, we infer there could be

greater scope for new material in variations in game mu-

sic, so we reduce the similarity lower bound to 30 but keep

the similarity upper bound as 70.95. Also, we restrict the

extracted variation and the theme to come from the same

song. Then, we follow the steps as in Section 3.1 to ob-

tain variations. In contrast to the POP909 dataset, repet-

itive patterns are not annotated in the VGMIDI dataset,

so we run a slice window with size = 8 measures and

step = 4 measures from the beginning to the end of the

song to extract theme samples. The similarity between

each new theme and previous themes is calculated to filter

out theme samples that are too similar (similarity score >
upper-bound) to existing themes. The variation extraction

function match_occ() is applied to each of the theme

samples, and then the matched occurrences will be filtered

by the same processes as that in Algorithm 1 (lines 5-12).

Only theme samples with more than one variation will be

retained (lines 13-14 in Algorithm 1).

The VGMIDI-TVar dataset is constructed by applying

the above steps to VGMIDI, giving 6,790 TVar pairs in the

training set, and 1,040 in the test set.

4. MUSIC VARIATION GENERATION MODELS

In this section, we introduce two new music variation gen-

eration models: one is a deep-learning model called Varia-

tion Transformer, and the other acts as a non-deep learning

baseline called Variation Markov.

4.1 Variation Transformer

Variation Transformer builds on Music Transformer [30],

utilizing the REMI representation [54] to encode incom-

ing MIDI files. The design of the relative positional self-

attention [55] alleviates the problems of the regular self-

attention that attends only locally or at the beginning for

a sequence [56] – Music Transformer is used for jazz

variation generation in [13]. However, while developing

and testing these models, we observed that Music Trans-

former’s ability to understand the measure-wise relation-

ship between theme and variation was not strong enough.

For example, when generating a variation of an 8-measure

theme, Music Transformer might generate something new

in the first 2 measures, but copy large sections of the theme

3 Sources for this dataset are https://www.vgmusic.com and
https://www.ninsheetmusic.org.
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in the following measures [52, 57], showing the failure

of the Music Transformer model to learn the theme-and-

variation relationship. When a human composer creates

a variation, commonly each bar of the variation is relat-

able to the corresponding measure of the theme (recall

Figures 1(a) and (b)). Thus, in this study, we propose

the measure-level encodings (Figure 1 (c)) and theme-and-

variation Attention (tvAttn) to force the transformer ar-

chitecture to take into account more information about a

specific measure of an existing theme when generating the

corresponding measure of a new variation, calling our new

model the Variation Transformer.

Figure 1(c) shows the measure-level encoding (which

we will notate Ebar) to capture the relationship between

corresponding measures of theme and variation, with a size

of N ×N , where N is the length of the encoding of theme

concatenated with variation. The formula for tvAttn is then

tvAttn = Softmax

(

(1 +wEbar)
QK⊤ + Srel

√
Dh

)

V, (1)

where w is a learnable parameter, and Ebar is the measure-

level encodings. Q represents the queries, K is the set

of keys, V is the set of values, 1/
√
Dh is a scale factor,

and Srel is to encode the relative positional information be-

tween each pair of tokens in a sequence.

4.2 Variation Markov

Based on [26, 58] and inspired by [12, 48], we propose

a non-deep learning music variation generation strategy

based on Markov models. Polyphonic MIDI inputs are rep-

resented as states in a state space consisting of beat in the

measure and MIDI note numbers relative to estimated tonal

center. The transitions between states observed across our

training data are stored in a directed graph.

When generating variations, we extract the beginning

and end states of each measure of the theme, and run a

“scenic pathfinding algorithm” to find replacement states.

This algorithm is adapted from Dijkstra’s shortest path al-

gorithm [59]. When finding the shortest path between con-

nected vertices u and v in a graph G, Dijkstra’s method

always updates the distance from the starting vertex u to

other vertices with shorter distances. In our scenic version,

we insert an extra piece of logic to determine whether the

distance from the starting vertex u to another vertex will

be updated to a shorter distance with probability p = .5.

In this way, more varied musical content is generated, be-

cause the path connecting u to v that results on each occa-

sion is not necessarily the shortest. We replace each mea-

sure from the theme with the scenic path alternative with

probability q = .5, and if u and v are not connected (due

to not being observed in a training data sequence), then we

retain the original measure from the theme.

5. EVALUATION

5.1 Experimental design

We conduct a listening study and feature-based evaluation

on both POP909-TVar and VGMIDI-TVar datasets. The

variation generation ability of three transformer-type mod-

els (TTMs) – fast-Transformer (FaTr) [37, 60, 61], Music

Transformer (MuTr) [13, 30], and Variation Transformer

(VaTr) – and Variation Markov (VaMa) is compared.

For fair comparison, we use the REMI representa-

tion [54] to represent MIDI files for all three TTMs, which

were trained on A40 GPUs with a batch size of 16 for

10 epochs on each of the two training sets. The learn-

ing rate is set as 1 × 10−4 for the first 5 epochs, then de-

creased to 5× 10−5 for the last 5 epochs. For model train-

ing, we concatenate each theme-and-variation pair, with a

[Separate] token inserted between the theme and vari-

ation. Ten variations were generated by each algorithm

with using each theme in the test set as an initial prompt to

provide the pool of stimuli for evaluation.

For hypothesis testing, we utilize a Bayes factor analy-

sis (BFA, [62]), where the ratio of the marginal likelihoods

of the alternative hypothesis H1 to the null hypothesis H0

is calculated, and notated BF10. A large value of BF10

suggests there is strong evidence for H1. Conversely, a

small BF10 suggests strong evidence for H0. A table for

interpreting BF10 values is provided in [63]. BFA is supe-

rior to classical (frequentist) hypothesis testing, because of

this ability to find evidence in favor of the null, which in

(computational) systems testing corresponds to a meaning-

ful non-difference between systems.

5.2 Listening study

Our listening study is approved by the Ethics Committee of

the School of Arts and Creative Technologies at the Uni-

versity of York. Our overall design builds on previous lis-

tening studies in this domain (e.g., [49]), and our hypothe-

ses are as follows:

1. In terms of variation success, we predict the following

ordering of systems: VaTr > MuTr > FaTr > VaMa.

2. TTMs (VaTr, MuTr, and FaTr) achieve better music

quality than VaMa.

5.2.1 Participants

We aim to recruit participants with a relatively high level

of music knowledge, using student email lists at the Uni-

versity of York, and the C4DM group of the Queen Mary

University of London. 4 Participants are compensated £10

Amazon vouchers for the 30 mins it takes to complete the

study. After removing responses that were unfinished or

submitted too quickly to fully listen to the music, there are

25 responses under analysis.

Participants’ mean age is 25 years old, and their mean

years of formal musical training is 10 years. Over 90% of

participants listen to music daily, and 80% of participants

play music/sing at least weekly.

5.2.2 Stimuli

For the listening study, 15 groups of stimuli were picked

randomly from POP909-TVar generated outputs, and 15

4 We follow the consensual assessment technique [49,64] to design our
study, which requires participants be experienced in the relevant domain.
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from VGMIDI-TVar outputs. In each group, there are one

theme and five variations, in which one is composed by

a human, and the other four are generated by the mod-

els (VaTr, MuTr, FaTr, and VaMa). Each music excerpt

is about 30-sec rendered using a piano sound. Each partic-

ipant listens to 3 groups of music.

5.2.3 Procedure

After informed consent, instructions, and TVar examples,

participants listen to a theme and then each variation, rat-

ing the musical dimensions of variation success, stylistic

consistency, similarity, creativity, and musical quality on

a 1–7 Likert scale, as well as two additional questions –

willingness to use a system that generates this variation

(willingness), and the extent to which this variation sounds

like it is composed by a human (is human). 5 An optional

free text box for any comments follows the rating scales.

After completing the evaluation of all 3 groups of materi-

als, the extent to which the participant finds an algorithmic

variation generation tool useful for their creative practice is

rated (same scale), and a final optional free text box for any

comments is provided. Given the participant and stimulus

numbers, each TVar stimulus group was heard by approxi-

mately 3 participants, and all presentation orders were ran-

domized to mitigate ordering and fatigue effects.

5.2.4 Results

Participants’ ratings for the features mentioned in Sec-

tion 5.2.2 are shown as violin plots in Figure 2. For the

BFA addressing our hypotheses at the top of Section 5.2,

results for Hyp. 1 demonstrate that VaTr outperforms all

three other algorithms (MuTr, FaTr, and VaMa) on vari-

ation success ratings, and MuTr outperforms FaTr and

VaMa. But there is no difference between FaTr and VaMa.

Results for Hyp. 2 indicate that TTMs (VaTr, MuTr, and

FaTr) perform better than VaMa on musical quality ratings.

In terms of observations of results not tied to par-

ticular hypotheses, human-composed variations (Hu) ap-

pear to outperform algorithms on all metrics. In addi-

tion to variation success mentioned above, VaTr achieves

higher ratings than other algorithms for willingness on both

POP909-TVar and VGMIDI-TVar. The TMMs have higher

ratings for stylistic consistency, musical quality, and is hu-

man than VaMa, but VaMa shows potential for generating

creative variations. For POP909-TVar, VaMa and VaTr re-

ceive similar creativity, which is higher than that of MuTr

and FaTr. For VGMIDI-TVar, although VaMa gets lower

creativity than VaTr, it is still on par with MuTr and FaTr.

Approximately 100 comments are provided explaining

the reasons for ratings, from which we find that partici-

pants usually consider the success of a variation according

to the musical dimensions of pitch, rhythm, structure, dy-

namics, key signature, and texture, as well as the four more

holistic dimensions mentioned in Section 5.2.2 (stylistic

consistency, similarity, musical quality, and is human). As

5 The variation success is mainly to address RQ1 and RQ2. Follow-
ing existing research [37, 40, 65], we also include other music dimension
metrics and is human. The willingness metric is to address RQ3.

such, deviations in these musical dimensions (e.g., disso-

nance, discordant dynamics, confusing structure) during

the generation process could lead to unsatisfactory results.

Usually, a lack of stylistic consistency or being too simi-

lar/different to the theme will also result in an unsuccessful

variation, but sometimes slight alterations (P11) or varying

a lot from the theme (P21) can still lead to high ratings.

When considering whether a variation is written by a

human composer or generated by AI, participants usually

evaluate it in terms of the musical dimensions of rhyth-

mic repetition, and appearance of dissonance, as well as

overall musical quality. Lower-quality music seems to be

associated with thoughts of being created by machines.

But sometimes, even if the variation is recognised as AI-

generated, participants are still receptive to it if the creativ-

ity and/or quality of the variation is good (P14 and P21).

The distribution of the extent to which participants find

an algorithmic variation generation tool useful for their

creative practice is: lower quartile = 3, median = 4, upper

quartile = 5 on a 1–7 Likert scale. Corresponding com-

ments comprise the following categories: i) benefit of mu-

sic variation generation AI (MVG-AI) [18, 19, 66], with 8

out of 25 participants mentioning MVG-AI could be ben-

eficial especially for inspiration; ii) concerns about MVG-

AI [18, 19, 66], such as the quality and consistency not be-

ing sufficient to replace human composers (P7); iii) the

clash between “creative ego” and MVG-AI [19], where

for example P1 considers composing as creating art that

is meaningful to the individual, which should not be done

by AI instead. Similarly, P9 and P15 demonstrate wari-

ness of the implications of AI and reluctance to use genera-

tive AI [18]; iv) further support/functionality required [18],

such as P14 expecting MVG-AI to be able to produce vari-

ations that reflect a composers’ own style, and P24 think-

ing composers may have extra requirements for the MVG-

AI in terms of emotional or style targets.

5.3 Feature-based evaluation

We use the whole pool of evaluation materials here, in

which ten variations were generated by each algorithm for

each theme drawn from the test sets. Three musical fea-

tures are extracted and evaluated at the measure level:

Similarity score (SS) [67] gives the similarity between

each measure of the generated variation and the corre-

sponding measure of the theme in terms of pitch and

rhythm.

Translational coefficient consistency(TC) [68] estimates

the complexity or music-repetitive structure of an excerpt.

A lower TC value means a music excerpt is highly repet-

itive, and vice versa. Here we calculate the absolute dif-

ference between the TC of each measure of the generated

variation and the theme.

Key signature consistency (KSC) [69] captures the per-

centage of measures of the generated variation that have

the same estimated key as the theme.

The evaluation results are shown in Table 1. We found

that VaMa has the highest SS and KSC for both datasets.

Among the TTMs, VaTr has higher values than MuTr and
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Figure 2. Violin plots for rating (1–7) distributions of seven dimensions on two datasets, where the envelope represents

the distribution of responses; the lines indicate rating scales; the horizontal line goes from the lower quartile through the

median (point) to the upper quartile.

POP909-TVar

Feat. Hu VaTr MuTr FaTr VaMa

SS 26.1 (20.6) 19.0 (18.0) 12.0 (15.2) 6.8 (6.6) 15.8 (9.5)
TC 0.10 (0.09) 0.11 (0.10) 0.12 (0.10) 0.12 (0.09) 0.15 (0.11)
KSC 51.7 41.0 29.0 22.4 52.6

VGMIDI-TVar

Feat. Hu VaTr MuTr FaTr VaMa

SS 25.2 (19.1) 9.7 (16.7) 7.2 (12.9) 4.2 (8.0) 17.4 (14.6)
TC 0.12 (0.13) 0.16 (0.15) 0.17 (0.15) 0.14 (0.13) 0.14 (0.13)
KSC 32.8 22.4 19.7 19.5 52.0

Table 1. The feature evaluation results, with mean and

standard deviation (in brackets) for each feature.

FaTr on all three metrics for POP909-TVar, and higher

than MuTr and FaTr on SS and KSC for VGMIDI-TVar.

But, VaMa is outperformed by TMMs in most of metrics in

the listening study (Section 5.2.4), reflecting that feature-

based metrics alone cannot evaluate the performance of

models from the human-aesthetic perception of music [70].

6. DISCUSSSION

In this paper, we propose datasets and models for sym-

bolic variation generation. To address our research ques-

tions, we run a listening study and feature-based evaluation

for both deep and non-deep learning models, as most re-

cent music generation research only compares deep learn-

ing approaches. According to our listening study results,

human-composed variations outperform algorithms on all

metrics, indicating that there is still a gap between human-

composed variations and those generated by our proposed

algorithms (RQ1). One of our proposed models (VaTr) is

the strongest for variation generation, which demonstrates

the superiority of a deep learning over a non-deep learn-

ing approach when the task is as specific as “generate a

successful variation of this theme". But our experiment re-

sults also show that not all deep learning approaches out-

perform the non-deep learning approach, especially in cre-

ativity (RQ2). And so for the less specific task of “gen-

erate music in a target style", more research and compar-

ative evaluation is required to establish the superiority of

deep learning over alternative music generation methods.

We hope that our study encourages researchers to revisit

non-deep learning approaches, as well as to test experi-

mentally whether deep learning methods are broadly su-

perior to non-deep learning methods for music-generative

tasks. To address RQ3, we further explore the extent to

which participants in our listening study find MVG-AI use-

ful for their creative practice, with an average rating of 4 on

a 1–7 Likert scale, and some of the comments suggest that

MVG-AI could lead to powerful tools for inspiration. One

of our proposed models VaTr achieves the higher ratings

for willingness than other models, and a comparable rating

for willingness as that for human-composed variations on

POP909-TVar (Figure 2).

Although the results are promising, there is still plenty

of work to do in order to bridge technology and musical

creativity. To increase the willingness of users to adopt

MVG-AI, it is necessary to improve the quality of music

generation and to consider the expectations of users. For

example, to mitigate deviations in musical dimensions like

dissonance, which lead to unsatisfactory results, adding a

post-processing stage could be useful. Some participants

mentioned their expectations about personalized AI in our

study as well, as in [18, 19]. Using low-rank adaptation

techniques [71, 72] to fine-tune a pre-trained model could

be a strategy to explore in future. Another topic for future

work entails further investigation of the quality of the pro-

vided datasets, to validate the reliability of the extracted

theme-variation pairs.

Future applications of this work include: being inte-

grated into AI music making systems to enable these sys-

tems to generate music with a stronger relationship to the

user’s music prompt; being used in video game music

domain, either as a tool to provide inspirations for com-

posers, or for in-game generation to reduce listener fa-

tigue [73,74]; and structured music generation [12,24,75].
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The listening study in this paper is approved by the Ethics

Committee of The School of Arts and Creative Technol-

ogy, University of York. A Participant Consent Form and

a Participant Project Information Sheet is included prior

to the start of the questionnaire to inform participants of

the project and obtain their consent. Participants have the

right to withdraw at any time. Each participant’s data is

protected by anonymization. The data collected involves

ratings and comments as described in Section 5.2.2. The

demographic information collected only involves partici-

pants’ age in years, years of formal music training, regu-

larity of playing music or signing, and regularity of listen-

ing to music, which are not sufficiently detailed for partic-

ipants to be identified. No other identifying data are col-

lected. Researchers shuffle the order of their responses,

and then record these responses and use anonymized new

IDs, which are person 1, person 2, etc. This way, even the

researchers will not be able to identify the person after the

survey.

Previous work demonstrates that some deep learning

approaches that generate music from scratch tend to copy

large sections from the training set with a high risk of copy-

right infringement [52]. In order to mitigate this issue, our

models vary the input prompt. Moreover, future work in-

cludes further experiments regarding originality of the gen-

eration results. Although the training materials come from

open-source datasets (POP909 [22], and VGMIDI [23]), it

does not mean all the contents are copyright free. There

is a possibility of our models to output copyrighted mu-

sic. Therefore, our models and data are used for academic

research only, not for commercially usages.
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ABSTRACT

Moral values play a fundamental role in how we evaluate

information, make decisions, and form judgements around

important social issues. The possibility to extract morality

rapidly from lyrics enables a deeper understanding of our

music-listening behaviours. Building on the Moral Foun-

dations Theory (MFT), we tasked a set of transformer-

based language models (BERT) fine-tuned on 2,721 syn-

thetic lyrics generated by a large language model (GPT-

4) to detect moral values in 200 real music lyrics anno-

tated by two experts. We evaluate their predictive capabil-

ities against a series of baselines including out-of-domain

(BERT fine-tuned on MFT-annotated social media texts)

and zero-shot (GPT-4) classification. The proposed mod-

els yielded the best accuracy across experiments, with an

average F1 weighted score of 0.8. This performance is, on

average, 5% higher than out-of-domain and zero-shot mod-

els. When examining precision in binary classification,

the proposed models perform on average 12% higher than

the baselines. Our approach contributes to annotation-free

and effective lyrics morality learning, and provides useful

insights into the knowledge distillation of LLMs regard-

ing moral expression in music, and the potential impact of

these technologies on the creative industries and musical

culture.

1. INTRODUCTION

Lyrics play a crucial role in how we experience music, af-

fecting our emotions and actions. Positive lyrics can mo-

tivate and elevate listeners, whereas negative or aggres-

sive content in songs may negatively impact mood and be-

haviour [1]. Social, political, and cultural issues, such as

racial inequality and gender discrimination, are often re-

flected in the music lyrics of their time [2, 3]. Songs that

feature in successful campaigns typically include uplifting

melodies and lyrics that reflect the ideals of a nation, rep-

resenting values of optimism and progress towards a bet-

ter future [4]. Moral rhetoric in lyrics has been used to

© V. Preniqi, I. Ghinassi, J. Ive, K. Kalimeri, and C. Saitis.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: V. Preniqi, I. Ghinassi, J. Ive, K.

Kalimeri, and C. Saitis, “Automatic Detection of Moral Values in Music

Lyrics”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

Figure 1. Model Structure for predicting Moral Founda-

tions (MFT) in Lyrics, fine-tuned on out-of-domain social

media data, and synthetically generated lyrics with GPT-4.

advocate for what is perceived to be a necessary societal

change [5], promote peace and unity [6], and raise aware-

ness for marginalised groups [7]. These narratives are

closely related to moral judgements and beliefs, yet their

relationship to music listening behaviors has received lim-

ited attention by music scientists.

In the field of Music Information Retrieval (MIR), lyri-

cal content analysis has focused primarily on genre classi-

fication [8], mood prediction [9], emotion dynamics [10],

and lyrics-to-audio alignment [11, 12]. Recent works have

elaborated on less attended psychological characteristics

of music lyrics, including moral valence. For example,

insights into personal values and personality traits de-

rived from lyrics can enhance various MIR tasks, includ-

ing genre classification, audio tagging, and music recom-

mendations [13]. Preniqi and colleagues [14] showed that

moral valence extracted from lyrics can to some extent pre-

dict listeners’ moral values, in some cases more accurately

than audio features. The possibility to extract morality

rapidly from lyrics can enable a deeper understanding of

our music listening behaviours.

Inferring moral values from song lyrics is a complex

natural language processing (NLP) task from the start

due to the subjectivity of our perceptions and interpreta-

tions. The progress is further hindered by the lack of an-
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notated lyrics for training new or fine-tuning pre-trained

models, and for benchmarking. Using models fine-tuned

with out-of-domain annotated texts (e.g., from social me-

dia [15, 16]) to predict moral values in music lyrics faces

significant challenges due to the unique structure of lyrics

compared to other textual forms (e.g., greater use of repe-

tition, metaphor, imagery, and other poetic devices).

In light of the above, we investigate the novel task of

automatic detection of moral values in music lyrics using

an integrated approach that leverages the strengths of two

distinct NLP technologies. Specifically, we leverage the

generative capabilities of GPT-4 (Generative Pre-trained

Transformer) to create morally nuanced synthetic lyrics—a

process required only once—and employ BERT (Bidirec-

tional Encoder Representations from Transformers), which

demands fewer computational resources, to learn from the

synthetic data structure.

Following recent related work [14, 15, 17], we opera-

tionalize morality drawing on Haidt and Graham’s Moral

Foundations Theory [18], which outlines five core moral

traits, or foundations, divided into “virtue” and “vice”

based on moral polarity: Care and Harm, Fairness and

Cheating, Loyalty and Betrayal, Authority and Subver-

sion, Purity and Degradation. We developed a correspond-

ing set of 10 single-label classification models, each cus-

tomized to predict the presence or absence of one moral

value in lyrical text. MFT is a straightforward yet compre-

hensive model for understanding moral values, uniquely

characterized by well-developed term dictionaries [19].

We present a dataset of 200 real song lyrics human-

annotated with MFT. To the best of our knowledge, this

is the first such dataset. It serves as the basis for evalu-

ating our proposed method. We make the real and syn-

thetic lyrics datasets, and the paper code fully available via

a GitHub repository. 1

We report a comprehensive comparison of the pro-

posed models against BERT fine-tuned with out-of-domain

human-annotated moral text data and zero-shot classifica-

tion with GPT-4. Figure 1 summaries the overall pipeline

of this work. The proposed models yielded the best ac-

curacy across experiments, with an average F1 weighted

score of 0.8. This performance is, on average, 5% higher

than out-of-domain and zero-shot models. When examin-

ing precision in binary classification, the proposed models

perform on average 12% higher than the baselines. Our ap-

proach contributes to annotation-free lyrics morality learn-

ing, and provides useful insights into the knowledge distil-

lation of large language models such as GPT-4 regarding

moral expression in music.

2. RELATED WORK

The field of music and moral expression has received lim-

ited attention. However, recent studies have shown a link

between an individual’s moral values and their prefer-

ences for lyrics and music, suggesting significant impli-

cations for tailoring personalisation in streaming services

1 https://github.com/vjosapreniqi/ismir-mft-values

[14, 17, 20]. Further research has delved into how moral

values and lyrical preferences manifest within specific mu-

sic communities. For example, Messick and Aranda [21]

demonstrated that moral values could explain a unique and

significant portion of the variance in lyrical preferences

among fans of different metal music sub-genres.

Given the understanding that verbal expressions more

effectively convey morality than non-verbal forms [17,22],

initial studies introduced lexicons [23, 24] as an extension

of Moral Foundations Dictionary (MFD) [25] for iden-

tifying words and lemmas that accurately depict moral

foundations. More recent studies focused on examining

moral values in texts using human-annotated social media

datasets [26–28], and introducing more advanced Natural

Language Processing (NLP) approaches to detect moral di-

mensions in textual content [15, 16]. Trager et al. [27] in-

troduced baseline models for predicting moral values, em-

ploying a pre-trained BERT model fine-tuned on the Moral

Foundation Reddit Corpus. Guo et al. [16] proposed a

multi-label model for predicting moral values with Twitter

and news data, incorporating the domain adversarial train-

ing framework suggested by Ganin et al. [29] to align mul-

tiple datasets and generalise for out-of-domain predictions.

A similar approach was taken by Preniqi et al. [15] in pre-

dicting moral values in different social media domains.

However, a main challenge that persists is the ability of

these models to generalise across various domains. Lisco

and colleagues [30] demonstrated that text classifiers per-

form better when domains are similar. This poses a major

obstacle when predicting morality in lyrics because there is

no prior study that has presented an annotated lyrics dataset

with moral values. Further, manually annotating extensive

text demands substantial time, resources, and deep under-

standing of Moral Foundations Theory (MFT).

To overcome these limitations, we employ GPT-4, an

advanced LLM, to generate lyrics infused with various

moral undertones, which helps in fine-tuning a moral clas-

sifier. This minimises the need for laborious manual anno-

tation of extensive lyric databases, enabling us to utilise a

smaller, human-annotated dataset to validate the effective-

ness of knowledge distilled from GPT-4. The capacities

of LLMs for music tasks are being actively explored for

the moment. Doh et al. [31] similarly employed a large

language model such as GPT-3 for generating pseudo cap-

tions from tags to mitigate the problem of data scarcity in

the field of automatic music captioning. While Zhang et

al [32] evaluated the quality and correctness of generated

music lyrics via GPT-3. Sawicki et al. [33] investigated

the possibility of using GPT-3 models to generate high-

quality poems in a specific author’s style while suggesting

that GPT-3 can be a useful tool in assisting authors.

3. METHOD

3.1 Human-Annotated Lyrics

For this work, we annotated 200 song lyrics, categorising

them into 10 different moral foundations. This annota-

tion process was conducted by two skilled annotators: the
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Figure 2. Distribution of Moral Foundations in 200 song

lyrics dataset annotated by human annotators with genre

proportions for each moral foundation.

lead author of this study and an external researcher with

a background in music and sound design, both of whom

agreed to contribute. Before starting, the annotators were

informed about their participation rights, including the op-

tion to discontinue their involvement at any point. Each

annotator was assigned with 125 songs for annotation. To

evaluate the agreement between annotators, 50 songs were

annotated by both annotators. The inner-annotator agree-

ment was assessed using Cohen’s kappa coefficient for

each moral label. This resulted in an almost perfect agree-

ment [34] with an average score of 0.86 across all moral

categories identified within the lyrics of the chosen songs.

We selected the songs for the moral values annotation from

the Wasabi Dataset [35], known for its extensive collection

of 2 million songs including lyrics, artist gender, and mu-

sical genre among other data. This dataset spans over five

decades, enabling the selection of songs from various eras.

The process of selecting the songs involved a semi-random

approach, with efforts made to retain the distribution of

genres, and the timeline of song releases as found in the

original dataset. Among the 200 songs annotated for moral

values, 18 were from the 60s and 70s, 78 from the 80s and

90s, and 116 from the post-2000 era. The chosen songs

represented a balanced mix of genres including Rock, Pop,

Hip-Hop, R&B, Soul, and Country. Figure 2 depict the

distribution of Moral values in the human-annotated song

lyrics with the proportion of genre for each MFT value.

3.2 Predicting Morality in Lyrics with Domain

Adaptation

Initially, we tried to predict moral values in lyrics by fine-

tuning a BERT model with out-of-domain social media

data, following the approach used by Preniqi et al. [15]. We

utilised 20,628 tweets from the Moral Foundation Twitter

Corpus (MFTC) [26]; 13,995 posts from the Moral Foun-

dations Reddit Corpus (MFRC) [27]; 1,510 posts from

Facebook vaccination dataset [28]. Preniqi’s and other

work have demonstrated that predicting moral values us-

ing a single-label approach—predicting one MFT value at

a time—results in higher accuracy [15, 27]. Informed by

these findings, we developed a set of single-label classifi-

cation models tailored to predict individual moral founda-

tions in lyrics.

As a baseline model, we apply a similar approach to the

MoralBERT [15]. We identify the polarities (virtues and

vices) of moral foundations, as opposed to just identifying

the mere presence or absence of moral values. We incor-

porate the domain adversarial method aiming to improve

the models’ ability to generalise effectively in predicting

moral values in lyrics [15, 16]. Adopting this model, we

start by deriving a domain invariant representation h from

the BERT CLS embedding e:

h = Winve

where Winv ∈ R768×768 is a learnable matrix. Next, we

calculate moral values predictions ŷm using:

ŷm = Softmax(W1(ReLU(W2h)))

with W1 ∈ R768×768, W2 ∈ R768×c representing 2 learn-

able matrices, c being the number of classes, ReLU is the

rectified linear unit activation function and Softmax is the

normalised exponential function. A domain classification

head is also included for obtaining domain predictions ŷd:

ŷd = Softmax(W3(ReLU(W4h)))

with W3 ∈ R768×768, and W4 ∈ R768×d learnable matri-

ces and with d being the number of domains in the train-

ing set. The main rationale of the adversarial network

is increasing the loss from the domain head while min-

imising the loss from the moral values prediction. Hence,

the model is “forced” to learn domain-invariant represen-

tations. This is achieved by integrating a gradient rever-

sal layer before the domain classification head, while us-

ing standard training for minimising moral prediction loss.

Cross-entropy (CE) loss is used for both the moral and

domain classification heads. The final loss is expressed as:

L = CE(ŷm, Ym)− CE(ŷd, Yd) + Lnorm + Lrec

with and Ym and Yd as the ground truth for moral values

and domain, respectively. Two regularisation terms from

[16] are added: L2 norm regularisation and reconstruction

loss:

Lnorm = ||Winvh− I||2, Lrec = ||Wrech− e||2

similar to Winv (defined above), Wrec ∈ R768×768 is also

a learnable matrix and I is the identity matrix. These regu-

larization losses are combined with moral and domain clas-

sification losses. The regularization terms are not applied

when training MoralBERT on a single domain (e.g., when

trained on just synthetic lyrics).

The binary setting we use implies the model should

learn from highly unbalanced datasets, where the neutral

label (negative class) is far more represented than the sin-

gle moral value to be predicted in each instance (positive
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class). To address the class imbalance, we employed two

methods. First, weights are assigned to classes [36]:

weightc =
N −Nc

N

where N is the total training samples and Nc is the count of

samples per class c. Second, similar to [37], we employed

a separate threshold θv for each moral value v, so that we

use ŷm to obtain the final prediction m̂:

m̂ =

{

1 if ŷm > θv

0 otherwise

with m̂ = 1 indicating the moral value is present in the

lyrics and m̂ = 0 indicating it is not. The optimal value θv
for each moral value v was found by optimizing for binary

F1 during training, searching in the search space 0.05 to

0.95 with a step of 0.05. The models were trained for 20

epochs using a single Nvidia T4 GPU, a learning rate of

5e-5, and the Adam optimiser for all MoralBERT experi-

ments.

3.3 Synthetic Lyrics Generation for Moral Assessment

There is a growing interest in knowledge distillation from

large pre-trained language models via synthetic text gener-

ation [38]. Here we apply a similar knowledge distillation

approach by utilising GPT-4 for synthetic lyrics genera-

tion. This method eliminates the need to collect real-life

data, which is often difficult to gather for a specific NLP

task and with a specific input distribution [39]. Initially,

we assessed GPT-4’s familiarity with Moral Foundation

Theory [25], confirming its fundamental understanding of

moral values. We tasked GPT-4 with generating lyrics by

formulating a prompt, as follows:

Prompt: You are an assistant to a songwriter, you need

to assist in writing lyrics related to the Moral founda-

tions described in the Moral Foundation Theory. Given

the {Moral Foundations Tags} , which represent

{Description Tags}, write original lyrics of a song

expressing these moral foundations. DO NOT directly

mention these moral foundations. DO NOT explicitly talk

about morality. Write it in the style of {Artist Tags}.

We assigned a “role” (songwriter assistant) for the

model and provided three types of “input tags”. The

{Moral Foundations Tags} comprise any of the 10

moral values. The resulting lyrics can represent 1, 2, or 3

moral values. We determined this based on the moral com-

binations observed in our human-annotated lyrics dataset.

The {Description Tags} represent fundamental con-

cepts of each moral value. The {Artist Tags} repre-

sent the names of artists whose styles we employ to di-

versify the lyrics. Initially, we intended to commence the

lyrics generation task solely using moral categories and

genres as tags. However, we observed that the lyrics were

more uniform and generic compared to when we incorpo-

rated the artist’s style. To tailor the lyrical style using var-

ious artists, we employed MusicOSet [40], a collection of

musical elements (e.g., music, albums, artists, genres and

popularity) suitable for music data mining. To capture the

nuances of different genres, we organized the artists ac-

cording to their popularity and grouped them into preva-

lent genres like Rock, Pop, Country, Hip Hop, R&B, Soul,

Folk, Blues, and Jazz. These genres align very closely

with those in the song lyrics we selected for human an-

notations. We chose to utilise this dataset because it offers

detailed data on artist genres and sub-genres, as well as

an artist popularity metric that we employ in developing

lyric styles. We acquired a dataset comprising 2,721 artifi-

cially generated lyrics, each aligned with moral categories

similar to our human-annotated lyrics dataset. On average,

the generated lyrics had 146 words, with a total of 10,305

unique words across the synthetic lyrics dataset.

3.4 GPT-4 in Moral Classification Task

In addition, we wanted to assess the capability of the 0-shot

GPT-4 model in classifying morality in actual song lyrics

while comparing it to our proposed model. To do so, we

prompted the task as follows:

Prompt: You will be provided with song lyrics. The

song lyrics will be delimited with #### characters. Clas-

sify each lyric into 10 Possible Moral Foundations as de-

fined in Moral Foundation Theory The available Moral

Foundations are: {Moral Foundations Tags}. The

explanation of the moral foundations is as follows:

{Description Tags}. This is a multi-label classifi-

cation problem: where it’s possible to assign one or multi-

ple categories simultaneously. Report the results in JSON

format such that the keys of the correct moral values are

reported in a list.

The song lyrics utilised for the GPT-4 model classifica-

tion are the same as the ones annotated by human annota-

tors. In this way, we can compare the human annotations

with those of the model while assessing the general perfor-

mance of GPT-4 for the classification task.

4. EXPERIMENTS

We started by analysing the MoralBERT technique [20]

and fine-tuned models using social media data from Twit-

ter, Reddit, and Facebook. The total number of text records

was 35,887. We found that 51% of the texts were neutral

and 49% of them were labeled with one or more moral

values. This indicated a significant skew towards neu-

tral texts, which we addressed by adding the class weight-

ing technique. After that, we evaluated the BERT mod-

els fine-tuned with only GPT-4 generated lyrics. We call

these models "BERT SL". We also fine-tuned the models

with a combination of out-of-domain social media data and

the generated lyrics data which we call "MoralBERT SL".

We used the Domain Adversarial module only when fine-

tuning BERT with multiple domain data, including syn-

thetic lyrics. When fine-tuning solely with synthetic lyrics,

this module was not utilized. Lastly, we evaluated GPT-4’s

zero-shot classification capabilities against our models on

the manually annotated song lyrics.

The results show that the models achieving the highest
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F1 Scores Weighted Average F1 Scores Binary

MoralBERT GPT-4 BERT SL MoralBERT SL MoralBERT GPT-4 BERT SL MoralBERT SL

Care .80 ± .03 .68 ± .03 .81 ± .03 .83 ± .03 .68 ± .05 .64 ± .04 .68 ± .05 .75 ± .04
Harm .68 ± .03 .75 ± .03 .71 ± .03 .70 ± .03 .62 ± .05 .71 ± .04 .63 ± .05 .69 ± .04
Fairness .55 ± .03 .73 ± .03 .73 ± .03 .74 ± .03 .30 ± .05 .39 ± .06 .41 ± .06 .38 ± .06
Cheating .84 ± .03 .80 ± .03 .86 ± .02 .69 ± .03 .27 ± .09 .16 ± .07 .52 ± .08 .32 ± .06
Loyalty .69 ± .03 .67 ± .03 .77 ± .04 .79 ± .04 .38 ± .06 .34 ± .06 .21 ± .08 .27 ± .09
Betrayal .81 ± .02 .72 ± .03 .89 ± .02 .84 ± .02 .34 ± .07 .31 ± .06 .40 ± .11 .37 ± .08
Authority .77 ± .03 .75 ± .03 .77 ± .03 .84 ± .03 .45 ± .06 .42 ± .06 .35 ± .07 .39 ± .09
Subversion .80 ± .03 .72 ± .03 .80 ± .03 .71 ± .03 .44 ± .07 .39 ± .06 .40 ± .07 .43 ± .06
Purity .77 ± .03 .86 ± .02 .89 ± .02 .90 ± .02 .41 ± .06 .56 ± .07 .55 ± .08 .63 ± .08
Degradation .74 ± .03 .81 ± .03 .81 ± .03 .86 ± .03 .34 ± .06 .40 ± .07 .30 ± .07 .32 ± .10

Average .75 ± .03 .75 ± .03 .80 ± .03 .80 ± .03 .42 ± .06 .43 ± .06 .45 ± .07 .46 ± .07

Table 1. F1 scores of prediction models with standard deviation estimated via 1,000 bootstraps. Weighted average scores

account for both moral and non-moral (neutral) classes, while binary scores only for moral classes. SL = Synthetic Lyrics.

Figure 3. Precision scores for binary classification with standard deviation estimated via 1,000 bootstraps.

performance were BERT SL and MoralBERT SL. These

models performed on average 5% better across all moral

values in terms of F1 weighted score which accounts for

both moral and non-moral prediction classes. While for

the binary F1, these models were marginally better than

GPT-4. For harm foundation, GPT-4 performed slightly

better, possibly due to the synthetic lyrics’ lack of natu-

ral variability when expressing this foundation. The fact

that MoralBERT SL and BERT SL performances are sim-

ilar to the one from GPT-4 for binary F1 is expected as

the same latent knowledge of GPT-4 has been distilled

into BERT by using the generated lyrics. The improve-

ments from MoralBERT SL and BERT SL are significant

for what concerns weighted F1, suggesting that given the

supervised setting of these models, they were also able to

learn the higher prior probability of non-moral (e.g., neu-

tral) instances, which generally outweigh moral instances.

The same is evident if we look at Figure 3, which compares

the binary Precision scores of the various models. From the

figure, it is evident that MoralBERT SL and BERT SL ex-

hibit significantly higher Precision surpassing GPT-4 and

MoralBERT by 12% on average. These models, then, are

often correct when labelling lyrics with moral values (even

though results vary according to which moral value), while

being more cautious in assigning a moral value, given the

preponderance of neutral cases. For the evaluation metrics,

we report the standard deviation estimated via Bootstrap-

ping which is a statistical resampling technique used to es-

timate the variability of the metrics. We used 1,000 boot-

straps which is typically sufficient to achieve a reasonable

approximation of the standard deviation.

Our findings show that BERT-based models are still

comprehensible with larger models such as GPT-4, when

fine-tuned properly they can excel in specified tasks. GPT-

4 demonstrated a very good performance even without

any fine-tuning (zero-shot approach) which was antici-

pated given its state-of-art performance in multiple tasks

and its training on an extensive amount of data. These

models have been trained on diverse text sources such as

Wikipedia, GitHub, chat logs, books, and articles [41], en-

abling them to comprehend language across various do-

mains [31]. The earlier model, GPT-3, contains 175 bil-
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Song Name Artist
Human

Annotations
MoralBERT GPT-4

BERT SL
MoralBERT SL

“Take This Heart
of Mine”

Foghat Care, Purity Care, Purity Care, Loyalty
Care, Fairness,

Purity

“Who’s Cheatin’
Who”

Charly McClain
Cheating,
Betrayal

Cheating,
Betrayal, Loyalty,

Purity

Cheating,
Betrayal

Cheating,
Betrayal

“Samurai
Showdown”

RZA Harm, Authority
Harm, Betrayal,
Authority, Purity

Harm, Loyalty,
Authority

Harm, Authority

“Man In The
Mirror”

Mark Chesnutt Care, Fairness
Fairness, Loyalty,

Authority

Care, Fairness,
Loyalty,

Authority
Care, Fairness

Table 2. Examples of moral values detected in song lyrics by human annotators and model predictions.

lion parameters, far exceeding BERT base model with 110

million parameters [42]. Such models demand signifi-

cantly more computational resources than BERT models.

In contrast, the BERT model is cost-free, easier to mod-

ify, and offers greater control over the models due to its

open-source nature. On the other hand, BERT models need

fine-tuning, which presents its own challenges due to the

necessity for manual labelling and data annotation. There-

fore, a hybrid approach like the one we suggest offers an

optimised solution that combines the best of both worlds.

Table 2 presents four song examples annotated for

moral values by both human annotators and prediction

models. These examples show that MoralBERT SL and

BERT SL (not shown in the table as it shares the same out-

comes as MoralBERT SL for these instances) aligned most

closely with human moral assessments. From a general ob-

servation of the song lyrics that were annotated by humans

and tested with these models, it was noted that MoralBERT

and GPT-4 tend to assign more moral attributes per song

while increasing their chances of correctly guessing moral

labels but also misclassifying neutral ones. In contrast,

models trained with synthetic lyrics more accurately iden-

tified neutral (non-moral) lyrics, aligning with the quan-

titative observations of the F1 weighted score. Typically,

human annotators did not assign more than three moral val-

ues per song. To control the number of assigned moral val-

ues per song, we adjusted the thresholds [37] for our pre-

diction models, ensuring optimal accuracy. When lacking

ground truth data, a post-processing can be applied for cut-

ting moral labels with lower probabilities. Here we present

only F1 and Precision scores. For further details, refer to

the project’s results page on GitHub. 2

5. CONCLUSION

In this paper, we presented an integrated approach for the

automatic detection of moral values in lyrics. We created a

synthetic lyrics dataset using GPT-4 which we used to fine-

tune the BERT-base model alone (BERT SL) and in com-

bination with out-of-domain social media corpora (Moral-

BERT SL). We introduced a dataset of 200 song lyrics

2 https://github.com/vjosapreniqi/ismir-mft-values/tree/main/Results

sourced from the WASABI dataset annotated for moral

values by two experts, serving as the basis for evaluating

our moral prediction models. We also assessed the perfor-

mance of models trained with synthetic lyrics in compar-

ison to those trained solely on social media data (Moral-

BERT) and a zero-shot GPT-4 classifier. We found that

models trained with synthetic lyrics generally achieved

significantly better binary Precision and higher weighted

F1 scores compared to the GPT-4 classifier and Moral-

BERT, along with marginally better binary F1.

Our research has some limitations. To begin with, the

synthetic lyrics is created via GPT-4, a powerful model but

not an open-source, which limits our control of the model.

We prompted GPT-4 to create unique lyrics in the style of

various artists across different genres. Yet, adding musical

composition details, lyrical themes [43], or visual images

as descriptors [44], could enhance both the quality and di-

versity of the generated lyrics. However, we only employ

this method for fine-tuning to make BERT models learn

the structure and moral expressions in lyrics. The creation

of truly creative lyrics for artistic purposes requires greater

sophistication and rigorous human review [44]. Further,

we analysed the overall moral expressions in the song

lyrics without differentiating between structural elements

such as verses, bridges, and choruses. Lastly, we focus

on inferring moral values in English lyrics, which limits

our ability to understand moral expressions in music lyrics

from non-Western cultures.

Understanding how lyrics can convey moral values is

important for the MIR field, as it can enhance how we ex-

perience and interact with music, including improving mu-

sic tagging and recommendation systems [45]. Addressing

challenges in automatic detection of moral values in lyrics

can further push the boundaries of current technologies in

natural language processing and machine learning applied

to music and other creative tasks. Further, as lyrics often

reflect societal values and cultural norms, tools for extract-

ing morality rapidly from lyrical text enable researchers to

gain insights into the prevailing moral attitudes of different

times or cultures. This can be useful in sociological stud-

ies, helping scholars understand how music influences and

is influenced by societal norms and changes.
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6. ETHICS STATEMENT

In this study, we employed large language models (LLMs)

to generate synthetic lyrics. Given the vast amount of data

on which these models are trained, there is a potential

for bias transfer from the training datasets. Additionally,

these models may inadvertently contain copyrighted liter-

ary works within their training data, necessitating meticu-

lous steps to prevent plagiarism, particularly if the gener-

ated lyrics are utilised beyond fine-tuning for artistic and

creative outputs [46, 47].

We engaged two human annotators to label 200 songs

with moral values based on the Moral Foundations Theory

(MFT). These annotators signed a consent document that

detailed the project’s objectives, their roles, and the nature

of their tasks. They were informed of their right to with-

draw from the study at any time without consequences.

To protect their privacy, all data from the annotators were

anonymised.

While powerfull language models like BERT and GPT-

4 offer significant potential to enhance communication and

support social campaigns, they also pose risks if used for

manipulative purposes. Our research is committed to ad-

vancing the understanding of moral expressions in music

and fostering the responsible development and use of AI in

creative contexts.
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ABSTRACT

Automatic piano transcription (APT) transforms piano

recordings into symbolic note events. In recent years,

APT has relied on supervised deep learning, which de-

mands a large amount of labeled data that is often lim-

ited. This paper introduces a semi-supervised approach to

APT, leveraging unlabeled data with techniques originally

introduced in computer vision (CV): pseudo-labeling, con-

sistency regularization, and distribution matching. The

idea of pseudo-labeling is to use the current model for

producing artificial labels for unlabeled data, and consis-

tency regularization makes the model’s predictions for un-

labeled data robust to augmentations. Finally, distribution

matching ensures that the pseudo-labels follow the same

marginal distribution as the reference labels, adding an

extra layer of robustness. Our method, tested on three

piano datasets, shows improvements over purely super-

vised methods and performs comparably to existing semi-

supervised approaches. Conceptually, this work illustrates

that semi-supervised learning techniques from CV can be

effectively transferred to the music domain, considerably

reducing the dependence on large annotated datasets.

1. INTRODUCTION

Automatic music transcription (AMT) converts poly-

phonic music recordings into symbolic representations that

encode which notes are played [1, 2]. The AMT out-

put may be a MIDI-like transcription, containing for ev-

ery note event information about the instrument, onset

time, duration, and velocity. AMT is considered as one

of the fundamental problems in music information re-

trieval (MIR) because its symbolic output can be used for

subsequent tasks such as music synchronization, structure

analysis, or cover song detection [3]. AMT is challenging

since multiple instruments may be active at the same time,

due to possible polyphonic activity per instrument, and be-

cause sound events may have overlapping harmonics [2].

Early approaches to AMT rely, e. g., on non-negative

matrix factorization [4, 5], while most recent approaches

© S. Strahl, M. Müller. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution: S.

Strahl, M. Müller, “Semi-Supervised Piano Transcription Using Pseudo-

Labeling Techniques”, in Proc. of the 25th Int. Society for Music Infor-

mation Retrieval Conf., San Francisco, United States, 2024.

use deep learning-based models [6–13]. The limiting fac-

tor in training neural networks for AMT, however, is the

scarcity of labeled data. Creating such datasets typically

requires manual labeling of each note present in a record-

ing, which can be time-consuming, or relies on music syn-

chronization techniques to align score information with

recordings [11, 14]. The latter approach, however, may re-

sult in inaccurate labels due to issues such as playing errors

or synchronization inaccuracies. Alternatively, one can

create datasets with highly precise labels by utilizing in-

struments that allow automated playback or recording note

activity. For instance, several piano datasets were auto-

matically created using a Disklavier, which can synthesize

MIDI files or log key activity during performance [15–17].

Since these piano datasets exist, many works [6–9, 12]

focus on the special case of automatic piano transcrip-

tion (APT). Still, it was observed that APT methods cannot

generalize well across datasets due to overfitting [18].

In this work, we aim to improve model generalization

of APT in scenarios with little labeled data by using semi-

supervised learning (SSL), where the idea is to leverage

unlabeled data during training. Unlabeled data can be ob-

tained in large amounts as it does not depend on a labeling

process. SSL has seen limited application in AMT, with

Cheuk et al. [19] among the few to investigate this path.

However, we argue that its full potential remains to be real-

ized, especially when considering the significant achieve-

ments of SSL in computer vision (CV) [20, 21]. As our

main contribution, we adapt techniques originally intro-

duced in CV [22,23] to APT. More specifically, our method

makes use of pseudo-labeling, consistency regularization,

and distribution matching as outlined in the following.

In our approach, we use the extended Onsets and

Frames model [7, 16], which jointly predicts onsets, off-

sets, frame activity, and velocities. The raw model outputs

for onsets, offsets, and frames are each a piano roll-like

representation that can be interpreted as probabilities per

time–pitch bin. Initially, we pre-train this model in a super-

vised fashion using the available labeled data. Thereafter,

the model is used to produce binary pseudo-labels for un-

labeled data. Only sufficiently confident predictions are

converted into pseudo-labels, i. e., those below the lower

threshold are set to zero and those above the upper thresh-

old are set to one, while the remaining predictions are con-

sidered as unreliable. Next, the model makes predictions

for an augmented version of the same recording, where

augmentation involves frequency masking [24] and addi-
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tion of noise to the data. The predictions made for the aug-

mented data are then used in combination with the pseudo-

labels derived from the clean data to compute an additional

unsupervised loss. Using an augmented version instead

of a clean one encourages the model to produce consis-

tent predictions under these kinds of augmentations and

is thus called consistency regularization. As a third tech-

nique, we apply distribution matching, which ensures that

the pseudo-labels follow the same marginal distribution as

the reference labels, preventing the model from collapsing.

To achieve this goal, we use an undersampling strategy.

For reproducibility, we will provide our code 1 .

The rest of this paper is structured as follows: In Sec-

tion 2, we give an overview of related work on AMT,

SSL, and distribution matching in the context of pseudo-

labeling. In Section 3, we describe all steps of the proposed

approach. Section 4 describes our experimental setup as

well as the experimental results. We conclude the paper in

Section 5 with possible future research directions.

2. BACKGROUND AND RELATED WORK

2.1 Automatic Music Transcription

Most research on AMT is based on supervised learning.

Sigtia et al. [6] proposed the the first end-to-end approach

to APT. Hawthorne et al. [7] emphasized the importance of

explicitly predicting onsets alongside frame activity, later

extending their model in [16] to include explicit prediction

of offsets. In [8], onset and offset estimation is formulated

as a regression problem, which yields note predictions with

improved temporal resolution. The attention-based Trans-

former architecture is used for APT [9, 12, 25] and multi-

instrument AMT [10]. In [13], the Perceiver architecture is

employed for multi-instrument AMT. Recently, AMT has

been formulated as a conditional generative task: In [26], a

diffusion model is trained to generate realistic piano rolls,

being conditioned on the corresponding spectrograms.

Weakly supervised methods are proposed in [11], where

unaligned pairs of scores and recordings are used for train-

ing, and in [27], where cross-version targets are used to

replace pitch labels. Cheuk et al. [19] propose a semi-

supervised approach to AMT, utilizing unlabeled data via

virtual adversarial training (VAT). VAT [28] perturbs input

data to induce substantial changes in the model’s predic-

tions and then encourages the model to produce consis-

tent predictions under these perturbations. In [29], a fully

self-supervised method is proposed for frame-level tran-

scription. Their method encourages the concentration of

energy around fundamental frequency candidates, invari-

ance to timbral transformations, and equivariance to input

translations in both time and frequency.

2.2 Semi-Supervised Learning

In SSL, the idea is to jointly learn from labeled and un-

labeled data, and SSL is thus located between supervised

and unsupervised learning [30,31]. The objective is to train

a model that performs better than a reference model only

1 https://github.com/groupmm/onsets_frames_semisup

trained on the labeled data using supervised learning. SSL

has been successfully used in combination with deep learn-

ing, e. g., in CV [20, 21], for text classification [32], and

also in MIR [33, 34]. For an overview of deep learning-

based SSL methods, we refer to [20, 35]. Two important

SSL paradigms relevant to this paper are pseudo-labeling

and consistency regularization.

Pseudo-labeling, introduced in [36], uses the current

classification model to produce artificial labels for unla-

beled data. Continuing training with pseudo-labeled data

encourages the model to make confident predictions for

that data, effectively pushing decision boundaries away

from the data points [35]. Maman and Bermano [11] al-

ready combined pseudo-labeling and weak supervision for

AMT, but the pseudo-labels were updated only at the be-

ginning of every expectation maximization iteration rather

than being calculated on-the-fly as in [36].

Consistency regularization methods [37, 38] encourage

that the model’s predictions do not change if augmenta-

tions (e. g., random translation and addition of noise in the

case of image classification [37, 38]) are applied to the un-

labeled input data. In [37], this is achieved by adding a

consistency loss term which penalizes disagreement in the

predictions made for two augmented versions of the data.

The image classification method FixMatch [22] com-

bines both pseudo-labeling and consistency regularization

by using the current model to produce artificial labels given

a weakly augmented input (e. g., horizontally flipped) to

supervise the predictions made for a strongly augmented

input (e. g., Cutout [39], where a randomly selected rect-

angular region is masked). In [40, 41], FixMatch proved

to be effective for audio classification as well, where

weak and strong augmentations were applied to spectro-

grams. FixMatch was also adapted to pixel-wise classifica-

tion problems such as semantic image segmentation [42],

which is similar to AMT from a technical point of view.

2.3 Distribution Matching

It is well-known that training classification models on

class-imbalanced data is challenging because the models

tend to be biased towards the majority classes [43]. Biased

model predictions which do not follow a similar distribu-

tion as the reference labels are problematic for pseudo-

labeling because the model may suffer from confirmation

bias [44], where wrong predictions are reinforced. To

avoid that problem, several approaches were proposed to

match the class distribution of pseudo-labels with that of

reference labels. Berthelot et al. [23] rescale the predicted

class probabilities for unlabeled data in such a way that

their marginal distribution is close to the marginal distri-

bution of reference labels. Kim et al. [45] refine pseudo-

labels by solving a convex optimization problem that aims

to minimize the distance between pseudo-label distribution

and reference label distribution while trying to preserve

most information in the pseudo-labels. While Maman and

Bermano [11] do not explicitly perform distribution match-

ing for AMT, they set asymmetric thresholds for selecting

pseudo-labels, increasing the impact of the minority class.
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Figure 1: Detailed overview of our semi-supervised approach. The Onsets and Frames transcription model (O&F) [7,16] is

trained using both a supervised (upper branch) and an unsupervised loss (lower branches). Our method uses a clean version

of unlabeled data to produce predictions, which, after thresholding (φ), are considered as pseudo-labels. Distribution

matching (∆) ensures that pseudo-labels and reference labels are similarly distributed. The pseudo-labels are used to

supervise predictions made for an augmented (A) version of the same data. The “interrupted” connection to the predictions

made for the clean unlabeled input indicates that gradients are not backpropagated in this branch. For a better overview, we

only show predictions, labels, and pseudo-labels for frame activity. Red color is used to represent NaN entries.

3. METHOD

In this section, we describe our proposed semi-supervised

approach for learning APT. We first describe in Section 3.1

how the transcription model is trained in a supervised fash-

ion. In Section 3.2, we explain how pseudo-labeling and

consistency regularization can be used for semi-supervised

training, and in Section 3.3, we explain the additional step

of matching the pseudo-label distribution with the refer-

ence label distribution.

3.1 Supervised APT Baseline

We use the modified Onsets and Frames model [7, 16] and

train our supervised APT baseline models similar to the

original methodology. This model takes as input a log mel-

scaled spectrogram with F frequency bins and T frames,

and outputs onset, offset, frame activity, and velocity es-

timates. In this work, we focus on the involved classi-

fication problems and ignore velocity estimation for sim-

plicity. Velocity estimation can be omitted without further

consequences, as it is performed by an independent part

of the model. We briefly explain how supervised learning

is done using labeled data. The model outputs matrices

P
L
on,P

L
off,P

L
fr ∈ [0, 1]P×T for onset, offset, and frame ac-

tivity, respectively. In this notation, P denotes the number

of MIDI pitches considered, and the entries of the matrices

represent probabilities of activities for all time–pitch bins.

For instance, PL
on(p, t) denotes the predicted probability of

an onset with pitch p in frame t. The reference MIDI an-

notations with continuous-time note events are temporally

quantized to match the input frame rate and converted into

binary labels IL
on, I

L
off, I

L
fr ∈ {0, 1}P×T , indicating bin-wise

activities as described in [7, 16]. The supervised loss com-

prises three terms,

Ls = λL
onL

L
on + λL

offL
L
off + λL

frL
L
fr, (1)

with the frame activity loss

LL
fr =

1

PT

P
∑

p=1

T
∑

t=1

ℓBCE(I
L
fr(p, t),P

L
fr(p, t)), (2)

where ℓBCE denotes the binary cross entropy function and

λL
on, λ

L
off, λ

L
fr ∈ [0, 1] are suitable loss weights. Onset and

offset loss terms are defined analogously. Note that, in con-

trast to [7], we leave out the weighting of individual frames

within the frame activity loss in Equation (2) for simplicity.

3.2 Pseudo-Labeling and Consistency Regularization

We now describe how our approach leverages unlabeled

data, which is illustrated in Figure 1. Our method is mainly

inspired by FixMatch [22], with the difference that we do

not apply weak augmentations to produce pseudo-labels.

Instead, we produce pseudo-labels using the unmodified,

clean data, which has been found to yield nearly the same

results in audio classification [40].

To obtain pseudo-labels for unlabeled data, we first

compute the current model’s predictions, PU
on,P

U
off,P

U
fr ∈

[0, 1]P×T , given the clean version of the log mel-scaled

spectrogram as input. For converting soft probabilities into

binary pseudo-labels, we define a thresholding function

φ(x, τlo, τup) =











1, if x ≥ τup,

NaN, if τlo < x < τup,

0, if x ≤ τlo,

(3)

where τlo and τup denote lower and upper threshold, re-

spectively. We obtain the pseudo-labels ĨU
on, Ĩ

U
off, and Ĩ

U
fr by

elementwise application of the thresholding function to the

model predictions, i. e.,

Ĩ
U
fr(p, t) = φ(PU

fr(p, t), τlo, τup) (4)
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(f) ∆(ĨU
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)

Figure 2: Examples of the representations involved in our

semi-supervised method. Red color is used to represent

NaN entries.

for p ∈ [1 : P ], t ∈ [1 : T ], and similarly for onsets and

offsets. We use thresholds τlo = 0.05 and τup = 0.95 based

on our observations in preliminary experiments, and we

perform an ablation of this choice in Section 4. For illus-

tration purposes, we refer to Figure 2, showing examples

of clean model input, corresponding predictions P
U
fr , and

pseudo-labels Ĩ
U
fr in Figures 2a, 2c, and 2e, respectively,

where NaN entries are represented by red color.

To perform consistency regularization, the pseudo-

labels are used to supervise predictions made for an aug-

mented version of the input. As in [40], we apply aug-

mentations to the spectrograms. We opt for a simple aug-

mentation pipeline which first applies frequency masking

as described in [24], setting a randomly selected contigu-

ous frequency band of up to 30 bins to the mean value

of the spectrogram, and afterwards adds Gaussian noise

with a standard deviation of 0.01 to the entire spectro-

gram. This choice of augmentation is inspired by the

use of Cutout [39] in FixMatch [22] and the proposal

of SpecAugment [24] as similar technique for spectro-

grams. We decided against temporal masking because

this may completely remove information from the spec-

trogram regarding short events such as onsets. An exam-

ple of such an augmented spectrogram is shown in Fig-

ure 2b. We denote the augmentation pipeline by A, and

the model’s predictions for the augmented input are de-

noted by P
A(U)
on ,P

A(U)
off ,P

A(U)
fr ∈ [0, 1]P×T , respectively.

An example of such predictions is shown in Figure 2d. Fi-

nally, the unsupervised loss is given by

Lu = λU
onL

U
on + λU

offL
U
off + λU

frL
U
fr , (5)

with the frame activity loss for unlabeled data,

LU
fr =

1

PT

∑

(p,t)∈[1:P ]×[1:T ] :

Ĩ
U
fr(p,t) ̸=NaN

ℓBCE(Ĩ
U
fr(p, t),P

A(U)
fr (p, t)).

(6)

Onset and offset loss for unlabeled data are defined analo-

gously. Only those time–pitch bins contribute to the loss,

where the pseudo-labels have a value different from NaN.

The loss is normalized by the total number of time–pitch

bins for reducing the impact of the unsupervised loss if

only a few predictions are confident. As for the supervised

loss, we use suitable loss weights λU
on, λ

U
off, λ

U
fr ∈ [0, 1].

Note that the gradient of Lu is not computed with respect to

the predictions made for the clean version of the unlabeled

input, which the “interrupted” connection in Figure 1 indi-

cates. The overall loss function is obtained as the weighted

sum of the supervised and the unsupervised loss,

L = (1− λu)Ls + λuLu, (7)

where λu ∈ [0, 1] controls the relative weighting of both

terms. Following [7], we weight the individual terms in

the supervised loss equally, i. e., λL
on = λL

off = λL
fr = 1.

However, preliminary experiments suggested that better

results may be achieved if the unsupervised offset loss is

not used. Hence, our default setting is λU
on = λU

fr = 1 and

λU
off = 0. The overall weight of the unsupervised loss is set

to λu = 0.05. We explore the impact of these hyperparam-

eter choices through ablation studies in Section 4.

3.3 Distribution Matching

The classification problems involved in training transcrip-

tion models are heavily imbalanced because the labels typ-

ically have only a few non-zero entries. For example, the

training set of the MAPS dataset [15] has labels, where

only about 0.3% of all entries are ones for both onsets and

offsets, and about 3.4% of all entries are ones for frame

activity. Hence, the transcription model may be biased to-

wards predicting zeros. To avoid model collapse, we apply

distribution matching to the pseudo-labels.

In this paper, we employ a simple method to match the

marginal pseudo-label distribution per mini-batch with that

of the reference labels. The marginal distribution of the

reference labels is estimated by counting zeros and ones

across all training examples. These counting operations are

denoted by Γ0 and Γ1. The following distribution match-

ing method, explained using frame activity as an example,

is similarly applied to onsets and offsets.

During training, we count the numbers of zeros and

ones for every mini-batch of pseudo-labels, and will likely

obtain a ratio Γ1(Ĩ
U
fr)/Γ0(Ĩ

U
fr) that differs from the desired

ratio Γ1(I
L
fr)/Γ0(I

L
fr). The objective of the distribution

matching operator, denoted by ∆, is to ensure that the ra-

tio of zeros and ones is identical for reference labels and

pseudo-labels, i. e.,

Γ1(I
L
fr)

Γ0(IL
fr)

=
Γ1(∆(ĨU

fr))

Γ0(∆(ĨU
fr))

. (8)
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MAPS MAESTRO SMD

Thresholds Note Frame Note Frame Note Frame

τon τfr P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Full

RV 0.50 0.50 80.9 70.6 75.1 85.9 72.0 77.9 - - - - - - - - - - - -
OF 0.44 0.57 84.4 77.8 80.8 81.5 61.3 69.4 88.5 80.9 84.2 85.4 43.5 55.8 92.7 82.9 87.3 66.0 61.7 63.1
OF-SS4 0.35 0.34 84.7 79.6 81.9 78.3 67.5 72.0 93.3 82.7 87.5 84.5 53.2 63.5 94.7 85.5 89.7 63.1 69.0 65.2

Small

RV 0.50 0.50 86.2 57.1 68.2 90.0 43.9 58.2 - - - - - - - - - - - -
OF 0.34 0.01 79.3 62.1 69.1 68.7 53.5 59.3 84.3 61.0 69.7 79.0 36.8 48.0 81.0 67.7 73.0 58.4 47.1 51.1
OF-SS4 0.05 0.01 78.2 75.9 76.7 62.3 69.9 65.0 93.8 78.4 85.0 73.6 56.3 61.8 93.6 80.2 85.9 52.3 68.1 58.2

One-Shot

RV 0.50 0.50 77.2 51.1 60.7 86.1 31.4 45.0 - - - - - - - - - - - -
OF 0.02 0.01 66.5 56.0 60.2 67.4 35.3 45.2 76.5 50.9 59.9 76.7 23.3 34.0 69.0 57.9 62.1 56.3 32.3 39.8
OF-SS4 0.03 0.01 66.2 68.0 66.6 49.8 35.0 40.0 73.6 70.2 71.3 57.4 26.1 33.8 72.6 71.5 71.4 40.3 32.4 34.9

MB 0.50 0.50 88.2 86.5 87.3 84.4 76.7 79.6 92.6 87.2 89.7 77.4 76.1 76.0 - - - - - -

Table 1: Performance metrics in percentages evaluated on the test sets of MAPS (ENSTDkAm and ENSTDkCl) and

MAESTRO, and on the entire SMD dataset. Performance metrics are calculated per piece and then averaged over all pieces

in the respective sets. As for the transcription models, RV is ReconVAT [19], OF is Onsets and Frames [16], OF-SS4 is our

proposed semi-supervised method, and MB stands for Maman and Bermano [11]. Decision thresholds of OF and OF-SS4

are tuned using the group SptkBGAm of the MAPS dataset. F1 scores are highlighted in red for better readability.

To define ∆, we use undersampling as it is frequently

used for class-imbalanced learning [46]. The distribution

matching works as follows:

1. Determine whether the ratio Γ1(Ĩ
U
fr)/Γ0(Ĩ

U
fr) is

smaller or larger than the ratio Γ1(I
L
on)/Γ0(I

L
on), i. e.,

whether there is an excess of zeros or ones, respec-

tively, among the pseudo-labels.

2. Randomly select the required number of excess ze-

ros or ones and convert them to NaN entries to ob-

tain the desired ratio.

Distribution matching reduces the number of available

pseudo-labels but ensures that the pseudo-labels within a

mini-batch follow the same marginal distribution as the

reference labels. An example of distribution-matched

pseudo-labels is shown in Figure 2f.

4. EXPERIMENTS

4.1 Implementation Details

For our experiments, we use an open-source Pytorch im-

plementation 2 of Onsets and Frames [7, 16]. Input repre-

sentation and model architecture are unchanged compared

to [7]. However, we do not ensure that input segments do

not start in the middle of a note as it is done in [7]. We use a

batch size of 8 each for labeled and unlabeled data and av-

erage losses across batches. We train our models using the

Adam optimizer [47] with an initial learning rate of 6e−5
and multiply the learning rate by a factor of 0.98 every 5k
iterations. Also, we apply gradient clipping with norm 3.

All audio recordings were downsampled to 16 kHz.

4.2 Datasets

We train and evaluate our models on three piano datasets:

MAPS [15], MAESTRO V3.0.0 [16], and SMD [17].

2 https://github.com/jongwook/onsets-and-frames

MAPS [15] contains isolated notes, chords, and com-

plete piano pieces, but we only make use of the complete

pieces. This dataset contains nine groups with 30 record-

ings each, where seven of the groups contain synthesized

recordings, and the remaining two groups (ENSTDkAm and

ENSTDkCl) contain real recordings which were automat-

ically generated from MIDI files using a Disklavier. Fol-

lowing previous work [6, 7, 19], we use the groups with

synthetic data as training data, and the real recordings as

test data, and we remove the pieces from the training data

which are also contained in the test data. This yields train-

ing and test sets of 139 and 60 recordings, respectively.

MAESTRO [16] and SMD [17] provide recordings to-

gether with the corresponding MIDI annotations automati-

cally captured by a Disklavier. Both MAESTRO and SMD

contain actual recordings of live performances, from the

International Piano-e-Competition and played by music

students, respectively. MAESTRO comprises 1276 perfor-

mances, with the official data split assigning 962, 137, and

177 performances to the training, validation, and test set,

respectively, and SMD comprises 50 performances.

4.3 Evaluation and Threshold Tuning

During inference, a decoding step is performed to obtain

estimated note events from the network outputs [7, 16].

Two thresholds, τon and τfr, are applied to binarize onset

and frame activity predictions. A note event is only recog-

nized if an onset was detected, and the length of the note

is determined based on the frame activity prediction. The

offset prediction is not explicitly used during decoding.

Following existing literature, we evaluate model perfor-

mance using note-based and frame-based metrics includ-

ing precision (P), recall (R), and F1 score. Note-based met-

rics are computed using the mir_eval library [48], where a

predicted note is considered as correct if its pitch matches

that of a reference note and the onset is within ±50ms of

that reference note’s onset.
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Instead of using fixed thresholds τon and τfr, we tune

these thresholds using a labeled validation set [27,49]. We

first determine an optimum τon via grid search so as to

maximize the note F1 score, which does not depend on τfr.

Since the frame-based metrics are computed based on the

decoded note events, the frame F1 score is affected by both

τon and τfr. We fix the previously found τon and determine

the τfr that maximizes the frame F1 score.

4.4 Experimental Scenarios

To compare with [19], we adopt their three experimen-

tal scenarios which differ in the choice of the labeled

data. The first scenario (Full) uses the full MAPS train-

ing set, the second scenario (Small) uses only the group

AkPnBcht of the MAPS training set, which contains

23 non-overlapping piano pieces, and the third scenario

(One-Shot) uses only a single recording (chp_op31 from

AkPnBcht) as labeled data. Note that for One-Shot, the

batch size for labeled data needs to be reduced to 1. In all

scenarios, the MAESTRO training set is used as unlabeled

data. We use the group SptkBGAm of the MAPS train-

ing set as validation data—which overlaps with the labeled

training data in the Full scenario.

In all scenarios, we start training the transcription model

from scratch following the training strategy described in

Section 3.1 for 50k iterations, using only the labeled data

and supervised learning. After that pre-training stage, we

train for another 50k iterations using our proposed semi-

supervised method as described in Section 3.2. We refer

to this model as OF-SS4. For a fair supervised baseline

in each scenario, we also continue training the pre-trained

model for another 50k iterations on only the labeled data,

which we will refer to as OF.

4.5 Main Results

The main results of our experiments are provided in Ta-

ble 1, where the models of all scenarios are evaluated

on the test sets of MAPS and MAESTRO, and also on

the independent SMD dataset. First, we can observe that

OF-SS4 achieves better F1 scores than OF almost in all

scenarios and across all datasets, with the frame F1 score

in the One-Shot scenario being the exception. Most no-

tably, OF-SS4 achieves a note F1 score of 85.0 on the

MAESTRO test set in the scenario Small, which slightly

exceeds the note F1 score 84.2 of OF in the scenario Full.

This shows that our semi-supervised approach is indeed

effective, reducing the number of labeled performances

by more than 80% for achieving comparable performance

in this case. We further note that the optimum decision

thresholds of OF and OF-SS4 are extremely low for the

scenarios Small and One-Shot, indicating that threshold

tuning is an important step if labeled training data is scarce.

For ReconVAT (RV) [19], we report for every sce-

nario the performance of their semi-supervised method that

achieved the highest note F1 score. Still, we observe that

OF-SS4 achieves higher note F1 scores than RV in all sce-

narios, e. g., 76.7 for OF-SS4 compared to 68.2 for RV in

the scenario Small. Regarding the frame F1 score, no clear

τlo τup A ∆ λU
off

λu N-F1 F-F1

OF - - - - - - 73.0 51.1
OF-SS1 0.05 0.95 - - 0.0 0.05 0.1 3.0
OF-SS2 0.05 0.95 - ✓ 0.0 0.05 82.4 9.4
OF-SS3 0.05 0.95 ✓ - 0.0 0.05 82.7 57.6
OF-SS4 0.05 0.95 ✓ ✓ 0.0 0.05 85.9 58.2

OF-SS5 0.25 0.75 ✓ ✓ 0.0 0.05 74.6 51.6
OF-SS6 0.05 0.95 ✓ ✓ 1.0 0.05 85.6 56.3
OF-SS7 0.05 0.95 ✓ ✓ 0.0 0.01 72.8 51.5

Table 2: Results of an ablation study performed in

the scenario Small, evaluated on the independent SMD

dataset [17]. N-F1 and F-F1 are note F1 score and frame

F1 score in percentage, respectively.

trend can be observed, with OF-SS4 achieving a higher

value for Small, but lower values for Full and One-Shot.

As another reference, we include the weakly-supervised

method by Maman and Bermano (MB) [11], which also re-

lies on the Onsets and Frames transcription model [7, 16]

but benefits from training on much more data and across

various instrumentations. Our method does not reach the

performance of MB in any scenario, but the performance

gap is reasonably small given the difference in amount of

training data, e. g., a note F1 score of 85.0 for OF-SS4 in

scenario Small compared to 89.7 for MB on MAESTRO.

4.6 Ablation Study

We perform an ablation study to evaluate the efficacy of

the individual components of our semi-supervised method.

The results of this study are shown in Table 2. The

method OF-SS1 performs pseudo-labeling without con-

sistency regularization and distribution matching, where

the performance metrics indicate potential model collapse.

Better results are achieved when additionally using either

distribution matching (OF-SS2) or consistency regulariza-

tion (OF-SS3), achieving already better note F1 scores

than the supervised baseline OF. The performance is fur-

ther improved by combining both techniques, which re-

sults in our proposed method OF-SS4. The remaining ab-

lations change the hyperparameter setting of our method,

where less restrictive thresholds for selecting pseudo-

labels (OF-SS5), calculating the unsupervised loss also

for offsets (OF-SS6), or a reduced overall weight of the

unsupervised loss (OF-SS7) yield worse results.

5. CONCLUSION

In this paper, we successfully transferred SSL techniques

from CV to the MIR domain. More specifically, we ap-

plied pseudo-labeling, consistency regularization, and dis-

tribution matching for the task of APT, enabling the option

to leverage unlabeled data during training. Thereby, the

dependence on large annotated datasets is considerably re-

duced. For instance, using our semi-supervised approach,

we observed reductions in the required amount of labeled

data by up to 80% for achieving similar performance as a

purely supervised baseline.

In future work, we plan to investigate other augmenta-

tion strategies, e. g., musically meaningful augmentations

as in [18], to perform consistency regularization, and the

extension of the method to the multi-instrument setting.
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ABSTRACT

Choral music is a musical activity with one of the largest

participant bases, yet it has drawn little attention from au-

tomatic music transcription research. The main reasons

we argue are due to the lack of data and technical diffi-

culties arise from diverse acoustic conditions and unique

properties of choral singing. To address these challenges,

in this paper we propose a Transformer-based framework

for note-level transcription of choral music. This frame-

work bypasses the frame-level processing and directly pro-

duces a sequence of notes with associated timestamps. We

also introduce YouChorale, a novel choral music dataset

in a cappella setting curated from the Internet. YouChorale

contains 452 real-world recordings in diverse acoustic con-

figurations of choral music from over 100 composers as

well as their MIDI scores. Trained on YouChorale, our

proposed model achieves state-of-the-art performance in

choral music transcription, marking a significant advance-

ment in the field.

1. INTRODUCTION

Choral singing stands as one of the most widely engaged

forms of musical expression, uniting voices in harmony

across cultures and communities. Despite its profound

presence in the musical landscape, choral singing has no-

tably been overlooked in the field of Automatic Music

Transcription (AMT), a domain predominantly oriented

towards instrumental music [1–3], leaving choral singing

with scant attention and few dedicated studies [4, 5]. This

oversight not only highlights a gap in AMT research but

also underscores the potential for significant advancements

in the transcription of choral music, an area waiting for ex-

ploration and innovation.

The transcription of choral music introduces unique

challenges compared with its instrumental counterparts.

One of the main characteristics of choral singing is the

soft onset of notes and smooth transitions between notes,

resulting in indistinct boundaries and complicating the

determination of note onsets. Additionally, the com-

plex acoustic environment enriches choral music perfor-

mances with reverberation, further complicates transcrip-

© H. Yu and Z. Duan. Licensed under a Creative Commons

Attribution 4.0 International License (CC BY 4.0). Attribution: H. Yu

and Z. Duan, “Note-Level Transcription of Choral Music”, in Proc. of the

25th Int. Society for Music Information Retrieval Conf., San Francisco,

United States, 2024.

tion efforts. These factors combined present a formidable

challenge in accurately capturing the note occurrences in

choral music recordings, necessitating novel approaches to

AMT that can handle these specific challenges.

Recent methodologies in AMT fall primarily into two

categories: Onsets and Frames [1], which estimates frame-

level pitch activation informed by note onset predictions,

and then combines such results to note estimates; and the

use of models like MT3 [2], which conceptualize transcrip-

tion as a token prediction task. However, both approaches

exhibit limitations in addressing the soft onset characteris-

tic of choral singing. Onset and frame detection methods

heavily rely on the successful identification of note onsets,

a task made difficult by the blurry beginning of vocal notes.

Conversely, models like MT3 predict notes as a series of

tokens, which can complicate the aggregation of informa-

tion pertaining to individual notes, thereby obscuring the

cohesive representation of choral music.

Another critical hurdle in advancing choral music tran-

scription is the availability of comprehensive and high-

quality datasets. Existing resources include the Dagstuhl

ChoirSet [6], which offers less than one hour of high-

quality recording of two pieces and a set of systematic

exercises. The Erkomaishvili Dataset [7] provides around

seven hours of recordings, but the sound quality is poor

for model training. The Bach Chorale 1 and Barbershop

Quartet 2 datasets provide tracked recordings, but the mu-

sic genre is limited in these datasets. Also, they only in-

volve a small group of singers and a fixed recording en-

vironment. This dearth of datasets impedes field progress

and highlights the need for more robust and accessible re-

sources for choral music transcription.

In response to these challenges, this paper proposes a

novel note-level transcription architecture inspired by ad-

vancements in object detection and sound event detection.

Instead of predicting the frame-level activation or sepa-

rated MIDI-like events, this model directly decodes the

pitch, onset, and duration from a hidden embedding of

each note. To take care of the sequential relationships be-

tween the notes, we integrate the Transformer model as

the backbone of our network, leveraging its proven effi-

cacy in capturing long-term dependencies. Experiment re-

sults show that this model has largely improved the frame-

level recall of the transcription output, indicating that the

proposed model makes better use of the entire process of

note articulation. The proposed model has also shown

1 https://www.pgmusic.com/bachchorales.htm
2 http://www.pgmusic.com/barbershopquartet.htm

182



robustness against the distortion caused by reverberation

in the recordings. To address the critical gap in avail-

able resources, we have curated a comprehensive dataset

for choral music transcription, comprising 496 real-world

recordings across a diverse array of acoustic environments

and featuring compositions from over 100 composers, ac-

companied by their corresponding MIDI scores. This

dataset not only facilitates the development of our pro-

posed model but also provides a valuable resource for fu-

ture research in choral music transcription. Through this

work, we aim to bridge the existing gap in AMT research,

offering novel insights and methodologies that enhance our

understanding and capabilities in transcribing choral mu-

sic.

The structure of this paper is as follows: Section 2 cov-

ers the related works of this study; Section 3 describes

the transcription architecture we proposed for the choral

singing task; Section 4 introduces the YouChorale dataset,

the experimental settings and the results; finally, Section 5

concludes the paper.

2. RELATED WORK

Automatic Music Transcription (AMT) has been a largely

investigated task in Music Information Retrieval (MIR),

and people have proposed various methods to address this

problem. Onsets and Frames [1] represents the start of

a group of methods that uses Convolutional Neural Net-

works (CNN) to extract the onset activation and frame ac-

tivation in the spectrogram based on which a final note

prediction output is aggregated through post-processing.

Many other methods have inherited this idea, and sev-

eral methods have been proposed for piano [8] and multi-

instrument transcription [3, 9]. To fully use the activation

detection and produce holistic transcription results, Yan et

al. [10] proposed a neural semi-CRF-based method that

predicts the best interval combinations of the frame-level

estimations.

Another choice is to use sequence-to-sequence mod-

els that transcribe tokens describing different aspects of

the notes, such as note-on and note-off events, velocity,

and time stamps [11]. MT3 [2] expanded this method to

multi-instrument transcription, and Simon et al. [12] fur-

ther augmented the training data of such model by mixing

monophonic recordings. There also exist methods that use

generative diffusion models [13] to perform transcription.

However, the performance of this method is still not com-

parable with other works.

For choral music transcription, Schramm et al. [4] pro-

posed a spectrogram factorization method to transcribe a

cappella performances. McLeod et al. [5] proposed us-

ing extended probabilistic latent component analysis and

music language model to improve the performance further.

There is also literature on score transcription of choral mu-

sic [14], but they focus on producing the music score in-

stead of the precise physical timing of each note in the

recordings.

We can view automatic music transcription as a special

form of sound event detection, which aims to identify the

note entities in the audio recordings. The strong timing

correlations between the notes drive us to detection meth-

ods with sequential modeling abilities. Carion et al. [15]

proposed an end-to-end object detection architecture with

Transformers, which uses the Transformer encoder and de-

coder to attend to the input image to detect sound events

and their corresponding bounding boxes. Such an idea

is also adapted in sound event detection, represented by

works from Kong et al. [16].

3. METHOD

We demonstrate the architecture of the model in Figure

1. The input mel-spectrogram first goes through a pre-

filtering CNN network. After adding the positional en-

coding, two multi-head attention and feed-forward encoder

layers further aggregate information in the spectrogram.

The processed spectrogram then goes into the transformer

decoder to auto-regressively generate an array of note em-

beddings. Finally, we employ three Multi-Layer Percep-

tron (MLP) modules as the feed-forward network to predict

the MIDI pitch, onset time, and duration from the embed-

ding of each note.

Inspired by the Transformer-based object detection

methods and sound event detection methods, we regard

the onset and offset as the “bounding box" of each note.

Like pitch, they are the note’s built-in attributes. Since

Transformer models are well-known for their capability of

learning long-term dependencies, we here let the encoder

and decoder layers fully take care of the aggregation of

information of each note to achieve end-to-end music tran-

scription.

The model’s input is a batch of segmented spectro-

grams with the shape of (B,L,M), where B is the batch

size, L is the length of the segment, and M is the num-

ber of frequency bins. The model’s output is three par-

allel arrays of pitch, onset time, and duration, with the

shapes of (B,N,K), (B,N, 1), (B,N, 1), respectively.

N is the length of the transcribed note sequence, and K
is the number of possible pitch entries. To ensure the

one-dimensional note sequence is unique for a polyphonic

score, we serialize the notes first in chronological order

from earliest to latest and second in pitch order from high-

est to lowest.

3.1 CNN Preprocessing

We use two layers of the 1D-Convolutional Neural Net-

work (CNN) to preprocess the input mel-spectrogram. The

network has a kernel size of 9 and is activated with the

ReLU function, creating a receptive field of around 300

ms at each output frame. After the CNN, the shape of the

output is (B,L,C), where C is the size of the hidden di-

mension. Then, we add the output with positional encod-

ing and feed it into the encoder layers.

3.2 Encoder and Decoder Layers

We inherit the encoder and decoder design in the origi-

nal Transformer [17], which includes multi-head attention
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Figure 1. The overall architecture of the transcription model.

blocks and feed-forward layers. The encoder is conduct-

ing self-attention with the CNN-processed spectrogram;

the decoder also attends to the output of the encoder af-

ter a self-attention layer. In our model, we use two layers

of encoder layers and decoder layers.

During inference, the decoder performs auto-regressive

decoding of the final note sequence. In model implemen-

tation, we normalize the time within one segment to [0, 1]
and calculate the onset time to and duration td accordingly

to reduce the difficulties in training.

3.3 Positional Encoding

After the mel-spectrogram goes through the CNN filter

banks, it will be added to a positional encoding to let the

encoder layers learn the sequential relationship between

the frames. For the positional encoding before the encoder

layers, we adopt the original design in Transformer [17].

Given the frame from the processed spectrogram at pos
out of the L possible positions and denote the dimension-

ality of the Transformer as dmodel, we define the positional

encoding PE at the 2i and 2i+ 1 dimension as

PE(pos,2i) = sin(pos/100002i/dmodel), (1)

PE(pos,2i+1) = cos(pos/100002i/dmodel). (2)

When we encode the continuous onset time and duration

as the input of the decoder layers, we would like to align

the decoder time encoding with the encoder’s positional

encoding. An onset time at to will have the time embed-

ding TE identical to the PE of the corresponding frame

position:

TE(to,i) = PE(to×L,i). (3)

Similarly, the duration of the note td is encoded with the

same equation, replacing to with td in Equation (3). In this

way, we can align the time in the spectrogram and the onset

prediction of the model, which will help the model better

find the relationship between the frames in the spectrogram

and the time in the final transcription result. After we get

the pitch embeddings and time encodings of the previously

generated notes, we concatenate them together and send

them into the decoder layers.

Predicted

Ground Truth

I

C

d

Figure 2. A demonstration of DIoU calculation.

3.4 Training Objectives

We optimize the loss of pitch estimation and timing esti-

mation. For pitch estimation, we use the cross entropy loss

Lp. For time estimation, we first apply the L1 loss:

Ltime =
N∑

i=1

||t̂(i)o − t(i)o ||1 +
N∑

i=1

||t̂
(i)
d − t

(i)
d ||1, (4)

where to is the ground-truth onset time, t̂o is the predicted

onset time; td is the ground-truth duration, t̂d is the pre-

dicted duration.

We also adapt the DIoU (Distance-IoU, Intersection

over Union) loss [18] from object detection to 1D scenario,

as in Figure 2:

LDIoU = 1− IoU +
d2

C2
. (5)

Here, IoU is the ratio between the intersection and the

union of the predicted time span and the ground-truth time

span; d is the distance between the center of the prediction

and the ground truth time span to add more penalties to

the far away predictions; C is the length of the minimum

bounding box that can cover both prediction and ground

truth. Note that when there is an overlap between predic-

tion and ground truth, union= C; when there is no over-

lapping between them, IoU = 0, we define union as the

summation of the length of the two segments.

In the experiments, we trained two models with Ltime

and LDIoU respectively and tested their performances.
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Singers in Each Part Reverberation Time Number of Parts

≤3 >3 long medium short 2∼3 4 5 6 7 8 ≥9

Train 89 303 57 283 52 17 218 54 46 5 39 13

Validation 9 21 3 25 2 0 11 6 1 1 9 1

Test 10 20 5 23 2 0 11 9 4 0 5 1

Total 108 344 65 331 56 17 240 69 51 6 53 15

Table 1. Statistics of the YouChorale dataset.

4. EXPERIMENT

In this section, we describe experiments that evaluate our

models against baselines.

4.1 YouChorale Dataset

In an effort to address the scarcity of resources for

choral music transcription, we curated a dataset, You-

Chorale, from YouTube and a variety of MIDI archive

sources 3 4 5 , focusing exclusively on a cappella choral

singing. With a total length of 22 hours 25 min-

utes, the YouChorale dataset contains 452 recordings

of 261 compositions from 118 composers, representing

a wide range of historical periods, styles, and com-

plexities inherent to choral music. We have made the

dataset publicly available at https://github.com/

ella-granger/YouChorale, enriching a compre-

hensive resource of choral music for further exploration

and development in the field of Automatic Music Tran-

scription (AMT).

We split the dataset into train, validation and test set

by the ratio of 392:30:30. To ensure the intonation of the

evaluation recordings, we only selected performances by

well-known choirs into the validation and the test sets. The

detailed statistics of the dataset are shown in Table 1. The

metric “singers in each part” indicates whether the perfor-

mance is from a small a cappella group (less than or equals

to three singers per part) or a larger ensemble (more than

three singers per part). “Reverberation time” is an indi-

cation of the acoustic environment and how the signal is

blurred or distorted. “Number of parts” indicates the com-

plexity of the piece. Most of the pieces contain four to six

parts, for example SATB or SSATTB, but there are also

extreme cases where over nine parts appear in one compo-

sition.

We are also providing an aligned version of MIDI file

along with the recordings. The alignment is achieved

through the following steps: First, we adjust the key sig-

nature of the MIDI files to match the recording. Next, we

render the waveform of the MIDI notation and align the

Constant-Q Transform [19] feature of the synthesized au-

dio and the performance recording by the soft-DTW al-

gorithm [20]. Finally, we smooth the alignment curve to

remove abrupt tempo changes in the aligned MIDI.

3 www.learnchoralmusic.co.uk
4 gasilvis.net
5 http://www.maennerchor-sg.ch/midi/

4.2 BachChorale Dataset

The accurately labeled BachChorale dataset also serves as

a benchmark for evaluating the transcription performance

of our model and the baselines. This two-volume dataset

contains 53 four-part choral compositions by J.S. Bach,

with a total length of two hours. Note that during the col-

lection of YouChorale, all the Bach pieces we found are

accompanied by organ or orchestra. Therefore, we ex-

cluded Bach pieces to keep the dataset in a cappella set-

tings, which also means that using BachChorale as a test

dataset does not introduce label leakage.

4.3 Training Settings

For the training data, we downsampled the audio to 16

kHz, and extracted the mel-spectrogram with NFFT =
2048, hop length = 256, and number of frequency bins

M = 256. The length of each segment L = 320, which

corresponds to 5.12 seconds of audio. The hidden di-

mension of the model C = 256. During training, we

set the batch size = 8, and use an Adam optimizer with

β1 = 0.9, β2 = 0.98 and ϵ = 10−9. The warmup

step is set to 12000. We use teacher forcing during the

training phase, which provides the ground truth notes as

the context and lets the model predict only the next note.

We have released our code at https://github.com/

ella-granger/NoteTranscription.

4.4 Results

We choose Schramm et al. [4], Onsets and Frames [1] and

MT3 [2] as our baselines. For Schramm et al. [4], we

list their reported frame-level multi-pitch estimation result

which was also evaluated on the BachChorale dataset. For

Onsets and Frames, we train a new model with the You-

Chorale training set from scratch; for MT3, we use the

provided multi-instrument checkpoint. For the Onsets and

Frames, MT3, and the proposed model, we evaluate the

transcription result after they produce the final MIDI notes

output.

We evaluated the frame-level activation detection and

the note onset detection with a tolerance of 50 ms and 100

ms, respectively. The results on the BachChorale dataset

are shown in Table 2, and the results on the YouChorale

test set are shown in Table 3. We can see that compared

with Onsets and Frames or MT3, our proposed model has

a more balanced performance on precision and recall at the

frame level, and produces the highest f1 score among the
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Model
Frame Onset (50ms) Onset (100ms)

Precision Recall F1 Precision Recall F1 Precision Recall F1

Schramm et al. [4] 0.713 0.709 0.710 - - - - - -

Onsets and Frames [1] 0.832 0.440 0.571 0.411 0.130 0.196 0.730 0.231 0.348

MT3 [2] 0.645 0.411 0.502 0.117 0.249 0.157 0.201 0.426 0.269

Proposed-Ltime 0.663 0.616 0.639 0.162 0.225 0.185 0.263 0.368 0.301

Proposed-LDIoU 0.611 0.639 0.624 0.189 0.182 0.183 0.284 0.274 0.275

Table 2. Model performances on BachChorale dataset.

Model
Frame Onset (50ms) Onset (100ms)

Precision Recall F1 Precision Recall F1 Precision Recall F1

Onsets and Frames [1] 0.806 0.326 0.428 0.450 0.178 0.242 0.688 0.248 0.344

MT3 [2] 0.590 0.243 0.344 0.117 0.148 0.127 0.200 0.255 0.217

Proposed-Ltime 0.670 0.596 0.631 0.181 0.221 0.192 0.284 0.339 0.299

Proposed-LDIoU 0.630 0.658 0.644 0.210 0.209 0.203 0.309 0.304 0.297

Table 3. Model performances on YouChorale test set.

Model
Frame Onset (50ms)

Precision Recall F1 ∆ F1 Precision Recall F1 ∆ F1

Onsets and Frames [1] 0.604 0.313 0.406 -0.165 (-28.9%) 0.126 0.094 0.107 -0.089 (-45.4%)

MT3 [2] 0.553 0.398 0.463 -0.039 (-7.8%) 0.022 0.040 0.028 -0.129 (-82.2%)

Proposed-Ltime 0.518 0.518 0.518 -0.121 (-18.9%) 0.089 0.180 0.114 -0.069 (-37.7%)

Table 4. Model performance under reverb distortion on BachChorale dataset.

deep learning methods. Although the Onsets and Frames

model still reaches a higher precision value on the onset

time of the note, the significantly higher recall of our model

at the frame level indicates that it places greater emphasis

on the entire process of note articulation, not just the onset

and offset of the notes, which achieves our goal with holis-

tic note transcription. The deep-learning methods still have

some room for improvement towards Schramm et al. [4] on

the BachChorale dataset, however, since the dataset only

have one singer for each part, Schramm et al. might have

some advantage as it was trained on solo singing.

We would also like to compare the performance of the

two loss function Ltime and LDIoU . From the results

we can see that the Ltime trained model tends to have

high precision and low recall at frame level and low pre-

cision and high recall on note onsets, while the LDIoU

trained model has the opposite behavior. It indicates that

the Ltime trained model usually extracts shorter fragments

of the notes and the LDIoU trained model longer full notes.

This is due to the property of the two loss functions: The

L1 based time loss function focuses more on the absolute

distance between the boundary of the predicted notes and

the ground-truth notes, while the LDIoU based loss func-

tion puts more emphasis on the overall intersection of the

prediction and ground truth, and will have the boundaries

not as precise as the L1 loss.

4.5 Performance Under Reverb Distortion

In real-world choral music performances, reverberation is

an unignorable part of acoustic effects. For example, con-

cert halls create reverb with a long reberveration time,

which introduces distortions into the spectrogram. To eval-

uate the resilience of our model against common distor-

tions encountered in live settings, we apply an artificial

reverb 6 to our test set to simulate the complex acoustic

environmental characteristic of real-world choral perfor-

mances. The performance of each model is shown in Table

4. The findings indicate that our proposed model still holds

a relatively high performance, and the proposed model to-

gether with Onset and Frames trained on the YouChorale

dataset, retains some ability to predict onset timing while

the MT3 model nearly failed to predict any reasonable on-

set of the notes. This resilience highlights the importance

of incorporating diverse, real-world data in training AMT

models, ensuring their applicability and effectiveness in

practical, everyday transcription scenarios.

Through cautious dataset curation and strategic model

design, the experiments have shown our proposed model’s

capabilities in the realm of choral music transcription. By

directly addressing the nuanced challenges of this genre,

6 https://ccrma.stanford.edu/ jos/pasp/Freeverb.html. The roomsize is
set to one.
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Figure 3. The precision/recall v.s. threshold curves of

frame-level and note-level (onset) transcription from On-

sets and Frames.

from soft note onsets to complex acoustic environments,

we not only advance the state of AMT but also pave the

way for future innovations in the transcription of poly-

phonic vocal music.

4.6 Limitations of Onsets and Frames Model

If we take a closer look at the result in Table 5, we may find

that for Onsets and Frames model, there is a big gap be-

tween the frame-level precision and recall. After extracting

the frame activation before post-processing and calculating

its objectives, we get the result in Table 5. We can see that

although post-processing improves prediction precision, it

discards a large amount of true-positive frame activations.

Since the Onsets and Frames model will not transcribe

any new note until it finds a new onset, the model’s capa-

bility of correctly predicting the onset significantly affects

the overall performance. Figure 3 shows the precision and

recall curve of frame and onset prediction with respect to

Model Precision Recall F1

Onsets and Frames [1] 0.851 0.267 0.400

O&F (frame activation) 0.801 0.632 0.704

Table 5. Comparison between the final transcription result

and frame-level activation of Onsets and Frames on Bach-

Chorale dataset.

the onset decision threshold. The curves are unbalanced,

and the reported result in Table 2 is at the threshold value of

0.05, which means we almost extract all the possible onsets

as long as there is a trace amount of activation. All the ev-

idence shows that the limitation of putting too much atten-

tion to onsets becomes especially pronounced in the con-

text of choral music, where soft onsets and smooth tran-

sitions are prevalent. Instead, we should leverage the in-

formation contained in the frame activation and view each

note as a whole, and let the model decide where to locate

the notes, which is the design principle of our proposed

method.

5. CONCLUSIONS

We proposed a novel transcription model architecture for

choral music, which conducts holistic note transcription,

addressing the soft onset and complex acoustic environ-

ment issues. We also introduced a newly curated a cappella

dataset for the development of automatic music transcrip-

tion. Tested on the BachChorale dataset, our model has

shown competent performance on the choral music tran-

scription task, particularly in its robustness against reverb.

By addressing the noted limitations of existing models and

contributing a valuable dataset to the research community,

our work paves the way for future innovations in AMT, en-

hancing the accessibility and understanding of choral mu-

sic through technology.

The next step of this work would be to distinguish and

stream different parts in choral singing, and explore the po-

tential of model architecture to general music transcription

tasks.
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ABSTRACT

This paper describes a deep learning method for music

structure analysis (MSA) that aims to split a music signal

into temporal segments and assign a function label (e.g.,

intro, verse, or chorus) to each segment. The computa-

tional base for MSA is a spectro-temporal representation

of input audio such as the spectrogram, where the com-

positional relationships of the spectral components pro-

vide valuable clues (e.g., chords) to the identification of

structural units. However, such implicit features might

be vulnerable to local operations such as convolution and

pooling operations. In this paper, we hypothesize that the

self-attention over the spectral domain as well as the tem-

poral domain plays a key role in tackling MSA. Based

on this hypothesis, we propose a novel MSA model built

on the Transformer-in-Transformer architecture that al-

ternately stacks spectral and temporal self-attention lay-

ers. Experiments with the Beatles, RWC, and SALAMI

datasets showed the superiority of the dual-aspect self-

attention. In particular, the differentiation between spectral

and temporal self-attentions can provide extra performance

gain. By analyzing the attention maps, we also demon-

strate that self-attention can unfold tonal relationships and

the internal structure of music.

1. INTRODUCTION

Music structure refers to the sequential arrangement of mu-

sically coherent units that form a musical work. Music

structure analysis (MSA) calls for a comprehensive un-

derstanding of various musical elements such as rhythm,

melody, and harmony, and has still been an open problem

in the field of music information retrieval (MIR), partly due

to its multifaceted and ill-defined nature [1].

There are two major ways of representing music struc-

ture. The semiotic representation [2] uses a set of arbitrary

symbols (e.g., A-B-C-B-C) for revealing the relationships

between segments within a musical piece. The functional

© T. Chen and K. Yoshii. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution:

T. Chen and K. Yoshii, “Learning Multifaceted Self-Similarity over Time

and Frequency for Music Structure Analysis”, in Proc. of the 25th Int. So-

ciety for Music Information Retrieval Conf., San Francisco, United States,

2024.

(a) Chromagram representing a chorus section

(b) Multifaceted spectral self-attention maps over time

(c) Multi-scale temporal self-attention maps

Figure 1: Non-local dependencies of music such as chord

tones and repeated patterns can be captured with spectral

and temporal self-attention mechanisms. (a) The chroma-

gram shows that this musical excerpt is dominated by the

C major chord. (b) The spectral attention maps show that

pitch classes C, E, and G persistently draw attention while

the chroma features vary over time. (c) The temporal atten-

tion maps delineate the internal structures of this excerpt.

representation uses a set of semantic labels (e.g., intro-

verse-chorus-verse-chorus) for indicating the roles of in-

dividual units. The functional representation can be con-

verted into the semiotic one, but not vice versa.

A common deep learning approach to MSA involves

using a convolutional neural network (CNN) to extract

latent features from a spectro-temporal representation of

input audio, such as a mel spectrogram or chromagram

[3–5]. The assumption underlying this approach is the

time-frequency locality of musical features, which should

be treated with caution when characterizing the global

structure of music. Actually, musical elements have non-

local dependencies. Chords consist of musical sounds that

are widely distributed over frequency. Musical patterns

such as chord progressions or musical phrases are com-

monly repeated over time. Such non-local time-frequency

dependencies can hardly be captured by a CNN that ag-
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gregates local features while reducing the time-frequency

dimensions with pooling operations [6, 7].

One promising architecture for learning non-local de-

pendencies in a music recording is the SpecTNT [8], a

variant of the Transformer-in-Transformer (TNT) [9] for

modeling spectrogram-like representations. The SpecTNT

iterates feature transforms of the multi-head self-attention

(MHSA) mechanism [10] alternately along the spectral and

temporal axes while keeping the time-frequency dimen-

sions of input features. This method, however, suffers from

a potential performance limitation because the individual

characteristics of spectral and temporal dimensions are in-

distinguishable to the MHSA.

To overcome this limitation, we propose to integrate

specialized MHSA mechanisms into the SpecTNT archi-

tecture for the MSA task regarding the functional represen-

tation. As outlined in Figure 1, our method involves gath-

ering spectral and temporal information alternately from

an input spectro-temporal representation with two types of

MHSA mechanisms. The spectral self-attention extracts

compositional relationships among two types of spectral

features at each time step. The temporal self-attention ag-

gregates spectral information at multiple time scales. The

proposed method is systematically evaluated with three

corpora consisting of popular music. In addition, the at-

tention maps are analyzed to advocate paying attention to

the non-locality of musical features.

The main contribution of this work is to emphasize the

non-local dependencies of music over frequency as well as

that over time. While non-local temporal correlations have

been extensively studied, spectral non-locality remains un-

derrepresented. In this concern, we adapt MHSA mecha-

nisms to both aspects and analyze the self-attention maps

to elaborate on the non-locality of musical features. This

work may draw attention to such delicate characteristics

that could be crucial for various tasks in MIR.

2. RELATED WORK

Segmentation and labeling are two subtasks of MSA [11].

The former detects the boundaries of structural units, and

the latter categorizes musical segments either by the rela-

tionships with the semiotic representation or by the struc-

tural roles with the functional representation.

For the segmentation task, a spectro-temporal represen-

tation or a sequence of higher-level features extracted by a

CNN is typically used to compute a novelty curve [12–16],

from which musical boundaries are retrieved with a peak-

picking algorithm [17, 18]. A key feature of our method

is that we employ CNNs without any pooling layers for

feature extraction. Since adjacent spectral beams are ir-

relevant in the sense of music, naive local pooling would

hinder the learning of spectral patterns.

For the labeling task, the similarity-based approach is

commonly taken in support of the semiotic representation

of music structure [19–24], yet deep learning classifica-

tion frameworks have recently been introduced for the es-

timation of structural functions [25, 26]. For both scenar-

ios, the segmentation of an input piece will be a byprod-

uct of the labeling task. However, a smoothing method

is typically required to refine the fragmented segmenta-

tion results caused by unusual label changes. Our method

performs joint estimation of functional labels and musical

boundaries to alleviate the fragmentation issue.

MHSA-based methods have recently been proposed

for MSA owing to the excellent representation capabil-

ity. The SpecTNT for MSA [27] uses Transformer en-

coders to capture the dependencies between the two axes

of an input spectro-temporal representation. For training

the SpecTNT with an increased amount of data, structure

annotations from multiple datasets are mapped to the same

semantic space with a 7-class taxonomy (‘intro’, ‘verse’,

‘chorus’, ‘bridge’, ‘inst’, ‘outro’, and ‘silence’). While the

spectral components are often used for temporal modeling

or collapsed before temporal modeling, this is the first at-

tempt in the MSA task to retain the spectral dimension. In

contrast, the convolution-augmented MHSA (CAMHSA)

mechanism [28] captures temporal self-similarities on the

self-attention maps derived from multiple types of acoustic

features for capturing the repetitive nature of music. These

network designs impose inductive biases that can enhance

the representation learning.

Given the complementary aspects of these techniques,

we integrate specialized MHSA mechanisms into the

SpecTNT architecture for better modeling non-local fea-

tures in spectral and temporal dimensions. Compared with

the original CAMHSA [28], we retain the spectral dimen-

sion of the input data and aim to estimate the functional

structure instead of the semiotic one, because the func-

tional description conveys generic attributes of structural

units that are comprehensible to the public. Compared with

the original SpecTNT [27], we deal with spectro-temporal

characteristics of music and processes input data at the

track level rather than at the chunk (or segment) level, be-

cause the functional role of a structural unit might depend

on the global organization of a musical piece.

3. PROPOSED METHOD

We tackle the functional MSA task with the 7-class taxon-

omy [27]. The estimation of the functional structure is for-

mulated as a sequence labeling problem. Given a spectro-

temporal representation, X ∈ R
T×S , with S spectral com-

ponents and T time steps, the goal of the estimation task

is to output a sequence of categorical labels, C ∈ R
T , in-

dicating the structural function of each time step t ∈ T .

In practice, an extra binary sequence, B ∈ {0, 1}T , which

specifies whether t is a boundary, is generated for smooth-

ing the estimated labels within a segment surrounded by

two boundaries. As depicted in Figure 2a, our model con-

sists of three parts: a CNN-based frontend, L stacks of

spectral and temporal encoders, and output layers in charge

of the predictions of B and C respectively (in this paper,

we use L=2 stacks for experiments). 1

1 The source code is available at https://github.com/

Tsung-Ping/music-structure-analysis.
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(a) (b)

Figure 2: (a) Model architecture. Extra spectral compo-

nents E
∗ are stacked on the frontend output E before the

encoder blocks. (b) Schematic diagram of the spectral and

temporal encodings, where the initial input H
(0) = E,

H
∗(0) = E

∗, and the final output H
∗(L) = H

∗. The

spectral encoder represents the time slices ([H∗

t ;Ht]) sep-

arately, and then the temporal encoder aggregates the extra

components (Z∗

t ) and outputs a representation.

3.1 CNN Frontend

The frontend is composed of an initial stem with two 2-D

convolutional layers followed by a residual block [29]. Let

fc denote a convolutional layer with d filters parameter-

ized by θ. The outputs of the stem and the residual block,

denoted by {X′,E} ∈ R
T×S×d, are computed as follows:

E = fc(fc(X
′, θ3), θ4) +X

′, (1)

X
′ = fc(fc(X, θ1), θ2). (2)

In effect, two frontends are employed to leverage different

types of acoustic features. The two networks take as input

the mel spectrogram (X1 ∈ R
T×S1 ) and the chromagram

(X2 ∈ R
T×S2 ) respectively, and output E1 ∈ R

T×S1×d

and E2 ∈ R
T×S2×d. A unified representation is then ob-

tained by concatenating the two outputs along the spectral

dimension, i.e., E ∈ R
T×(S1+S2)×d. We set S1 = 80,

S2 = 12, and d = 80 for this work.

Note that adjacent pitch classes are irrelevant in the tra-

ditional sense of musical harmony, and we thus design the

frontend for the chromagram carefully. Specifically, we

concatenate X2 and the first 11 columns of X2 along the

pitch-class axis, i.e., X̂2 = concat(X2,X2[:, 1 : 11]), and

use convolutional layers with kernels that enclose the 12

pitch classes at once. This manipulation enables the CNN

to capture key (or tonic)-independent patterns.

3.2 Spectral and Temporal Encoders

The spectral and temporal encoders are both built upon the

Transformer encoder [10] that comprises stacks of MHSA

(a) (b)

Figure 3: Attention masks for (a) the spectral MHSA and

(b) the temporal MHSA. The rows (resp. columns) indicate

queries (resp. keys) of the MHSA mechanism. Attention

scores outside the colored regions will be filtered out.

blocks and feed-forward networks. Motivated by [28], we

replace the standard MHSA of the temporal encoder with

the CAMHSA mechanism. Moreover, we leverage relative

position encodings [30] for enabling the model to process

audio tracks of variable length.

As illustrated in Figure 2b, the two encoders in a stack

are sequentially applied to the output of the previous stack.

Let Et ∈ R
S×d denote a time slice of E at t, and E

∗

t ∈
R

1×d a learnable vector that behaves as an extra spectral

component. The spectral encoder (SE) jointly extracts la-

tent features Z∗

t ∈ R
1×d and Ht ∈ R

S×d from E
∗

t and Et.

Then, the temporal encoder (TE) exchanges information of

Z
∗

t across time as follows:

H
∗ = [H

∗(L)
1 ; . . . ;H

∗(L)
T ], (3)

[H
∗(l)
1 ; . . . ;H

∗(l)
T ] = TE([Z

∗(l)
1 ; . . . ;Z

∗(l)
T ]), (4)

[Z
∗(l)
t ;H

(l)
t ] = SE([H

∗(l−1)
t ;H

(l−1)
t ]), (5)

where H
∗ ∈ R

T×d is the final output of the tempo-

ral encoder, [·; ·] denotes concatenation along the first di-

mension, l is the index of the stack, H
∗(0)
t = E

∗

t , and

H
(0)
t = Et. The extra spectral component H∗

t in each

stack mimics the initial CLS token introduced in the BERT

model [31] and is used to encapsulate spectral information

at each time step. For a detailed description of the inter-

twined architecture, we refer the readers to [8].

To use the SE and TE for modeling spectral and tempo-

ral dependencies, we impose constraints on the attention

maps of the MHSA block, as shown in Figure 3. For the

SE, the attention between the two types of spectra (i.e.,

mel spectrum and the chroma features) and the attention

on the extra component are masked out because such at-

tentions would likely result in diluted representations [32].

While the between-type attentions are prohibited, their re-

lations can be extracted via the extra component. For the

TE, contextual information is aggregated simultaneously at

four time scales (i.e., T , T/2, T/3, and T/4) in a structure-

aware manner. Take the scale T/2 as an example, a time

step t < T/2 can only attend the first half of the time axis.

Considering that binary and ternary forms are common

structures in Western music, such location-related informa-

tion is expected to enhance the learning of music structure.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

191



We leverage the multi-head nature of the MHSA block for

simultaneous multi-scale attention.

3.3 Output Layers and Inference

The output layers consist of a three-layer fully connected

neural network and take H∗ as input to estimate the bound-

ary likelihoods, PB ∈ [0, 1]T , and the probability distribu-

tions over the 7 classes, PC ∈ [0, 1]T×7, for all time steps:

P
B = sigmoid(((H∗

W
B
1 )W

B
2 )W

B
3 ), (6)

P
C = sigmoid(((H∗

W
C
1 )W

C
2 )W

C
3 ), (7)

where {WB
1 ,W

B
2 ,W

C
1 ,W

C
2 } ∈ R

d×d, WB
3 ∈ R

d×1, and

W
C
3 ∈ R

d×7 are learnable weight matrices. Note that we

use the sigmoid function instead of the softmax activation

in Eqn (7) for the function labeling is modeled as seven

individual binary sequences.

To detect the boundaries B from P
B, we use a com-

mon peak-picking method [17] implemented in the librosa

library [33]. To estimate the function labels C, we give

the segment between two adjacent boundaries (say t1 and

t2) a label taking the largest average probability, i.e., Ct =
argmax

∑
P

C
n ∀ t1 ≤ t, n < t2.

3.4 Loss Function

Given the ground-truth boundaries and labels (represented

by a sequence of one-hot vectors), Y
B ∈ {0, 1}T and

Y
C ∈ {0, 1}T×7 respectively, we compute the binary

cross-entropy (BCE) losses for the model output to com-

pute the overall loss (L) as follows:

L = LB + LC, (8)

LB = BCE(YB,PB), (9)

LC = BCE(YC,PC). (10)

4. EXPERIMENTS

We conducted comparative experiments using the Beat-

les [34], RWC [35], and SALAMI [36] datasets. For the

Beatles dataset, we used the refined Beatles-TUT annota-

tions for 174 Beatles songs. 2 For the RWC dataset, we

used the 100 songs from the Popular Music Database (de-

noted by RWC-POP). For the SALAMI dataset, we cre-

ated a subset consisting of only popular music (SALAMI-

POP), which amounted to 245 tracks. The maximum track

length for each corpus was around 468 sec, 368 sec, and

438 sec. Following [27], we carried out cross-dataset eval-

uations for all the experiments. Each of the three corpora

served as the test data in turn while the remainder was used

for training. We augmented the training set via pitch shift-

ing (within ±2 semitones) and pre-emphasis (with a coef-

ficient of {0.7, 0.97}).

4.1 Statistics of the Function Labels

Structural annotations of the three corpora were converted

to the 7-class label space with the mapping algorithm pro-

posed in [27]. As illustrated in Figure 4, all the corpora

2 https://pythonhosted.org/msaf/datasets.html.

Figure 4: Statistics of the 7 function labels in each of the

Beatles, RWC-POP, and SALAMI-POP corpora.

were with concentrated distribution, where Verse and

Chorus are the most common labels, since that verse-

chorus form is widely used in popular music. It is also

worth noting that Inst (i.e., ’instrumental’) is extremely

rare in the Beatles and RWC-POP datasets as a result of

their annotation criteria and the mapping algorithm.

4.2 Input Representation

For each audio track, we computed the mel spectrogram

with 80 mel bands and the chromagram with 12 chroma

bins. The initial time resolution for both representations

was 25 ms. We downsampled the two types of features by

a factor of 20 (hence 1 frame = 0.5 sec) with the median

filter so that the model could take as input a full-length

track under memory constraints.

4.3 Evaluation Metrics

The performance on the MSA task was evaluated with the

mir_eval library [37] in terms of segmentation and label-

ing. For segmentation, we computed the F1 score of the

Hit Rate [38] with a time tolerance of ±0.5 sec and ±3 sec

(denoted by HR.5F and HR3F respectively). For labeling,

we computed the F1 score of the pairwise agreement [39]

at the frame size of 0.1 sec (denoted by PWF).

In addition, the frame-wise labeling accuracy was mea-

sured in two ways. First, we converted the sequence of

probabilities (PC) into the labeling sequence (C) either by

taking the argmax function at each time step or by using the

proposed smoothing strategy (Section 3.3). The derived

labeling sequences were denoted by Ca and Cs, respec-

tively. Two types of labeling accuracy (ACCa and ACCs)

were then computed by comparing Ca and Cs with the
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Method ACCa/ ACCs HR.5F/ HR3F PWF

Beatles

Proposed 0.495/ 0.481 0.521/ 0.638 0.571

ST-MHSA 0.410/ 0.386 0.480/ 0.610 0.576

TE-Only 0.455/ 0.451 0.484/ 0.610 0.547

SE-Only 0.355/ 0.330 0.448/ 0.600 0.594

RWC-POP

Proposed 0.589/ 0.598 0.570/ 0.712 0.623

ST-MHSA 0.425/ 0.426 0.498/ 0.637 0.537

TE-Only 0.528/ 0.531 0.504/ 0.662 0.578

SE-Only 0.428/ 0.430 0.472/ 0.644 0.562

SALAMI-POP

Proposed 0.497/ 0.492 0.505/ 0.657 0.600

ST-MHSA 0.411/ 0.401 0.435/ 0.559 0.561

TE-Only 0.422/ 0.411 0.452/ 0.582 0.575

SE-Only 0.425/ 0.390 0.418/ 0.492 0.552

Table 1: The result of the ablation study.

ground-truth labeling sequence, C̄ ∈ {0, 1, . . . , 6}T :

ACCa =
1

T

T∑

t=1

δC̄t,Ca,t
, (11)

ACCs =
1

T

T∑

t=1

δC̄t,Cs,t
, (12)

where δa,b denotes the Kronecker delta function.

4.4 Baseline Methods

To validate the effectiveness of the spectral and temporal

self-attentions, we conducted an ablation study with the

following baseline models:

• ST-MHSA: Both the spectral and temporal encoders

used the standard MHSA as in the SpecTNT [27].

• TE-Only: The spectral encoder was removed in a

way similar to the CAMHSA work [28].

• SE-Only: The temporal encoder was removed from

the proposed model. This was a localized prediction

model taking only short-term context into account.

The ST-MHSA and TE-only are considered substitutes to

the two previous works [27, 28], and we did not make a

direct comparison to their results for a couple of reasons.

First, the data used are different due to the difficulty of

obtaining the exact audio signals: we used only the Beat-

les dataset while [27] used the Isophonics [34]; the subsets

created from the SALAMI dataset are also different (245

tracks in our experiments and 274 tracks in [27]). Sec-

ond, our model aims to predict semantic labels whereas

the model of [28] outputs semiotic representations, and ac-

cordingly the data used are different.

Figure 5: Structure analysis results of a song (“RM-

P045”) from the RWC-POP. The first row is the ground-

truth annotation, and the other rows are the estimations by

the proposed method and baseline models. The estimated

boundaries are denoted by dashed lines.

To scrutinize our model design in relation to the perfor-

mance, we also built variants of our model as follows:

• w/ Pool: The pooling operation was inserted

into the CNN frontend for the mel spectrogram

(Section 3.1). Precisely, we used a pooling layer

for X′

1 before the computation of Eqn (1). Follow-

ing [12], we reduced the spectral dimension of the

mel spectrogram using a max-pooling layer with a

kernel size of 6 (while the temporal dimension was

kept unchanged).

• w/o S-Mask: The spectral attention mask was not

used (Section 3.2 and Figure 3a). This is equivalent

to using a standard MHSA block for the SE.

• w/o T-Mask: The temporal attention mask was not

used (Section 3.2 and Figure 3b). This is equivalent

to using the CAMHSA mechanism for the TE.

5. RESULTS

We here report and discuss the results of the comparative

and ablation experiments.

5.1 Comparison with Baseline Models

The results of the cross-dataset evaluations are summarized

in Table 1. The proposed method outperformed the base-

line methods on the three corpora in most metrics (with a

comparable PWF score to the ST-MHSA and the TE-Only

on the Beatles). In comparison with the ST-MHSA, the

performance gain of the proposed method was mainly at-

tributed to the tailored MHSA blocks for spectral and tem-

poral modelings, validating the importance of the MHSA

adaptation to the task. Given that the TE-Only obtained

better ACC scores than the SE-Only, the temporal self-

attention was considered to have a greater impact on iden-

tifying structural functions than its spectral counterpart.
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Method ACCa/ ACCs HR.5F/ HR3F PWF

Beatles

Proposed 0.495/ 0.481 0.521/ 0.638 0.571

w/ Pool 0.387/ 0.370 0.446/ 0.566 0.536

w/o S-Mask 0.498/ 0.497 0.520/ 0.654 0.582

w/o T-Mask 0.538/ 0.531 0.528/ 0.643 0.614

RWC-POP

Proposed 0.589/ 0.598 0.570/ 0.712 0.623

w/ Pool 0.528/ 0.489 0.395/ 0.550 0.546

w/o S-Mask 0.571/ 0.577 0.571/ 0.715 0.621

w/o T-Mask 0.576/ 0.567 0.549/ 0.686 0.607

SALAMI-POP

Proposed 0.497/ 0.492 0.505/ 0.657 0.600

w/ Pool 0.495/ 0.454 0.418/ 0.522 0.552

w/o S-Mask 0.487/ 0.490 0.480/ 0.628 0.581

w/o T-Mask 0.471/ 0.480 0.485/ 0.635 0.586

Table 2: Evaluations of the model design choices.

Nonetheless, the differences between the SE-Only and TE-

Only were not clear in terms of the HR and the PWF

scores, implying that spectral and temporal self-attentions

both can contribute to the tasks. In addition, we found that

our inference strategy smoothed the structural labeling re-

sults while having a minor effect on the ACC score.

Figure 5 portrays the structural labeling results for one

song from the RWC-POP corpus. Regarding the segmen-

tation results, all the models were able to detect the tran-

sitions between different sections, but the finer structure

(i.e., repetitions or variants within a coarse section) was

sometimes overlooked. In particular, the SE-Only over-

segmented the musical track due to the limited contextual

information. Regarding the labeling results, the proposed

method and the TE-Only were capable of correctly esti-

mating the five function labels in the track, whereas the

ST-MHSA and SE-Only failed to identify all the chorus

and bridge sections, possibly owing to the insufficient ca-

pability of temporal modeling.

5.2 Evaluation of Design Choices

Experiments results regarding the model design are listed

in Table 2. As we expected, the severe performance degra-

dation was caused by the pooling operation (w/ Pool) on

the three corpora. Spectral components are not pixels that

are highly correlated in local regions, and therefore naive

local pooling could be detrimental to spectral features. As

for the attention masking (w/o {S, T}-MASK), the results

suggested that the imposed constraints can have a positive

impact on the performance. On the SALAMI-POP, which

is the most challenging one among the three corpora, the

MHSA mechanism without any constraints resulted in a

clear performance drop. In particular, we found that un-

constrained spectral components tended to give great atten-

tion to the extra component (H∗

t ) rather than themselves.

A similar effect was also reported by previous research in

the field of natural language processing [40,41]. This kind

of concentrated attention to a special (or artificial) compo-

nent that has distinct semantic meanings could downplay

the representation capability of the MHSA.

5.3 Evaluation of Spectro-Temporal Self-Attentions

The attention maps implicitly computed with the MHSA

mechanism often disclose illuminating relationships be-

tween input elements [42–45]. The spectral and tempo-

ral self-attentions of our model also exhibited such an

effect. As depicted in Figure 1c, the leftmost temporal

self-attention map highlighted a potential musical event at

around 66 sec, which could be associated with the variant

repeat of the first 10 sec of this chorus section (as can be

seen in Figure 1a, two triangular patterns span from 56 to

66 sec and from 66 to 76 sec, respectively). This result

echos the observation that self-attention maps can repre-

sent music structure [28]. In contrast, the spectral self-

attention, as illustrated in Figure 1b, uncovered the tonal

relationships between the 12 pitch classes with an empha-

sis on the notes comprising the tonic chord (assume in the

key of C major). Particularly, pitch class E gained persis-

tent attention over this section even though it had a low

energy level for most of the time. Through alternate self-

attention across the spectral and temporal dimensions, the

contextual information of individual aspects can be min-

gled effectively and provide insights into music structure.

6. CONCLUSION

We have presented a deep learning model for music struc-

ture analysis, especially from the perspective of the func-

tional structure representation. The core idea of this study

is to learn non-local spectral and temporal dependencies

inherent in music with clear distinction. For this pur-

pose, we adapted the multi-head self-attention mechanism

for each aspect and leveraged two types of the Trans-

former encoder to unravel the spectro-temporal relation-

ships. Compared with the ablated variants of the Trans-

former encoder, the proposed model with the specialized

self-attention mechanisms worked better on three datasets

in music segmentation and structure labeling. The learned

self-attention maps unveiled that the correlations between

separated spectral or temporal components can be effective

clues for modeling music structure.

In spite of these encouraging results, we acknowledge

the computational limitation of our approach. Apart from

an M -head temporal self-attention having the memory

footprint of M × T × T , an N -head spectral self-attention

involves intermediate attention maps with T ×N × S × S
space complexity. Given that our method aims to process

full-length audio data (hence larger T ) and leverage multi-

ple types of acoustic features (hence greater S), memory-

efficient self-attention mechanisms are critical to this kind

of dual-axis modeling. Time and frequency are intricately

interwoven to form the musical fabric, and each individual

aspect is worth considerable attention.
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ABSTRACT

In this paper, we propose a novel Self-Supervised-

Learning scheme to train rhythm analysis systems and

instantiate it for few-shot beat tracking. Taking inspi-

ration from the Contrastive Predictive Coding paradigm,

we propose to train a Log-Mel-Spectrogram-Transformer-

encoder to contrast observations at times separated by hy-

pothesized beat intervals from those that are not. We do

this without the knowledge of ground-truth tempo or beat

positions, as we rely on the local maxima of a Predomi-

nant Local Pulse function, considered as a proxy for Tatum

positions, to define candidate anchors, candidate positives

(located at a distance of a power of two from the anchor)

and negatives (remaining time positions). We show that

a model pre-trained using this approach on the unlabeled

FMA, MTT and MTG-Jamendo datasets can successfully

be fine-tuned in the few-shot regime, i.e. with just a few

annotated examples to get a competitive beat-tracking per-

formance.

1 Introduction

Beat-tracking, i.e. locating the times in a musical audio

signal where beats are perceived or notated in the corre-

sponding score, is still one of the most challenging sub-

jects in the Music Information Retrieval (MIR) research

field. This is owing to the large use of the beat informa-

tion in many applications and to the complexity of the task:

beats belong to a hierarchy/tree of rhythmic accentuations

(hence entailing ambiguities), arise both from perceptual

and cognitive cues. It, therefore, requires knowledge of

the cultural specificities of the studied music.

To alleviate these issues, data-driven systems purely

rely on training data composed of music tracks that have

been annotated (supposedly) by experts. However, this la-

beling process remains costly and as a consequence, the

amount of data annotated into beats (at most a few thou-

sands tracks) remains extremely low in MIR, as com-

pared to other research fields (speech or computer vision).

For this reason, developing approaches that allow training

© F. Author, S. Author, and T. Author. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: F. Author, S. Author, and T. Author, “A Contrastive

Self-Supervised Learning scheme for beat tracking amenable to few-shot

learning ”, in Proc. of the 25th Int. Society for Music Information Re-

trieval Conf., San Francisco, United States, 2024.

beat-tracking systems without annotated data, a.k.a. Self-

Supervised Learning (SSL), is important. This is the goal

of this paper.

By alleviating the need of large annotated datasets, SSL,

has recently gained significant attention in the field of ma-

chine learning. The goal is to learn meaningful represen-

tations of the input data without the need for human anno-

tations. To do so, the target outputs are directly inferred

from the dataset itself, and often referred to as "pretext-

task labels". Such supervision can be obtained by mask-

ing some part of the input and asking the model to pre-

dict it [1–4] or to generate two views of the same input

and force a model to learn similar representations for the

two views [5–8]. Another popular SSL approach is con-

trastive learning [9, 10] where one trains a network to pre-

dict whether two inputs are from the same class (or not) by

forcing their trained embeddings to be more or less close

from each other. Usually, upon pre-training completion,

the model is fine-tuned in a supervised fashion for one or

more downstream tasks, where the data is smaller in size.

Our contributions are the following:

• We propose a novel contrastive SSL scheme produc-

ing representations which are useful for automatic

rhythm analysis tasks, in particular the beat-tracking

task. Its key component is the pretext-task design ex-

ploiting Predominant Local Pulse (PLP) local max-

ima to effectively sample anchor, positive, and neg-

ative time-steps for our contrastive loss function.

• We show that the pre-trained model can be fine-

tuned in a few-shot learning setting to get compet-

itive beat-tracking results. Moreover, we show that

our approach yields, in most cases, at least better

performance than Zero-Note Samba (ZeroNS) [11],

which is, to the best of our knowledge, the only al-

ternative SSL approach to this problem to date.

• Furthermore we show that our model outperforms

ZeroNS in a cross-dataset generalization setting.

• Finally we compare our model to the state of the art

in a 8-fold cross-validation setting and show that it

is competitive.

Paper organization. The paper is organized as follows.

In section 2 we present works related to our proposal. In

section 3 we present our proposed contrastive SSL training

strategy. Finally in section 4 we present the results of the

different experiments we performed. To facilitate repro-

ducibility, we make our code available. 1

1 https://github.com/antoningagnere/ssl_beat
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2 Related Work

In the following, we provide a quick overview of related

contrastive SSL techniques and review the attempts made

along this line in the field of MIR, especially for beat and

downbeat tracking. We also discuss the recent advances

made towards solving these important MIR tasks.

2.1 Self-Supervised Representation Learning

Our approach takes inspiration from contrastive methods.

In CPC (Contrastive Predicting Coding) [9], representa-

tions are learned from sequential data by predicting the fu-

ture latent representations from the (aggregated) past ones.

For this, an encoder is trained to produce latent represen-

tations with the task of making it easy to distinguish in

the obtained latent space (positive) future latent represen-

tations from a set of negative samples. This encourages

the model to capture meaningful information. Instead of

predicting the future, in Wav2Vec2 [10] the task is to pre-

dict masked observations. In Wav2Vec2, features are ex-

tracted from an audio signal with a Convolutional Network

and fed to a transformer encoder where some frames are

masked. Additionally, the audio features are quantized and

the model is trained to contrast the masked output with the

quantized output and a set of distractors.

2.2 Self-Supervised Learning in MIR

Following the trend in speech processing research, SSL ap-

proaches have started to become popular in MIR. On the

one hand, these approaches can be used to train general-

purpose models, the so-called “foundation models” (such

as MULE [12] or MERT [13]), which are supposed to

be useful to solve a whole set of downstream tasks (see

the MARBLE benchmark [14]). On the other hand, mod-

els can be developed to learn representations that are well

aligned with a specific MIR task. Among those, learning

representations that are equivariant to a semantic distor-

tion of the audio signal has become a popular approach

(e.g., for pitch or tempo estimation using siamese networks

[15–18]).

Few works have proposed to apply SSL for rhythm

analysis tasks. Zero-Note Samba (ZeroNS) [11] leverages

the synchronization of the various instrument stems in a

music track. For this, they separate music tracks into their

percussive and non-percussive parts and train an encoder

to force the synchronization between the corresponding la-

tent representations, which are then used for beat tracking.

In [19] they used binary metric regularity to derive super-

vision for their CRF loss, enabling the network to model a

hierarchical metrical structure.

2.3 Beat and Downbeat tracking

Before the rise of deep-learning approaches, beat and

downbeat tracking systems were based on two-step sys-

tems: first audio features were extracted from the audio

signal (including an onset detection function, Predominant

Local Pulse (PLP), spectral features or a novelty function);

then those were used as “observations” to a probabilis-

tic model (such as Hidden Markov Models or Dynamic

Bayesian Network) [20–22].

The shift toward data-driven approaches started with

[23] where the authors proposed to process spectral

features with bi-directional Long Short-Term Memory

(LSTM) networks. [24] then proposed to replace the

LSTM with a Temporal Convolutional Network (TCN) to

process the spectral features. Later on, the model was im-

proved by solving jointly multiple tasks (beat and down-

beat positions, as well as tempo) [25, 26]. Currently, mod-

els based on the Transformer architecture, used in a multi-

task setting (joint beat-downbeat tracking) are the most

successful. In [27] the authors apply the Spectral-Temporal

Transformer (SpecTNT) architecture [28] to tackle this

task. This architecture combines a spectral transformer

that processes harmonic features and a temporal trans-

former that aggregates the processed features over time.

To further improve the performance, the authors combined

SpecTNT with a Temporal Convolutional Network (TCN).

Beat Transformer [29] incorporates dilated self-attention to

capture long-range dependencies. Furthermore, in the mid-

dle layers, they alternate time-wise dilated self-attention

with instrument-wise self-attention 2 .

3 Proposed Contrastive Learning SSL

scheme

In this paper, we propose a novel SSL approach to learn

representations useful for rhythm analysis tasks, and in-

stantiate it for the beat tracking downstream task. We aim

to learn a projection (an encoder) such that the resulting

projections of observations at PLP peaks whose distance

from each other is a power of 2 are close to each other, and

different otherwise. The two key insights behind this is

that: i) a significant fraction of the PLP peaks (supposedly

aligned to the tatum grid) is expected to represent beat po-

sitions, with high probability, and ii) most of the musical

recordings tend to have a binary metric structure (i.e. beats

can be musically divided by two and grouped by two). We

conjecture that despite being over-simplistic, these ingre-

dients are “good-enough” to define a pretext-task that will

be effective for training representations useful for various

rhythm analysis tasks, especially beat tracking, provided

that a downstream fine-tuning phase is anyway envisaged.

In the following we will refer to the distance between two

PLP peaks as tatum-unit and denote it by tu.

We solve this pretext-task using contrastive learning.

We learn to distinguish observations at times separated by

an interval of a power of 2 in tu units, from those that are

not. Once computed, the PLP function is used to select an

anchor, its associated positive, and a set of negative sam-

ples. We further explain the procedure in section 3.1. We

then train our encoder to attract the anchor and the posi-

tive while repelling the set of negatives in the latent space

using a contrastive loss. We describe the architecture of

2 The instrument-wise attention is conducted along the stems of a
demixed audio signal, contributing to a comprehensive analysis of the
audio data.
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Figure 1: Our proposed contrastive SSL scheme for beat

tracking. The left part displays our processed audio wave-

form to obtain the representations zt. The right part dis-

plays our mining of positive and negatives.

our encoder in section 3.2. Our approach is summarized in

Figure 1.

3.1 Mining positive and negatives

The key part of our work is to learn representations in a

contrastive way. Therefore we need to define an anchor, a

positive and multiple negative samples within each given

audio excerpt. We rely on the Predominant Local Pulse

(PLP) [30] function to extract local pulse information (see

3.1.1). Given such information, we sample positive and

negative times for a selected anchor (see 3.1.2).

3.1.1 Predominant Local Pulse

The PLP method analyzes the Onset Strength Function

(OSF) of an audio signal in the frequency domain to find

a locally stable tempo for each frame. For this, a “tem-

pogram” (a Short-Time Fourier-Transform, STFT) of the

OSF is computed. At each time position, the maximum of

the “tempogram” indicates the dominant pulse frequency.

Using the corresponding amplitude and phase of this max-

imum, one can re-synthesize the corresponding temporal

signal (a sinusoidal component). Using the usual overlap-

and-add (OLA) inverse STFT method, a smooth temporal

signal is formed by overlapping-and-adding the sinusoidal

components with various dominant pulse frequencies over

time. This temporal function is termed PLP and represents

a localized enhancement of the original novelty function’s

periodicity.

Computation. Given an audio signal, we compute the

PLP function with the same frame rate as our audio front-

end (i.e 20ms). We used the beat.plp function from Li-

brosa [31]. The function is fed with an OSF computed

from a spectrogram 3 with 2048 points and the default

minimum and maximum tempo parameters. We then es-

timate the local maxima peak yk of the PLP using the

find_peaks function from scipy.

3 In a preliminary experiment, we found that using the spectrogram to
get the OSF was working better than using the Mel-spectrogram

3.1.2 Sampling from PLP

In the following we will refer to the distance between two

PLP peaks as tatum-unit and denote it by tu. For simplifi-

cation, we do the following assumptions. We assume that

the tatums correspond to the 8-th note and that most tracks

are in a 4/4 meter. 4 Following this, we consider that the

positives have a time distance ∆ from the anchor which is

a power of two of the tatum unit: ∆ = i × α × tu with

α = 2n and i ∈ Z \ {0}. In this work we consider n = 2
(which corresponds to an inter-distance of two beats).

We define by Y = {y1, ..., yK} the set of PLP peaks

within a given audio segment. We first sample an anchor

a uniformly in [1,K]. We denote by ya the time asso-

ciated to a (blue arrow in Fig.2). Given this anchor, we

sample its associated positive time step p. This positive

must be situated i × α peaks away from the query. For

a given anchor a, we therefore sample p uniformly from

Ya = {ya±i×α, 0 ≤ a± i× α ≤ K}.

We denote by yp the time associated to p (green arrow

in Fig.2, green empty arrows are all the elements of Ya).

We then sample N negative time steps at which we de-

fine hard negative and easy negative examples. An easy

negative corresponds to a time step that is not a PLP peak.

They are sampled uniformly in [0, T ] \ Y . We also apply

a “safety window” (whose duration was empirically deter-

mined to one frame) around peak time steps to avoid sam-

pling negatives that are too close to a peak. A hard negative

corresponds to a time step that is a peak but that is not in

Ya. They are sampled uniformly in Y \ (Ya ∪ {ya}). We

sample N = 10 negatives, half of them are hard negatives,

and the other half are easy negatives.

To prevent any errors coming from the PLP function we

discard audio segments where the inter-peak distance is not

almost constant. We empirically set the allowed variation

to 20 percent of this inter-peak distance within a segment

(more details about this are given on the companion web-

site).

3.2 Architectures

Front-end. We compute Mel spectrogram features from

audio sampled at 16kHz using 128 bands, a window size

of 2048 samples, and a hop size of 320 samples (20ms

frame rate). We apply log compression and normaliza-

tion 5 . Subsequently, a linear layer projects the frames

to the embedding dimension. The resulting sequence xt

serves as the input to the encoder. We use audio segments

of 20s long to ensure the model sees a sufficiently large

context. However, we did not explore varying the length

of audio segments fed into the encoder.

Encoder. For the encoder, we use a Transformer ar-

chitecture similar to the one used in Wav2Vec2 or Hu-

bert [10, 32]. It is composed of a stack of Transformer

4 In a preliminary experiment, we delve deeper into determining the
metrical level that the peaks of the PLP correspond to. Our findings sug-
gest that these peaks align with either the beat, the 8-th note or the 16-th
note level.

5 For normalization, we use the mean and standard deviation computed
over the training set.
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Figure 2: Proposed mining strategy of Positives and Negatives (easy and hard) given an Anchor time in the PLP function.

Positive are sampled among peaks of the PLP whose time index is distant from the Anchor by a power of two tatum units

tu (here α = 4× tu ); Negatives are the remaining times and are considered Easy if not peaks of the PLP and Hard if peaks

of the PLP. Here we sample two hard and two easy negatives.

encoder layers. Each layer is composed of a multi-head

self-attention mechanism followed by a feed-forward net-

work. We use 8 layers each of which has 8 attention heads

and apply a 0.1 dropout in the attention layer. The en-

coder outputs the embedding sequence zt. The embedding

dimension is set to 512 and the hidden dimension of the

feed-forward network is set to 1024. In total, the model

has 19.1M learnable parameters. We did not explore other

architectures as the focus of our work was to study the pro-

posed SSL scheme.

3.3 Contrastive Loss

Among the various formulations of the contrastive losses,

we have chosen to use the NT-Xent loss [5] one. We de-

fine the similarity measure between two vectors u and v as

sim(u, v) = u⊤v
∥u∥∥v∥ . Given an anchor ya, a positive yp and

a set of N negatives time-steps tneg = {tn1
, ..., tnN

}, we

compute the contrastive loss as follows:

LNT-Xent(ya, yp, tneg) = − log
exp(sim(zya

, zyp
)/τ)

∑N

i=1 exp(sim(zya
, ztni

)/τ)
.

(1)

We set the temperature to τ = 0.1. For each audio

in a batch, we use 80% of the available peaks as anchors.

For each of them, we sample their corresponding positive

and negatives. We compute the above contrastive loss over

each pair and each audio. We then average the losses to

obtain the global loss for the batch, that is if we have a

total of M pairs in the batch:

L =
1

M

∑

ya,yp,tneg

LNT-Xent(ya, yp, tneg). (2)

4 Evaluation

To evaluate our model, we performed three experiments.

In all three experiments, the model is pre-trained in a SSL

way using unlabeled data.

In Experiment 1, we test the Few-Shot Learning (FSL)

abilities of our model using only a few data for fine-tuning.

Experiment 2 tests the generalization of our model on un-

seen conditions and serves as comparison to ZeroNS. Fi-

nally, Experiment 3 compares our performance to the ones

obtained using fully-supervised beat-tracking models.

4.1 Datasets

For SSL pre-training, we use a combination of unlabeled

datasets (in terms of beat positions): the Free Music

Archive (FMA) [33], MTG-Jamendo [34], and MagnaTa-

gaTune (MTT) [35]. FMA contains 106,574 full tracks

spanning 161 genres. MTG-Jamendo contains around

55,000 full audio tracks. Finally, MTT contains approxi-

mately 26,000 excerpts of 30-s duration from 5223 unique

tracks. Overall the combined datasets offer around 165k

full audio tracks and a total of 8,000 hours.

For fine-tuning and testing, we used the following la-

beled (into beats) datasets, commonly used in previous

works: SMC [36], Ballroom [37] and Hainsworth [38],

GTZAN [39,40], RWC [41] and Harmonix [42]. The Har-

monix dataset is mainly composed of pop music tracks,

whereas the Ballroom, GTZAN, RWC, and Hainsworth

datasets offer a wider variety of musical genres.

4.2 Evaluation Metrics

We report the commonly used metrics in the literature

including the F-measure with a tolerance window of ±
70ms, continuity-based measures at the correct metrical

level (CMLt & CMLc), and at alternate metrical levels

such as double/half and offbeat (AMLt & AMLc) [43].

4.3 Implementation details

4.3.1 Pre-training

For SSL pre-training we kept 0.05% of the data for vali-

dation (9,000 tracks). Our model is pre-trained during 200

epochs (equivalent to around 270,000 steps). Training was

conducted on 4 A100 GPUs utilizing float 16 precision and

a global batch size of 96. We employed the Adam op-

timizer [44] with an initial learning rate set at 1e-4 and
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applied a polynomial decay learning rate scheduler. The

learning rate gradually increased to 5e-4 within the first

32,000 steps, then reverted to its initial value over the sub-

sequent 250k steps. Additionally, gradient clipping was

employed. We keep the model that gives the best valida-

tion loss.

4.3.2 Fine-tuning

After SSL pre-training, we need to adapt the model to the

downstream task of beat tracking. This is done by adding

a linear classification probe g(.) and fine-tuning both the

encoder and the linear probe. g(.) projects the embedding

into the scalar beat activation function. Instead of feed-

ing g(.) with the output of the encoder, we feed it with a

weighted sum of the outputs of each layer of the Trans-

former [45]. That is z =
∑8

l=1 αlz
(l), where z(l) is the

output of layer l. The weights αl are jointly learned with

the linear probe g(.).

The system is trained to minimize the binary cross-

entropy loss between the beat activations and the target.

Following the literature we widened the beat targets by a

window [0.25, 0.5, 1, 0.5,0.25] [26]. We used the Adam

optimizer [44] with an initial learning rate of 1e-5 and a

polynomial decay learning rate scheduler.

During fine-tuning, we utilized audio chunks of sizes

similar to those used during pre-training (20s). However,

during inference, to avoid potential out-of-memory errors,

we split audio excerpts exceeding 45 seconds into 20-

second chunks with 5-second overlap. Subsequently, we

overlap-add the activations to derive the beat activations

for the whole track.

These beat activations are then fed into a Dynamic

Bayesian Network (DBN) [46] to predict the beat posi-

tions. The DBN is configured to model a tempo range of

40-270 beats per minute with transition lambda set to 45,

observation lambda to 9, and a threshold of 0.15.

4.3.3 Data Augmentation

We found that both pre-training and fine-tuning could ben-

efit from data augmentation, in particular time-stretching.

We apply time-stretching in two manners: constant fac-

tor and time-varying factor. In both cases, we constrain

the time-stretching factor to lie in the interval [0.8, 1.2].
For the constant factor case, we used sox effects in Tor-

chaudio [47], and for time-varying factor we used Libtsm

[48]. When using a time-varying factor we randomly sam-

ple time instants at which the stretching factor is modi-

fied (also randomly, see the repository for details). This

was found to be particularly beneficial for the pre-training

stage. Indeed because we have filtered out tracks where the

inter-peak distance is not almost constant, the SSL training

data does not contain examples of time-varying tempo. Us-

ing time-varying time-stretching allows us to simulate this

in a controlled fashion.

We found that it was better to compute the Predominant

Local Pulse (PLP) curve before time-stretching and shift

the peaks accordingly, rather than on the time-stretched au-

dio.

4.4 Experiment 1: Few-shot learning

Protocol. The goal here is to test the ability of our

model to learn with only few examples, Few-Shot Learn-

ing (FSL). To be able to compare our results with pre-

viously published ones, we replicate the evaluation pro-

tocol proposed in ZeroNS [11]. We consider individu-

ally each dataset (both for fine-tuning and testing): T ∈
{SMC, Ballroom, Hainsworth, GTZAN}. For each dataset

T , we split it into 8 folds, we use one for testing Ttest,

one for validation Tvalid and perform FSL with the remain-

ing ones Ttrain. The FSL ability is evaluated by selecting

randomly k ∈ {1, 2, 3, 4, 6, 8, 12, 16, 24, 48, 64, 96} items

from Ttrain. For each k we sample 10 variations: T k
train,i

For each choice of k, we fine-tune our pre-trained model

on each variation T k
train,i and keep the one that performs

the best on Tvalid

Results. We give the results in Figure 3 for the Ttest

of each dataset (SMC Mirex, Ballroom, Hainsworth, and

GTZAN) and each value of k (x-axis). We report the mean

and standard deviation of the metrics over the training set

variations T k
train,i. Our model performs at least as well

as ZeroNS on almost all metrics and datasets. The excep-

tions are with AMLt on SMC and AMLc and AMLt on

GTZAN and SMC. We observe that our model performs

significantly better on Hainsworth, with up to 10% abso-

lute improvement in F1 score and almost 20% absolute im-

provement in CMLt and CMLc. Also, the performance gap

is significant on Ballroom when using very few data (less

than 10 tracks) where we can observe almost 10% abso-

lute improvement in F1 score and up to 15% improvement

in AMLc.

4.5 Experiment 2: Generalization

Protocol. The goal here is to test the generalization abil-

ity of our model, i.e. training our model on one dataset

and testing on another. For this, we replicate the protocol

proposed in ZeroNS [11]. For each choice of dataset T ∈
{SMC, Hainsworth, Ballroom}, we split it into 8 folds, we

use one for validation Tvalid, and the remaining seven for

training Ttrain. We then use the best-performing model on

Tvalid. Instead of using the linear probe described above,

we obtained better results using a MLP (two linear layers

interleaved with a ReLU), also fed by the weighted sum of

layer sequences (sec 4.3.2). Whatever the choice of T , the

test is performed on the GTZAN dataset.

Trained on Method F1 (%) AMLt (%) CMLt (%)

SMC
Ours 79.5 ± 0.5 88.0 ± 0.6 64.4 ± 0.9

ZeroNS 74.8 ± 2.1 86.3 ± 2.3 51.0 ± 2.1

Hainsworth
Ours 85.1 ± 0.8 89.9 ± 0.9 73.2 ± 1.8

ZeroNS 80.6 ± 0.9 89.4 ± 0.7 62.8 ± 2.3

Ballroom
Ours 83.9 ± 0.3 88.4 ± 0.5 72.3 ± 0.9

ZeroNS 82.6 ± 0.5 89.0 ± 0.8 67.6 ± 1.1

Table 1: Results of Experiment 2: Generalization

Results. We indicate the results in Table. 1. We report

the mean and standard deviation of F1, AMLt, and CMLt
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Figure 3: Results of Experiment 1: Few-Shot Learning. Shaded areas representation the standard deviation. (ZeroNS in

green and our method in blue)

Method F1 CMLt AMLt

Böck [26] 0.885 0.813 0.931
Hung [27] 0.887 0.812 0.920

Zhao [29] 0.885 0.800 0.922

Ours 0.876 0.802 0.918

Table 2: Results of Experiment 3: Comparison with su-

pervised baseline

scores across the different folds. Overall our model per-

forms better than ZeroNS on all datasets except when for

the AMLt metric when trained with Ballroom, but the dif-

ference is not statistically significant. This means that our

model can generalize well to unseen data. Precisely we

observe a 5% improvement in F1 score and more than

10% improvement in CMLt when training on SMC or

Hainsworth. We nearly reach the F1 score of fully super-

vised models (presented next) when training solely on 7/8
of Hainsworth (i.e 194 tracks).

4.6 Experiment 3: Comparison with supervised

baseline

Protocol. The goal here is to compare the performance of

our model to the ones provided by fully-supervised mod-

els. For this we replicate the commonly used 8-fold cross

validation set-up after [26,27,29]. GTZAN is kept as a test

set and is never seen in training. We average the metrics

over the 8 training folds to obtain the final results.

Results. We give the results in Table 2. It is clear that the

proposed beat tracking approach using our self-supervised

pre-training can be competitive with state-of-the-art meth-

ods on GTZAN, a dataset covering a wide diversity of

genres. While our method does not outperform the best-

performing method, it achieves comparable results across

all metrics, proving the quality of the learned representa-

tions.

5 Conclusion

In this paper, we proposed a novel Self-Supervised Learn-

ing approach to learn representations useful for the task of

beat tracking using contrastive learning where the selec-

tion of anchor, positive and negative peaks derives from a

Predominant Local Pulse function.

We assess our proposal positively based on a series of

experiments. In a first experiment, we showed that our pro-

posed approach was superior on some datasets to the previ-

ous SSL approach, ZeroNS, in a few-shot learning setting.

In a second experiment, we show that our model has better

generalization capabilities to unseen data. In the last ex-

periment, we show that our model also yields comparable

performances to the fully supervised baseline, indicating

that our pre-training scheme effectively learns meaningful

beat-related representations.

To further improve our method, future work will focus

on developing a more sophisticated sampling mechanism

that can handle other metrical structures than the binary

one used-here (such as 6/8, 3/4). One potential approach

is to incorporate additional audio features, such as self-

similarity matrices, to gain a deeper understanding of the

rhythmic structure within an audio segment and adaptively

select positive positions for a given anchor.
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ABSTRACT

The task of music structure analysis has been mostly

addressed as a sequential problem, by relying on the inter-

nal homogeneity of musical sections or their repetitions.

In this work, we instead regard it as a pairwise link pre-

diction task. If for any pair of time instants in a track, one

can successfully predict whether they belong to the same

structural entity or not, then the underlying structure can

be easily recovered. Building upon this assumption, we

propose a method that first learns to classify pairwise links

between time frames as belonging to the same section (or

segment) or not. The resulting link features, along with

node-specific information, are combined through a graph

attention network. The latter is regularized with a graph

partitioning training objective and outputs boundary loca-

tions between musical segments and section labels. The

overall system is lightweight and performs competitively

with previous methods. The evaluation is done on two

standard datasets for music structure analysis and an ab-

lation study is conducted in order to gain insight on the

role played by its different components.

1. INTRODUCTION

Music structure analysis consists of locating segments that

compose a track and grouping them into semantic cate-

gories, referred to as musical sections [1]. Approaches

to solve this task have significantly been advanced in the

past few years, notably due to the creation of large au-

dio datasets along with their structural annotations [2–4].

These annotated corpora have allowed researchers to lever-

age recent progress in deep learning and design systems

that learn signal representations to predict song structures.

1.1 Related work

One crucial aspect when analyzing musical structures is

the strong temporal dependency among different events

© M. Buisson, B. McFee and S. Essid. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: M. Buisson, B. McFee and S. Essid, “Using Pairwise Link

Prediction and Graph Attention Networks for Music Structure Analysis”,

in Proc. of the 25th Int. Society for Music Information Retrieval Conf.,

San Francisco, United States, 2024.

within a track. A musical observation at a given time can

impact other observations at any other point in time, and

this, at different scales. This multi-level dependency still

poses a significant challenge when training music segmen-

tation systems [1]. Recent methods successfully relied on

modelling these temporal connections through the use of

self-attention mechanism [5–8]. In these cases, the model

is equipped with multiple self-attention layers so as to au-

tomatically learn to identify such dependencies. While

these proved to be effective, they do not rely on any prior

knowledge about musical structure and therefore tend to

require large training sets or multiple input audio represen-

tations (e.g. multiple audio features [8], separated instru-

ment stems [7]) so as to better characterize mutual relation-

ships between time instants in the input track. The method

introduced in this work proposes to explicitly model such

temporal dependencies by leveraging the natural geometry

of a track’s self-similarity matrix.

Self-similarity representations have been a useful tool

to predict the structure of a track [9–12]. A line of work

has for example focused on improving this representation

through the use of contrastive learning [13–15]. By ex-

tracting better audio features, the resulting self-similarity

matrices carry more meaningful patterns that can ease

structure prediction performed by downstream segmenta-

tion methods [10, 16]. In the proposed approach, the self-

similarity representation is not used as direct input to a seg-

mentation system but rather to extract structural link fea-

tures between time frames within the input track. This step

is jointly performed with the audio feature extraction stage,

the prediction of segment boundaries and section labels, al-

lowing each task to benefit from the others.

1.2 Contributions

In this work, a supervised approach to segmentation of

western popular music is proposed that effectively com-

bines the three music structure principles which have been

identified in previous studies [1]: homogeneity, repetition

and regularity. To this end, the segmentation task is for-

mulated as a graph partitioning problem where links (i.e.

edges) between musical audio observations taken at any

two time instants (i.e. nodes) are first characterized as

whether connecting elements from the same segment, sec-

tion or distinct structural entities (different segment or sec-
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Figure 1. Model overview. Input feature patches are first processed through a frame-level encoder and a first GNN block.

A self-similarity of the output features is passed through a 2-dimensional dilated convolutional network to extract link

features. Node and link features are finally combined with graph attention network layers to predict boundary locations and

section label assignments.

tion). These extracted link features condition a subsequent

analysis block based on attention graph neural networks to

further refine node features. The system outputs final pre-

dictions composed of boundary locations and frame-wise

section label likelihoods. Overall, the main contributions

of this work are the following: (1) we demonstrate that mu-

sic segmentation can be modelled as a pairwise link predic-

tion task, which offers a flexible framework that is inspired

by well-identified structure principles ; (2) we use graph

attention networks to allow frames in the track to dynam-

ically exchange information between each other and we

successfully inform this process by the learned link fea-

tures ; (3) we demonstrate in an ablation study that link

features provide some useful structural information about

the input track, which significantly improves segmentation

performance.

2. METHOD

2.1 Overall approach

The segmentation method proposed in this work proceeds

in three main steps, depicted in Figure 1. First, the in-

put track is passed through a frame encoder to obtain a

sequence of frame-wise feature vectors. These are further

smoothed by a graph neural network (GNN) block, allow-

ing each individual frame to aggregate and combine infor-

mation from all other time instants in the track. A self-

similarity matrix is calculated from these features and fed

as input to a 2-dimensional convolutional neural network.

A spatial learnable bias is added to the output feature map

to inform about each component’s source and destination

frames’ relative positions. The link features, along with the

smoothed frame features, are effectively combined through

an edge-conditioned graph attention module. The updated

frame features finally serve to predict segment boundaries

and section labels.

2.2 Audio representation

2.2.1 Input features

For a given track, we start by estimating probable beat po-

sitions using an off-the-shelf beat tracking algorithm so as

to reduce the length of the feature sequence to be analyzed.

Following previous work [14, 15, 17], the input signal is

then converted into a log-scaled Mel-spectrogram repre-

sentation, from which slices centered around each detected

beat position are extracted.

2.2.2 Frame encoder

The sequence of mel-spectrogram slices is passed through

an encoder to obtain a sequence of feature vectors X ∈
R

N×d where N is the number of detected beats (i.e. slices)

and d is the embedding dimension. The objective of this

step is to extract relevant spectro-temporal information

from each slice. The architecture of the encoder is inspired

from the work by Won et al. [18] for music tagging. It con-

sists of three convolutional blocks to extract low-level fea-

tures, followed by two transformer encoder layers which

temporally summarize the content of each slice. To obtain

more robust audio representations, the pre-training strat-

egy proposed by Buisson et al. [15] is followed. It uses

a contrastive loss to learn an embedding space in which

frames from repeating sequences over the whole track are

close. In this work, the self-supervised pre-training stage

is performed on 20, 000 unlabelled tracks, covering various

music genres such as rock, popular, rap, jazz, electronic or

classical.

2.3 Feature refinement

The sequence of feature vectors X is processed by a first

GNN block. The objective is to further refine local dis-

continuities by allowing each frame to exchange informa-

tion with all other frames in the track. To this end, a self-

similarity matrix A ∈ R
N×N is calculated from X such

that its elements A(i, j) are defined as:

A(i, j) = exp

(

−γ

∥

∥

∥

∥

xi

∥xi∥2
− xj

∥xj∥2

∥

∥

∥

∥

2

2

)

, (1)

where the bandwidth parameter γ is simply set as γ = 1
2s ,

with s = std

(

∥

∥

∥

xi

∥xi∥2

− xj

∥xj∥2

∥

∥

∥

2

2

)

and ∥.∥2 denotes the

ℓ-2 norm. The matrix A can be regarded as the weighted

adjacency matrix of a complete graph G = (V,E), where
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the set of nodes V corresponds to each frame contained

in the track, and its edges E represent the strength of their

mutual connections (i.e. similarity). However, each feature

slice was transformed independently by the frame encoder

(see Section 2.2.2). To improve both segment homogeneity

and discriminability, two graph convolution layers [19] are

applied to smooth the node features X, of which the update

rule for an arbitrary layer l is expressed as:

x
(l+1)
i = σ





∑

1≤j≤N

A(j, i)

N
x
(l)
j W

(l) + b(l)



 , (2)

where W
(l) and b(l) are learnable weight parameters and

σ is an activation function: Exponential Linear Unit (ELU)

in this work. Equation (2.3) shows that each frame in the

sequence X receives a weighted combination of all other

frames in the track and is then linearly transformed before

applying a non-linear activation. A common issue encoun-

tered with graph neural networks is the over-smoothing

phenomenon [20], where all points end up having the same

representation after passing through several layers. To

limit this effect, the output features are further processed

by a multi-layer perceptron (MLP) [21], yielding the re-

fined node features X′ ∈ R
N×d.

2.4 Link feature extraction

2.4.1 Motivations

Recognizing the structure of a song can be achieved by

learning to fully characterize the mutual relationships be-

tween time frames from its beginning to its end. In other

words, if for any pair of time points (i.e. audio frames),

one can successfully predict if they belong to the same mu-

sical segment or section, then the overall structure of the

song can be easily recovered (e.g. through a simple graph

traversal). Figure 2 shows a visual representation of this

link prediction task.

Figure 2. Schematic representation of the link character-

ization task. For each time instant, the goal is to classify

its mutual relationship with all other instants in the input

track as either, from the same segment, section or a differ-

ent section.

It is interesting to notice that each of the structure

principles somehow translates into specific characteristics

of the self-similarity matrix. The homogeneity of musi-

cal segments can be observed through the appearance of

block-like structures on the main diagonal. Similarly, rep-

etitions of sequences can be spotted by diagonal stripes

whereas repeating homogeneous segments will appear as

off-diagonal blocks. The notion of regularity is visible as

the relative size of these patterns, which tends to be consis-

tent within a track and in specific genres such as western

popular music. Therefore, the self-similarity representa-

tion of a track yields crucial information on its structural

organization and can be exploited to extract link-related

information. Additionally, it provides an efficient informa-

tion bottleneck which can improve generalization across

different songs.

2.4.2 Self-similarity processing

The refined features X
′ ∈ R

N×d returned by the first

GNN block are used to build a self-similarity matrix A
′ ∈

R
N×N , in the same fashion as in Section 2.3. The goal of

the link feature extraction step is to classify each compo-

nent of the input matrix A
′ into three categories: “same-

segment”, “same-section” or “different section” links (see

Figure 2). To this end, a 2-dimensional convolutional neu-

ral network is used, which is composed of blocs as shown

in Figure 3. The kernels’ dilation rate is increased expo-

Figure 3. CNN block containing dilated convolution,

channel & spatial attention and a residual connection. Each

layer contains C = 16 channels and has an exponentially

increasing dilation rate ranging from 20 to 27 to efficiently

combine structural features at different scales.

nentially at each layer to enlarge the receptive field of the

network and capture structural patterns at different scales.

Because the goal is to classify each pixel (i.e. link), no

pooling is applied in-between layers. To further enhance

the intermediate feature maps, each convolution is fol-

lowed by a multi-scale attention module [22] that lever-

ages both spatial and channel interactions. A residual con-

nection is added to the output of each attention block be-

fore applying ELU activation. We denote the output fea-

ture map as E ∈ R
C×N×N , with C being the number of

convolution channels.

2.4.3 Positional embedding

If two frames are similar, then determining whether the

pair is “same-segment” or “same-section” may be diffi-

cult without information about their position in the piece.

To address this ambiguity, a learnable relative positional

embedding B ∈ R
C×N is added to E. Formulated as a

function of |i − j|, it aims to provide each element in E

information on its relative distance to the main diagonal.

We opt for a simple strategy which consists, for a given

link between nodes i and j, in adding the (|i− j|)th vector

from a learnable embedding matrix B to ei,j . After do-

ing so for every possible links, the result of this addition

denoted as E
′, is fed to a linear layer with softmax acti-

vation. The link feature extraction network is optimized
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using a cross-entropy loss function LLink between the link-

wise predictions ŷlink and the ground-truth ylink obtained

from structural annotations.

2.5 Edge-conditioned graph attention sub-network

The refined node features X
′ and the edge features E

′

provide a detailed representation of the input track. The

former contains relevant acoustic information, which has

been exchanged between frames for better discriminabil-

ity across musical segments, while the latter provides in-

formation about their pairwise links. To efficiently com-

bine these complementary views of the graph, we propose

the use of edge-conditioned graph attention networks [23].

Node features are further improved by aggregating infor-

mation from all other nodes in the graph, weighted by

some learnable attention coefficients. These attention co-

efficients depend on each node’s features and the edge fea-

tures that link them. For a given node x′
i, the update rule is

defined as:

x′′
i = Ws ·x′

i+
∑

j∈N (x′

i
)

αj,i

(

Wn · x′
j +We · e′j,i

)

, (3)

where W is used to denote learnable weight matri-

ces for the transformation the node features to update

(s=“self”), neighboring nodes (n=“neighbor”) and edge

features (e=“edge”). The attention coefficients αj,i are ob-

tained as follows:

αj,i = softmaxi

(

σ
(

aT [Wn · x′
i||Wn · x′

j ||We · e′j,i]
)

)

,

(4)

with a corresponding to a learnable vector, σ to a

LeakyRelu activation, || denotes the concatenation oper-

ation and e′j,i is the refined link features going from node

j to node i. The softmaxi operation normalizes all incom-

ing edges of node i. The forward-pass formulation from

Equation (3) closely resembles that of the transformer, but

additionally introduces edge features to calculate attention

maps and output node features. We use a series of two

graph attention layers with residual connections and ELU

activation in-between. Both layers use 8 attention heads,

the outputs of all heads are concatenated after the first layer

and averaged after the second. The output node features

are denoted as X′′ ∈ R
N×d.

2.6 Boundary and label predictions

The output of the overall system consists in boundary lo-

cations, expressed in beat indices, along with frame-wise

section-label likelihoods. For boundary prediction, con-

secutive node features x′′
i and x′′

i+1 are first concatenated,

along with the corresponding link features e′i,i+1 between

them. The result of this concatenation is transformed

through a linear layer with sigmoid activation to output the

probability ŷbound of a segment boundary between these

frames. For section-label predictions, we simply feed each

frame to a linear layer with softmax activation, resulting in

a predicted class assignment matrix S ∈ [0, 1]N×K , where

K corresponds to the number of section labels. We derive a

boundary curve by concatenating the boundary predictions

ŷbound over time. To obtain the final boundary locations,

we use the peak picking method after Ullrich et al. [24]

without any thresholding on the RWC-Pop dataset, and the

one from Kim et al. [7] for Harmonix. For the section label

assignment, a simple majority vote is applied within each

detected segment to determine its structural label. Due to

the imbalance between boundary and non-boundary points,

we use a dice loss LBound to optimize the boundary predic-

tions, as it has proven useful in many segmentation tasks

before [25]. We use a cross-entropy loss LLabel for section

label predictions.

2.7 MinCut regularization

The objective of the proposed segmentation system is to

assign each frame of the input track to one of K possible

section labels. Ideally, we want this assignment to be equal

for nodes in the graph that are either in the same segment

or section, and orthogonal in the remaining cases. From

the perspective of graph theory, given the input graph G =
(V, E), this problem comes down to partitioning the set of

nodes V into K disjoint subsets by removing a minimum

volume of edges, which is equivalent to maximizing:

1

K

K
∑

k=1

links(Vk)

degree(Vk)
=

1

K

K
∑

k=1

∑

i,j∈Vk
Ei,j

∑

i∈Vk,j∈V\Vk
Ei,j

, (5)

where the numerator corresponds to the volume of edges

within each cluster, and the numerator counts the edges

between the nodes in a cluster and the rest of the graph.

This task is referred to as the K-way normalized MinCut

problem. Spectral clustering provides an optimal solution

of this problem by projecting the nodes into the Lapla-

cian eigenspace [10, 26]. However, calculating the spec-

trum of the Laplacian matrix is a costly operation and the

final class assignment relies on non-differentiable opera-

tions, thus preventing it from being optimized along with

the rest of the network.

In order to learn a model that finds an approximate spec-

tral clustering solution in a differentiable manner, we base

ourselves on the work by Bianchi et al. [27]. They propose

a continuous relaxation of the normalized MinCut prob-

lem, where a GNN is trained to compute a cluster assign-

ment matrix S ∈ [0, 1]N×K by optimizing the objective

defined as:

LMinCut = −Tr(STAS)

Tr(STDS)
+

∥

∥

∥

∥

STS

∥STS∥F
− IK√

K

∥

∥

∥

∥

F

, (6)

where A ∈ R
N×N is the graph adjacency matrix, D is the

degree matrix of A, K is the number of classes and ∥.∥F
corresponds to the Frobenius norm. The left-hand-side

term encourages connected nodes to be clustered together.

It reaches its minimum when Tr(STAS) = Tr(STDS),
meaning that the cluster assignments are equal for all the

nodes in the same class and orthogonal to the cluster as-

signments of nodes from different classes. To avoid de-

generate minima (uniform cluster assignments or all nodes

being assigned to the same cluster), the right-hand-side

term encourages the cluster assignments to be orthogonal
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and the clusters to be of similar size. While in practice, it

is not always desirable to have a perfectly balanced clus-

ter assignment for music segmentation (due to the variable

sizes of musical sections), the loss term LMinCut acts as an

effective regularizer that helps making the cluster assign-

ment sharper. During training, we use the label agreement

matrix Y of each track as adjacency matrix and the pre-

dicted label assignment matrix S defined in Section 2.6 as

A and S in Equation (2.7) respectively. The whole sys-

tem is trained end-to-end in a multi-task fashion, so as to

minimize the overall loss function Ltotal defined as:

Ltotal = LBound + LLabel + LLink + LMinCut. (7)

3. EXPERIMENTAL SETTING

3.1 Datasets

The proposed method is assessed on two standard datasets

for music structure analysis. To reduce the number

of possible section labels, we apply the annotation pre-

processing step proposed in the work by Wang et al. [5].

We end up with a total of 7 unique section labels for both

of the following datasets:

RWC-Pop: the Popular subset of the RWC dataset [28]

contains 100 songs with section annotations. The original

ones provided by the authors (AIST) are used.

Harmonix: the Harmonix dataset [3] is composed of

912 annotated tracks covering various genres of west-

ern popular music such as pop, electronic, hip-hop, rock,

country and metal. The audio files were retrieved from

YOUTUBE and structural annotations were manually ad-

justed.

3.2 Evaluation metrics

Common evaluation metrics for automatic structure analy-

sis are employed throughout our experiments. For bound-

ary detection, we report the F-measure 1 of the trimmed 2

boundary detection hit-rate with a 0.5 and 3-second tol-

erance windows (HR.5F, HR3F respectively). For struc-

tural grouping, we report the F-measure of pairwise-frame

clustering [30] (PFC) and the F-measure of the normalized

conditional entropy (NCE). We additionally measure the

weighted label prediction accuracy (Acc), which indicates

how well the model predicts frame-wise section labels.

3.3 Implementation details

All tracks are resampled at 22.05 kHz. As input to the

frame encoder, we use log-scaled Mel-spectrograms with

a window and hop size of 1024 and 256 samples respec-

tively. We compute 64 Mel-bands per frame. The Tor-

chAudio library is used for feature extraction [31]. As in

previous work [15, 32], beats are estimated for all tracks

using the algorithm from Korzeniowski et al. [33] imple-

mented in the madmom package [34]. Slices of 64 frames

1 All evaluations are done using the mir_eval package [29].
2 The first and last boundaries are discarded during evaluation, as they

correspond to the beginning and the end of the track and therefore, do not
provide any information regarding the system’s performance.

(≃ 0.75s) centered at each detected beat location are fed

as input to the frame encoder. The frame embedding di-

mension is set to d = 32 and kept fixed throughout the

whole system. The number of channels in the link-feature

extractor is set to C = 16, convolutions use kernels of size

k = 5. All GNN layers are implemented using the Deep

Graph Library [35] package. The whole model, includ-

ing the pre-trained frame encoder, contains less than 330K

parameters and is implemented 3 with Pytorch 2.0 [36].

3.4 Experiments

In order to study the impact of each part of our method, we

perform an 8-fold cross-validation ablation study on the

Harmonix dataset. At each episode, one element from the

system is removed: the pre-training stage (Section 2.2.2),

the feature smoothing step (Section 2.3), the link features

extraction (Section 2.4.2), the positional embedding (Sec-

tion 2.4.3) and the MinCut regularization (Section 2.7). We

use 6 splits for training, one for validation and the remain-

ing one for testing. Then, we perform a cross-dataset eval-

uation, where one dataset is used for training (split before-

hand into training and validation sets) and the other one for

testing.

4. RESULTS

4.1 Ablation study

Results from the ablation study given in Figure 4 show the

performance of the system when some of its components

are discarded during training and inference. The different

metrics are averaged over the 8 splits. In the first scenario,

the frame encoder is randomly initialized like the rest of the

model. We observe a significant decrease on all metrics,

showing that the pre-training stage provides robust initial

frame representations which are further tuned by the net-

work during training. It is interesting to notice however

that without pre-training the frame encoder, the model still

predicts a good label assignment matrix, both in terms of

pairwise frame clustering and label accuracy. We assume

that the impact of this step is rather limited due to the rel-

atively large size of the Harmonix dataset, which provides

enough training examples to still learn useful frame fea-

tures. In the second case, the MinCut regularization is dis-

carded, which negatively impacts all metrics. This tends

to confirm that the MinCut regularization enforces sharper

cluster assignments, especially around segment boundaries

where these can be more evenly distributed.

The most significant variation in segmentation perfor-

mance is observed when the link feature extraction step

is omitted. In this case, pairwise links between nodes are

only characterized by their positional embedding and do

not contain any structural information. This observation

strongly suggests that the model benefits from both per-

spectives (node and link features) of the input track. When

positional embeddings are removed, the link loss LLink

stops decreasing after several training iterations. Notably

3 Code: github.com/morgan76/LinkSeg
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Figure 4. Ablation results on the Harmonix dataset in

the cross-validation setting. Metrics are averaged across

splits and standard deviation denoted with dark grey verti-

cal bars.

because the network fails to differentiate “same-segment”

from “same-section” links, which provides useful struc-

tural information near segment boundaries. In the case

when the features smoothing step is removed, performance

on all metrics, except the label prediction accuracy, is neg-

atively impacted.

4.2 Comparison with previous work

This section compares the performance of our system

against recent work for music structure analysis. The first

one from Wang et al. [14], which we denote as DSF, uses

supervised metric learning and spectral clustering [10] for

boundary and section label predictions. SpecTNT [5] is

based on a spectrogram transformer architecture and di-

rectly outputs both a boundary probability curve along

with a frame-wise section label assignment. All in One [7]

uses demixed spectrograms and several layers of neigh-

borhood attention, operating simultaneously at the instru-

ment and the temporal levels. These three baselines were

trained and evaluated on the Harmonix dataset in a cross-

validation setting. CBM, for Convolutive Block Match-

ing [37] relies on dynamic programming to find the seg-

mentation that minimizes a cost function. Its parameters

were set by cross-validation on the RWC-Pop dataset.

Results on Harmonix and RWC-Pop are given in Table

1. In the cross-validation setting, the proposed method per-

forms worse for boundary detection than the reported base-

lines. On RWC-Pop, despite being trained on a very small

number of tracks (75 at each episode), the model still man-

ages to pick up transitions between structural elements,

even so at a high temporal resolution (±0.5 second). This

is to be compared with the first two baselines, namely

DSF [14] and SpecTNT [5] which used the whole Har-

monix dataset for training, along with additional datasets

for the latter. The CBM algorithm [37] shows the strongest

performance in this setting, as it explicitly favors musical

segments of pre-defined length (which is around 8 bars in

most cases for RWC-Pop), whereas our method does not

make any assumption on the distribution of section lengths.

It is also important to note that our system operates on a

rather coarse time resolution (beat level) and only requires

a gross discretization of the input track’s timeline to func-

tion. We argue that better performance could be achieved

by providing a more fine-grained time division (tatum level

for example) but at a higher computational cost.

HR.5F HR3F PFC NCE Acc

Harmonix

DSF [14] .497 .738 .689 .743 −

SpecTNT24s [5] .570 − .700 .714 .701

SpecTNT36s [5] .558 − .712 .724 .723

All in One [7] .660 − .738 .769 −

Cross-val. .568 .717 .771 .772 .742
Cross-dataset .462 .664 .660 .671 .530

RWC-Pop

DSF [14] .438 .653 .704 .739 −

SpecTNT24s [5] .623 − .749 .728 .675

CBM [37] .644 .806 − − −

Cross-val. .585 .750 .785 .802 .813
Cross-dataset .648 .786 .812 .812 .747

Table 1. Boundary detection and structural grouping re-

sults on Harmonix dataset. Cross-val indicates results that

were obtained through cross-validation, averaged across

splits. Cross-dataset refers to the results obtained when

the model is trained on one and tested on the other.

In terms of structural grouping, the method proposed

in this work outperforms all baselines on both datasets in

most settings. Even though the label prediction method

employed is rather simple and directly dependent on the

boundary detection results, the model successfully learns

to group frames across repetitions of identical musical sec-

tions. Finally, the high section label prediction accuracies

obtained show that the network not only manages to suc-

cessfully group frames together, but also predicts the right

section label in a vast majority of cases.

Finally, cross-dataset results from RWC-Pop to Har-

monix (Cross-dataset row) show that the model still gener-

alizes to some extent, despite the very small quantity data

used for training. On the other hand, training the model on

Harmonix and testing it on RWC-Pop leads to strong per-

formance both in terms of boundary detection and struc-

tural grouping, indicating that the network’s generalization

capacity increases as more annotated data is available for

training.

5. CONCLUSION

This work proposes a new approach to music segmentation

by learning to characterize pairwise relationships between

time instants in a musical recording. The structural view

of the input track obtained from this auxiliary task can

be combined with local frame information to effectively

predict boundary locations between musical segments and

section labels. Future research includes the extension of

the link prediction task to various levels of segmentation

and arbitrary labels semantic.
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ABSTRACT

We introduce a project that revives a piece of 15th-century

Korean court music, Chihwapyeong and Chwipunghyeong,

composed upon the poem Songs of the Dragon Flying

to Heaven. One of the earliest examples of Jeongganbo,

a Korean musical notation system, the remaining version

only consists of a rudimentary melody. Our research team,

commissioned by the National Gugak (Korean Traditional

Music) Center, aimed to transform this old melody into

a performable arrangement for a six-part ensemble. Us-

ing Jeongganbo data acquired through bespoke optical mu-

sic recognition, we trained a BERT-like masked language

model and an encoder-decoder transformer model. We also

propose an encoding scheme that strictly follows the struc-

ture of Jeongganbo and denotes note durations as posi-

tions. The resulting machine-transformed version of Chi-

hwapyeong and Chwipunghyeong were evaluated by ex-

perts and performed by the Court Music Orchestra of Na-

tional Gugak Center. Our work demonstrates that genera-

tive models can successfully be applied to traditional music

with limited training data if combined with careful design.

1. INTRODUCTION

Six dragons fly on the east land; every endeavour is

a heavenly blessing. This is the first line of lyrics in

Yongbieocheonga, the first text written in the Korean

alphabet (Hangul, 한글). Sejong the Great, one of the

most respected figures in Korean history, invented and

introduced Hangul in 1446. In addition to this remark-

able achievement, he ordered scholar-officials to write

Yongbieocheonga, and composed music to accompany

the lyrics. Three other pieces composed at the time are

Yeo-Min-Lak, Chi-Hwa-Pyeong and Chwi-Pung-Hyeong.

* Work mainly done during her master’s at Sogang University

© D. Han, M. Gotham, D. Kim, H. Park, S. Lee, and D.

Jeong. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: D. Han, M. Gotham, D. Kim, H.

Park, S. Lee, and D. Jeong, “Six Dragons Fly Again: Reviving 15th-

Century Korean Court Music with Transformers and Novel Encoding”,

in Proc. of the 25th Int. Society for Music Information Retrieval Conf.,

San Francisco, United States, 2024.

Figure 1: Overview of the proposed research framework

These compositions are still preserved in the Veritable

Records of Sejong, which is the oldest surviving musical

score in Korea [1]. More detailed information is available

here [2].

Among these three pieces, only Yeominlak is handed

down to the present day, while the other two are no longer

performed. The National Gugak Center 1 , which is the pri-

mary organization dedicated to the preservation and devel-

opment of traditional music, commissioned the task of re-

constructing these two pieces in a performable format us-

ing artificial intelligence systems. Given a simple melody

of 512 gaks (measures) of Chihwapyeong or 132 gaks of

Chwipunghyeong, the system must generate scores for six

different instruments.

Our solution encompasses a wide range of tasks in the

field of music information retrieval—constructing a spe-

cialized dataset, optical music recognition, designing a

1 Gugak (국악) is the Korean term for traditional music
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domain-specific encoding scheme, training models with

limited data, and generating music of concert-level qual-

ity. In this paper, we present in detail the different frame-

works used in the project: two types of transformer-based

models; a symbolic dataset of Korean court music acquired

through optical music recognition; and a novel “Jeonggan-

like” encoding method that notates monophonic melody

by combining notes’ position and pitch, along with a beat

counter that informs the transformer the temporal position.

The effectiveness of the proposed techniques was validated

through quantitative metrics and subjective evaluation by

experts from the National Gugak Center. Finally, we intro-

duce a web demo that allows users to examine and generate

traditional Korean court music interactively.

This project has significance not only for cultural

preservation but also for wider considerations in machine

learning and music generation. One of the many benefits to
be had from the inter-cultural study of music is the differ-

ent perspectives expressed in ‘the music itself’ as well as

any notational and/or theoretical traditions that go along-

side it. As presented in previous research [3], the encoding

of music makes significant differences in machine learn-

ing tasks. In thinking through different ways of digitally

encoding music, we stand to learn a great deal from the

various syntaxes that have been used in diverse traditional

contexts.

2. RELATED WORKS

Recent advances in neural network-based music genera-

tion have resulted in much artistic output. Since 2020, the

AI Music Generation Challenge [4] has been held annu-

ally, focusing on generating songs in the style of Irish and

Swedish folk music. This event has allowed for exploration

of new methods for generation and evaluation of traditional

music through the means of deep learning models.

The Beethoven X project [5] utilized neural networks

to learn Beethoven’s compositional style and complete his

unfinished 10th Symphony. The resulting work has been

performed by an orchestra—a project outline similar to

that of ours.

Attempts at automatic generation have been made for

traditional music from beyond the West, including Per-

sia [6] and China [7]. The limited progress in such areas

is often due to the distinctive traditional musical systems

that demand deep understanding and unique methodolo-

gies. Such idiosyncrasies put much interest and meaning

in the computational research of traditional music, since it
can present new methods and perspectives to the field as

a whole, while also helping preserve diverse musical her-

itages.

3. JEONGGANBO DATASET

3.1 Jeongganbo Notation

As depicted in Figure 1, Korean court music is performed

on a variety of instruments, including plucked string in-

struments (Gayageum and Geomungo), bowed string in-

struments (Haegeum and Ajaeng), and wind instruments

Figure 2: An example of Jeongganbo in the original notion

(below) and a broadly equivalent conversion to Western

classical notion (above). Dashed lines are part of neither

notation and added simply to clarify the temporal align-

ment between the two systems.

Figure 3: Jeonggan-like encoding position labels

(Daegeum and Piri), among others. These instruments are

played together in a heterophonic texture, with each instru-

ment employing its distinctive playing techniques and or-

namentations.

Much of Korean court music is written in Jeongganbo,

a traditional musical notation system. Jeongganbo is rec-

ognized as the first system in East Asia capable of simulta-

neously representing both pitch and duration of notes [8,9].

This versatility has been instrumental in passing down

court music throughout history [10].

Jeongganbo uses grid-divided boxes (Jeonggans) as

the basic unit of time. The number of characters (notes)

and their position within each jeonggan varies to denote

rhythm. Figure 2 provides an example passage, and figure

3 provides a schematic overview of possible positions.

Here, we provide a broad introduction to this rhythmic

notation system in quasi-Western musical theoretic lan-

guage. Each jeonggan is broadly equivalent to a beat. If a
jeonggan features only one character, this note event starts

at the beginning of the beat and lasts the beat’s full dura-

tion. The first box (‘0’) in figure 3 is in this form as is the

second jeonggan of figure 2 where the ‘compound beats’

correspond to the duration ♩‰ (in this case for the note B♭4).

At the next metrical level we have the ‘column’ division of

the ‘rows’. This number of ‘rows’ relates broadly to the

top level division of the beat. The use of three vertically

stacked characters refers to 3 equal divisions of this beat

(here, 3 x �s). For example, in figure 3, the numbers 4–9

feature a 3-part division of the ♩‰ beat into 3 x �s (positions

4, 6, 8), and a 2x division of those �s (e.g., 4–5). If the

following jeonggan is empty, the previously played note is
sustained.

Playing techniques and ornamentations called sigimsae

are sometimes notated for each instrument. When sigimsae

are placed to the right of notes, they serve as ornamenta-

tions or embellishments for the corresponding note; when

written on their own, they indicate timed instructions to
play a specific note or musical phrase. For convenience,
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Figure 4: Comparison between encoding schemes

the example score is notated horizontally, but in practice,

the score page is read from top to bottom and right to left.

A line in Jeongganbo can consist of anything from four to
twenty beats, with each line representing a phrase unit.

3.2 Machine Readable Dataset

We have constructed a dataset of 85 pieces by applying op-

tical musical recognition (OMR) to all compositions avail-

able within the manuscripts published by the National Gu-

gak Center. The manuscripts cover the entire repertoire

of remaining Korean court music 2 . OMR was necessary

since the scores are only provided as PDF images and the

semantic data is unavailable. We implemented and trained

an encoder-decoder transformer with CNN by synthesizing

various Jeonggan images in a rule-based approach [11].

In total, the dataset comprises 28 010 jeonggans across 85

pieces. When counting each instrument part independently,

the combined total amounts to 141 820 jeonggans. Out of

90 pieces notated in jeongganbo for ensembles of at least

two different instruments in the published manuscripts, we

excluded 5 pieces that have discrepancies in the total num-

ber of jeonggans across instruments.

4. JEONGGAN-LIKE ENCODING

In the field of symbolic music generation for Western

monophonic and polyphonic music, encoding schemes

such as ABC notation, which denotes pitch and duration

separately, are effective and prevalent [12, 13]. However,

when it comes to Korean court music, whose heterophonic

structure is a defining characteristic, it is crucial that the in-

tricate alignment of different melodies be well-represented

in encoding. The genre also exhibits prolonged notes and

considerable variations in note lengths, which proves to be

a challenge for learning algorithms, especially when data

is limited.

These distinct musical qualities call for a specialized en-

coding scheme; for this, we propose Jeonggan (JG)-like

encoding, which closely follows the positional notation

of Jeongganbo. This symbolic music encoding method is
modeled to inherently reflect the composition and notation

style of traditional Korean court music.

The detailed rules of encoding are as follows. The

boundary of a Jeonggan is designated as a bar (|) to-

2 The term “court music” used in this paper originally refers to Jeong-

ak. Jeong-ak includes not only court music but also salon music and mil-
itary music. However, for readability, we use “court music” here.

ken. Change of measure (called Gak) is indicated by a line

break (\n). As illustrated in Figure 3, the position of each

note is denoted by a number between 0 and 15, after which

the pitch symbol follows.

Ornamentations (sigimsae) can either have a duration

or not. Sigimsae with duration, such as the ‘ㄱ’ symbol in
Figure 4, are handled in the same way as pitch symbols.

Sigimsae without duration such as ‘ ^ ’, which appear at

the side of the pitch character, are placed after the corre-

sponding pitch symbol.

There are several advantages that we can expect to gain

from using JG-like encoding. First, with position-based en-

coding, the duration-related vocabulary is limited to just

16 entries. In contrast, duration-based encoding schemes

require learning each duration token as a separate entry,

resulting in a significantly larger vocabulary. Additionally,

rather than determining the length of a note with a single

calculation, JG-like encoding allows for the flexible adjust-

ment of note lengths during inference via combination of

jeonggan boundary and position tokens. This enables gen-

eration of music that is more adaptable to the time step and

takes into account the sequence of the input source, which

can be expected to result in more dynamic and context-

aware music generation.

4.1 Other Possible Encodings

REMI (revamped MIDI-derived events) [14] first proposed

the usage of beat-position feature rather than time-shifting

to encode temporal position. We also experiment with

REMI-like encoding which adopts three token types: beat

position, new beat (instead of new measure), and pitch to-

kens. We intentionally design REMI-like and JG-like en-

coding to share the same structure and result in the same

number of tokens for a given melody. They differ in that

JG encoding provides intra-JG position, while REMI en-

coding provides the beat position of the note. According

to the position labels shown in Figure 3, any of [0, 1, 4,

10, 12] can correspond to beat position 0. However, in JG-

like encoding, each occurrence of position tokens limits

the possibilities of subsequent ones. For instance, a posi-

tion token of 0 implies that no more notes will occur in the

same jeonggan, and if the first note is 1, one or more addi-

tional notes should follow with values of 2-3 or 6-9. In con-

trast, in REMI-like encoding, any offset value can follow a
beat position of 0. To examine the impact of this position-

based logic on the generation process, we use REMI-like

encoding as our first baseline for comparison.

As a second baseline, we implement an ABC-like en-

coding scheme that does not have a separate bar token and

encodes each note as a combination of pitch and duration

values. Note that we do not omit duration tokens that are

equal to unit length as ABC encoding typically does.

5. ORCHESTRAL PART GENERATION

5.1 Transformer Sequence-to-sequence Model

We implement an encoder-decoder transformer [15] model

to generate melodies for different instruments based on a
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Figure 5: Orchestral part generation

given instrument’s melody, leveraging its ability to learn

long-term dependencies. Unlike RNN-based models, the

transformer calculates relationships between all elements

in a sequence via the self-attention mechanism, enhancing

its capability in symbolic music generation [16,17,18]. The

model consists of an encoder that processes the input se-

quence and a decoder for generating the output sequence.

Our objective is to generate melodies that synchronize with

the input melody across musically equivalent phrases; self-

and cross-attention within the model enable understanding

of musical context at measure and bar levels, capturing the

repeating structure of melodies and accents prominent in
traditional Korean court music.

5.2 Beat Counter

Instead of sinusoidal [15] or learned [19] positional em-

bedding commonly utilized in transformer-based models,

we implemented a ‘beat counter’ embedding that provides

information about temporal position.

For a model to learn to ‘parse’ semantic position only

from the tokens’ sequential position is challenging, if not

impossible, with limited training data and a small number

of transformer layers. Therefore, we explicitly encode the

musical position of each symbol as a combination of mea-

sure index, beat index, and sub-beat index (in-jeonggan po-

sition) as shown in Figure 5. This information is summed

into note embedding, just like positional encoding of trans-

former [15].

As previous research of PopMAG [20] demonstrated,

metrical position embeddings can replace the positional

encoding of transformers in symbolic music. A minor dif-

ference between PopMAG and our approach is that the

model predicts only the appearance of new measures or

new beats without the index of them, and that the new beat

can be used for elongating the duration of previous note.

The same idea of embedding the beat counting has been

previously applied to RNN-based Irish melody generation

in ABC format [21], while its advantage was not properly

evaluated. A similar idea, using metrical position instead

of or along with absolute token position, has also been ap-

plied to transformer architecture [20,22,23]. However, our

results presented in Section 6.3 demonstrate that this beat

counter embedding is essential for making the model prop-

erly understand the musical contents.

6. EXPERIMENT AND RESULTS

6.1 Training

We split the Jeongganbo dataset into three subsets: 75

pieces for training, 5 for validation, and 5 for testing.

Each piece contains melodies for up to 6 instruments. The

sequence-to-sequence model takes 4 measures of melody,

each from a randomly selected number of instruments, as

input to the encoder; and given a target instrument condi-

tion, it generates the corresponding 4 measures of melody

for the target instrument. Note that the number of beats in
a single measure is at least 4 or to a maximum of 20 in our

dataset.

The transformer encoder and decoder both consist of

6 layers, 4 attention heads, and a hidden dimension size

of 128 with dropout of 0.2. We train for 35 000 updates

across 300 epochs using negative log-likelihood loss. We

also employ mixed precision training [24] to enhance per-

formance and efficiency. We utilize the Adam optimizer

with an initial learning rate of 0.001 and apply a cosine

learning rate scheduler with 1000 warmup steps. Using

a batch size of 16, training can be conducted on a single

Nvidia RTX A6000 GPU.

6.2 Evaluation Metrics

6.2.1 Length Match Rate

As an evaluation metric, we check whether the input and

output melodies share the same number of measures, a

consistency necessitated by our task. Since the length of

a measure can change in the middle of a piece, this met-

ric serves as an indicator of the model’s ability to capture

the musical context of the input melody and accordingly

generate a musically complete melody. We measure length

match rate as the percentage of generated melodies whose

number of jeonggans, after decoding the output tokens,

matches that of the input melody.

6.2.2 F1-Score

Regarding the generation task as one with a fixed answer,

we can measure the accuracy of the generated melody by

directly comparing it with the ground-truth target melody.

Thus, as a general accuracy metric, we calculate the F1-

score of predicted notes, where only the notes with the ex-

act same onset position and pitch are counted as correct.

To make a fair comparison between encoding methods,

note onset positions in JG-like encoding were converted

to those in the REMI-like format. Ornamentations without

duration were not counted.
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Piri to Geom. Every to Daeg.

len-mat F1 len-mat F1

JG-like 0.942 0.679 1.0 0.614

REMI-like 0.923 0.567 1.0 0.532

ABC-like 1.0 0.704 0.903 0.542

JG w/o Counter 0.135 0.043 0.269 0.052

REMI w/o Counter 0.269 0.081 0.192 0.039

ABC w/o Counter 0.403 0.090 0.115 0.016

Table 1: Quantitative evaluation results

6.3 Results and Discussion

In our sequential generation process, melody for the in-

strument geomungo, characterized by its low pitch range

and simple melodies, is the first to be generated from the

initial piri melody. The daegeum, typically featuring the

most complex and nuanced melodies among the six instru-

ments, is the last in line. Table 1 displays the results of ob-

jective evaluation, specifically focusing on geomungo and

daegeum.

For generation of geomungo melodies, ABC-like en-

coding yields the best results. This appears to be due to
the simple and regular melodic structure of the geomungo

which fits in well with ABC-like encoding. On the other

hand, in the task of generating daegeum melodies, JG-

like encoding achieves higher F1-scores. This indicates that

JG-like encoding outperforms other methods in generat-

ing complex and varied melodies. We also discover that as

rhythmic complexity increases, the measure length match

rate of ABC-like encoding decreases.

To examine the effectiveness of the beat counter tech-

nique, we compare our model that incorporates beat

counter with a baseline model that instead employs abso-

lute position embedding [19], a technique commonly used

in symbolic music generation.

The results in the lower part of Table 1 show that the

models without beat counter fail to generate melodies with

appropriate lengths. The problem is less severe in ABC-

like encoding, as processing accumulating duration tokens

can be easier than counting jeonggan boundaries. This

demonstrates the efficacy of the beat counter technique in
JG-like encoding, and its ability to replace traditional po-

sitional encoding.

7. 15TH CENTURY MELODY

TRANSFORMATION

To generate an entire ensemble score using our method,

we require an initial input melody with a specified in-

strument. However, the remaining 15th-century score of

Chihwapyeong and Chwipunghyeong only provide a sin-

gle melody without any mention of instruments. It also

features rhythmic groupings of eight beats, which is rare

in court music that is played today. We therefore need to
transform the old melody for a specific instrument used

in court music; to maintain the outline of the original

melody while achieving plausible transformation, we train

a masked language model on our Jeongganbo dataset be-

fore infilling the 15th-century melody.

7.1 BERT-like Masked Language Model

Bidirectional Encoder Representations from Transformers

(BERT) [25] is a self-supervised language representation

learning model that uses a bidirectional transformer instead

of a causal transformer decoder. It is trained with a masked

language model (MLM) objective, where tokens in the in-

put sentence are randomly masked and the model predicts

the original vocabulary ID of said masked tokens. Because

of its advantage in exploiting bidirectional context, BERT-

like models have also been adapted for music audio gen-

eration [26] and symbolic music generation [27, 28] along

with representation-learning purpose adaptation on sym-

bolic music [22, 29].

7.1.1 Piano-roll-like Encoding

One of the main limitations of using a BERT-like model

for generative tasks is that the sequence of given (un-

masked) tokens and masked tokens has to be pre-defined.

This means that one has to decide the number and posi-

tion of new tokens to be inserted for a given original se-

quence. To avoid this, we use piano-roll-like encoding for

the MLM, a technique widely employed in works on mu-

sic generation with limited rhythmic patterns such as in

Bach Chorales [30,31,32,33]. Here, each jeonggan is rep-

resented as six frames, with each frame including features

for symbol (pitch or sigimsae with duration) and for orna-

mentation. We also apply the aforementioned beat counter

in piano-roll encoding.

7.1.2 Training with Masking

Following examples in MusicBERT [29], we train the

model with masked language model objective with various

masking methods: i) masking 5% of frames, ii) replacing

5% of frames, iii) masking 20% of note onsets, iv) replac-

ing 10% of note onsets, v) erasing 10% of note onsets, vi)

masking the entire 6 frames of 15% of jeonggans, and vii)

masking 50% of ornamentations.

Though the model can be trained to handle an arbitrary

number of input instruments, we only train the model with

a single instrument as with our orchestration transformer,

since the main intended usage of the model is to create

variations of a single melody. We train a 12-layer model

with the same dataset and hyperparameter settings as with

the orchestration model.

7.2 Inference Procedure

For converting and performing monophonic melodies, we

opt for a 30x � span which equals to 10 jeonggans. This

also corresponds to the rhythmic pattern of the 4—7th

movement of Yeominlak. The original Chihwapyeong and

Chwipunghyeong melody, which can be interpreted in an

8/8 time signature, were modified by strategically insert-

ing empty jeonggans to the 5th and 7th positions, to im-

itate Yeominlak’s rhythmic pattern. Utilizing the masked

language model, the modified melodies were seamlessly
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transformed into a piri melody. Piri, a double-reed instru-

ment known for its loud volume, was chosen as the main

instrument for conveying the original melody due to its

prominent role in contemporary court music.

As the models were all trained on 4-measure chunks, we

generate the full sequence of 512 or 132 measures using

a moving window, providing two measures of previously

generated output as teacher-forcing inputs and generating

one more measure for each four-measure input. These were

applied in a similar manner to both melody transformation

and orchestral part generation. Once the melody is trans-

formed into a piri melody, we feed it to the orchestral trans-

former to generate parts for five other instruments. We se-

quentially generate for each instrument with the previously

generated part as input. The final generation order is as

follows: piri, geomungo, gayageum, ajaeng, haegeum, and

daegeum.

Following the initial generation of melodies for all six

instruments, we perform a refinement step. Here, each in-

strument’s melody is regenerated with the melodies of the

other five as input. This additional process helps to rein-

force the melodies that initially had to be generated with-

out the context of the other instruments.

7.3 Expert Reviews

The Court Music Orchestra of the National Gugak

Center performed the generated Chihwapyeong and

Chwipunghyeong on the birth anniversary of King Sejong

at Gyeongbokgung Palace on May 14th, 2024. They per-

formed it again at the National Gugak Center on June 2nd,

2024 with an introduction to technical background by the

authors. Due to time constraints, only partial excerpts from

the entire score were performed.

The musicians gave positive opinions such as “genre-

specific rhythm and melodic flow were well-represented”

and “the generated pieces presented ornamentation tech-

niques and melodic progressions specialized for each in-

strument.” Still, there were a few instances where notes

that did not fit the scale appeared, and when notes outside

the appropriate range were present, the performers had to
alter or omit them or change their octave to perform the

piece. However, the generated results were acknowledged

to closely resemble the target style of Yeominlak. Thus,

the Court Music Orchestra decided to play the pieces in a
similar ensemble size to Yeominlak without further modi-

fication.

We additionally evaluate the generated scores, focusing

on the effects of the refinement step. The evaluation crite-

ria were carefully selected to assess aspects that require a
deep understanding of the genre. These criteria include 1)

the appropriateness of the scale and range for each instru-

ment (scale), 2) the proper use of unique characteristics

and ornamentations specific to each instrument (sigimsae),

3) the suitability of the rhythmic structure of strong and

weak beats (rhythm), and 4) the harmony and coherence

among the instruments when performed together as an en-

semble (harmony).

Seven employees from the National Gugak Center who

No Refinement With Refinement

Scale 4.0 (±0.53) 4.0 (±0.53)

Sigimsae 3.4 (±0.73) 4.0 (±0.53)

Rhythm 2.9 (±0.35) 3.3 (±0.45)

Harmony 2.9 (±0.83) 3.3 (±0.70)

Table 2: the average and std of opinion scores from 7

judges for systems with and without refinement.

majored in Korean traditional music instruments or the-

ory participated in a subjective survey. We name the pre-

refinement generation results piece A, and the final output

after the refinement step piece B. The evaluators were not

informed of this distinction. The participants assessed the

pieces for the four criteria on a 5-point scale (1-5) and pro-

vided qualitative feedback on the two compositions. The

results are summarized in Table 2. These results demon-

strate that the proposed refinement process effectively en-

hances the overall quality of the generated music, espe-

cially for sigimsae of each instrument.

8. CONCLUSION

Throughout this work, we explored how music generation

models can resurrect ancient melodies into new composi-

tions that meet style of current-day Korean court music.

Venturing into relatively uncharted territory, we ap-

proached each step meticulously—from data curation and

parsing to model architecture design—while carefully con-

sidering the unique nuances of the musical tradition. To

enhance the quality of the generated outputs, we proposed

a novel encoding framework and validated its effective-

ness through objective and subjective measures. This en-

deavour to tackle an underrepresented non-Western music

genre through diverse MIR lenses hopefully expands the

horizons of the field.

The Jeongganbo dataset and its conversion to Western

staff notation in MusicXML is available online, along with

other code of this project, and video recording of the per-

formance. 3 To the best of our knowledge, this will be

the first dataset of machine-readable Jeongganbo. We be-

lieve that this dataset can significantly contribute to com-

putational ethnomusicology beyond its usage as a training

dataset for music generation demonstrated in this paper.

We also provide an interactive web demo 4 that show-

cases our proposed generative model. While this project

focused on reviving melodies from the 15th-century, the

web demo allows users to input their own melodies and

create orchestrations of Korean court music. The interac-

tive platform enables users to directly engage with the gen-

erative model in the web browser.

We hope that this project contributes to moving closer

to leveraging machine learning to make traditional music

more accessible and enjoyable for modern audiences.

3 https://github.com/MALerLab/SejongMusic
4 https://six-dragons-fly-again.site/
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ABSTRACT

This paper discusses the transcription of a collection of

musical works using Optical Music Recognition (OMR)

technologies during the implementation of the Spanish Po-

lifonIA project. The project employs a research-oriented

OMR application that leverages modern Artificial Intelli-

gence (AI) technology to encode musical works from im-

ages into structured formats. The paper outlines the tran-

scription workflow in several phases: selection, prepara-

tion, action, and resolution, emphasizing the efficiency of

using AI to reduce manual transcription efforts. The tool

facilitated various tasks such as document analysis, man-

agement of parts, and automatic content recognition, al-

though manual corrections were still indispensable for en-

suring accuracy, especially for complex musical notations

and layouts. Our study also highlights the iterative pro-

cess of model training and corrections that gradually im-

proved transcription speed and accuracy. Furthermore, the

paper delves into challenges like managing non-musical

elements and the limitations of current OMR technolo-

gies with early musical notations. Our findings suggest

that while automated tools significantly accelerate the tran-

scription process, they require continuous refinement and

human oversight to handle diverse and complex musical

documents effectively.

1. INTRODUCTION

In recent years, many institutions have digitized their col-

lections to preserve them and make them available online

for broader public access. Digital images, however, merely

contain a grid of pixels and lack inherent musical mean-

ing; thus, they do not lend themselves to the myriad pos-

sibilities offered by music information retrieval and dig-

ital musicology approaches, ranging from plain-text con-

tent searches to more sophisticated analytical purposes.

To leverage these technologies, the music depicted in the

© D. Rizo and J. Calvo-Zaragoza. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). At-

tribution: D. Rizo and J. Calvo-Zaragoza, “Lessons learned from a

project to encode Mensural music on a large scale with Optical Music

Recognition”, in Proc. of the 25th Int. Society for Music Information

Retrieval Conf., San Francisco, United States, 2024.

images must be encoded in a structured format, such as

MEI [1] or MusicXML [2], among others.

Over the past few years, Optical Music Recognition

(OMR) technologies have been employed to facilitate the

encoding of music scores into structured digital formats

[3]. Alfaro-Contreras et al. [4] demonstrated that the most

effective method for obtaining digitally encoded scores is

through the use of OMR technology. Their research in-

dicates that the accuracy of OMR in recognizing musical

notations varies depending on the type of document, the

quality of the source material, and the complexity of the

notation.

Despite its advances, OMR technology seldom pro-

duces flawless results, and the extent of necessary post-

editing is determined by the intended use of the digitized

content. For instance, some initiatives, such as F-Tempo 1 ,

utilize OMR outputs—even when they contain errors—for

conducting search operations. However, when a polished

transcription is required, manual corrections become indis-

pensable. This was the case considered in the digitization

of a vast array of files for the KernScores database. 2

The limitations of OMR technology are not solely de-

termined by its recognition accuracy. To date, no OMR

system is capable of comprehensively processing the en-

tire spectrum of symbols found in all kinds of musical no-

tations. The complexity of analyzing orchestral scores,

with their varied layouts and the inclusion of ossias, or

managing compositions where different parts are noted on

separate sheets, further complicates the scenario. Conse-

quently, in many practical applications, the encoding is ul-

timately carried out by human transcribers using comput-

erized notation software like MuseScore 3 or Sibelius. 4

In specific projects such as Didone [5], about 4 000 18th-

century Italian Opera arias are manually transcribed in

Finale 5 before being converted into MusicXML. This

methodology was similarly employed to achieve the en-

coding of modern versions of Renaissance compositions

from the “Josquin Research Project”. 6

Furthermore, several OMR solutions exist for tran-

1 f-tempo.org (accessed April 8th, 2024).
2 kern.ccarh.org/ (accessed April 8th, 2024).
3 musescore.org (accessed April 8th, 2024).
4 www.avid.com/sibelius (accessed April 8th, 2024).
5 www.finalemusic.com (accessed April 8th, 2024).
6 josquin.stanford.edu (accessed April 8th, 2024).
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scribing Common Western Modern Notation (CWMN),

with Audiveris 7 standing out as the sole open-source op-

tion alongside several proprietary alternatives, including

SmartScore, 8 PhotoScore, 9 and PlayScore 2. 10 The per-

formance of these varies significantly based on the sheet

music’s complexity and clarity. An evaluation of their ef-

ficiency in recognizing content from music theory books

is detailed in the work of Moss et al. [6], highlighting the

challenges they face in complex situations.

For early notations, the choices are much more limited.

The SIMSSA project [7] considered two software tools—

Gamut and Aruspix [8]—for automatic information extrac-

tion from images, although these tools are no longer ac-

tively supported. Additionally, the project developed an

OMR meta-workflow named Rodan, enabling users to as-

semble custom processing systems from a library of image

processing and machine learning modules [9]. While Ro-

dan is not tailored to any particular musical notation, its

components are predominantly focused on plainchant. Re-

cently, a web-based OMR application named MuRET has

been introduced as a research-oriented tool designed to fa-

cilitate the scientific study of the complete OMR workflow

across various scenarios and notations [10]. This includes

analyzing the real impact of improvements in automatic

recognition models and their integration for practical pur-

poses in the work of transcribers.

In this paper, we outline the entire process undertaken

in the context of the Spanish PolifonIA project, for which

MuRET has been utilized and refined to transcribe the

entire collection of white Mensural notation held by the

National Library of Spain (BNE) from scratch. We will

detail all stages of the process, aiming to provide useful

takeaways for other similar projects and transcription tools

based on OMR. This includes discussing both manual and

automated stages, the steps that may benefit from advance-

ments in OMR techniques, those that still require human

intervention, and which processes need to be streamlined

due to their significant impact on workflow performance.

To illustrate the aforementioned aspects, figures will de-

tail how, by the end of the project, more than 60 books con-

taining around 12,000 images—some consisting of several

pages—were encoded in just 18 person-months. Addition-

ally, the figures will showcase how an iterative approach of

transcription, correction, and AI-model training gradually

accelerated the whole process.

The remainder of the paper is organized as follows.

First, the data that has been transcribed is briefly intro-

duced in Section 2. The following Section 3 describes

the whole workflow used for obtaining a final digital score

from a set of images in the source collection. This work-

flow will be analyzed from a quantitative point of view in

Section 4, and then discussed from a qualitative perspec-

tive in Section 5. Finally, Section 6 concludes the work

and discusses possible ideas for future research.

7 github.com/Audiveris (accessed April 8th, 2024).
8 www.musitek.com (accessed April 8th, 2024).
9 www.neuratron.com/photoscore.htm (accessed April 8th,

2024).
10 www.playscore.co (accessed April 8th, 2024).

2. DATA

Although the workflow and evaluation described in subse-

quent sections are somewhat generic, this section provides

details of the digitized collection to contextualize its sig-

nificance.

The collection considered for the project totals 63

works, almost entirely in print editions dating from 1533

to 1811, and mostly written in white Mensural notation.

The genres of these works are varied, comprising mainly

vocal polyphonic pieces, although there is a presence of

instrumental, dramatic, and even treatises. Their functions

are predominantly religious, with some presence of pro-

fane songs. Their formal structure is linked to this, high-

lighting the complexity of formats in religious works rang-

ing from Passion Cycle and Missae to the simpler forms of

chansons or motets, among others. In polyphonic works,

the parts are usually written in separate books.

Regarding printers, the collection features works from

the Italian School such as: Scoto, Gardano or Vicenti from

the Venetian; Dorico and Robbleti from the Roman; and

Carlino and Beltrano from the Neapolitan. Le Roy and

Ballard are prominent in the Paris School, along with the

Flemish School’s Phalesius, Bellere, and Susato. Spanish

publishers include Ibarra, Doblado, and Martinez Dávila

in Madrid editions.

3. TRANSCRIPTION WORKFLOW

The transcription workflow can be broken down into sev-

eral sequential phases.

The first stage involves the selection and compilation

of works to be transcribed, either in PDF format or as

a set of individual images. These are properly ordered

through their file names following a lexicographic criterion

for avoiding the need for time-consuming manual reorder-

ing within the tool.

For the sake of time and organizational management,

the works are classified into different collections accord-

ing to similarities in notation and/or publisher. This al-

lows works sharing similar visual aspects to utilize the

same machine learning models without adjustments be-

tween them. Considered features include notation type

(plain chant, mensural, transitional scores, modern nota-

tion), engraving method (handwritten or typeset—where

the copyist or printer is noted for sharing typography and

layout styles), contents (treatises, instrumental and vocal

music including lyrics), and the presence of elements such

as basso continuo.

The next step involves uploading the works to MuRET.

This tool employs OMR models that drastically reduce the

image sizes to heights of 256 pixels. Although it utilizes

IIIF servers that manage image resizing, for transcription

purposes, it is not necessary to import high-quality images,

but rather those with sufficient resolution to be readable on

the user’s device. To avoid wasting server processing time

and space, a prior down-sampling of images is advisable.

In the next stage, we refine the content imported into

the tool. Most of the imported image sets contain covers,

empty pages, and indexes that, while not containing strictly

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

226



Figure 1. Example of document analysis and part assign-

ment. Box colors represent different region types.

music information, are useful for extracting metadata and

should be discarded but not removed, as they can guide

the transcription process. Although some processes exist

to automate this detection of pages with actual music con-

tent [11], MuRET does not include this desirable feature.

Once the images are loaded and filtered, longer works to

be transcribed must be divided into sections, such as the

different parts of a mass (Kyrie, Agnus, etc.) or the move-

ments of a concerto.

The final block aims to perform the actual transcription

of the works. It consists of four main operations that will

be detailed below: analyzing the document layout and di-

viding it into regions of interest, associating each staff with

a part or instrument, recognizing the music contained in

each staff and its encoding, and, finally, using all that in-

formation, scoring up all the parts to form a final digital

score.

The document analysis and staff-level recognition of

music symbols are performed using deep learning tech-

nologies [10]. Generally, we follow the same scheme

for handling new works to be transcribed. First, models

trained with previous collections are applied, mistakes are

corrected, and then iteratively, new models are built, either

specific for the collection if it is very different from pre-

vious documents, or following the proposal in [12], gen-

eral for all transcribed collections. When faced with a new

manuscript, the strategy is to first evaluate with the latest

general model. If this does not perform well—which is

evaluated subjectively by the user—we proceed to label,

with or without the help of the OMR output, about twenty

pages of the new work, then build specific OMR models

and, in addition, enrich the general model for future works.

3.1 Document analysis

Upon arranging the images, the initial action in transcrib-

ing a manuscript, termed document analysis, involves di-

viding each image into distinct elements. This process de-

tects various region types within the images, such as staves,

lyrics, part names, among others, as illustrated in Figure 1.

Typically, an image encompasses only a single page. How-

ever, scans of entire books are also common, resulting in

images that depict multiple pages simultaneously, akin to

the example shown in the figure.

3.2 Part management

The majority of materials requiring processing are poly-

phonic, composed of multiple voices or instruments. These

Figure 2. Agnostic representation and its semantic conver-

sion in MuRET.

materials come in various formats, such as compositions

with parts spread over several pages, or choir-books that

display two voices on a single page (see Figure 1), among

others. Occasionally, the document intended for transcrip-

tion is dedicated to music theory, as seen in music trea-

tises [6], predominantly featuring textual content with oc-

casional musical illustrations. Currently, the assignation of

parts is performed manually.

3.3 Region-wise content recognition

After distinguishing and assigning the various staves to

their respective parts, it becomes essential to extract the

musical elements located within each staff.

The approach applied divides the recognition of the mu-

sical content in a staff in two steps (see Figure 2). First, it

extracts what is referred to as agnostic representation [13],

i.e., tokens that have not yet been assigned a specific mu-

sical meaning, as well as their absolute vertical positions

on the staff, regardless of the clef used. Then, these are

automatically transduced into a meaningful **mens en-

coding [14], that can be manually post-edited.

After the automatic recognition, the eventual mistakes

must be corrected. We found four different kinds of er-

rors, with different impacts on the time required to be cor-

rected. The easiest mistake is that of the vertical position of

a recognized symbol (1), that is amended just with a mouse

or keyboard action. A symbol whose type is wrongly de-

tected (2) requires a slight higher effort, as it takes some

seconds to find the expected symbol among all the possi-

bilities. The removal of a symbol (3) is a very quick op-

eration, while adding an undetected symbol (4) requires

drawing a box over the manuscript image.

Note that for those difficult manuscripts for which all

automatic models generate too many errors, as that shown

in Figure 2, it might be preferable to manually add all ag-

nostic symbols as described above.

3.4 Scoring up and exporting

As above mentioned, most of the works transcribed in the

project are organized into separate parts or choral books,

where different voices or instruments are scattered across
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Figure 3. Example of alignment in MuRET. Some tex-

tual data is included below the staves to indicate reference

points of the corresponding source image. Dashed bar lines

are used to help detecting alignment errors.

different pages. Having already identified to which instru-

ment each staff belongs (Sect. 3.2), this operation is simply

accomplished by concatenating all the staves of the same

part.

However, in Mensural notation, a preliminary step is re-

quired to correctly align the voices. In this notation, some

notes may have different durations depending on the con-

text, despite their appearance. The contextual resolution of

durations, resulting in changes called perfection and alter-

ation, can be carried out in MuRET either automatically,

by applying the rules established in [15], or manually, by

editing the **mens code.

In any case, mistakes such as missing symbols, incor-

rect duration elements, or invalid perfection assignments

can only be detected by visually inspecting the aligned

score (see Figure 3).

The final step of the process is exporting the transcrip-

tion into an interchange or storage format. In the particular

case of MuRET, the MEI standard is considered, offering

two possible export formats: a parts-based MEI format that

includes graphical information in the facsimile element or

the arranged score MEI file.

4. QUANTITATIVE EVALUATION

MuRET records all operations performed by the user, sav-

ing the timestamp of each action and the element on which

it is performed.

In this evaluation we address three questions. The suit-

ability of using a transcription tool such as MuRET in a

real-world scenario, the relative importance in OMR op-

erations compared to the other tasks, and the ability of

machine learning approaches to improve their accuracy as

training datasets are iteratively expanded.

The first question is evaluated by comparing the perfor-

mance of the tool with the theoretical hypothesis proposed

in [4]. The first two rows of Table 1 show the times re-

ported in [4] for processing 126 typeset pages of a Magnifi-

cat, either totally manually, or using an OMR. 11 Note that

in that work, only the agnostic representation is obtained,

and the time required for performing all the other tasks,

such as the document analysis, or document preparation is

11 This value is computed from the values of Figure 2 in [4]

discarded. Automatic processing times are in all cases less

than 1 second after loading the models into memory.

The next two rows show the process performed in the

current project with the same Magnificat. First, the time

to perform OMR processes (document analysis and recog-

nition of agnostic symbols in each staff), then the entire

transcription process, including all phases of the workflow.

The final review of the scoring up has been excluded from

these figures because in many cases the time is spent on

musicological discussions of the manuscript rather than

mechanical issues.

Finally, we have added to the table the worst case of

those encountered in the project because it is a very diffi-

cult one due to the very low resolution of the images, which

would have been extremely tedious to transcribe without

the help of OMR (see Fig. 2), and the best case found for

which the existing general OMR models have been able to

correctly detect almost all symbols, and no part manage-

ment was required.

The times reported demonstrate the suitability of using

an OMR approach, but also the major impact on the whole

process of the other, non-directly OMR processes, which

cannot be overlooked.

Table 1. Summary of annotation times per page.

Scenario Avg. Time/Page

Magnificat work

Manual agnostic annotation [4] 49
′
19

′′
± 11

′
27

′′

OMR of agnostic representation [4] 15
′
23

′′
± 2

′
44

′′

OMR: doc. analysis and agnostic 22
′
07

′′
± 20

′
42

′′

Whole transcription process 29
′
09

′′
± 23

′
37

′′

Whole project collection

Worst case (whole transcription) 52
′
31

′′
± 23

′
31

′′

Best case (whole transcription) 4
′
30

′′
± 1

′
51

′′

Regarding the second question, compare the relative

importance of classic OMR operations with other opera-

tions such as document preparation or parts management

for an entire collection, we show in Table 2 the times of all

actions performed in MuRET grouped by all the workflow

phases described in Sect. 3. The figures show that as it

could be expected, the recognition of the musical symbols

in each staff is the most time consuming task, followed by

the semantic conversion and the document analysis, and

what a priori could seem a slow operation, the manual as-

signment of parts to the staves, is a very small portion of

the total, even lower than the preparation of images and

organization into sections prior to the transcription itself.

Finally, to evaluate how incremental training of OMR

models leads to better OMR behavior, we report in

Fig.4 the number of operations performed on each image

throughout the life of the project. Using the date axis is in-

teresting because as the project has progressed, we have

had more accurate OMR models because we have been

trained on more data.

In the figure, we have used the number of operations in-

stead of times because the time depends on the laptop on
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Table 2. Summary of time per phases.

Phase Processing times

Document preparation 830
′
08

′′

Document analysis 4.913
′
36”

Part management 429
′
37

′′

Agnostic representation 1.9536
′
59

′′

Semantic encoding 10.923
′
55

′′

Figure 4. Evolution of transcription operations over time

for all images in the project. Each point represents the

number of operations required to transcribe a page.

which the operation was performed, since all classification

models in MuRET are executed in the browser. Also, de-

pending on the work, the number of staves of each image

varies. To solve this, the graph shows the relationship be-

tween the number of operations and the number of staves

of each image.

The figure shows how the average number of operations

over time tends to be lower as the date progresses. We

observe that an initial specialization of the OMR engine

does help, and after that the user effort is stabilized.

5. QUALITATIVE EVALUATION OF THE

WORKFLOW: OPPORTUNITIES

In this section we analyze the suitability of the involving

stages of the transcription workflow to draw good practices

for the development of OMR tools. We will discuss which

operations we believe could be fully or partially automated

to speed up the process and avoid tedious and repetitive

work as much as possible.

The preparation of the works to be transcribed and its

correct organization have been decisive for the success of

the project. Since there is not yet a universal OMR model

capable of dealing with any possible entry, the grouping

of the pieces according to time period and typographic or

calligraphic style, and the arrangement of the transcription

following these groups, has been a key factor. In cases

where, for some reason, we interleaved a piece out of that

order, the performance decreased. While this clustering

process was performed manually by computer scientists

and musicologists, automating it could help to know in ad-

vance which existing OMR model could be applied to a

new manuscript. Also, it is interesting to automatically de-

tect whether no model is able to process the manuscript

and manual labeling of a number of pages is required to

build a specific one.

A factor that we have already mentioned is that of the

image resolution and, implicitly, the weight of the files.

Although IIIF servers are able to deal with the resizing of

images, we have experienced a noticeable speed-up when

the uploaded images are of smaller sizes.

Initially in the project, each work was processed follow-

ing the different steps sequentially image by image. After

processing some, instead, another approach was proved to

be more convenient: perform all the operations of each

phase for all the images of the work in batches. This al-

lowed us to follow up on the work and detect possible er-

rors made or not detected. It is important to note that in

cases where we did all the tasks on each page and only re-

viewed them once, we made more errors. This approach

was enhanced by a new feature added to MuRET in the

middle of the project: the possibility of automatically tag-

ging all work for later correction, which drastically im-

proved transcription times by saving us OMR processing

times for each page and staff (done “offline”).

A key aspect with a huge impact on the throughput of

the workflow has been the (sometimes questionable) deci-

sions of the MuRET developers in terms of UI/UX. The

simplicity on the correction of the agnostic staff level au-

tomatic transcription and its automatic conversion into a

meaningful semantic encoding in **mens format helped

to minimize the impact of inaccurate OMR model pre-

dictions. A paradigmatic example has been the change

in MuRET for the way of processing ligatures. The first

OMR models in MuRET were not able to detect differ-

ent mensural ligatures, but all different ligatures as a com-

mon symbol. The conversion of all ligatures to their final

**mens encoding took longer than automatically encod-

ing and correcting an entire page. During the transcrip-

tion project, this tool was able to detect all the individual

components of the ligature (plicas and note heads). Being

quite accurate, when failing, the correction of the individ-

ual components took the same time as deleting the whole

detection and adding them again. In a later version, this

approach was changed by another one where the ligature

was converted in a lower number of elements (different

notes with or without plicas) with a bit worse OMR perfor-

mance. However, for the purpose of final correction times,

this change was appropriate because from then on, the cor-

rection time for errors was equivalent to the correction time

for any other element.

Following this line, an aspect that could improve the

efficiency of use of the system would be an easiest cor-

rection procedure of wrongly detected agnostic symbols.

Currently, the user has to locate the symbol into a grouped

list of possibilities. Even though this a specific criticism to

MuRET, any simple mechanism in any transcription tool

for locating the desired element to use, as some keyboard

filtering approach, would significantly reduce the correc-

tion times.

The separation between agnostic representation and its

final semantic encoding has proven to be an efficient way

of processing early music. The ease of checking that the
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graphic symbols are the same as those in the manuscript,

regardless of musicological considerations, has greatly ac-

celerated the process, allowing each member of the team

to focus on one of the phases, leaving the expert musicol-

ogist to deal only with the final transcription. It’s worth to

mention, that in this process, a specialized language model

to detect syntactic mistakes would have improved the effi-

ciency of the process, as we have devoted most of the time

to visually inspect the output of the OMR classifiers, even

more than correcting wrong symbols.

Although the conversion of the agnostic representation

of each staff into a final encoding is performed automat-

ically, we’ve found cases where it has been necessary to

make some adjustments, such as the encoding of implied

accidentals. MuRET does not use any WYSIWYG approach

but asks the user correct directly writing **mens format.

Having a steep learning curve, the code has proven to be

efficient for performing this kind of operations.

In that regard, another important feature, without which

the correction operations would have been more tedious,

has been the proper synchronization of the views of the

different representations of the selected transcribed musi-

cal symbol: when selecting the agnostic symbol, it was

automatically highlighted in the original manuscript pre-

view, and in the final encoding. The absence of this feature

in the final MuRET scoring-up process has made the final

review and correction time consuming and error-prone.

For dealing with many different works with a large

number of images each, it is very important to keep track

of the status of the work. MuRET asks the user to record

the status of each phase (document analysis, part linking,

music transcription) for each image. Although a priori this

seems reasonable, we usually forgot to perform this op-

eration, and the simple task of going back individually to

mark each image and step as completed has been a time

consuming operation. For any transcription tool, it is ex-

tremely important to include a project management tool to

easily annotate and visualize, either individually for each

image or in batch, the progress status of the transcription,

including the addition of user comments.

An interesting result of our transcription experience is

that some operations do not require any algorithm, but are

simply performed with a correct graphical user interface.

This has been the case for document analysis labeling of

new manuscripts for which no model was good enough to

correctly identify the regions of interest. At the beginning

of the project, when this situation arose, we had to manu-

ally label a number of pages of the manuscript to build a

new model that was subsequently improved with new sam-

ples. For collections in which the layout of the regions of

interest and the parts to which they belong is repeated over

several pages, this process does not need any complex ma-

chine learning process, but a process of reusing the existing

tagging is enough. During the project, MuRET included a

tool to copy the document analysis and link parts to other

images. This simple tool turned this tedious and repetitive

operation of tagging the pages first into only a minor issue.

A notable case occurs in the event that the tool, or a

component of a tool, does not support a required feature.

For instance, bar-lines crossing a note in late Mensural no-

tations or the rendering of signum congruentiae is not sup-

ported in Mensural notation by the engraving tool used in

MuRET, Verovio [16]. In those cases, our principle has

been to store a specific element, such a text, and print them

to be visualized, and once they are supported by the tools,

replace them.

Finally, when focusing on the transcription of musical

content, most tools discard many non-musical elements

such as titles, part, instrument or voice names, capital let-

ters miniatures. All this information, if automatically de-

tected, could help to the users to have a better overview of

large works to organize the transcription process.

6. CONCLUSIONS AND FUTURE WORK

Most of the OMR community’s efforts are focused on

achieving high accuracy rates in automated music reading.

We have shown in Section 4 that the use of an OMR tool

has proven to be an adequate means to transcribe a whole

collection of works saving an enormous amount of time

and effort for the user. While this approach is valid, it is

important not to overlook aspects that are not intrinsically

OMR and that can impact even more than the performance

of the transcription tool on the effort required to transcribe

collections.

In this work, we have shared our experience in tran-

scribing a complete collection of works written in Mensu-

ral notation, describing all the steps taken and discussing

issues we believe are important to achieve a streamline pro-

cess, both from the perspective of the OMR tool used and

in the preparation of the collections to be transcribed.

This paper has not addressed aspects that would be in-

teresting to explore in the future. Some are related to the

functioning of the computer system itself, such as the im-

pact of classification times of automatic systems on the

overall process and program response delays, as well as the

measurement of the impact of execution errors or a com-

prehensive study from the perspective of human-computer

interaction (HCI) in operations such as editing the staff

transcription made or the final scoring up.

Other factors to consider are purely musical, such as

the use of musical language models, both melodic and har-

monic, for error detection, the impact of using one musical

encoding over another, assistance in aligning lyrics with

music, the treatment of abbreviations in the lyrics, or the

detection of specific properties of the notation type such as

the semitonia subintelecta in Mensural notation, the pro-

cessing of multiple voices in piano-form music, the detec-

tion of hidden graphical elements such as the digit ‘3’ in

triplets in common western music notation, or finally the

specific cases described by Byrd and Simonsen [17].

Regarding the OMR system, it is interesting to com-

pare different strategies at work within a complete tran-

scription system, not just in isolation. For instance, replace

the MuRET stages (document analysis, agnostic represen-

tation, semantic encoding), for those based on graphical

primitives and later semantic encoding reconstruction [18],

or the direct obtaining of the final encoding from a com-

plete page [19].
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standing optical music recognition,” ACM Computing

Surveys (CSUR), vol. 53, no. 4, pp. 1–35, 2020.

[4] M. Alfaro-Contreras, D. Rizo, J. Iñesta, and J. Calvo-

Zaragoza, “OMR-assisted transcription: a case study

with early prints,” in Proceedings of the 22nd Interna-

tional Society for Music Information Retrieval Confer-

ence. Online: ISMIR, Nov. 2021, pp. 35–41.

[5] A. Torrente and A. Llorens, “The Musicology Lab:

Teamwork and the Musicological Toolbox,” in Music

Encoding Conference Proceedings 2021. Humanities

Commons, 2022, pp. 9–20.

[6] F. Moss, N. Nápoles-López, M. Köster, and D. Rizo,

“Challenging sources: a new dataset for omr of diverse

19th-century music theory examples,” in Proceedings

of the 4th International Workshop on Reading Music

Systems (WoRMS 2022), November 2022.

[7] I. Fujinaga, A. Hankinson, and J. Cumming, “Intro-

duction to SIMSSA (single interface for music score

searching and analysis),” in Proceedings of the 1st In-

ternational Workshop on Digital Libraries for Musicol-

ogy, ser. DLfM ’14. New York, NY, USA: Association

for Computing Machinery, 2014, p. 1–3.

[8] L. Pugin, J. Hockman, J. Burgoyne, and I. Fujinaga,

“Gamera Versus Aruspix: Two optical music recog-

nition approaches,” in 9th International Conference

on Music Information Retrieval, Drexel University,

Philadelphia, USA, September, 2008, 2008, pp. 419–

424.

[9] I. Fujinaga and G. Vigliensoni, “The art of teaching

computers: The SIMSSA optical music recognition

workflow system,” in 27th European Signal Process-

ing Conference, EUSIPCO 2019, A Coruña, Spain,

September 2-6, 2019. IEEE, 2019, pp. 1–5.

[10] D. Rizo, J. Calvo-Zaragoza, J. Martínez-Sevilla,

A. Roselló, and E. Fuentes-Martínez, “Design of a

music recognition, encoding, and transcription online

tool,” in 16th International Symposium on Computer

Music Multidisciplinary Research, Tokyo, November

2023.

[11] A. Pacha and H. Eidenberger, “Towards self-learning

optical music recognition,” in 2017 16th IEEE Inter-

national Conference on Machine Learning and Appli-

cations (ICMLA). IEEE, 2017, pp. 795–800.

[12] J. C. Martinez-Sevilla, A. Rosello, D. Rizo, and

J. Calvo-Zaragoza, “On the performance of optical mu-

sic recognition in the absence of specific training data,”

in Proceedings of the 24th International Society for

Music Information Retrieval Conference, ISMIR 2023,

Milan, Italy, November 5-9, 2023, A. Sarti, F. An-

tonacci, M. Sandler, P. Bestagini, S. Dixon, B. Liang,

G. Richard, and J. Pauwels, Eds., 2023, pp. 319–326.

[13] J. Calvo-Zaragoza and D. Rizo, “End-to-end neural

optical music recognition of monophonic scores,” Ap-

plied Sciences, vol. 8, no. 4, 2018.

[14] D. Rizo, N. Pascual-León, and C. Sapp, “White Men-

sural Manual Encoding: from Humdrum to MEI,”

Cuadernos de Investigación Musical, 2019.

[15] M. E. Thomae, J. E. Cumming, and I. Fujinaga, “The

mensural scoring-up tool,” in Proceedings of the 6th

International Conference on Digital Libraries for Mu-

sicology, ser. DLfM ’19. New York, NY, USA: Asso-

ciation for Computing Machinery, 2019, p. 9–19.

[16] L. Pugin, R. Zitellini, and P. Roland, “Verovio - A li-

brary for Engraving MEI Music Notation into SVG.” in

International Society for Music Information Retrieval,

jan 2014.

[17] D. Byrd and J. G. Simonsen, “Towards a standard

testbed for optical music recognition: Definitions, met-

rics, and page images,” Journal of New Music Re-

search, vol. 44, pp. 169–195, 1 2015.
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ABSTRACT

Recent advancements in audio processing provide a new

opportunity to study musical trends using quantitative

methods. While past work has investigated trends in music

over time, there has been no large-scale study on the evolu-

tion of vocal lines. In this work, we conduct an exploratory

study of 145,912 vocal tracks of popular songs spanning

55 years, from 1955 to 2010. We use source separation to

extract the vocal stem and fundamental frequency (f0) es-

timation to analyze pitch tracks. Additionally, we extract

pitch characteristics including mean pitch, total variation,

and pitch class entropy of each song. We conduct statis-

tical analysis of vocal pitch across years and genres, and

report significant trends in our metrics over time, as well

as significant differences in trends between genres. Our

study demonstrates the utility of this method for studying

vocals, contributes to the understanding of vocal trends,

and showcases the potential of quantitative approaches in

musicology.

1. INTRODUCTION

Current technologies for audio processing provide new op-

portunities to study musical trends using quantitative meth-

ods. While researchers have analyzed music for gener-

ations, studying the evolution of music at a large scale

has only been possible recently, due to the availability of

large datasets [1–3]. Additionally, recent improvements

in source separation technology have allowed researchers

to study individual instruments [4, 5]. However, the vocal

lines of songs have been understudied, even though they

are often the most salient part of a song [6, 7], and many

popular songs are built around the vocal line.

In this study, we examine trends in the vocal lines of

145,912 songs over 55 years (from 1955 to 2010). We use

modern source separation methods to isolate vocal lines of

© E. Georgieva, P. Ripollés, B. McFee. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: E. Georgieva, P. Ripollés, B. McFee, “The Changing

Sound of Music: An Exploratory Corpus Study of Vocal Trends Over

Time”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, CA, USA, 2024.

songs (30–60 second-long excerpts) from their respective

accompaniments. Altogether, our dataset makes up over

59 days of continuous listening. This work is exploratory:

we examine what trends and patterns can be observed from

such a large corpus of vocal data. We have made our list

of track IDs publicly available, along with our implemen-

tations. 1

2. RELATED WORK

The transformation of music over time has received a lot of

focus in recent years. This is partially thanks to the release

of open-source resources such as The Million Song Dataset

(MSD) [1]. The MSD is a free collection of audio features

and metadata for one million contemporary music tracks.

Datasets such as MSD allow researchers to quantitatively

analyze patterns in music at a large scale.

Serrà et al. used musical ‘codewords’ based on MSD

clips to identify changes in pitch, timbre, and loudness

over time [2]. They found that newer songs have less va-

riety in pitch transitions, more homogenized timbres, and

increased loudness. Parmer et al. did similar work using

the MSD to study musical complexity from 1960–2010.

They found that pitch complexity has been generally stable

over that time period, while loudness and rhythm complex-

ity has decreased and timbral complexity has increased [8].

Parmer also studied the complexity of popular songs from

the Billboard chart, 2 and found that the complexity of

popular songs is concentrated around the mean complex-

ity level of all songs. This supports the inverted U-shaped

model for music complexity and likeability: that listeners

prefer intermediate levels of complexity [9, 10].

Another team of researchers used the MSD songs along

with quantitative modeling to study musical influence: the

impact that a particular artist has on the music by other mu-

sicians [3]. They identified clusters of songs that were in-

dicative of a genre, and studied how those clusters evolved

over time. A different study used a corpus of 17,000 songs

from Billboard to study the “Evolution of Popular Music”

between 1960 and 2010 in the United States [11]. They

used timbral and harmonic features derived from Billboard

songs, and identified three musical stylistic revolutions in

1 https://github.com/elenatheodora/ismir2024-changing-sound-of-music
2 https://www.billboard.com/charts/hot-100

232



Figure 1: Top: Chronological distribution of the dataset

organized in 5-year demi-decades. Bottom: Relative dis-

tribution of genres in the dataset by demi-decade.

Figure 2: Number of tracks per musical genre. Blues,

World, and New Age music (labeled ‘*’), were excluded

from the by-genre analyses due to lower track count.

1964, 1983, and 1991. Other researchers have studied a

more niche topic in detail over decades, including the evo-

lution of a single band’s performances [12], changes in dy-

namics/compression in mainstream music [13], or spectral

characteristics of recordings over time [14].

In an early vocal corpus study, in 1959, Alan Lomax’s

Cantometrics project analyzed over 4,000 traditional vocal

music songs from 400 cultures [15]. Researchers listened

to songs and labeled them with 37 “style-factors,” for ex-

ample group cohesion in singing, and tense or relaxed vo-

cal quality. The Cantometrics project suggested a correla-

tion between song style and social norms of cultures.

In a more recent study, researchers developed a set of

features to capture pitch and melodic embellishments of

world vocal performances [16]. Using these features, they

trained a classifier to distinguish vocal from non-vocal seg-

ments and learn a dictionary of singing style elements.

Results showed that clusters were distinguished by char-

acteristic uses of singing techniques such as vibrato and

melisma. A different study categorized a collection of 360

Dutch folk songs, and found that the aspects of melody

that are important for establishing similarity are contour,

rhythm, and motifs [17]. Despite these previous works on

vocal datasets, there has been no large-scale study on the

evolution of the vocal lines of popular music over the years.

3. DATASET

We used a subset of the MSD [1] that has genre labels

(the Tagtraum MSD annotations [18]). 278,619 tracks had

genre labels available. Next, a group of songs was dropped

due to a low presence of vocals in the excerpt, indicated

by a low ratio of RMS (root mean square) energy of the

separated vocal stem to RMS energy of the full audio file

(see 4.1). Songs that did not have the release year available

were also dropped. In a final filtering step, we chose to

conduct analyses only starting in the year 1955, as data was

sparse before 1955. The final dataset had 145,912 songs.

Figure 1 shows a chronological distribution of songs in

demi-decade bins (i.e., 1990-1994). We observe a strong

bias towards more recent songs. A relative distribution of

genres across years shows fewer genres in earlier years,

with a greater variety in more recent years. Figure 2 lists

the number of tracks in each musical genre in the dataset.

Blues, World, and New Age music (labeled with a ’*’),

were excluded from the by-genre analyses due to having a

lower number of tracks.

Our dataset inherits biases from the MSD. The tracks

in the MSD were selected based partly on their association

with ‘familiar’ artists, as determined by The Echo Nest,

followed by inclusion of tracks from similar artists. 3 The

creators of the MSD also included artists that fit the 200

most frequently-occurring Echo Nest descriptive terms, as

well as songs that were extreme in acoustic attributes. In

general, songs in the dataset are generally widely listened-

to, and the majority come from North America or Europe.

There are much more data in recent years (1990s onward)

than in earlier years. There is very little non-western and

classical music in the dataset. The Latin music genre does

contain non-western music, primarily performed in Span-

ish or Portuguese. Our findings apply to this dataset, not

necessarily to music as a whole, and our work will have bi-

ases if applied to other datasets. Importantly, these dataset

biases do not affect our methods.

4. METHOD

4.1 Source Separation

First, we used source separation to separate the vocal line

of each song from the mix. For this, we use Hybrid Trans-

former Demucs (HT Demucs), a hybrid temporal/spectral

bi-U-Net [5]. After computing the ratio of the vocal stem’s

RMS energy to the overall mix’s RMS energy, we excluded

any songs with a ratio below 0.08 (Figure 4). This ratio

was set using a preliminary sub-sample of the data. These

excerpts are either purely instrumental songs (non-vocal),

or the clip happens to capture a part of the audio file with

very few or no vocals (i.e., a guitar solo).

4.2 Pitch Characteristics

To study pitch characteristics, we did fundamental fre-

quency (f0) estimation on the estimated vocal stems us-

ing PYIN [19] as implemented in Librosa v0.8.1 [20].

3 http://millionsongdataset.com/faq/
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Figure 3: f0 extraction evaluation scores for 29 clean and

source-separated vocal stems from MedleyDB, when com-

pared with the MedleyDB f0 annotations.

We set the lower frequency limit at 70Hz and the upper

limit at 900Hz, aligning with the human vocal range de-

scribed in other works, while also extending one musical

whole step in each extreme [21]. We chose PYIN over

CREPE, another f0-estimator, as it allows us to set a lower

and higher pitch bound for f0-estimation [22]. Other than

changing the sampling rate to 44.1 kHz, we used the Li-

brosa defaults: frame length 2048, hop length 512, num-

ber of thresholds for peak estimation 100, switch probabil-

ity 0.01, and no-trough probability 0.01. We collect an f0
estimate approximately every 12 milliseconds.

We evaluated the pitch tracking accuracy of the PYIN

algorithm on source-separated audio by running PYIN on

29 monophonic vocal stems from MedleyDB. We used

mir_eval to compute the standard evaluation metrics used

in MIREX: Voicing Recall (VR), Voicing False Alarm

(VFA), Raw Pitch Accuracy (RPA), Raw Chroma Accu-

racy (RCA) and Overall Accuracy (OA) [23]. First, we

compared several different PYIN settings: the number

of thresholds, switch probability, and no-trough probabil-

ity parameters, and found the Librosa defaults performed

among the best. Next, we compared the accuracy of PYIN

on clean stems and source-separated stems, each respec-

tively compared to the annotations included in MedleyDB,

and observed only a small decrease in accuracy. The me-

dian evaluation metrics of our method on the 29 clean vo-

cal stems were: for clean stems, OA 0.781, RPA 0.924,

RCA 0.928, VR 0.984, VFA 0.375, and for source sepa-

rated stems, OA 0.771, RPA 0.865, RCA 0.888, VR 0.964,

VFA 0.340 (see Figure 3). The source separation process

only slightly reduces the accuracy of our f0-estimation.

Some tracks in the dataset have vocal harmonies. PYIN

tends to track the pitch of the most prominent voice. We

ran a query on last.fm, 4 and found that tags for vocal har-

monies are present in less than 1% of songs in the dataset.

We assume that the presence of vocal harmonies is un-

correlated with the variables we study: time and genre.

Through informal listening, we found that Demucs and

PYIN were comparably effective for older and newer audio

recordings from the time period we study, 1955-2010.

PYIN also provides a voicing detection estimate, which

we used to identify contiguous regions of pitched sound in

the vocal stem. We converted f0 values in hertz to cents

4 https://www.last.fm/
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Figure 4: Distribution of the ratios of the vocal stem RMS

energy to the full mix RMS energy in the data. A threshold

of 0.08 was used to discard non-vocal clips.

Figure 5: Example f0 tracks. The top track, selected from

the Metal genre, has a low TV and high PCE. The bottom

track, from the Rap genre, has a high TV and low PCE.

using Eqn (1), where 16.35Hz is the frequency of C0:

f0[¢] = 1200 · log2
f0[Hz]

16.35
. (1)

For example, "middle C" on a piano is 4800 cents, and

C#/Db is 4900 cents. Using this information we ex-

tracted pitch features, dropping unvoiced frames. We cal-

culated mean pitch (in cents) of each song, defined as the

mean of each f0 array.

We also calculated total variation (TV) [16]. TV sum-

marizes the rate of pitch change and is defined in Eqn (2):

TV(x) =
1

N

N−1∑

i=1

|xi+1 − xi| (2)

for a given f0 contour x = (x1, . . . , xN ). TV is calculated

independently for each voiced region within a song and

then aggregated to a single total. Our TV calculations do

not change the time interval between f0 values.

4.3 Pitch Class Entropy

We calculated pitch class entropy (PCE) to measure the

degree of unpredictability for the set of vocal pitches. En-

tropy was calculated over the probability of occurrence

of each pitch class (independent of octave) in the vocal

line [24]. Higher values of PCE indicate a greater spread in

the pitch distribution, while lower values indicate a smaller

and more predictable set of pitches. There is a theoretical

maximum PCE of log2(12) ≈ 3.59, achieved by a uniform

distribution of the 12 pitch classes.

Figure 5 illustrates two example f0 tracks with some-

what extreme TV and PCE values.

4.4 Statistical Analyses

We used R (4.2.2) and RStudio (2022.12.0+353) to imple-

ment linear regression with the lm function. Post-hoc tests
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were implemented using the emmeans package with Tukey

correction for multiple comparisons.

5. EXPERIMENT AND RESULTS

For each of our variables of interest (mean pitch, TV, PCE),

we followed the same procedure. We first ran a linear re-

gression to examine the relationship between the variable

of interest (e.g., TV) and the year of track release (e.g.,

TVỹear). We then calculated a linear regression between

the variable of interest and musical genre (e.g., TVg̃enre).

Finally, we calculated independent linear regressions be-

tween the variable of interest and year of track release

for the twelve most frequently-occurring genres. We cal-

culated independent regressions because each of the gen-

res becomes prevalent in the dataset during different years

(i.e., Rap music starting in 1984).

When looking at musical genres, we chose to study the

twelve genres with the most song entries in the dataset.

We began analyzing each genre at the first year of a five-

year period where at least ten songs were released in that

genre annually. The twelve genres with corresponding start

years were as follows: Country (1956), Electronic (1979),

Folk (1963), Jazz (1955), Latin (1986), Metal (1980), Pop

(1961), Punk (1977) Rap (1984), Reggae (1972), RnB

(1957), and Rock (1956).

5.1 Mean Pitch

We found a significant positive relationship between mean

pitch for a track and the year it was released (β = 0.957, t =

7.23, p < .001). For every one-year increase in the release

year, the mean pitch of the track increased by a little less

than one cent, on average (see Figure 6).

Next, we assessed mean pitch and musical genres. We

found a significant main effect of genre (F(1, 140982) =

1378.6 , p < 0.001). All genres were significantly distinct

(all p values <0.001) except for: electronic and pop music

(t=1.891, p=0.765), jazz and Latin (t = 0.276, p=1.000),

jazz and rock (t=-2.854, p = 0.158), and Latin and rock (t

= -3.005, p = 0.107). Data for the mean pitch per song in

each of these genres is illustrated in Figure 7.

We found a significant main effect of year for nine of the

twelve musical genres, though the direction of the trends

varied (see Figure 8). Specifically, country music (β =

3.991, t = 7.970, p <0.001), folk music (β = 1.374, t =

2.395, p <0.001), jazz (β = 2.901, t = 4.482, p =0.017),

metal (β = 7.269, t = 4.612, p <0.001), punk (β = 3.301, t

= 3.815, p <0.001), reggae (β = 2.053, t = 3.301, p <0.001)

and rock (β = 1.097, t = 5.529, p <0.001) showed a sig-

nificant positive relationship between year and mean pitch.

Conversely, rap (β=-6.653, t=-7.757, p<0.001) and RnB

(β=-3.800, t=-11.75, p<0.001) showed a significant nega-

tive relationship between year and mean pitch. No signifi-

cant effect was found for electronic, Latin, or pop music.

5.2 Total Variation

The results for the TV and year regression between TV

and year showed a significant negative relationship (β = -

Figure 6: Mean pitch in cents as a function of year glob-

ally. Each dot represents a song. The red line represents

the predicted slope with 95% confidence intervals. The

green diamond and ribbon represent the mean per year and

the standard error. This relationship was significant, with

mean pitch increasing by approximately one cent per year.

Figure 7: Mean pitch per song in each of the twelve genres

across the dataset. Means are shown with boxes represent-

ing the interquartile range, error bars indicating the 95%

confidence interval, and outliers as circles. There were

significant differences between all genres except electronic

and pop, jazz and Latin, jazz and rock, and Latin and rock

Figure 8: Relationship between mean pitch (in cents) and

year for each genre. “*” denotes a significant effect of year.

The red line represents the predicted slope with 95% con-

fidence intervals. The green diamond and ribbon represent

the mean per year and the standard error.
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Figure 9: Total Variation as a function of year. Each dot

represents a song. The red line represents the predicted

slope with 95% confidence intervals. The green diamond

and ribbon represent the mean TV per year and the stan-

dard error. There was a significant negative correlation be-

tween TV and year.

0.027, t = -10.47, p < .001; see Figure 9). When assess-

ing the relationship between TV and musical genre, we

found a significant main effect of genre (F(11, 140,980)

= 1247.9, p < 0.001). Post-hoc tests showed that all genres

were significantly different from one another (all p values

<0.05) except for country and Latin (t=0.661, p = 1.000),

country and punk (t = -3.214, p = 0.059), electronic and

punk (t = 0.877, p = 0.999), electronic and reggae (t=0.269,

p=1.000), folk and pop (t = -2.407, p = 0.4013), folk and

rock (t = 0.185, p = 1.000), Latin and pop (t = 3.006, p

= -.107), and punk and reggae (t = -0.569, p = 1.000; see

Figure 10). Importantly, TV was significantly higher for

rap music than for all other genres.

We found a significant main effect of year on TV for

eleven of the twelve musical genres, though the direction

of the trends varied (see Figure 11). Specifically, metal

music (β = 0.066, t = 3.338, p <0.001), reggae music (β =

0.058, t = 6.512, p <0.001), and RnB (β = 0.013, t = 3.44, p

<0.001) showed a significant positive relationship between

year and TV. Conversely, electronic music (β=-0.126, t=-

4.803, p<0.001), folk (β=-0.065, t=-7.852, p<0.001), jazz

(β=-0.079, t=-6.418, p<0.001), Latin music (β=-0.041, t=-

2.349, p=0.019), pop (β=-0.033, t=-8.698, p<0.001), punk

(β=-0.045, t=-3.259, p=0.001), rap (β=-0.158, t=-11.06,

p<0.001) and rock (β=-0.062, t=-13.79, p<0.001) showed

a significant negative relationship between year and TV.

No significant effect was found for country music.

5.3 Pitch Class Entropy

A linear regression showed a statistically significant neg-

ative relationship between PCE and year (β = -0.004, t =

-50.02, p-value < 0.001; see Figure 12). There was a ceil-

ing effect for PCE, with some of the tracks hitting close to

the theoretical maximum of 3.59.

We ran a linear model with genre as the only main effect

and found a significant main effect of genre on PCE (F(11,

140,982) = 759.64, p < 0.001). Post-hoc tests showed

that all genres were significantly different than one another

(all p-values <0.05) except for folk and Latin (t=-0.936,

p=0.999), folk and pop (t=2.484, p=0.350), folk and reggae

(t=1.255, p=0.984), jazz and RnB (t=3.123, p=0.077; ap-

proaching significance), Latin and rap (t=-2.952, p=0.123),

Latin and reggae (t=2.218, p=0.536), and pop and reggae

(t=-1.054, p=0.996; see Figure 13).

Figure 10: Total variation in each of the twelve genres

across the whole dataset. Means are shown with interquar-

tile range, 95% confidence interval error bars, and outliers.

There were significant differences in TV between all gen-

res except between country and Latin, country and punk,

electronic and punk, electronic and reggae, folk and pop,

folk and rock, Latin and pop, and punk and reggae.

Figure 11: Relationship between TV and year for each

genre. “*” denotes a significant effect of year. The red line

represents the predicted slope with 95% confidence inter-

vals. The green diamond and ribbon represent the mean

per year and the standard error.

Figure 12: Pitch Class Entropy as a function of year. Each

dot represents a song. The red line represents the predicted

slope with 95% confidence intervals. The green diamond

and ribbon represent the mean PCE per year and the stan-

dard error. There was a significant negative correlation be-

tween PCE and year
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Figure 13: Pitch class entropy in each of the genres.

Means are shown with interquartile ranges, 95% confi-

dence interval error bars, and outliers. There were signifi-

cant differences in PCE between all genres except between

folk and Latin, folk and pop, folk and reggae, jazz and

RnB, Latin and rap, Latin and reggae, and pop and reggae.

Figure 14: Pitch class entropy in each of the genres. “*”

denotes a significant main effect of year. The red line rep-

resents the predicted slope with 95% confidence intervals.

The green diamond and ribbon represent the mean per year

and the standard error.

Finally, we found a significant negative relationship

between PCE and year for eleven musical genres (coun-

try: β=-0.002, t=-7.847, p<0.001; electronic: β=-0.005,

t=-5.126, p<0.001; folk: β=-0.001, t=-3.650, p<0.001;

jazz: β=-0.001, t=-4.382, p<0.001; Latin: β=-0.004, t=-

5.047, p<0.001; pop: β=-0.003, t=-18.61, p<0.001; punk:

β=-0.003, t=-4.938, p<0.001; rap: β=-0.007, t=-11.61,

p<0.001; reggae β=-0.001, t=-2.849, p=0.004; RnB: β=-

0.002, t=-12.64, p<0.001; rock: β=-0.003, t=-28.75,

p<0.001; see Figure 14). The effect of year for metal music

(β=-0.002, t=-1.717, p=0.086) approached significance.

6. DISCUSSION

In this study, we analyzed vocal pitch characteristics across

years and genres. We found musical genres are often sig-

nificantly different from one another in mean pitch, total

variation, and pitch class entropy. The data generally ex-

hibited a significant negative relationship between year and

total variation and year and pitch class entropy, respec-

tively. This was the case both overall and for 8 and 11

musical genres, respectively (see Figure 10 and Figure 13).

If TV and PCE are taken to be measures of musi-

cal complexity, these findings could mean vocals, in this

dataset at least, are getting less complex over time. This

is somewhat in line with previous studies using the MSD.

Serrà et al. found that newer songs have less variety

in pitch transitions and more homogenized timbres, and

Parmer et al. found that pitch complexity has been gen-

erally stable, but loudness and rhythm complexity have

decreased [2] [8]. Our findings also parallel those of re-

cent publications looking generally at Western popular mu-

sic. In a recent study, authors found over five decades,

lyrics have become simpler in their vocabulary richness,

readability, complexity, and repetitiveness [25]. In an-

other study analyzing popular melodies from 1950 to 2023,

Hamilton and Pearce identified melodic revolutions that

correspond to decreases in melodic complexity [26].

In our study, we observed that the rap genre had a higher

TV than the other genres (see Figure 10), showing that rap

songs feature more pitch variation than other musical gen-

res, on average. This could be because rap vocals tend to

have less sustained pitch than other genres. Previous work

showed that pitch variance in rap music is a complex and

significant feature of the genre [27, 28]. Rap music, only

coming into prevalence in this dataset in 1984, may have

influenced the genres that exhibit a significant positive re-

lationship between year and total variation, counter to the

all-genre-pooled negative trend: metal, reggae, and RnB.

We found mean pitch increased over time (see

Figure 6). Gender and vocal range are key factors when

considering pitch, and genre-specific gender prevalence

may exist. However, we did not find a sufficiently reliable

gender or vocal range classifier to support further analysis.

Interestingly, mean pitch was the highest for the metal

genre, which has a low presence of female vocalists com-

pared to other genres [29]. Therefore, the higher mean

pitch of the metal genre cannot be fully explained by a

higher prevalence of high-voiced singers. The average

mean pitch of metal vocals sits quite high in a typical tenor

range [21]. We hypothesize this is because screaming in

metal music tends to have a higher f0 than singing, but

more investigation into metal vocals is needed [30].

7. CONCLUSION

In this exploratory research, we examined trends in the vo-

cal lines of 143,152 songs spanning 55 years. Our work

has identified relationships between vocal pitch and pop-

ular musical genres over time, providing valuable insights

into the changing sound of music. We have demonstrated

the utility of the methods presented here for studying vo-

cals, and believe they have the potential to be applied to the

study of other musical instruments as well as general mu-

sical phenomena including historical and cultural trends,

changes in musical forms and structures, and stylistic dif-

ferences across genres and periods.
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ABSTRACT

Autoregressive generative transformers are key in mu-

sic generation, producing coherent compositions but facing

challenges in human-machine collaboration. We propose

RefinPaint, an iterative technique that improves the sam-

pling process. It does this by identifying the weaker music

elements using a feedback model, which then informs the

choices for resampling by an inpainting model. This dual-

focus methodology not only facilitates the machine’s abil-

ity to improve its automatic inpainting generation through

repeated cycles but also offers a valuable tool for humans

seeking to refine their compositions with automatic proof-

reading. Experimental results suggest RefinPaint’s effec-

tiveness in inpainting and proofreading tasks, demonstrat-

ing its value for refining music created by both machines

and humans. This approach not only facilitates creativity

but also aids amateur composers in improving their work.

1. INTRODUCTION

Advanced autoregressive models [1, 2] have enabled

the automatic generation of complex musical perfor-

mances [3–7]. However, while autoregressive models gen-

erate music in a strictly forward-moving manner, human

composers often follow a more iterative approach, fre-

quently revisiting and refining earlier sections of a piece

before proceeding [8–10]. Although there are some it-

erative methods for music generation [11–13], there are

still areas for improvement in terms of controllability and

human-in-the-loop aspects, such as inferring where to

modify composition and inpainting capability to enable

partial modification.

Iterative refinement proved effective for image genera-

tion; in particular, Lezama’s Token-Critic [14] shows how

feedback mechanisms can enhance image synthesis. Sim-

ilarly, such feedback could benefit music composition for

iteratively refining generated music. Within the spectrum

of music composition tools, the Piano Inpainting Applica-

tion (PIA) [15] stands out for its capabilities for automatic

ZWork conducted at Sony Computer Science Laboratories, Inc. Tokyo.

© P. Ramoneda, M. Rocamora & T. Akama. Licensed un-

der a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: P. Ramoneda, M. Rocamora & T. Akama, “Music

Proofreading with RefinPaint: Where and How to Modify Compositions

given Context”, in Proc. of the 25th Int. Society for Music Information

Retrieval Conf., San Francisco, USA, 2024.

Figure 1: A user selects a MIDI section for enhancement

(gray rectangle). Our methodology uses token-level feed-

back (blue) to highlight critical notes or sequences (red)

for regeneration (green). This cycle repeats iteratively.

music generation that addresses the missing parts of mu-

sical performances, a technique referred to as inpainting.

We highlight their handling of the musical context both be-

fore and after the selected gaps, enabling precise note-level

inpainting. On account of that, inspired by image genera-

tion’s success with iterative feedback and how PIA handles

music context, our research explores applying these con-

cepts to enhance controllability, human-in-the-loop func-

tionality, and iterative refinement capability in automatic

music generation.

In this work, drawing from Token-Critic and PIA, we

propose RefinPaint, which aims to boost automatic in-

painting and proofreading in music generation. Our ap-

proach includes an iterative process of identifying areas in

a composition needing modification and applying inpaint-

ing techniques to these areas. In this context, proofreading

refers to automatically identifying and correcting errors or

inconsistencies in a music composition. This dual-focus

methodology facilitates the machine’s ability to improve

its automatic inpainting generation through repeated cy-

cles, and offers a valuable tool for humans seeking to refine
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Figure 2: Encoder-decoder architecture for in-

painting, given a user-provided mask Mu with a

subset mask Ms.

Figure 3: The Feedback algorithm identifies the

most realistic tokens by training it to discern be-

tween real and synthetic music tokens.

Figure 4: RefinPaint uses inpainting and feedback models to iteratively suggest changes, based on specific

note feedback. It reduces the selected tokens in each iteration.

their compositions with automatic proofreading.

Our RefinPaint method is grounded in an autoregres-

sive inpainting model to generate synthetic music tokens

and a feedback model trained to distinguish between orig-

inal and synthetic tokens. This differentiation is key dur-

ing the sampling stage when deciding on token retention

or revision. RefinPaint takes an iterative approach, inte-

grating feedback into the inpainting model for selectively

regenerating parts in each iteration, as Figure 1 shows. In

contrast to Token-Critic, RefinPaint focuses on modifying

a specific part of a composition using a contextual model

and exposes the intermediate outputs of the autoregressive

inpainting model to human inspection in each iteration.

The human-in-the-loop approach we propose allows for

selecting the number of tokens to modify and revise the

analysis heatmap at each iteration, as described in the

following section. Through experimentation, we confirm

RefinPaint’s effectiveness in inpainting and proofreading

tasks, demonstrating its utility for enhancing music cre-

ated by both machines and humans. Finally, we provide a

companion page featuring examples 1 and the code along

with the trained models of RefinPaint for reproducibility 2 .

1 At: https://refinpaint.github.io/
2 At: https://github.com/ta603/RefinPaint

2. METHODOLOGY

Our proposed methodology employs two models: an in-

painting model I, and a feedback model F , alongside our

iterative algorithm RefinPaint. Initially, F identifies areas

within a MIDI file that need improvement based on the spe-

cific criteria described in Section 2.2. It uses a heatmap for

detailed MIDI token-level feedback, allowing one to as-

sess the context and relevance of each note in the selected

region. Then, model I can regenerate the selected tokens

considering the feedback, as described in Section 2.1. The

methodology involves using both models iteratively with

RefinPaint and encompasses three main stages: training

the inpainting model (Section 2.1.1), training the feedback

model (Section 2.2.1), and finally executing the iterative

process for MIDI sequence generation (Section 2.3).

2.1 Inpainting model (I)

The inpainting model aims to predict, or fill in, missing

parts of a MIDI sequence based on a given mask. We adopt

an encoder-decoder architecture for sequence-to-sequence

tasks, as shown in Figure 2, inspired by the PIA study for

music generation [15]. This model involves an encoder

converting input data into a latent representation and a de-

coder predicting the final output.
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With an anti-causal mask, self-attention within the en-

coder prevents future data access, while with a causal

mask, self-attention within the decoder limits access only

to previous data. With an identity mask, cross-attention

enforces positional alignment between the encoder and de-

coder outputs, which is helpful for aligned sequence tasks.

The attention mechanisms are defined as follows, where

Mtype is the mask type (anti-causal, causal, or identity):

Attention(Q,K, V ) = softmax

(

QK⊤

√
dk
⊙Mtype

)

V.

(1)

This structure enhances the capability of the model to

handle bidirectional input-output relationships, essential

for inpainting, where future context influences the genera-

tion process. Furthermore, we add an extra binary embed-

ding to the encoder input with information about the mask

Ms–the tokens to regenerate–for the inpainting model.

2.1.1 Training the Inpainting Model (I)

The training process is outlined in Algorithm 1. A batch x

is sampled from the MIDI dataset D, and a random frag-

ment Mu is chosen for each sample in x with a length de-

termined by t1. It is important to note that t1 refers to

the length in terms of the token sequence, rather than the

MIDI duration. Consequently, a random mask Ms, with

the masking ratio controlled by γ(t2), is then applied to

Mu. The forward pass of the model calculates the loss

using the batch x, the mask Ms, and the Cross Entropy

(CE) loss function to evaluate the difference between the

predicted outputs and the actual labels. The model is sub-

sequently updated via gradient descent. The function γ,

a cosine scheduler, dynamically adjusts the masking ratio.

It operates on a domain defined by a random variable t2
within the interval [0, 1]. Specifically, for any chosen value

t2 drawn uniformly from the interval [0, 1], the value un-

dergoes a cosine transformation γ to determine the mask-

ing ratio, where γ(t2) = cos
(

πt2

2

)

.

Algorithm 1 Training the Inpainting model (I)

Require: MIDI dataset D, Inpainting model I
1: while convergence do

2: x ∼ D ▷ Sample batch

3: t1 ∼ U(0.1, 0.6), t2 ∼ U(0, 1)
4: Mu ← Fragment(x, t1)
5: Ms ← Random Masking(Mu, γ(t2))
6: L← ForwardInpaintingModel(I, x,Ms)

▷ model forward and compute loss

7: GradientDescent(L)

8: end while

2.2 Feedback model (F)

We employ an encoder-only transformer architecture for

the feedback phase that classifies music tokens as fake

or real. We use this output distribution to select the k

most realistic tokens to retain while the others are regen-

erated. Unlike the encoder-decoder inpainting model, I,

this model processes the input through a parallel and bidi-

rectional attention mechanism without employing any at-

tention masks, thus facilitating an unrestricted analysis of

the musical context. Additionally, we add an extra binary

embedding to the encoder input with information about the

mask Mu–the selected fragment–for the feedback model.

2.2.1 Training the Feedback model (F)

Algorithm 2 Training the Feedback model (F)

Require: MIDI dataset D, Inpainting model I, Feedback

model F
1: while convergence do

2: x ∼ D ▷ Sample batch

3: t1 ∼ U(0.1, 0.6), t2 ∼ U(0, 1)
4: Mu ← Fragment(x, t1)
5: Ms ← Random Masking(Ms, γ(t2))
6: x̂← I(x,Mu)
7: L← ForwardFeedbackModel(F , x̂,Mu)

▷ model forward and compute loss

8: GradientDescent(L)

9: end while

After training the inpainting model I, we train an

encoder-only feedback model F . This model aims to eval-

uate the output from I, offering feedback on the composi-

tion quality of each music fragment denoted by Mu.

One ideal way of training F would involve a vast

dataset of computer- or human-generated music compo-

sitions and human experts’ revisions for inpainting and

proofreading applications. Instead, we propose a more fea-

sible synthetic training strategy, described in Algorithm 2.

The inpainting model I generates tokens within the se-

lected fragment of a music piece, Mu, which we label as

‘Fake’, while we label as ‘Real’ the original unchanged to-

kens. We utilize these labels to instruct F , following the

process illustrated in Figure 3.

The training of F is based on the output of I. We be-

gin by sampling a batch x from the dataset D, then apply

masking Ms and Mu. Model I regenerates specific tokens

within x, yielding a modified output x̂. Model F then as-

sesses each token of x̂ against Ms, categorizing them as

‘Real’ or ‘Fake’. The loss L for F is computed using the

Binary Cross Entropy (BCE) loss function, and is mini-

mized through gradient descent. The outcome is a heatmap

for Mu, which indicates the probability of each token be-

ing ‘Real’ or ‘Fake’, determined by the sigmoid activation

of the model output.

2.3 Generation of MIDI sequences (RefinPaint)

We capitalize on the strengths of the inpainting and feed-

back models for the iterative MIDI sequence generation.

The process shown in Figure 4 begins with a MIDI se-

quence x introduced by the user, setting the stage for a

loop that spans a predetermined number of iterations T .

Initially, the user selects the fragment to be modified

x
(0)
m and sets the initial selection rate k = 0 for complete

inpainting. Alternatively, different values for k allow the

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

242



user to control how much of the content to keep in the se-

lected fragment when proofreading.

In the proposed Algorithm 3, at each iteration t, the in-

painting model I generates a new version of the sequence

x̂, based on the current masked input x
(t)
m . In the human-

in-the-loop scenario, the user can then adjust this generated

sequence. The feedback model F evaluates x̂ and provides

a new mask M (t+1), which the user may also modify. This

mask highlights the tokens that are deemed most realis-

tic. The number of selected realistic tokens k follows a

decreasing function γ of the iteration t, which models the

increasing confidence in the tokens produced over time.

Moreover, we add an extra binary embedding to the en-

coder input with information about the mask M–the given

context–where M changes over iterations.

Refining the music sequence through each iteration

aims to achieve a compositional process that closely aligns

with that of a human composer so that the user interven-

tion becomes interpretable and natural. It fosters a collab-

orative environment between the user and the machine and

tailors the generation process to the user’s specific direc-

tives and preferences.

Algorithm 3 Generation Algorithm (RefinPaint)

Require: Inpainting model I, Feedback model F ,

masked MIDI x
(0)
m , No. masked tokens N , No. it-

erations T

1: for i = 0 to T − 1 do

2: k =
⌈

γ
(

i

T

)

·N
⌉

3: x̂← I(x(i)
m )

4: if i ̸= T − 1 then

5: M (i+1) ← F(x̂)
6: x

(i+1)
m ← k-realistic tokens(x̂,M (i+1), k)

7: end if

8: end for

3. RELATED WORK

Automatic music generation has rapidly advanced recently.

Significant progress has been made [4–6], especially in

solo piano compositions [3, 7, 15], through the capabili-

ties of autoregressive models in producing coherent musi-

cal outputs. However, several challenges remain for creat-

ing successful interactions with humans [3, 11, 15–22].

Previous work has explored various approaches to

generate music iteratively and allowed for partial

modification—often referred to as inpainting—, which en-

hances controllability. Among them, sequential handling

of musical elements has been a common strategy, as in

models like DeepBach [11] and Coconet [12]. Although

these models allow for inpainting and iterative generation,

they often rely on random iterations without a mechanism

for discriminative feedback to guide improvements. This

lack of directed refinement contrasts with the human com-

positional process, which typically involves iterative im-

provements based on evaluative feedback. Our proposed

approach addresses this limitation by incorporating a feed-

back model that identifies areas for improvement for both

humans and machines to refine the composition.

Although it is not designed as an inpainting model, ES-

Net’s approach to music generation integrates generative

and discriminative capabilities in one model [13], with a

feature for correcting past errors for iterative refinement.

Our model differs significantly: it takes into account the

context of the selected fragment, could improve any ex-

isting inpainting model, and can handle general MIDI for-

mats. In [23], the authors propose a GAN model for piano

music composition with a discriminator model that dis-

cerns real and fake compositions in the training process.

However, it does not give feedback on which generated

parts are good or bad and does not create compositions it-

eratively. Yet, the application of discriminative feedback

in music generation, particularly in a manner that mimics

human iterative refinement, remains largely unexplored.

Finally, inpainting models in music have seen various

approaches but remain less studied compared to their coun-

terparts in image generation [24]. They typically focus on

quantized scores, with significant contributions like Gibbs

sampling for Bach chorales [11] and RNN-based melodies

inpainting [25]. Studies on transformers for multitrack

inpainting have advanced the field, such as MMM [26],

which utilizes a decoder architecture akin to GPT2 [2],

and PIA [15], which uses a specialized transformer de-

sign. We chose PIA over MMM as a ground element in

this work, given it is capable of working in the token level

or larger contexts and inpainting multiple little fragments

at the same time, similar to Token-Critic’s generator [14].

4. EXPERIMENTAL SETUP

4.1 Data preparation

Our study utilizes the Lakh MIDI dataset (LMD), an ex-

tensive collection of approximately 170k unique multi-

track MIDI files, compiled by Colin Raffel for music re-

search [27]. The dataset offers a wide variety of music,

albeit with varying quality due to its internet-sourced na-

ture. Despite this, the volume and diversity of the LMD

dataset make it a valuable asset for our proofreading task.

We extracted only the piano parts, totaling 120,000 tracks.

We tokenize the piano tracks using REMI (REvamped

MIDI-derived events) [16], a music representation method

that converts MIDI events into a structured format opti-

mized for Transformer-based models that significantly en-

hances their ability to comprehend and produce music.

REMI categorizes music elements into distinct event types,

including timing for rhythm and note events for melody,

but we exclude velocity events for simplicity. Specifically,

we use a modified version of REMI tailored for handling

single-track piano performances, as implemented in [28].

The dataset was split into training (hashes 0–d), validation

(hash e), and testing (hash f) segments, based on each file’s

MD5 hash’s leading digit, akin to previous methods [5, 6]

4.2 Model development

We train the inpainting and feedback models with the

AdamW optimizer, using eighty per cent of the dataset for

training and the remainder for validation. Each epoch con-

sists of a randomly selected fragment from the training set,
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512 tokens in length. We also employ an augmentation

procedure that transposes the pitch tokens of a sequence

by adding or subtracting up to 6 semitones. For the in-

painting model, we apply a cross-entropy loss and use the

maximum batch size that our system can handle; a sin-

gle V100 GPU with 16GB allows for 48 samples. The

encoder-decoder inpainting model comprises 12 layers: 4

encoder layers and 8 decoder layers, similar to the original

PIA, with 8 heads and an embedding dimension of 512.

We employ a cosine scheduler for training, with 16,000

warmup steps, reaching up to a 0.0006 learning rate. The

feedback model consists of 6 layers, with an embedding

dimension of 512, a dropout rate of 0.1, 8 heads, and the

same cosine scheduler. Finally, we acknowledge that opti-

mizing these models was not the main focus of this paper,

so there might be better hyperparameter values.

In the particular case of proofreading without human

intervention, i.e. for evaluation purposes, the final output

is the iteration that maximizes the feedback model prob-

ability distribution. Using a sigmoid function, the model

determines whether each token in a sequence is fake or

real. By averaging the output probabilities, we calculate

a global feedback score (GFS) for the sequence’s overall

realism and select the best regeneration output based on it.

5. INPAINTING RESULTS

5.1 Divide and conquer with the inpainting model

We conducted an experiment to explore how the model’s

inpainting performance is affected by the percentage of to-

kens to inpaint in a selected fragment. We hypothesize that

the more tokens to inpaint, the harder the problem is, so

the model performance is lower. The experiment uses the

inpainting model trained as detailed in section 2.1.1, and

we report its Negative Log-Likelihood (NLL) loss and per-

plexity of the next predicted token. The evaluation cov-

ered the entire test set, with masking ratios ranging from

1 (fully masked) to 0 (no tokens to inpaint) and a fixed

30% fragment size rate of the 512 tokens sequence. Re-

sults shown in Table 1 indicate better performance with

reduced masking, confirming our hypothesis. Notably, the

average Perplexity value is less than half at 0.05 compared

to the 1.0 masking ratio. This finding is crucial for Refin-

Paint’s effectiveness as it reduces the number of tokens to

be inpainted in subsequent iterations, considering the iter-

ative process as a top-to-bottom strategy.

5.2 Objective evaluation of proofreading inpainting

This section conducts a comparative analysis between the

reference inpainting output, as described in [15] (PIA), and

our enhanced method. Our method applies the RefinPaint

proofreading process to the initial PIA’s inpainting output

over ten iterations and is referred to as ‘Ours’. For frag-

ment sizes of 50%, 30%, and 10% of the 512-token test

sequences, we computed 1,000 instances each. It is impor-

tant to note that the PIA method discussed is our reimple-

mentation, since the original code was not available.

Table 2 shows the average global feedback score (GFS),

computed as explained in Section 4.2, and the number of

masking ratio NLL AVG PPL

0.05 0.56 0.31

0.10 0.58 0.33

0.15 0.58 0.34

0.20 0.58 0.33

0.40 0.64 0.41

0.60 0.70 0.49

0.80 0.77 0.59

1.00 0.86 0.73

Table 1: Summary of the inpainting experiment with dif-

ferent masking ratios. A masking ratio of 1.0 corresponds

to being fully masked, and 0 indicates no masking. The

standard deviation is less than 0.01 in all the experiments.

evaluations in which each algorithm outperforms the other

(Wins) and in which their scores are the same (Ties). Ta-

ble 3, on the other hand, focuses on the comparison be-

tween PIA and Ours, employing the NLL loss, a metric of

the next token prediction in generated music. This metric,

derived from an autoregressive model we trained explicitly

from scratch to assess the inpainting results, is a bench-

mark metric in our evaluation. Similar evaluations have

been employed in previous studies in natural language pro-

cessing [29] and music generation [30]. Consequently, our

study employs a 12-layer Transformer-based autoregres-

sive model with REMI representation. Our goal is to assess

the similarity between the distribution of musical elements

in inpainted sections and those in the original dataset, in-

cluding aspects such as rhythms, harmony, or melodies.

A lower NLL loss indicates a more accurate prediction

of the next token, reflecting a closer approximation to the

dataset’s inherent musicality. Note we assess this metric

over the entire output sequence.

GFS (↑) Wins Ties

PIA Ours PIA Ours

50% 0.458 0.696 0 870 130

30% 0.515 0.730 0 886 114

10% 0.650 0.803 0 891 209

Table 2: Comparison of global feedback scores (GFS)

between PIA and the proposed RefinPaint methodology,

Ours. Higher values indicate better performance.

NLL (↓) Wins Ties

PIA Ours PIA Ours

50% 2.01 1.97 330 541 129

30% 1.68 1.66 347 533 120

10% 1.63 1.62 321 457 222

Table 3: Comparison of Negative Log Likelihood (NLL)

between PIA and the proposed RefinPaint methodology,

Ours. Lower values indicate better performance.

Results in Table 2 indicate that our model’s GFS score is

generally better than the baseline, suggesting that the op-

timization goal of the RefinPaint iterative process is met.
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The PIA model never wins because this experiment selects

the best GFS of all the iterations, as mentioned in Sec-

tion 4.2. Although dynamic programming or genetic algo-

rithms could enhance the process, this study uses a simpler

method, focusing on the iteration with the highest GFS.

In Table 3, RefinPaint consistently achieves a slightly

lower average NLL loss than PIA, suggesting that the in-

painted content by RefinPaint is more consistent with the

original dataset used for training. Furthermore, Refin-

Paint wins more evaluations than PIA across all the per-

centages of fragment size evaluated. This further under-

scores the enhanced performance of RefinPaint in produc-

ing sequences more akin to human compositions. How-

ever, comparing both tables, we acknowledge that higher

GFS does not always imply a better NLL loss, calling for

other types of evaluation, as addressed in the next section.

5.3 Listening test of proofreading inpainting

While computational metrics provide valuable insights into

the quality of our inpainted music sections, human percep-

tion adds another perspective for evaluating musical qual-

ity and appeal. A user-based evaluation was conducted to

capture a holistic view of the inpainted outputs’ musicality.

For each experiment, which involved 50%, 30%, and

10% fragments of inpainted content, 15 different anno-

tators evaluated both the first iteration of inpainted con-

tent (PIA) and the complete iterative process of RefinPaint

(Ours) for ten iterations. Participants were exposed to two

scenarios, Experiment 1 and Experiment 2: one from the

PIA model and one from our RefinPaint model. The or-

der in which these pairs were presented was randomized to

avoid any bias. Additionally, we provided the original mu-

sic fragment without the inpainted content for reference.

Participants listened to both the PIA and RefinPaint ver-

sions before making their evaluations. They were asked to

assess the inpainted content’s quality by comparing it to the

original fragment, focusing specifically on coherence and

creativity. To make their choice, participants were given

four options to prevent bias: ‘Experiment 1,’ ‘Maybe Ex-

periment 1,’ ‘Maybe Experiment 2,’ and ‘Experiment 2’.

Figure 5 shows the listening test results. Firstly, PIA

got lower preference scores than RefinPaint for the differ-

ent fragment size conditions. In addition, RefinPaint’s per-

formance for different fragment sizes shows that the coher-

ence scores increase as the fragment size gets larger, even

if the creativity varies. This means that as there is more to

inpaint, RefinPaint gets better at being coherent. In con-

trast, PIA does not show such a strong trend.

The quantitative and qualitative evaluations point to-

wards a clear trend: Refinpaint tends to yield superior in-

painting results when proofreading machine inpainted sec-

tions compared to the baseline. Our methodology pro-

duces music sequences that are more consistent, percep-

tually closer to the original, and preferred by listeners.

6. CASE OF STUDY ON PROOFREADING

AMATEUR COMPOSITIONS

We conducted an additional study to explore the proposed

system’s capabilities for proofreading music compositions

Figure 5: Results of the participants’ votes for the listening

test comparing PIA and RefinPaint (Ours) along different

fragment sizes (50%, 30%, and 10%).

by humans. Given the intrinsic difficulties of such a study

and due to practical restrictions, we limited our experiment

to four amateur composers–two with classical music train-

ing and two with modern popular music training.

Participants used a straightforward proofreading inter-

face that enables bar selection for regeneration, allowing

them to choose how much of the content to keep in certain

sections of their work, as described in 2.3. Additionally,

we allowed the users to change the RefinPaint feedback in

the selected area and experiment with the tools by conduct-

ing as many trials as they wanted.

After testing our inpainting tool on a 30-second music

piece, participants responded to questions about their expe-

rience. They evaluated whether the tool (i) enhanced their

original draft, (ii) sparked new ideas, (iii) could save time

over manual proofreading, and (iv) was something they

would use in the future. All chose “yes” for (i), (iii) and

(iv) with three “yes” and one “maybe” for (ii), suggesting

time efficiency as a key advantage and providing an overall

positive view of the tool.

The positive feedback prompted us to showcase the

proofread compositions on our companion website. Par-

ticipants suggested the tool could be particularly effective

in overcoming creative blocks, noting that inspiring ideas

stemmed from all iterations, not just the last one. Addition-

ally, two participants especially valued the option to alter

tokens within the RefinPaint selection.

7. CONCLUSION

In conclusion, our novel approach, RefinPaint, signifi-

cantly enhances music generation by identifying and im-

proving weaker musical elements through iterative feed-

back. Its effectiveness in both inpainting and proofread-

ing tasks promises a new direction for creative assistance

and quality enhancement in compositions by humans and

machines alike. Future work could fruitfully extend the

research to multitrack compositions and explore control

mechanisms for this model, such as conditioning by har-

mony, rhythm, genre, or other musical factors.
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8. ETHICS STATEMENT

While RefinPaint can represent a significant leap forward

in music composition technology, ensuring ethical deploy-

ment and use is crucial. We advocate for a future where

such technologies support and enrich the creative pro-

cess, complementing rather than displacing human creativ-

ity. While RefinPaint aims to democratize music creation,

making it accessible and achievable for amateurs, there is a

risk that professional musicians and composers could feel

their roles and contributions are being undermined or re-

placed by machines. It is essential to strike a balance where

this technology serves as a tool for enhancement and learn-

ing rather than a substitute for human creativity. Further-

more, it will be vital to establish guidelines that protect

the intellectual property rights of original compositions,

whether entirely human-made or AI-assisted.
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ABSTRACT

Deep learning has significantly advanced music source
separation (MSS), aiming to decompose music recordings
into individual tracks corresponding to singing or specific
instruments. Typically, results are evaluated using quanti-
tative measures like signal-to-distortion ratio (SDR) com-
puted for entire excerpts or songs. As the main con-
tribution of this article, we introduce a novel evaluation
approach that decomposes an audio track into musically
meaningful sound events and applies the evaluation metric
based on these units. In a case study, we apply this strategy
to the challenging task of separating piano concerto record-
ings into piano and orchestra tracks. To assess piano sep-
aration quality, we use a score-informed nonnegative ma-
trix factorization approach to decompose the reference and
separate piano tracks into notewise sound events. In our
experiments assessing various MSS systems, we demon-
strate that our notewise evaluation, which takes into ac-
count factors such as pitch range and musical complexity,
enhances the comprehension of both the results of source
separation and the intricacies within the underlying music.

1. INTRODUCTION

Music source separation (MSS) is a key task in Music In-
formation Retrieval (MIR), involving the separation of a
musical mixture into individual components like vocals,
instruments, and other sound elements [1]. Deep learning
techniques have significantly advanced MSS, especially in
scenarios with sufficient training data. In particular, this
progress is evident in popular music separation, making
use of the existence of multitrack recordings inherent in
the production process [2–5]. In scenarios with limited
training data, systems are often trained using artificially
generated mixes through synthesis techniques [6,7] or data
augmentation approaches [8,9]. An example of such a sce-
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Müller, Fabian-Robert Stöter, Meinard Müller. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
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Robert Stöter, Meinard Müller, “Notewise Evaluation for Music Source
Separation: A Case Study for Separated Piano Tracks”, in Proc. of the
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Figure 1: Illustration of the proposed evaluation method
for music source separation (MSS), considering signal-
to-distortion ratio (SDR) values based on notewise sound
events rather than entire recordings.

nario, also addressed in this paper, is presented in [10],
where the goal is to separate piano concertos into piano
and orchestra tracks.

Extensive efforts have been devoted to evaluating and
understanding existing MSS systems. Specifically, in the
realm of popular music, evaluation campaigns like the Sig-
nal Separation Evaluation Campaign (SiSEC) [11] and the
Music Demixing Challenge (MDX) [12] have significantly
contributed to the comparison of current systems. In these
campaigns, along with evaluations in most approaches de-
scribed in the literature, one typically relies on quantita-
tive evaluation measures such as the signal-to-distortion
ratio (SDR) [13]. These measures are computed and aggre-
gated over audio excerpts or even entire recordings, offer-
ing ease of computation and convenience for comparison.
However, it is well recognized that such measures provide
limited insights into the effectiveness of source separation
methods [14, 15]. On the other hand, designing perceptu-
ally or musically more relevant measures is challenging,
and performing listening tests is often cumbersome and in-
feasible.

In this paper, we introduce a novel evaluation method-
ology aimed at attaining a more nuanced understanding
of separation quality. This involves comparing a refer-
ence signal with a separated signal, utilizing an evaluation
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metric based on musically meaningful sound units instead
of the entire excerpt. To achieve this, we employ score-
informed nonnegative matrix factorization (NMF) [16] to
decompose signals into notewise sound events. Then, we
calculate SDR values for individual units before aggregat-
ing this information in various ways (see Figure 1). This
methodology draws conceptual parallels to the evaluation
of tasks where automatic speech recognition (ASR) is used
as a downstream task. For example, Chen et al. [17] com-
puted word-level and utterance-level metrics to evaluate
the quality of the speech separation system.

In a case study, we apply this methodology to the intri-
cate task of separating piano concerto recordings into pi-
ano and orchestra tracks. Besides utilizing the Piano Con-
certo Dataset (PCD) [18], which comprises piano concerto
excerpts performed by five pianists in four distinct acoustic
settings, we generated piano scores for all the excerpts. We
then employed music synchronization techniques [19, 20]
to align these scores with all recorded excerpts. As an ad-
ditional contribution to this paper, we release these anno-
tations, thereby adding a score-based layer to the PCD col-
lection.

In systematic experiments, we apply our evaluation
methodology to effectively compare several academic and
commercial source separation systems. Our approach un-
covers general trends and yields insights into how separa-
tion quality is affected by factors like pitch range and mu-
sical complexity. In particular, it allows users to explore
evaluations in-depth by pinpointing complex passages and
challenging sound units where source separation systems
tend to fail. Along these lines, we provide qualitative dis-
cussions that deepen insights into the behavior of source
separation systems and the complexity of the underlying
music.

The remainder of the paper is organized as follows.
In Section 2, we review relevant literature on source sep-
aration and introduce the MSS models used for separating
piano concertos. Subsequently, in Section 3, we elaborate
on the score-based extension of PCD and outline our evalu-
ation approach, covering NMF-based audio decomposition
and notewise SDR-based metrics. In Section 4, we provide
details on the experimental settings and report our empiri-
cal findings. Finally, in Section 5, we conclude and discuss
potential directions for future work.

2. MUSIC SOURCE SEPARATION

As mentioned earlier, the decomposition of music record-
ings into individual sound components has garnered signif-
icant attention in academia and industry in recent years [1–
5,21–23]. While there is a multitude of approaches and ar-
chitectures proposed in the literature, one can broadly dis-
tinguish between spectral-based, waveform-based, and hy-
brid models. Spectral-based models, such as Open-Unmix
(UMX) [2] or Spleeter (SPL) [3], estimate the magnitude
spectrograms of target musical sources given the magni-
tude spectrogram of an input mixture. Techniques like bi-
nary masking, soft masking, or multichannel Wiener filter-
ing are then employed to reconstruct the separated audio

Model ID Domain Size (MB) TS (Hours)

UMX Spectrogram 34 52
SPL Spectrogram 75 52
DMC Waveform 510 52
HDMC Hybrid 319 52
AudioShake Hybrid N/A 500+

Table 1: MSS models considered in our experiments. TS
denotes the size (in hours) of the training set used.

signals [24,25]. Waveform-based models, such as Demucs
(DMC) [21], process the raw waveform of an input mix-
ture and predict the waveforms of the individual separated
sources. Hybrid models integrate complementary informa-
tion from waveform- and spectrogram-based models, en-
compassing both spectral and temporal branches. In these
architectures, latent representations are combined through
the addition of shared layers to leverage the advantages of-
fered by both domains [4, 26, 27]. Examples include the
hybrid Demucs model (HDMC) introduced in [4] and a sys-
tem (AudioShake) provided by the company AudioShake.

In this paper, we consider the challenging source sepa-
ration scenario of decomposing piano concerto recordings
into distinct piano and orchestral tracks. Piano concertos
involve an intricate interplay between the piano and the
entire orchestra, resulting in high spectro–temporal corre-
lations among the constituent instruments. Additionally,
the absence of multitrack data for training poses an extra
challenge for data-driven source separation approaches. To
overcome the lack of training data, the approach in [28]
proposes generating artificial training data by superimpos-
ing randomly chosen audio patches from the solo piano
repertoire (e. g., piano sonatas and etudes) and orchestral
pieces without piano (e. g., symphonies). The training
procedure and comparison of four different models men-
tioned above are described in [28], including the use of
further data augmentation techniques. In our experiments,
we employ four pre-trained models from the study [28],
shown in Table 1. Additionally, we utilize the commer-
cial system AudioShake, trained with over 500 hours of
multitrack music recordings spanning various genres, with
a focus on popular music. It is important to note that
the AudioShake system has not been specifically adapted
to the piano concerto scenario but is trained on mixtures
where the vocal stem is usually dominant.

Finally, we want to emphasize that the implementation
details and the reproducibility of the various MSS systems
are not the main focus of this paper. Instead, these MSS
systems and the piano concerto scenario serve as a frame-
work for illustrating our evaluation methodology, as we
will further discuss in Section 4.

3. EVALUATION APPROACH

We now introduce our novel evaluation approach, which
we will apply to compare reference piano recordings and
separated piano tracks. In Section 3.1, we briefly describe
the PCD collection, which will serve as a test dataset, and
present our score-based extensions. Then, in Section 3.2,
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Room ID Room Description Piano Dur #Notes

R1 Lecture hall Yamaha C3 180 1780
R2 Private studio Yamaha C3X 180 2216
R3 Small concert hall Seiler 252 2305
R4 Big concert hall Steinway D 360 3741

Σ 972 10042

Table 2: Overview of the PCD test set, indicating the four
rooms and the piano models employed, and including the
duration (in seconds) and the number of notes (piano only).

we revisit the score-informed NMF approach for audio de-
composition. Finally, in Section 3.3, we define the SDR-
based evaluation metrics, which we use to gain a deeper
understanding of the source separation results.

3.1 Piano Concerto Dataset and its Extension

The PCD collection, introduced in [18], is based on piano
concerto recordings featuring five different amateur and
professional pianists playing along with orchestral record-
ings provided by the publisher Music Minus One 1 . Multi-
track recordings with clean piano and orchestra reference
tracks were produced from these sessions. The PCD con-
sists of 81 multitrack excerpts, each lasting 12 seconds,
selected from 15 piano concertos spanning the Baroque
to Post-Romantic period. As summarized in Table 2, the
PCD comprises excerpts recorded in four distinct acoustic
settings with different grand piano models.

Our novel evaluation approach relies on synchronized
score information used for notewise audio decomposition.
To this end, we manually generated symbolically encoded
sheet music representations using the Sibelius software 2

for the piano tracks (and piano-reduced versions of the or-
chestra tracks, which are not utilized in this study). We em-
ployed the Sync Toolbox [20] 3 to automatically align the
score information with the PCD audio excerpts. To ensure
high synchronization accuracy, we computed these align-
ments in two independent ways: once based on the piano-
only tracks and another time based on the piano–orchestra
mixes. We then applied fusion techniques to establish the
final score annotations. Additionally, expert listeners veri-
fied the final results using visual cues provided by the Sonic

Visualizer [29] and acoustic cues using sonified score an-
notations overlaid with the audio excerpts. With regard
to note onsets, the accuracy of the score annotations for
the piano tracks can be expected to lie in the range of
20–40ms. Additionally, we manually annotated the left-
hand (LH) and right-hand (RH) notes, resulting in further
musically meaningful note groupings beyond the notewise
ones.

We release the symbolically encoded sheet music along
with the score-based annotations of the audio excerpts,
thereby adding an additional score-based layer to the PCD
collection as part of the contributions of this paper. 4

1 www.halleonard.com/series/MMONE
2 www.sibelius.com/
3 www.github.com/meinardmueller/synctoolbox
4 www.audiolabs-erlangen.de/resources/MIR/PCD

RH

RH

LH

LH

=
==

=

Figure 2: Illustration of the decomposition of the piano
track into left-hand (LH), right-hand (RH), and individual
note events as indicated by the rectangular windows.

3.2 NMF-Based Audio Decomposition

Nonnegative matrix factorization (NMF) is an algorithm
for approximating a nonnegative matrix as the product of
two low-ranked nonnegative matrices [30]. In the con-
text of music processing, NMF has been widely applied
to decompose a magnitude spectrogram into the product of
two nonnegative matrices [31], where the columns of the
first matrix encode spectral prototype patterns (called tem-

plates), and the rows of the second matrix encode their oc-
currences in time (called activations). Thanks to nonneg-
ativity and multiplicative update rules, NMF facilitates the
straightforward integration of prior musical knowledge,
such as information from an acoustic model or a musi-
cal score. For instance, one may constrain the spectral
template matrix to enforce a harmonic structure [32] or
use aligned score information to constrain the activation
matrix [16]. In addition to stabilizing the convergence of
the NMF algorithm, such constraints also guide the fac-
torization process to yield decompositions of musical rele-
vance [33].

Following the approach in [34], we adopt a score-
informed NMF approach to decompose a given audio sig-
nal x into its constituent notewise audio events xm for
m ∈ [1 :M ] and a residual signal r such that

x =
M∑

m=1

xm + r. (1)

Here, we assume that we have a score representation with
M denoting the number of note events, which are aligned
to the audio signal. Note that this alignment does not need
to be completely accurate, as it only serves to constrain
the NMF algorithm, which can then improve the accuracy
in the iteratively learned decomposition process. Besides
applying this procedure to obtain a notewise decomposi-
tion of the audio signal, one can use the same approach to
obtain a decomposition corresponding to note groups, re-
sulting, for example, in the decomposition of the LH and
RH notes, as illustrated in Figure 2.

We conclude our description of the NMF-based decom-
position approach with some final remarks regarding im-
plementation issues encountered in our experiments based
on the PCD test set. Note that, in general, NMF training
based on iterative update rules yields more reliable decom-
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position results when applied to longer input spectrograms
exhibiting a coherent template structure. Therefore, rather
than applying the NMF-based decomposition to individ-
ual 12-second excerpts, we concatenated all 12-second ex-
cerpts recorded in the same room (see Table 2). This strat-
egy is grounded on the assumption that the learned spec-
tral templates, encoding characteristics of the piano and
room acoustics, exhibit coherence within each room. Sub-
sequently, we executed the NMF algorithm for 100 itera-
tions on the concatenated data for four subsets with distinct
room acoustics, using the same configurations and initial-
ization approach introduced in [16]. This procedure was
applied to both the reference piano recordings and the sep-
arated piano tracks generated by each MSS model. The
resulting notewise decomposition results serve as the basis
for our experiments, as reported in Section 4.

3.3 SDR-Based Metrics

The signal-to-distortion ratio (SDR) is a widely used met-
ric in the evaluation of source separation performance,
measuring the quality of a separated source by comparing
it to the reference source in terms of signal distortion [13].
In our evaluation, when given a reference signal x and a
separated signal x̂, we use instead the more computation-
ally efficient SDR metric proposed at the recent SDX chal-
lange [35], also denoted as SDR:

SDR(x, x̂) := 10 log10
||x||2

||x̂− x||2
. (2)

Rather than comparing entire excerpts, we use a localized
variant referred to as SDRlocal that better accounts for sig-
nificant level differences within the signal. To this end,
we split the reference and separated signals into 1-second
segments xk and x̂k, respectively, defining:

SDRlocal :=
1

K

K∑

k=1

SDR(xk, x̂k) (3)

In our evaluation, we have K = 12, as each excerpt in the
PCD test set has a duration of 12 seconds.

To obtain a musically more informed evaluation metric,
we exploit the decomposition as defined in Equation (1)
and consider notewise SDR values:

SDRnote := SDR(xm, x̂m), (4)

where xm and x̂m denote the notewise sound events of
the reference signal and the separated signal, respectively.
Note that, using the same score-based activation con-
straints in the NMF decomposition for x and x̂, respec-
tively, the lengths of xm and x̂m are identical for a given
m ∈ [1 :M ].

4. EXPERIMENTS

In this section, we report on our systematically conducted
experiments to highlight the potential of our notewise eval-
uation methodology. In this context, the piano concerto
separation task, along with the five MSS systems described

Model Piano Orchestra

UMX 8.38 ± 4.24 3.61 ± 2.19
SPL 8.16 ± 3.99 3.46 ± 2.25
DMC 7.59 ± 4.38 2.82 ± 2.13
HDMC 9.61 ± 4.42 4.75 ± 2.31

AudioShake 12.82± 4.24 8.01± 2.97

Table 3: SDRlocal values (mean and standard deviation)
averaged over all PCD excerpts for different MSS systems
(see Table 1).

AudioShakeUMX SPL DMC HDMC

Figure 3: Comparison of different evaluation methodolo-
gies for the piano case using boxplots. The three outliers
for AudioShake, indicated by the black oval, are shown in
Figure 8.

in Section 2, should be considered an illustrative case study
of practical relevance. When describing the various exper-
iments, we progress from a coarse to a fine perspective.
We start with a more global view of the source separation
quality of the MSS systems (Section 4.1). Subsequently,
we adopt a more fine-grained perspective, delving into the
separation quality depending on the musical pitch (Sec-
tion 4.2). Finally, we assume an excerptwise view and dis-
cuss specific examples to illustrate how separation errors
may occur in musically complex situations (Section 4.3).
This hierarchical discussion underscores how the notewise
evaluation methodology serves as a tool, enabling users to
delve into and comprehend not only the separation results
but also the intricacies within the underlying music.

4.1 Global Perspective

To gain an initial understanding of the overall performance
of the five MSS systems, Table 3 presents the SDRlocal

values averaged across the 81 PCD excerpts for both sepa-
rated piano tracks and orchestra tracks. For instance, in the
piano case, DMC achieves the lowest SDRlocal value at 7.59,
while HDMC shows a higher value of 9.61, and AudioShake
outperforms all other models with a value of 12.82. Similar
trends are evident in the separated orchestra case, although
all values are notably lower compared to the piano case.
Similar tendencies have been reported in [28].

In the subsequent finer-grained evaluation, we employ
notewise evaluation metrics. Since we have the required
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Figure 4: SDRnote values aggregated by pitch (specified by MIDI note number) shown for five MSS systems.

symbolic score information for the score-based NMF de-
composition exclusively for the piano tracks, we confine
our analysis to the piano case. 5 Extending the evalu-
ation methodology for the five MSS systems, Figure 3
shows boxplots that indicate the median, first quartile, third
quartile, and outliers of differently computed SDR val-
ues. The first group of boxplots (Excerpt) provides the
SDRlocal values computed as in Table 3. The second (LH)
and third (RH) groups show the SDRnote values for the
left-hand and right-hand notes, respectively, and the last
group (All Notes) shows the SDRnote values for all indi-
vidual notes.

While the general trends for the five MSS systems
are similar to those shown in Table 3, the different
evaluation methodologies provide additional information.
Firstly, being based on notewise aggregation, outliers in
the SDRnote-based boxplots offer explicit cues worth fur-
ther investigation. For instance, outliers such as the three
indicated by the black oval in Figure 3 yield interesting ex-
amples for musically complex passages as further explored
in Section 4.3. The boxplots in Figure 3 also facilitate a
comparison of SDRnote values between the LH and RH
notes. Notably, for all MSS systems, a better separation
quality can be observed for the right hand compared to the
left hand, with a difference of approximately 5 dB. Draw-
ing from these observations, one can formulate various hy-
potheses regarding the relationship between source separa-
tion quality and pitch or musical complexity, as we detail
in the subsequent sections. Please visit our demo webpage
to find audio examples separated by five MSS models. 6

4.2 Pitchwise Evaluation

Considering that RH typically contains higher notes than
LH, one may conjecture that source separation quality de-
pends on the pitch of the played notes. To test this hy-
pothesis, Figure 4 provides an overview of the SDRnote

values aggregated by pitch (specified by MIDI note num-
ber). While the overall trend regarding the MSS systems’

5 For the orchestra, we generated only piano-reduced scores due to the
considerable effort required for full scores. Additionally, automated syn-
chronization and decomposition approaches present greater challenges
for orchestral music compared to piano, extending beyond the scope of
the case study presented in this paper.

6 www.audiolabs-erlangen.de/resources/MIR/

2024-ISMIR-PianoSepEval

performances remains the same (AudioShake performing
best, DMC worst, and HDMC being in between), the pitch-
dependent SDRnote values indicate that, overall, source
separation quality tends to increase for higher pitch num-
bers, with the highest values in the pitch range 74–80.

However, such trends, and drawing conclusions from
them, need to be taken with care. For example, the curves
in Figure 4 may indicate that source separation becomes
more difficult for very high pitches in the range 96–104.
However, these numbers lack statistical significance due to
the limited occurrence (indicated by the dotted line). Also,
one may assume that such pitches may rarely occur in the
training material used for training the MSS systems, thus
leading to poor generalizations on the test set.

4.3 Excerptwise Evaluation

Rather than source separation quality solely being a mat-
ter of pitch height, there may be other confounding factors
underlying the trend. An alternative hypothesis could be
that the LH (or lower-pitched) piano notes are more inter-
woven with the orchestral track, while the RH (or higher-
pitched) piano notes stand out and can be better isolated
by MSS systems. To explore aspects of musical complex-
ity, we present in Figure 5 SDRnote values aggregated by
excerpt (specified by PCD ID), this time focusing on the re-
sults for the two best-performing MSS systems, HDMC and
AudioShake. Sorting the excerpts, e. g., based on decreas-
ing mean values concerning AudioShake, facilitates the
identification of challenging excerpts, which are depicted
toward the right side of the plot.

Guided by the plot in Figure 5, let us consider some con-
crete examples. Examining the top three excerpts (PCD
IDs 045, 042, and 024), a manual inspection reveals that
these excerpts share a common characteristic of relatively
low musical complexity, consisting of slower passages
drawn from the second movements of piano concertos by
Beethoven and Mozart. For such passages, both MSS sys-
tems achieve a good separation quality.

Next, let us examine the excerpt with the lowest
SDRnote value. This excerpt has PCD ID 076 and cor-
responds to measures 18–24 of the first movement of
Tchaikovsky’s Piano Concerto Op. 23, as shown in Fig-
ure 6. Evidently, this passage exhibits a high musical com-
plexity, with both piano and orchestra playing numerous
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Figure 6: Excerpt with PCD ID 079: Tchaikovsky’s Piano
Concerto Op. 23, measures 18–24 of the first movement
(only four measures are shown here).
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Figure 7: Excerpt with PCD ID 000: Bach’s Piano Con-
certo BWV 1056, measures 1–8 of the first movement
(only four measures are shown here).

373 168 35

(a) (b) (c)

Figure 8: Musical context within the piano scores for the
three notewise outliers marked in Figure 3 (here indicated
by the red circles). (a) PCD ID: 052. (b) PCD ID: 061. (c)
PCD ID: 077.

notes within a wide pitch range. Particularly notable are
the fortissimo and broken chords in the piano part, which
strongly interfere with the full orchestral sound, not to
mention the effects resulting from the application of the
sustain pedal. As a second concrete example, let us have a

closer look at the excerpt with PCD ID 000, also yield-
ing a low SDRnote value. This excerpt corresponds to
the first measures of Bach’s Piano Concerto BWV 1056,
where the piano and orchestra play many notes in unison
(see Figure 7). This scenario represents one of the most
challenging situations for source separation models to deal
with [36, 37].

Finally, we revisit the boxplots shown in Figure 3,
where we marked three outliers indicating problematic
notewise sound events with low SDR values, poorly sepa-
rated by AudioShake. Figure 8 provides the musical con-
text within the piano scores where these notes occur. A
common feature in these examples, which is also typical
in piano music in general, is the simultaneous playing of
two notes that belong to the same pitch class, contribut-
ing to a rich and complex sound texture. Obviously, such
instances are difficult for any MSS system, as well as the
NMF algorithm to handle.

Overall, these examples show that while MSS systems
like AudioShake and HDMC are capable of achieving im-
pressive separation quality, their efficacy is highly influ-
enced by the intrinsic characteristics of the musical pieces.

5. CONCLUSION

In this paper, we have considered a novel evaluation
methodology that compares separated sounds with refer-
ence sounds on a notewise basis rather than at the excerpt
level. For the challenging piano concerto scenario and em-
ploying five MSS systems, we applied this methodology in
a case study focusing on the separated piano tracks. This
allowed us to gain insights into the separation quality and
the complexity of the underlying music. While our focus
has been on the piano case, future work may involve eval-
uating other orchestral instruments and guitars. This could
pose additional challenges not only for source separation
itself but also for automated synchronization and decom-
position approaches. On a meta-level, we hope that our hi-
erarchical discussion, assuming different perspectives, also
showcased the potential of musically informed evaluation
methodologies, providing a basis for interdisciplinary dia-
logue between engineering and music experts.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

253



Acknowledgements: This work was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Grant No. 328416299 (DFG MU
2686/10-2). The International Audio Laboratories Er-
langen are a joint institution of the Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU) and Fraunhofer In-
stitute for Integrated Circuits IIS.

6. REFERENCES

[1] E. Cano, D. FitzGerald, A. Liutkus, M. D. Plumbley,
and F. Stöter, “Musical source separation: An intro-
duction,” IEEE Signal Processing Magazine, vol. 36,
no. 1, pp. 31–40, 2019.

[2] F. Stöter, S. Uhlich, A. Liutkus, and Y. Mitsufuji,
“Open-Unmix – A reference implementation for
music source separation,” Journal of Open Source

Software, vol. 4, no. 41, 2019. [Online]. Available:
https://doi.org/10.21105/joss.01667

[3] R. Hennequin, A. Khlif, F. Voituret, and M. Mous-
sallam, “Spleeter: A fast and efficient mu-
sic source separation tool with pre-trained mod-
els,” Journal of Open Source Software (JOSS),
vol. 5, no. 50, p. 2154, 2020. [Online]. Available:
https://doi.org/10.21105/joss.02154

[4] A. Défossez, “Hybrid spectrogram and waveform
source separation,” in Proceedings of the ISMIR 2021

Workshop on Music Source Separation, Online, 2021.

[5] Y. Luo and J. Yu, “Music source separation with
Band-Split RNN,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 31, pp. 1893–
1901, 2023.

[6] S. Sarkar, E. Benetos, and M. Sandler, “EnsembleSet:
A new high quality dataset for chamber ensemble sep-
aration,” in Proceedings of the International Society

for Music Information Retrieval Conference (ISMIR),
Bengaluru, India, 2022, pp. 625–632.

[7] S. Sarkar, L. Thorpe, E. Benetos, and M. Sandler,
“Leveraging synthetic data for improving chamber en-
semble separation,” in Proceedings of the IEEE Work-

shop on Applications of Signal Processing to Audio

and Acoustics (WASPAA), 2023, pp. 1–5.

[8] S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp,
N. Takahashi, and Y. Mitsufuji, “Improving music
source separation based on deep neural networks
through data augmentation and network blending,” in
Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP),
New Orleans, Louisiana, USA, March 2017, pp. 261–
265.

[9] H. Kim, J. Park, T. Kwon, D. Jeong, and J. Nam, “A
study of audio mixing methods for piano transcription
in violin-piano ensembles,” in Proceedings of the IEEE

International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), Rhodes Island, Greece,
2023, pp. 1–5.

[10] Y. Özer and M. Müller, “Source separation of piano
concertos with test-time adaptation,” in Proceedings

of the International Society for Music Information Re-

trieval Conference (ISMIR), Bengaluru, India, 2022,
pp. 493–500.

[11] F. Stöter, A. Liutkus, and N. Ito, “The 2018 Signal Sep-
aration Evaluation Campaign,” in Proceedings of the

International Conference on Latent Variable Analysis

and Signal Separation (LVA/ICA), ser. Lecture Notes
in Computer Science, vol. 10891. Springer, 2018, pp.
293–305.

[12] Y. Mitsufuji, G. Fabbro, S. Uhlich, F.-R. Stöter, A. Dé-
fossez, M. Kim, W. Choi, C.-Y. Yu, and K.-W. Cheuk,
“Music demixing challenge 2021,” Frontiers in Signal

Processing, vol. 1, 2022.

[13] E. Vincent, R. Gribonval, and C. Févotte, “Perfor-
mance measurement in blind audio source separation,”
IEEE Transactions on Audio, Speech, and Language

Processing, vol. 14, no. 4, pp. 1462–1469, 2006.

[14] E. Cano, D. FitzGerald, and K. Brandenburg, “Evalu-
ation of quality of sound source separation algorithms:
Human perception vs quantitative metrics,” in Pro-

ceedings of the European Signal Processing Confer-

ence (EUSIPCO), 2016, pp. 1758–1762.

[15] M. Torcoli, T. Kastner, and J. Herre, “Objective
measures of perceptual audio quality reviewed: An
evaluation of their application domain dependence,”
IEEE/ACM Transactions on Audio, Speech, and Lan-

guage Processing, vol. 29, pp. 1530–1541, 2021.

[16] S. Ewert and M. Müller, “Using score-informed con-
straints for NMF-based source separation,” in Proceed-

ings of the IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP), Kyoto,
Japan, 2012, pp. 129–132.

[17] Z. Chen, T. Yoshioka, L. Lu, T. Zhou, Z. Meng, Y. Luo,
J. Wu, X. Xiao, and J. Li, “Continuous speech separa-
tion: Dataset and analysis,” in Proceedings of the IEEE

International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), 2020, pp. 7284–7288.

[18] Y. Özer, S. Schwär, V. Arifi-Müller, J. Lawrence,
E. Sen, and M. Müller, “Piano Concerto Dataset
(PCD): A multitrack dataset of piano concertos,”
Transactions of the International Society for Music In-

formation Retrieval (TISMIR), vol. 6, no. 1, pp. 75–88,
2023.

[19] S. Ewert, M. Müller, and P. Grosche, “High resolution
audio synchronization using chroma onset features,”
in Proceedings of IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP),
Taipei, Taiwan, 2009, pp. 1869–1872.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

254



[20] M. Müller, Y. Özer, M. Krause, T. Prätzlich, and
J. Driedger, “Sync Toolbox: A Python package for ef-
ficient, robust, and accurate music synchronization,”
Journal of Open Source Software (JOSS), vol. 6,
no. 64, pp. 3434:1–4, 2021.

[21] A. Défossez, N. Usunier, L. Bottou, and F. R. Bach,
“Music source separation in the waveform domain,”
2019. [Online]. Available: http://arxiv.org/abs/1911.
13254

[22] Y. Luo and N. Mesgarani, “Conv-TasNet: Sur-
passing ideal time–frequency magnitude masking for
speech separation,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 27, no. 8, pp.
1256–1266, 2019.

[23] D. Stoller, S. Ewert, and S. Dixon, “Wave-U-net: A
multi-scale neural network for end-to-end audio source
separation,” in Proceedings of the International Society

for Music Information Retrieval Conference (ISMIR),
Paris, France, 2018, pp. 334–340.

[24] N. Q. K. Duong, E. Vincent, and R. Gribonval, “Under-
determined reverberant audio source separation using a
full-rank spatial covariance model,” IEEE/ACM Trans-

actions on Audio, Speech, and Language Processing,
vol. 18, no. 7, pp. 1830–1840, 2010.

[25] A. Liutkus and R. Badeau, “Generalized Wiener filter-
ing with fractional power spectrograms,” in Proceed-

ings of the IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), Bris-
bane, Australia, April 2015, pp. 266–270.

[26] M. Kim, W. Choi, J. Chung, D. Lee, and S. Jung,
“KUIELab-MDX-Net: A two-stream neural network
for music demixing,” in Proceedings of the ISMIR 2021

Workshop on Music Source Separation, Online, 2021.

[27] S. Rouard, F. Massa, and A. Défossez, “Hybrid trans-
formers for music source separation,” in Proceedings

of the IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), Rhodes Is-
land, Greece, 2023.

[28] Y. Özer and M. Müller, “Source separation of pi-
ano concertos using musically-motivated augmenta-
tion techniques,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing (TASLP), vol. 32,
pp. 1214–1225, 2024.

[29] C. Cannam, C. Landone, and M. B. Sandler, “Sonic
Visualiser: An open source application for viewing,
analysing, and annotating music audio files,” in Pro-

ceedings of the International Conference on Multime-

dia, Florence, Italy, 2010, pp. 1467–1468.

[30] D. D. Lee and H. S. Seung, “Algorithms for non-
negative matrix factorization,” in Proceedings of the

Neural Information Processing Systems (NIPS), Den-
ver, Colorado, USA, November 2000, pp. 556–562.

[31] P. Smaragdis and J. C. Brown, “Non-negative matrix
factorization for polyphonic music transcription,” in
Proceedings of the IEEE Workshop on Applications of

Signal Processing to Audio and Acoustics (WASPAA),
2003, pp. 177–180.

[32] S. A. Raczynski, N. Ono, and S. Sagayama, “Multi-
pitch analysis with harmonic nonnegative matrix ap-
proximation,” in Proceedings of the International So-

ciety for Music Information Retrieval Conference (IS-

MIR), Vienna, Austria, September 2007, pp. 381–386.

[33] S. Ewert, B. Pardo, M. Müller, and M. Plumbley,
“Score-informed source separation for musical audio
recordings: An overview,” IEEE Signal Processing

Magazine, vol. 31, no. 3, pp. 116–124, April 2014.

[34] J. Driedger, H. Grohganz, T. Prätzlich, S. Ewert, and
M. Müller, “Score-informed audio decomposition and
applications,” in Proceedings of the ACM International

Conference on Multimedia (ACM-MM), Barcelona,
Spain, 2013, pp. 541–544.

[35] G. Fabbro, S. Uhlich, C.-H. Lai, W. Choi, M. Martínez-
Ramírez, W. Liao, I. Gadelha, G. Ramos, E. Hsu,
H. Rodrigues, F. Stöter, A. Défossez, Y. Luo, J. Yu,
D. Chakraborty, S. Mohanty, R. Solovyev, A. Stemp-
kovskiy, T. Habruseva, N. Goswami, T. Harada,
M. Kim, J. H. Lee, Y. Dong, X. Zhang, J. Liu, and
Y. Mitsufuji, “The sound demixing challenge 2023 –
music demixing track,” arXiv, 2024.

[36] J. J. Burred, “From sparse models to timbre learning:
New methods for musical source separation,” Ph.D.
dissertation, Technische Universität Berlin, Berlin,
Germany, 2009.

[37] C.-B. Jeon, H. Moon, K. Choi, B. S. Chon, and
K. Lee, “Medleyvox: An evaluation dataset for mul-
tiple singing voices separation,” in Proceedings of the

IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), 2023, pp. 1–5.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

255



AUTOMATIC ESTIMATION OF SINGING VOICE MUSICAL DYNAMICS

Jyoti Narang♭∗ Nazif Can Tamer♭∗ Viviana de la Vega♯ Xavier Serra♭

♭ Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain
♯ Escuela Superior de Música de Cataluña (ESMUC), Barcelona, Spain

jyoti.narang@upf.edu, nazifcan.tamer@upf.edu,

vivianadelavega@gmail.com, xavier.serra@upf.edu

ABSTRACT

Musical dynamics form a core part of expressive singing
voice performances. However, automatic analysis of musi-
cal dynamics for singing voice has received limited atten-
tion partly due to the scarcity of suitable datasets and a lack
of clear evaluation frameworks. To address this challenge,
we propose a methodology for dataset curation. Employ-
ing the proposed methodology, we compile a dataset com-
prising 509 musical dynamics annotated singing voice per-
formances, aligned with 163 score files, leveraging state-
of-the-art source separation and alignment techniques. The
scores are sourced from the OpenScore Lieder corpus of
romantic-era compositions, widely known for its wealth of
expressive annotations. Utilizing the curated dataset, we
train a multi-head attention based CNN model with vary-
ing window sizes to evaluate the effectiveness of estimat-
ing musical dynamics. We explored two distinct percep-
tually motivated input representations for the model train-
ing: log-Mel spectrum and bark-scale based features. For
testing, we manually curate another dataset of 25 musi-
cal dynamics annotated performances in collaboration with
a professional vocalist. We conclude through our experi-
ments that bark-scale based features outperform log-Mel-
features for the task of singing voice dynamics prediction.
The dataset along with the code is shared publicly for fur-
ther research on the topic.

1. INTRODUCTION

Musical dynamics, such as piano and forte [1], are key el-
ements in adding expressiveness to the singing voice [2].
They enhance overall performance and facilitate the con-
veyance of the desired emotional impact [3]. Despite ex-
tensive research on the singing voice, the analysis of dy-
namics in this context has received limited attention for
several reasons. Firstly, annotating dynamics is an expen-
sive process that requires repeated listening to audio tracks

*These authors contributed equally to this work.

© J. Narang, N. C. Tamer, V. de la Vega, and X. Serra. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: J. Narang, N. C. Tamer, V. de la Vega, and
X. Serra, “Automatic Estimation of Singing Voice Musical Dynamics”, in
Proc. of the 25th Int. Society for Music Information Retrieval Conf., San
Francisco, United States, 2024.

to accurately identify the dynamics category. Secondly,
unlike other musical features such as pitch or tempo, the
categorization of dynamics is not clearly defined, and even
the same annotator may interpret a piece differently on
multiple listens. Finally, a significant challenge for modern
deep learning applications is the lack of reliable, existing
dynamics based annotated datasets that can be used for the
development of automatic analysis systems [4].

Despite the challenges of dynamics-based annotations
for the singing voice, investigating dynamics in singing
performances is worthwhile. On one hand, dynamics
are a key component of expressivity in a music perfor-
mance [5, 6]. On the other hand, dynamics are also an in-
tegral part of the music writing tradition [1, 7]. The use of
dynamics in Western classical music evolved significantly
from the Baroque period to the Romantic era. Particu-
larly during the Romantic era, when expressivity became
prominent, the annotation of dynamics alongside the score
became widespread and accepted as part of the composi-
tion process. Composers frequently utilized symbols such
as forte, piano, crescendo, and diminuendo to convey their
desired variations in musical dynamics, and adhering to the
dynamics instructions given by the composers became an
important part of a Classical music performance.

While dynamics is a musical concept, its automatic es-
timation for music performance analysis relies on proper-
ties derived from audio signals. The audio characteristic
most similar to musical dynamics is loudness or percep-
tual intensity. However, the mapping of musical dynamics
to audio-based features from Music Information Retrieval
(MIR) technologies is still not clearly understood. Exten-
sive research exists on dynamics and tempo as expressive
dimensions for Western classical piano performances [8].
However, unlike piano, there are almost no publicly avail-
able dynamics-based annotated datasets for the singing
voice, which hinders the development of such technologies
for the vocal performance analysis.

In this work, we propose to take advantage of the ex-
isting OpenScore Lieder corpus to curate a dataset of vo-
cal performances with dynamics annotations, using state-
of-the-art source separation and alignment as intermediate
steps 1 . Furthermore, we curate a dataset of 25 other per-
formances of different genres annotated manually by a pro-
fessional Classical vocalist to test the model. At the end,

1 https://github.com/MTG/SingWithExpressions.
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Figure 1: Data Preparation Pipeline: Corresponding to the Lieder scores from OpenScore Lieder Corpus, we apply Vocal
Separation followed by Automatic Alignment. Finally, we validate the aligned score-performance data using Visualizations

we study the relationship between score based musical dy-
namics to perceptually motivated audio features [9] like
log-Mel and bark-scale based features, testing the model
with different analysis window-size, and genres of the test
dataset.

Figure 1 illustrates the overall pipeline of the task. Us-
ing the meta-data information of the repository accompa-
nying Lieder corpus, we start with searching for corre-
sponding performances on YouTube. Further, we apply vo-
cal separation on the performance to get vocals. Thereafter,
using state-of-art alignment techniques, we align the corre-
sponding score with the performance. At this stage, to test
the accuracy of the alignment process, we develop visual-
ization to filter out performances with mismatched aligned
scores. Using the aligned score and performance data, we
train a model for estimating dynamics based markings for
an unknown performance.

The rest of this paper is structured as follows. In sec-
tion 2, we cover the related works. Section 3 describes the
dataset and the curation process. In section 4, we describe
the experiments conducted with the curated data, followed
by discussion and future work.

2. RELATED WORK

Although musical dynamics has been a topic of investiga-
tion in several studies [6, 7, 10, 11], especially for the case
of piano [8, 12–14]there remains a notable gap in research
concerning standalone musical dynamics analysis for the
case of singing voice, particularly from an MIR perspec-
tive. Despite this gap, dynamics form a fundamental as-
pect of analysis within the interconnected fields of singing
voice synthesis [15] and voice pedagogy [5].

In Singing Voice Synthesis (SVS) systems, dynamics
play a crucial role in conveying expressive nuances [16].
Typically, dynamics are modelled as measures of energy
in the signal [15–17] at the frame level. However, while
there exists a close correlation between energy of the signal
and musical dynamics, the influence of other parameters,
such as pitch and timbre [10], remains largely unexplored.
Understanding the relationship between pitch, timbre and
dynamics could lead to more realistic representations of
musical expression in SVS systems.

Bous and Roebel [4] explore the relationship between
musical dynamics and timbral characteristics of the singing

voice, employing mel-spectrogram features. Their experi-
ment involves modifying the singing voice dynamics using
a neural auto-encoder to transform voice levels. Effective-
ness is assessed through evaluating perceived changes in
voice level in the transformed recordings. However, a sig-
nificant challenge arises as there is currently no reliable la-
bels to determine the perceived changes in musical dynam-
ics corresponding to "voice-level" changes as proposed in
the system.

Narang et al. [18] utilize perceptually-motivated sone

scale, comparing loudness curves of different professional
renditions and student renditions for "musical dynamics"
comparison following the methodology outlined by Kosta
et al. [12] for comparing musical dynamics in piano. How-
ever, the study encountered limitations due to the lack of
dynamics annotated datasets for evaluation.

While there are some aspects of the research on Vo-
cal Pedagogy [5] that has been utilized for the case of
singing voice research from an MIR perspective, for exam-
ple, Phonation mode [19] dataset or VocalSet [20] (which
also contains some singing voice dynamics annotations but
confined to vowel renditions), research outcomes of the vo-
cal pedagogy remain largely unexplored by the MIR com-
munity. One direction is the role of voice source in singing
voice, or how the positioning of the diaphragm affects vo-
cal characteristics [21]. A study on vocal dynamics can
help infer the voice source characteristics that can directly
aid in vocal pedagogy.

3. DATASET

Dynamics are considered to be the most commonly ma-
nipulated parameter of an expressive performance and re-
search investigations show that professionals or experts
have much better control in expressive parameters in com-
parison to novice performers [6]. Further, songs from
the 19th century Romantic era of Western classical mu-
sic are widely known to be rich in expressive parameters.
Drawing inspiration from this notion, we curate a dataset
comprising professional renditions of 19th-century songs
sourced from the OpenScore Lieder corpus [22]. No-
tably, composers often embed numerous dynamic mark-
ings within their scores, laying a foundational framework
conducive to the analysis of dynamics.
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(a) Accepted Performance Visualization
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(b) Rejected Performance Visualization

Figure 2: Example visualization after automatic align-
ment on "The Shepherds Song" by Edward Elgar; For
each sub-figure: red dots represent f0 using crepe, black
dots represent note-information from the score (top), au-
dio waveform (middle), dynamics information from the
aligned score after automatic alignment (bottom)

3.1 Training Dataset Curation Process

3.1.1 Score Sources

Lieder Scores is a comprehensive collection of over 1200
19th century songs encoded over several years [22]. Within
the Lieder dataset, we capitalize on two specific resources
to facilitate our data curation process:

• The GitHub repository of Lieder provides MSCX
files along with batch-conversion script to convert to
MusicXML, enabling further processing with tools
such as music21 [23]

• In the metadata section of the Lieder scores, a com-
prehensive compilation of composers, score names,
and their respective MuseScore IDs is provided.
This rich metadata serves as a valuable resource dur-
ing the performance collection stage, enabling effi-
cient querying and selection of performances.

3.1.2 Filtering Criteria for Scores

From all the batch-converted MusicXML files, we filter all
scores, focusing on those with more than 3 dynamics anno-
tations, and containing only 3 streams of score data: vocal,
piano left hand and piano right hand.

3.1.3 Performance Sources

For the identified scores with greater than 3 dynamics
markings, we search for multiple corresponding perfor-
mances on YouTube using the query term obtained from
the meta-data information of the scores. We curate multi-
ple performances of similar pieces with the intention of ex-
tracting general dynamics based expressive patterns from
professional singers. Our aim is to glean insights into var-
ied interpretations, as there is no singular correct rendition
of a performance that strictly adheres to the score. Subse-
quently, we carefully listen to each performance, specifi-
cally selecting those featuring vocals accompanied solely
by piano. It is to be noted that not all composers have
available performance data; thus, our selection process ini-
tially prioritizes renowned figures such as Schubert, Schu-
mann, Brahms or Debussy, and ones with greater than 10
dynamics annotations. Once having exhaustively searched
for performances of these well known composers, we pro-
ceed to search for lesser known composers following simi-
lar criteria. We automate the download process by utilizing
YouTubeDL batch download to acquire the identified per-
formances. The method yields a final list of 970 perfor-
mances comprising identified composers, performances,
and their respective MusicXML score files with dynamics
based annotations.

3.1.4 Filtering Criteria for Performances

Following the filtration of scores and the manual curation
of performance links, we advance to filtering performances
suitable for the dynamics learning process. This process
includes the following steps:
Source Separation Singing voices typically aren’t pre-
sented in isolation. Even for solo performances, piano ac-
companiment is part of the performance. However, for our
analysis, we require solo vocal renditions to accurately dis-
cern variations in performance dynamics. The initial step
involves isolating the vocal component from the vocal-
piano mix. This process, known as source separation, en-
tails breaking a mixture into it’s constituent components,
and significant research has been dedicated to separation
of vocals from the mix. We use Demucs v2 [24] to extract
the vocals for the chosen songs. The robustness of using
vocals resulting from source separation as an intermediate
step was examined with the MusDB dataset [25].
Automatic Alignment To ensure that our curated perfor-
mances can effectively serve as the basis for dynamics
analysis, it’s essential to achieve a basic alignment with the
scores. Our approach to label creation draws inspiration
from the methodology outlined by Tamer et al. [26, 27],
who leverage Dynamic Time Warping (DTW) based mu-
sic synchronization techniques [28] for creating pseudo
labels in the realm of Violin transcription. Additionally,
the concept of utilizing audio-to-score alignment as a pre-
processing step for curating datasets in a semi-automatic
manner for musicological endeavours was introduced in
works by Weiss et al. [29], with a focus on the curation of
Schubert’s Winterreise dataset. While the works by Weiss
et al. utilize MIDI-to-score alignment, we have chosen to
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conduct the alignment using musicXML scores. This de-
cision stems from the fact that dynamics information such
as piano, forte, crescendo, and diminuendo can be less re-
liable in the process of MIDI conversion.
Manual Filtering using Visualizations The alignment
stage yields a score with time information mapped to the
corresponding performance files. Subsequently, we de-
velop a visualization process utilizing fundamental fre-
quency (f0) data extracted from performance files us-
ing CREPE [30] to validate the alignment between time-
aligned performance and score files. Figure 2 showcases a
sample visualization from the dataset. Figure 2a illustrates
a performance that was accepted, and Figure 2b depicts a
performance that we manually excluded during the selec-
tion process. The performance in Figure 2b was rejected
because f0 curve from crepe (red dots) do not align with
note-information from score (black rectangles) after auto-
matic alignment, and hence the final labels lose reliability.
The end result of this step is a comprehensive dataset of
509 performances for 163 aligned score files, which can
be used to extract precise note-level expressive informa-
tion from the score using tools like music21 [23].

3.1.5 Dynamics based Labels Extraction from Aligned

Score Files

The aligned score files consist of all score-based informa-
tion crucial for dynamics prediction. In this stage, we pro-
cess the musical dynamics labels extracted using music21.
Our approach adheres to the following principle: consec-
utive notes in the aligned audio are assumed to maintain
similar dynamics unless there is a change in dynamics an-
notation in the score. When encountering labels like sfz or
sf for a note, the value of the label of the consecutive note
is assigned to be the dynamic value of the note preceding
sf or related categories. This process results in a note-level
mapping of 13 musical dynamics categories: pppp, ppp,

pp, p, mp, mf, f, ff, fff, ffff, sf, crescendo, diminuendo di-
rectly extracted from the score. It is to be noted that we
consolidate accent related categories, such as sf, sfz into
a single category. Additionally, while we focus on musi-
cal dynamics for our task, the aligned score-performance
data holds potential for various other Music Information
Retrieval (MIR) tasks related to singing voice, including
transcription, synthesis, or pedagogy.

3.2 Test Dataset Curation Process

For testing, we curated performances from a diverse se-
lection of genres, ranging from operatic pop to theatre,
R&B, or jazz, which lie outside the typical classical mu-
sic domain. We collaborated with a Classical Vocalist,
possessing over a decade of experience, to identify artists
renowned for their wide vocal range. Once identified, we
created reference scores for selected performances by these
professional artists. The distribution of the genres in the
selected pieces is as follows: pop(13), rock(12), jazz(3),
soul(5), R&B(5), theatre(2) and other miscellaneous gen-
res(5) including categories such as "post-disco", "acoustic"
or "progressive rock", amongst others.
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Figure 3: Dynamics Distribution across Train and Test
Performances

3.2.1 Annotation Methodology

This section details the annotation methodology for
dynamics-related markings of selected pieces as outlined
by the musician: In the first listening, the piece’s start-
ing dynamic value is determined according to the dynamic
markings such as: pp, p, mp, mf, f, ff, creating a reference
point for each piece. This phase captures the most promi-
nent features, recognizing that notation conveys more than
mere amplitude. Subsequent listenings entail adding de-
tails, both in terms of dynamics and articulation of the text
and musical phrases. Increased attention reveals additional
layers of variation, often unnoticed during the first listen-
ing. In the third listening, decisions are made based on
unification criteria. If different notations were used for the
same musical effect in similar portions of the piece (e.g.,
different verses), the notation that best represents the mu-
sical intent is selected and unified with the rest. Rarely,
genuine differences may exist between similar sections, in
which case they are left distinct. In the final listening,
no further notations are added. Instead, a mental musi-
cal reading of the entire work, from beginning to end, is
undertaken. This involves elaborating on the interpretation
following the written notations while simultaneously com-
paring it with the rendition produced by the artist.

3.2.2 Processing Methodology for Test Dataset

The processing methodology followed for the test dataset
is similar to that of the training dataset, i.e., we apply
source separation followed by automatic alignment to fetch
the annotated labels using curated reference scores and per-
formances.
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Table 1: Results with Mel and Bark Features. Temporal resolution refers to the final feature rate after downsampling.

Seq Length Temporal Resolution Perceptual Feature Acc Acc(±1) Acc(±2)

4096 17.4 ms log-Mel 6.95 38.46 63.02
10000 29 ms log-Mel 11.35 42.55 68.38
4096 16 ms Bark 20.44 59.17 82.24
10000 30 ms Bark 20.96 60.71 84.78

3.3 Dataset Statistics

Audio Statistics: The total duration of all the perfor-
mances for the training dataset is 25.91 hours. The total
duration of test files is 1.614 hours. The distribution of the
labels as identified in dataset section 3 is illustrated in Fig-
ure 3. We observe that Lieder scores follow a relatively
uniform distribution of dynamics with large number of dy-
namics annotations centered on a ‘piano’. And for the test
dataset, the distribution curve is largely gaussian with ma-
jority of the distribution centered around mp and mf, which
is not surprising considering the nature of pop music and
mixing and mastering effects added to the final renditions.
Performance Count Per Piece: Although a single per-
former can deviate from the annotated score dynamics,
having multiple performers per piece can help the model
learn the general patterns closer to composer’s intention.
To leverage this effect, we collect performances with an
average count of 3.12 performances per piece (std: 2.13),
with a maximum of 12 performances for a piece by Robert
Schumann. The average performance duration was ob-
served to be 9.54 minutes (std: 9.36 minutes), with a max-
imum of 74.27 minutes for a piece by Franz Schubert and
a minimum of 1.01 minutes for a piece by Peter Warlock.

4. EXPERIMENTS AND RESULTS

For the experiments outlined in this section, we utilize the
curated dataset of Classical vocal performances for train-
ing and the dataset created in collaboration with the Clas-
sical vocalist for testing. We convert the note-level dynam-
ics labels spanning from pianissississimo (pppp) to fortis-

sississimo (ffff) into framewise labels encompassing 10 dy-
namics classes, and train and test our models for estimating
the frame-wise dynamics. Thus, we consider dynamics es-
timation as a 10-class classification problem operating at
the granularity of individual frames.
Input Representations: For model inputs, we consider
two perceptually-motivated loudness features that are ex-
tracted after isolating the vocal tracks using DemucsV2
[24]. As our first input representation, we consider log-
Mel features, which are commonly used in many audio
and music processing tasks. These features are extracted
using the librosa [31] library from audio sampled at 44.1
kHz using a hop size of 5.8 ms. As our second repre-
sentation, we consider the specific loudness in Bark crit-
ical bands, which was previously studied in the context of
piano dynamics [12] and singing voice loudness analysis
[18]. The 240 dimensional Bark features are extracted us-
ing the MoSQITo library [32, 33], following the Zwicker

loudness calculation method for time-varying signals [34]
as specified in the ISO.532-1:2017 standard. The extrac-
tion process adheres to the default settings of a 48 kHz
audio sampling rate and a 2 ms hop size.

Alongside these different input representations, we also
study the effect of input sequence length and rate. To that
end, we experiment with sequence lengths of 4096 and
10000. Since the original input representations have dif-
ferent temporal resolutions, we employ various downsam-
pling rates to ensure that the models receive comparable
feature rates during analysis. In our study with short con-
text (4096 frames) dynamics modeling, we downsample
the Bark features by 8 to operate at 16 ms, and down-
sample the log-Mel features by 3 to operate at 17.4 ms.
For modeling dynamics detection using longer contexts
(10000 frames), we downsample the log-Mel features by
5 to achieve a temporal resolution of 29 ms, and down-
sample the Bark features by 15 to achieve a comparable
resolution of 30 ms.
Model Architecture and Training: For the frame-level
estimation of dynamics, we employ a multi-scale Convo-
lutional Neural Network (CNN) with self-attention 2 [35],
originally introduced for the closely related task of frame-
wise playing technique detection. In our implementation,
the network receives input features with a fixed sequence
length and outputs probabilities for 10 dynamics classes,
with the class having the highest probability taken as the
estimate. During training, we utilize the Adam optimizer
with a learning rate of 0.002, aiming to reduce the Cross
Entropy loss between the predicted dynamics classes and
the aligned dynamics labels. We report our results on train-
ing the same network for different input representations,
sequence lengths, and feature rates.
Metrics: One big challenge in the experimentation with
musical dynamics is the subjectivity and relativity in its
evaluation. For instance, one piece may span dynamics
ranging from pp to f, and another piece may span dynamics
ranging from p to ff. However, the measured loudness val-
ues of performances derived from both music pieces might
be similar, as both sets of labels indicate a transition from
relatively "soft" to "loud" dynamics. Therefore, the map-
ping between perceived performed dynamics and labeled
musical dynamics may not be absolute. To address this
challenge, we present the results in terms of exact match
(Acc), relaxed accuracy 1(Acc ± 1) , and relaxed accuracy
2(Acc ± 2). Relaxed accuracy denotes that estimates are
not penalized for a mismatch of 1 or 2 classes, respectively.

2 Based on the modified version of https://github.com/

LiDCC/GuzhengTech99/blob/main/function/model.py
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Figure 4: Model input and outputs for the log-Mel spec-
trum features. log-Mel-spectrogram (top), annotated labels
by musician(middle), model estimates (bottom)

4.1 Results

The results are summarised in Table 1. Despite the sub-
jectivity of the task, we observe that the most confusion lie
within the ±1 or ±2 range with significantly higher relaxed
accuracies. Furthermore, we see that bark-based features
outperform log-Mel features for the task. The highest re-
laxed accuracy ±2 is achieved with bark-based features,
indicating the models ability to differentiate between up-
per and lower bounds of dynamics. For example, a fortis-
simo is not classified to be a piano in almost 85% of the
cases. An example prediction using log-Mel features and
bark-based features for a theatre song "sound of music" is
presented in Figures 4 and 5 respectively.

The effect of larger and smaller temporal contexts can
also be seen in Table 1. Providing larger temporal con-
texts results in better performance for dynamics estima-
tion. This effect is more prominent for log-Mel features
compared to the Bark features. We found that the best per-
forming model is the one with the entire song frames in-
cluded in the context window i.e., the sequence length is
long enough to encapsulate the whole song.

5. DISCUSSION

One of the primary challenges in predicting musical dy-
namics lies in the fact that performance information is
available through recordings, which is a result of mixing
and mastering. Consequently, the loudness information
captured in recordings may diverge from performers orig-
inal intentions. However, we contend that despite the in-
fluence of mixing and mastering, it is possible for musi-
cians as well as non-musicians to infer whether a performer
is singing softly, loudly or even shouting independent of
raw loudness levels. Our approach leverages perceptually
motivated features that encapsulate timbral characteristics,
which have the potential to enhance musical dynamics es-
timation while remaining agnostic to variations in loudness
levels.
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Figure 5: Model input and outputs for the bark based fea-
tures: bark-critical-bands (top), annotated labels by musi-
cian (middle), model estimates (bottom)

While the labels are created semi-automatically, there
are potential discrepancies due to performers not adhering
strictly to the score or editors creating alternative versions
of the score different from the one curated in the dataset.

Additionally, we have framed the dynamics estimation
at an absolute level, with the expectation that the model
will learn the variations in relative markings given a large
amount of data. However, musical dynamics at any given
time in a performance depend on the context rather than the
absolute value of measured loudness [36]. Additionally,
addressing class imbalance remains a significant challenge.

On software front, while MuseScore offers extensive
annotation capabilities, some categories cannot be accu-
rately modeled. To mitigate this, musicians often use note-
level "TextExpressions" in MuseScore to add additional in-
formation. During our experimentation, we encountered
terms like "sempre piano," "poco dolce," and "calando"
that musicians add to the score. While we were able to
mitigate challenges with some labels, achieving compre-
hensive coverage requires further collaboration with vocal-
ists to refine the target labels.

6. CONCLUSION AND FUTURE WORK

We’ve developed a methodology for large-scale dataset cu-
ration focused on singing voice. The semi-automatically
curated dataset serves as a valuable resource for tasks such
as transcription, expression analysis, synthesis, and vocal
pedagogy. It currently includes 509 performances aligned
with 163 score files from 25 composers. Using this dataset,
we trained a CNN with multi-head attention for dynamics
prediction and found that bark-scale-based features out-
perform log-Mel features. To test the model, we curated
score-performance dataset manually in collaboration with
a Classical vocalist. Future work involves integrating pitch
features with loudness features to enhance prediction accu-
racy, improving the model to address class imbalance, and
expanding the dataset to include more composers.
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ABSTRACT

We present JASCO, a temporally controlled text-to-music

generation model utilizing both symbolic and audio-based

conditions. JASCO can generate high-quality music sam-

ples conditioned on global text descriptions along with

fine-grained local controls. JASCO is based on the Flow

Matching modeling paradigm together with a novel condi-

tioning method that allows for both locally (e.g., chords)

and globally (text description) controlled music genera-

tion. Specifically, we apply information bottleneck lay-

ers in conjunction with temporal blurring to extract rele-

vant information with respect to specific controls. This al-

lows the incorporation of both symbolic and audio-based

conditions in the same text-to-music model. We experi-

ment with various symbolic control signals (e.g., chords,

melody), as well as with audio representations (e.g., sepa-

rated drum tracks, full-mix). We evaluate JASCO consider-

ing both generation quality and condition adherence using

objective metrics and human studies. Results suggest that

JASCO is comparable to the evaluated baselines consider-

ing generation quality while allowing significantly better

and more versatile controls over the generated music. Sam-

ples are available on our demo page https://pages.

cs.huji.ac.il/adiyoss-lab/JASCO

1. INTRODUCTION

Conditional music generation has shown a great improve-

ment in recent years, specifically in the task of text-to-

music generation [1–6]. Such advancements in music gen-

eration hold great potential to empower content creators,

advertisers, and video game designers. Though present-

ing highly realistic music samples, most of the prior work

is focused on global conditioning only. Such methods

mainly consider textual descriptions or melody in the form

*Equal contribution
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“JOINT AUDIO AND SYMBOLIC CONDITIONING FOR TEMPO-

RALLY CONTROLLED TEXT-TO-MUSIC GENERATION”, in Proc.

of the 25th Int. Society for Music Information Retrieval Conf., San Fran-

cisco, United States, 2024.
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Figure 1. Top figure presents the temporal blurring pro-

cess, showcasing source separation, pooling and broad-

casting. Bottom figure presents a high level presentation of

JASCO. Conditions are first being projected to low dimen-

sional representation and are concatenated over the chan-

nel dimensions. Green blocks have learnable parameters

while blue block are frozen.

of spectral features [3]. However, when considering music

production, global controls may not be enough. During the

creative process, professional musicians often use chords,

melodies, or audio prompts, at the local level, rather than

global descriptions. As a result, current models may be

limited in their relevancy for music creators.

More recently, several works study text-to-music gener-

ation using temporally aligned controls. The authors in [7]

suggest adding symbolic beat and dynamics conditions on

top of the previously explored melody conditioning. The

authors in [8] further explore musical structure condition-

ing, such as A-part and B-part. Unlike these works, the

proposed method provides local controls considering both
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symbolic representation and raw audio together with a

global textual description. When considering music edit-

ing, the authors in [9] propose leveraging chord progres-

sion to guide the generation process towards the harmony

of the inputs signal. For that, the authors extract an inter-

nal representation from stemmed data using a pre-trained

chord classification model. The proposed method is dif-

ferent as we focus on generating full musical pieces rather

than editing a given one. Specifically, we allow symbolic

chord progression conditioning during inference time.

In this work, we present JASCO, a locally controlled

Joint Audio and Symbolic COnditioning text-to-music

model. JASCO uses time-aligned controls, namely audio

prompts, melodies and chord progressions, comprised of

either symbolic signals or raw waveforms. We relieve the

need for either studio quality stemmed data or supervised

datasets by using off-the-shelf pre-trained models to auto-

matically extract the relevant information. JASCO is based

on the Flow-Matching [10] modeling paradigm. Figure 1

provides a high level description of the proposed method.

Results suggest that JASCO achieves comparable perfor-

mance in terms of generation quality w.r.t the evaluated

baselines while allowing significantly richer set of con-

trols. The main contributions of this work are as follows:

(i) We introduce a simple yet effective approach for au-

dio conditioning with high temporal-adherence. (ii) We

offer specific evaluation metrics to measure the alignment

and accuracy of our suggested controls. (iii) We provide

a thorough analysis on the components composing JASCO

and compare to several baselines.

2. BACKGROUND

Audio Representation. Modern audio generative mod-

els mostly operate on a latent representation of the audio,

commonly obtained from a compression model [11–13].

Compression models such as [14] employ Residual Vec-

tor Quantization (RVQ) which results in several parallel

streams. Each stream is comprised of discrete tokens orig-

inating from different learned codebooks.

Specifically, the authors in [14] introduced EnCodec, a

convolutional auto-encoder with a latent space quantized

using RVQ [15], and an adversarial reconstruction loss.

Given a reference audio signal x ∈ R
D·fs with D the au-

dio duration and fs the sample rate, EnCodec first encodes

it into a continuous latent tensor z ∈ R
D·fr×Nenc with a

frame rate fr ≪ fs and Nenc = 128. Then, z is quantized

into q ∈ {1, . . . , N}D·fr×K , with K being the number of

codebooks used in RVQ and N being the codebook size.

After quantization, we are left with K discrete token se-

quences, each of length T = D · fr, representing the audio

signal. In RVQ, each quantizer encodes the quantization

error left by the previous quantizer, thus quantized values

for different codebooks are in general dependent, where

the first codebook holds most of the information. Finally,

the quantized representation is decoded back to a time do-

main signal using the decoder network applied to the sum

of the representations learned by the different codebooks.

In JASCO, we use the continuous tensor z as the latent rep-

resentation, while leveraging the discrete representation q

for audio conditioning.

Flow Matching. The Flow Matching modeling paradigm

[10] was recently found to provide impressive results on

image [10], speech [16] and environmental sound genera-

tion [17]. More specifically, Conditional Flow Matching

(CFM) is a novel training technique for Continuous Nor-

malizing Flow models [18], that captures the continuous

transformation paths of samples from a basic prior distri-

bution, usually standard normal N (0, 1), to their counter-

parts in a target data distribution, S . The position on this

path is denoted by a time parameter t, starting from the

prior state at t = 0 and ending at the data state at t = 1.

In this work, we focus on Optimal Transport (OT) paths

as defined in [10]. The model is trained to predict the vec-

tor field of the continuous latent audio variable z, given t
and a set of conditions Y . Formally, the model minimizes

the regression loss

LCFM(θ; z0, z1, t|Y ) = ∥vθ(z, t|Y )−(z1−(1−σmin)·z0)∥
2,

(1)

where z0 ∼ N (0, I) is a sampled noise, z1 ∼ S is the

latent representation of a data sample, and

z = (1− (1− σmin) · t) · z0 + t · z1, (2)

is an interpolation between the noise and the data sample.

For numerical stability, we use a small value σmin = 10−5

in both terms. During inference we follow an iterative pro-

cess, starting with the prior noise z ← z0 ∼ N (0, 1) and

with t = 0. In each step, we translate the estimated vec-

tor field vθ(z, t|Y ) into an updated latent sequence z, and

gradually converge toward the data distribution.

3. METHOD

Given a textual description, and a set of temporal condi-

tions - such as melody, chord progression or drum record-

ing, our goal is to produce high-quality samples that are

musically aligned with the given controls, while comply-

ing to the arrangement description provided in the text.

JASCO tackles the aforementioned problem by a CFM

model, operating on the continuous latent space of En-

Codec. JASCO is conditioned on low-dimensional embed-

dings of melody, chords and audio signals, together with a

T5 embedding of the textual description. All local controls

are concatenated to the model’s input across the feature

dimension, while text is being passed via cross attention.

To diminish timbre-related information, JASCO further ap-

plies temporal blurring to the audio-based controls, as well

as band-pass filtering. See Figure 1 for a visual descrip-

tion, and Section 3.1 for detailed information.

3.1 Temporal Controls

Symbolic. We use Chordino 1 chord progression model to

extract an integer categorical chord label sequence, and a

1 https://github.com/ohollo/chord-extractor
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pretrained multi-F0 classifier [19] to obtain melody scores

per time step. We resample all features to match En-

Codec’s frame rate using nearest-interpolation for chords

and linear-interpolation for melody. For Chords, we use a

learned embedding table to map the raw integer sequence,

denoted as ccrd, to its corresponding condition matrix in

shape T × dcrd. For Melody, we zero out values with a

score lower than a pre-defined threshold (0.5). Then, we

select the maximal non-zero score per time step from the

remaining values, and set it to 1 while setting the rest to

0. This yields a binary matrix cmld ∈ {0, 1}
D·fmld

r
×Nmld .

Finally, we linearly project the binary matrix and obtain

the melody condition representation in shape T × dmld.

We use Nmld = 53 (corresponding to G2-B7 notes), and

dcrd = dmld = 16.

Audio. We consider general audio and separated drum

stems. We use a pretrained source separation model [20],

to extract the drum stem from a source audio. We pass

the waveform through EnCodec to obtain the correspond-

ing quantized discrete representation q. We then convert

the first token stream back to its continuous latent repre-

sentation, using EnCodec’s first codebook while discard-

ing all other streams, yielding caud, cdrm ∈ R
T×Nenc . We

chose to use only the first codebook stream to further dis-

card timbre information, stressing the forced information-

bottleneck further. Following that, we apply temporal blur-

ring to the reconstructed latent. First, we apply average

pooling using non-overlapping windows along the tempo-

ral axis. Then, we broadcast the signal to its original tem-

poral dimension. Finally, we linearly project the blurred

condition to a low dimensional feature space and obtain

the condition matrix. For general audio, we use a window

size of 5 and output dimension of 1, while for drums we

use a window size of 3 and output dimension of 2.

Inpainting and Outpainting. In/Out-painting is the task

of filling in a masked region, where in/out refers to the

masked segment position in the sequence, be it at the mid-

dle (in) or at the end (out). Following prior work [5], we

add in/out-painting as an additional condition to the model.

We randomly choose between inpainting/outpainting, and

mask a random segment of 40-90% from the reference

waveform. Then, we use the raw EnCodec latent repre-

sentation of the masked waveform ciop ∈ R
T×Nenc as the

condition, with no learned projection.

3.2 Model and Optimization

Similarly to prior work [17], our CFM model consists of a

Transformer, with U-Net-like residual connections. We re-

place the standard residual addition with channel-wise con-

catenation followed by a linear projection. We use learned

convolutional positional encoding [21] as well as symmet-

ric bi-directional ALiBi self-attention biases [22]. We use

a model scale of 330M parameters, with 24 Transformer

layers, 16 attention heads, embedding dimensionality of

1024 and a feed-forward dimension of 4096.

We train our model using the LCFM objective as defined

in Section 2. We further experiment with non-uniform loss

weighting as function of t, and find the following formula-

tion to produce the best overall sample quality:

LWeightedCFM =
∑

t∼U(0,1)
z0∼N (0,1)

z1∼S

(1 + t) · LCFM(θ; z0, z1, t|Y ),

(3)

where Y = {ccrd, cmld, caud, cdrm, ciop}. We provide an

ablation study for this scheme in Section 5.

3.3 Inference

During inference, as in [10], we use dopri5 [23], an off-the-

shelf numerical ODE solver, to iteratively solve for z given

the estimated vector field vθ. Specifically, at each iteration

the solver determines the increment to the time parame-

ter t, resulting in a dynamic scheduling for the inference

process. The process halts when an acceptance criterion is

met, defined by an error approximation of the solver and a

tolerance parameter provided by the user.

Multi-Source Classifier Free Guidance. We employ

classifier-free guidance (CFG) [24] for the conditional vec-

tor field estimation vθ(z, t|Y). Since our set of condition-

ing signals combines both global and local concepts, we

further experiment with multi source CFG. While prior

work [25] suggest a separate evaluation for each con-

dition, we evaluate the model considering all and par-

tial conditions. During each inference step, we obtain

an estimated vector field for each set of conditions Y ∈
{{local}, {text}, {local, text}}. The resulting CFG formu-

lation then follows:

CFG(vθ, z, t)=(1−
∑

c∈Y

αc)vθ(z, t) +
∑

c∈Y

αcvθ(z, t|c).

(4)

When following the standard CFG setup (αtext =
αlocal = 0), we observe that the model adheres to the tem-

poral condition while ignoring instrumentation informa-

tion provided in the text prompt. To increase text influence

on guidance, we set a positive weight to the text-only term

αtext > 0. We found that αtext = 0.5, αlocal = 0, αlocal,text =
1.5 offer a good trade-off between audio quality, text align-

ment and temporal controls adherence.

4. EXPERIMENTAL SETUP

Implementation Details. We follow the same experimen-

tal setup as in [3,6], and use a training dataset consisting of

20K hours of licensed music from the Shutterstock 2 and

Pond5 3 data collections with 25K and 365K instrument-

only music tracks, respectively. We additionally include

a set of proprietary data consisting of 10K high-quality

tracks. All datasets are sampled at 32kHz, paired with tex-

tual descriptions. We present results on the MusicCaps

benchmark [1], comprising 5.5K 10-second samples to-

gether with an in-domain test set of 528 tracks.

2 shutterstock.com/music
3 pond5.com
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We use the official EnCodec model provided by [3,12],

with a frame rate of 50 Hz, and 4 codebooks, each with a

size of 2048. For text representation we use a pretrained T5

model [26]. For melody extraction we use the pretrained

deep salience multi-F0 detector 4 , for chords extraction

we use Chordino, while for drum track extraction we use

the Hybrid Demucs model [27].

All single condition models were trained with 40% con-

dition dropout, and in the multi-condition experiments we

train the models with 20% condition dropout for all con-

ditions. In the remaining 80% we set 50% dropout for

each of the conditions independently excluding the in/out-

painting, for which we set 70% dropout.

We experiment with multi-source CFG coefficients

in (αtext, αlocal, αtext,local) ∈ {0.0, 0.5} × {0.0,−0.5} ×
{1.5, 2.0} and report the best overall configuration. All

models were trained for 500k steps over audio segments of

10 seconds, with a batch size of 336. We use Adam [28]

optimizer with linear learning rate warm-up up to a peak of

10−4 during the first 5k steps, followed by a linear decay,

and a gradient clipping with a norm threshold of 0.2.

4.1 Evaluation Metrics

We perform a thorough empirical evaluation, using both

objective metrics and human studies. We evaluate JASCO

on several temporal alignment aspects, namely harmonic

matching, rhythmic alignment and melody preservation.

Additionally, we measure audio quality and text adherence.

Objective Evaluations. We evaluate our method with

widely used metrics, namely Fréchet Audio Distance

(FAD), Kullback-Leiber Divergence (KL) and CLAP score

(CLAP), as well as more specific metrics designed to

quantify the adherence of our suggested controls. We re-

port FAD [29] using the official tensorflow implementation

where a low FAD score indicates that the generated audio

is associated with higher quality. Following [3, 12], we

use an audio classifier [30] to compute the KL-divergence

over the probabilities of the labels between the original and

the generated music. The generated music is expected to

share similar concepts with the reference music when the

KL is low. Last, CLAP score [31, 32] is computed be-

tween the track description and the generated audio, mea-

suring audio-text alignment. We use the official pretrained

CLAP model 5 . To evaluate melody compatibility, sim-

ilar to [3] we use a cosine similarity metric on either a

simple quantized chroma representation, or multi-octave

melody representation obtained from a pretrained multi-

F0 classifier [19]. For beat adherence, as in [7] we evalu-

ate the onset F1 score using mir eval 6 considering a 50ms

tolerance margin around classified onsets in the reference

signal. Lastly, to evaluate chord progression, we use the

Chordino model to extract the chord progression from both

the reference and the generated signals and compute the in-

tersection over union (IOU) score between the two.

4 github.com/rabitt/ismir2017-deepsalience
5 github.com/LAION-AI/CLAP
6 github.com/craffel/mir_evaluators

Model FAD↓ CLAP↑ Mel Sim.↑ Mel Acc.↑

MusicGen 5.90 0.29 0.61 44.0

MusicControlNet 10.81 0.22 - 47.1

JASCO 6.05 0.26 0.67 49.1

Table 1. Melody conditioning evaluation over MusicCaps.

We evaluated MusicGen with 300M parameters.

Human Study. We request raters to evaluate three aspects

of given audio samples: (i) overall quality; (ii) similarity

to text description; and (iii) adherence to either melody

or rhythmic pattern from a reference recording. Raters

were instructed to rate the recordings on a scale between

0-100 where higher is better. Raters were recruited us-

ing the Amazon Mechanical Turk platform. We evaluate

randomly sampled files, where each sample was evaluated

by at least 5 raters. We use the CrowdMOS package [33]

to filter noisy annotations and outliers. We remove an-

notators who did not listen to the full recordings, anno-

tators who rate the reference recordings less than 90, and

the rest of the recommended recipes from [33]. Similarly

to [3], for a fair comparison, all samples are normalized

at -14dB LUFS [34]. Overall, we 179 raters evaluated the

generation quality, 121 raters evaluated the text relevancy,

159 raters evaluated the adherence to rhythm patterns us-

ing drum conditioning, and 142 raters evaluated melody

conditioning.

5. RESULTS

Melody Conditioning. We start by evaluating the pro-

posed method considering melody conditioning. We com-

pare JASCO to MusicGen [3] and MusicControlNet [7].

For a fair comparison, we train MusicGen (300M) on 10
second music segments using Audiocraft 7 repository, con-

sidering text and melody conditions. For comparison com-

patibility with [7] we compute melody accuracy score on

both JASCO and MusicGen. We experiment with melody

conditioning using the commonly used 12-bins chroma

representation which is octave invariant. Results are pre-

sented in Table 1.

Results suggest that JASCO surpasses the evaluated

baselines w.r.t melody adherence. When considering

melody accuracy, JASCO provides better alignment to the

conditioning melody. Notice, we hypothesize this is due

to the conditioning method: both MusicGen and Mus-

icControlNet inject conditions as an additive bias (i.e.,

cross-attention and zero-convolutions), this is in contrary

to JASCO which follows the concatenation approach for

melody conditioning (see Section 6 for more experiments).

Local Controls. We train a single-condition variant

for each observed condition-type as well as two multi-

condition models. Under the multi-condition setup, we

train models with Drums tracks passed through a Band-

Pass-Filter (BPF) over 200-800 Hz frequency range, and

7 https://github.com/facebookresearch/

audiocraft/blob/main/docs/MUSICGEN.md
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Local Controls Objective metrics (MusicCaps / Internal dataset)

Aud Drm Crd Mld Mld (clf) sim. ↑ Mld sim. ↑ Onset F1 ↑ Crd IOU ↑ FAD ↓ KL ↓ CLAP ↑

- - - - 0.13 / 0.13 0.09 / 0.09 0.34 / 0.41 0.09 / 0.07 6.04 / 0.90 1.46 / 0.70 0.27 / 0.36

✓ - - - 0.33 / 0.34 0.38 / 0.47 0.62 / 0.81 0.23 / 0.27 4.47 / 0.86 0.92 / 0.81 0.30 / 0.31

no drm - - - 0.21 / 0.22 0.38 / 0.31 0.62 / 0.58 0.23 / 0.18 5.68 / 0.92 1.79 / 0.75 0.19 / 0.33

- ✓ - - 0.13 / 0.13 0.09 / 0.10 0.62 / 0.73 0.09 / 0.08 5.85 / 0.94 1.68 / 0.78 0.23 / 0.35

- BPF - - 0.13 / 0.13 0.10 / 0.10 0.45 / 0.74 0.10 / 0.07 6.31 / 1.61 1.52 / 0.65 0.26 / 0.37

- - ✓ - 0.21 / 0.25 0.22 / 0.29 0.24 / 0.13 0.59 / 0.61 7.23 / 0.95 1.16 / 0.68 0.28 / 0.36

- - - ✓ 0.67 / 0.64 0.41 / 0.35 0.37 / 0.57 0.31 / 0.27 6.96 / 1.05 1.32 / 0.63 0.27 / 0.35

- BPF ✓ ✓ 0.68 / 0.69 0.44 / 0.46 0.63 / 0.66 0.50 / 0.53 6.42 / 1.15 1.22 / 0.50 0.28 / 0.37

no drm BPF ✓ ✓ 0.71 / 0.68 0.50 / 0.55 0.54 / 0.75 0.51 / 0.55 4.78 / 0.80 0.93 / 0.41 0.30 / 0.37

Table 2. Objective local controls experiment, observing all suggested controls w.r.t a zero hypothesis (no local controls).

Model Cond. Q T M D

Reference - 92.7±0.66 93.7±0.8 96.3±0.6 97.1±0.6

MusicGen T 84.4±0.8 84.5±0.9 81.5±1.3 82.1±1.0

JASCO T 83.3±0.7 80.3±1.3 79.7±1.5 81.5±1.1

MusicGen T & M 84.7±0.7 82.5±1.1 83.6±1.1 82.7±0.9

JASCO T & M 84.1±0.7 81.2±1.2 89.3±0.7 80.6±1.2

JASCO T & D 85.5±0.8 84.1±1.1 81.9±1.4 89.5±0.7

Table 3. Human evaluation results. Observing general

quality (Q), text match (T) melody match (M) and drums

match (D). Evaluated on a 0-100 scale (higher is better).

Audio condition excluding drums. This was found to bet-

ter disentangle Drums and Audio conditions in preliminary

experiments, and allows users to provide different drum

beats than the one presented in the Audio. When applying

Audio/Drums conditions, we evaluate Melody, Onset F1,

and Chord IoU using the reference audio as a condition,

while for the computation FAD, KL, and CLAP scores we

use a randomly selected audio from the test set.

As there are no open-source relevant baselines avail-

able, we compare the proposed method against a text-only

condition model. We perform experiments using both the

open source MusicCaps dataset, and an internal proprietary

dataset, highlighting our model performance on diverse,

high quality recordings. Table 2 summarizes the results.

Results depict a systematic improvement considering

local control adherence. For instance, chords condition-

ing shows apparent improvement in Chords IOU metric,

improving from 0.09/0.07 to 0.59/0.61. In addition, in

spite of being evaluated with randomly selected audio con-

ditions, FAD, KL, CLAP scores mostly remain comparable

w.r.t to the baseline. This highlight JASCO’s disentangling

property as local controls metrics improve while text ad-

herence and audio quality metrics stay roughly the same.

The lower section of the table presents multi-control

setup results. This section draws a similar trend to the

single control setups, allowing for multiple controls while

preserving FAD, KL, CLAP. This highlights JASCO’s abil-

ity to incorporate multiple controls simultaneously with no

significant penalty to quality and text alignment.

Human Study. Lastly, we perform a human study in or-

der to validate both quality and text alignment as well as

local control adherence. We evaluate JASCO vs MusicGen

considering: (i) text only; and (ii) both text and melody.

We additionally, provide results of the proposed method

with text and drums conditions. Results seen on Table 3,

indicate that JASCO achieve similar generation quality as

MusicGen across all setups. As of text relevancy, Music-

Gen reaches superior performance to the proposed method,

however, when considering melody conditioning, JASCO

reaches significantly better scores. Lastly, when condi-

tioned on drums, JASCO provides the best rhythmic pat-

tern similarity scores. This highlights JASCO’s ability to

provide better controls over the generated music without

sacrificing quality and text alignment. Interestingly, after

including melody or drums conditions, as expected, the

relevant metrics are improving (i.e., melodic and rhyth-

mic similarity) while the quality and text adherence remain

comparable to the unconditioned model.

6. ANALYSIS

Condition Injection Method. We compare the proposed

method to two widely used condition injection methods

proposed in prior work. Specifically, we perform a con-

trolled experiment in which we evaluate cross-attention as

used in MusicGen, and zero-convolution as used in Music-

ControlNet, considering the same training configuration.

Results shown in Table 4 suggest that the temporal ad-

herence using the concatenation method performs the best

overall. This can be seen in both higher Chord IoU, as

well as better FAD and KL, where CLAP was 0.36 for all

methods. Additionally, the concatenation method allows

training from scratch as opposed to zero-convolutions, in

which we start from a pretrained model) without a signifi-

cant increase in the number of trainable parameters.

Flow vs. Diffusion. Most of prior work on music gen-

eration is mainly based on Diffusion models [2, 4, 5, 35].

In this experiment we evaluate, under controlled settings,

both Diffusion (v-Diffusion) and Flow Matching modeling

approaches for music generation. We report FAD, KL, and

CLAP scores. Results are depicted in Figure 2. As can

be seen, the Flow Matching approach is superior across all

metrics, with the biggest gap observed in FAD.
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Conditioning Chord IOU ↑ FAD ↓ KL ↓

Concat 0.6 1.19 0.71

Cross Attn. 0.59 1.61 0.73

Zero Conv 0.26 1.64 0.74

Table 4. Ablation for conditioning method. evaluated on

internal dataset. All models started from a text-to-music

pretrained checkpoint and trained for 500K steps.

VDiff Flow0

1

2

3
FAD

VDiff Flow0.0

0.2

0.4

0.6

KL

VDiff Flow0.0

0.1

0.2

0.3

CLAP

Figure 2. Comparison of v-Diffusion vs Flow Matching.

We report FAD, KL, and CLAP on the internal dataset.

The Effect of Weighted Loss. Finally, we evaluate the

effect of the proposed modification to the loss function as

presented in Equation (3). We compare the proposed ob-

jective function against the loss as describe in Equation (1),

considering FAD, KL, and CLAP scores in Table 5. Re-

sults suggest the new objective function modification im-

proves the generation quality. It provides significantly bet-

ter FAD while having comparable KL and CLAP scores.

7. RELATED WORK

Flow Matching for Audio Generation. Flow Match-

ing [10] was recently studied for speech generation. A

notable work in this context presented VoiceBox [16], a

Flow Matching model, operating on spectrograms, for text-

guided multilingual speech generation. More recently, Au-

dioBox [17] was presented, in which self-supervised infill-

ing objectives were leveraged to improve the generaliza-

tion capabilities of VoiceBox. Similar to our model, Au-

dioBox operates on the continuous latent representations

of EnCodec [14]. Though the scope of audio modalities

was extended in AudioBox to both speech and environ-

mental sounds, applying a Flow Matching approach for

music generation remained less explored.

Temporally Controlled Music Generation. Recent work

offered several forms of temporally restrictive controls for

music generation. Melody conditioned text-to-music was

studied in MusicLM [1], in which a melody embedding

was trained using a dedicated dataset consists of multi-

ple cover versions of musical tracks paired with aligned

singing and humming performances. In MusicGen [3] and

Music ControlNet [7], the need for supervised data was

relieved, and instead an unsupervised melody extraction

was performed using the argmax note of the audio chroma-

gram. Audio-to-audio setups were studied for drum gener-

Weighted loss schedule FAD↓ KL↓ CLAP↑

w(t) = 1 1.73 0.71 0.38

w(t) = 1 + t 0.99 0.73 0.37

Table 5. Ablation for loss weighting method. Evaluated on

internal dataset. All models were trained for 500K steps.

ation conditioned on drumless track [36], accompaniment

generation given singing voice [37], and single instrument

generation given partial mix [25] [9]. Recently, genera-

tion conditioned on multiple symbolic controls was stud-

ied in Music ControlNet [7], a spectrogram diffusion text-

to-music model, fine-tuned using the ControlNet scheme

[38], to generation with melody, beat and dynamics con-

trols. In DITTO [8], inference time optimization was ex-

plored, for tiding a text-to-music diffusion model to per-

form several tasks including inpainting, outpainting, loop

generation, melody and dynamics conditioned generation,

as well as conditioning on musical structures. In [39],

classifier guidance was used to perform music inpainting,

outpainting and style transfer given a pretrained uncondi-

tional latent diffusion model. Inpainting was further ex-

plored in [5], [40], and [41]. Style transfer was explored

also in [42] and [9].

8. DISCUSSION

In this work we present JASCO, a temporally controlled

text-to-music generation model, supporting both audio

and symbolic conditioning. JASCO is based on the Flow

Matching modeling paradigm operating over a dense mu-

sic latent representation. Through extensive experimen-

tation we empirically show JASCO generates high-fidelity

samples that can be conditioned on global textual descrip-

tion together with harmony, melody, rhythmic patterns,

and overall musical style. Results suggest JASCO provides

comparable generation quality to the evaluated baselines

while allowing significantly better control over generation.

Limitations. The main limitations of the proposed ap-

proach are: (i) Similarly to previous diffusion-based text-

to-music models, the length of the generated samples is

relatively short (∼ 10 seconds) compared to the auto-

regressive alternative. Although this can be extrapolated

with overlaps, it may limit the capability of the model in

capturing global structure in the generated music; (ii) al-

though generating the whole sequence at once, generation

time is slower than auto-regressive alternatives, while not

supporting streaming capabilities.

Future work. For future work we intend to support addi-

tional controls, such as music dynamics, musical structure,

etc. together with editing options, e.g., add or replace spe-

cific instrument in a given recording. We believe such a

research direction, and specifically the proposed approach,

holds great potential in empowering musicians, creators,

and producers which require richer set of controls during

their creative process.
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9. ETHICAL STATEMENT

The use of large-scale generative models raises several eth-

ical concerns. To mitigate at some of them, we first made

sure all the data used for training our models was obtained

legally through an agreement with ShutterStock. Another

issue is the potential lack of diversity in the dataset, which

predominantly consists of western-style music. However,

we believe that the proposed method is not tied to any spe-

cific genera and can help expand the scope of applications

to new datasets.

Moreover, generative models could potentially create an

unbalanced competitive environment for artists, a problem

that is yet to be solved. We are firm believers in the power

of open research to provide all participants with equal op-

portunities to access these models. By introducing more

sophisticated controls, like chords and rhythmic patterns

as suggested in this work, we aspire to make these models

beneficial for both amateurs and professional musicians.
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ABSTRACT

Recent advancements in deep generative models present

new opportunities for music production but also pose chal-

lenges, such as high computational demands and limited

audio quality. Moreover, current systems frequently rely

solely on text input and typically focus on producing com-

plete musical pieces, which is incompatible with existing

workflows in music production. To address these issues,

we introduce Diff-A-Riff, a Latent Diffusion Model de-

signed to generate high-quality instrumental accompani-

ments adaptable to any musical context. This model of-

fers control through either audio references, text prompts,

or both, and produces 48kHz pseudo-stereo audio while

significantly reducing inference time and memory usage.

We demonstrate the model’s capabilities through objective

metrics and subjective listening tests, with extensive exam-

ples available on the accompanying website. 1

1. INTRODUCTION

Deep generative modeling has recently made significant

strides, greatly expanding the toolbox for synthesizing vi-

sual and auditory art [1–6] and signaling a new era of en-

hanced creative expression. These technologies promise

more intuitive, high-level control over digital creations, yet

their deployment in music production comes with inher-

ent challenges. Generative music systems frequently rely

solely on text inputs for control and typically focus on

generating complete musical pieces rather than individual

sounds or instruments. This approach can limit their in-

tegration into existing musical workflows and may com-

promise the artist’s control over the final product. Further-

more, the computational demands of these advanced mod-

els often necessitate access to specialized hardware or on-

line services. Additionally, they often fail to meet profes-

sional audio standards, such as true stereo output at 48 kHz.

1 sonycslparis.github.io/diffariff-companion/

© J. Nistal, M. Pasini, C. Aouameur, M. Grachten, and S.

Lattner. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: J. Nistal, M. Pasini, C. Aouameur,

M. Grachten, and S. Lattner, “Diff-A-Riff: Musical Accompaniment Co-

creation via Latent Diffusion Models”, in Proc. of the 25th Int. Society for

Music Information Retrieval Conf., San Francisco, United States, 2024.

In this paper, we introduce Diff-A-Riff, a novel Latent

Diffusion Model designed for generating single-instrument

accompaniments. A distinct feature of our approach is the

ability to condition on musical audio contexts. This specific

form of control crucially allows the music to dynamically

adapt to the artist’s style, enabling a more personalized cre-

ation process. Additionally, the model supports condition-

ing using joint text-and-audio embeddings from CLAP [7],

which can be derived from either textual descriptions or

audio references, providing versatile input options for di-

recting the music generation.

At the core of Diff-A-Riff are two pivotal technological

elements. First, the efficiency of a Consistency Autoen-

coder with a high compression rate enhances the system’s

performance in terms of inference time and memory us-

age [8]. Second, the model employs the expressiveness of

Elucidated Diffusion Models (EDMs), known for their ro-

bust handling of complex data distributions and improved

efficiency in model parameterization and inference [9].

We validate Diff-A-Riff through comprehensive evalu-

ations, assessing its performance in ablation studies using

objective metrics, and we compare it to other models and

estimate context adherence using subjective listening tests.

The results, detailed in Sections 5 and 6, demonstrate that

our model not only achieves state-of-the-art audio quality

(statistically not distinguishable from real audio) but also

effectively adapts to various conditional settings confirm-

ing its potential for practical applications in music produc-

tion.

The paper is organized as follows: after a review of re-

lated work in Section 2 and background in Section 3, we

describe our methodology in Section 4. We then present

our results in Section 5 and conclude with a discussion and

potential future research directions in Section 6.

2. RELATED WORK

End-to-end models. The landscape of generative models

for music has undergone transformative advancements in

recent years. End-to-end Autoregressive Models (AMs)

have traditionally been at the forefront of sound fidelity,

diversity, and long-term coherence [10, 11]. Nonetheless,

their high computational demands render AMs unsuitable

for music production settings (i.e., sample rate ≥ 44.1 kHz,

stereo). In contrast, Generative Adversarial Networks [12]
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and Variational Autoencoders [13] exhibit exceptional gen-

eration speed at high sampling rates [14–16], positioning

them as valuable assets for commercial music production

technologies [14, 17]. However, these strategies typically

require simple datasets with reduced diversity [14,15], and

often restrict generation to fixed lengths [16,17]. Recently,

diffusion models showed a balanced equilibrium between

generation quality, diversity, and efficiency [18–21]. Nev-

ertheless, these rely on an iterative denoising process that,

while faster than AMs, still demands long and heavy com-

putations.

Latent models. To address the challenges inherent in end-

to-end modeling, generative models have recently pivoted

towards operating on compressed representation spaces

learned via autoencoders [3–6,22]. By doing so, generative

systems can allocate representational capacity separately

for learning immediate auditory characteristics of sound

and longer-term music structure. Additionally, they facili-

tate the interpretation and integration of multi-modal con-

trol data, such as text [3,5,6], audio [23,24], or melody [4].

Within this evolved framework, AMs leverage discrete rep-

resentation spaces crafted through vector-quantized varia-

tional autoencoders [25,26], resulting in faster models with

better long-term structure [3,4]. Recent developments have

equipped AMs with parallel decoding using masked token

modeling techniques [23, 27, 28], enabling sample rates as

high as 44.1 kHz with acceptable inference speed.

Latent Diffusion Models (LDMs) also operate on com-

pressed representation spaces, which are typically continu-

ous [5,6,29]. This evolution has catalyzed the development

of various LDMs capable of generating high-resolution

musical audio with long-term structure [5, 6, 29, 30]. No-

tably, some works can generate audio at sampling rates as

high as 48 kHz [6] and stereo [29, 30]. Other works like

Stable Audio [5] improve inference efficiency, enabling the

generation of 44.1 kHz sampling rate and stereo audio at an

unprecedented speed. 2 Following this spirit, our system

leverages a pre-trained Consistency Autoencoder [8] which

enables Diff-A-Riff to function within a highly compressed

representation space, allowing faster generation than previ-

ous systems. Further, our LDM employs the framework of

Elucidated Diffusion Models (EDMs) [9, 20], a departure

from the Denoising Diffusion Implicit Models (DDIMs)

[31] used in previous approaches [5, 6, 29].

Control mechanisms. As evidenced by the state-of-the-

art, text prompts currently serve as the most common in-

terface for users to guide audio generative models [3–6].

To facilitate finer control, Jukedrummer [32] and Music

ControlNet [33] utilize time-varying controls such as rhyth-

mic and dynamic envelopes and melodic lines. By exploit-

ing the semantic properties of multi-modal text-and-audio

spaces, recent works propose zero-shot solutions to music

editing via latent space manipulations [34] and inversion

methods [35]. Alternative approaches to control pretrained

models include inference-time optimization [36] or guid-

ance [37]. Another method for influencing audio output

involves conditioning on audio signals, a technique pri-

2 95 seconds of audio in 8 seconds on an A100 GPU

marily used in style transfer and accompaniment tasks. In

style transfer, the objective is to emulate specific aspects

of the source audio, e.g., melody [4], timbre [24]. For

accompaniment, the focus is on generating musical con-

tent that complements or enhances the conditioning au-

dio [23, 24, 38–40]. Recent works attempting joint mu-

sic generation and source separation also exhibit composi-

tional capabilities such as accompaniment generation with-

out requiring paired data [41,42]. Inspired by these control

mechanisms, our system introduces conditioning on audio

and textual features derived from CLAP [7] alongside au-

dio signals that serve as music context, widening the scope

of generative capabilities, e.g., accompaniment generation,

text-driven generation, and style transfer.

3. BACKGROUND

In this section, we provide a brief overview of Consistency

Models and Denoising Diffusion Models. For an in-depth

explanation, we encourage the reader to review the corre-

sponding references.

Consistency Models (CMs) [43, 44] are a novel class

of generative models that can produce high-quality sam-

ples in a single forward pass without adversarial training.

CMs learn a mapping between noisy and clean data sam-

ples via a probability flow Ordinary Differential Equation

(ODE) [31]. Given a noise level t, the consistency func-

tion f transforms a noisy sample xt ∼ pt(x) to a clean

sample x ∼ pdata(x) by mapping f(xt, t) 7→ x. This

consistency function is approximated by a neural network

fθ(xt, t) with parameters θ. It must satisfy the boundary

condition fθ(x, tmin) = x and is trained by minimizing the

discrepancy between its output and a teacher CM at adja-

cent noise levels ti and ti+1.

Denoising Diffusion Models (DDMs) [45] are generative

models originally inspired by the concept of thermody-

namic diffusion [46]. DDMs first add noise to data in a

forward diffusion process and then use a neural network

to reverse this process by removing the noise iteratively.

The forward diffusion process is detailed by a Stochastic

Differential Equation (SDE), introducing noise to the orig-

inal data x0 over T steps, resulting in a noisy version xT .

This process is defined by dxt = f(xt, t)dt + g(t)dBt.

Here, dBt is the increment of a Wiener process (the ran-

dom noise), f(xt, t) is the drift term, g(t) is the diffusion

term, and t represents the diffusion time step. The reverse

process aims to reconstruct the original data from its noisy

version by removing the noise. This is achieved by model-

ing the score of the data distribution, i.e., the gradient of the

log probability density function of the noisy data with re-

spect to the data itself, ∇x log p(x|t). The reverse process

is described by another SDE, which guides the denoising

dxt = [f(xt, t)−g(t)2∇x log p(xt|t)]dt+g(t)dBt, where

a neural network gθ, with parameters θ, is trained to esti-

mate this score function, i.e., gθ(xt, t) ≈ ∇x log p(xt|t).
During inference, by performing this process iteratively,

we can progressively transform pure noise inputs into data

points following the training data distribution.
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Figure 1. Overview of Diff-A-Riff. Left: The CAE Encoder transforms the music context into a compressed representation,

concatenated with a noisy sample, and further processed through a multi-scale U-Net. At each scale, conditional CLAP and

time-step embeddings are integrated through a feature-wise linear transformation. The generated latent sequence is decoded

via the CAE Decoder. We highlight frozen components in blue and trainable elements in orange. Text prompting is only

used at inference. Right: The encoder architecture comprises four down-sampling blocks with four convolutional and group

norm layers with skip connections. The decoder mirrors this architecture.

4. METHODOLOGY

4.1 Dataset

We train our model on a proprietary dataset comprising

12,000 multi-track recordings of diverse music genres (e.g.,

pop/rock, R&B, rap, country). Each multi-track has vari-

ous instrument tracks, including bass, guitars, pianos, vo-

cals, and more. We resample each track to 48 kHz, convert

it to mono and segment it into overlapping windows of ap-

proximately 10 seconds with a 3-second hop size. In train-

ing, we randomly select a target accompaniment track (ex-

cluding vocals) and construct the music context by mixing

a random subset of the remaining tracks for each segment.

We apply this data segmentation and sampling strategy of-

fline to obtain 1M training pairs of audio segments. Fol-

lowing the same methodology, we derive a validation set

from 1,200 multi-tracks.

4.2 Diff-A-Riff

4.2.1 Consistency Autoencoder

In this work, we employ a consistency model-based Au-

toencoder (CAE). We use it pre-trained and freeze its pa-

rameters to train a generative model on its latent embed-

dings (see Fig. 1). The CAE encodes audio samples into

a continuous representation space with a 64× compression

ratio. It operates on complex Short-Time Fourier Trans-

form (STFT) spectrograms, with real and imaginary com-

ponents as separate channels. The architecture uses convo-

lutional residual blocks interleaved with down/up-sampling

layers. The CAE Encoder produces 64-dimensional encod-

ings in the range (−1, 1) with a sample rate of 12 Hz for

48 kHz input audio. The model has ∼ 58 million parame-

ters and is trained following the consistency training frame-

work [44]. For a detailed description of the architecture and

training procedure, we refer the reader to the original ref-

erence [8].

4.2.2 Latent Diffusion Model

We train a Latent Diffusion Model (LDM) on the latent

space learned by the CAE. The proposed LDM follows

the framework of Elucidated Diffusion Models (EDMs)

[9], a departure from DDIMs [31] for improved model

parametrization and inference. The architecture follows

DDPM++ [47], an upgraded version of the originally pro-

posed Diffusion Probabilistic Model [45]. We only adapt

the network’s input dimensionality to that of the CAE’s la-

tent space (64 channels, see Sec. 4.2.1). Also, we increase

the dimensionality of the conditional embedding input with

that of CLAP [7] (i.e., 512 dimensions). Our UNet is com-

posed of four down/up-sampling blocks with convolutional

layers and skip connections, both for the encoder and the

decoder (see Fig. 1 Right). Self-attention is employed in

the penultimate resolution layer. We use 512 base channels

and double their number at each resolution block. Addi-

tionally, the model relies on two dense layers to project the

concatenation of CLAP embeddings and the sinusoidal de-

noising step embeddings into a joint representation. The re-

sulting embedding is used in all down/up-sampling blocks

to condition the denoising process as illustrated in Fig 1.

4.2.3 Training

Fig. 1 provides a high-level overview of Diff-A-Riff’s

setup. Given a pair of input context and target accom-

paniment audio segments, the model is trained to recon-

struct the accompaniment given the context and a CLAP

embedding derived from a randomly selected sub-segment

of the target itself. This prevents the model from relying on

CLAP for temporal alignment. In order to use Classifier-

Free Guidance (see Sec. 4.3.1) and allow the model to op-

tionally operate unconditionally, we drop the audio context

and clap embeddings both with a 50% probability. We train

Diff-A-Riff over 1M iterations using a batch size of 256 (2

weeks on a single RTX 3090 GPU). We use AdamW [48]

as the optimizer and a base learning rate of 10−4. We use a

learning rate schedule with an initial warm-up phase and a

reduce-in-plateau process that decreases the learning rate

to a minimum value of 10−6. We keep an Exponential

Moving Average (EMA) on the weights with a momen-

tum of 0.9999. The resulting model has 500M parameters

(including the CAE and not CLAP) and occupies 3 GB of

memory.
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4.3 Evaluation

Objective comparison of Diff-A-Riff with existing state-of-

the-art models [4–6] is challenging as these are generally

trained to perform a substantially different task (generation

of fully mixed music with no accompaniment condition-

ing). Even though StemGen [23] and SingSong [39] are

trained to generate accompaniments, their implementation

and pretrained weights are not publicly available. There-

fore, we focus on subjective listening tests to compare with

available music generation models. Additionally, we per-

form objective evaluations to analyze different inference

parameters (e.g., number of diffusion steps, conditioning

information; see Section 4.3.1) to understand which con-

figurations of our proposed model perform the best on our

set of metrics. We then apply the gained insights in order

to generate the samples that are proposed in the user stud-

ies. In the following sections, we describe how we generate

the samples used for evaluation, the objective metrics, the

listening test methodology, and the baselines we compare

against.

4.3.1 Inference Configurations

In this section, we describe the inference configurations

that we use for the objective and subjective evaluations.

Conditioning Signals: Different conditioning signals are

evaluated. CLAPA refers to the audio-derived CLAP em-

beddings, which are obtained by using CLAP to encode

real audio from a track of the evaluation set. We can also

condition the model on text-derived CLAP embeddings,

despite them never being fed during training to the model,

since CLAP offers a joint embedding space for both modal-

ities. Because our dataset does not contain audio/text pairs,

we create CLAPT embeddings by asking ChatGPT to write

text descriptions of single-stem tracks. Finally, Context

refers to the conditioning signal obtained by solely encod-

ing the music context into the CAE Encoder.

Classifier-Free Guidance (CFG) [49] allows to improve

generation quality by increasing the influence of condi-

tioning signals in the sampling process. Given the guid-

ance strength CFG, we implement guidance as xt−1 =
fθ(xt)+CFG · (fθ(xt, c)− fθ(xt)). At inference time, we

can use different guidance strengths for Context and CLAP

embeddings, denoted as CFGContext and CFGCLAP, respec-

tively.

Number of Diffusion Steps: At inference time, the num-

ber of denoising steps T allows to trade between audio

quality and generation speed.

Pseudo-Stereo Generation: We generate pseudo-stereo

audio by denoising until a given diffusion time step, and

then by independently concluding a stochastic denoising

process twice, one for each audio channel. We define the

stereo width as the proportion of denoising steps used for

stereo generation over the total number of steps. In the user

study, we set this parameter to 0.4.

4.3.2 Objective Metrics

We evaluate Diff-A-Riff through objective metrics to as-

sess various aspects of the generated audio. These in-

clude the standard Squared Maximum Mean Discrepancy

(MMD2) [50] and Fréchet Audio Distance (FAD) [51] for

audio quality as well as Density and Coverage [52] for

evaluating fidelity and diversity. To study the system’s re-

sponsiveness to text prompts, we employ the Clap Score

(CS) [53], which calculates the cosine similarity between

text and audio embeddings. In order to evaluate the align-

ment of the generated accompaniment with the context, we

employ the Audio Prompt Adherence (APA) [54], a metric

based on FAD tailored to evaluate accompaniment systems.

All metrics are calculated by averaging five batches of 500

candidate samples. We use CLAP [7] as the embedding

space for metrics that compare distributions (like MMD2

and FAD) using a reference set of 5,000 real audio exam-

ples.

4.3.3 Listening Tests

Subjective Audio Quality (SAQ): We perform a Mean

Opinion Score (MOS) test to assess audio quality. Partic-

ipants were presented with 5-second audio segments from

real data as well as generations from the baselines and the

proposed system. Their task is to rate the audio quality of

these segments on a 5-level Likert scale ranging from poor

(1) to excellent quality (5). For all items (real data, Diff-

A-Riff, and baselines), we compare both complete music

pieces as well as solo instruments.

We generate solo instruments with Diff-A-Riff by con-

ditioning the model on text or audio-derived CLAP embed-

dings (CLAPA or T ) and without an input context (for a fair

comparison with the baselines, which do not rely on con-

textual audio inputs). Despite the model not being trained

for this task, we can also generate complete music pieces

using CLAP and Context embeddings, following an itera-

tive approach: First, we create sets of CLAPA or T embed-

dings as described in 4.3.1. Then, from an initially empty

context, we generate new tracks from those CLAP embed-

dings, iteratively summing the resulting generation into the

input context from which we derive the next Context em-

beddings.

We compare Diff-A-Riff against three state-of-the-art

text-to-music baselines: AudioLDM2 [6], MusicGen [4],

and Stable Audio [5]. 3 For each baseline, we generate 20

5-second excerpts of complete music and solo instruments

using text prompts generated by ChatGPT.

Subjective Audio Prompt Adherence (SAPA): We also

conduct a subjective assessment of audio-prompt adher-

ence. Participants are provided with a reference 10-second

music segment and are asked to rate the compatibility of

five distinct accompaniments on a scale from 0 (indicating

no adherence) to 100 (perfect adherence), according to har-

monic, rhythmic, and overall music style compatibility.

3 We use the open-source AudioLDM2 model ‘AudioLDM2-48kHz’
operating at 48 kHz. For MusicGen, we use the open-source model
‘MusicGen-large’ operating at 32 kHz, and for Stable Audio, we use their
public API.
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Cond. Signal ↓ MMD2a ↓ FAD ↑ Coverage ↑ Density ↑ APA ↑ CS

Real Original acc. 0.00 0.02 0.18 1.03 0.93 1.00

Lower bound - 64.32b 1.67b 0.00b 0.00b 0.11c -0.07c

Diff-A-Riff CFG=1.25

T=30

CLAPA + Context 0.22 0.03 0.17 1.00 0.92 -
CLAPT + Context 3.96 0.17 0.05 0.32 0.20 0.25

Context only 4.87 0.24 0.05 0.37 0.23 -
CLAPA only 0.36 0.03 0.14 0.84 - -
CLAPT only 4.38 0.20 0.05 0.41 - 0.24

No Conditioning 6.70 0.27 0.03 0.25 - -

Diff-A-Riff CFG=1

T=10

CLAPA + Context 1.50 0.06 0.09 0.54 0.54 -
CLAPT + Context 6.23 0.19 0.03 0.17 0.00 0.23

Context only 6.59 0.25 0.03 0.24 0.00 -
CLAPA only 1.57 0.06 0.09 0.52 - -
CLAPT only 6.26 0.22 0.03 0.20 - 0.22

No Conditioning 7.67 0.28 0.03 0.20 - -
a×10

−4, b obtained from white noise, c obtained by using a random accompaniment from the dataset

Table 1. Objective metrics using two configurations, Diff-A-Riff CFG=1.25
T=30

and Diff-A-Riff CFG=1
T=10

, and different conditional

settings (see Sec. 4.3.1). We compare against higher bounds obtained from the real validation set, and lower bounds obtained

from random noise or random pairs (Real, Random acc.). Some cells are empty for APA and CS in the case of context and

text-free generation respectively.

The reference segments are derived from music pieces

within the evaluation set by summing all tracks in a mul-

titrack, excluding one track, which is reserved to serve as

the original accompaniment. Each accompaniment is pre-

sented mixed with the reference segment, with slight pan-

ning applied to the right to aid in distinguishing between

them. The five accompaniments include the original ac-

companiment, a randomly selected one from the evalua-

tion set, and three generated by our model under different

conditional setups: (CLAPA + Context), (CLAPT + Con-

text) and (Context only). To remove a potential bias toward

better-quality audio, the original and random segments are

encoded and decoded through the CAE.

For both studies, we used the GoListen platform [55].

All audio segments are normalized to a loudness of -20 dB

LUFS and not cherry-picked. Sample questions are avail-

able on the accompanying website.

5. RESULTS & DISCUSSION

5.1 Objective Evaluation

Fig. 2 shows the MMD2 score of our model as a function of

the number of denoising steps, with each line correspond-

ing to a different conditional setting (see Sec. 4.3.1), all

without classifier-free guidance (CFG). Note that MMD2

compares the distributions of embeddings of generated and

real audio in CLAP’s latent space. This means it indicates

not only audio quality but also how well the distributions

of generated instrument types and timbres match the test

data distribution. For this reason, when using audio CLAP

conditioning (CLAPA), the results are considerably better,

as we force the timbre distribution to be equal to the test

data distribution (by using embeddings of that distribution

as conditioning). However, the improvement of the results

when increasing the number of denoising steps can be con-

20 40 60 80
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·10
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CLAPA + Context
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CLAPA only

No Cond.
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Figure 2. MMD2 as a function of the number of denoising

steps T for various conditional settings (see Sec. 5.1).

sidered independent of the timbre distribution.

Based on the results described above we perform a grid

search over diffusion steps (T ) and multi-source classifier-

free guidance strength (CFG<source>). T = 30 steps and

CFGContext = CFGCLAP = 1.25 yields the best results. We

denote this configuration as Diff-A-RiffCFG=1.25
T=30 in Tab. 1.

In addition, we compare to a specific configuration that

achieves real-time performance 4 on a CPU with accept-

able quality using T = 10 steps and CFG = 1, denoted

as Diff-A-RiffCFG=1
T=10 . For reference, we also include met-

rics computed on real data and a lower bound, calculated

from white noise in the case of quality metrics or random

real pairs for input adherence metrics (APA and CS). The

overall trend suggests that dense conditioning information

helps the model in all metrics: audio quality, coverage and

density, as well as APA. Also, the results could suggest

a slight dependency of the model on CLAPA embeddings,

with metrics close to real data, even in the absence of music

context. Only density exhibits a minor drop without con-

4 95 seconds of audio in 73 seconds on an AMD EPYC 7502P
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text conditioning, suggesting that generating from a silent

context leads to samples that sometimes fall in low-density

regions of the CLAP space.

The impact of Classifier-free Guidance (CFG) on

MMD2 can be estimated by comparing Fig. 2, that dis-

plays results without CFG, with Tab. 1, where CFG was

used. In Fig. 2, the metrics for both (CLAPA + Context)

and (CLAPA only) converge towards an MMD2 of 0.5,

while the corresponding values in Tab. 1 show a reduc-

tion to about half this figure. For (CLAPT + Context) and

(CLAPT only), the MMD2 drops from approximately 5 to

about 4 with CFG, and for Context only, it decreases from

around 6 to approximately 5.

Finally, we calculate the Clap Score (CS) for text-

conditioned generation (CLAPT + Context, CLAPT only).

We compare Diff-A-RiffCFG=1.25
T=30 against random pairs of

text and real audio (CS=-0.07), suggesting that the model

is only somewhat responsive to text prompts (CS=0.25).

5.2 Subjective Evaluation

Table 2 presents the outcomes of the Subjective Audio

Quality (SAQ) test based on 74 users who each rated 32
audio segments, resulting in 2368 ratings. In this test, we

compare results against leading baselines (see Sec. 4.3.3)

and real audio data. Our analysis includes a compari-

son between these benchmarks and the audio generated by

Diff-A-Riff in both mono (ch=1) and pseudo-stereo (ch=2)

formats (see Sec. 4.3.1). Results show that the pseudo-

stereo samples generated by Diff-A-Riff received ratings

that are statistically indifferent from real audio ratings (p-

value=0.79), indicating that participants found the audio

quality of the generations indistinguishable from real data.

This outcome is particularly remarkable given that Diff-A-

Riff was not explicitly trained on complete musical pieces

nor stereo music generation, but is still competitive to other

models. Further, it highlights the influence of stereo imag-

ing on the perceived audio quality.

Tab. 3 shows the results for the Subjective Audio Prompt

Adherence (SAPA) listening test based on 35 users, each

rating 25 accompaniments. The results include ratings

scored by real accompaniments , random accompani-

ments , and the various conditional settings described in

Sec. 4.3.1. Following the trend of previous results, the de-

fault setting (CLAPA + Context) scores the closest to real

accompaniments, suggesting that the model can effectively

adapt to the context under this setting. When conditioned

on (Context only) , Diff-A-Riff is rated worse but still sig-

nificantly better than random accompaniments. Further, for

(CLAPT +Context), the accompaniments are rated the low-

est. A reason could be that the overall quality is worse

because CLAP embeddings of text prompts have not been

shown during training. Another problem could be that the

randomly chosen text prompt is incompatible with the pro-

vided music context (e.g., "A drum machine with electronic

textures" with an acoustic blues context), which reduces

perceived adherence due to conflicting styles.

Overall, SAPA results are interesting given that APA

(see Tab. 1) suggested rather pessimistic results for

SR/Ch Params RTFa Solo Songs

Real data 44.1/2 - - 3.5 ± 0.2 3.8 ± 0.2

MusicGen 32/1 3.3B 0.4 3.1 ± 0.2 3.2 ± 0.2
StableAudio 44.1/2 1B 11.8 2.5 ± 0.2 3.0 ± 0.2
AudioLDM2 48/1 712M 0.4 2.6 ± 0.2 2.0 ± 0.2

Diff-A-Riff
48/2

500M
13.5 (0.57) 3.4 ± 0.1 3.8 ± 0.1

48/1 19 (1.3) 2.8 ± 0.1 3.2 ± 0.1
a

NVIDIA A100 (CPU : AMD EPYC 7502P)

Table 2. Comparison of Diff-A-Riff to baselines. We

include sampling rate in kHz and number of channels

(SR/Ch), the total number of parameters Params (without

CLAP ), the Real Time Factor (RTF, the ratio of gener-

ated time over inference time, for 95 second-long audios)

on GPU (and CPU for our model), as well as the SAQ32

values and 95% confidence intervals for the subjective au-

dio quality assessment of Solo instruments and complete

Songs.

Cond. Signal SAPA

Real - 70.1 ± 4.5
Random - 12.3 ± 3.0

Diff-A-Riff

CLAPA + Context 62.4 ± 4.4

CLAPT + Context 37.6 ± 4.2
Context only 42.3 ± 4.3

Table 3. Results for SAPA (see Sec. 4.3.3). The table

includes results of Diff-A-Riff using different conditional

settings, with 95% confidence intervals.

(CLAPT + Context) and (Context only). This could poten-

tially be attributed to APA’s sensitivity to audio quality and

timbre differences between reference and candidate sets.

5.3 Control Mechanisms

In the accompanying website, we show examples of Diff-

A-Riff generations for different inference settings (see

Sec. 4.3.1). We also showcase other controls that naturally

emerge from the denoising process, such as in/out-painting

or the generation of variations and loops, as well as con-

trols derived from the manipulation of CLAP embeddings,

e.g., text-audio Interpolations.

6. CONCLUSION

This work introduced Diff-A-Riff, a Latent Diffusion

Model capable of generating instrumental accompaniments

adapted to a user-provided musical audio context. It can be

controlled based on style audio references, text prompts,

or both. We also proposed a simple method for produc-

ing pseudo-stereo audio. By exploiting the efficiency of a

Consistency Autoencoder, Diff-A-Riff can generate 48 kHz

sample rate pseudo-stereo audio with unprecedented speed

and quality. Through extensive objective and subjective

evaluation, we showed that our model achieves state-of-

the-art audio quality, adapts to various conditional settings,

and generates content that adheres to pre-existing musi-

cal audio contexts. We believe this work represents a sig-

nificant step towards AI-assisted music production tools

that prioritize artist-centric interactions, enriching the land-

scape of human-machine music co-creation.
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7. ETHICS STATEMENT

Sony Computer Science Laboratories is committed to ex-

ploring the positive applications of AI in music creation.

We collaborate with artists to develop innovative technolo-

gies that enhance creativity. We uphold strong ethical stan-

dards and actively engage with the music community and

industry to align our practices with societal values. Our

team is mindful of the extensive work that songwriters and

recording artists dedicate to their craft. Our technology

must respect, protect, and honour this commitment.

Diff-A-Riff supports and enhances human creativity and

emphasises the artist’s agency by providing various con-

trols for generating and manipulating musical material. By

generating a stem at a time, the artist remains responsible

for the entire musical arrangement.

Diff-A-Riff has been trained on a dataset that was

legally acquired for internal research and development;

therefore, neither the data nor the model can be made pub-

licly available. We are doing our best to ensure full legal

compliance and address all ethical concerns.
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ABSTRACT

This study presents the Music Informatics for Radio Across

the GlobE (MIRAGE) online dashboard, which allows

users to access, interact with, and export metadata (e.g.,

artist name, track title) and musicological features (e.g.,

instrument list, voice type, key/mode) for 1 million events

streaming on 10,000 internet radio stations across the

globe. Users can search for stations or events according to

several criteria, display, analyze, and listen to the selected

station/event lists using interactive visualizations that in-

clude embedded links to streaming services, and finally ex-

port relevant metadata and visualizations for further study.

1. INTRODUCTION

Despite its scholarly neglect relative to television, film,

and print [1], radio’s convergence with the internet has ex-

tended its reach via web browsers and smartphone apps,

enabling the medium to persist as a central site of culture

and daily life for communities around the world [2,3]. The

recent resurgence of pirate and community radio stations

on the internet alongside national and multinational net-

works also reflects internet radio’s lower production costs

relative to short-wave terrestrial (e.g., FM or AM) radio

[4], resulting in a diverse range of both standardized and

specialized programming [5–7].

And yet, the volume and scope of much of the research

in fields like radio studies has been freighted heavily to-

wards the Global North [1]. In doing so, the research pro-

gram just described attempts to situate listeners within a

particular musical tradition (e.g., western classical or pop-

ular music), rather than within a particular geographic en-

vironment (e.g., El Paso, Texas) where myriad musical tra-

ditions might co-exist. As a result, music’s vast global mar-

ketplace has yet to receive sustained scholarly attention in

the MIR community.

To address this issue, this study presents the develop-

ment release (v0.2) of the Music Informatics for Radio

Across the GlobE (MIRAGE) online dashboard, which

© N. Nguyen, E. Acosta, T. Dang, D. Sears. Licensed un-

der a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: N. Nguyen, E. Acosta, T. Dang, D. Sears, “Exploring

Internet Radio Across the Globe with the MIRAGE Online Dashboard”,

in Proc. of the 25th Int. Society for Music Information Retrieval Conf.,

San Francisco, United States, 2024.

allows users with potentially little training in computa-

tional methods to access, interact with, and export meta-

data (e.g., artist name, track title) and musicological fea-

tures (e.g., instrument list, voice type, key/mode) for 1

million events streaming on 10,000 internet radio stations

across the globe. To that end, Section 2 summarizes pre-

vious research on the development of digitized music cor-

pora and cultural databases. Next, Section 3 presents the

MIRAGE-MetaCorpus, Section 4 introduces the MIRAGE

online dashboard, and Section 5 offers a potential use case.

Finally, Section 6 discusses limitations and future direc-

tions for the MIRAGE project.

2. PREVIOUS RESEARCH

In recent years, researchers in music theory, music in-

formation retrieval (MIR), and radio/media studies have

developed digitized music corpora and cultural databases

that represent data in machine-readable symbolic and au-

dio formats.

In computational music theory, heavily curated corpora

(100s of songs) like the McGill Billboard and Rolling

Stone-200 data sets include expert annotations for musical

parameters like harmony, meter, and melody, for example,

but remain restricted to Anglophone popular music tradi-

tions [8,9]. What is more, the limited size of symbolic cor-

pora makes comparative research especially difficult [10].

In MIR, corpora like the Million Song data set address

issues of scale while avoiding copyright infringement by

providing researchers with publicly available metadata and

musicological features protected under fair use for a large

collection of songs hosted on commercial music-streaming

services like last.fm [11]. Nevertheless, the size, scope,

and format of these projects require extensive training in

distant-reading (i.e., computational) methods [12–14]. As

a result, MIR corpora sometimes eschew the kinds of mu-

sical engagements favored by scholars in humanities dis-

ciplines using close-reading methodologies. Finally, the

projects referenced above do not include information about

the geographic location of the music encountered by listen-

ers in everyday life.

Finally, in radio/media studies, researchers routinely

employ interview and survey methodologies to explore ra-

dio stations across the globe [15, 16], in some cases by

selecting samples from radio-station directories hosted on-

line [17]. The now defunct ComFM, for example, included

a catalogue of web-radio stations classified according to
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Radio Sovereign

Continent Stations States

Africa 392 (4%) 39 (58%)

Asia 653 (7%) 38 (59%)

Europe 5,161 (52%) 49 (60%)

North America 2,243 (22%) 33 (67%)

Oceania 222 (2%) 5 (17%)

South America 1,329 (13%) 13 (87%)

TOTAL 10,000 177

Figure 1. Descriptive statistics (left) and geographic map (right) of the radio stations in MIRAGE-MetaCorpus. The size

of each bubble represents the number of stations at that location.

geographic region and type of programming. Other cur-

rent internet radio directories like radio.co and internet-

radio.com offer searchable databases consisting of several

thousand stations, but they do not permit users to access or

export the entire database for further analysis.

The MIRAGE online dashboard addresses these issues

by offering a global archive of the musical traditions en-

countered on internet radio. For this reason, the dash-

board’s database could serve MIR tasks like music rec-

ommendation and genre classification, but the dashboard

itself also allows researchers with potentially little training

in computational methods to select and analyze a subset of

events or stations (i.e., to develop their own sub-corpora).

Finally, like previous MIR projects [11], the MIRAGE on-

line dashboard avoids copyright infringement by includ-

ing publicly available metadata and musicological features

protected under fair use while enabling users to stream

recordings using embedded links to commercial services

like Spotify and YouTube.

3. MIRAGE METACORPUS

The core database for the MIRAGE online dashboard is

MIRAGE-MetaCorpus, which currently consists of meta-

data and musicological features for 1 million events that

streamed on 10,000 internet radio stations across the globe.

In this context, an ‘event’ could represent a musical work

of some kind, or a radio program like a podcast or a call-in

show.

3.1 Collecting MetaData

Following [12], data collection consisted of three stages:

station-list and event-list collection (Stage 1), station-list

review (Stage 2), and event-list parsing (Stage 3).

3.1.1 Stage 1: Collecting Station/Event Lists

Toward Stage 1, the research team collected metadata for

an initial list of internet radio stations and then monitored

the station streams to obtain additional metadata from the

stream encoder. To that end, we monitored radio stations

in real time on Radio Garden, 1 a streaming service with

an open-access application programming interface (API)

1 https://radio.garden.

that allows users to select and play publicly available radio

streams using an interactive representation of the globe.

Between the months October to January 2022-2023, a

random sample of 10,000 stations from the initial station

list was monitored throughout the 24-hour day – but avoid-

ing each ten-minute period at the top and bottom of the

hour when advertising is most frequent – in order to obtain

additional metadata from the stream encoder for 100 events

from each station, resulting in an initial list of 1 million

events. The monitoring algorithm also excluded an event

if the stream description did not include metadata, or if the

metadata featured advertising terms or reflected a station

blackout period (e.g., ‘advert’, ‘commercial’, ‘unknown’,

‘blackout’, etc.).

During event-list collection, additional metadata for

each location in the initial station list was also included

from the Natural Earth map data set, 2 which provides

public-domain vector and map raster data along with ac-

companying metadata.

Shown in Figure 1, the selected station list represents

177 of the globe’s 305 sovereign states. As a random sam-

ple of Radio Garden’s station list (i.e., the Radio Garden

sample), this release of the MIRAGE-MetaCorpus (v0.2)

therefore reflects the prevalence of internet radio stations

across the globe on the Radio Garden streaming service.

3.1.2 Stage 2: Reviewing Stations

Toward Stage 2, a team of six human annotators began re-

viewing station-level metadata from the Radio Garden API

and radio-station stream encoder in 2023-2024. For each

station, an annotator reviewed the station’s website url, sta-

tion name, city, and country for incorrect/missing spelling,

capitalization, punctuation, and diacritics. Next, the list of

genres, formats, and terrestrial (FM/AM) station frequen-

cies (if applicable) were reviewed and/or included using

information on the station website. Finally, the annotator

reviewed the corresponding event list for each station to

determine the percentage of events that featured reliable

stream-description metadata (i.e., artist name, track title).

Currently, the research team has reviewed over 6,000

stations and plans to complete station-list review by 2025.

2 https://www.naturalearthdata.com/.
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<location>

<city>
ab Johor Bahru

<country>
ab Malaysia

<country_GDP>
b 863 Billion

<coordinates>
ab 103.6545°, 1.4783°

<station>

<name>
cd Best FM

<form>
cd Simulcast (FM 104.1)

<format>
d Adult Contemporary

<genre>
cd pop, Indonesian pop

<website>
cd http://www.bestfm.com.my

<event>

<time@station>
c 12/28/2022 9:37

<description>
c Aisha Retno – Sutera

<reliability>
e 1

<artist>

<name>
f Aisha Retno

<type>
f musical artist

<gender>
f female

<country>
f Malaysia

<genre>
f pop

<instruments>
f piano, voice

<track>

<title>
f Sutera

<duration>
f 03:18

<year_released>
f 2022

<key>
f C minor

<language>
f Malay

Table 1. Left: Selected variables from the encoding

scheme for MIRAGE-MetaCorpus, expressed in pseu-

docode. Metadata were obtained from the following

sources: a Radio Garden API; b Natural Earth map data

set; c Internet Radio Station Stream Encoder; d Annotator

Review; e Monitoring/Matching Algorithm; f Online Mu-

sic Libraries. Right: An example of the metadata for an

event in MIRAGE-MetaCorpus.

3.1.3 Stage 3: Parsing Events

Toward Stage 3, additional metadata were collected for

each event using the Spotify and WikiData online music

libraries. 3 Specifically, the team queried each API us-

ing each event’s stream description. The obtained list of

matching queries was then filtered using a normalized edit

distance measure. Query lists featuring more than one

matching entry based on normalized edit distance were

then ranked by release date, and the track with the oldest

release date was selected.

3.2 MetaData Variables

Each event in MIRAGE-MetaCorpus includes metadata

for 100 variables obtained from the Radio Garden API

(RG), the Natural Earth map data set (NE), the in-

ternet radio station stream encoder (SE), annotator re-

view (AR), or using the online music libraries Wiki-

Data (WD), MusicBrainz (MB), Spotify (SP), Musixmatch

(MX), YouTube (YT), Genius (GE), and AZlyrics (AZ).

Shown in Table 1, these metadata reflect information about

each event’s location, station, event, artist, and track. For

3 https://open.spotify.com; https://www.wikidata.org.

example, location metadata includes variables like the

city, country, and geographic coordinates of the monitored

event, as well as demographic data like the country’s pop-

ulation and GDP. Station metadata includes its name, form

(a webcast stream, or a stream simulcast on the internet and

terrestrial radio frequencies), formats (e.g., Top 40), and

the station’s website url. Event metadata includes variables

like the local time when the station was monitored and the

event’s identifying metadata, such as the name of the artist

and title of the recording. Finally, artist and track metadata

include variables like the name and type of the artist, and if

the artist is a group, a list of the group’s members and their

demographic information (their listed genders, sexual ori-

entations, and ethnicities), the group’s country of origin by

birth and/or citizenship, the title and duration of the track,

and its year of release.

3.3 MetaData Access & Export

Users may access the complete MIRAGE-Metacorpus with

the online dashboard. 4 In addition, public-domain meta-

data from MIRAGE-MetaCorpus are available for down-

load in an open-access repository on Zenodo [18], which

includes both the complete data set and a subset of the

data set for which the metadata obtained from the station’s

stream encoder and the corresponding metadata provided

by online music libraries was deemed a reliable match (i.e.,

where the normalized edit distance measure between the

two metadata character strings was ≥.90 on a 0–1 scale).

4. MIRAGE ONLINE DASHBOARD

The MIRAGE online dashboard is an open-access web ap-

plication that enables users to effortlessly navigate and en-

gage with radio-station metadata and musicological fea-

tures at various levels of detail. The dashboard’s layout

consists of fully interactive panes displaying relevant in-

formation from MIRAGE-MetaCorpus. The dashboard is

also compatible with multiple platforms and operating sys-

tems, so users may access and interact with the dashboard

from any internet-connected device.

The complete technology stack of the dashboard in-

cludes Node.js for the server, MongoDB for the database,

and React for the front end. This integration of technol-

ogy guarantees a smooth user experience and effective data

processing. Moreover, the dashboard may be tailored to

accommodate individual users’ distinct requirements and

inclinations, rendering it a versatile instrument for analyz-

ing radio stations. What is more, incorporating these tech-

nologies enables instantaneous data updates and interac-

tive functionalities, thereby boosting the overall user expe-

rience over subsequent versions of the dashboard. In ad-

dition, the MIRAGE dashboard offers sophisticated search

and filtering tools and the ability to export metadata and

visualizations in URL, CSV, PNG, and SVG formats, al-

lowing users to study and share data easily.

4 The MIRAGE online dashboard is available at https://pearl-
laboratory.github.io/mirage-mc/.
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Figure 2. An overview of the MIRAGE online dashboard (v0.2).

4.1 Structure & Processing

Shown in Figure 2, the MIRAGE dashboard’s layout is

divided into two groups: a toolbox on the top (A) and

data-visualization panels below (B-D), making it easy for

users to navigate and analyze information. The toolbox

at the top includes options for language preference, panel-

display customization, and searching. The data visualiza-

tion panels show the data in various formats, such as charts,

graphs, and tables, for straightforward interpretation and

analysis. The panels can also dock to allow the user to cre-

ate a customized layout, or open to another window (or un-

dock) to permit a more detailed view suitable for multiple-

screen presentations.

Shown in Figure 3, the database is partitioned into five

tables: location, station, event, artist, and track. The data

are structured in this manner to facilitate convenient re-

trieval and examination of each category while minimizing

duplication. In this way, the database allows for easy fil-

tering and sorting based on specific criteria, enhancing the

overall efficiency of data analysis. Additionally, partition-

ing of data into separate tables helps to prevent errors and

inconsistencies in data entry and manipulation.

4.2 Layout

4.2.1 Earth-View Panel

The 3D interactive Earth-view (or ‘globe’) panel visualizes

the number of stations across the globe. Shown in Figure 2,

each hexagonal-shaped vertical bar identifies the locations

where radio stations reside. The height of each bar rep-

resents the number of stations at that geographic location,

and the bars are also color-coded by country. The Earth-

view panel is also linked to the event-list panel such that

when a user selects a specific location on the Earth view,

the event-list panel automatically filters (i.e., restricts) the

station- and event-level metadata to the selected location.

In this way, users may compare the number of stations

in various regions and discern any recurring patterns or

trends.

4.2.2 Event-List Panels

Once users have selected a specific location on the interac-

tive Earth-view panel or using the search function on the

toolbox, they can retrieve metadata for the top 1,000 most

recent entries in the event-list panel. Users can also se-

lect and add events to the selected event-list panel for fur-

ther analysis and/or export, enabling users to revise their

search parameters without losing selected metadata. The

event-list panels also allow users to download the contents

of either table in CSV format, or obtain a URL to share the

Figure 3. Database tables and connections for the MI-

RAGE online dashboard.
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Figure 4. Top: Examples of the event-detail (top) and lis-

ten (bottom) panels in the MIRAGE online dashboard.

results of their most recent search with another user.

4.2.3 Map Panel

The map panel enables users to readily visualize the

events’ geographic distribution in the event-list panel.

Each dot on the map reflects the precise position of a par-

ticular event, and the size of the dot represents the number

of events at that position. If the user selects an event from

the event-list panel, that event will be represented by a red

dot in the map panel. In this way, the map panel offers

users a distinctive method for visualizing the geographical

variety of the events in the event-list panel.

4.2.4 Event-Detail & Listen Panels

Shown in Figure 4, the event-detail panel displays the cur-

rently selected event from the event-list panel. The con-

tent is categorized into four sections: radio-station meta-

data (e.g., name, location, formats, url, etc.), event meta-

data (i.e., stream description), artist details (e.g., name(s),

gender(s), group affiliations, instrument(s), etc.), and track

metadata (e.g., track title, duration, key/mode, etc.). Fig-

ure 4, for example, presents all available metadata for In-

donesian singer Anggun’s “Snow on the Sahara,” which

streamed on Radio ITB86 in Jakarta, Indonesia on Decem-

ber 16, 2022. Note that users can obtain a list of demo-

graphic (e.g., gender, nationality, etc.) and musicologi-

cal (e.g., list of instruments, vocal type, associated gen-

res, etc.) information about Anggun, review additional

metadata about the song itself (year released, language, the

song’s lyricist(s), etc.), and finally navigate to other web-

sites and online music libraries using the provided hyper-

links.

Finally, the listen panel allows users to stream available

recordings using embedded links to the integrated Spotify

and YouTube platforms. Although not all events are avail-

able on both platforms, the dashboard is regularly updated

to ensure that the provided information is current.

4.2.5 Event-List Visualization Panel

Shown in Figure 5, the event-list visualization panel allows

users to explore the searched or selected event list using

interactive bar, scatter, and histogram plots. For each plot,

users may select the appropriate metadata variable(s) from

a dropdown list, edit the plot using Plotly Chart Studio, 5 ,

and finally export the plot in SVG format.

5. EXAMPLE USE CASE

The metadata and visualizations produced by the MIRAGE

online dashboard have numerous applications for users.

Figure 5, for example, examines Anggun’s “Snow on the

Sahara” within the context of events produced by Indone-

sian artists across the globe (left), or streaming on Indone-

sian radio stations (right). The MIRAGE-MetaCorpus fea-

tures 37 events (and 12 tracks) produced by Anggun, of

which 21 were “Snow on the Sahara” (or its French lan-

guage version, “La neige au Sahara”).

Among Indonesian artists, music genres familiar to

western listeners like pop, pop-rock, and alternative rock

rank in the top 10, along with characteristic southeast

Asian genres like dangdut and koplo. Among events

streaming on Indonesian stations, music by Indonesian

artists also ranks first, though several Anglophone coun-

tries also rank in the top ten (USA, UK, etc.). Scatter plots

of a two-dimensional arousal-valence emotion space and

a two-component solution from a principal components

analysis of the track’s danceability, speechiness, acous-

ticness, liveness, and instrumentalness further reveal the

track’s unconventional expressive and musical character-

istics relative to the other tracks produced by Indonesian

artists or streaming on Indonesian stations. Finally, his-

tograms of the track’s popularity and year of release reflect

the song’s enduring popularity more than two decades after

its initial release.

6. CONCLUSION & ETHICAL CONSIDERATIONS

This development release (v0.2) of the MIRAGE online

dashboard provides a snapshot of the contemporary global

listening landscape for scholars across the (digital) human-

ities. Our purpose in doing so is to facilitate cross-cultural,

comparative research, which has become a pressing con-

cern in several music disciplines [1, 19–21]. To that end,

the MIRAGE-MetaCorpus features metadata for 1 million

events that streamed on 10,000 radio stations across the

globe, and the dashboard is interoperable with several plat-

forms and operating systems [22, 23].

5 chart-studio.plotly.com.
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Figure 5. Event-List Visualization Pane for events by Indonesian artists (left) or Indonesian stations (right) in the MIRAGE

online dashboard. The red star indicates the position of Anggun’s “Snow on the Sahara.”

As a metadata repository, the MIRAGE-MetaCorpus

contains links to online resources that we do not control.

To mitigate the potential for dataset degradation over time,

the research team plans to update (and collect additional)

metadata annually. Nevertheless, the attribution metadata

provided by the radio station’s stream encoder does not al-

ways reliably match metadata provided by online music

libraries. In our view, nonmatching (or ‘unreliable’) meta-

data allow the research community to evaluate the cover-

age (i.e., bias) of online music libraries for the music found

on internet radio. Nevertheless, MIRAGE users should be

aware of the potential for matching errors. For tasks where

higher match quality is important, users may search for re-

liable metadata in the online dashboard, or export reliable

subsets of the MIRAGE-MetaCorpus.

Similarly, this project provides access to metadata and

musicological features produced by proprietary (or other-

wise undisclosed) algorithms, often trained on western mu-

sical traditions and their associated organizational princi-

ples. As a result, we encourage the research community

to treat the attribution metadata in MIRAGE as a starting

point for developing corpora and methodologies involving

other musical traditions [24, 25].

In developing the MIRAGE online dashboard, the re-

search team has attempted to protect the interests of copy-

right holders by only including publicly available metadata

protected under fair use while enabling users to stream

recordings using embedded links to commercial services

like Spotify or YouTube. The dashboard also adheres to

the user agreements from the libraries and streaming ser-

vices mentioned above (e.g., Radio Garden, Spotify, Wiki-

Data), according to which users may access and interact

with all data on the online dashboard, but they may only

export public-domain data for further analysis and study

(i.e., from the Radio Garden API, the Natural Earth data

set, station stream encoder, and WikiData). Perhaps most

importantly, this project did not directly record/store au-

dio from station streams at any point in the data-collection

pipeline.

Nevertheless, we acknowledge the concerns of copy-

right holders (artists, radio stations, online music libraries,

and streaming services) who do not wish to share attribu-

tion metadata about their work (e.g., artist demographics,

track details, etc.). We only provide links to publicly avail-

able sources and do not own the copyright for any mu-

sic referenced in the MIRAGE-MetaCorpus. For that rea-

son, copyright holders may request the removal of meta-

data from the MIRAGE project. 6

In addition to completing station-list review for the re-

maining stations in MIRAGE-MetaCorpus, future versions

of the dashboard will transition from React+Nodejs to

Remix in order to enhance the speed of queries and allow

users to access and review more than 1,000 events simulta-

neously in the event-list panel. The team also plans to con-

duct a usability study to examine the dashboard’s practical

utility, as well as incorporate additional customizable sam-

pling and visualization tools like statistical surface maps

to enhance the user’s exploration of metadata variables in

MIRAGE [26]. In doing so, we hope future versions of

6 Please contact miragedashboard@gmail.com.
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this dashboard will facilitate cross-cultural, comparative

research for a medium that places diversity center stage.
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ABSTRACT

Guitar tablatures enrich the structure of traditional music

notation by assigning each note to a string and fret of a

guitar in a particular tuning, indicating precisely where to

play the note on the instrument. The problem of gener-

ating tablature from a symbolic music representation in-

volves inferring this string and fret assignment per note

across an entire composition or performance. On the

guitar, multiple string-fret assignments are possible for

most pitches, which leads to a large combinatorial space

that prevents exhaustive search approaches. Most mod-

ern methods use constraint-based dynamic programming

to minimize some cost function (e.g. hand position move-

ment). In this work, we introduce a novel deep learning

solution to symbolic guitar tablature estimation. We train

an encoder-decoder Transformer model in a masked lan-

guage modeling paradigm to assign notes to strings. The

model is first pre-trained on DadaGP, a dataset of over 25K

tablatures, and then fine-tuned on a curated set of profes-

sionally transcribed guitar performances. Given the sub-

jective nature of assessing tablature quality, we conduct a

user study amongst guitarists, wherein we ask participants

to rate the playability of multiple versions of tablature for

the same four-bar excerpt. The results indicate our system

significantly outperforms competing algorithms.

1. INTRODUCTION

Tablatures (tabs) are a type of music notation where each

played note is indicated by its physical position on the in-

strument, as opposed to merely its pitch. Whereas on (e.g.)

the piano, each pitch can be played in exactly one location

on the instrument, most playable pitches on stringed instru-

ments like the guitar or violin can be played in multiple po-

sitions [1]. This redundancy introduces an additional layer

of analysis to derive mechanics of a performance from raw

pitches. In traditional music scores, e.g. for classical gui-

tar, it is the burden of the performer to select appropriate

fingerings and positions for the notes in the sheet music.

Similarly, a MIDI transcription of a guitar recording lacks

© D. Edwards, X. Riley, P. Sarmento, and S. Dixon. Li-
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this crucial information for a guitarist to replicate the per-

formance.

In this research we examine the problem of mapping a

symbolic representation of a musical performance to guitar

tablature. There are few recent publications on this topic

(see Section 2), although there are commercial solutions

available. Most existing methods propose a manually de-

fined objective function, often related to the difficulty of

hand stretches to play chords and distances between hand

positions, and seek a solution that minimizes the cost. We

take a different approach and provide a modern machine

learning treatment of the problem.

We cover the following aspects of our research in this

paper: first, we provide a background on the research re-

lated to guitar transcription and tablature estimation. Then

we formally define the problem of tablature inference from

symbolic music notation. Next, we describe the meth-

ods of our research, which include: a simple tokenization,

a masked language model learning task, a Transformer

model solution, pre-training and fine-tuning phases, and

a custom beam search inference. Finally, we character-

ize the performance of our system with quantitative and

qualitative metrics, including a detailed user study with 15

guitarists rating various tablatures for short solo guitar ex-

cerpts. Our results indicate that guitarists significantly pre-

fer our automatic tablatures versus the commercial alterna-

tives we benchmark.

2. RELATED WORK

The earliest algorithmic approaches to automatic guitar

tablature systems date back to Sayegh [2]. His approaches

include an expert system approach assigning rules of per-

missible transitions between hand positions. These are en-

coded and enforced via Prolog and its native constraint

solver. The second approach described assigns costs to

transitions between fingerings and uses dynamic program-

ming (Viterbi [3]) to find an optimal path through the con-

structed weighted graph. This latter approach represents

the standard classical benchmark for tablature inference.

Alternate approaches include genetic algorithms [4], hy-

brid expert systems [5], and hidden Markov models [6].

Hori and Sagayama [7] extend the dynamic programming

approach by finding a path that minimizes the maximum

cost of a local transition across a phrase, as opposed to

minimizing the global cost as in Sayegh. Radicioni [8]

estimates the fingers employed as well as the fret-string
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Figure 1. Overview of the training procedure. Guitar Pro files from DadaGP are converted to six-track MIDI files, one file

per distinct guitar part and one track per string. These are tokenized into the Structured tokenization of MidiTok. We train

a BART model in a simple masked language modeling task where the string tokens are masked out. Only the predictions

for the string tokens are used for loss signal propagation.

combinations, using a graph search paradigm to optimize

the bio-mechanical comfort of rendering a piece.

In addition to purely symbolic approaches, there is con-

siderable research on the topic of automatic guitar tran-

scription from audio input. Yazawa et al. [9] follow a

two-stage approach which uses latent harmonic allocation

for multi-pitch estimation (MPE) and then removes un-

playable pitches as determined by a fingering cost algo-

rithm similar to Sayegh. Wiggins and Kim [10] apply a

convolutional neural network to jointly perform MPE and

tablature fingering. The strongest performing MPE meth-

ods for guitar [11, 12] leverage the vast amount of tran-

scription material from other instruments (particularly pi-

ano) to enlarge the training dataset, but they fall short in

offering no tablature estimations.

The most similar approach to our own is described in

the master’s thesis of Mistler [13], where recurrent neu-

ral networks are trained to predict guitar tablatures. How-

ever, the training dataset used only contained 74 songs and

uses hand-crafted features extracted from the input Mu-

sicXML. In contrast, we train on tens of thousands of tabs

and process a raw, MIDI-derived tokenization of the input

score. The data used for training our network comes from

the DadaGP dataset [14], comprising 26,181 song scores

in the Guitar Pro format.

3. PROBLEM FORMULATION

We simplify the task of guitar tablature estimation to the

task of assigning notes to strings. For a specific guitar tun-

ing, the combination of pitch, string, and fret has only two

degrees of freedom. Thus, since the pitch is known a priori,

we may predict the string and compute the resulting fret for

the assignment. This essentially reduces the problem to se-

quence labeling. In order to increase the flexibility of our

system to process a variety of data sources, we begin with

MIDI data. Any digital score can be converted to MIDI,

and most automatic transcription systems produce MIDI

data as well, enabling our tablature system to be composed

with any MPE algorithm.

The problem is formally structured as follows: given a

one-track MIDI file M , the system produces a six-track

MIDI file MS , where each track contains the notes as-

signed to a particular string. Let

O = {64, 59, 55, 50, 45, 40}

denote the list of MIDI note numbers for the open

strings of the guitar in standard tuning, corresponding to

E4, B3, G3, D3, A2, E2, respectively. Thus, to derive the

fret of a note with MIDI note number n assigned to a string

s, where s ∈ {1, 2, 3, 4, 5, 6}, the fret f is calculated by:

f = n−O[s]

Although our derivation of the fret value assumes a stan-

dard tuning, this approach could be easily modified to per-

mit alternate tunings by changing the values of O.

4. METHODS

4.1 Architecture

Our solution to the problem uses a Transformer with a bi-

directional auto-encoder and a left-to-right decoder, based

on the BART model architecture [15]. Using such an ap-

proach requires a tokenization of the input data. For this,

we use the Structured tokenization scheme of Huang and

Yang [16]. For each MIDI note, we produce five tokens:

time shift, string (i.e. track), pitch, velocity, and duration.
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Figure 2. A diagram of our quintile inference algorithm. The middle fifth of the attention window is predicted in an auto-

regressive fashion. String assignments from earlier quintiles are fixed. Future notes are available in the context window but

will not be assigned until the processing window places them in the center. The beam search is not depicted.

During training, we use a simple masked language mod-

eling supervision scheme, masking the string tokens. This

permits both past and future note values to be available

for the network during inference, but only past string as-

signments can be seen. During training, we only compute

the loss for string token predictions. We use the Hugging

Face Transformers package to define the network, using

hyperparmeter settings that simply halve the bert-base

configuration: 384-dimensional hidden size, 6 hidden lay-

ers, 6 attention heads, 1536-dimensional intermediate size,

dropout probability of 10%. These hyperparameter values

were not finetuned.

4.2 Training

Training takes a two-phase approach (see Figure 1): first

we train from scratch on 27,619 guitar tablatures derived

from DadaGP 1 . We use the pre-processing code from the

SynthTab project [17] to produce a six-track MIDI file for

each guitar part in the Guitar Pro files. Training is per-

formed with the AdamW optimizer of PyTorch, employ-

ing a linear decay schedule with warm-up and an initial

learning rate of 1 × 10−4 and runs for 100 epochs. The

second phase of training is a finetuning on precisely an-

notated guitar performances from the training splits of Ri-

ley et al. [12] and GuitarSet [18]. The fine-tuning stage

is motivated by the concern of data quality in the DadaGP

annotations, which were scraped from the online, crowd-

sourced tab library Ultimate Guitar 2 . Here we fine-tune

with a learning rate of 1× 10−5, again for 100 epochs, on

the much smaller data of 281 tabs. Examples are fed into

the network in note sequences of length 50, corresponding

to 250 tokens per example.

4.3 Inference

A common problem when training Transformer models for

auto-regressive tasks is an asymmetry between training and

inference regarding previously predicted sequence values.

To leverage the parallelism of the Transformer architec-

ture, ground truth labels must be used as decoder input for

1 Some pieces in DadaGP have multiple guitar parts, and some tracks
are filtered out in the conversion process.

2 https://www.ultimate-guitar.com/

masked preceding values. However, during inference on

unseen data, these labels are unavailable.

We implement a novel inference mechanism for our al-

gorithm. We break up the input segment into quintiles (10

notes or 50 tokens per quintile). Excluding boundary cases,

we only make predictions for the center quintile (see Fig-

ure 2). This allows our network to have the ability to see

the 20 previous note-string assignments and the next 20

future note values. The attention window is advanced by

10 notes per inference step. Additionally, we implement a

custom beam search inference. For each string prediction

in a quintile, we retain the top two string values for the

note. We limit the number of potential paths to 32. The

paths are batched to keep inference times nearly equiva-

lent to naive autoregression. Paths are pruned by taking

the maximum probability computed by summing the logits

of the string predictions. While this does not fully resolve

the asymmetry between inference and training, the beam

search and additional context provide more probable de-

coder input values than naive autoregression.

4.4 Post-processing

Thus far we have not imposed any constraints on the output

of the network. Ideally, we would take the string predic-

tions and directly augment the score information with the

resulting tablature. However, in our qualitative assessment

of the system, there are occasions where a string-fret pre-

diction can lead to invalid or unplayable notes. To address

these outliers, we attempt to relocate the note to a more

suitable string.

The heuristic algorithm is as follows:

1. Merge and sort notes from all strings by start time.

2. Set maximum allowable deviation from the average

fret position (MAX_DEVIATION = 5) and the high-

est playable fret (MAX_FRET = 21).

3. For each run of 11 notes (5 past, 1 middle, 5 future):

(a) Find the average fret value of the run, exclud-

ing open strings from the computation.

(b) If the middle note has a fret value exceeding

MAX_FRET or MAX_DEVIATION:
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Figure 3. Heatmaps of the fret-string distributions for three of the five tablature systems (ground truth, ours, and Guitar

Pro 8). Overall, our system has a similar distribution to the ground truth, but the output appears to be biased away from

open strings. Guitar Pro 8 shows a heavy skew to low frets, which perhaps suggest a bias towards playing in “first position”

(playing primarily on frets 1 to 4).

i. Define the available strings to be those

with no notes intersecting with the note

under consideration.

ii. If an open string is available, select it.

iii. Else, select the string yielding a fret value

closest to the neighborhood mean.

Ultimately, in our test set from Riley et al. [12], our post-

processing algorithm only modifies 0.53% of all notes.

However rare, addressing these failures is important to en-

sure the resulting tab is playable.

5. RESULTS

5.1 Quantitative Results

We use the training splits from Riley et al. [12], with 61

pieces in the training set, 8 in the validation set, and 9 in the

test set, corresponding to 58,080, 7,031, and 8,451 notes

respectively. At the end of finetuning, our next note accu-

racy on the validation set is 94.35%. This is the probability

of correctly inferring the next note-string assignment given

ground truth labels up to the point of prediction. When

evaluating autoregressively on the held-out test set across

50-note 3 examples, our network agrees with ground truth

on 82.52% of predictions. This discrepancy highlights the

difference between teacher-forcing and errors accumulated

in auto-regressive inference. We measure the impact of the

finetuning step by evaluating the pre-trained model without

finetuning, which gives 78.48% agreement, corresponding

to a 4.04 percentage point difference due to finetuning.

To compare our algorithm to existing technologies, we

use one commercially available and two open-source im-

plementations of automatic tablature systems. Guitar Pro

8 4 is a music software program designed for editing, visu-

alizing, and sharing guitar, bass, and other stringed instru-

ments’ tablatures, and includes an algorithm to automati-

cally produce tablature from score or MIDI. MuseScore 5

is an open-source score editor with a similar functionality

for generating tablature. TuxGuitar 6 is free, open-source

3 Recall the model has a context window of 50 notes.
4 https://www.guitar-pro.com/
5 https://musescore.com/
6 https://www.tuxguitar.app/

software for creating and playing guitar tablature and stan-

dard musical notation. We use each of these systems to

generate MusicXML files with tablature for our 9 held-out

test scores from our finetuning dataset, which are then used

for evaluation.

Objective evaluation of guitar tablature is difficult, as

we will discuss further in Section 5.2. We provide three

metrics that illustrate the strength of our system. The first

metric is a measure of agreement between the ground truth

note-string assignment and each algorithm’s assignment

for the corresponding note. The metric is computed by

matching 7 notes from each measure of the ground truth

with the notes from the inferred tablature’s corresponding

measure. An agreement occurs when the ground truth and

the inferred tab assign the same string. The total number

of agreements is counted across all examples and then di-

vided by the total number of notes compared. Our system

shows the highest agreement of 73.18% (see Table 1). This

falls below our 84.42% agreement from the 50-note exam-

ples, because early disagreements on fretboard location for

a group of notes will likely cause subsequent note assign-

ments to continue to disagree.

The other two metrics relate to the “stretch” values

across chords in the MusicXML. Chords are extracted as

note onsets occurring at the exact same time. For all such

groups of notes, we define the stretch as the maximum fret-

wise distance between any two notes in the chord. For ex-

ample, a chord with notes F3, C4, E4, and A4 played on the

string-fret locations 8 (4, 3), (3, 5), (2, 5), (1, 5) will have

a stretch value of 2. Open strings do not restrict hand posi-

tions so they do not contribute to the stretch. We report the

maximum and average stretch across the chords in the test

set. The ground truth has the lowest maximum stretch of

6. Our system demonstrates occasional erratic behavior of

assigning high notes to lower strings, resulting in a shifted

mean and larger maximum stretch value of 12. In Figure

4, we compare frequencies of maximum fret distances be-

tween our system and the ground truth. An example failure

is shown in Figure 5. The mean and median values indi-

cate that, in general, all algorithms attempt to place chords

7 Matching is required due to reordering of simultaneous notes.
8 String 1 is the High E string, and fret values start at 0 for open strings.
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Figure 4. Comparison of the distributions of stretch dis-

tances between chords in the test set.

Figure 5. An example failure of our system. Ground truth

is left, ours is right. The assignment of B2 to the fifth string

creates an 8-fret stretch, which is essentially unplayable.

within a narrow band of frets. The presence of these large

stretches motivates future work to better inform our algo-

rithm about the importance of physical playability.

As a final quantitative comparison, we compute fret-

string distributions for all five sets of tablatures. For each

distribution, we compute the Kullback–Leibler divergence

against the ground truth distribution. Our system has the

lowest value of 0.099; the other values are: 0.462 for Gui-

tar Pro 8, 0.635 for MuseScore, and 1.286 for TuxGuitar.

Three of these distributions are shown in Figure 3.

5.2 User Study

A purely quantitative evaluation of automatic guitar tabla-

ture systems is problematic because there may be multiple

ways to play the same phrase or excerpt of music. For ex-

ample, in Figure 6, we show two distinct tablatures for the

same one-bar phrase. The top is the ground truth transcrip-

Table 1. Summary of quantitative analysis, showing max-

imum, mean and median “stretch” of chords in the tabla-

ture, defined as the maximum fret distance between any

two notes in the chord. We also report the percent agree-

ment with the ground truth note-string assignment. All

metrics are averaged over the entire withheld test set.

Source Max Mean Median %

Stretch Stretch Stretch Agree

Ground Truth 6 1.04 0 –

Ours 12 1.84 1 73.58

MuseScore 10 1.19 1 62.51

Guitar Pro 8 12 0.78 0 62.27

TuxGuitar 18 2.03 1 55.42

tion and the bottom is the layout from our system. At a

glance, both provide reasonable fretboard fingerings. The

ground truth shows a preference for open strings, but our

system better minimizes the maximum span between suc-

cessive notes (2 frets versus 4 frets). However, in this ex-

ample, our system only agrees with the ground truth on two

notes, which corresponds to an accuracy of 16.67%. On the

other hand, hand-crafted metrics (such as maximum or av-

erage span between notes) fail to capture complex prefer-

ences of guitar tablature – otherwise existing systems that

minimize these values as cost functions would suffice.

To complement the quantitative analysis and circum-

vent some of the potential limitations of the approach,

we conducted a study to assess guitarists’ opinions on the

playability and overall preferences for tablatures. Partici-

pants were exposed to 30 audio excerpts consisting of 4-

bars of solo jazz guitar audio, and for each were shown 5

distinct tablature transcriptions from the following groups:

TuxGuitar (TG), MuseScore (MS), Guitar Pro 8 (GP), our

system (Ours) and ground truth (GT), which was created

by a professional transcriber. The stimuli were selected by

randomly sampling the test split of Riley et al. [12]. Via an

online listening study, we probed how guitar players deem

the tablatures generated by our system, and how they rank

them against the ground truth and the outputs from other

tablature generation software (i.e. TG, MS and GP).

The online listening study took approximately 1.5 hours

to complete and both the order of audio excerpts and the

order of tablature transcriptions were randomized. As con-

ditions to take part in the study we proposed that partici-

pants should be guitar players and have a familiarity with

reading tablatures, access to headphones or speakers and

normal hearing. Subjects were instructed to ignore the dif-

ficulty of the music excerpts as they rated the playability

of the tablatures. Overall, we recruited 15 guitarists and

invited them to attempt to play each of the tablature ex-

amples on the guitar during the study, while rating each

of the tablature transcription groups on a scale from 1 to

10. Participants, with an age distribution of 39± 14 years,

reported a median value of 10 years of daily regular en-

gagement with practice of the guitar, and a median value

of 3 hours of guitar practice per day at the peak of their in-

terest. The study received ethical approval from the Queen

Mary University of London Ethics of Research Committee

(QMERC20.565.DSEECS24.012), and participants were

compensated with an Amazon gift voucher. Results for

the listening test can be observed in Figure 7.

Figure 6. Two tablatures for the same musical excerpt.

The top is ground truth, the bottom is from our system.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

292



Figure 7. Box plots of the results of the listening study on

the playability of tablatures. Bars indicate median values

and triangles indicate mean values, for each group.

As expected, the ground truth group ranks highest

(7.45 ± 2.62). We hypothesise that the reason why the

ground truth falls well short of a “perfect” score is linked

to the subjective preferences of participants in terms of

fingerings and note position choices, which are inherently

linked to their guitar playing techniques and overall style.

Furthermore, the ground truth represents professional tran-

scriptions of jazz recordings, where perfect information of

the original tablature is not available. As discussed above

and illustrated in Figure 6, there can be multiple reasonable

ways to play a phrase, and we observed that the ratings

for our system were higher than those of the ground truth

group for 101 ratings out of 450 in total. The results show

that participants tend to rate the playability and overall

preference of the tablatures from our system (6.04± 2.67)

higher than the ones from the competing software (TG:

3.32± 2.87; MS: 4.67± 2.88; GP: 4.69± 2.64).

Of the 2,250 data points collected (30 excerpts × 5
tabs × 15 participants), a Shapiro-Wilk test showed that

data was not normally distributed within groups. Due to

the repeated measurements characteristic of the test (ev-

ery participant rates all the stimuli), we use a Friedman

test to investigate the effects of the type of tablature tran-

scription system on the perceived playability of tablatures,

with a Type I error α of 0.05. The statistical results

showed a highly significant effect of the tablature tran-

scription system in the participants’ responses amongst

groups (χ2(4) = 532.09, p < .001). Finally, in or-

der to determine if there were statistically significant dif-

ferences between groups, we conducted a post-hoc pair-

wise Wilcoxon test, Bonferroni-adjusted α level of 0.005
(.05/10). This yielded highly significant differences in rat-

ings between groups, except for (MS, GP).

6. DISCUSSION

Our results suggest a data-driven approach to guitar tabla-

ture inference can yield predictions that are significantly

more aligned with guitarists’ preferences than existing

methods. These results are very encouraging given the

simplicity of our approach. Our system imposes no con-

straints on the predicted tablatures until the final post-

processing, during which less than 1% of note-string as-

signments are modified. Future research in this direction

may benefit from more directly encoding positional fret-

board locations and physical limitations as input to the net-

work.

Despite the strong results, our system has several lim-

itations to be addressed. Guitar tuning is never explic-

itly encoded as input to the model. Since we only predict

string values, our fret predictions are always derived from

the note-string assignment and an assumption of standard

tuning. Similarly, our system does not handle the use of

capos. The system is unaware of many guitar specific ar-

ticulations, such as harmonics, hammer-ons, pull-offs, and

pitch bends. Finally, we make no attempt to assign individ-

ual notes to the fingers of a guitarist, which is occasionally

done in professional scores or transcriptions, and would be

a necessary step in order to estimate playability explicitly.

Another criticism of our approach is that it does not use

visual and audio cues for fretboard prediction. As shown

by Bastas et al. [19], inharmonicity analysis of a particular

instrument can improve string predictions. Likewise, Duke

and Salgian [20] demonstrate how computer vision models

can be used for accurate and real-time tablature transcrip-

tion. Both of these directions of research offer a more faith-

ful reproduction of a particular performance, since a sym-

bolic approach simply has no access to disambiguating sig-

nals such as hand position or string inharmonicity. How-

ever, this shortcoming can also be viewed as a strength: our

system does not need access to video nor audio. From this

perspective, our approach can be viewed as an automatic

arranging system for guitar tablature performance.

The main failure mode of our system is the assignment

of unplayable chords at a small but significant frequency

(2.4% of chords have a maximum fret distance exceed-

ing 7). Future research may explore different tokenization

schemes: encoding fret values as input, physically inspired

loss functions, or more carefully designed post-processing

to handle these cases. However, the vast majority of the

mass of the distribution of chord stretch distances falls

within playable limits, which indicates that the algorithm

is implicitly modeling some of the physical constraints that

classical systems use to derive tablatures.

7. CONCLUSION

We present a deep learning algorithm to predict guitar

tablature from symbolic music notation. Our methodol-

ogy trains an encoder-decoder Transformer to learn tabla-

ture assignment from raw note events. Drawing inspira-

tion from natural language processing, we begin by pre-

training on a dataset of tens of thousands of tablatures and

then fine-tune on a curated dataset of professional gui-

tar scores. We evaluate our system against commercially

available software and demonstrate a significant preference

for our system through a user study among guitarists. Our

MIDI-to-Tab system represents a first step towards achiev-

ing human-level tablature inference via machine learning.
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ABSTRACT

The majority of Western popular music contains lyrics.

Previous studies have shown that lyrics are a rich source of

information and are complementary to other information

sources, such as audio. One factor that hinders the research

and application of lyrics on a large scale is their availabil-

ity. To mitigate this, we propose the use of transcription-

based lyrics embeddings (TLE). These estimate ‘ground-

truth’ lyrics embeddings given only audio as input. Cen-

tral to this approach is the use of transcripts derived from

an automatic lyrics transcription (ALT) system instead

of human-transcribed, ‘ground-truth’ lyrics, making them

substantially more accessible. We conduct an experiment

to assess the effectiveness of TLEs across various music

information retrieval (MIR) tasks. Our results indicate that

TLEs can improve the performance of audio embeddings

alone, especially when combined, closing the gap with

cases where ground-truth lyrics information is available.

1. INTRODUCTION

Lyrics play an important role in music consumption [1–3],

often providing additional context to the perceived audio,

such as lyrical themes and semantic meaning. As such,

lyrics also have a wide range of applications in MIR, in-

cluding mood/sentiment prediction [4–8], recommenda-

tion [2, 9], genre [2, 10–12] and music tag prediction [11].

However, the absence of lyrics on a large scale poses

a significant challenge. While they are often available for

popular music, this might not be the case for the majority

of songs in a music catalog, either because they are non-

existent, i.e., not yet transcribed by a human, or due to

missing copyrights. Automatic lyrics transcription (ALT)

systems are an important step towards alleviating this prob-

lem by directly transcribing the lyrical content from a piece

of audio [13–17]. Still, these systems are not infallible and

some efforts have been made to further refine the result-

ing (potentially faulty) transcriptions, e.g., by using large

language models (LLMs) [15].

© J. Kim, F. Henkel, C. Landau, S. E. Sandberg, and A. F.

Ehmann. Licensed under a Creative Commons Attribution 4.0 Interna-

tional License (CC BY 4.0). Attribution: J. Kim, F. Henkel, C. Landau,

S. E. Sandberg, and A. F. Ehmann, “Transcription-based lyrics embed-

dings: simple extraction of effective lyrics embeddings from audio”, in

Proc. of the 25th Int. Society for Music Information Retrieval Conf., San

Francisco, United States, 2024.

In this work, we investigate the use of lyrics em-

beddings on a variety of MIR downstream tasks, rang-

ing from music tagging to recommendation. We fo-

cus on a comparison between embeddings stemming

from human-transcribed or ‘ground-truth’ lyrics and their

machine-transcribed counterparts, which we refer to as

transcription-based lyrics embeddings (TLE) throughout

this work. In particular, we are interested in the effective-

ness of two TLE variants compared to audio embeddings

and ‘ground-truth’ lyrics embeddings, where we assume

the performance of the latter as an upper bound to TLE. To

that end, we answer the following research questions:

• RQ1 Do TLE provide useful additional information

compared to audio embeddings alone?

• RQ2 Can TLE be efficiently refined to close the gap

to ‘ground-truth’ lyrics embeddings?

The remainder of the paper is structured as follows.

Section 2 discusses related work on lyrics embeddings and

automatic lyrics transcription. In Section 3 we introduce

the concept and types of TLEs we evaluate in this work.

Section 4 covers our experimental setup including choices

of audio/lyrics embeddings as well as datasets and tasks.

In Section 5 we investigate and discuss the aforementioned

research questions. Finally, we conclude this work in Sec-

tion 6 and highlight potential future work directions.

2. RELATED WORK

Extracting information from lyrics has long been studied in

the MIR community. In particular, representing such infor-

mation quantitatively, e.g., with feature or latent vectors,

has been a strong focus. For instance, linguistic features

(e.g., rhyme and stylistic features) are shown to be useful

in various tasks [6,8,18], as well as approaches using psy-

chologically validated dictionaries [2, 19].

For representation modelling, bag-of-words (BoW) [20]

and term frequency inverse document frequency (TF-IDF)

have been common and effective choices for lyrics [6,12],

which is further extended to latent document or topic mod-

eling that has been successful in lyrics similarity estima-

tion and exploration [21, 22], as well as genre and mood

classification [6, 11, 12]. Another successful method is to

employ word2vec [4, 18, 23], where lyrics documents are

typically represented as the average of word vectors.

Lately, deep learning (DL) has been a popular choice

for lyrics representation learning. In supervised learning,
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it typically is accomplished implicitly within hidden layers

via end-to-end learning, which proves to be effective on

a range of downstream tasks [10, 11, 18]. More recently,

LLMs have introduced self-supervised learning based la-

tent text representations, which are shown to be effective

on several MIR tasks [24, 25].

Regardless, ALT remains a challenging problem to-

day [15, 16, 26, 27]. Along with efforts in building lyrics-

specific transcription systems [16, 17], Automatic Speech

Recognition (ASR) applied to the ALT task has also been

shown to be effective [27–29].

3. TRANSCRIPTION-BASED LYRICS

EMBEDDINGS

Figure 1. The diagram of proposed lyrics embedding esti-

mation. The models in the green-colored boxes ({t, h, f})

are assumed to be pre-trained, whereas lyrics enhancement

model g is trained employing embeddings obtained from

those pre-trained models.

In this work, we propose a system that estimates lyrics

embeddings (LE) independent of ‘ground-truth’ lyrics data

y ∈ Y by only relying on audio data x ∈ X , which

we generally refer to as transcription-based lyrics embed-

dings (TLE) in the following. To achieve this, we consider

several off-the-shelf pre-trained models, including an ALT

model t : X → Ŷ , an audio embedding model h : X → A,

and finally a lyrics embedding model f : Y → Z .

Given the availability of a pre-trained ALT as well as

word or sentence embedding models, it is straight-forward

to devise a sequential system that allows one to directly

input audio data and obtain high-quality lyrics embeddings

that are ready to be used for a variety of downstream music

tasks. We propose such an ALT based embedding as the

first type of TLE, which is further referred to as TLET and

denoted as ẑ in Figure 1.

Despite remarkable recent improvements, ALT models

are not yet completely error-free, due to the challenging

nature of this task [15]. As a result the transcription ŷ ∈ Ŷ ,

and hence an embedding computed from it may contain a

certain degree of error when compared to ‘ground-truth’

lyrics embeddings. We aim to improve the fidelity of

TLET by introducing an ‘enhancement’ model which re-

gresses to the ground-truth lyrics embeddings from noisy

transcription-based embeddings by using audio embed-

dings as an additional input. In the following we refer to

this approach as TLER (denoted as ź in Figure 1).

Given pre-configured audio a ∈ A ⊂ R
da and lyrics

embedding z ∈ Z ⊂ R
dz spaces, the main goal of ‘en-

hancement’ is to find a function g : Φ → Z which maps

the concatenated audio-lyrics embedding ϕ = [a; ẑ] ∈
Φ ⊂ R

(da+dz) to the lyrics embedding space z′ ∈ R
dz .

Specifically, we minimize the sum of squared error be-

tween the estimated and ground-truth lyrics embedding as

the main learning objective:

min
Θ

∑

(z,x)∼Dtrain

||z − g(ϕ; Θ)||2 + αR(Θ) (1)

where Θ are the parameters of the regressor g and Dtrain

denotes the training dataset where we have access to both

the audio x and lyrics y as well as their corresponding em-

beddings a and z. Finally, R is the regularizer for the pa-

rameters Θ which is controlled by coefficient α.

4. EXPERIMENTAL SETUP

The main hypotheses correspond to each RQ: 1) TLET ef-

fectively provides lyrics information that is complemen-

tary to audio 2) TLER improves the effect of TLET . Con-

cretely, we design an experiment comparing the perfor-

mance of three treatments, LE, TLET , and TLER, on rele-

vant downstream tasks, with respect to a range of lyrics and

audio embeddings. In the experiment, we define a treat-

ment as a scenario where a single type of (transcription-

based) lyrics embeddings is employed to represent text in-

formation, both in the training and testing phase of the ma-

chine learning (ML) experiment. 1 The rest of this section

describes each component of the experimental design.

4.1 Machine Transcription

Similar to [15], we rely on a Whisper-based model [28]

to transcribe the lyrics of a song from its audio record-

ing. In contrast to [15], we do not perform a correction

step in the form of ChatGPT 2 , as this would be too costly

on a large scale. Instead we directly create embeddings

from the potentially faulty transcriptions (TLET ) and sub-

sequently try to improve the embeddings using a learned

correction function (TLER).

Considering that we aim to transcribe a large set of au-

dio recordings (see Table 1), we employ Distil-Whisper for

an efficient transcription process without significant per-

formance losses [32, 33]. As suggested in [15] we use

“lyrics:” as a prefix prompt.

4.2 Embeddings

In the following, we introduce the different embeddings for

each modality used in our experiments. While each em-

bedding is tested separately, we also test combined cases,

where both audio and lyrics embeddings are provided in

the downstream task as a concatenated embedding vector.

1 We do not consider the scenarios where different treatments are used
in training and testing phase to control for a possible data drift [30, 31]
and to simplify the experimental design.

2 https://openai.com/blog/chatgpt
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4.2.1 Lyrics Embeddings

We consider three text embeddings, ranging from conven-

tional to more modern transformer-based embeddings to

ensure the generality of the study.

Bag-of-Words embeddings (BE): BE embeddings

serve as the baseline lyrics embedding approach within

the experimental design. Unless the lyrics data is pre-

tokenized by words such as the MSD-MusiXmatch (MSD-

MXM) dataset [34], we employ the Byte-Pair Encoding

(BPE) tokenization [35] instead of actual words. The re-

sulting representation is a sparse song-token count matrix

on which we apply TF-IDF [36] and randomized singular

value decomposition (rSVD) [37] with a dimensionality of

d = 300 to subsequently obtain a dense, low-rank vector

representation of each lyrics.

Wasserstein embeddings (WE): WE embeddings are

learned by applying linear optimal transport which min-

imizes the Wasserstein distance between distributions of

the learned embeddings and given reference vectors [38].

For the reference vectors, we train token embeddings using

their co-occurrence matrix. This provides token-to-token

transition frequency information on top of the document-

token frequency which is the only information source to

BE. We choose an embedding dimensionality of d = 300.

Sentence BERT embeddings (sBERT): We use a pre-

trained sentence BERT model [39], which is fine-tuned us-

ing a general language model called MPNet [40, 41]. In

particular, the fine-tuning training involved a large scale

text corpora to effectively estimate the semantic similarity

between paraphrased sentences. Such a property can be

crucial for lyrics data, which often is highly abstract and

irregular compared to conversational language. The em-

bedding has a dimensionality of d = 768.

4.2.2 Audio Embeddings

We employ two open-source and one proprietary music au-

dio embedding models.

OpenL3: is a video-audio multimodal representation

trained using self-supervised learning. Specifically, the

model encodes video and audio features in respective em-

beddings, and minimizes the matching error between them,

assuming the best matches happen when they are extracted

from the same video clip [42,43]. We employ the audio en-

coding sub-network from the ‘music’ variant of OpenL3 as

the embedding encoder with a dimensionality of d = 6144
and 128-band mel spectrograms as input.

MULE: is an open-source music audio embedding

model trained in a self-supervised way by using contrastive

learning on MusicSet, a large-scale proprietary music au-

dio dataset [44]. We choose this for representing a modern,

generic music audio embedding which is effective on wide

range of downstream tasks.

MSLE: is the supervised counterpart to MULE where

the music labels of MusicSet are used for its supervised

learning [44]. We employ it for the proprietary datasets

(i.e., InternalLT, InternalRec, see following section). Both

embeddings have the same dimensionality d = 1728.

4.3 Tasks and Datasets

4.3.1 Automatic Music Tagging (AMT)

AMT has been a popular downstream task in MIR [45].

While there are several datasets [34, 46–48], few of them

focus on lyrics specifically. To measure the effect of

lyrics more clearly, we devise a subset of the Million Song

Dataset (MSD) for tagging [34] that is more relevant for

lyrics data, which we refer to as MSDSnippetLT.

It is composed as the subset of social tags that MSD pro-

vides and that are specifically relevant to the lyrics’ subject

matter and language. It involves a machine-assisted tag se-

lection process, where we first identify lyric-relevant tags

by ranking MSD tags using the correlation with approxi-

mately a dozen privately-curated lyric-related tags and lan-

guage metadata, with songs matched to an annotated pro-

prietary music catalog. Among the top 200 MSD tags per

each proprietary lyrics tag, three researchers voted 3 for

a final subset based on the following selection rules: 1)

the MSD tag has to be clearly related to the targeted pro-

prietary lyrics tag, 2) the MSD tag is not a music genre,

3) the MSD tag is not an artist. After filtering songs that

map to the MSD-MXM subset which provides lyrics data

for a subset of MSD songs, the resulting dataset contains

74, 545 MSD songs and 87 unique tags in total, where ap-

proximately half of them center around the lyrical subject

(i.e., “melancholy”, “political”), while the other half are

related to the lyrics’ language (i.e., “british”, “Espanol”).

We also experiment with a proprietary subset that we refer

to as MSDFullLT where we have access to the full lyrics.

The dataset consists of 35, 264 songs and is a complete

subset of MSDSnippetLT. We hypothesize that the dataset

can provide useful insights on the effect of incompleteness

of the snippet/preview lyrics.

Additionally, we experiment with two popular tagging

datasets and one proprietary lyrics subject tagging dataset:

MSDSnippetMT is a subset of the popular MSD tag-

ging dataset, [34] where we select the commonly used 50
tags [45] to compare to the MSDSnippetLT dataset. As we

have to consider the availability of lyrics within MSD, the

resulting subset includes a total of 68, 363 songs. We fur-

ther test with JamendoMood dataset which is a subset of

the MTG-Jamendo datset [47] specifically focused on mu-

sic mood. The main purpose of this dataset is to show how

effective TLEs are for general music mood tagging when

‘ground-truth’ lyrics are not available. It contains 17, 982
songs annotated with 56 music mood tags. Finally, Inter-

nalLT is the subset of a proprietary lyrics-subject dataset

providing a set of high-quality lyrics-subject tags as well

as full ‘ground-truth’ lyrics.

We apply 5-fold cross validation for all datasets except

JamendoMood, where we use the provided pre-defined

split. The model performance is evaluated by the sample-

weighted mean average precision (wmAP) averaged across

all tags. The main motivation of applying sample weights

3 A weighted majority voting is conducted where one of three re-
searchers has three times larger weight than the other two, considering
the substantial musical experience and training. For further details on the
dataset creation, we kindly refer readers to the supplementary material.
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Dataset task #songs #tags text audio

MSDSnippetMT music tagging 68, 363 50 BoW5k preview
MSDSnippetLT lyrics tagging 75, 545 87 BoW5k preview
MSDFullLT lyrics tagging 35, 264 87 full-text preview
JamendoMood mood tagging 17, 982 56 N/A full-audio
InternalLT lyrics tagging 51, 240 15 full-text full-audio

MSDSnippetRec RecSys 112, 769 N/A BoW5k preview
InternalRec RecSys 138, 984 N/A full-text full-audio

Table 1. Details on the datasets.

is that the majority of the datasets, except JamendoMood,

provide the tagging confidence values, which is useful to

both training and evaluating the task. The sample weight

wi,j ∈ [0, 1] is defined as the normalized confidence value

for the observed annotation of tag j on song i. For all other

pairs of i and j (unannotated tags on songs) we set it to 1.

4.3.2 Music Recommendation

We further explore the effectiveness of lyrics embeddings

within a music recommendation system (RecSys) problem.

To maximize the effect of music content in a RecSys task,

we experiment with the ‘item cold-start’ scenario; a subset

of songs lack user interactions (e.g., new releases) hence a

content-based recommendation is more effective than col-

laborative filtering [49, 50].

The dataset consists of triplets of {user, song, listening

count} which is translated into a user-song matrix. The

interaction data is split into five sets of train, validation

and test set by songs in approximately 3:1:1 ratio via 5-

fold cross-validation. The user-song interactions within

the training (song) set is assumed as ‘observed’ and thus

can be used as the training data, while those within the

test (song) set are treated as ‘future’ interactions which the

recommendation system is expected to rank higher. An ef-

fective measure commonly used is the binary normalized

discounted cumulative gain (nDCG) [51] applied on a trun-

cated list of the top 500 recommended songs. 4

We employ two datasets for the RecSys task: MSD-

Echonest subset 5 is a popular recommendation dataset

which contains {user, song, listening count} triplets. We

derived a subset by including songs overlapping with the

MSD-MXM subset only, which we refer to as MSDSnip-

petRec. We apply 5-core filtering, i.e., we filter out users

who interacted with less than or equal to five unique songs,

and vice versa. Similarly, we derived a subset of propri-

etary streaming listening data in the aforementioned for-

mat and apply the same pre-processing steps. We refer to

this dataset as InternalRec.

4.3.3 Pre-processing on Text Representation

The subset of datasets involving MSD-MXM data only

provide a pre-tokenized BoW representation, while for

the rest we have access to a natural text representation of

lyrics, except for JamendoMood where we do not have

access to any ‘ground-truth’ lyrics. We refer to the pre-

tokenized BoW representation as BoW5K as it specifically

4 For efficient evaluation, we compute estimates per fold by averaging
nDCG over 5 randomly sampled subsets of 3000 users. It is shown that
the estimation error is marginal, not impacting the overall conclusion.

5 http://millionsongdataset.com/tasteprofile/

is limited to the 5000 most frequent words. This applies to

MSDSnippetLT, MSDSnippetMT, MSDSnippetRec.

Furthermore, as the transcription of music previews

tend to be substantially shorter, the BoW5K representation

of those has less counts compared to the one provided by

MSD-MXM, which is extracted from the full-text lyrics.

To correct this bias, we apply the following adjustment to

the transcription based word count a:

ãi,b = Ñi

(

γpai,b + (1− γ)pprior

i,b

)

(2)

where pai,b denotes the normalized frequency of a word b

on the ith lyrics based on the transcription, while p
prior

i,b

represents the global probability of a word b based on the

MSD-MXM corpus. Ñi = riNi denotes the estimated

word count of the full text based on the length ratio ri be-

tween full audio and snippet audio, and the observed word

count from the transcription Ni. Based on a preliminary

study, we choose the mixing coefficient γ = 0.8 which

yielded the best adjustment quality. 6

Given that MSDFullLT, InternalLT, InternalRec, and Ja-

mendoMood (via transcription) directly provide full text

lyrics for the embedding encoding, they do not require any

of the aforementioned pre-processing steps. An overview

of the datasets can be found in Table 1.

4.4 Experimental Setup Details

4.4.1 Lyrics Embedding Models

Unlike sBERT, for which we use a pre-trained model,

we train BE and WE models either with the MSD-MXM

dataset or a proprietary lyrics corpus. 7 As discussed in

section 4.3.3, downstream task datasets based on MSD-

MXM are pre-processed with the BoW5K representation,

which lacks the token sequential dependency information.

As WE requires the reference embeddings where typically

pre-trained token/word embeddings are used, we employ

glove-840B [52] word embeddings. For training BE and

WE embeddings, we only use half of the songs uniformly

sampled from MSD-MXM (118, 831/237, 662) to consider

the scenario where lyrics are only available for a subset of

songs. For datasets with the full texts available, we employ

BE and WE pre-trained on a subset of a proprietary lyrics

corpus containing 3 million unique lyrics.

6 The BoW5K matrix becomes dense after this adjustment, which still
is tractable for computing BE and WE, due to the word truncation at
5000. However, for a large scale dataset, we suggest to set γ = 1, which
disregards the prior but significantly improves computational efficiency.

7 We use implementations from the vectorizers package.
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4.4.2 Regression Model for TLER

For the enhancement model for TLER, we apply multivari-

ate linear ridge regression where the regularizer R(Θ) =
||Θ|| and the optimal α is selected from the range {10p :
p = [−6,−5, ... 5, 6]} via cross-validation.

4.4.3 Downstream Task Pre-processing & Models

We apply standardization followed by Principal Compo-

nent Analysis (PCA) to embeddings at 99.9% explained

variance ratio with whitening. This is especially useful for

combined audio-lyrics embeddings in order to balance the

contribution of each modality.

For Tagging tasks, we apply ridge logistic regression,

populated per tag to handle the multi-label classification

problem. The regularization coefficient is found by cross-

validation, from the same range used for the regressor de-

scribed in Section 4.4.2.

For the RecSys task, we employ item K-Nearest Neigh-

bor (itemKNN) [53]. For each song, it computes and

caches the K most similar songs by measuring cosine

distances between song embedding vectors, which results

in a sparse song-song similarity matrix. Later, it serves

songs that are most similar to the users previously lis-

tened songs by employing this similarity matrix. Fi-

nally, the optimal K is found by cross validation per

fold in each feature/dataset combination from the range of

[20, 50, 100, 200, 500, 1000, 2000].

5. RESULTS & DISCUSSION

5.1 Are LE in general useful for MIR tasks?

Although our main focus is the effectiveness of TLEs on

MIR tasks, we briefly discuss its ideal counterpart, LE. Our

main interest is whether LE outperforms the baseline sce-

nario where only the audio embedding is used, compared

to scenarios where LE is either used alone or in combi-

nation with audio embeddings for downstream tasks. As

Figure 2 suggests, LE (round points in pink) outperforms

the baseline (dashed horizonatal line) particularly when the

task is lyrics focused (i.e., MSDSnippetLT, MSDFullLT,

InternalLT), or when the combined lyrics and audio em-

bedding is given to downstream task models (i.e., the three

“+Audio” columns to the right of each grouping). It is no-

table that a performance improvement is observed on most

of the tagging datasets and one RecSys scenario (i.e., In-

ternalRec using MSLE) when LE is combined with audio

embeddings. However, overall we observe a smaller effect

for RecSys tasks. We assume that this is due to the smaller

relative effect of LE against the baseline in those cases.

Comparing audio baselines, OpenL3 performs worse

than MULE and MSLE on most tagging tasks (except MS-

DFullLT), while performing better in RecSys tasks. De-

spite these differences, we observe similar trends regarding

the performance of LEs compared to those baselines.
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Figure 2. Each sub-figure corresponds to one dataset (row)

and audio embedding (column). x and y axes represent

embedding combinations and performance measures per

task, respectively. Dashed horizontal lines and the shaded

gray area in each figure represents the average performance

and confidence interval when only the audio embedding is

used. Each other point and vertical bar indicates the aver-

age performance and confidence interval of an embedding

(combination). We set confidence intervals at 95%.

5.2 Does TLET provide complementary information

to audio embeddings?

In practice, the confirmed effectiveness of LE is unlikely

to be helpful due to limited access to ‘ground-truth’ lyrics.

Regardless, our results indicate that TLET can also achieve

better testing performance compared to audio-only base-
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lines, similar to LE.

We observe degradation of performance compared to

LE in most of the cases, which is expected due to the tran-

scription error of the ALT process. The error can be seen

in Figure 3, where we measure the cosine similarity be-

tween corresponding pairs of LE and TLEs. This suggests

that the transcription error can be severe such that the co-

sine similarity of a large number of pairs approaches 0 (i.e.,

MSDSnippetLT, MSDFullLT).
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Figure 3. Distribution of cosine similarities measured be-

tween pairs of TLET – LE and TLER – LE, respectively.

Each sub-figure represents the result per dataset and lyrics

embeddings tested. Vertical bars denote the median.

However, TLET , even with such transcription errors

and hence a loss of fidelity in the resulting embeddings,

still provides meaningful performance gains when com-

pared to an audio-embedding-only scenario. This is espe-

cially true on lyrics focused tasks or when combining the

audio and (noisy) lyrics embeddings. In JamendoMood

and MSDSnippetMT, where the lyrics data is not available

upfront or the task is not focused on lyrics, we still observe

that TLET combined with audio features outperforms au-

dio embeddings alone.

This implies that one can build lyrics-based ML systems

that can be applied to all the songs in the catalog of inter-

est, with an expectation of a performance gain compared

to models solely dependent on audio embeddings.

Comparing the performance of TLET between MSD-

SnippetLT and MSDFullLT, it is notable that the trunca-

tion of transcribed lyrics influences the effectiveness of the

resulting embeddings. This suggests that providing full-

length lyrics transcripts where possible is important.

5.3 Does TLER further improve TLET ?

Next, we focus on TLER which applies regression on top

of TLET . Ideally, we would expect that the regression im-

proves the fidelity of TLET , which likely results in an im-

proved downstream task performance. First, we can con-

firm that the regression indeed improves the fidelity, as

suggested by Figure 3. Measured on the testing samples of

matching pairs of LE and TLER, the average cosine simi-

larity is improved in all the cases. The effect is more ob-

vious when the initial TLET has lower fidelity (i.e., BE,

MSDSnippetLT). This indicates that the regression does

increase the fidelity to some degree.

However, on the downstream tasks, the effect is not as

consistent as in the cosine similarity (fidelity) result. In

the case where the audio embedding is not included as

input, the result indicates that TLER improves the down-

stream performance over TLET , sometimes even outper-

forming corresponding LEs (i.e., MSDSnippetMT, Inter-

nalLT). However, once combined with audio embeddings,

the effect is not as distinct. While overall a small positive

effect is observed in the RecSys datasets, the effect in the

tagging datasets seems to be less clear, with TLER gener-

ally performing on par with TLET .

One explanation could be that the concatenation of au-

dio embeddings for downstream tasks would eventually

provide the same degree of audio information for TLET

as already provided for TLER. The regression of TLER

is conditioned both by TLET and the audio embedding,

and thus would likely inherit the audio information. This

is a possible explanation for the cases where TLER out-

performs both LE and TLET . Similarly, TLET combined

with the audio embedding explicitly fusing the two modal-

ities via concatenation, shows performance that is on par

with TLER in most of the cases.

6. CONCLUSION & FUTURE WORK

In this work, we introduce and assess transcription-based

lyrics embeddings which tackles the problem of lyrics

availability. An experiment is conducted to evaluate the

effectiveness of TLEs in popular MIR downstream tasks,

assessed against two comparisons, namely ‘ground-truth’

lyrics embeddings and audio embeddings. The result in-

dicates that TLEs perform generally in between these two

contenders, especially when combined with audio embed-

ding and on the lyrics-focused tasks. This implies that

TLEs can be an effective approach to be applied in lyrics-

relevant MIR tasks where lyrics are often unavailable.

In particular, our results suggest that TLET is a simple,

yet effective method for various downstream tasks when

combined with audio embeddings. It is shown to comple-

ment audio embeddings by improving performance when

combined with them. These gains can be achieved by using

only off-the-shelf pre-trained models, while not requiring

any access to ‘ground-truth’ lyrics whatsoever. Addition-

ally, this approach does not require any subsequent refine-

ment processes as is the case with TLER.

Furthermore, we identify some areas of exploration by

which TLE could be improved: 1) end-to-end learning

that directly associates the audio and LE to potentially im-

prove the quality of TLER and avoids the transcription pro-

cess, 2) instead of a simple linear regression model, more

advanced methods such as semi-supervised learning [54]

could further improve the fidelity of TLER. Additionally,

3) using context vectors from DL-based ALT models could

be a viable alternative TLE, which bypasses the lyrics text

embedding models. Finally, 4) while not the main fo-

cus due to the prevalence of English language in the data,

multi-lingual transcription and embedding models could

further improve the results in a more general setup.
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ABSTRACT

It is a well known fact that the dynamics in piano per-

formance gives significant effect in expressiveness. Tak-

ing the polyphonic nature of the instrument into account,

analysing information to form dynamics for each per-

formed note has significant meaning to understand piano

performance in a quantitative way. It is also a key element

in an education context for piano learners.

In this study, we developed a model for estimating

MIDI velocity for each note, as one of indicators to rep-

resent loudness, with a condition of score assuming educa-

tional use case, by a Deep Neural Network (DNN) utilizing

a U-Net with Scaled Dot-Product Attention (Attention) and

Feature-wise Linear Modulation (FiLM) conditioning. As

a result, we prove that effectiveness of Attention and FiLM

conditioning, improved estimation accuracy and achieved

the best result among previous researches using DNNs and

showed its robustness across the various domain of test

data.

1. INTRODUCTION

In the realm of piano performance, the loudness of each

note plays a pivotal role, alongside other factors such as

tempo and precise keystrokes [1]. When analyzing piano

performances, the loudness of each note is quantitatively

represented by MIDI velocity. Given the polyphonic na-

ture of the piano, measuring the overall loudness within

a specific timeframe fails to provide meaningful insights

into the performance’s quality. Loudness can be observed

at various granularities, ranging from note-level loudness

and frame-level aggregated loudness to the transcription of

symbolic loudness representations. Each note in a piano

performance can exhibit varying loudness levels, contin-

gent on the music’s texture [2, 3]. The unique loudness

of each note, especially in the context of the piano’s poly-

phonic attributes, holds significant meaning. Mastery over

the loudness of individual notes is paramount, particularly

in educational settings. To hone this control, score infor-

mation serves as an essential benchmark. Visualization

© Hyon Kim, Xavier Serra. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribu-

tion: Hyon Kim, Xavier Serra, “A Method for MIDI Velocity Estimation

for Piano Performance by a U-Net with Attention and FiLM”, in Proc. of

the 25th Int. Society for Music Information Retrieval Conf., San Fran-

cisco, United States, 2024.

further enhances this educational endeavor [4]. Conse-

quently, this study operates under the assumption that score

information is accessible.

To ensure clarity in our terminology, we define "loud-

ness" as the aggregated MIDI velocities within a desig-

nated timeframe, as gauged by an electronic piano device.

In contrast, "intensity" refers to the peak value of the fre-

quency sum for a note frame, as delineated in [5]. It is

imperative to recognize that MIDI velocity does not di-

rectly correspond to the loudness as perceived by the hu-

man auditory system. Previous research has probed the re-

lationship between MIDI velocity and perceived loudness

in decibels (dB) [6,7]. These investigations consistently re-

veal a non-linear relationship, where an increase in MIDI

velocity corresponds to a rise in perceived loudness.

Furthermore, studies such as those by [8, 9] have ex-

plored the mapping from perceptual loudness values in dB

scale to dynamic symbols in piano performance, includ-

ing symbols like forte, mezzoforte, piano, pianissimo,

crescendo, and so forth. The dynamics and expressiveness

of a musical composition are shaped by the loudness val-

ues attributed to each note in the score [1]. Notably, MIDI

velocity offers a more nuanced prediction of loudness com-

pared to traditional dynamic markings found in most music

scores. These markings provide relative directives on the

loudness with which a piece should be played. The loud-

ness of individual notes in a piano performance can fluctu-

ate based on the texture of the music [2,3]. Given the poly-

phonic characteristics of piano performances, note-level

loudness is of paramount importance.

Recognizing the significance of delving into note-level

loudness granularity, this study primarily centers on MIDI

velocity estimation, particularly within an educational con-

text where score information is presumed available.

2. RELATED WORK

In this section, we delve into pertinent works within the do-

main of Machine Learning methods and their applications

for the task.

Note Level Intensity Estimation: The task of note-

level loudness estimation has been the focus of multi-

ple studies [5, 10–13]. These investigations have utilized

both Non-Negative Matrix Factorization (NMF) and DNN

methodologies to segregate piano performance audio into

88 distinct keys, subsequently estimating MIDI velocity

or intensity for each note. This research domain can be
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viewed as an extension of Automatic Music Transcrip-

tion (AMT) and Music Performance Assessment, with po-

tential applications in modeling performance expressive-

ness. The task of piano note-level MIDI velocity estima-

tion is multifaceted, encompassing both a regression prob-

lem, where MIDI velocity values within the 0-127 range

are estimated, and an audio classification challenge, which

categorizes audio into one of the typical 88 piano keys.

A limited number of studies have tackled the note-level

MIDI velocity estimation task for an actual piano perfor-

mance data, employing techniques like NMF [5] and DNN

methods [13, 14]. The study by [5] integrated with score

information to estimate note-level intensity, subsequently

developing a linear regression model for note-level MIDI

velocity estimation. The DNN methods [13] have sought

to address the estimation challenge by incorporating AMT

techniques and score conditioning. These DNN architec-

tures amalgamate convolution blocks and GRU blocks, in-

troducing FiLM conditioning generated by a fully con-

nected linear layer. A diffusion model together with FiLM

conditioning [14] inserts a score and performance audio

information for its generative task to express note frames

with MIDI velocity information. While the DNN approach

did not outperform the NMF method, it marked a pioneer-

ing effort to estimate MIDI velocity using DNNs, aiming

to create a model that could generalize to unseen classi-

cal music inputs, in contrast to the NMF method that opti-

mizes parameters for individual test data. In our research,

we juxtapose our findings with these preceding studies.

U-Net: The U-Net architecture incorporates layered

residual connections. The concept of a residual network

emerged as a solution to counteract the vanishing or ex-

ploding gradient issues encountered during the DNN train-

ing phase. U-Net has been employed for piano perfor-

mance transcription, specifically for reconstructing spec-

trograms [15]. Its efficacy in music source separation tasks

within the field of music information retrieval is well-

documented. Notably, research has been conducted on a

FiLM-conditioned U-Net for music source separation [16].

In our study, we leverage a U-Net structure with con-

volutional layers to process the mel spectrogram, a two-

dimensional representation of audio. We anticipate that the

U-Net will enhance classification accuracy, converting au-

dio to the 88 piano keys.

Feature-wise Linear Modulation (FiLM): Our study

employs FiLM conditioning to integrate score informa-

tion, aiming to estimate note-level MIDI velocity for pi-

ano performances [17]. Historically, FiLM conditioning

has found applications in image processing, yielding en-

hanced results when conditioned with natural language for

tasks like object detection [17]. This concept has been

extended to audio source separation tasks, where audio is

conditioned with supplementary information such as video

and scores [18]. Structurally, FiLM encompasses neural

network layers that produce an affine transformation for a

specified input layer. It integrates a base DNN, trained in a

supervised manner, with a condition generator. This gen-

erator processes conditions, such as scores, to produce the

parameters β and γ for an element-wise affine transforma-

tion in the latent space of the base DNN. Mathematically,

this is represented as: FiLM(x) = γ(z) ·x+β(z). Here,

the vector z serves as the conditional vector. Figure 1 vi-

sually represents the FiLM conditioning architecture, illus-

trating how the condition embedding model generates the

parameters β and γ for the affine transformation on the la-

tent vector x derived from the base DNN.

Figure 1. Visualization of FiLM operation

The Scaled Dot-Product Attention (Attention): The

Attention, introduced by [19], has been instrumental in

advancing the field of deep learning. This mechanism

computes attention weights by scaling the dot products of

queries and keys, which facilitates a dynamic focusing of

the model on relevant parts of the input data. Its efficiency

and simplicity allow for significant improvements in model

performance by enabling the capture of long-range depen-

dencies within the data, without the constraints imposed by

previous sequence processing models. The architecture is

utilised in an image processing area [20] and a speech pro-

cessing area [21] together with U-Nets. This mechanism

has also been applied to music information retrieval such

as source separation [22] and showed its performance to-

gether with computational efficiency for the task. These

researches show that the Attention mechanism works for

capturing its target information from complex input data.

Our model incorporates this Attention within the U-Net

architecture to leverage its proven benefits, thereby en-

hancing our model’s ability to understand and generate nu-

anced responses based on the context provided by the input

sequence in a musical sense.

3. METHOD

Figure 2 illustrates the comprehensive architecture of our

proposed model. Initially, the model processes audio in-

put, transforming it into a Log Mel-frequency Spectro-

gram. This transformation facilitates the conversion of the

waveform into an image-like format. The audio process-

ing parameters include a window length of two seconds,

a hop size of one second, and a sampling rate of 16k Hz,

resulting in a model output resolution of 100 frames per

second. The overarching model architecture can be cate-

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

305



Figure 2. The entire architecture of the proposed model.

gorized into three distinct convolutional blocks, as show-

cased in Figure 3.

Figure 3. Schematic of the three convolutional blocks uti-

lized in the model.

Convolutional blocks of type 1 and 2 collectively form

the U-Net structure. Type 1 blocks also play a pivotal

role in encoding note frame information. In this study,

note frames are derived from a MIDI roll. Corresponding

blocks in the encoding phase generate FiLM conditioning

parameters, denoted as β and γ, for each affine transforma-

tion. Several methods for inserting FiLM parameters are

described in [16]. In our model, through empirical study,

we generate parameters to ensure element-wise correspon-

dence for each latent space vector, as depicted in Figure 1.

Consequently, each output from the score encoders gener-

ates twice as many parameters for the output of each block

in the encoder of the U-Net.

To ensure uniformity in the processed latent features,

we employ convolutional layers of the same hierarchical

level to produce FiLM parameters for each layer within the

U-Net. For the skip connections, non-conditioned latent

vectors from each block are relayed to the corresponding

type 2 block, while FiLM-conditioned latent vectors are

channeled to the subsequent layer of the type 1 block.

In the decoder section of the U-Net architecture, Atten-

tion modules are incorporated before each convolutional

block type 2. This configuration enhances the network’s

ability to focus on relevant features by dynamically ad-

justing the importance of different areas of the input im-

age. The Attention mechanism, which calculates attention

scores by scaling the dot-product of queries and keys, en-

ables the model to prioritize specific features over others,

improving the precision of MIDI velocity estimation.

The construction block consists of convolutional block

type 3 followed by the block containing bi-directional

GRU. It processes inputs through a sequence of layers in-

cluding linear transformations for dimensionality reduc-

tion based on the input feature type, batch normalization,

and a bidirectional GRU for capturing temporal dynam-

ics. The network concludes with a fully connected layer

applying a sigmoid function to output note frames with ve-

locity information. Dropout and ReLU activations are uti-

lized throughout to enhance performance and prevent over-

fitting.

For training our model, we employed the MAESTRO

dataset [23]. MAESTRO is a dataset composed of about

200 hours of virtuosic piano performances captured with

fine alignment (up to 3 ms) between note labels and audio

waveforms. Notably, other DNN models targeting MIDI

velocity estimation, such as [13] and [14], have also em-

ployed this dataset. This usage facilitates a more legitimate

comparison of model performance across different studies.

Our chosen loss function, represented by Eq. 1, amal-

gamates the l1 loss and the Binary Cross-Entropy (BCE)

loss. This design facilitates back-propagation of losses for

both classification and regression tasks.

Loss = θ · l1 loss + (1− θ) · BCE loss (1)

Here, θ ∈ [0, 1] signifies the weight for the l1 and the BCE

loss. For our empirical setup, we set θ to 0.5. The l1 loss

function, as defined in Eq. 2, is articulated as:

l1 loss =

∑
i
|V (i)ground truth − V (i)model output|

N
(2)
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In this equation, V (i) represents MIDI velocity with the

index i of corresponding notes between the ground truth

and the model output within a specified window, while N

denotes the total number of notes present in that window.

Each input data point spans two seconds, with each frame

encompassing 100 segments per second to depict the MIDI

roll. The velocities used to compute the loss are normal-

ized to the range [0, 1] to match the scale of the BCE.

For the evaluation phase, we employed the Saarland

Music Data (SMD) dataset [24]. SMD provides audio

recordings along with perfectly synchronized MIDI files

for various piano pieces. The pieces were performed by

students of the Hochschule für Musik Saar on a hybrid

acoustic/digital piano (Yamaha Disklavier). We selected

49 excerpts from this dataset, consistent with the test sets

used in prior studies [5,13,14], ensuring a fair and compa-

rable assessment. The model’s error is quantified using the

formula presented in Eq. 3:

Error =

∑
i
|V (i)ground truth − V (i)inference|

N
(3)

In this equation, i represents individual notes, and N

denotes the total number of notes accurately identified in

the score. The inferred MIDI velocity is determined by the

peak value within the interval of each detected and cate-

gorized velocity frame, juxtaposed with the ground truth

velocity frame for the respective note. This approach is

adopted because the detected velocity typically exhibits a

peak followed by a decline in the estimated MIDI velocity

within a note frame, mirroring the attack and decay pat-

terns of each note’s loudness. Differently from loss func-

tion, the output values are not normalised but are scaled to

the range [0, 127]. The recall score serves as our primary

evaluation metric for classification accuracy, given that the

model’s output is constrained by the provided score infor-

mation.

4. RESULTS AND DISCUSSION

Result and Comparison: Table 1 presents the compara-

tive outcomes of our model against previous works in the

field. The proposed model consistently outperforms other

DNN-based methods across all metrics, demonstrating no-

table improvements. The enhancements are particularly

evident when comparing the best and worst outcomes of

our model with those of other models. The results high-

light that the U-Net designed with Attention and FiLM

conditioning with score information significantly boosts

performance.

Among the test set, the most favorable outcome is ob-

served for "Bach BWV875-01 002," which recorded mean

error, standard deviation, and recall values of 4.6, 3.3,

and 95.6%, respectively. Conversely, "Chopin Op028-17"

exhibited the least favorable results for mean error and

standard deviation, with values of 16.0 and 11.9 respec-

tively, and a recall of 87.5%. Additionally, "Ravel Jeux

d’eau" demonstrated the lowest recall score in the dataset

Model Mean SD Recall

DNN Based Model

DiffVel [14] 19.7 13.1 53.0%

Convolutional Net [13] 15.1 12.3 85.8%

Proposed Model 9.9 7.8 89.7%

NMF Based Model

Score-Informed NMF [5] 4.1 5.0 N.A.

Table 1. Comparative results of models for note-level

MIDI velocity estimation with score information. SD:

Standard Deviation

Figure 4. Mean and SD of errors for misaligned score

information

at 80.7%, with corresponding mean error and standard de-

viation values of 12.1 and 10.2. These results illustrate the

varied performance of our model across different musical

pieces, underscoring its effectiveness as well as areas for

potential improvement.

The analysis also highlights the strengths and weak-

nesses of both DNN and NMF-based methods. DNNs

are capable of capturing complex relationships within the

training data due to their nonlinear nature, but they are

computationally demanding and require extensive data to

optimize parameters effectively. In contrast, NMF-based

methods, such as the one described by [5], optimize pa-

rameters for individual excerpts using score information in

the test set, offering a more tailored approach. This speci-

ficity, however, can limit their generalizability compared to

DNNs, which aim to develop a more generic model suit-

able for diverse musical excerpts. Notably, the proposed

model is trained on a distinct domain, specifically a piano

performance dataset different from the test set, to ensure a

fair comparison and robust assessment of its performance.

This strategy helps in evaluating the model’s ability to gen-

eralize across different musical contexts effectively.

Misaligned Condition Insertion: In real-world ap-

plications, alignment discrepancies frequently occur be-

tween scores and their corresponding audio, affecting the

accurate feeding of note frames. Figure 4 elucidates the

model’s sensitivity to temporal misalignments, exhibiting

a correlation between the degree of time shift and the

model’s performance metrics.

These shifts are synthetically generated by inserting the
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conditions a specified number of seconds ahead or behind

each input frame, with a two-second duration per input. It

is clear that misaligned data affects to the model accuracy

proportionally. Addressing this misalignment, data aug-

mentation can be employed during the training phase to

acclimate the model to varying degrees of data condition

misalignments, thereby enhancing its flexibility.

Nonetheless, this alignment challenge may become

negligible with the integration of a dedicated note frame

detection model, as delineated by models like the one

in [25]. Utilizing such models for precise note frame

detection allows for a subsequent, more accurate analy-

sis of MIDI velocity estimation by the proposed model,

streamlining the workflow and potentially increasing per-

formance accuracy.

Figure 5. Error distributions based on various ground truth

aspects: pitch, sustain pedal activation, and MIDI velocity

intervals together with the ratio of notes appeared in the

training set.

Error Analysis: Further analysis was conducted to

evaluate the error distribution across different pitch groups,

ground truth MIDI velocities, and sustain pedal activation

states, as depicted in Figure 5. The analysis indicates that

error is inversely correlated with the volume of data in the

training set: the greater the quantity of data processed by

the model, the more accurate the MIDI velocity estimates,

highlighting the benefits of extensive data representation.

The results further reveal that enhanced training data

volumes lead to improved estimation outcomes across var-

ious data dimensions. This suggests that applying data

augmentation to achieve a balanced distribution in pitch

and velocity bins can result in higher estimation accuracy.

However, such augmentation must maintain the musico-

logical context, including harmony and expressiveness,

making this a complex yet critical task for effective model

training.

Ablation Study: In our ablation study, we evaluate the

individual and combined contributions of FiLM condition-

ing and the Attention modules to our model’s performance,

based on the U-Net architecture. These components were

chosen for their theoretical abilities to enhance feature rep-

resentation and focusing mechanisms, respectively. The

study aims to clarify their roles within our proposed deep

neural network architecture. We examine four configura-

tions of our model: (i) with both FiLM and Attention (pro-

posed model), (ii) with FiLM but without Attention, (iii)

with Attention but without FiLM, and (iv) without either

FiLM or Attention, as shown in Table 2.

Model Configuration Mean SD Recall

With FiLM:

With Attention 9.9 7.8 89.7%

Without Attention 10.0 7.8 89.4%

Without FiLM:

With Attention 12.1 10.5 73.0%

Without Attention 13.0 10.5 68.5%

Table 2. Ablation Study: Detailed Performance Compar-

ison Highlighting the Impact of FiLM Conditioning and

Attention.

The ablation study highlights the significant impact of

FiLM Conditioning and a relatively lesser contribution

from the Attention in enhancing the performance of the

proposed model. The observed synergy when integrating

these modules indicates a promising avenue for future re-

search and development in deep neural network architec-

tures. While the Attention module improves model per-

formance, its effectiveness is not as pronounced as that of

FiLM Conditioning. This suggests that the model’s ability

to concentrate on relevant features, and thereby its predic-

tive performance, is significantly enhanced by FiLM Con-

ditioning. Notably, we could see universal improvement

on the recall score on all the excepts on the test set in any

comparison among combination of (i) to (iv).

According to Table 1, the study also demonstrates that

incorporating a U-Net mechanism, particularly its skip

connections, can enhance accuracy for the task at hand,

outperforming previous models.

Robustness of the Model: We conducted a com-

parative analysis against the state-of-the-art transcription

model that additionally estimates the MIDI velocity [26].

The results, detailed in Table 3, indicate that our proposed
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model achieves comparable performance in MIDI velocity

estimation. Notably, our model demonstrates enhanced ro-

bustness across various test datasets, as evidenced by the

recall scores, in comparison to the model proposed by [26]

which is also trained on the MAESTRO dataset.

Model Mean SD Recall

Proposed Model 9.9 7.8 89.7%

The hFT Model [26] 9.9 7.3 78.0%

Table 3. Comparison to the SOTA Transcription Model

This comparison highlights the efficacy of our model,

particularly in its ability to generalize across different

datasets, which is crucial for practical applications. The

fact that both models yield identical mean scores for MIDI

velocity estimation but our model exhibits a higher recall

rate suggests our model’s capability in accurately capturing

the nuances of musical expression. Furthermore, despite

the slightly higher standard deviation in our model’s per-

formance, the significantly higher recall rate underscores

its robustness and reliability in diverse testing scenarios.

This finding is particularly relevant for applications requir-

ing high fidelity in musical transcription and velocity esti-

mation, indicating a promising direction for future research

and development in music transcription technologies. Also

the ablation study indicates that adding FiLM conditioning

can improve the model accuracy for the task, after experi-

mental process of designing the parameter generators and

methods to insert the parameters, which yields another re-

search topic.

5. CONCLUSION AND FUTURE WORKS

In this study, we explored the complexities of MIDI veloc-

ity estimation, leveraging an U-Net architecture enriched

with the Attention and FiLM conditioning to integrate

score information. Our results underscore the superiority

of this approach among DNN methodologies. Our empir-

ical evaluations further attest to the pivotal role of FiLM

conditioning in bolstering result accuracy. This enhance-

ment transcends specific model architectures, with FiLM

conditioning amplifying precision across various models,

ranging from feed-forward designs with convolution and

GRU blocks to diffusion models, combining the previous

researches [13, 14]. The Attention also contributes to im-

prove on both MIDI velocity estimation and recall score.

The model also showed that comparable results towards

SoTA transcription model and the robustness across the

sources of test set compared to other state of the art tran-

scription models which also estimates MIDI velocity.

Generally, FiLM conditioning has proven effective for

MIDI velocity estimation tasks. Enhanced transcription

of note onset, offset, and frames could further refine per-

formance, positioning this model as a robust solution for

MIDI velocity estimation across diverse datasets. This

suggests that utilizing DNN models, such as the onsets

and frames model proposed by [25], which demonstrates

superior accuracy in note frame detection without FiLM

conditioning, could be advantageous. In situations where

score data are not available, a cascaded approach can be

employed: first, use a DNN for accurate note frame detec-

tion, and then leverage the detected MIDI for FiLM con-

ditioning, circumventing the need for score-to-audio align-

ment.

As we look to the future, our objective is to expand the

range of score information, transitioning from MIDI note

frame to more comprehensive formats, MusicXML to be

encoded. Such a shift is anticipated to offer increased re-

silience, especially in situations where achieving precise

alignments poses challenges. Data augmentation on train-

ing data is also considered as crucial task for obtaining

more robust estimation, as mentioned. Additionally, ad-

dressing issues such as omitted notes and extraneous notes

is essential to tailor the model more effectively for edu-

cational applications, catering to both novice learners and

seasoned professionals, considering currently the set up

only considers the student is god enough to follow the

score for performance visualization purposes.

The potential applications of this research are manifold,

extending from the development of visualization tools that

bolster musical communication to advanced transcription

techniques. Such annotations, especially those denoting

expressiveness, carry significant implications, particularly

in pedagogical contexts where teacher-student interactions

are crucial.

The code and model developed for this study are avail-

able upon request.
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ABSTRACT

Existing text-to-music models can produce high-quality

audio with great diversity. However, textual prompts alone

cannot precisely control temporal musical features such as

chords and rhythm of the generated music. To address

this challenge, we introduce MusiConGen, a temporally-

conditioned Transformer-based text-to-music model that

builds upon the pretrained MusicGen framework. Our in-

novation lies in an efficient finetuning mechanism, tailored

for consumer-grade GPUs, that integrates automatically-

extracted rhythm and chords as the condition signal. Dur-

ing inference, the condition can either be musical features

extracted from a reference audio signal, or be user-defined

symbolic chord sequence, BPM, and textual prompts.

Our performance evaluation on two datasets—one derived

from extracted features and the other from user-created

inputs—demonstrates that MusiConGen can generate real-

istic backing track music that aligns well with the specified

conditions. We open-source the code and model check-

points, and provide audio examples online, https://

musicongen.github.io/musicongen_demo/.

1. INTRODUCTION

The realm of text-to-music generation has seen signifi-

cant progress over the recent years [1–11]. These mod-

els span various genres and styles, largely leveraging tex-

tual prompts to guide the creative process. There have

been two primary methodological frameworks so far. The

first employs Transformer architectures to model audio to-

kens [12] derived from pre-trained audio codec models

[13–15]; noted examples include MusicLM [1] and Mu-

sicGen [2]. The second employs diffusion models to repre-

sent audio through spectrograms or audio features, such as

AudioLDM 2 [4] and JEN-1 [5].

Text-to-music generation model generally relies on the

global textual conditions to guide the music generation

process. Textual prompts serving as high-level conceptual

guides, however, introduce a degree of ambiguity and ver-

boseness into the music generation for describing the musi-

© Y. Lan, W. Hsiao, H. Cheng and Y. Yang. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: Y. Lan, W. Hsiao, H. Cheng and Y. Yang, “MusiConGen:

Rhythm and Chord Control for Transformer-Based Text-to-Music Gener-

ation”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

Model
Chord Rhythm Do not need

control control reference audio

Coco-Mulla [6]
√ √

Music ControlNet [7]
√ √

Ours
√ √ √

Table 1. The comparison for conditions and condition type

of related temporally-conditioned text-to-music models.

cal features [7]. This inherent vagueness poses a challenge

in precisely controlling temporal musical features such as

melody, chords and rhythm, which are crucial for music

creation. Building on the success of MusicGen-melody [2]

in melody control, our focus now shifts to enhancing chord

and rhythm control, aiming to create a more integrated ap-

proach to music generation that captures the full spectrum

of musical elements.

Table 1 tabulates two existing studies that have explored

the incorporation of time-varying chord- and rhythm-

related attributes in text-to-music generation. Coco-Mulla

[6] is a Transformer-based model that employs a large-

scale, 3.3B-parameter MusicGen model, finetuned with an

adapted LLaMA-adapter [16] for chord and rhythm con-

trol. For rhythm control in particular, Coco-Mulla uses

drum audio codec tokens extracted from a reference drum

audio signal as a condition for guiding the music gen-

eration, thereby demanding reference audio for control.

While it is appropriate to assume the availability of such

reference audio in some scenarios, for broader use cases

we desire to have a model that can take user-provided text-

like inputs as well, such as the intended beats-per-minute

(BPM) value (for rhythm) and the chord progression as a

series of chord symbols (for chords). This function is not

supported by Coco-Mulla.

The other model, Music ControlNet [7], leverages a

diffusion model architecture and the adapter-based condi-

tioning mechanism of ControlNet [17] to manipulate text-

like, symbolic melody, dynamics, and rhythm conditions.

This diffusion model creates a spectrogram based on the

provided conditions, which is then transformed into au-

dio using their pretrained vocoder. For musical condi-

tions, a 12-pitch-class chromagram representation is used

for the melody, combined with beat and downbeat proba-

bility curves concatenation for rhythm control, and an en-

ergy curve to adjust the dynamic volume. However, Music

ControlNet does not deal with chord conditions.
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In view of the limits of the prior works, we introduce

in this paper MusiConGen, a Transformer-based text-to-

music model that applies temporal conditioning to enhance

control over rhythm and chord. MusiConGen is finetuned

from the pretrained MusicGen framework [2]. We design

our temporal condition controls in a way that it supports

not only musical features extracted from reference audio

signals, but also the aforementioned user-provided text-

like symbolic inputs such as BPM value and chord pro-

gression. For effective conditioning of such time-varying

features, we propose “adaptive in-attention” conditioning

by extending the in-attention mechanism proposed in the

MuseMorphose model [18]. Table 1 includes a conceptual

comparison of MusiConGen with existing models in terms

of the conditions and their types.

In our implementation, we train MusiConGen on a

dataset of backing track music comprising 5,000 text-audio

pairs obtained from YouTube. This training utilizes beat

tracking and chord recognition models to extract necessary

condition signals without the need for manual labeling. We

note that rhythm and chord controls are inherently critical

for backing tracks, for backing tracks often do not include

the primary melody and their purpose is mainly to provide

accompaniment for a lead performer.

Moreover, instead of using the adapter-based finetun-

ing methods [16, 17, 19], we apply the straightforward

“direct finetuning” approach to accommodate the domain

shift from general instrumental music (on which Music-

Gen was trained) to the intended backing track music. We

leave the use of adapter-based finetuning as future work.

To make our approach suited for operations on consumer-

grade GPUs, we propose a mechanism referred to as “jump

finetuning” instead of finetuning the full MusicGen model.

We present a comprehensive performance study in-

volving objective and subjective evaluation using two

public-domain datasets, MUSDB18 [20] and RWC-pop-

100 [21]. Our evaluation demonstrates MusiConGen’s en-

hanced ability to offer nuanced temporal control, surpass-

ing the original MusicGen model in producing music that

aligns more faithfully with the given conditions.

The contributions of this work are two-fold. First, to our

best knowledge, this work presents the first Transformer-

based text-to-music generation model that follows user-

provided rhythm and chords conditions, requiring no ref-

erence audio signals. Second, we present efficient training

configuration allowing such a model to be built by finetun-

ing the publicly-available MusicGen model with customer-

level GPU, specifically 4x RTX-3090 in all our experi-

ments. We open-source the code, checkpoint, and informa-

tion about the training data of MusiConGen on GitHub. 1

2. BACKGROUND

2.1 Codec Models for Audio Representation

In contemporary music generation tasks, audio signals are

typically compressed into more compact representations

1 https://github.com/Cyan0731/MusiConGen

using two main methods: Mel spectrograms and codec to-

kens. Mel spectrograms provide a two-dimensional time-

frequency representation, adjusting the frequency axis to

the Mel scale to better align with human auditory percep-

tion. Codec tokens, on the other hand, are often residual

vector quantization (RVQ) tokens that are encoded from

audio signals by a codec model [13–15]. Following Mu-

sicGen, we employ in our work the Encodec (32k) [14] as

the pretrained codec model to encode audio data at a sam-

ple rate of 32,000 Hz. This Encodec model comprises 4

codebooks, each containing 2,048 codes, and operates at a

code frame rate fs of 50 Hz.

2.2 Classifier-Free Guidance

Classifier-free guidance [22] is a technique initially de-

veloped for diffusion models in generative modeling to

enhance the quality and relevance of the outputs with-

out the need for an external classifier. This approach

involves training the generative model in both a condi-

tional and an unconditional manner, combining the out-

put score estimates from both methods during the inference

stage. The mathematical expression is as ∇x log p̃θ(x|c) =
(1−γ)∇x log pθ(x)+γ∇x log pθ(x|c). Here, γ represents

the guidance scale, which adjusts the influence of the con-

ditioning information. We perform a weighted average of

fθ(x, c) and fθ(x) when sampling from the output logits.

2.3 Pretrained MusicGen Model

The pretrained model used in our study is a MusicGen

model with 1.5B parameters, equipped with melody con-

trol (i.e., MusicGen-Melody). The melody condition em-

ploys a chromagram of 12 pitch classes at a frame rate

fM, denoted as M ∈ R
TfM

×12×1, derived from the lin-

ear spectrogram of the provided reference audio. For text

encoding, the model leverages the FLAN-T5 [23] as a text

encoder to generate conditioning text embeddings, repre-

sented as T ∈ R
Tt5×dt5×1. Both the melody and text

conditions undergo linear projection into a D-dimensional

space before being prepended to the input audio embed-

ding. Regarding the input audio for training, audio signals

are initially encoded into RVQ tokens, Xrvq ∈ R
Tfs×1×4,

using the pretrained Encodec model. These tokens are then

formatted into a “delay pattern” [2], maintaining the same

sequence length. Subsequently, an embedding lookup ta-

ble, Wemb ∈ R
N×D×4, where N represents for numbers

of codes in a codebook, is used to represent the associ-

ated codes, summing contributions from each codebook of

Xrvq to form the audio embedding Xemb ∈ R
Tfs×D×1.

The input representation is then fed to the self-attention

layers via additive sinusoidal encoding.

3. METHODOLOGY

Our method seeks to efficiently finetune the foundational

MusicGen model using time-varying symbolic rhythm and

chord conditions as guiding conditions. To achieve this,

we must carefully consider both the representation of these

conditions and the finetuning mechanism as follows:
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Figure 1. The model structure of MusiConGen and the self-attention block. a) MusiConGen takes text T , downsampled

chord Cpre as prepended condition and frame-wise chord Csum and rhythm R as additive condition. The addition operation

of frame-wise conditions to each self-attention block is regulated by the condition gate control (⊗). b) Each self-attention

block consists of four layers. In our proposed model, only the first layer is finetuned, which is also called jump finetuning.

3.1 Representing Temporal & Symbolic Conditions

Chords. For chord condition, we employ two methods.

The first prepend method is similar to the melody con-

trol method of MusicGen, denoted as Cpre ∈ R
TfM

×12

where Cpre maintains the same resolution (i.e. frame rate

fM and sequence length) as MusicGen’s melody condi-

tion M. This allows us to utilize the pretrained melody

projection weights from MusicGen as initial weights. Fur-

thermore, we have noted that chord transitions can lead to

asynchronization issues. To address this, we introduce a

second frame-wise chord condition, Csum ∈ R
Tfs×12×1,

which matches the resolution of the audio codec tokens,

thus providing a solution for the synchronization problem.

Rhythm. To control rhythm, we derive conditions from

both the beat and the downbeat. The beat represents the

consistent pulse within a piece of music, and the down-

beat signifies the first and most emphasized beat of each

measure, forming the piece’s rhythmic backbone. We en-

code beat and downbeat information into one-hot embed-

ding each at a frame rate of fs. For the beat embedding,

a soft kernel is applied to allow for a tolerance of 70ms.

Subsequently, the beat and downbeat arrays are summed

to yield the frame-wise rhythm condition R ∈ R
Tfs×1.

3.2 Finetuning Mechanisms

The finetuning mechanism we employ consists of two

parts: 1) jump finetuning, and 2) an adaptive in-attention

mechanism. As illustrated in Figure 1, our proposed model

activates condition gates at the “block” level, treating four

consecutive self-attention layers as a block.

Jump finetuning is designed to specifically target the

first self-attention layer within each block for finetuning,

while freezing the remaining three self-attention layers of

the same block, as shown in Figure 1 (b). Doing so reduces

the number of parameters of finetuning while maintaining

the flexibility to learn to respond to the new conditions by

refining the first self-attention layer per block.

The adaptive in-attention mechanism is designed to im-

prove control over chords and rhythm. It is an adapta-

tion of the in-attention technique of MuseMorphose [18],

whose main idea is to augment every intermediate out-

put of the self-attention layers with copies of the condi-

tion. Unlike the original implementation that augment all

the self-attention layers, we selectively apply it to the first

three-quarters of self-attention blocks (e.g., for a model

with 12 blocks, in-attention is applied to first 9 blocks) to

relax the control in the last few blocks for better balancing

on rhythm and chords. This leads to better result empiri-

cally, as will be shown in Section 5.2 and Table 3.

4. EXPERIMENTAL SETUP

4.1 Datasets

We finetuned the model using a dataset of ∼250 hours

backing track music sourced from YouTube, comprising

5K songs across five genres: Rock, Funk, Jazz, Blues, and

Metal, with 1K songs per genre. After preprocessing (see

Section 4.2), the training data contained 80,871 clips.
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For evaluation, we used the rhythm and chords from

two public-domain datasets—MUSDB18 [20] and RWC-

pop-100 [21]. For MUSDB18, the rhythm and chords are

extracted from the audio signals, so this dataset reflects

the case where the condition signals are from a reference

audio. There are 150 songs with four isolated stems: vocal,

bass, drum, and others. For each song, we dropped the

vocals and divided the mix of the remaining tracks into 30-

second clips, resulting in a total of 1,089 clips.

The RWC comprises 100 Japanese pop songs with hu-

man annotated chord progressions and BPM labels. We

simply use the human labels as the conditions here, reflect-

ing the case where the condition signals are user provided

in a text-like format. We similarly divided each song into

30-second clips, leading to 755 clips in total.

4.2 Dataset Pre-processing Details

The training and evaluation datasets consist of full-song

data, with durations ranging from 2 to 5 minutes per song.

Below are the preprocessing details for each type of input:

Audios: All audio data have vocals removed. For the

training and RWC dataset, we employed the source sepa-

ration model Demucs [24, 25] to eliminate the vocal stem.

In the MUSDB18 dataset, which already features isolated

stems, we combined the bass, drum, and others stems to

form the dataset. Each song was segmented into 30-second

clips, ensuring each clip starts at a downbeat.

Descriptions: For the training set, the text prompts

were simply extracted from the titles of the correspond-

ing YouTube videos. For the two evaluation datasets, we

tasked ChatGPT [26] to generate 16 distinct text prompts,

covering the five genres included by the training set. Here

is an example—“A smooth acid Jazz track with a laid-back

groove, silky electric piano, and a cool bass, providing a

modern take on Jazz. Instruments: electric piano, bass,

drums.” At inference time, we randomly selected one of

the 16 text prompts in a uniform distribution.

Chords: The RWC dataset comes with ground truth la-

beled chords. For both the training set and MUSDB18, we

used the BTC model [27] as the chord extraction model

to predict symbolic chords with time tags for each clip.

The detailed chord quality extends to the seventh note. We

then translated the extracted chord symbols with time tags

into a 12-pitch chromagram in the order of C, C#, ..., B.

The chromagram’s frame rate for the frame-wise condition

Csum is fs, and for the prepend condition Cpre it is fM.

Rhythm: Except for RWC, beat and downbeat were ex-

tracted using the RNN+HMM model [28] from the Mad-

mom library [29]. The timing format for beats and down-

beats was transformed into a one-hot representation match-

ing the audio token frame rate fs. A soft kernel was applied

to the one-hot beat array to create a softened beat array.

The rhythm representation R was the frame-wise summa-

tion of the softened beat array and downbeat array.

4.3 Training Configuration

The proposed rhythm and chord-conditioned Transformer

was built upon the architecture of the medium-sized (1.5B)

MusicGen-melody, featuring L = 48 self-attention layers

with dimension D = 1, 536 and 24 multi-head attention

units. The condition dropout rate is 0.5 and guidance scale

is set to be γ = 3 for classifier-free guidance. We finetuned

only a quarter of the full model, which corresponds to 352

million parameters, while keeping both the audio token

embedding lookup table and the FLAN-T5 text encoder

frozen. The training involved 100K finetuning steps, car-

ried out over approximately 2 days on 4 RTX-3090 GPUs,

with a batch size of 2 per GPU for each experiment.

4.4 Objective Evaluation Metrics

We employed metrics to evaluate controllability of chords

and rhythm, textual adherence and audio fidelity. For the

first two metrics, we used the rhythm and chord conditions

from a clip in a evaluation dataset to generate music (along

with a text prompt generated by ChatGPT; see Section 4.2),

applied the Madmom and BTC models on the generated

audio to estimate beats and chords, and evaluated how they

reflect the given conditions. See Figure 2 for examples.

Chord. We used the mir_eval [30] package to measure

3 different degrees of frame-wise chord correctness: ma-

jmin, triads and tetrads. The majmin function compares

chords in major-minor rule ignoring chord qualities out-

side major/minor/no-chord. The triads function compares

chords along triad (root & qulaity to #5), while the tetrads

compares chords along tetrad (root & full quality).

Rhythm F1 measurement follows the standard method-

ology for beat evaluation. We measured the beat accu-

racy also via mir_eval, assessing the alignment between

the beat timestamps of the generated music and the refer-

ence rhythm music data, with a tolerance window of 70ms.

CLAP [31,32] score examines the textual adherence by

the cosine similarity between the embedding of the text

prompt and that of the generated audio in a text-audio joint

embedding space learned by contrastive learning. Here,

we used the LAION CLAP model trained for music [33],

music_audioset_epoch_15_esc_90.14.pt.

FAD is the Fréchet distance between the embeddings

distribution from a set of reference audios and that from

the generated audios [34, 35]. The metric represent how

realistic the generated audios are compared to the given

reference audios. The audio encoder of FAD we used is

VGGish [36] model which trained on an audio classifica-

tion task. The reference set of audios was from MUSDB18

or RWC depending on the evaluation set.

4.5 Subjective Evaluation Metrics

We also did a listening test to evaluate the followings as-

pects: text relevance, rhythm consistency, and chord rele-

vance. Text relevance concerns how the generated audio

clips reflect the given text prompts. Rhythm consistency

is about how steady the beats is within an audio clip. (We

found that, unlike the case of objective evaluations, minor

out-of-sync beats at the beginning of a clip were deemed

acceptable here perceptually.) Chord relevance concerns

how a generated clip follows the given chord progressions.
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Model
Evaluation Rhythm Chord

FAD CLAP
dataset F-measure(%) majmin(%) triads(%) tetrads(%)

proposed MUSDB18 69.76 67.03 66.19 56.91 1.29 0.34

(Cpre+Csum+R) RWC 79.40 73.03 68.42 54.12 0.96 0.34

chords only MUSDB18 39.47 73.25 72.29 60.89 1.91 0.34

(Cpre+Csum) RWC 49.85 73.30 68.50 50.66 2.18 0.34

rhythm only MUSDB18 61.37 5.84 5.76 3.84 1.95 0.32

(R) RWC 58.39 5.40 5.08 2.90 2.67 0.32

no frame-wise chords MUSDB18 61.68 57.39 56.65 47.17 1.44 0.35

(Cpre+R) RWC 69.30 60.95 57.19 44.21 1.29 0.35

baseline MUSDB18 26.14 53.13 52.31 44.83 2.01 0.34

(no finetuning; M for Cpre) RWC 30.67 51.90 48.54 35.81 2.30 0.35

Table 2. Objective evaluation results for models with different conditions on two different test sets MUSDB18 and RWC.

With the proposed condition representation, we can achieve better performance both in rhythm and chord controls.

Model
Evaluation Rhythm Chord

FAD CLAP
dataset F-measure(%) majmin(%) triads(%) tetrads(%)

proposed MUSDB18 69.76 67.03 66.19 56.91 1.29 0.34

(jump+adaptive in-attn) RWC 79.40 73.03 68.42 54.12 0.96 0.34

ablation 1 MUSDB18 42.28 71.06 70.21 61.58 1.39 0.36

(jump finetuning only) RWC 53.14 76.04 71.33 57.52 1.27 0.36

ablation 2 MUSDB18 67.23 66.47 65.60 56.37 1.59 0.35

(jump+full in-attn) RWC 71.13 64.82 60.77 48.07 1.47 0.35

finetuned baseline MUSDB18 40.15 55.65 54.88 45.52 1.94 0.36

(jump only; no Csum no R) RWC 49.25 56.49 52.66 38.07 2.24 0.36

Table 3. Objective evaluation results for models trained with different finetuning mechanisms. We see that the proposed

jump finetuning with adaptive (partial) in-attention achieves better result on rhythm and chord controls.

5. EXPERIMENTAL RESULTS

5.1 Objective Evaluation: Temporal Conditions

We assessed the audio generated under various condition

combinations applied to the training model, including the

proposed method and its ablations with either chord- or

rhythm-only as the temporal condition, or using both but

without the frame-wise chord condition. The finetuning

configurations and mechanisms for these models were the

same. Moreover, we considered the baseline as follows.

The pretrained MusicGen-melody model originally pro-

cesses text and melody conditions T ,M. We simply used

the prepend chord condition Cpre as input to the linear pro-

jection layers originally pretrained to take the melody con-

dition, without finetuning the entire model at all. In ad-

dition, we appended to the end of the text prompt BPM

information (e.g., “at BPM 90”) as the rhythm condition.

Result shown in Table 2 leads to many findings. Firstly,

a comparison between the result of the proposed model

(first row) and the baseline (last row) demonstrates nicely

the effectiveness of the proposed design. The proposed

model leads to much higher scores in almost all the met-

rics. Moreover, it performs similarly well for the two eval-

uation datasets, suggesting that MusiConGen can deal with

both conditions extracted from a reference audio signals or

provided by creators in a symbolic text-like format.

Secondly, although the baseline model does not perform

well, it still exhibits some level of chord control, showing

the knowledge of melody can be transferred to chords.

Finally, from the ablations (middle three rows), chord-

only and rhythm-only did not work well for rhythm and

chord control respectively, which is expected. Compared

to the proposed model, excluding per-frame chord condi-

tion degrades both chord and rhythm controllability, show-

ing that chord and rhythm are interrelated.

5.2 Objective Evaluation: Finetuning Mechanisms

Besides the proposed finetuning method, we evaluated

the following alternatives. Finetuned baseline is a base-

line model that was finetuned using the prepended chords

(Cpre) instead of melody M the frame-level conditions,

employing the jump finetuning mechanism but no in-

attention. Jump finetuning without in-attention (abal-

ation 1) and jump finetuning with full in-attention (abal-
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Figure 2. Comparison on chord progression and beats of ground truth and generated samples, using the conditions from

RWC. For each example (a) or (b), the top row is ground truth chords and the bottom row is extracted chords from generated

samples. The thick and light gray lines indicate the times of the downbeat and the beat, respectively.

Figure 3. Subjective evaluation of condition controls—

5-scale mean opinion score with 95% confidence interval.

ation 2) are ablations which use full conditions (prepended

chord Cpre, frame-wise chord Csum, and rhythm R), but

we either dropped in-attention entirely, or employed in-

attention to every self-attention block, instead of only the

first three-quarter blocks as done by the proposed method.

The result is tabulated in Table 3. Among the four meth-

ods, the proposed method leads to the best rhythm con-

trol and very competitive chord control. Comparing the

results of the proposed method and the two ablations re-

veals a trade-off in rhythm and chord control when we go

from no in-attention, adaptive (partial) in-attention, to full

in-attention. The proposed method strikes an effective bal-

ance between rhythm and chord controls.

Comparing the last row of Table 2 and that of Table 3

shows that the finetuned baseline outperforms the baseline

(with no finetuning at all) mainly in the rhythm control.

This is notable as the finetuned baseline is actually trained

with only the prepend chord condition Cpre, not using the

rhythm condition R, suggesting again the interrelation of

chord and rhythm. Moreover, although the finetuned base-

line is better than the baseline, it is still much inferior to

the proposed method in both chord and rhythm controls.

5.3 Subjective Evaluation

We evaluated three models in the listening test: the base-

line, the finetuned baseline, and the proposed model.

Each model generates a music clip using the ChatGPT-

generated text prompts, along with the BPM and chords

from the RWC dataset, namely considering text-like sym-

bolic rhythm and chord conditions. Besides the audios

generated by the three models, we also included real audios

from the RWC dataset as the real audio. We note that the

real audios would have perfect rhythm and chord controlla-

bility (for they are where the conditions are from), but the

textual adherence would be bad because RWC songs are

J-Pop rather than any of the five genres (i.e., Rock, Funk,

Jazz, Blues, and Metal) described by the text prompts.

We had 23 participants in the user study, 85% of whom

have over three years of musical training. Each time, we

displayed the given text, rhythm and chord conditions, and

asked a participant to rate the generated audio and the real

audio (anonymized and in random order) on a five-point

Likert scale. The result is shown in Figure 3.

Several findings emerged. Firstly, the proposed model

demonstrated superior chord control compared to the other

two models, although it still fell short of matching the real

audio. Secondly, the proposed model has no significant ad-

vantage on rhythm consistency against the finetuned base-

line. As suggested by the examples on our demo page, we

found that being on the precise beat onset does not signif-

icantly impact rhythm perception. Thirdly, our model had

lower text relevance than the finetuned baseline, suggesting

that our model may have traded text control for increased

temporal control of rhythm and chords.

6. CONCLUSION AND FUTURE WORK

This paper has presented conditioning mechanisms and

finetuning techniques to adapt MusicGen for better rhythm

and chord control. Our evaluation on backing track gener-

ation shows that the model can take condition signals from

either a reference audio or a symbolic input. For future

work, our user study shows room to further improve the

rhythm and chord controllability while keeping the text rel-

evance. This might be done by scaling up the model size,

better language model, or audio codecs. It is also interest-

ing to incorporate additional conditions, such as symbolic

melody, instrumentation, vocal audio, and video clips.
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ABSTRACT

The automated creation of accurate musical notation from

an expressive human performance is a fundamental task in

computational musicology. To this end, we present an end-

to-end deep learning approach that constructs detailed mu-

sical scores directly from real-world piano performance-

MIDI files. We introduce a modern transformer-based

architecture with a novel tokenized representation for

symbolic music data. Framing the task as sequence-to-

sequence translation rather than note-wise classification re-

duces alignment requirements and annotation costs, while

allowing the prediction of more concise and accurate nota-

tion. To serialize symbolic music data, we design a custom

tokenization stage based on compound tokens that care-

fully quantizes continuous values. This technique pre-

serves more score information while reducing sequence

lengths by 3.5× compared to prior approaches. Using the

transformer backbone, our method demonstrates better un-

derstanding of note values, rhythmic structure, and details

such as staff assignment. When evaluated end-to-end using

transcription metrics such as MUSTER, we achieve signifi-

cant improvements over previous deep learning approaches

and complex HMM-based state-of-the-art pipelines. Our

method is also the first to directly predict notational details

like trill marks or stem direction from performance data.

Code and models are available on GitHub.

1. INTRODUCTION

Creating structured musical scores from human perfor-

mance recordings is a challenging task with a significant

number of downstream applications in areas such as align-

ment [1], score-following, education, and archiving.

Human performances are typically represented as

performance-MIDI (P-MIDI) files, as they can be easily

recorded from MIDI instruments or generated from au-

dio by automated transcription systems [2, 3]. In contrast,

high-quality scores in standard sheet music formats such

as MusicXML [4] are much less commonly available and

generally require creation by human experts.

Performance-MIDI-to-Score conversion (PM2S) is

complex, encompassing several lower-level tasks like note

© T. Beyer and A. Dai. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution: T.

Beyer and A. Dai, “End-to-End Piano Performance-MIDI to Score Con-

version with Transformers”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

value prediction, tempo regression, rhythm quantization,

voice assignment, and typesetting details, including orna-

ments and note stems. As a result, PM2S and its sub-tasks

have remained an active research topic and popular appli-

cation of computational methods for over 30 years [5].

While early approaches relied on classical modeling

and hand-crafted processing [6], research gradually shifted

towards statistical methods based on Hidden Markov Mod-

els (HMMs) augmented with heuristics.

Cogliati et al. [7] run an HMM-based meter estima-

tion [8] with beat-snapping heuristics to quantize note tim-

ings, before outputting LilyPond [9] notation. HMM vari-

ants were also used for estimating staff placement [10] and

rhythm quantization [11,12], where the outputs of multiple

models are merged into a final prediction with improved

accuracy. To complement onset timing quantization, a

method for note value recognition based on Markov ran-

dom fields was introduced by Nakamura et al. [13]. Build-

ing upon these advances, Shibata et al. [14] combined prior

systems with hand-crafted non-local statistics to improve

estimates of global attributes such as piece tempo and time

signatures. While these approaches yield state-of-the-art

performance, they are composed of a complex web of in-

terdependent components, rely on human-designed priors,

and are not trained end-to-end. Thus, more recent work

has attempted to tackle PM2S using deep learning.

So far, the scarcity of high-quality labeled data has lim-

ited its use to scenarios with cheaper labels, leading to a fo-

cus on synthetic data [15,16], sub-tasks like pitch-spelling

[17], note value quantization and voicing [18], or beat

tracking [19,20]. Beat tracking, in particular, has seen sig-

nificant progress by combining CRNNs with beat in-filling

via dynamic programming [19]. The CRNN also predicts

other score attributes such as key and time signatures. Un-

fortunately, beat-tracking makes overly restrictive assump-

tions about the regularity of the underlying performance

data and struggles with real-world human recordings.

Another challenge is the representation of symbolic mu-

sic data for machine learning models. Monophonic se-

quences are often captured as Lilypond [9, 15], ABC [21],

Humdrum-derived [16, 22], or custom CTC-friendly [16]

character sequences. For polyphonic data, piano rolls

[2, 23], MIDI-derived tokens [24–26], and custom Mu-

sicXML tokens [27] are the most common representations.

To create more compact encodings, Zeng et al. [28] and

Dong et al. [29] use compound tokens and represent MIDI

attributes in separate streams, shortening sequence lengths.
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Our proposed approach continues the progression of

PM2S systems towards end-to-end learned approaches and

overcomes several limitations of prior systems based on

deep learning, making the following key contributions:

• We cast PM2S as an end-to-end sequence-to-sequence

translation task, developing a transformer to enable ac-

curate prediction of global attributes (e.g., meter) that

require understanding of long-term dependencies.

• Relaxed annotation requirements compared to prior

deep learning methods, using only beat-level alignment

for training. We can additionally leverage unmatched

MusicXML data without corresponding P-MIDI.

• We introduce a compact and extensible tokenization

scheme for P-MIDI and MusicXML data, allowing the

backbone model to directly translate tokenized P-MIDI

into MusicXML tokens and enabling the generation of

detailed score features such as ornaments.

• We demonstrate superior performance on quantitative

error metrics like MUSTER, with our approach sur-

passing prior deep learning models and the highly op-

timized, complex state-of-the-art.

2. METHODOLOGY

2.1 Task definition

Our end-to-end PM2S system directly converts an unstruc-

tured P-MIDI file into a highly readable MusicXML score.

P-MIDI files only contain information about note timing

(onsets, offsets), pitch, and velocity. The input to a PM2S

system is thus defined by the following sequence:

X = {(pi, oi, di, vi)}
Nperf

i=1
, (1)

with MIDI pitch pi, onset oi and duration di in seconds,

and velocity vi for each of the Nperf performance notes.

In contrast to existing methods, which often cast PM2S

as a note-wise classification task [18,19], we do not assume

a one-to-one correspondence between notes in the perfor-

mance and the score. This is crucial in scenarios with trills

or misplayed notes, where one-to-one matchings are im-

possible. Consequently, we predict a new output note se-

quence from scratch that includes a full set of MusicXML

attributes for each note in the score:

Yq = {(pj ,moj ,mdj ,mlj)}
Nscore

j=1
(2)

Yv = {(hj , voj)}
Nscore

j=1
(3)

Yo = {(tj , sj , sdj , gj , aj)}
Nscore

j=1
(4)

Y = (Yq,Yv,Yo), (5)

where Yq comprises attributes related to pitch pj and

quantized timings for the musical onset time moj , musical

duration mdj , and measure length mlj . Yv collects verti-

cal positioning information, such as staff placement/hand

hj , and MusicXML voice number voj . Finally, Yo covers

performance annotations, ornamentation, and typesetting

details like trill tj , staccato sj , stem direction sdj , grace

note gj , and accidentals aj . Predicting these additional at-

tributes enables creating more concise and accurate nota-

tion. X and Y are sorted by ascending onset/offset, pitch,

and duration, yielding a unique serialized representation

even for complex polyphony.

2.2 Tokenization scheme

To efficiently represent input X and output Y, we intro-

duce a systematic tokenization for P-MIDI files and Mu-

sicXML scores. The key objective of a tokenization algo-

rithm is to retain as much information from the original se-

quence as possible within a compact sequence length and

vocabulary size. Thus, we adopt a parallel token stream

paradigm [28]; a separate token stream is constructed for

each of the four input attributes given in Eq. (1) and the

eleven output attributes in Eq. (5). As a result, each note

occupies only one timeslot. The final vocabulary sizes and

parameter ranges are shown in Table 1.

For P-MIDI, we adopt a strategy similar to [19] and use

128 pitch tokens, 8 quantized velocity tokens, and quantize

delta onsets and durations into 200 buckets. To achieve

high resolution for small values while covering times up to

8 seconds without clipping, we apply a log-transform be-

fore bucketing onsets and durations, implementing a con-

tinuous version of multi-resolution quantization [28].

We pay particular attention to the MusicXML tokeniza-

tion. While binary and categorical attributes, such as stem

direction and staff assignment, are easily tokenized, con-

tinuous values like onsets and durations demand more care.

The encoding of musical timing and positioning signifi-

cantly impacts score quality. To find a good trade-off be-

tween vocabulary size and the ability to correctly repre-

sent common note durations and onsets, we conducted a

search over bucket sizes. Consequently, we opt to quantize

musical time into 1

24
th fractions, diverging from previous

approaches, which rely on powers of 2 or smaller denomi-

nators [18, 28, 30]. Our parameterization accurately repre-

sents 98.6% of notes in the ASAP dataset with 97 tokens,

compared to just 85.4% using powers of 2 up to 256.

Encoding absolute musical onsets into tokens poses an-

other challenge. Direct quantization of absolute positions

is infeasible due to the large range of positions required,

while delta encoding similar to MIDI quickly leads to drift

issues and misalignment with measure boundaries and the

Parameter Nvocab Range/Values

Input Parameters
Pitch (pi) 128 [0, 127]
Onset (oi) 200 [0, 8]
Duration (di) 200 [0, 8]
Velocity (vi) 8 [0, 127]

Output Parameters
Pitch (pj) 128 [0, 127]
Musical Onset (moj) 145 [0, 6]
Musical Duration (mdj) 97 [0, 4]
Measure Length (mlj) 146 [0, 6] ∪ {false}
Hand/Staff (hj), Trill (tj),

Grace (gj), Staccato (sj)
2 each boolean

Voice (voj) 8 [1, 8]
Stem (sdj) 3 {up, down, none}

Accidental (aj) 6 {[, Z, ^, \, ], none}

Table 1. Parameter specifications for input/output repre-

sentations. The rightmost column details the range or set

of representable values for each attribute. Continuous val-

ues outside the range are clipped before tokenization.
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DB Trill ...DB Trill ...DB Trill ...

Encoder Decoder

... ...

Last Hidden State

MIDI Token Sequence Notation Token Sequence (shifted) Next Token Probabilities

Embedding and
Projection Layers

Transformer
Backbone

Figure 1. Model architecture overview. We use a standard Roformer encoder-decoder model [31] with custom token

embedding and projection layers. Each token stream is embedded separately, then a constant-size shared embedding is

created via summation. The backbone model architecture remains unchanged compared to models applied to NLP or other

sequence-to-sequence learning tasks. In this illustration, depth symbolizes the time direction.

musical grid. Thus, we adopt a hybrid approach represent-

ing absolute positions using two tokens; moj encodes the

note’s position relative to the start of the current measure,

and mlj stores the preceding measure’s length for the first

note in each measure or is set to false otherwise. Com-

bined, moj and mlj enable the reconstruction of absolute

musical times, including correct bar lines and most time

signatures. During score creation, bar lines are used to

split and tie notes crossing measure boundaries, recover-

ing most ties, and rests are added to fill any gaps in voices.

Since input and output streams are not necessarily the

same length, we also insert space tokens (spj) where re-

quired for alignment (see also Section 3.1.2). The space to-

kens differ from typical end-of-sequence padding or mask-

ing tokens in Transformers, as they are predicted during

inference and attention to these positions is not masked.

2.3 Model architecture

By adopting a unified autoregressive Transformer encoder-

decoder model [32] to directly translate tokenized P-MIDI

into MusicXML tokens (as depicted in Figure 1), we di-

verge from existing deep learning models for PM2S, which

used subtask-specific LSTMs [33] or CRNNs. Our choice

is driven by the transformer’s ability to scale to large

datasets and to handle long-range dependencies, which are

crucial for predicting piece-wide attributes like meter.

To interface with parallel token streams, our model

introduces custom embedding and projection modules.

First, each attribute-specific token stream is mapped into a

constant-size 512-dimensional embedding space. The re-

sults are then summed and normalized using LayerNorm

[34] to form a constant-size shared embedding, indepen-

dent of the token stream count.

The backbone model itself follows the original archi-

tecture described by Vaswani et al. [32] and consists of

symmetrically arranged encoder and decoder stacks. Each

stack comprises four layers, eight attention heads, and a

model dimension of 512. To optimize performance, we

adopt rotary positional encodings [31], pre-norm [35], and

SwiGLU activations [36] with an inner dimension of 3072

for the position-wise feed-forward network. At the end of

the decoder, a set of linear layers projects the final hidden

state into one output logit distribution per token stream.

2.4 Training & inference details

To optimize our model parameters, we break down the loss

computation into two stages and first compute per-timestep

losses Lj , before summing along the sequence position. At

each timestep j, our model performs 12 separate classifi-

cation tasks, one for every token stream in Y and one for

the space token spj .

We compute the cross entropy (CE) loss for each output

token stream y and the space token stream. For timesteps

with spacing token spj , the loss is calculated only for the

space token stream since the labels for all other tokens are

undefined. The full loss computation is thus:

Ly,j = CE (ŷj , yj) (6)

Lj =

{

CE
(

ŝpj , 1
)

for spj = 1,
∑

y∈Y Ly,j + CE
(

ŝpj , 0
)

otherwise.
(7)

L =

Nscore
∑

j=1

Lj . (8)

We train our model for 40,000 steps using the AdamW

optimizer [37]. The learning rate follows a cosine learning

rate decay schedule with linear warmup over the first 4,000

steps to a maximum learning rate of 3e-4. Gradients are

clipped to a maximum value of 0.5. We use a batch size of

32 and the training sequence length is 512 timesteps.

To parallelize training, transformers are often trained

with teacher forcing. However, exposure bias [38] can lead

to lower-than-expected performance at inference time, es-

pecially in the low-data regime. We find that heavy dropout

[39] during training to expose the model to only 25% of the

preceding output tokens addresses this problem.

During inference, we employ greedy top-1 decoding as

it provides better performance than alternatives. To handle

songs with more than 512 notes, we partition the input into

chunks of 512 notes each, ensuring a 64-note overlap be-

tween consecutive segments. Sufficient overlap eliminates

abrupt changes at the segment boundaries and is essential

for generating temporally coherent scores.

3. EXPERIMENTS

3.1 Data

3.1.1 Datasets

Unlike prior PM2S systems [14, 18, 19], we do not use

the MAPS [40] dataset in our experiments, as performance

data contained therein is not representative of real-world P-

MIDI 1 . Furthermore, its musical scores are only available

1 The underlying data is score-derived and has been manually adjusted
to represent aspects of performance and score at the same time. This leads
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in the MIDI format, which lacks representational capac-

ity compared to MusicXML. Thus, MAPS scores do not

effectively capture many aspects of musical notation.

To overcome these limitations, we use the ASAP dataset

[41] for training and evaluation. It contains 1067 pieces of

P-MIDI recorded from expert piano performances and cor-

responding high-fidelity MusicXML scores. Performance

and scores are aligned with beat-level annotations, which

are significantly cheaper to obtain than note-level align-

ments. We also observed that, on average, MusicXML

scores contain 2.6% fewer notes than associated P-MIDI.

These discrepancies are typically caused by misplayed

notes and trills, again highlighting the importance of a flex-

ible approach that is not reliant on one-to-one correspon-

dences and can handle a wide variety of notation features.

After manually inspecting the dataset, we reject 100

instances due to poor alignment or data corruption, leav-

ing 967 performances. We perform only minimal prepro-

cessing, focusing on removing non-sounding notes from

the score. This includes merging tied notes into a sin-

gle, longer note and removing notes with the MusicXML

print-object=no attribute, as they would not be visi-

ble to a human performer.

To guarantee non-overlapping sets with robust evalua-

tion across all composers in the dataset, dataset splits are

created using the following procedure:

For each composer, we select one piece as a test piece

and use all performances of this piece for the test set, yield-

ing 59 instances. 90% of all remaining pieces are used

in the training set and 10% in the validation set. Table 2

shows the resulting full dataset split statistics.

To complement this labeled dataset, we also construct

an unpaired dataset consisting of 58,646 public domain

MusicXML files from Musescore, without corresponding

P-MIDI. These scores are filtered for overlap with the la-

beled dataset to avoid data leakage.

Dataset Train Validation Test Total

Performances 822 86 59 967

Distinct pieces 176 16 14 206

P-MIDI Notes (103) 2510 300 220 3030

Score Notes (103) 2462 295 215 2972

Table 2. Dataset statistics for ASAP [41] after excluding

instances with mismatched annotations.

3.1.2 Training batch construction

All training batches consist of 32 sequences of 512 notes

each, equally split between labeled and unpaired datasets.

To sample instances from these heterogeneous datasets, we

adopt two different procedures.

Labeled data. We first use the beat-level correspon-

dences to coarsely align input and output sequences by

sorting notes into inter-beat intervals according to their on-

set time. Although this correspondence is exact for the Mu-

to information leakage as highly regular onset/offset alignment remains
in the ‘performance’ data. Details of the laborious alignment process are
available at http://www.piano-midi.de/technic.htm.

sicXML score data, human performances introduce varia-

tions to the P-MIDI data, causing some notes to not align

perfectly with annotated beats. As a result, performance

notes that occur shortly before the annotated beat time may

musically belong into the next inter-beat interval and vice-

versa. To solve this issue, we follow a greedy optimiza-

tion strategy that minimizes mismatched pitches between

performance and score in each beat interval. If a per-

formed note occurred within 50ms of a beat, and moving

it to the previous/next inter-beat-interval reduces the num-

ber of mismatched pitches in both intervals, the move is

performed. Where necessary for alignment, we add spac-

ing tokens (spj) at the end of inter-beat intervals. Given

correct beat annotations, this procedure yields good align-

ment even in non-trivial situations like trills, where multi-

ple MIDI notes correspond to just one MusicXML note.

Unpaired data. In this case, only MusicXML data

is available. This could be used to simply pre-train the

decoder stack in an autoregressive fashion; however, we

found this procedure to be ineffective. We thus aim to in-

corporate the encoder into the training process and con-

struct a surrogate input token stream by reusing the output

pitch tokens pj as input for the encoder model pi and mark

the input sequence using conditioning tokens ci. All other

input tokens (oi, di, and vi) are masked. As demonstrated

in Section 3.4, this significantly enhances the effectiveness

of training on unpaired data. Without input timing and ve-

locity streams, the model has far less information to make

predictions. To make the learning objective more feasible,

we decrease the prior-token dropout probability to 50%

(compared to 75% for paired data), improving training effi-

ciency without compromising inference time behavior (see

also Section 2.4). Similar to conditioning masks in diffu-

sion models, we also feed a binary token (ci) to the en-

coder which indicates that no real P-MIDI conditioning in-

formation from the labeled dataset is provided, resolving

ambiguity about whether input tokens are masked/dropped

out or simply not available. The addition of this token im-

proves the effectiveness of training on unlabeled data (see

Table 6). When training on labeled data and during infer-

ence, its embedding is set to 0 and can thus be omitted.

3.1.3 Data augmentation

During training, four types of data augmentation are used

to combat overfitting:

• Transposition: Shift all pitches in the input and output

up or down by up to 12 semitones; notes falling outside

the MIDI pitch range are shifted inward by one octave.

Accidentals are modified accordingly, following [17].

• Global tempo: Change the timing data of the input

MIDI notes by a factor of λ ∼ U(0.8, 1.2).
• Duration jitter: To simulate human performance

variations, performed note durations are additionally

rescaled by a small amount of noise ∼ U(0.95, 1.05).
• Onset jitter: All between-note intervals of the input

MIDI are changed according to

õi+1 − õi = (oi+1 − oi) · N (1, 0.052).
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MUSTER [14] ScoreSimilarity [27, 42]

Method Ep Emiss Eextra Eonset Eoffset Eavg Emiss Eextra Edur. Estaff Estem Espell.

Neural Beat Tracking (improved) [19] 2.02 6.81 9.01 68.28 54.11 28.04 17.10 17.67 66.98 6.86 - 9.71

MuseScore [43] 2.41 7.35 9.64 47.90 49.44 23.35 16.17 16.74 55.23 21.87 29.87 9.69

Finale [44] 2.47 10.10 13.46 31.85 45.34 20.64 14.72 16.43 53.35 21.79 26.74 15.34

HMMs + Heuristics (J-Pop) [14]† 2.09 6.38 8.67 25.02 29.21 14.27 10.80 11.39 71.38 - - -

HMMs + Heuristics (classical) [14]† 2.11 6.47 8.75 22.58 29.84 13.95 10.74 11.28 64.73 - - -

Ours 3.11 7.56 6.44 15.55 23.84 11.30 12.69 9.06 51.86 6.62 25.03 8.69

Table 3. Comparative quantitative evaluation on the ASAP test set. All prior methods produce quantized MIDI and require

MuseScore 4 to perform typesetting and conversion to MusicXML. †: the reported metrics are slightly optimistic as some

pieces of the test set appeared in the training data for subcomponents of this method only.

3.2 Metrics

To conduct fine-grained comparisons, we use both

MUSTER [12, 18] and ScoreSimilarity [27, 42] as evalu-

ation metrics for PM2S performance 2 .

MUSTER especially focuses on high-level accuracy

and rhythmic structure, with sub-metrics for note-level

edit-distance (Ep, Emiss, Eextra), rhythm correction (Eonset),

defined by the amount of scale and shift operations re-

quired to correctly align every note’s onset with the ground

truth sequence, and Eoffset, which measures the accuracy of

the predicted note’s musical durations. While edit-distance

metrics primarily reflect the melodic correctness of a score,

Eonset and Eoffset serve as good indicators of rhythmic under-

standing and visual clarity of the resulting notation.

ScoreSimilarity also tracks edit-distances (Emiss, Eextra)

but additionally allows the evaluation of notational details

such as stem direction (Estem), pitch spelling (Espell.), or

hand/staff assignment (Estaff). We extend ScoreSimilarity

to ornaments by adding F1-scores for grace, staccato, and

trill. To harmonize the scores reported by both metrics, we

opt to report normalized error scores and F1-scores instead

of absolute error counts as originally proposed in [42].

ScoreSimilarity [27, 42]

Estaff Estem Espell. F1grace F1staccato F1trill

SOTA

[19, 43, 44]
6.86 26.74 9.69 - - -

Ours 6.62 25.03 8.69 27.80 18.19 54.64

Table 4. Predicting score ornaments and visual details.

ScoreSimilarity [27, 42]

Method L Emiss Eextra Eduration Estaff Estem

Suzuki [27] 12954 12.53 4.21 0.53 0.03 5.40

Octuple [28] 3697 3.56 4.74 17.51 16.34 30.94

Ours 3697 2.64 0.40 3.72 0.01 1.54

MIDI score 3 - 3.04 4.64 13.63 3.41 -

MusicXML - 0.00 0.00 0.00 0.00 0.00

Table 5. Comparison of score representation schemes by

sequence lengths and representation error rates.

2 MV2H [45] was also considered, but its alignment procedure was
prohibitively slow on real-world scores with thousands of notes. Align-
ment is necessitated by the lack of one-to-one correspondence labels.

3 The MIDI files were created from MusicXML with MuseScore 4.0.

3.3 Comparative experiments

PM2S. In Table 3, we compare our model to the best

publicly available PM2S systems. Our baselines include

the popular commercial programs MuseScore [43] and Fi-

nale [44], the strongest HMM-based approach [14], and

the highest-performance deep learning model [19], which

relies on neural beat tracking. Where necessary for evalua-

tion, MuseScore 4 is employed to convert quantized score

MIDI predictions to MusicXML. We also compare with an

improved version of the reference implementation of [19],

which removes the time-signature 4 and note-value predic-

tion modules. However, as noted in Section 3.1.1, beat-

tracking still struggles on real-world P-MIDI, lagging be-

hind [14] and other options in rhythm quantization.

In contrast, our method predicts notation with signif-

icantly more accurate rhythm (Eonset/offset), note values

(Eoffset/duration), and fewer extraneous notes (Eextra). In prac-

tice, this is reflected in better alignment of notes with

barlines and more concise notation than alternative ap-

proaches. While all baselines pass the input pitch se-

quence directly to the output, our setup requires the model

to rebuild the full sequence from scratch, leading to more

missed notes (Ep/miss). Decoupling the output pitch se-

quence from the input is key to our method, enabling

training without one-to-one correspondences and predict-

ing many-to-one relationships like trills. In fact, many

‘misses’ occur because our approach notated a trill where

the ground truth score contains multiple alternating notes,

with minimal impact on the resulting score’s quality from

a human perspective.

For sample scores and visual comparisons with baseline

approaches, we refer to the supplementary material.

Notation details. To our knowledge, our method is the

first PM2S system to predict note-level attributes beyond

timing, pitch, and staff assignment. The model also esti-

mates staccato, grace notes, and trill marks, which are cru-

cial for human performers. Given the data imbalance – for

instance, trills account for only 0.15% of notes – achieving

high F1 scores is extremely challenging. Table 4 shows

that our approach predicts more accurate stem directions,

pitch-spelling, and staff assignments, while exhibiting rel-

atively good performance on grace and trill notes.

Tokenization scheme. We evaluate our MusicXML to-

4 We found that assuming a fixed 4

4
time signature improves results.
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MUSTER [14] ScoreSimilarity [27, 42]

Modification Ep Emiss Eextra Eonset Eoffset Eavg Emiss Eextra Eduration Estaff Estem

1 no data augmentation 10.96 38.05 38.23 37.89 51.34 35.30 49.99 47.98 32.43 7.30 13.10

2 BiLSTM backbone 4.01 22.28 16.02 38.30 60.30 28.12 26.75 16.29 55.46 7.55 21.08

3 BiGRU backbone 3.85 19.49 13.56 30.98 49.59 23.55 23.84 14.39 43.69 7.50 22.33

4 no beat-alignment 3.57 25.53 10.91 19.25 29.60 17.77 33.40 10.91 41.06 6.03 20.20

5 no transpose 4.86 12.04 9.89 19.36 29.66 15.16 17.99 12.76 50.54 7.92 24.93

6 no 24-div quantization 3.02 10.96 8.99 19.71 31.73 14.88 15.43 10.50 74.92 7.54 26.84

7 ALiBi pos. enc. 3.12 11.22 8.07 17.85 27.66 13.58 16.24 10.11 55.67 7.35 27.92

8 no surrogate pitch 4.11 9.83 8.20 16.89 26.66 13.14 15.21 10.79 49.41 6.81 25.84

9 no onset jitter 3.20 8.66 7.23 17.04 27.75 12.78 13.42 9.38 51.33 8.59 25.93

10 no tempo augmentation 3.18 8.74 7.21 17.25 27.45 12.76 13.60 9.50 54.20 7.78 26.95

11 no conditioning token 3.09 9.10 7.10 16.82 27.01 12.62 13.98 9.18 52.98 8.33 26.57

12 no duration jitter 3.39 8.53 7.32 16.54 26.92 12.54 13.56 9.59 50.68 8.19 27.69

13 sinusoidal pos. enc. 3.50 8.29 6.83 16.71 27.35 12.49 13.41 9.36 51.68 7.35 25.81

14 Ours 3.11 7.56 6.44 15.55 23.84 11.30 12.69 9.06 51.86 6.62 25.03

Table 6. Ablation study for key design decisions. Grayed out values do not reflect the true model performance as a large

fraction of notes are misaligned during metric computations, leading to incorrect results. Rows are organized by Eavg.

kenization against prior methods and score-derived MIDI

files by converting ground-truth scores to a new format and

then comparing the reconstructions to the originals.

Table 5 shows that our approach yields 3.5× shorter se-

quence lengths than prior MusicXML tokenizations while

maintaining more detail than alternatives. Furthermore,

it highlights MIDI’s shortcomings as a notation format;

both ground-truth MIDI scores and MIDI-based tokeniza-

tions [28] exhibit lower fidelity than MusicXML-derived

tokenizations and particularly high error rates for details

like stem directions, which are not supported by MIDI.

3.4 Ablation study

Our ablation study in Table 6 shows the impact of key de-

sign choices.

Backbone architecture. The transformer architecture

is much stronger than classic recurrent networks like bidi-

rectional LSTMs [33] and GRUs [46] when trained on the

same data (rows 3 & 2). We also evaluate the effectiveness

of the conditioning token (row 11) and demonstrate the im-

pact of feeding surrogate pitch information to the encoder

for unpaired data (row 8).

Positional encoding. We compare rotary embeddings

with standard sinusoidal embeddings [32] (row 13) and

ALiBi [47] (row 7) and find that sinusoidal embeddings

perform slightly weaker than rotary encoding while ALiBi

yields significantly worse results.

Tokenization. We demonstrate the impact of our tok-

enization scheme’s quantization by changing the encoding

scheme to quantize durations by 32nd-divisions instead of

24th (row 6). This has a particularly strong impact on met-

rics for rhythm and note values (Eonset, Eoffset, Eduration).

Data augmentation & alignment. Data augmentation

is crucial to the effectiveness of our approach (row 1).

Rows 5, 9, 10, and 12 show that using all 4 augmentation

types combined yields the best results. We also demon-

strate that using our greedy beat-level note alignment al-

gorithm significantly improves performance compared to

unoptimized input and output sequence alignment (row 4).

3.5 Scaling

To assess model performance as datasets grow, we conduct

experiments with varying amounts of paired and unpaired

data (see Table 7). We observe a clear trend where in-

creasing the amount of paired and unpaired data improves

final performance across most metrics. The benefits of

adding 10,000 unpaired scores are similar to expanding

from 100 paired to 822 paired training pieces. While train-

ing on unpaired data is less sample-efficient, the labeling

cost-savings may make it worthwhile nonetheless. The re-

sults suggest that our method is able to leverage additional

data well and that training on larger (paired & unpaired)

datasets could lead to significant further improvements.

Number of pieces ScoreSimilarity [42]

Paired Unpaired Emiss Eextra Eduration Estaff Estem

100 - 22.04 17.78 54.22 8.77 28.43

822 - 14.44 10.11 50.77 7.78 27.56

100 10,000 15.40 12.03 55.98 7.53 26.93

822 10,000 13.44 9.49 49.18 8.22 27.85

822 58,686 12.69 9.06 51.86 6.62 25.03

Table 7. The effects of training dataset size.

4. CONCLUSION

We presented a flexible, robust, and conceptually sim-

ple approach to convert P-MIDI into musical notation and

showed that a standard sequence-to-sequence transformer

model can outperform existing methods that benefit from

extensive domain-specific optimizations. We also intro-

duced a compact tokenization method for symbolic music

data that is extensible to further notational elements in the

future. Furthermore, we demonstrate that leveraging large

unpaired training datasets can improve model performance

and enhance the fidelity of predicted scores. Future efforts

could add features like explicit key and time signature pre-

diction, tempo marks, and expand to other musical genres,

instruments, and notation systems.
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5. ETHICS STATEMENT

The proposed system is primarily trained on classical piano

music by European composers engraved in standard West-

ern musical notation. While preliminary experiments show

that the method generalizes out-of-genre to modern piano

pop music, our approach nonetheless excludes a large body

of musical work notated in different formats. Future work

should aim to address this imbalance and create systems

that can be useful to an even wider audience.
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ABSTRACT

Cloned voices of popular singers sound increasingly re-

alistic and have gained popularity over the past few years.

They however pose a threat to the industry due to personal-

ity rights concerns. As such, methods to identify the orig-

inal singer in synthetic voices are needed. In this paper,

we investigate how singer identification methods could be

used for such a task. We present three embedding mod-

els that are trained using a singer-level contrastive learning

scheme, where positive pairs consist of segments with vo-

cals from the same singers. These segments can be mix-

tures for the first model, vocals for the second, and both

for the third. We demonstrate that all three models are

highly capable of identifying real singers. However, their

performance deteriorates when classifying cloned versions

of singers in our evaluation set. This is especially true for

models that use mixtures as an input. These findings high-

light the need to understand the biases that exist within

singer identification systems, and how they can influence

the identification of voice deepfakes in music.

1. INTRODUCTION

In April 2023, the track “Heart on my Sleeve” by an anony-

mous TikTok user Ghostwriter977 put the music industry

in a frenzy [1,2]. The artist used artificial intelligence (AI)

based cloning technologies to turn their voice into Drake

and the Weeknd’s [3], two of the most popular singers in

the world. The song became very popular across music

streaming platforms, before being removed by demand of

the original artists’ right owners. This situation raised the

need for singer identification systems that can also identify

the original singer a synthetic voice was generated from.

In this paper, we train three embedding models for

singer identification using a singer-level contrastive learn-

ing scheme, where positive pairs consist of segments with

vocals of the same singers whilst negatives come from dif-

ferent singers. These samples can be mixtures for the first

model, vocals for the second, and both for the third. The

models are then evaluated on real singers using novel splits

of two open datasets, the Free Music Archive (FMA) [4,5]

© D. Desblancs, G. Meseguer-Brocal, R. Hennequin, and

M. Moussallam. Licensed under a Creative Commons Attribution 4.0

International License (CC BY 4.0). Attribution: D. Desblancs, G.

Meseguer-Brocal, R. Hennequin, and M. Moussallam, “From Real to

Cloned Singer Identification”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

and MTG-Jamendo (MTG) [6], and a closed dataset con-

sisting of 176,141 songs that span 7500 popular singers.

We use this dataset due to its scale and the fact that its

singers are often the target of music voice deepfakes, some

of which we use in this paper. We demonstrate that all

three models are highly capable of classifying real voices,

though genres that use effects on vocals, such as hip-hop,

pop, and electronic music, and singers with long discogra-

phies can be much harder to classify. We then test whether

the performance of our models generalizes to cloned voices

of singers present in our closed dataset, using songs from

YouTube. In this context, singers are often cloned onto

famous instrumentals, or instrumentals that differ greatly

from their usual environments. We find that the perfor-

mance of all three models deteriorates quite significantly.

This is especially true for models that use mixtures as in-

puts. We hope that these findings can be useful for future

singer identification works. We believe that these should

aim to design systems that can identify both a singer’s real

and synthetic voice, in the hopes of combating the growing

problem of voice deepfakes in music.

We summarize the contributions of this work as follows:

1) We evaluate singer identification systems on songs with

real singers and cloned voices of some of the same singers.

2) We offer a detailed inspection of their performance, and

demonstrate that these systems struggle to classify syn-

thetic voices, genres where audio effects are applied to nat-

ural voices, and singers with long discographies. For syn-

thetic voices, this decline is even greater when instrumen-

tal information is present during training, and highlights

the need to understand the biases that exist within singer

identification systems. 3) We open source singer identifi-

cation splits of two open datasets, the FMA and MTG, that

can serve as future performance benchmarks for the task

of singer identification in polyphonic mixtures. 1

2. RELATED WORK

Singer identification, has been a staple of the music infor-

mation retrieval (MIR) community for more than twenty

years [7, 8]. Early approaches aimed to attenuate the in-

strumental parts of a song through the use of vocal melody

or pitch extraction and voice re-synthesis and detection al-

gorithms [9–11]. Classic features, such as mel-frequency

cepstral coefficients (MFCCs), were then computed on

these signals and used as inputs for a classifier. The im-

provements in music source separation [12,13] then led re-

1 https://github.com/deezer/real-cloned-singer-id
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searchers to build models that classify singers using the vo-

cals of each song [14, 15]. More recently, self-supervised

methods that process the vocal stem of each track have

been shown to be effective for singer identification [16,17].

However, source separation is computationally costly. As

such, these algorithms are hard to deploy on catalogues

that span millions of tracks. Several works have attempted

to build embedding models for singer identification that

use mixtures as inputs [18, 19], most notably by using

triplet learning where anchors and positives come from the

same singers in different instrumental environments.

The work in this paper focuses on testing whether singer

identification systems trained on real voices generalize to

cloned voices of the same singers. This task must not be

confused with the task of singing voice deepfake detec-

tion, which has very recently emerged in the signal pro-

cessing community [20,21]. Both works introduce datasets

for Chinese singing voice spoofing detection, and demon-

strate that state-of-the-art speech deepfake detectors fail to

accurately predict whether the songs in their datasets are

deepfakes. After supervised training, their performance is

improved. However, [21] also finds that the classifiers are

not robust to unseen singers, languages, or musical con-

texts, suggesting the need for more complex methods.

Finally, audio embeddings learned using artist-based

sampling scheme have been used in [22]. The authors used

metric learning, with anchors and positives coming from

the same artists, to train a neural network for artist disam-

biguation. More recently, [23] used sampling at the artist

level for contrastive learning and downstream tasks such as

genre and mood classification or music tagging.

3. EXPERIMENTAL SETUP

In this section, we first present the datasets used throughout

this paper. We then present the setup used to train an em-

bedding model for singer disambiguation using contrastive

learning. Finally, we present how this model is used for

singer identification.

3.1 Datasets

We collect a vast number of popular, commercial, and an-

notated songs for both training and evaluating the embed-

ding models. The data and their singer annotations come

from four sources: Deezer, MusicBrainz, Wikidata, and

Discogs [24]. The latter three are publicly available. In

total, we collect more than four million tracks that span

∼ 2.6 million artists. We then filter out all tracks that

are not comprised of vocal segments at least 75% of the

time. For this, we use a simple deep learning model that

classifies three-second segments into either an instrumen-

tal class or a vocal class across all songs. We then filter out

all unique singers that do not have at least two tracks. This

leaves us with 37,525 singers. 7500 of the ones that have

at least seven tracks are used for our singer identification

task. The remaining 30,025 are used to train and validate

our embedding models using contrastive learning.

We then gather 377 tracks, from YouTube, with cloned

Dataset No. Singers No. Songs Songs/Singer

Train 25929 181989 ≥ 2
Validation 4096 8192 2

Closed 7500 176141 ≥ 7
FMA 1019 11676 ≥ 5
MTG 572 7710 ≥ 5

Cloned 67 377 N.A.

Table 1. Attributes of each dataset used in this paper. The

train and validation sets are used for training the embed-

ding models. Upon initial collection, validation singers can

have more than two mostly-vocal tracks; we however ran-

domly select a segment with vocals from two tracks to keep

the set constant. The closed, FMA, and MTG datasets are

used for real singer identification. The cloned dataset con-

tains songs collected from YouTube in which synthesized

voices of real singers are used. The original singers in this

dataset are present in the closed dataset.

voices from 67 singers in our closed dataset. These are

used to test our embedding models on music voice deep-

fakes. We also test our models on two open music tagging

datasets for real singer identification: the FMA and MTG.

For these, we first gather their artist tags. We then filter

out songs that are not comprised of segments with vocals

at least 50% of the time. Artists with less than five songs

are also removed. This leaves us with 1019 artists for the

FMA and 572 artists for the MTG. Unlike the commercial,

closed dataset, each song can contain more than one singer.

We however postulate that the trends observed in the re-

sults are highly indicative of our models’ performances on

the singer identification task. We publish the subsets of

data we used on these datasets for reproducibility and to

serve as future benchmarks. To the best of our knowledge,

other open singer identification datasets, such as the Vo-

calSet [25] and M4Singer [26], only contain snippets of a

capella singing voices. We hope future singer identifica-

tion systems will also be evaluated on our proposed, more

authentic musical data: singers singing to an instrumental.

Table 1 displays the attributes of each of these sets of data.

3.2 Singer-Level Contrastive Learning

We train the embedding models in a contrastive learning

way to predict whether two songs are from the same singer.

During each training iteration, we begin by drawing a batch

of B = 128 positive pairs, which correspond to pairs of

segments with singing. These pairs are drawn on the fly

from different songs of the same singer. For our Mix-

ture model, these segments come from songs’ mixtures.

For our Vocal model, these segments come from the vocal

stem generated by Demucs [27,28]. Finally, for our Hybrid

model, these segments are randomly sampled from either;

the following positive pairings are possible during the con-

trastive learning task: vocal-vocal, vocal-mixture, mixture-

vocal, and mixture-mixture. This is done to better disam-

biguate singing voices, without the need for source sep-

aration during the downstream singer identification task.

All segments are sampled at 16000 Hz and have a six-
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second duration. We then compute their mel-spectrograms

and pass these through the small version of the transformer

model from [29]. We use a FFT size of 800, a hop length

of 400, and a total of 128 mel bins for our mel-spectrogram

operation. The transformer model then maps the resulting

128 × 240 tensor to an embedding of size 2048. Simi-

larly to [30–32], these embeddings are passed through a

fully-connected projector head. In our case, this head maps

our embeddings to outputs of dimension 2048, 1024, and

2048, and uses batch-normalization [33] and ReLU activa-

tions. Let us denote the resulting projections by yi, where

i ∈ [1, 2B]. For each positive pair (i, j), we compute, and

aim to minimize, the normalized temperature-scaled cross-

entropy, or NT-Xent [30], loss function, defined as:

ℓi,j = − log
exp

(

1
T
S(yi, yj)

)

∑2B
k=1 1[k ̸=i] exp

(

1
T
S(yi, yk)

)
, (1)

where the indicator function 1[k ̸=i] evaluates to 1 iff k ̸= i.

T is a temperature parameter that helps the model learn

from hard negatives. In our case, we set T = 0.2 fol-

lowing [34]. S(u, v) denotes the cosine similarity between

vectors u and v. The average loss value is then backprop-

agated to the model. We use the ADAM optimizer [35]

throughout training, with an initial learning rate of 0.0001.

This value is decreased by a factor of 0.5 at every 25-epoch

validation loss plateau. Note that one epoch corresponds

to 32 training and validation iterations. We stop training

when the validation loss has plateaued for 100 epochs.

3.3 Singer Identification

We then train classifiers with the same architecture as the

projector head from the previous section upon the frozen

transformer models. We evaluate these classifiers on two

sets of data for real singer identification: the FMA and

MTG open datasets and the closed set. For all of these, we

randomly set aside one track for testing and one track for

validation per singer. These are constant throughout all our

experiments for reproducibility purposes. Note that four

segments from each validation track are selected randomly

at the beginning of each singer identification experiment

to keep the validation set constant. At least three tracks

per singer are then used for training. During each training

iteration, we select a segment with vocals on the fly to con-

struct batches of size 100. We minimize a Cross Entropy

loss [36] using the ADAM optimizer with an initial learn-

ing rate of 0.01. This value is decreased by a factor of 0.1

every 10-epoch validation loss plateau. Here, one epoch

is, again, equal to 32 training and validation iterations. We

stop training when the validation loss has plateaued for 20

epochs. For each dataset’s test tracks, the final singer pre-

diction is obtained using a majority vote scheme, where

each segment with vocals is passed through the frozen em-

bedding model and classification head. The singer with the

most “votes” is then used as the track’s final output.

We report all our results using 10 runs. For both open

datasets, we report results using all singers. On the other

hand, for our 7500-singer closed set, we report results from

100 to 1000 classes. During each run, we randomly sam-

ple a subset of singers, on which we then train and eval-

uate a classifier. Finally, for the cloned singers dataset,

we: 1) train models to classify 100 to 1000 singers using

the closed dataset; 67 of these are cloned singers, whilst

the remainder are randomly sampled from the rest of our

closed dataset. 2) try to classify the cloned singer of our

deepfake tracks. Our goal is to evaluate whether singer

identification systems trained on real singer data can cor-

rectly classify the singers’ voice deepfakes.

4. RESULTS

4.1 Open Datasets

Dataset Model Top-1 Acc. Top-5 Acc.

FMA

CLMR 73.2 +/– 0.6 73.6 +/– 0.6
Mixture 76.6 +/– 0.5 84.1 +/– 0.6
Hybrid 77.6 +/– 0.3 85.1 +/– 0.6
Vocal 79.9 +/– 0.4 85.7 +/– 0.3

MTG

CLMR 67.9 +/– 1.1 68.0 +/– 1.1
Mixture 78.5 +/– 0.5 88.4 +/– 0.6
Hybrid 79.3 +/– 1.1 88.7 +/– 0.6
Vocal 83.2 +/– 0.6 91.3 +/– 0.6

Table 2. Singer identification results obtained on the open

datasets (%). For each dataset, we report the top-1 and

top-5 accuracies generated by the three models we train

using singer-level contrastive learning. We also use the

embeddings from [37], called CLMR, as a baseline. These

embeddings are trained in a similar fashion to [31], but on

∼ 4M tracks, and are used for both training and testing our

classification heads to generate these results. We display

the means and standard deviations over 10 runs.

The results obtained on open datasets can be visualised

in Table 2. One can immediately notice that the CLMR

[37] results are inferior to the singer-level embedding mod-

els’ results by at least a few percentage points. On the

FMA dataset, we notice a 3.4% top-1 gap between the

CLMR and Mixture models. This gap grows to more than

10 percentage points using a top-5 accuracy and is even

more exacerbated on the MTG dataset and with the Hy-

brid and Vocal models. This highlights the fact that sam-

pling at the singer-level is much more adapted than clas-

sic, high-performing self-supervised learning methods for

pre-training a model for singer identification. We observe

these gaps even though the contrastive model from [37] is

trained on more than 20× more tracks than the embedding

models we trained for this paper.

We can also notice that the Vocal model outperforms the

models that use mixtures as an input by a few percentage

points. More specifically: for the MTG dataset, we observe

a 3.9% gap compared to the Hybrid model on top-1 accu-

racy and a 2.6% gap on top-5 accuracy. The gap is less pro-

nounced on the FMA data. We can also notice that the Hy-

brid model, which samples both mixtures and vocal stems

during pre-training, is slightly better-performing than the

mixture model, though the performance gap never exceeds
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Figure 1. Singer identification results obtained on the closed (left) and cloned (right) datasets. We display results over 10

runs for 100 to 1000 singer classes. For each number of classes, we display the top-1 and top-5 accuracies for each run

(pale markers), and the mean results between all runs (prominent markers). On the closed dataset, we randomly sample a

subset of the 7500 singers on every run and display results on their test tracks. For the cloned dataset, we train our models

to classify the 67 cloned singers and other randomly selected singers. We then display the results on the 377 spoofed tracks.

a percentage point. This highlights one of our main find-

ings: separating vocals from the rest of the track clearly

helps our models disambiguate singers between each other.

However, we can obtain good performance using mixtures

too. In the realm of production, where source separation

can be costly memory and time-wise, the results obtained

using the Hybrid or Mixture models may suffice; they may

not justify the need to separate vocal stems beforehand.

The results obtained on the closed dataset in the next sec-

tion further emphasize this idea.

4.2 Closed Dataset

The results obtained on the closed dataset can be found on

the left side of Figure 1. We observe a similar trend to

the one observed on the open datasets: the Vocal model

outperforms both models that use mixtures as inputs by a

few percentage points. Then, the Hybrid model outper-

forms the Mixture model, though the gap is narrow. For

example, for 400 classes, we observe mean top-5 accura-

cies of 89.2% for the Mixture model, 90.1% for the Hybrid

model, and 93.2% for the Vocal model. For 700 classes,

we observe mean top-1 accuracies of 69.8% for the Mix-

ture model, 74.5% for the Hybrid model, and 80.9% for the

Vocal model. As the number of classes grows, the gaps in

performance are more pronounced, especially on the top-1

accuracy metric. We however suggest that the gap between

the Vocal model and models that work on mixtures does

not warrant the need for source separation in production-

like environments for real-singer identification.

No. Singers Method Dataset Top-1 Top-5

300
[19] MSD 39.5 69.2

Mixture Closed 78.0 90.4

500

[16, 18] MSD 47.9 71.2
[16] MSD 63.1 82.2

Mixture Closed 74.2 87.6

Table 3. Singer identification results for the same number

of singers in this and previous works of the field (%).

Comparing our results to previous works in the field

of music singer identification is quite difficult. These re-

port results on private datasets [16] or on the Million Song

Dataset (MSD) [18, 19, 38], a dataset whose audio is not

publicly available. That is why we hope future works in

singer identification will also be evaluated on the open

splits we report results on in Section 4.1. We however re-

port our worst and previous works’ results for the same

number of singers in Table 3. These highlight that our

methodology is at the very least on par with previous works

and validate sampling at the singer level for contrastive

learning when the downstream task is singer identification.

We should however point out that, even though our

models identify real singers quite well, there remain open

challenges. As displayed in Figure 2, our performance over

musical genres is not uniform. For example, for Country

and Folk music, the mean top-5 accuracies are 86.3% and

86.6%. On the other hand, for Hip-hop and Pop music, the
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Figure 2. Vocal model performance by genre when trying

to classify 1500 singers. The macro genre tags are gathered

from Deezer and are unique for each test track. We display

the mean top-5 accuracy for each run with the orange dots.

The boxes then display the median and interquartile range

(IQR) between runs. The whiskers extend to points that lie

within 1.5 IQRs of the lower and upper quantiles. Finally,

outlier runs have circles drawn around them. Genres con-

taining less than 100 test tracks are omitted from this plot.

mean top-5 accuracies are 72.7% and 72.7%. The perfor-

mance drops even further for Electronic music, where we

observe a mean top-5 accuracy of 41.6%. The same trends

can be observed for top-1 accuracy, our other models, and

different numbers of classes. Hip-hop, Pop, and Electronic

genres tend to employ effects such as reverb and vocoder

on singing voices. These effects can change a voice’s tim-

bre quite substantially, and seem to have an effect on our

singer identification performance. On the other hand, Folk

and Country tend to have natural-sounding singing voices.

We suggest that future singer classification works should

aim to lessen the gap between these genres, perhaps by in-

troducing augmentations during either the embedding or

classifier’s training. We also did experiments on the in-

fluence of language on performance, and did not find our

results to be biased towards any of these. We found all 10,

commonly-represented languages to have a median top-5

accuracy between 68 and 82% for 1500-singer identifica-

tion, with substantial overlaps in distribution.

One can also notice the following trend from Figure 3:

when we are trying to classify a small number of singers,

having more tracks per singer for training leads to higher

performance; on the other hand, when we are trying to

classify a large number of singers, having fewer tracks for

training leads to higher performance. For example, for

500-singer identification, we merely observe a top-1 ac-

curacy of 78.5% when singers have 5 to 9 training tracks.

This top-1 accuracy grows to 88.5% when singers have 20

Figure 3. Vocal model performance over 500, 1000, and

1500-singer identification. We report results from each run

in buckets that describe the number of training tracks per

singer, that are used to train our classifiers. In the first, we

display the top-1 accuracies observed for singers with only

5 to 9 training tracks. In the second, we display the top-

1 accuracies observed for singers with 10 to 19 training

tracks. Finally, in the last, we display the top-1 accuracies

observed for singers with 20 or more training tracks. We

report results using violin plots, where, for each bucket, the

inner figure is a box plot similar to that in Figure 2 and the

outer figure is a kernel density estimation of the data.

or more training tracks. On the other hand, for 1500-singer

identification, we observe top-1 accuracies of 68.1% and

51.5% for these same buckets. These trends can also be ob-

served on our other models and for top-5 accuracy. They

suggest that, as the singer identification task gets harder,

singers with more songs to their name, and most likely

much longer careers, get harder to correctly classify than

singers with just an extended play (EP) or album to their

name. This could be due to changes in style, mixing ef-

fects, or even singing voice. We hope that future works in

the field will design systems that are more robust to singing

voice evolution over a variety of musical projects.

4.3 Cloned Voices

The results on our cloned dataset can be found on the

right side of Figure 1. One can immediately notice a

sharp decline between the performance we observed on

real singers and synthetic ones. For 200-singer identifica-

tion, the worst-performing model on real singers, the Mix-

ture one, has a mean top-1 accuracy of 82.3%. In compar-
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Figure 4. Mean all-pairs cosine similarity between each

of the closed set singers’ test track embeddings and: in

purple (test/other), the embeddings from a random track

from another singer; in red (test/val), their validation track

embeddings; in green (test/vocal), their test track’s vocal

stem embeddings; in orange (test/instru), their test track’s

instrumental stem embeddings; in blue (test/test), the other

embeddings from the same track. All embeddings are gen-

erated on segments with vocals.

ison, the best-performing model on synthetic voices, the

Vocal one, has a top-1 accuracy of 65.8%. For 600-singer

identification, their respective top-5 accuracies are 85.3%

and 72.3%. The decline in performance on cloned singers

is hence quite dramatic. However, in a lot of ways, it is to

be expected. Synthetic voices can sometimes be quite un-

realistic depending on the voice conversion or generation

techniques used, which should obviously lead to deteriora-

tion in singer identification performance.

The more striking decline is that which we observe be-

tween models themselves. More notably, the Vocal model

performs substantially better than the models that use mix-

tures as inputs. Starting at 100 classes, the mean top-1 ac-

curacy of the Vocal model is 65.8% versus 51.2% for the

Hybrid model and 40.1% for the Mixture model. For 800

classes, we observe accuracies of 33.4% versus 15.3% and

12.7%. On the one hand, for real singers, we found the gap

in performance between the Vocal and Hybrid to be mini-

mal enough to justify using mixtures over vocal stems, and

hence avoid using source separation pre-processing. Here,

however, the answer is much more clear cut: the Vocal

model is the only one with decent performance on cloned

singer identification task, whilst the models that use mix-

ture inputs see a very significant drop in performance.

The reason behind the performance drop between mod-

els is illustrated in Figure 4. When comparing the embed-

dings of each closed set test track to other embeddings of

the same track, we see that these are very similar, with co-

sine similarities of ∼ 95%. However, the comparison with

the test tracks’ stem embeddings can differ significantly.

For the Mixture model, we see that the instrumental em-

beddings are actually more similar to the “ground truth”

test track embeddings (GTEs) than the vocal embeddings,

with mean similarities of 90.8% and 89.1%. Even worse,

the instrumental embeddings are closer to the GTEs than

the validation track’s. Hence, even though our Mixture

model, like the Hybrid and Vocal models, is pre-trained to

disambiguate singers, we find that its embeddings are more

suitable for finding similar songs based on instrumental in-

formation than vocal information. This problem is partly

solved in the Hybrid model and fully solved in the Vocal

model. Note that these results extend to other vector simi-

larity measures such as Euclidean distance.

These findings outline why the models that are trained

using mixtures drop off significantly on spoofed versions

of famous artists. On these tracks, singers are often used

on an instrumental which is either from another famous

track, or an instrumental which is very different from their

usual environment. Some of the cloned tracks’ instrumen-

tals are even present in their original tracks during training

on real singers, which leads to obvious misclassifications.

As such, models that bias singers towards certain types of

musical backgrounds fail to correctly identify them in al-

tered contexts. Source separation allows us to better dis-

ambiguate voices only during training, and thus classify

synthetic versions of performers. In the future, perhaps

reintegrating mashups to alter a singer’s context on the fly,

such as was done in [18], could lead to more robust singer

identification models. These could solve the two main re-

maining problems in the field: 1) the need for source sep-

aration pre-processing and 2) the identification of cloned

versions of existing singers.

5. CONCLUSION

In this paper, we train three models using singer-level con-

trastive learning. The first is only trained using mixtures,

the second is only trained using vocal stems, while the

third is trained using both. We find that all three mod-

els are highly capable of classifying real singers, though

there remain open challenges, such as classifying genres

that use more vocal effects and singers with long discogra-

phies. However, all three models’ performance decreases

drastically when trying to identify cloned voices of ex-

isting singers. This decrease is much more pronounced

for models that are trained using mixtures. These models

bias singers towards certain types of instrumentals. They

therefore struggle to correctly classify them in different

background music environments, such as those offered by

singing voice deepfakes. By publishing our results and

novel, singer identification splits of the FMA and MTG

datasets, we aim to generate more research in this field

of MIR. Future works could notably incorporate cloned

voices in a few-shot fashion in the hopes of minimizing

the gap between real and synthetic singer identification.
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6. ETHICS STATEMENT

Our work offers a glimpse into how we, as a field, can

identify the original singers in music voice deepfakes. It

is important that outputs of systems like ours not be used

as justification to make important decisions, however, such

as content removal from platforms. As demonstrated in

this paper, singer identification systems are often wrong;

they often return false positives. This is even more true on

deepfakes. As such, human emotion and decision-making

should still be at the heart of the music deepfake battle.

Creative, talented singers should never see their work de-

platformed because a machine learning model falsely said

so. The outputs of these models should always be inter-

preted with caution, as an indication but not a truth.
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ABSTRACT

Managing the emotional aspect remains a challenge in

automatic music generation. Prior works aim to learn var-

ious emotions at once, leading to inadequate modeling.

This paper explores the disentanglement of emotions in

piano performance generation through a two-stage frame-

work. The first stage focuses on valence modeling of lead

sheet, and the second stage addresses arousal modeling by

introducing performance-level attributes. To further cap-

ture features that shape valence, an aspect less explored by

previous approaches, we introduce a novel functional rep-

resentation of symbolic music. This representation aims to

capture the emotional impact of major-minor tonality, as

well as the interactions among notes, chords, and key sig-

natures. Objective and subjective experiments validate the

effectiveness of our framework in both emotional valence

and arousal modeling. We further leverage our framework

in a novel application of emotional controls, showing a

broad potential in emotion-driven music generation.

1. INTRODUCTION

With the recent advancements in symbolic music genera-

tion [1–6], there has been a growing interest in controlling

high-level musical features throughout the generation pro-

cess. Among these features, emotion-driven music gener-

ation [7–13] aims to generate music that conveys specific

emotions, representing a crucial aspect for music appreci-

ation and analysis. The downstream applications of such

models have also been explored, such as music therapy for

healthcare and educational purposes [14] and soundtrack

generation for videos and movies [15].

Emotion could be represented in two dimensions from

the literature [16]: valence and arousal. Valence refers to

the positiveness of an emotion and arousal refers to energy

or activation [17–19]. These two dimensions can be fur-

ther divided into four quadrants (4Q), namely high valence

high arousal (Q1), low valence high arousal (Q2), low va-

lence low arousal (Q3), and high valence low arousal (Q4).

© J. Huang, K. Chen, and Y. Yang. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-

bution: J. Huang, K. Chen, and Y. Yang, “Emotion-driven Piano Music

Generation via Two-stage Disentanglement and Functional Representa-

tion”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

In this paper, we focus on the emotion-driven piano per-

formance generation of these four quadrants. Throughout

prior works, we observe crucial challenges from the per-

spectives of both model design and musical inductive bias.

First, previous emotion-driven piano performance gen-

eration models [7, 8] attempt to learn emotion quadrants

and expressions in an end-to-end paradigm. In terms of

model design, this approach poses training difficulty on the

generation model, leading to the instability in achieving

results of desired emotions. For example, many existing

works [7, 9, 11] could effectively control the arousal lev-

els of music, while their performance of valence modeling,

especially in generating low valence (i.e., negative) music,

is still poor. In terms of music, the creation process of

music typically involves multiple stages, such as the lead

sheet composition for melodies and chord progressions,

and performance generation for textures and expressive-

ness. Consistently, emotion can be evoked through a com-

bination of musical elements (e.g., melody, chord, texture).

For example, major/minor chords have been found to seize

different valence trends in psychological studies [20] and

performance-level attributes like articulation, tempo, and

velocity are more related to arousal [21, 22]. It is worth to

explore the potential relation between the disentanglement

of the generation process and the emotion expression.

Second, previous emotion-driven generation models

have received limited attention regarding the influence of

tonality on emotion modeling. It has been widely shown

that major-minor tonality in composition is highly related

to valence perception [22–25]. For example, as depicted in

Figure 1, the histogram of musical keys derived from the

emotion-labeled music dataset EMOPIA [7] supports the

distribution skews to major keys for high valence clips and

opposite trend for low valence ones. Furthermore, different

tonalities may reveal similar patterns in the relative rela-

tionships between melodies and chords, while the distribu-

tion of melodies, chords, and tonalities can exhibit distinct

shapes across different emotions. Current representations

of symbolic music, such as REMI [2] and CP-Word [26],

do not explicitly incorporate such interactions nor address

its connection to emotion adequately. Therefore, it is nec-

essary to consider a functional format of symbolic music

representation considering the relationships between notes,

chords and key signatures to better model the tonality in the

emotion-driven music generation process.

In this paper, we contribute to combat above challenges:
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Major Minor

Figure 1. Key histogram of high/low valence clips from

the emotion-labeled piano music dataset EMOPIA [7].

• We employ a two-stage Transformer-based model on

emotion-driven piano performance generation. The first

stage focuses on valence modeling via lead sheet com-

position, while the second stage addresses arousal mod-

eling by introducing performance-level attributes.

• We propose a novel functional representation for sym-

bolic music, encoding both melody and chords with Ro-

man numerals relative to musical keys, to consider the

interactions among notes, chords and tonalities [27].

• Experiments demonstrate the effectiveness of our frame-

work and representation on emotion modeling. Addi-

tionally, our method enables new capabilities to con-

trol the arousal levels of generation under the same lead

sheet, leading to more flexible emotion controls.

As a minor contribution, we also refine key signature la-

bels and extract lead sheet annotations for the EMOPIA

dataset [7] to ensure the correct training of the two-stage

framework. We share the data, open source our code 1 and

present generation samples in the demo page. 2

2. RELATED WORK

2.1 Emotion-driven Piano Performance Generation

Prior works apply emotion conditions on deep-learning

models to guide the generation of piano performance [7,8,

11], or develop searching methods to generate music of de-

sired emotions [28, 29]. Musical elements via feature dis-

entanglement [9] or supervised clustering [10] can further

be regarded as a bridge between emotion labels and per-

formances for generation. In contrast, our framework em-

ploys a two-stage generation approach to reduce the com-

plexities of one-stage generation, fostering a more nature

process of music creation as well as a better incorporation

between emotion labels and generation results.

2.2 Tonality, Functional Harmony, and Emotion

Musical keys and functional harmony have been explored

in the field of roman numeral analysis [30–32]. The analy-

sis of how modes and tonalities relate to mid-level percep-

tual features (e.g., dissonance, tonal stability, minorness)

and affect the emotional perception of music pieces has

also been discovered [22, 24].

While some music generation works attempted to com-

bine key information into data representation [33], loss

1 https://github.com/Yuer867/EMO-Disentanger
2 https://emo-disentanger.github.io/
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Figure 2. Illustration of (a) REMI [2], (b) the proposed

functional representation, and their differences.

function [34] and text conditions [6], none of them ex-

plore the relation between musical keys and emotional per-

ception. In this paper, we leverage both functional har-

mony knowledge and class-octave based pitch representa-

tion [35] to design a new data representation, incorporat-

ing the relationships between notes, chords and keys for

emotion-driven music generation.

3. METHOD

In this section, we will first introduce the functional rep-

resentation of symbolic music as the main generation unit.

Then we introduce the two-stage model as the main com-

ponent of the emotion disentanglement and generation.

3.1 Functional Representation

Figure 2 illustrates our proposed functional representation.

Its design is initially based on REMI [2], a widely used

event-based representation for symbolic music. We incor-

porate different note and chord events assisting to better

learn the joint information of emotion and key signature.

3.1.1 Emotion and Key Events

We follow CTRL [36] to set up the condition within the

autoregressive generation process in Transformer architec-

ture. To denote distinct emotions and affect overall prop-

erties, we begin the event sequence with <Emotion_*>

event to indicate the emotion label of music clips. The

<Key_*> event is appended after <Emotion_*> to pro-

vide the musical key property, with the total of 24 keys (12

tonic notes with two modes in EMOPIA [7]).

3.1.2 Bar, Sub-Beat, Tempo and EOS Events

Similar to REMI, a <Bar> event denotes the new start of

a bar; a <Sub-Beat_*> event denotes one of 16 pos-

sible discrete beat locations within a bar; a <Tempo_*>

event denotes local tempo changes every four beats; and

an <EOS> event denotes the end of sequence.

3.1.3 Chord Events

A musical chord name typically consists of root note and

chord quality. For example, Fmaj represents the chord

F-A-C with root F and major quality. Such symbols de-

scribe correct note information in chord within the tonality,
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C C# D D# E F F# G G# A A# B C
(I) (I#) (II) (III) (III#) (IV) (IV#) (V) (VI) (VI#) (VII) (VII#) (I)

C major

c minor

C C# D D# E F F# G G# A A# B C

I I# II II# III IV IV# V V# VI VI# VII IRoman

(I) (I#) (II) (II#) (III) (IV) (IV#) (V) (V#) (VI) (VI#) (VII) (I)

Figure 3. The conversion between letters and Roman nu-

merals in the cases of C major and c minor scales. Solid

arrows denote strict one-to-one conversions, and dotted ar-

rows denote optional one-to-either conversions.

but they overlook the variations in chord functions of the

same chord across different tonalities. For example, while

Fmaj serves the tonic function in F major scale, it serves

the subdominant function in C major scale. Moreover, the

chord progression follows these functional harmony rules

to establish tonality and convey musical emotion [27].

To introduce chord functions in the emotion modeling,

we adopt Roman numerals from Roman Numeral Anal-

ysis [31] to notate chord roots in Figure 3. Given the

<Key_*> event, root notes in the absolute pitch are di-

rectly converted into Roman numerals based on their scale

degrees relative to the key (i.e., relative pitch). For roots

outside the scale, we employ a direct conversion for I#,

II#, IV#, V# and VI# appearing in major keys, but ran-

domly assign III# and VII#, which only appear in mi-

nor keys, as one of their neighboring degrees during the

encoding and decoding process. This design ensures the

notation to be key-independent and make every conver-

sion of notes reasonable to the music theory. The notations

of chord qualities remain unchanged, and the chord event

<Chord_*> appears every four beats.

3.1.4 Note-related Events

A note is denoted by <Pitch_*>, <Duration_*> and

<Velocity_*> events, where <Pitch_*> event indi-

cates the onset of pitches from A0 to C8. Inspired by [35,

37], we decompose <Pitch_*> into <Octave_*> and

<Degree_*> events according to the note octave and de-

gree in the certain key scale. The conversion rule from

<Pitch_*> to <Degree_*> is the same as that of chord

roots in Figure 3. For example, pitch D#4 is decom-

posed into <Octave_4> and <Degree_III> in c mi-

nor scale, but <Degree_I> in D# major scale. Such

degree-octave pitch representation narrows the difference

between melodies, thus improves the learning of connec-

tions between emotions, chords, and melodies, as demon-

strated in Figure 4.

3.2 Two-stage Emotion Disentanglement

We use the idea of Compose & Embellish [38] to generate

music in two stages: lead sheet first, and then piano perfor-

mance. While Compose & Embellish is emotion-agnostic,

we extend it so that the lead sheet model involves valence

modeling and the performance model arousal modeling.

II III II

V

I

V i i i i

II III II

V

I

VV V V I N cP D

Figure 4. Two lead sheet examples from different songs

in EMOPIA. In our functional representation, they have

the same melody events (green), but different chord events

(yellow) by different emotions (Positive and Negative by

pink) and keys (D major or c minor by purple).

3.2.1 Valence Modeling

The top left section of Figure 5 denotes the first stage,

where only emotion events <Emotion_Positive> and

<Emotion_Negative> are considered as conditions.

The former includes music pieces of Q1 and Q4 (high va-

lence) and the latter includes those of Q2 and Q3 (low va-

lence). The lead sheet model first predicts a key event k

conditioned on the given emotion event e, and then gener-

ates the lead sheet sequence M = {m1, · · ·mT } of length

T , as melody and chord progression, conditioned on previ-

ous tokens step-by-step:

p(k,M |e) = p(k|e)

T∏

t=1

p(mt|e, k,M<t) , (1)

where p(k|e) and p(mt|e, k,M<t) are jointly learned

through the Transformer-based generation model [26,

38]. Performance-related events <Velocity_*> and

<Tempo_*> are removed in the first stage (i.e., lead sheet

generation), as we mainly focus on the contributions of

key, pitch and chord for valence perception.

3.2.2 Arousal Modeling

The top right section of Figure 5 denotes the second stage.

Given the lead sheet M , the performance model generates

performance X conditioned on the true emotion label (Q1

to Q4). As the valence aspect has already been modeling

in the first stage, this stage focuses on the generation of

musical textures for the lead sheet, and more importantly,

on how to perform it through variations of tempo, ve-

locity, articulation, and other performance-level attributes

that largely influence perceived arousal [21, 22]. Dur-

ing the training and inference phases, with the positions

of <Bar> events, M and X are further segmented into

{M1, · · · ,Mb} and {X1, · · · , Xb}, where b is the num-

ber of bars. The segmented sequences are “interleaved” in

the form of {· · ·<Track_M>, Mi, <Track_X>, Xi · · · }
with additional <Track_*> events to distinguish M and

X tracks. In that, the target performance bar Xi is ap-

pended to its corresponding conditions Mi, as mapping

each lead sheet segment to its corresponding performance

segment [26]. With the emotion condition and key event

from lead sheet as prefix tokens, the performance model is

summarized as

p(X|e, k,M) =
b∏

i=1

p(Xi|e, k,M≤i, X<i) . (2)
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Figure 5. The two-stage framework of emotion-driven piano performance generation. Squares with transparent background

denote the tokens that are not included in the loss computation during the training phase.

3.2.3 Training Objectives

Lead sheet and performance models are trained separately

by both optimizing the negative log-likelihood loss of the

sequence. Since existing emotion-labeled music datasets

are not large, we leverage large-scale music datasets with-

out emotion annotations to pretrain both models for bet-

ter music understanding. During pretraining, the emotion

event is marked as <Emotion_None>. We then finetune

two models on the emotion-labeled dataset (detail in Sec-

tion 4) to learn composition and performance styles spe-

cific to different emotion contexts.

3.2.4 Two-stage Inference

The left bottom section of Figure 5 denotes the inference

process of both models. In the first stage, the lead sheet

model predicts the key event and generates the lead sheet

sequence step-by-step given <Emotion_Positive> or

<Emotion_Negative> event, creating a musical mo-

tif for the specific valence preference. Even though our

framework has the capability to generate any-key music of

specific emotions, we observe that some generation results,

such as a high-valence and high-arousal song with a minor

key scale, may go beyond the current definition of emotion

in [16], where the valence naturally has a strong correlation

to the major-minor tonality (Figure 1). Therefore, we limit

major keys to <Emotion_Positive> and minor keys

to <Emotion_Negative> during the inference stage.

We acknowledge that this can be overly simplifying. Since

this paper focuses mainly on the valence-arousal disentan-

glement during the generation process, we leave this ex-

ploration of generating any emotion within any key as an

advanced topic for future research.

In the second stage, the performance model generates

piano performance with desired valence and arousal com-

bination given the lead sheet from the first stage. For ex-

ample, to generate a music piece of Q3, a “Negative” lead

sheet and a “Q3” emotion event are selected as conditions.

Additionally, this two-stage framework enables the flexi-

bility to generate different arousal levels of piano perfor-

mance under the same lead sheet, delivering some scenar-

ios when the music need to shift quickly to complement

the scenes in movies or daily videos (detail in Section 4

and the demo page).

4. EXPERIMENTS

4.1 Datasets and Preprocessing

As presented in Table 1, we collect different datasets for

pretraining and finetuning phases as mentioned in Section

3.2.3. For pretraining the lead sheet model, we use the

HookTheory dataset [39,40], where we choose 18,206 lead

sheets with high-quality and human-transcribed melody,

chord and key annotations in 4/4 time signature. We sim-

plify 249 chord quality classes into 11 types 3 as the same

set in the other datasets below. For pretraining the per-

formance model, we use the Pop1k7 dataset [26], consist-

ing of 1747 transcribed pop piano performances. Since

Pop1k7 does not contain lead sheet annotations, we refer

[38] to extract melodies using the skyline algorithm [41],

recognize chords using the chorder library [42], and detect

key signatures using [43] in MIDI Toolbox [44].

For finetuning the models with emotion conditions, we

use the EMOPIA dataset [7], consisting of 1,071 music

clips with human-annotated emotion labels. Similar to

Pop1k7, we obtain the lead sheets of EMOPIA by extract-

ing melodies using the algorithm in [45] and recognizing

chords using the algorithm in [46]. Empirically, we ob-

verse that specifically in the EMOPIA dataset, melodies

and chords extracted by these alternative algorithms are

more correct compared to the skyline algorithm and the

chorder library. Additionally, we found the key signature

labels in EMOPIA are not fully correct since they are also

obtained by the detection algorithm with error rates. Since

the valence modeling is strongly related to the musical keys

and modes, we manually correct the key annotations of 367

clips in EMOPIA to ensure a high quality of lead sheets.

All datasets are randomly divided into respective train-

ing and validation sets at the ratio of 9:1. As a result in our

functional representation, the vocabulary size of events is

215 for lead sheet and 324 for piano performance.

4.2 Model Settings

The lead sheet model is a 12-layer Transformer De-

coder [47] with 8 heads, 512 hidden dimensions and rel-

ative positional encoding [48]. The performance model is

3 Major, minor, augment, diminish, suspend2, suspend4, major7, mi-
nor7, dominant7, diminish7, half-diminish7
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Dataset # clips (major) # bars # events

HookTheory [40] 18,206 (9,737) 10.84 282.81

Pop1k7 [26] 1,747 (1,264) 104.82 6794.86

EMOPIA(L) [7] 1,071 (618) 16.94 435.22

EMOPIA [7] 1,071 (618) 17.09 1311.47

Table 1. The datasets. (major) denotes the number of clips

in major key (and the left is in minor key). The #bars and

#events are average numbers across a dataset. EMOPIA(L)

refers to EMOPIA lead sheets.

similar to the lead sheet model except with Performer at-

tention [49]. The total parameter sizes are 41 million and

38 million respectively.

Both models are trained with the batch size of 4, the

maximum sequence length of 512 (lead sheet model) or

3072 (performance model), and the Adam optimizer with

β = (0.99, 0.9). We adopt a 200-step warm-up to achieve

the maximum learning rate of 1e-4 for pretraining and 1e-

5 for finetune. All models are implemented by PyTorch

and trained on one NVIDIA Tesla V100 GPU. The lead

sheet model took around 180,000 steps to converge and the

performance model took around 200,000 steps. Nucleus

sampling [50] is employed in the inference phase. We

referred [38, 51] to choose the sampling hyperparameters

τ = 1.2, p = 0.97 for the lead sheet model and τ = 1.1,

p = 0.99 for the performance model.

4.3 Baseline and Ablations

We consider the emotion-driven piano performance gener-

ation model in EMOPIA [7] as our baseline, which gen-

erates music in an end-to-end paradigm instead of two

stages. To ensure the fair comparison of generation per-

formance, we trained the baseline model under ths same

datasets in both pretraining and finetune phases, and re-

placed the original CP-Word representation with REMI as

the former usually yields better generation performance

and more comparable to our proposed functional represen-

tation. Two other related works [8, 9] are not included in

comparison due to the main reason that we focus more on

the evaluation of the two-stage framework in valence and

arousal modeling; and the partial reason that they are not

open-source or releasing the reproducible model weights.

We conduct a comprehensive ablation study to evaluate

if each proposed design benefits the emotion modeling of

music generation. Specially, these designs include: 1) the

two-stage generation, 2) the functional representation, and

3) the dataset pretraining. In the following sections, mod-

els are denoted as <representation(stage)>. For example,

REMI(one) denotes the one-stage generation model with

REMI representation as the baseline, and REMI(two) de-

notes the two-stage generation as one variant.

4.4 Objective Evaluation and Results

Even though previous studies [7–9] employ metrics, such

as Pitch Range (PR) and Number of Pitch Classes (NPC),

to evaluate the generation performance, they do not pro-

M C M+C P

REMI+key (two) 0.465 0.065 0.075 0.418

–w/o. pretrain 0.350 0.105 0.130 0.343

functional (two) 0.505 0.700 0.735 0.548

–w/o. pretrain 0.400 0.570 0.625 0.430

Real data 0.578 0.695 0.746 0.812

Table 2. Key consistency calculated across all compo-

nents, including melody (M), chord (C), lead sheet (M+C)

and performance (P).

vide any evidences on the superiority of melody develop-

ment, chord progression, and texture arrangement of mu-

sic. Therefore, a model with more similar PR and NPC

values to those of the target dataset does not necessarily

promise a better generation quality than others.

Instead of using such metrics, we wish to evaluate the

consistency between the input musical conditions and the

generation results. We introduce key consistency to as-

sess if a model can generate music pieces that adhere to

the desired input key signatures, which is highly corre-

lated to the lead sheet development and valence modeling.

Specifically, key consistency measures the match between

the key condition <Key_*> and the actual key detected in

the generation using the algorithm [44] with an 81% ac-

curacy rate. We compare REMI and our functional repre-

sentation to determine if the functional representation can

improve the key consistency via more close and interactive

designs on key, melody, and chord. Since this metric re-

quires the key as conditions, we add the <Key_*> event

in REMI after <Emotion_*> (as REMI+key in Table 2)

when training the model. The non-pretrained versions are

also included for comparison. Each model generates 200

lead sheets (100 high and 100 low valence) and 400 perfor-

mance samples (100 per emotion quadrant) for evaluation.

From Table 2, the functional representation outperforms

REMI (i.e., REMI+key) across all components and even

achieves compatible accuracy to real data over the lead

sheet component. This demonstrates the effectiveness of

the functional representation, by representing notes and

chord roots relative to key events for key modeling. In con-

trast, REMI struggles with associating chord events with

keys due to the ignorance of chord labels serving differ-

ent functions in different key scales. Moreover, pretraining

process introduces musical priors to enhance the learning

of key relationships with other musical elements, improv-

ing key consistency for both representations.

4.5 Subjective Evaluation and Results

We leverage an online listening test to assess the emotion

modeling ability of models. The test was conducted to col-

lect user responses on three parts: 1) valence modeling, 2)

arousal modeling, and 3) 4Q emotion modeling. During

this test, the quality of the generated music has also been

assessed implicitly as it is a prerequisite to the emotion ex-

pression in the music. 22 participants were engaging in this

test, 5 with less than 2 years of musical training, 8 with 2-5

years, 3 with 5-10 years, and 6 with more than 10 years.
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Figure 6. The mean opinion score performance on the

valence-oriented and arousal-oriented listening tests. For

(a-1) and (b-1), the higher score the better performance;

for (a-2) and (b-2), the lower score the better performance.

4.5.1 Valence Modeling

In this part, each participant listened to 16 generated tracks

of piano performance from four models [four tracks (two

high valence and two low valence) per model]: 1) Real

data; 2) REMI (one); 3) REMI (two); 4) Functional (two).

For each track, participants rated its positiveness from –2

(low valence) to 2 (high valence) with the step size 1.

The left of Figure 6 (‘(a)’) presents the mean opinion

scores for the valence-oriented test, where the Functional

(two) model significantly outperforms both REMI (two)

and REMI (one) models. The REMI (two) model shows

a slight improvement over REMI (one) due to its two-

stage design. Our proposed Functional (two) model even

marginally exceeds real data in low valence scores, which

could be due to the potential subjective biases in the nega-

tive emotion as discussed in [10]. And our model achieves

both great performance in high valence and low valence re-

sults, demonstrating a good balance in valence modeling.

4.5.2 Arousal Modeling

In the second part, the functional (two) and REMI (two)

models are chosen to compare their arousal modeling per-

formance. Specifically, we wish to explore whether they

can generate piano performance with either high or low

arousal under the same lead sheet based on the given con-

ditions (Q1 and Q4 for positive lead sheets, Q2 and Q3 for

negative ones). Two pairs of generated tracks are randomly

drawn for each model and each valence level, where every

pair includes two tracks of different arousal conditions. For

each track, participants rated its arousal level from –2 (low

arousal) to 2 (high arousal) with the step size 1.

Prediction

(b) REMI (two)

La
be

l

Prediction

(a) Functional (two) 

Figure 7. The confusion matrices on the 4Q listening tests.

The right of Figure 6 (‘(b)’) presents the results. The

Functional (two) model surpasses REMI (two) by an aver-

age of 0.5 point, highlighting its superior ability to differ-

entiate between the musical features of the two arousal lev-

els through performance. Additionally, it is rare for Func-

tional (two) to be incorrectly identified as high arousal un-

der low arousal conditions (Figure 6 (b-2)).

4.5.3 4Q Emotion Judgement

In the last part, participates needed to choose the best op-

tion from four options (4Q) for each track, with 8 tracks in

total for the two models the last section (4 tracks per model

and 1 track per emotion).

Figure 7 presents the confusion matrices of two mod-

els. The Functional (two) model achieves the higher over-

all accuracy than that of REMI (two) (71.5% vs. 31.0%).

When examining each emotion category, Functional(two)

demonstrates superior performance in Q3 and Q4 than Q1

and Q2. Furthermore, music pieces generated from it with

high valence conditions are misidentified almost based on

their arousal levels; for instance, pieces intended for Q1

are almost mistaken for Q4 and vice versa. In contrast,

for REMI(two), the misclassifications are across all cate-

gories, demonstrating its limitations in modeling the four

emotion classes although through two-stage generation.

All above evaluations support that the combination of

two-stage framework and functional representation is ef-

fective in controlling the emotion of the music it generates

to a certain extent.

5. CONCLUSION AND FUTURE WORK

In this paper, we first explore emotion disentanglement

through a two-stage Transformer-based framework for

emotion-driven piano performance generation. Then we

propose a novel functional representation for symbolic mu-

sic to capture the interactions among musical keys, modes,

chords, and melodies in relation to the emotion contexts.

An objective metric is designed to qualify the key mod-

eling of the proposed method, and subjective evaluations

further confirm its ability to convey desired emotional per-

ception. In the future, we wish to focus on enhancing the

flexibility of emotional music generation across all musi-

cal keys and investigating new applications fostered by our

framework, such as the controls of valence and arousal at-

tributes under similar music motifs.
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ABSTRACT

Singing voice beat tracking is a challenging task, due to

the lack of musical accompaniment that often contains

robust rhythmic and harmonic patterns, something most

existing beat tracking systems utilize and can be essen-

tial for estimating beats. In this paper, a novel temporal

convolutional network-based beat-tracking approach fea-

turing self-supervised learning (SSL) representations and

adapter tuning is proposed to track the beat and downbeat

of singing voices jointly. The SSL DistilHuBERT repre-

sentations are utilized to capture the semantic information

of singing voices and are further fused with the generic

spectral features to facilitate beat estimation. Sources of

variabilities that are particularly prominent with the non-

homogeneous singing voice data are reduced by the effi-

cient adapter tuning. Extensive experiments show that fea-

ture fusion and adapter tuning improve the performance

individually, and the combination of both leads to signif-

icantly better performances than the un-adapted baseline

system, with up to 31.6% and 42.4% absolute F1-score im-

provements on beat and downbeat tracking, respectively.

1. INTRODUCTION

Singing voice beat tracking is an important music informa-

tion retrieval (MIR) task that can serve many downstream

applications. For example, singing transcription can uti-

lize beats to finetune the onsets of the transcribed notes for

better accuracies [1] as well as automatic accompaniment

generation, where the beat information can be instrumen-

tal for drum arrangements [2]. However, existing literature

on beat tracking mostly focused on music with instrumen-

tal accompaniment [3–11], and tracking beats of singing

voice is largely unaddressed and remains a key challenge

to date. Its difficulty can be attributed to the lack of mu-

sical accompaniment that contains rhythmic and harmonic

© Jiajun Deng, Yaolong Ju, Jing Yang, Simon Lui, Xunying

Liu. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: Jiajun Deng, Yaolong Ju, Jing Yang,

Simon Lui, Xunying Liu, “Efficient Adapter Tuning for Joint Singing

Voice Beat and Downbeat Tracking with Self-supervised Learning Fea-

tures”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

patterns vital for beat tracking in general. This leads to sev-

eral challenges in developing effective singing voice beat

tracking systems.

First, the existing state-of-the-art music beat tracking

systems deliver poor performances on singing voices due

to the notable inherent disparities between complete mu-

sic songs and singing voices [12]. For example, the tradi-

tional music beat tracking system often learns latent map-

ping based on acoustic clues such as the spectrogram mag-

nitude [13–15], which is often caused by the reoccurring

drums or bass. Such clues, however, are barely present

in singing voices. Inspired by the similarity between the

singing voice and speech [16], the self-supervised learning

(SSL) speech representations are utilized and demonstrate

advantages over spectral features in singing voices [12].

Second, the naturalistic singing voice data is generally

highly non-homogeneous due to its inherent variabilities

from different conditions, such as genres, singers, record-

ing devices, or languages [17]. The resulting high degree

of singing voice heterogeneity may cause a large mismatch

between training and test distributions, which can signifi-

cantly degrade system performances. This issue is partic-

ularly prominent with the singing voice beat tracking that

lacks musical accompaniment, as opposed to music beat

tracking containing rich percussive and harmonic profiles.

To this end, we present a novel singing voice beat and

downbeat tracking system using a temporal convolutional

network featuring SSL representations and adapter tuning.

More specifically, the SSL DistilHuBERT representations

are utilized to capture the essential para-linguistics, se-

mantic, and phonemic level characteristics and are further

fused with the generic spectral features to facilitate beat es-

timations. A series of parameter-efficient adapters are per-

formed to compensate for mismatch arising from the inher-

ent variabilities among diverse singing voice datasets. The

main contributions of the paper are summarized below:

1) To our knowledge, this paper is the first to investigate

the joint beat and downbeat tracking task featuring the fu-

sion of SSL representations and spectral features. In con-

trast, similar prior research was conducted in the context of

only beat estimations [12] or beat/downbeat tracking using

spectral features only [18].

2) Extensive experiments show that the train-test
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.
data distribution mismatch issue presented in the non-

homogeneous singing voice data significantly degrades the

beat-tracking performance, particularly in downbeat esti-

mation. To this end, inspired by the use of parameter-

efficient adaptation techniques in machine learning fields

[19–24], this paper presents the first work that successfully

employs efficient adapter tuning approaches for singing

voice beat-tracking tasks to address the mismatch above.

3) The efficacy of the proposed beat tracking approach

is consistently demonstrated across various public datasets

over the un-adapted baseline beat tracking system. In addi-

tion, the inherent generality of the proposed approach and

the accompanying implementation details outlined in this

paper allow their further application to other beat-tracking

systems or MIR tasks.

2. TCN-BASED BEAT TRACKING SYSTEMS

In this paper, we adopt temporal convolutional network

(TCN) as the backbone for singing voice beat tracking for

two reasons: 1) TCN has shown solid performances in

the traditional beat tracking involving musical accompani-

ment. First proposed by [25], TCN achieved superior per-

formances to the previous SOTA bi-directional LSTM and

has been widely used for beat tracking since then [26, 27].

2) Although SpecTNT has recently outperformed TCN [9],

TCN is still lightweight with way fewer parameters than

SpecTNT, making it easy for deployment and cost-efficient

as commercial applications.

2.1 Architecture

The conventional TCN-based beat tracking system con-

sists of a front-end convolution module and a TCN mod-

ule, connected by a fusion layer shown in Fig. 1 (light grey

box, top). Each convolution layer in the front-end module

has 20 channels, a stride of one, and kernels with various

sizes. Max-pooling, exponential linear unit (ELU) acti-

vation [28], and dropout neural operations are applied to

each convolution layer in sequence. The TCN module is

stacked by ten dilated convolutional layers with exponen-

tially increased dilation factors 20, 21, · · · , 29 resulting in

a large receptive to capture long temporal contexts. Each

dilated convolutional layer contains three dilated convo-

lution blocks, each with different dilation rates (one dila-

tion factor, half the dilation factor, and twice the dilation

factor) and 20 channels. ELU activation and dropout op-

erations are applied to each dilated convolution block, fol-

lowed by an output linear layer shown in Fig. 1 (green box,

top right).

2.2 Multi-task Learning

Based on the above TCN-based architecture, the beat-

tracking task can be cast as a binary classification through

time, for example, classifying the presence or absence of a

beat for each frame. To perform the joint beat and down-

beat tracking in a single system [26,27], an auxiliary down-

beat tracking task by introducing a separate binary classi-

fication linear layer is carried out to produce the down-

beat. Thus a multi-task criterion that interpolates between

the beat and downbeat binary cross entropy (BCE) costs is

adopted for training, which can be formulated as

LMTL = ηLBEAT + (1− η)LDBEAT , (1)

where η ∈ [0, 1] is the tunable hyper-parameter for bal-

ancing the beat BCE cost LBEAT and downbeat BCE cost

LDBEAT . Both beat and downbeat prediction outputs are

post-processed with a dynamic Bayesian network (DBN)

[29–31] to produce the final sequence of predictions [15].

2.3 Input Features

Two types of feature embeddings are fed into the TCN-

based beat-tracking system. The first is the traditional 81-

dim log-magnitude mel-frequency spectrogram features,
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which are widely adopted in the music beat tracking tasks

[9, 27, 32]. Another is the SSL DistilHuBERT features.

DistilHuBERT [33, 34] is a lightweight self-supervised

pre-trained speech foundation model. Its lighter architec-

ture enables faster inference than other pre-trained foun-

dation models. The 768-dim DistilHuBERT feature rep-

resentations extracted from the last HuBERT layer are

proven to serve as beneficial feature embeddings in analyz-

ing singing rhythms [12] due to the acoustic and linguistic

similarities between singing voices and speech.

3. FEATURE FUSION

The process of combining diverse feature representations,

named feature fusion, plays a vital role in determining the

effectiveness of beat-tracking systems [35]. To this end,

several fusion approaches are introduced in this section to

integrate the traditional spectrogram and pre-trained Hu-

BERT feature representations effectively.

3.1 Early Feature Fusion

Early feature fusion is the combination of diverse feature

representations performed early in a neural network [36].

For example, the features are fused at the network’s in-

put layer. Let x = [x1,x2, · · · ,xT ] ∈ R
m×T and u =

[u1,u2, · · · ,uT ] ∈ R
n×T denote the spectrogram and

HuBERT feature representations with T frames, respec-

tively. Two forms of early feature fusion are investigated.

a) Input concatenation refers to directly concatenating

the spectrogram and HuBERT features at the frame level.

The concatenated feature representation z at t-th frame can

be expressed as zt = [xt;ut] ∈ R
n+m.

b) Weighted linear interpolation refers to interpolat-

ing the frame-level spectrogram and HuBERT feature rep-

resentations with a learnable hyper-parameter α ∈ [0, 1].
The interpolated feature representation at t-th frame can be

formulated as zt = αxt+(1−α)Aut, where A ∈ R
n×m

is a learnable projection matrix to enable the dimension of

HuBERT features to be consistent with that of the spectro-

gram features.

3.2 Late Feature Fusion

The combination of diverse features at a later network layer

leads to late feature fusion [37]. This allows the model

to leverage high-level, abstract representations, leading

to more informed decisions and improved performance.

As shown in Fig. 1, the spectrogram and pre-trained Hu-

BERT features are first fed into a separate CNN mod-

ule before being further combined using different fusion

schemes. Let x̂ = [x̂1, x̂2, · · · , x̂T ] ∈ R
k×T and û =

[û1, û2, · · · , ûT ] ∈ R
k×T denote the high-level CNN out-

put hidden representations with T frames using the spec-

trogram and HuBERT features, respectively. The concate-

nation and weighted combination operations can also be

performed in a late fusion style, which is illustrated as a)

late concatenation fusion ẑt = [x̂t; ût] ∈ R
2k and b) late

weighted linear interpolation fusion ẑt = αx̂t+(1−α)ût.

3.3 Factorized Attention Fusion

In order to focus on relevant selective representations while

suppressing less important ones, factorized attention fu-

sion is performed in a late fusion fashion. The SSL hidden

representation at t-th frame ût are first factorized into R
subspace representations [v1

t ,v
2
t , · · · ,v

R
t ] ∈ R

k×R using

a series of parallel linear transforms, which is expressed as

[v1
t ,v

2
t , · · · ,v

R
t ] = [Q1,Q2, · · · ,QR

t ]ût, (2)

where Qr ∈ R
k×k is the linear transformations for r-

th subspace. The spectrogram hidden embedding at t-th
frame x̂t is projected into a R-dim interpolation vector

wt = [w1
t , w

2
t , · · · , w

R
t ] ∈ R

R using a projection matrix

P ∈ R
R×k, which is given as wt = Softmax(Px̂t). Sub-

sequently, the fused feature representation can be obtained

by an attention mechanism [38],

ẑt = Sigmoid(
R∑

r=1

wr
tv

r
t ). (3)

4. PARAMETER EFFICIENT ADAPTATION

A straightforward solution to reduce the mismatch between

training and evaluation distributions is to directly fine-tune

the entire system using the target-domain singing voice

data. However, this adaptation scheme not only encounters

overfitting problems due to the scarcity of singing voices

but also poses key challenges to adaptation parameter stor-

age. Parameter-efficient adaptation approaches [39–41]

that introduce limited adaptation parameters with the orig-

inal model parameters unchanged have been proposed to

tail for the above overfitting and parameter storage issues.

Inspired by this idea, several prominent parameter-efficient

adapters are explored for singing voice beat-tracking sys-

tems in this section.

4.1 Learning Hidden Unit Contributions

Learning hidden unit contributions (LHUC) adaptation is

an effective speaker adaptation solution that accounts for

speaker variation of speech [42]. The basic idea of LHUC

adaptation is to modify the amplitudes of activation out-

puts using a scaling vector. Let rl,e ∈ R
u denote the adap-

tation parameters for the e-th domain in the l-th hidden

layer, where u is the dimension of adaptation parameters.

The adapted hidden output hl,k can be given as

hl,k = hl ⊙ ξ(rl,k), (4)

where hl is the original hidden activation output at the

l-th hidden layer, ⊙ is the Hadamard product operation,

ξ(rl,e) is the scaling vector parameterized by rl,e, and ξ(·)
is the element-wise 2×Sigmoid(·) function with a range of

(0, 2). During adaptation, the adaptation parameters rl,k
for each domain are initialized as zeros vector. An exam-

ple of LHUC adaptation is shown in Fig. 1(a).
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4.2 Bias Adaptation

The bias adapter adaptation [43] adds frame-level bias to

the hidden representation shifts using a domain-dependent

shift vector ve ∈ R
u and a linear layer Cβ , which is shown

in Fig. 1(b). The frames crucial for beat tracking should

be assigned a larger representation shift compared to other

frames. The linear layer produces a frame-level weight

vector β = Cβhl = [β1, β2, · · · , βT ] ∈ R
T , where βt

denotes the weight of the t-th frame hidden representation.

Therefore, the domain-dependent representation shifts ve

can be enhanced by applying frame-level weights, and the

adapted hidden layer output can be expressed as

hl,e = hl + ve ⊗ β, (5)

where ⊗ is the outer product operation, and the outer prod-

uct of shift-vector v and the weight β can be expressed as

ve ⊗ β = [β1ve, β2ve, · · · , βTve] ∈ R
u×T .

4.3 Residual Adapter

Inspired by the residual idea [44], a residual adapter (RA)

with slight modifications is designed for beat tracking. The

adapter starts with a down-linear projection Wd
e ∈ R

r×u,

followed by a non-linear GeLU activation function ζ(·),
and an up-linear projection Wu

e ∈ R
u×r. Let fRA(·;Θl,e)

denote the residual adapter function for e-th domain in the

l-th hidden layer, where Θl,e is the adaptation parameters

for e-th domain. The adapted hidden outputs are given as

hl,k = hl + fRA(hl;Θl,e), (6)

fRA(hl;Θl,e) = LN(DP(Wu
l,eζ(W

d
l,ehl))), (7)

where DP(·) and LN(·) denote the dropout and layernorm

operations, respectively. The adaptation capacity can be

controlled by managing the number of parameters in each

adapter module through controlling the bottleneck dimen-

sion r. An example of an RA adapter is shown in Fig. 1(c).

4.4 Low-rank Adaptation

Instead of the non-parallel nature of adapter modules that

consumes additional GPU time mentioned above, Low-

rank adaptation (LoRA) [45] reduces the number of adap-

tation parameters by learning rank-decomposition matrix

pairs {Wd,Wu} while freezing the original weights. The

LoRA-adapted linear hidden output can be expressed as

hl,k = fLoRA(hl−1;Θl,e), (8)

= (Wo
l +Wu

l,eW
d
l,e)hl−1, (9)

where fLoRA(·;Θl,e) is the LoRA adapter, Wo
l ∈ R

n×u

is the original pre-trained weight matrix, Wd
l,e ∈ R

r×u

and Wu
l,e ∈ R

n×r are the trainable low-rank decomposi-

tion matrices. It is noted that the rank r ≪ min(u, n) is

far less than the dimension of the original matrix, which

allows for reducing the number of adaptation parameters.

An example of a LoRA adapter is shown in Fig. 1(d).

Table 1. Description of the singing voice beat tracking

datasets. † and ∗ represent the music beat tracking dataset

and the music source separation dataset, respectively.

Dataset # Hours # Excerpts Genres

GTZAN† [48] 5.9 754 Blues, Country, Disco, Hiphop, etc.

RWC Pop† [49] 5.4 273 Japanese Pop., etc.

Ballroom† [50] 2.8 313 Rumba, Tango, Waltz, Jive, etc.

Hainsworth† [51] 1.9 173 Jazz, Metal, Rock, Opera, etc.

MUSDB18∗ [52] 6.4 144 Pop., Country, Rock, etc.

URSing∗ [53] 3.4 142 Chinese Pop., etc.

4.5 Estimation of Adaptation Parameters

Let De = {Xe,Y e} denote the adaptation data for

e-th domain, where Xe and Y e stand for the singing

voice waveform and the corresponding beat/downbeat se-

quences, respectively. Without loss of generality and for

simplicity, let Θ denote the original model parameters. In

the context of adaptation, the adaptation parameters Θe

conditioned on the e-th domain can be estimated by mini-

mizing the loss function in Eqn. (1), which is given by

Θ̂e = argmin
Θe

{LMTL(De;Θ,Θe)}. (10)

5. EXPERIMENTS

5.1 Datasets and Evaluation Metrics

To the best of our knowledge, there are no publicly avail-

able datasets that include pristine vocal audio alongside

beats and downbeats annotations. Annotating beats and

downbeats based solely on vocal signals can be arduous

and subjective, even by human experts, since there are no

evident rhythmic cues like percussive instruments to accu-

rately comprehend the singer’s rhythmic intentions.

Therefore, we follow the strategy described in [12] to

utilize the existing public MIR datasets and systems to

create the singing voice data with beat/downbeat annota-

tions. This includes a) four music beat tracking datasets

with available beat annotations, where the singing signals

are extracted by the Demucs source separation model [46],

and b) two music source separation datasets with avail-

able isolated singing tracks, where the preliminary beats

and downbeats annotations are generated by the existing

TCN-based beat tracking system [25] using the full music

mix (singing with musical accompaniment), then manual

revision is further performed to correct the potential anno-

tation errors. Altogether, six datasets are used in this paper

as shown in Table 1, where a silence-stripping technique

is applied to each dataset to remove the long chunks of si-

lence. The 90% of the whole data randomly selected from

a uniform distribution is used for training, while the re-

maining 10% is used for evaluation. The evaluation metric

of F1-score with a tolerance window of ±70 ms, a typical

setting commonly used in the traditional beat tracking [25],

is adopted for our performance evaluation. We also adopt

P-score, Cemgil, and Goto [47] as additional evaluation

metrics to further demonstrate the advantages of the pro-

posed approaches in the final experiments (Table 4).
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Table 2. Beat and downbeat tracking performance of TCN

systems using different feature fusion methods evaluated

on the GTZAN, RWC pop (RWCPO), and MUSDB18

(MUSDB) datasets in terms of F1-score.

ID Input Features Fusion Methods GTZAN RWCPO MUSDB

Beat/Downbeat Tracking F1 Scores

1 Spectrogram - 0.48/0.26 0.65/0.53 0.31/0.15

2 DistilHuBERT - 0.74/0.47 0.76/0.68 0.38/0.17

3

Spectogram

&

DistilHuBERT

Input Concatenation 0.78/0.56 0.83/0.79 0.41/0.25

4 Input Weighted 0.77/0.55 0.86/0.81 0.43/0.25

5 Late Concatenation 0.81/0.53 0.87/0.81 0.45/0.25

6 Late Weighted 0.79/0.58 0.88/0.84 0.47/0.26

7 Factorized Attention 0.80/0.51 0.91/0.82 0.48/0.23

5.2 Implementation Details

Two feature extractors, including the mel-spectrogram fea-

ture extractor and the pre-trained SSL DistilHuBERT fea-

ture extractor [34], are employed to generate the 81-

dimensional spectral features and 768-dimensional SSL

feature representations of vocal signals. In this paper, the

vocal signals of all datasets are resampled to 16000 Hz. As

illustrated in Section 2, the temporal convolution network

consists of a front-end convolution and TCN modules. The

front-end convolution module tailored for late feature fu-

sion consists of a 3-layer convolution network1 and a 5-

layer convolution network2 for processing the spectral and

SSL feature representations, respectively. The kernel size

and stride for the Max-pooling operation are 1 × 3 for all

convolution layers. The TCN module consists of ten di-

lated convolution layers, wherein the dilation factors in-

crease exponentially.

During the TCN-based beat tracking system training,

all weights of the system are randomly initialized. The

Ranger optimizer [54] with an initial learning rate of 0.001,

the ReduceLRonPlateau scheduler with a factor of 0.9 and

patience of 5, and a dropout rate of 0.1 are used for training

and adaptation. The training and adaptation epochs are set

as 100 and 30, respectively. The hyper-parameter of multi-

task learning in Eqn. (1) is empirically set as η = 0.2.

Since the ratio of positive and negative examples in the

beat-tracing task is often imbalanced, the weighted binary

cross-entropy loss is applied, and the weights of positive

examples for the beat and downbeat costs are set to be 10
and 20, respectively.

5.3 Performance of Feature Fusion

Table 2 shows the beat and downbeat tracking F1 scores

of TCN systems using different feature representation fu-

sion methods. Several important findings can be observed.

a) The systems using SSL DistilHuBERT features (ID.2)

show better F1 performance than those using the traditional

spectral features (ID.1) in all three evaluation sets. This

demonstrates that the semantic information captured by

SSL speech representation is crucial for singing voice beat

1 The channel, kernel size, stride, and padding of Conv2D used in 3-
layer convolution network for each convolution layer are {20, 20, 20},
{3x3,1x12,1x3}, {1,1,1} and {1x0, 0x0, 1x0} respectively.

2 The channel, kernel size, stride, and padding of Conv2D used in
5-layer convolution network for each convolution layer are {20, 20,
20, 20, 20}, {3x3,1x12,1x3,3x3,1x12,3x3}, {1,1,1,1,1} and {1x0, 0x0,
1x0,0x0,1x0} respectively.
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Figure 2. F1-score of the beat (upper) and downbeat (bot-

tom) tracking when training data and test data are collected

from the same (diagonal value) or different sources.

tracking. b) All systems that leverage feature fusion ap-

proaches (ID.3-7) outperform the systems using only one

single spectral (ID.1) or SSL feature (ID.2). This confirms

our motivation that spectral and SSL features are comple-

mentary as they capture different characteristics of vocal

signals. c) The late weighted linear interpolation fusion

method (ID.6) achieves the best F1 results on the down-

beat tracking and competitive beat tracking performance

among all fusion approaches, therefore we selected it for

the following experiments.

5.4 Performance of Adaptation

The mismatch across different datasets is revealed in

Fig. 2. a) When the system is trained on singing voice

data from the same source as the test data, the best beat

and downbeat tracking performance are obtained (diagonal

value). b) The mismatch between training and test distribu-

tions (non-diagonal) significantly degrades the beat track-

ing performance, especially in downbeat tracking. This

confirms our assumption that the mismatch across differ-

ent datasets is particularly prominent in singing voice beat

tracking due to the lack of robust rhythmic and harmonic

patterns. Therefore, mismatch is an essential issue that

needs to be addressed in multi-condition training.

Table 3 shows the beat and downbeat tracking per-

formance of the TCN systems configured with different

adapters using only DistilHuBERT features. Several trends

can be found. a) It is not surprising that multi-condition

systems (ID.2) trained on all six datasets do not always

outperform the in-domain systems (ID.1) trained on the

well-controlled data from the same source as test data

because of the mismatch issue. This demonstrates that
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Table 3. Beat and downbeat tracking performance of TCN systems configured with different adapters on the GTZAN,

RWCPO, Ballroom (BROOM), Hainsworth (HAINS), MUSDB, and URSing (URSIN) datasets in terms of F1-score.

ID Systems
Adapter Datasets

Method Location # Params GTZAN RWCPO BROOM HAINS MUSDB URSIN

Beat/Downbeat Tracking F1-scores

1 In-domain - - - 0.74/0.47 0.76/0.68 0.75/0.54 0.40/0.17 0.38/0.17 0.62/0.29

2 Multi-condition - - - 0.78/0.57 0.89/0.45 0.72/0.43 0.50/0.33 0.53/0.25 0.61/0.22

3

Multi-condition

with

Adaptation

Fine-tune ALL Layers 100% 0.80/0.59 0.91/0.82 0.80/0.57 0.54/0.38 0.55/0.38 0.72/0.34

4 LHUC First CNN Layer 5% 0.78/0.56 0.88/0.59 0.72/0.46 0.50/0.33 0.53/0.26 0.62/0.25

5 BIAS First CNN Layer 10% 0.79/0.57 0.89/0.61 0.71/0.47 0.52/0.35 0.55/0.31 0.62/0.24

6 LoRA First CNN Layer 20% 0.80/0.62 0.90/0.68 0.78/0.56 0.54/0.37 0.56/0.38 0.66/0.33

7 RA First CNN Layer 20% 0.80/0.65 0.91/0.80 0.80/0.57 0.58/0.43 0.58/0.41 0.68/0.38

8 RA Second CNN Layer 10% 0.78/0.60 0.90/0.77 0.76/0.56 0.57/0.41 0.55/0.40 0.68/0.35

9 RA Third CNN Layer 5% 0.79/0.62 0.90/0.78 0.76/0.56 0.57/0.39 0.55/0.40 0.68/0.33

Table 4. Beat and downbeat tracking performance of the proposed TCN systems incorporating fusion and adapters.

ID Systems Input Features
Feature

Fusion
Adapter

Beat Tracking Downbeat Tracking

F1 P-score Cemgil Goto F1 P-score Cemgil Goto

1 Multi-condition Spectrogram ✗ ✗ 0.497 0.541 0.410 0.429 0.254 0.420 0.212 0.256

2 Multi-condition DistilHuBERT ✗ ✗ 0.656 0.681 0.565 0.561 0.389 0.501 0.351 0.370

3 Proposed Spec. & HuBERT ✓ ✗ 0.774 0.756 0.684 0.703 0.524 0.603 0.487 0.520

4 Proposed Spec. & HuBERT ✓ ✓ 0.813 0.801 0.713 0.757 0.678 0.692 0.621 0.663

blindly expanding the training data is insufficient to en-

hance the system’s generalization. b) All systems con-

figured with adapters (ID.4-7) improve the performance

over both multi-condition systems (ID.2) and in-domain

systems (ID.1), which suggests that parameter-efficient

adapter tuning methods can address the mismatch issue ef-

fectively. c) The residual adapter (RA) (ID.7) applied at the

first CNN layer achieves the best results relative to other

adaptation approaches. It is noteworthy that RA adapta-

tion using only 20% of adaptation parameters shows com-

parable performance to fully fine-tuned techniques (ID.3).

In addition, the observation that the performance gain of

downbeat tracking is greater than that of beat tracking is

consistent with our finding in Fig. 2 that the downbeat

tracking performance is more sensitive to the mismatch

issue. d) When incorporating adapters into the second

or third CNN layer (ID.8,9), with acceptable performance

degradation, RA adaptation delivers a much lighter archi-

tecture with fewer parameters.

5.5 Performance of The Proposed Method

The advantages of the proposed method incorporating both

late weighted linear interpolation feature fusion and RA

adapter are demonstrated in Table 4. The evaluation results

are the overall performance of all six evaluation sets using

micro averaging. Two main observations can be found.

First, the multi-condition system using the proposed

feature fusion approaches (ID.3) still outperforms the sys-

tems (ID.1,2) using only one spectral or SSL feature. Of

particular interest, this system (ID.3) is compared to the

existing singing voice beat tracking system [12], where the

same evaluation protocol is followed by using the entire

5.9-hrs GTZAN dataset for testing3. As a result, our sys-

tem achieved beat tracking F1-score of 0.784 on GTZAN, a

significant 5.1% absolute improvement compared to 0.733

3 The remaining five datasets are therefore used for training our sys-
tem, which is less data compared to [12].

from [12] even using less training data.

Second, consistent performance improvements across

all evaluation metrics are observed when the adapter tun-

ing scheme (ID.4) is applied. Overall significant F1-score

improvements of up to 31.6% and 42.4% absolute were

obtained over the baseline un-adapted system using only

one feature on the beat and downbeat tracking, respec-

tively. In particular, the beat/downbeat performances of

0.87/0.78, 0.95/0.87, 0.85/0.75, 0.66/0.49, 0.68/0.49,

and 0.79/0.41 are achieved by the proposed approach

(ID.4) on the test split of GTZAN, RWC pop, Ballroom,

Hainsworth, MUSDB, and URSing datasets, respectively.

6. CONCLUSIONS

This paper proposed a temporal convolution network based

beat-tracking framework featuring self-supervised learning

(SSL) representations and efficient adapter tuning to track

the beat and downbeat of singing voices jointly. Feature fu-

sion strategies were performed to leverage the advantages

of the generic spectral and SSL speech feature representa-

tions. Efficient adapter tuning was utilized to mitigate the

sources of variabilities of the non-homogeneous singing

voice data. Experimental results showed that the proposed

approach significantly outperforms the un-adapted base-

line system using only spectral or SSL features. The in-

herent generality of the proposed approaches allows their

further application to other beat-tracking systems or MIR

tasks. Future work will focus on solving the data sparsity

issue of the singing voice beat tracking task.
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ABSTRACT

Are composers’ emotional intentions conveyed to lis-

teners through audio features? In the field of Music Emo-

tion Recognition (MER), recent efforts have been made

to predict listeners’ time-varying perceived emotions us-

ing machine-learning models. However, interpreting these

models has been challenging due to their black-box na-

ture. To increase the explainability of models for subjec-

tive emotional experiences, we focus on composers’ emo-

tional intentions. Our study aims to determine which audio

features effectively predict both composers’ time-varying

emotions and listeners’ perceived emotions. Seven com-

posers performed 18 piano improvisations expressing three

types of emotions (joy/happiness, sadness, and anger),

which were then listened to by 36 participants in a labo-

ratory setting. Both composers and listeners continuously

assessed the emotional valence of the music clips on a 9-

point scale (1: ‘very negative’ to 9: ‘very positive’). Linear

mixed-effect models analysis revealed that listeners signif-

icantly perceived the composers’ intended emotions. Re-

garding audio features, the RMS was found to modulate

the degree to which the listener’s perceived emotion resem-

bled the composer’s emotion across all emotions. More-

over, the significant audio features that influenced this re-

lationship varied depending on the emotion type. We pro-

pose that audio features related to the emotional responses

of composers-listeners can be considered key factors in

predicting listeners’ emotional responses.

1. INTRODUCTION

Music holds the power to convey emotions and evoke

strong emotional responses in its listeners. There is a grow-

ing interest in utilizing Music Emotion Recognition (MER)

systems for personalized music experiences, such as mu-

sic recommendations, automated music generation, and di-

verse multimodal experiences. However, identifying the

© E.J. Oh, H. Kim, and K.M. Lee. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). At-

tribution: E.J. Oh, H. Kim, and K.M. Lee, “Which audio features can

predict the dynamic musical emotions of both composers and listeners?

”, in Proc. of the 25th Int. Society for Music Information Retrieval Conf.,

San Francisco, United States, 2024.

variables that effectively predict listeners’ emotional ex-

periences is a challenging problem due to the complexity

of its mechanisms [1]. While recent MER studies employ

machine learning techniques to predict emotions based on

dynamic listener annotations [2, 3], they often lack an in-

terpretation of the underlying factors driving emotions.

This study aims to explain the prediction of musi-

cal emotions by empirically investigating the relationship

between the composer’s intended emotion, the listener’s

perceived emotion, and various audio features of music

through time-series data. We specifically focus on the

composer’s emotional intentions during the music creation

process, prior to listener exposure.

1.1 Background

MER tasks are inherently user-centered [4], bringing re-

searchers from interdisciplinary fields such as musicology,

cognitive science, and computer science. A range of fac-

tors, including individual traits (e.g., personality, mood

regulation strategies, etc.) and musical elements (e.g.,

timbre, rhythm, harmony, etc.) [1], can impact the MER

systems, posing challenges for enhancing model perfor-

mance. Many MER studies rely on emotion datasets where

listeners annotate their perceived or felt emotions [5, 6].

Given this, the outcome of the study can be significantly

influenced by the taxonomy used to define emotions and

the methods used to identify listeners’ annotations [4, 7].

While previous studies have often relied on discrete emo-

tion ratings [8–11], the latest trends favor continuous as-

sessments that capture emotional fluctuations during music

listening, reflecting the nature of music experiences [2, 3].

Recent studies on Music Emotion Recognition (MER)

face several limitations. First, they often overlook the

potential influence of emotions expressed by composers

or performers on listeners’ emotional experiences. Sec-

ond, MER models commonly encounter challenges in ac-

curately predicting valence compared to arousal [3].

The emotional intentions of composers/performers can

play an important role in predicting listeners’ emotions,

but their significance is often underestimated. Composers

or performers express their emotions through musical fea-

tures such as tempo, dynamics, and timbre [12–14]. Lis-

teners then perceive these cues and interpret the emotions

conveyed by the music. When the emotions perceived by
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the listener align closely with those expressed by the com-

poser or performer, it can foster a strong connection be-

tween the listener and the composer/performer, which can

positively impact listeners’ emotional experiences [15].

This connection can also be observed in physiological re-

sponses; a previous study [16] has shown that the similar-

ity of brain activity between audiences and violinists can

predict the audiences’ fondness for the performance.

Taken together, the relationship between listeners’ and

composers/performers’ emotions is highly correlated with

the emotional responses that listeners experience from mu-

sic, such as music engagement and enjoyment. Therefore,

we propose that composers’ intentions may play an im-

portant role in MER systems that seek to predict listeners’

emotions. To determine the impact of composers’ inten-

tions on predicting listeners’ perceived emotions, we aim

to compare prediction outcomes using only audio features

against those utilizing both audio features and composers’

emotional intentions.

Despite the potential importance of this relationship,

there is a lack of research exploring the link between lis-

teners and musical intentions. While some studies investi-

gated how accurately emotional intentions were conveyed

to listeners through discrete emotion ratings [8, 17, 18],

there is a need to investigate the dynamic emotional re-

sponses of composer/performer and listener as the music

unfolds over time.

1.2 Research Question

To examine the predictive role of audio features and emo-

tional intentions in shaping listeners’ perceived emotions,

as well as the significance of time-varying emotional data

in this context, we set the following research questions:

RQ1. Do the predictors of listeners’ perceived emotions

(audio features and composer’s emotions) vary based on

the methodology, discrete vs. dynamic emotional ratings?

RQ2 Which audio features predict the dynamics of the

composer/performer’s emotional intentions and listener-

perceived emotions, respectively?

RQ3 Which audio features reflect both the com-

poser/performer’s and listeners’ emotions?

To address these questions, we initially recruited com-

posers to create emotionally expressive piano improvisa-

tions. We then collected composers’ real-time assessments

of the emotions they intended to convey during their per-

formances. The emotional valence scale was only used

for the assessments to reduce the complexity of predicting

emotions. This approach may reduce cognitive overload

for lay participants, who might find 2D emotion mapping

(arousal-valence) unfamiliar.

For listeners’ emotional data, we played the composers’

music clips and instructed listeners to continuously infer

the expressed emotion. Audio features were extracted via

the librosa library, including root-mean-square (RMS), flat-

ness, zero-crossing, spectral centroid, and roll-off, chosen

based on previous research on audio features and emo-

tions [3, 9, 19].

We employed Linear Mixed-Effects (LME) models for

multi-level regression analysis, which are suitable for

handling hierarchical, non-independent time-series data.

By accounting for variability within and between music

clips, we investigated whether listeners effectively cap-

tured changes in the composer’s intentions, independent of

the specific characteristics of individual clips [20].

2. MATERIALS

2.1 Composers’ Emotion Data

2.1.1 Participants

We recruited eight composers from various composition

departments in the College of Music, Republic of Korea (4

males and 4 females, M = 26.88, SD = 1.73). These partic-

ipants were either undergraduate students or recent grad-

uates with a bachelor’s degree in Western classical music

composition. On average, they had 14.13 years of formal

music training (SD = 5.72), with an average of 10.25 years

of piano experience (SD = 3.28). All composers had prior

experience in improvised performances.

2.1.2 Music Performance Setting

Composers were instructed to prepare three semi-

improvised piano performances, each lasting 1-2 minutes,

expressing primary emotions: joy/happiness, sadness, and

anger. These emotions were chosen based on prior liter-

ature [10, 20–22] for their distinctiveness in conveying or

interpreting emotions through music.

Performances took place in a soundproof booth using a

Casio Contemporary CDP-120 digital keyboard, with de-

fault piano sound and fixed volume settings. Video record-

ings were made using a Canon EOS 5D Mark IV Full

Frame DSLR, capturing audio via the built-in microphone.

The recordings were in .mp4 format, with a resolution of

1920 x 1080, 25 fps, and an audio sampling rate of 48 kHz.

2.1.3 Recording Procedure

Composers were briefed about the experiment and pro-

vided consent. They had 15 minutes to prepare, followed

by a 30-second sample performance for technical setup.

The order of recording for the three performances was ran-

domized, with breaks between each to refresh emotions.

After each performance, composers rated their ex-

pressed emotions using arousal, valence, and dominance

on a 9-point Likert scale (discrete ratings). Following the

recording session, they watched videos of themselves in a

randomized order, continuously rating the emotions they

expressed during the performance on a 9-point valence

scale (1: ‘very negative’ - 9: ‘very positive’) in real-time,

mirroring the setup described in Section 3.2.

2.1.4 Music Selection

Twenty-four music clips were initially recorded, featuring

performances of three emotions by eight composers. Five

authors and colleagues participated in the decision-making

process for music selection. The selection criteria ensured
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joy/happiness sadness anger

arousal 6.33 (2.16) 3 (1.87) 7.57 (1.27)

valence 8.33 (0.82) 3.6 (0.55) 2.14 (0.69)

dominance 6.17 (1.94) 4.8 (1.64) 7.71 (1.60)

Table 1. The mean (SD) scores of emotion provided by

composers for the final 18 music clips (n = 6 for each emo-

tion). They were assessed with a 9-point Likert scale.

that 1) each clip effectively conveyed its intended emo-

tion (e.g., a performance expressing sadness was excluded

since some researchers felt it was positive valenced music)

and 2) was free from distracting noise (e.g., the sound of

fingernails on keyboards). An equal distribution of male

and female composers per emotion was maintained result-

ing in 18 chosen clips (six per emotion) from four males

and three females.

All 18 clips were pre-processed using Adobe Premiere

Pro, ensuring .wav format, 44.1 kHz sampling rate, 16-

bit depth, stereo, and normalization according to ITU

BS.1770-3 standards 1 . The mean clip length was 97.5

seconds (SD 14.50), ranging from 73 to 125 seconds. The

mean scores of discrete emotional ratings provided by

composers are shown in Table 1.

2.2 MIR Audio Features

To select the audio features, we reviewed prior research

on emotion perception and acoustic features. Studies

highlighted the importance of timbre, tempo, mode, har-

mony, loudness, and pitch in emotional communication

[2, 9, 23, 24]. In particular, tonality, pitch, harmony, ar-

ticulation, and timbre (e.g., brightness, roughness) were

crucial for predicting emotion valence [25, 26]. Machine-

learning methods have shown that valence emotion predic-

tion models achieve high explanatory power when incor-

porating spectral [3, 19] and rhythmic features [19] avail-

able in the librosa package [27]. Based on this, we used

librosa to extract audio features from 18 music clips, fo-

cusing on loudness (root-mean-square; RMS), timbre (flat-

ness, zero-crossing, spectral centroid, and roll-off ), har-

mony (Mel-Scale Frequency Cepstral Coefficients; MFCC,

chroma, spectral contrast), and rhythm (dynamic tempo).

To compare audio features with 2D data (time-valence) of

composers’ and listeners’ emotional ratings, we selected

five features: RMS, flatness, zero-crossing, spectral cen-

troid, and roll-off. These features were computed using

non-overlapping 500 ms windows to match the 2 Hz sam-

pling rate of the emotional ratings.

2.3 Linear Mixed-Effect Models

The linear mixed-effects (LME) model to predict the dy-

namics of listeners’ perceived emotions based on com-

posers’ emotional intentions is formulated as:

1 Sample music clips and supplementary materials are
available at https://osf.io/4dcxu/?view_only=

3f1d818e5c4f4e698ebca357daa656cc.

yij = α+ βxij + ai + bixij + ϵij (1)

This equation describes how listeners’ perceived emo-

tions (yij) relate to composers’ emotional intentions (xij)

for each music clip (i) at each time point (j). α, β, ai,

and bi represent the intercept, coefficient for composers’

emotional intentions, random intercept for each clip, and

random slope for composers’ emotional intentions within

each clip, respectively. Terms (ai, bi) follow a bivariate

normal distribution, while ϵij represents the residual error.

To investigate the influence of a specific audio feature

on this relationship, we employed a LME model:

yij = α+ β1xij + β2 · featureij+

β3xij · featureij + ai + bixij + ϵij
(2)

The terms yij and xij represent listeners’ perceived

emotions and composers’ emotional intentions, respec-

tively, for each music clip (i) at each time point (j). α,

β1, β2, and β3 denote the intercept, composer’s emotional

intention coefficient, audio feature coefficient, and their in-

teraction coefficient. Random intercept (ai) and slope (bi)

account for variation within each clip, while ϵij represents

the residual error.

3. EXPERIMENT

3.1 Participants

We recruited 36 participants (19 males, 17 females; mean

age 26.06, SD 3.56) through campus mail and online bul-

letin boards. Except for one participant, who held a mas-

ter’s degree in piano performance, all others were non-

musicians. On average, they had about 5.81 years of musi-

cal training (SD 3.91).

To minimize cultural influences on emotional judg-

ments, only native Korean speakers were included in the

experiment. Participants had to meet certain criteria: aged

20 or older, normal vision and hearing, no hand movement

disabilities, no diagnosed neurological or psychiatric con-

ditions, and no current use of psychiatric medications.

3.2 Emotional Ratings

The experiment was primarily designed to examine the

modality effects on musical emotion inference [28, 29].

Using a counterbalanced design, each participant rated six

out of 18 music clips per modality (audio-only, video-

only, and video-and-audio), with two clips per emotion

(joy/happiness, sadness, and anger). This resulted in 216

emotional ratings for each modality and a total of 648 rat-

ings collected across all clips. We used the 216 emotional

ratings from the audio-only condition for the analysis to

investigate listeners’ emotional experiences during music

listening in a more ecological setting.

The dynamic emotional rating task was conducted using

PsychoPy software, mirroring the dynamic emotional rat-

ings by composers described in Section 2.1.3. Participants,
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Figure 1. Screenshot of participants’ emotional rating task

on a valence scale (1: ‘very negative’ and 9: ‘very posi-

tive’, labels in Korean).

referred to as listeners, were instructed to infer the emo-

tional states of composers expressed in the music. While

listening, listeners moved a red dot (initially positioned

at 5) along a valence scale (1: ‘very negative’ - 9: ‘very

positive’) whenever they perceived a change in the com-

poser’s emotional state [20, 30] (see Figure 1). Ratings

were recorded at a sampling rate of 2 Hz, with timestamps

every 0.5 seconds.

After each clip, participants evaluated their psycholog-

ical state using a 9-point Likert scale for arousal, valence,

dominance, flow, and empathy. These assessments aimed

to minimize the influence of previous emotional experi-

ences on subsequent ratings, and the results were not in-

cluded in this paper.

3.3 Experiment Procedure

Participants arrived at the lab, completed consent forms,

and filled out questionnaires about their music experience.

In a soundproof booth, they then performed an emotional

inference task. After a practice trial, they listened to six

predetermined music clips, inferring the composer’s ex-

pressed emotion by adjusting a red circle on a scale. Fol-

lowing each clip, they answered five questions about their

psychological state and could take breaks. The task was

conducted using headphones, with participants adjusting

the volume to their preference.

3.4 Data Analysis

All behavior ratings were interpolated using the scipy

package in Python to maintain consistent time intervals.

Silent sections were manually removed from the begin-

ning and end of each audio file before analysis. Audio

features were normalized between 0 and 1 at the com-

poser level using min-max normalization. We found strong

multicollinearity between spectral centroid and roll-off, so

the roll-off feature was excluded from the final analysis to

avoid potential overfitting.

For the analysis of listeners’ perceived emotions, we

selected one representative emotional rating from the re-

sponses of 12 listeners for each music clip. The represen-

tative value was calculated as the median of 12 ratings for

each time point of each clip (see Figure 2). Thus, one time-

Figure 2. Emotional ratings for a sample joy/happiness

music clip: time (x-axis), valence (y-axis, 1: ‘very nega-

tive’ to 9: ‘very positive’). Red line shows the composer’s

ratings, black line the median of 12 listeners, and gray lines

individual listener ratings.

series data per music stimulus was used for data analysis

as listeners’ emotions. This means that each music clip

retained one composer emotion rating, one listener rating,

and four audio features. Additionally, the average of lis-

tener ratings was used as discrete emotions for comparison

with composers’ discrete ratings and audio features, as lis-

teners’ discrete ratings were not collected (see section 4.2).

Intra-class correlation (ICC) was computed to assess

agreement over time among the listener data using the

‘ICC’ function in the R package psych. A two-way mixed,

average score ICC was employed for consistency in the

12 valence ratings, following prior research on continuous

emotional annotations [2, 31]. The results of this analysis

can be found in the supplementary material.

Linear mixed-effects (LME) models were fitted using

the lme4 [32] and the lmerTest package [33] in R. Ran-

dom effects were included in the model structure, and it

was found that the random slope of composers’ emotions

significantly improved the model fit. The random slope

was added since the relationship between listeners’ per-

ceived emotions and composers’ expressed emotions may

vary depending on the music clips.

4. RESULTS

4.1 Composers-Listeners Discrete Emotions

To assess the predictability of listeners’ perceived emo-

tions using discrete values, we used an LME model anal-

ysis. The dependent variable was the average emotional

rating from listeners’ representative data per music clip.

We compared two models: Model 1 used four audio

features (RMS, flatness, zero-crossing, and spectral cen-

troid; the average value of each music clip) as predictors,

while Model 2 added composers’ discrete emotional rat-

ings (arousal, valence, and dominance) with four audio

features. P-values for fixed effects were obtained using

Satterthwaite’s approximations, and confidence intervals

were computed using the Wald method. Refer to the sup-

plementary material for detailed results of each model.

Model 1 showed that all four audio features sig-
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Figure 3. Plot of the effect size of two models.

Metric Model 1 Model 2 P-value

MAE 2.11 1.17 0.012*

MSE 6.29 2.10 0.009**

RMSE 2.24 1.33 0.009**

MAPE 0.62 0.32 0.012*

Table 2. The mean metric values of each model’s leave-

one-song-out cross-validation for 18 music stimuli. The

values were compared using the Wilcox signed-rank test.

nificantly predicted listeners’ perceived emotions (see

Figure 3). In Model 2, only composers’ arousal and va-

lence were significant predictors, with no significant fixed

effects for the audio features (see Figure 3). Using leave-

one-song-out cross-validation, we confirmed that Model

2 predicted more accurately than Model 1, even for un-

seen data (see Table 2). This is indicated by its bet-

ter performance across four metrics: mean absolute error

(MAE), mean squared error (MSE), root mean squared er-

ror (RMSE), and mean percentage error (MPE).

4.2 Composers-Listeners Continuous Emotions

4.2.1 All Emotions

The relationships between dynamic composers’ emotional

intentions and listeners’ perceived emotions were analyzed

with an LME model (Equation 1 from Section 2.3). The

dependent variable was listeners’ emotional representative

ratings, and composers’ emotion ratings served as the pre-

dictor across all music clips (total observations, N = 3438;

music clips, N = 18). The LME analysis revealed that com-

posers’ emotional intentions significantly predicted lis-

teners’ perceived emotions (beta = 0.26, p < 0.001; see

Figure 4). Separate analyses for each emotion indicated

a significant association between composer-listener emo-

tions except for joy/happiness (p = 0.144).

4.3 Audio Features & Musical Emotions

LME models were employed to predict composers’ and

listeners’ emotions (see Table 3). For composers’ emo-

tions, spectral centroid significantly predicted all emotions

(beta = 0.74, p < 0.001) and for joy/happiness, RMS, zero-

crossing, and spectral centroid were significant predictors

(RMS: beta = 0.60, p < 0.001; zero-crossing: beta = -1.11,

p < 0.001; spectral centroid: beta = 1.09, p = 0.020). For

Figure 4. Plot showing listeners’ emotions predicted by

composers’ emotions, with a regression line indicating a

slope (beta = 0.26) of the fixed effect for composers.

sadness, RMS was significant (beta = -0.33, p = 0.016),

and for anger, RMS and spectral centroid were significant

predictors (RMS: beta = -0.35, p = 0.042; spectral centroid

(beta = 1.51, p < 0.001).

In the LME model predicting listeners’ emotions,

adding composers’ emotional ratings with audio features

significantly improved the model fit across all 18 music

clips and for each emotion-specific model. RMS con-

sistently predicted listeners’ emotions, and zero-crossing

emerged as a significant predictor for anger music (beta =

0.38, p = 0.045).

4.3.1 All Emotions

Building on previous findings, we explored whether audio

features that significantly predicted composers’ and listen-

ers’ emotions could simultaneously predict both subjects’

emotions (Equation 2 from Section 2.3). An LME model

with listeners’ ratings as the dependent variable, and com-

posers ratings, RMS, and their interaction term for predic-

tors (N total observations = 3438; AIC = 5970.1, LogLik =

-2977.0), outperformed the model in Section 4.2.1 (X2 =

57.24, p < 0.001).

All fixed effects terms were statistically significant in

predicting listeners’ emotions, particularly the interaction

term between composer ratings and RMS (beta = 0.15,

p < 0.001). This suggests that the relationship between

composer and listener emotions varied significantly with

changes in RMS levels (see Figure 5), highlighting RMS’s

role in modulating both composer and listener emotions.

Conversely, the interaction term with spectral centroid was

not statistically significant (beta = -0.06, p = 0.055).

4.3.2 Joy/Happiness

As in Section 4.3.1, we assessed interaction terms between

audio features and composers in LME models for each

emotion, focusing on joy/happiness. Using RMS, zero-

crossing, and spectral centroid as predictors, each includ-

ing an interaction term with composer ratings. Results in-

dicated statistically significant interaction effects across all

models: composer x RMS (beta = -0.55, p < 0.001), com-

poser x zero-crossing (beta = 0.58, p < 0.001), and com-

poser x spectral centroid (beta = 0.74, p < 0.001).
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Composer Listener Composer & Listener

All Emotions Spectral centroid Composer, & RMS RMS

Joy/Happiness RMS, Zero-crossing, & Spectral centroid Composer, & RMS RMS, Zero-crossing, & Spectral centroid

Sadness RMS Composer, & RMS -

Anger RMS, & Spectral centroid Composer, RMS, & Zero-crossing RMS, & Zero-crossing

Table 3. Significant predictors included four audio features for composers’ emotional intentions and listeners’ perceived

emotions. Composers’ emotions were added as predictors in the models predicting listeners’ emotions.

Figure 5. An interaction plot illustrating the model pre-

dicting listeners’ emotions with composers’ emotions and

RMS. The solid line depicts the slope of the fixed effect of

composer, varying with changes in RMS values.

4.3.3 Sadness

For sadness, an LME model was fitted with the RMS fea-

ture and the interaction term between RMS and composer

as predictors. The results showed that neither the inter-

action term (p = 0.409) nor the fixed effect of the RMS

feature (p = 0.365) were statistically significant.

4.3.4 Anger

The LME model for anger music included fixed effects

and interaction terms for RMS, zero-crossing, and spectral

centroid features. Results showed that the interaction terms

for RMS (beta = -0.32, p < 0.001) and zero-crossing (beta

= 0.53, p < 0.001) were statistically significant. However,

the spectral centroid model did not show significant results

upon model comparison (p = 0.222).

5. DISCUSSION

In this study, we employed linear mixed-effects (LME)

models to explore how spectral features of music predict

both the composer’s real-time intended emotional expres-

sion during piano improvisations and the listener’s per-

ceived emotion. This included gathering emotional ratings

empirically from composers and also listeners on a valence

scale. We then examined the relationship between these

ratings and the features extracted from the music clips.

We found that composers’ emotional intentions were

conveyed to listeners’ perceptions of musical emotions.

Discrete emotional ratings showed that composers’ inten-

tions were stronger predictors of listeners’ perceived emo-

tions than other audio features. Conversely, continuous

emotional data emphasized the importance of both com-

posers’ intentions and RMS features. These results un-

derscored the impact of emotional assessment methodolo-

gies, suggesting that discrete emotion ratings may over-

look acoustic cues conveying composers’ intentions.

Overall, RMS was identified as a primary predictor

for conveying composers’ intentions and also served as

an indicator of listeners’ emotional perceptions. While

RMS was the key feature for predicting listeners’ emo-

tions, the features that indicated composers’ emotions var-

ied with different emotional categories. For joy/happiness

and anger, the spectral centroid emerged as the main pre-

dictor of the composers’ intentions, likely due to its associ-

ation with timbral brightness, which helps detect changes

in the valence [26].

Our findings highlight RMS as a crucial audio feature

for predicting the emotions of both composers and listen-

ers. RMS was strongly associated with emotional dynam-

ics in joy/happiness and anger, but not in sadness. This is

consistent with prior research [9], which also found RMS

to be an effective predictor of happiness and anger, but

not sadness. Additionally, zero-crossing emerged as a sig-

nificant predictor of the emotional relationship between

composers and listeners for both joy/happiness and anger,

further aligning with the findings of previous studies on

speech emotion recognition [34].

However, we found no audio features capable of pre-

dicting composer-listener emotions for sadness, which typ-

ically involves lower arousal compared to joy/happiness

and anger. In music with low arousal, features related to

valence may not be as prominent. For instance, in sad mu-

sic, changes in loudness (i.e., RMS) may not be as pro-

nounced as in joy/happiness or anger, thus potentially not

serving as cues for both composers’ emotional intentions

and listeners’ perceptions of valence.

Future research should further explore more audio fea-

tures related to other musical factors (e.g., tempo, pitch,

harmony, etc.) that are known to be associated with emo-

tional experiences in music. Additionally, it is needed to

determine whether the features identified in this study en-

hance the performance of MER models. Expanding the

sample size of participants and utilizing a larger pool of

music stimuli, while considering individual and cultural

variations, will also be essential to enhance generalizabil-

ity and gain more comprehensive insights.

This study offers insights into factors influencing

MER system predictions of emotional valence, enhanc-

ing machine-learning models’ ability to predict listeners’

emotions by considering feature importance across differ-

ent emotions. Additionally, incorporating time-series emo-

tional data, including composers’ intentions, adds further

significance to the research.
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ABSTRACT

Every artist has a creative process that draws inspiration
from previous artists and their works. Today, “inspira-
tion” has been automated by generative music models.
The black box nature of these models obscures the iden-
tity of the works that influence their creative output. As
a result, users may inadvertently appropriate or copy ex-
isting artists’ works. We establish a replicable method-
ology to systematically identify similar pieces of music
audio in a manner that is useful for understanding train-
ing data attribution. We compare the effect of apply-
ing CLMR [1] and CLAP [2] embeddings to similarity
measurement in a set of 5 million audio clips used to
train VampNet [3], a recent open source generative mu-
sic model. We validate this approach with a human lis-
tening study. We also explore the effect that modifica-
tions of an audio example (e.g., pitch shifting) have on
similarity measurements. This work is foundational to in-
corporating automated influence attribution into generative
modeling, which promises to let model creators and users
move from ignorant appropriation to informed creation.
Audio samples accompanying this paper are available at
tinyurl.com/exploring-musical-roots.

1. INTRODUCTION

For creators and users of generative models to be informed
and responsible, there needs to be a mechanism that pro-
vides information about works in the model’s training data
that were highly influential upon generated outputs. This
would enable both citation of existing work and offer the
opportunity to learn about the influences of their creation.
We assume a model-generated product that is a copy or
near-copy of a work in the model’s training set indicates
the model was influenced by that work. To develop meth-
ods to automatically detect the influences upon model-
generated products it is, therefore, essential to develop
good measures of similarity between works.

We define a measure of approximate memorization in
deep generative audio models by establishing a thresh-

© J. Barnett, H. García, and B. Pardo. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: J. Barnett, H. García, and B. Pardo, “Exploring Musical
Roots: Applying Audio Embeddings to Empower Influence Attribution
for a Generative Music Model”, in Proc. of the 25th Int. Society for

Music Information Retrieval Conf., San Francisco, United States, 2024.

old for high similarity and memorization of training data
against a large repertoire of 5,000,000+ song clips. We
take inspiration from the “split-product” measure for im-
age similarity from Somepalli et al. [4], which breaks the
embedded feature vector of images into smaller chunks
to compare inner products of corresponding localized fea-
tures. In our work, every audio file is split into 3-second
segments (a.k.a. clips), each of which is encoded as a fea-
ture vector (either a CLMR [1] or CLAP [2] embedding)
produced by a machine learning model trained to encode
audio for the purpose of measuring similarity. See Section
3.3.2 for details. We measure similarity between generated
clips and training data clips to find similarity between sub-
portions of songs (e.g., a single musical phrase), returning
the songs with the most similar clips. We also evaluate the
extent to which similarity measured in this way agrees with
similarity assessments by human listeners (Section 4).

We apply our approach to VampNet [3], an open-source
music audio generation model trained on 795k music
songs. VampNet is representative of a widely-used class
of generative models: language-model-style generation.
This approach is used in AudioLM [5], JukeBox [6], Musi-
cLM [7], SoundStorm [8], among others [9,10]. While we
utilize VampNet as a case study, our evaluation framework
is both model and training data agnostic.

This paper makes the following key contributions. Pri-
marily, it establishes an easily replicable methodology

and framework to perform training data attribution for

a generative music model (Section 3), which has been
validated in a human-listener study (Section 4). Second,
we systematically explore the robustness of embedding-

based similarity measures for music audio (CLMR and

CLAP) to audio perturbations such as pitch shift, time

stretch, and mixture with different types of noise (Sec-
tion 5.1). Generative models, even when creating near-
copies of training data, are likely to add some form of vari-
ation to the outputs, making it essential to understand how
robust this method is to such anticipated perturbations.

Our formal research questions are:

1. Can we measure similarity between generated music
and music in the training data in a way that human
listeners would agree with?

2. How do different perturbation types and amounts af-
fect the ability of the evaluated similarity measure(s)
to quantitatively identify similar pieces of music?
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2. RELEVANT LITERATURE

2.1 Memorization in Non-Audio Generative Models

It is well established that large language models (LLMs)
applied to text are capable of memorizing part of their
training data [11–18]. LLMs like the 6 billion param-
eter GPT-J model can memorize at least 1% of training
data [19]. If access to the training data is available, it is
relatively straightforward to detect when language models
copy strings of text verbatim due to the ability to check for
exact sequences of tokens.

Memorized images created by generative models pose
risks similar to memorized training data from text LLMs
such as sensitive data leaks and copyright infringement.
Detecting memorization and duplication by image mod-
els is fundamentally different from detecting duplication
from a text-based language model; instead of memorizing
and reproducing items verbatim from the training data, im-
age models create images that are not identical to the train-
ing data, but are sufficiently similar to warrant being called
content replication [4].

Carlini et al. [20] propose an approximation of a dis-
tance metric for memorization in the image space. A gen-
erated image whose nearest neighbor in the training data
falls closer than a determined threshold (δ), when embed-
ded in the appropriate manifold, is labeled as a memo-
rized example even if not a verbatim copy. Somepalli et
al. [4] demonstrate that diffusion models replicate images
from training data with high fidelity, setting a lower bound
for memorization of Stable Diffusion at 1.88% of gener-
ations [21]. We extend this methodology [4, 20] into the
audio domain for our paper.

2.2 Audio Retrieval and Music Similarity

2.2.1 Music Similarity in Generative Audio Models

Popularized in the early 2000s, audio fingerprinting [22,
23] aims to detect exact copies of a given piece of audio.
In 2006, Shazam popularized this method for the general
public with a system utilizing query-by-example for ev-
eryday users [24]. Traditional audio fingerprinting (e.g.,
Shazam [25]) depends on low-level structural details that
are not typically regenerated by generative models, so it is
not a relevant approach for our methodology.

Most of the limited work examining similarity of audio
made by generative models has been in the context of a dif-
ferent purpose, rather than the focus of an in-depth explo-
ration. Examples include creating new strategies for text-
to-music generation in order to create more novel songs
[26] or brief ad-hoc memorization evaluations at time of
release [7, 9]. Perhaps the closest work to our own is by
Bralios et al. [27], who examined replication of audio uti-
lizing text-to-audio latent diffusion models for general au-
dio sounds, such as explosions or people cheering. They
define replication of training data as “nearly-identical com-
plex spectro-temporal patterns.” They did not perform any
subjective evaluation by human listeners to validate their
approach to measuring similarity. Our work instead fo-
cuses on music, uses a much larger dataset, and is intended

to be easily adoptable by any model creator.

2.2.2 Measuring Audio Similarity with Embeddings

The key to measuring similarity effectively is to have a rep-
resentation that highlights the task-relevant features. Most
popular right now in the age of generative modeling is mea-
suring audio similarity with embeddings. Audio embed-
dings are continuous vector representations for excerpts of
audio that are based on the internal representations of a
neural model trained on a proxy task like generative pre-
training [28], contrastive learning [1,2], classification [29],
autoencoding [30, 31], and other methods [32, 33].

To use an audio embedding model to measure the sim-
ilarity of a collection of audio excerpts, we pass the audio
signals through the embedding network, which gives us a
multi-dimensional vector output for each audio signal: the
“audio embedding”. To obtain a list of the most similar
audio signals for a given query audio signal, we extract
the embeddings for each audio signal using an embedding
model of our choice. We then compute a cosine or L1 dis-
tance between our query audio signal and the signals in the
database, returning a ranked list, where audio signals with
higher similarity to the query audio are ranked higher.

The choice of audio embedding model can have a large
impact on the results. There are a variety of embeddings
capturing different features of audio, such as [1, 2, 28–30,
32,33]. We focus on CLAP [2] and CLMR [1] embeddings
for this work. Both are state-of-the-art (SOTA), produce
human-validated similarity in our listening tests, are robust
to perturbation, and are able to return relevant top songs.

3. DATA AND METHODOLOGY

3.1 Scope of Analysis

We want to create a system that identifies music both quan-
titatively similar and subjectively similar to humans. We
do not focus on measuring similarity of any individual fea-
ture of music (e.g., timber, rhythm, lyrics), but rather use
one of two embedding approaches (CLAP or CLMR) to
encode audio and examine whether similarity in these em-
bedding spaces aligns with human subjective evaluation
(Sec. 4).

3.2 Data and Models Used

Though our approach is model agnostic, we validate our
framework on VampNet [3], a generative model trained on
795k songs collected from the internet. VampNet takes
a masked acoustic token modeling approach to music au-
dio generation. In the first stage, a Descript Audio Codec
(DAC) [31] learns to encode the audio data in a discrete vo-
cabulary of “tokens”, of which it is then trained to model
sequences. To create audio files, the token sequence is con-
verted back into the input domain via the DAC decoder.
VampNet adopts a masked generative modeling approach
with a parallel iterative decoding procedure. Conditioning
is done through example audio, either with a prefix (gener-
ating a continuation), postfix (generating an introduction)
or as infill (masking the middle). We denote musical out-
puts of VampNet as “vamps.”
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We chose VampNet because, at the time of writing,
no other model made available both the training data and
model weights. We trained another version of VampNet on
a smaller training data and found no noticeable differences.
While VampNet has a diverse set of music for the training
set, our companion website also includes a small analysis
of efficacy on various genres in the GTZAN [34] dataset.

3.3 Methodology

3.3.1 Similarity Metric

We define a measure of approximate memorization in gen-
erative audio models by establishing a threshold for high
similarity and memorization of training data against a large
collection of 5 million 3-second song clips drawn from the
795k songs in VampNet’s [3] training data. We take in-
spiration from the “split-product” measure for image simi-
larity [4, 20], which breaks the images into smaller chunks
to compare inner products of corresponding localized fea-
tures. In our work, every audio file is split into 3-second
clips, each of which is encoded as a feature vector. We
measure the cosine similarity between generated clips and
training data clips to find similarity between sub-portions
of songs, returning the most similar songs.

3.3.2 Embeddings

We focus on two main embeddings: (1) contrastive learn-
ing of musical representations (CLMR) embeddings [1]
and (2) contrastive language-audio pretraining (CLAP)
embeddings [2]. We use both CLAP and CLMR embed-
dings because they can be applied to any dataset of raw mu-
sic audio without the need for any transformation or fine-
tuning, generalize well to out-of-domain datasets, and can
be used as a baseline across different models and genres.
Utilizing publicly available embeddings that generalize to
any dataset is helpful in encouraging adoption.

We put all of the embeddings and their corresponding
musical metadata in a vector database (Pinecone) that lets
us quickly and efficiently search through millions of em-
beddings and return the top k similar songs by a chosen
similarity metric (e.g., cosine similarity) in milliseconds.

3.3.3 Code and Tools Used

To recreate this study, use the following code and tools.
To generate audio using VampNet: github.com/

hugofloresgarcia/vampnet. To put audio in a
format suitable for Pinecone and to add noise to clips
(see Section 5.1) use: github.com/julbarnett/

exploring-musical-roots.

4. LISTENING TEST: EXPERIMENTAL DESIGN

Presumably, output that is highly similar to a training au-
dio clip was influenced by that clip. Of course, similarity
is in the ear of the listener and many similarity measures
do not align with human opinions. To build a replicable
framework that will not require other audio researchers
to conduct costly and cumbersome human listening tests,
we conduct an experiment with human listeners to demon-
strate the alignment of our quantitative technique with hu-

man listening. We utilize ReSEval, a framework that en-
ables us to build subjective evaluation of audio tasks de-
ployed on crowdworker platforms [35].

4.1 Dataset Preparation

To create the data for our study we take a random sample
of 1,000 3-second clips from VampNet’s training data. For
each of these 1,000 clips, we rank its top 10,000 closest
clips in the training dataset by cosine similarity. For each
embedding (CLAP and CLMR), we fit a Gaussian to the
distribution of similarity scores of the top 10,000 clips (his-
tograms in Table 1). The further above the mean a similar-
ity score is, the more similar the clips are. We segment the
data into 4 meaningful bins: the mean cosine similarity of
the top 10,000 (CLAP: 0.815; CLMR: 0.693), +1σ (CLAP:
0.885; CLMR: 0.784), +2σ (CLAP: 0.955; CLMR: 0.875)
and “random” (CLAP: 0.513; CLMR: 0.151). For the ran-
dom bin, we take two random sets of 1,000 clips from the
full 5 million clip dataset and measure pairwise cosine sim-
ilarity; the mean similarity of this distribution gives the ex-
pected similarity score of random song pairs. We use these
bin centers to create bins ±0.02 for these similarity scores.

4.2 ABX Trials

Cartwright et al. [36, 37] overcame the difficulties of de-
ploying time-consuming lab-based listener studies by uti-
lizing pairwise comparison performed over the web, dupli-
cating the findings of a lab-based test. We leverage these
findings and employ a pairwise comparison study design,
performing the study on Mechanical Turk (MTurk).

In our study, listeners are asked to perform ABX trials.
The target audio clip (X) is presented, along with two other
clips (A and B). The listener is asked to rate which clip (A
or B) is more like the target X. The proportion of listen-
ers that find A more similar than B is an estimate of the
probability that people find A more similar to X than B.

Given a clip X drawn from a random sample of 1,000
clips, one can then create a pair of examples A and B by
selecting them randomly from different bins (see Section
4.1). This lets us create ABX trials with known differences
in cosine similarity to X between the paired examples A
and B. We can then collect statistics on the probability that
users will find A more similar to X than B is to X. The
greater the difference in cosine similarity, the more skewed
we expect the listening results to be. If true, our objective
measure’s similarity rankings align with human rankings.

We have 4 bins, resulting in 6 different pair-wise com-
parisons (bin 1 vs. bin 2, 1v3, 1v4, 2v3, 2v4, and 3v4).
To have 150 evaluations per bin (900 evaluations total),
we need 90 people to listen to 10 ABX comparisons
each. We randomly choose 15 prompt “X” clips from
the training data, with their respective 4 clips within the
bins chosen as detailed above for the A and B compari-
son. An example set of clips for an ABX evaluation is at
tinyurl.com/exploring-musical-roots.

4.3 Participant Recruitment

We utilized MTurk to recruit 150 participants each to eval-
uate similarity scores of CLAP and CLMR embeddings.
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Human Evaluation Results: ABX Listening Test

CLAP: Histogram of Top 10k Similar Clips
CLAP Embeddings

A

B Bin 2 Bin 3 Bin 4 Total

(0.885 ±0.02) (0.815 ±0.02) (0.513 ±0.02) (All Trials)

Bin 1 96.2% 98.0% 98.1% 97.4%
(0.955 ±0.02) (n = 156) (n = 150) (n = 162) (n = 468)

Bin 2 73.3% 93.6% 83.7%
(0.885 ±0.02) (n = 135) (n = 141) (n = 276)

Bin 3 81.5% 81.5%
(0.815 ±0.02) (n = 178) (n = 178)

CLMR: Histogram of Top 10k Similar Clips
CLMR Embeddings

A

B Bin 2 Bin 3 Bin 4 Total

(0.784 ±0.02) (0.693 ±0.02) (0.151 ±0.02) (All Trials)

Bin 1 90.7% 91.0% 98.5% 93.2%
(0.875 ±0.02) (n = 150) (n = 156) (n = 135) (n = 441)

Bin 2 71.6% 93.6% 82.7%
(0.784 ±0.02) (n = 155) (n = 157) (n = 312)

Bin 3 80.7% 80.7%
(0.693 ±0.02) (n = 140) (n = 140)

Table 1. Results from the listening experiment. Results show the percent of time listeners rated clip “A” (the clips with
higher similary scores to the prompt “X”) as more similar to the prompt clip “X” than clip “B” (those with lower similarity
scores to prompt “X”). Histograms of the top 10k similar songs can be found to the left of the table. Bin regions are shown
on these histograms. Bin 3 is centered on the mean of the top 10,000 most similar clips, Bin 2 = +1σ, Bin 1 = +2σ, and
Bin 4 is the mean similarity score of a randomly selected clip from the entire training data (not just the top 10k).

We paid each evaluator $1.50 to annotate 1 set of 10 ABX
trials (estimated $22.50/hour). We recruited US residents
with an approval rating of at least 98 and 1,000 approved
tasks. We filtered out bots by excluding evaluations that
failed a pre-screening listening test. There were no require-
ments for music expertise beyond passing a listening test.

4.4 Results

Table 1 contains the results of our listening experiment.
We found that human evaluations closely aligned with our
quantitative metrics. For both CLAP and CLMR evalu-
ations, listeners affirm by a wide margin that clips with
higher similarity scores (lower bin numbers) sound more
similar to the prompt clip than those with lower scores
(higher bin numbers). Clips drawn from the most-similar
bin (Bin 1) to the prompt track “X” were rated as more
similar to the prompt clip than clips from any other bin
97.4% of the time for CLAP (93.2% for CLMR). For both
embeddings, the vast majority of listeners ranked the clips
with high similarity to the prompt track (“A”: Bins 1-3) as
sounding more similar than the random song (“B”: Bin 4).

5. ANALYSIS OF OBJECTIVE MEASURES

5.1 Robustness to Perturbations

Our second research question focuses on the effect of dif-
ferent perturbations on our methodology’s ability to cor-
rectly return similar songs. Any generative music model
will add some degree of variation to a training example
during the generation process—the aim of these models is

not to replicate the training data exactly. This variation
could take many forms (e.g., changing the pitch, speed).
Therefore, in this section we evaluate the ability of our
methodology to return target songs that have been modi-
fied by given perturbations. For varying amounts of each
perturbation, we evaluate how frequently the target song
(the unmodified clip) is returned as the most similar, within
the top 5 similar songs, and within the top 10 most similar
songs. The 7 types of perturbations we evaluate are:

• Pitch shift (in semitones; range: -12 to 12)
• Time stretch (in % of song; range: -20% to +20%)
• White noise overlaid on top of music (in dB; range:

-30 to 30 dB in relation to original audio clip)
• “Mash-up” of two clips from training data (range:

5/95% to 95/5%; e.g., 60/40%)
• “Mash-up” of one clip from inside and one outside

training data (range: 5/95% to 95/5%; e.g., 60/40%)
• “Mash-up” of a prompt clip and the generated vamp

(range: 5/95% to 95/5%; e.g., 60/40%)
We selected these because we envision them as common

alterations to music that would not render it unrecogniz-
able by a human listener. We are not seeking to evaluate all
types of adversarial noise since we are assuming users and
creators are working cooperatively with these generative
models to create something novel—not acting maliciously.

We evaluate all of the audio perturbations for both
CLAP and CLMR embeddings to understand the robust-
ness of our methodology while utilizing different embed-
ding networks. For all perturbations except higher levels
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Figure 1. Plots of various amounts of noise perturbations to clips and the percent of the time they were returned in the top
k = 10, k = 5, and k = 1 song using our methodology for CLMR embeddings. Displays pitch shift in semitones, time
stretch as percent shortened/elongated, white noise overlay in decibBels to target clip, and mash-ups of 2 songs in training
data, 1 song in training data and one random, and a prompt song and its generated vamp.

of time stretch, CLMR embeddings are more robust than
CLAP embeddings; all of the results using CLMR are pre-
sented in Figure 1. Example perturbations available at
tinyurl.com/exploring-musical-roots.

Pitch shift is a common perturbation to audio that in-
volves raising or lowering the original pitch of an audio
clip without adjusting the length of the clip. Notably, hu-
man perception is extremely robust to pitch shift. Both em-
bedding types were robust to small pitch shifts; for changes
of ±3 semitones the target song was returned the vast ma-
jority of the time. Both embedding types had a lower recall
of the target song for larger pitch shifts.

Time stretching audio clips involves speeding up or
slowing down audio while keeping the pitch constant. For
this perturbation, we evaluate stretching the clip from 20%
slower to 20% faster. Both embeddings consistently re-
turned the target song for small amounts of time stretch,
but were impacted by larger amounts (> ±10%).

White noise overlay involves adding randomly gener-
ated white noise to audio clips. We evaluate the noise level
in relation to the amplitude of the original clip in deci-
Bels, ranging from -30 to 30dB (-30dB being the quietest).
Though we were only able to consistently return the tar-
get song at quiet levels of white noise overlay (≤ −18dB)
barely perceptible to the human ear, this perturbation has
the largest impact on our method’s ability to identify the
target track. Luckily, this is not an anticipated type of
noise; generative models will add more “musical” varia-
tion to songs rather than white noise.

“Mash-ups” of two combined songs are defined here
as splicing two clips together at different percentage levels
(e.g., for 75/25% the first 2.25 seconds are the target song

and the last 0.75 seconds are some other song). We eval-
uate three types of “mash-ups”: combining (1) two clips
from the training data, (2) one clip from the training data
and one outside of the training data, and (3) a prompt track
and its generated vamp from VampNet. For each mash-
up, we seek to identify the percent of time the target (or
prompt) track is returned in the top similar songs. CLMR
embeddings only need 50-60% of the target song present
in the mash-up to consistently return it in the top similar
songs (CLAP need ≥ 80%). At each mash-up proportion
the model returned the target song (prompt song) for mash-
ups with vamps more consistently than for combining two
different songs, indicating the vamp is more similar to the
prompt song than two randomly selected songs are to each
other. When the majority of the song analyzed is the vamp
(i.e., x-axis ≤ 50%), it does not return the target (prompt)
but rather other songs in the training data.

5.2 Systematic Evaluation of Generative Music Model

As a case study, we systematically evaluate VampNet [3]
to demonstrate how to employ this technique to understand
training data attribution on both individual songs and an
entire model. To evaluate VampNet, we generate 10,000
vamps from 1,000 10-second prompt clips (10 different
vamps per clip), and evaluate the most similar clips in the
training data to the vamps. We embed each of the 10,000
vamps as a feature vector using both CLMR and CLAP
embeddings and analyze the most similar 50 clips by co-
sine similarity (out of the five million+ clips from Vamp-
Net’s training data in our vector store). For each of the
10,000 vamps, the prompt that generated the vamp was
rarely among the top similar clips returned by our method-
ology. Thus, we seek to understand the attribution of the
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Systematic Evaluation of Generated Music (Vamps)

Similarity Score Vamp & Prompt
Vamp &

#1 Similar Track

CLAP

Mean 0.393 0.795
Median 0.402 0.815
St. Dev. 0.151 0.084

CLMR

Mean 0.166 0.846
Median 0.153 0.850
St. Dev. 0.189 0.054

Table 2. Systematic evaluation of VampNet’s generations.
Generated pieces of music (vamps) are less similar to the
prompt song provided to the model at generation time than
they are to other music from the training data.

rest of the training data on generations. For CLAP em-
beddings, the average cosine similarity between a prompt
clip and generated vamp was 0.393, (σ = 0.151), whereas
on average, the closest clip had a similarity score of 0.795
(σ = 0.084). CLMR had a similar disparity; full descrip-
tive results are in Table 2. As noted in the above analysis
on robustness to perturbations in Section 5.1, our method-
ology utilizing CLMR (rather than CLAP) embeddings is
more robust to perturbations combining elements of new
clips with clips present in the training data. Thus for the
remainder of this section we will focus on CLMR embed-
dings for this case study using VampNet.

Leveraging insight from our listening study (Section 4),
human evaluation affirms that within CLMR embeddings,
music clips with a similarity score of ≥0.875 sound signifi-
cantly more similar than clips with lower similarity scores.
For this analysis, we utilize that same top bin as a bench-
mark and evaluate how often the most similar clips have
similarity scores ≥0.875. Findings are presented in Table
3. Over 30% of the vamps generated had at least one song
with a similarity score ≥ 0.875. Looking at scores in 0.02
increments above this benchmark similarity score, almost
20% of vamps had at least one song in the training data
with a similarity score ≥ 0.895, 9% ≥ 0.915, 3% ≥ 0.935,
and almost 1% ≥ 0.955. Evaluating more broadly among
the top 10 songs, songs with these high similarity scores
were concentrated among most similar couple clips, as op-
posed to having the entirety of the top 10 most similar clips
have extremely high similarity scores. This indicates that
at least 30% of the time, small sets of songs from the train-
ing data were highly influential on generated vamps.

6. DISCUSSION

These findings establish that the framework we propose
is an effective means to systematically evaluate the train-
ing data attribution on any generative music model. This
method is replicable and should be employed by model
creators so they are able to have a greater understanding
of their outputs. If exposed to end users, this framework
also enables anyone to verify if they are copying music
and learn about influences of their “novel” generations.

The authors first acknowledge the limitations of this ap-

Vamps with Highly Similar Songs in Training Data

Count of Songs in Top k

k = 1 k = 10

Similarity k-clips % Total k-clips % Total
Score (n = 10, 000) (n = 100, 000)

≥ 0.955 89 0.89% 254 0.25%
≥ 0.935 317 3.17% 1,223 1.22%
≥ 0.915 924 9.24% 3,139 3.14%
≥ 0.895 1,929 19.29% 8,786 8.79%
≥ 0.875 3,201 32.01% 17,291 17.29%

Table 3. For 10,000 vamps, displays how many top k

most similar training data songs were at or above given
similarity scores for CLMR embeddings. The lowest simi-
larity score in this table (0.875) corresponds to the highest
benchmark (Bin 1) from the human listening test (Sec 4) .

proach. First, the scope is intentionally limited to exclude
lyrics. As generative music models continue to progress
this can become an important area of memorization and
copyright infringement, and we encourage future research
to examine lyric memorization in tandem with our ap-
proach. Our scope also did not include any individualized
feature levers for similarity (e.g., timbre or rhythm). We
did this to both focus on a low-burden implementation for
model creators who would follow this methodology as well
as to identify encompassing interacting similarities with-
out isolating any musical feature. However, these could be
useful for both model creators and users.

Two potential harms of generative audio models are cul-
tural appropriation and copyright infringement [38]. Our
work aims to combat these issues both at the time of out-
put generation and prior to model release. Our method can
prevent cultural appropriation by giving users the opportu-
nity to engage with the influences of the music, and prevent
copyright infringement if the user realizes the generated
piece of music is too similar to the identified influences.

7. CONCLUSION

We have proposed an easily-implementable framework for
creators of generative music models to evaluate training
data attribution. It can be used to prevent appropriation,
copyright infringement, and otherwise uninformed cre-
ations, enabling model creators and users to understand the
influences on their generated outputs by identifying similar
songs in the training data. We evaluated a measure of co-
sine similarity for two embeddings and verified that they
align with human perception with a subjective listening
test. We also evaluated how robust our framework is to var-
ious forms of perturbations we anticipate models adding to
training data during the transformation to “novel” output.
We perform a case study on VampNet [3] in order to val-
idate the efficacy of our framework. This work is a step
towards transforming a generative model from a crutch re-
placing artistic knowledge to a tool creators and users alike
can use to become better and more informed artists.
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8. RESEARCH ETHICS AND SOCIAL IMPACT

The authors of this paper took the ethical considerations
and social impact of this work seriously. A recent exhaus-
tive study of the ethical implications of generative audio
models [38] found that less than 10% of research on gener-
ative audio models published discussed any sort of poten-
tial negative impact of their work. We took that as inspi-
ration to center our work around the ethical concerns and
attempt to build a bridge between ethicists and generative
audio engineers.

As mentioned in the discussion (Section 6), among the
negative impacts uncovered for generative music models
were the potential for cultural appropriation, copyright in-
fringement, and loss of agency and authorship of the cre-
ators. This work aims to combat these issues at the time
of generation, on a track by track level. By uncovering the
roots of a given piece of generated music, we can empower
the user of the model to understand where the music came
from and learn about the influences.

A primary concern the authors have for this work is that
future model creators will simply use this framework as a
checkbox to complete their ethical evaluations. They may
use this framework and assume since they did so, there
are no other potential societal impacts or ethical harms to
consider in regard to generative music models. This work
only tackles a portion of the issues, and is only a first step
in doing so. Though our method can highlight instances
of copyright infringement and cultural appropriation, it by
no means will catch everything. Though this can assist
with educating users about the influences of their work, it
will not solve the potential loss of agency and authorship
users and musicians could feel when using these models.
It does nothing to address creativity stifling, predominance
of western bias, overuse of publicly available data, non-
consensual use of training data, or job displacement and
unemployment. It also requires energy consumption to
generate the embeddings and perform searches, so it con-
tributes to the issue of energy consumption of generative
models rather than combating it.

In regard to the experiment utilizing human evaluators
to subjectively analyze similar pieces of music, we ensured
that our study was in line with institutional review board
standards (our study was determined to be exempt). We
had a thorough consent form for the crowdworkers and en-
sured they knew they could quit at anytime without any
sort of penalty. We timed ourselves taking the survey and
attempted to pay them a fair wage (estimated $22.50 per
hour, higher than any minimum wage in the United States).
We even paid users who failed the listening pre-screening
test for their time and thus were not able to take our sur-
vey, even though they did not contribute data to our study.
However, we acknowledge that ethical crowdsourcing goes
beyond fair pay [39, 40], and tested the listening test thor-
oughly prior to launch to be certain there would be no bur-
den to crowdworkers beyond potential boredom. The most
sensitive data we had access to were the Mechanical Turk
IDs of users, but we held these on secure servers.

The authors determined that the positive impact of this

work outweighed these potential harms, especially since
the primary motivation of this work is to address a few
existing ethical issues in generative audio. However, it is
essential to acknowledge these potential risks and where
our method falls short.
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ABSTRACT

The environmental footprint of Generative AI and other
Deep Learning (DL) technologies is increasing. To under-
stand the scale of the problem and to identify solutions for
avoiding excessive energy use in DL research at commu-
nities such as ISMIR, more knowledge is needed of the
current energy cost of the undertaken research. In this
paper, we provide a scoping inquiry of how the ISMIR
research concerning automatic music generation (AMG)
and computing-heavy music analysis currently discloses
information related to environmental impact. We present
a study based on two corpora that document 1) ISMIR
papers published in the years 2017–2023 that introduce
an AMG model, and 2) ISMIR papers from the years
2022–2023 that propose music analysis models and in-
clude heavy computations with GPUs. Our study demon-
strates a lack of transparency in model training documenta-
tion. It provides the first estimates of energy consumption
related to model training at ISMIR, as a baseline for mak-
ing more systematic estimates about the energy footprint of
the ISMIR conference in relation to other machine learning
events. Furthermore, we map the geographical distribution
of generative model contributions and discuss the corpo-
rate role in the funding and model choices in this body of
work.

1. INTRODUCTION

Interest in AMG and DL-based analytical models is in-
creasing dramatically at conferences such as ISMIR [1].
Case studies in domains other than music [2–4] have es-
tablished that the environmental impact of AI technolo-
gies can be massive, particularly when it comes to en-
ergy consumption. International Energy Agency predicts
that the accumulated electricity consumption of data cen-
ters, AI, and the cryptocurrency sector will double, reach-
ing the level of whole electricity consumption of Japan by
2026 [5]. In the US, a recent proposal for legislation (Ar-
tificial Intelligence Environmental Impacts Act) suggests
that AI companies would be urged to start reporting the

© A. Holzapfel, A. Kaila, and P. Jääskeläinen. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: A. Holzapfel, A. Kaila, and P. Jääskeläinen, “Green
MIR? Investigating computational cost of recent music-AI research in
ISMIR”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

environmental impacts of their work [6]. With the increas-
ing investment in AI and the general trend of high compute
requirements for training state-of-the-art machine learning
systems [7], we expect to see the accumulated energy foot-
print of the generative music industry and the surrounding
research also growing. There is no reason why research
around ISMIR would be isolated from these effects. For
the community to gain an understanding of the scale of the
problem and to identify solutions to avoid excessive en-
ergy use in AMG development, more knowledge is needed
of the current energy cost of the research conducted. It is,
hence, highly relevant and timely to investigate to what ex-
tent research at ISMIR acknowledges and documents the
environmental impact of energy consumption.

Other research communities around music technology
(e.g., NIME [8]) and machine learning technology (e.g.,
NeurIPS [9]) have shown increasing attention to various
aspects of negative ethical impacts, among them environ-
mental. Discussions of such topics continue, however, to
be severely underrepresented in the generative music and
audio research [10], and entirely absent from the ethics
principles and guidelines for AI-music [11, p. 148]. In
the context of the ISMIR community, Morreale [12] es-
timated that between 2011 and 2020, less than 0.5% of
ISMIR submissions discussed issues related generally to
ethics, of which sustainability could be seen as a subcate-
gory. Our present scoping inquiry demonstrates this lack
of concern and transparency in reporting the environmen-
tal impacts of AMG and other DL research, with a focus
on ISMIR conferences. The title of our paper refers to
Schwartz et al. [13], which proposes the concept of Green

AI as “AI research that is more environmentally friendly
and inclusive”. While the concept of Green MIR should
be used carefully, as it can lead to practices of greenwash-
ing research, we use this term to raise questions about the
current practices and energy impact of MIR.

This study advances a critical discussion in the ISMIR
community around the ethical impacts of model develop-
ment work and the responsibility of MIR research from the
underexplored perspective of environmental sustainability.
It documents, firstly, the level of transparency in reporting
the environmental impact in terms of energy consumption
and the computational resource use in the model training
process in ISMIR papers in the seven years 2017–2023.
Secondly, based on the information documented in these
ISMIR publications, we provide preliminary estimates of
the energy demands related to training individual AMG
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and other DL models, as well as an overall estimate of
the total energy use and carbon footprint associated with
DL training at an ISMIR conference. In this process, we
also investigate if AMG models are related to higher en-
ergy consumption than other models at ISMIR. Our cal-
culations establish a baseline to set the ISMIR community
in relation to other machine learning communities and call
for the issue of environmental impact to be addressed more
systematically so that the conference can grow and evolve
without compromising the environment. Thirdly, we map
the geographical distribution of generative model contribu-
tions and discuss the role of corporate participation and the
consequent political economies in this body of work.

Some limitations of the paper lie within (a) the many
uncertainties in estimating the overall energy consumption
of developing a DL model based on limited data related to
the training process, (b) our focus on model training that
leaves a focus on inference processes to future work, and,
(c), the reduction of environmental sustainability to energy
consumption. In the following two sections, we explain
how these limitations emerge from the sparse amount of
information and the complexity of the problem. We hope
that this paper will motivate both individual authors and
the ISMIR conference to take action toward more minute
documentation of resource use in DL model development.

2. BACKGROUND

2.1 Environmental Impact of (Music-)AI

The soaring energy cost of AI technology is increasingly
discussed in the academic literature [2, 3, 13–19]. Early
work on the environmental impact of AI has introduced
concepts, such as “green” and its opposite, “red” AI [13],
problematized hidden environmental costs in AI [2], and
provided methods for quantifying environmental impact
[3]. We found only a few works that are related to music-
AI (as a term to cover analytic and generative approaches
based on – predominantly – deep learning). The first two
concern the energy cost of AI models used in music in-
formation retrieval [20, 21], and the third focuses on the
importance of studying sustainability in arts generally [4].

AI development has been increasingly steering towards
Large Language Models (LLMs), which have a particu-
larly high energy expenditure. The popularity of these
models is attributed to their success in “generalizing” and
performing better in tasks that have traditionally required
human labor. But as a consequence, many research pa-
pers [22,23] take a pre-trained foundation model and adapt
it. This results in a situation in which the energy cost
can be estimated only partially, i.e. for the part that ex-
tended the pre-trained LLM. Furthermore, it raises ques-
tions about how research can account for the environmen-
tal cost of using LLMs. Arguably, the researchers who use
those LLMs are somewhat responsible for the popularity
and increased use of LLMs – through creating demand for
their use – which can further aggravate the use of compu-
tational resources and energy in LLM development.

Many research works that focus on the environmental

impact of AI take the assumption that energy (computa-
tional) cost is the core environmental problem of these
technologies, and by reducing energy consumption, it is
possible to work towards sustainability. However, this is
a simplistic view because sustainability is a complex phe-
nomenon that does not only concern electricity usage. For
example, Jääskeläinen et al. [24,25] discussed the complex
networks of environmental harm resulting from resource
consumption and capitalistic colonialism that prevail in the
case of generative AI. Strengers [26] has generally outlined
how behavior change is central to change toward sustain-
ability, and providing metrics such as energy consumption
data is insufficient to address change toward sustainability.
While keeping this in mind, energy use is a valid starting
point for discussing the environmental impact of AI. In this
paper, when we refer to environmental impact, we explic-
itly refer to the energy cost and leave out factors such as
the life cycle of the technology and water usage of data
centers [27], among others.

Technological advances in recent decades have entered
the music industry with the promise of reduced material
and energy demands. For instance, it was expected that the
introduction of mp3, the digitalization of music produc-
tion, and eventually the platformization of its consumption
would diminish the environmental footprint of the indus-
try. As Devine [28] and Brennan [29] have demonstrated,
the opposite has historically been the case: while the de-
mand for plastic dropped in the era of the mp3 to a fraction
compared the previous music consumption models (CD,
cassette, vinyl, etc.), the greenhouse gas emissions of the
industry, on the contrary, increased. This increase was
explained in sustainability research by Hilty’s concept re-

bound effects [30], which describes indirect 2nd and 3rd
order effects that result from adopting new technology.

Similar negative effects are emerging in the prolifera-
tion of AI in music. Calculations by Holzapfel [31] illus-
trate that creative applications of LLMs can amount to con-
siderable levels of energy demand. Furthermore, results
by Douwes [20, 21] and Ronchini and Serizel [32] indi-
cate that the scale of energy consumption for audio gener-
ation and analysis tasks are not in a linear relation with the
model performance, thus questioning the assumption that
the growth in model complexity and resource demands are
a prerequisite for better models. Even more importantly,
Holzapfel [31] calls for the focus of inquiry to be expanded
from the carbon footprint to the wider questions of politi-
cal ecology, and to the perspectives of economic gain and
power (see also [33]). In this view, we should not only
measure the environmental impact but also form a more
complete picture by looking at who is causing it, who is
financing that work, and who benefits from it.

2.2 Timeliness of Addressing the Environmental

Impact of Music-AI

Bringing energy concerns into research practices is still at
an early stage in many communities [19], including MIR.
In 2023, Morreale et al. [1] ran a systematic survey of
the training datasets for AMG models presented at ISMIR
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2013–2023. Their work illustrates a dramatic increase in
the development of AMG models in the last decade, and
especially since 2017. Taken together with the general
lack of both breadth and depth of addressing environmen-
tal concerns in music and audio research contexts [10], this
increase highlights the urgency of addressing the compu-
tational cost of the AMG models in ISMIR research.

Conferences such as NIME have already taken a proac-
tive lead in promoting awareness of the environmental
impacts of the research conducted around the conference
[34], and by making resources available [35] for the re-
search community to adopt more environmentally con-
scious research and development practices. NeurIPS [36]
requires authors to disclose information on the training
procedure as well as the amount and type of compute re-
sources used in the development and research of AI mod-
els. 1 We argue that such practices of accessible documen-
tation should be part of the submission requirements in IS-
MIR research publications as well. This is useful for re-
producibility and allows examining the energy cost that IS-
MIR research contributes to when developing AMGs and
other models. However, in order to start such a discussion,
it is essential to examine the current practices of reporting
environmental impact-related information on AMG devel-
opment at ISMIR.

3. METHOD

This study covers two corpora (total N = 113) of papers:
1) ISMIR papers published in the years 2017–2023 that in-
troduce an AMG model, and 2) a complementary corpus
of ISMIR papers from the years 2022–2023 that present
analysis models and discuss processes that included heavy
computations with GPUs. This will provide a perspective
on training resource documentation in recent ISMIR con-
ferences beyond AMG.

The first corpus was obtained by selecting papers that
were specified as introducing an AMG model in the table
compiled by Morreale et al. [1]. We extended this initial
list by adding all papers from ISMIR 2023 that presented
such a model in that year. This resulted in an overall list
of 88 papers that present AMG models between 2013 and
2023. An analysis of the older papers revealed that the
majority of papers published before 2017 did not involve
DL models trained on GPUs, but rather shallow models
(e.g., [38, 39]) or no training at all (e.g., [40, 41]). There-
fore, we decided to exclude the 8 papers in the list by [1]
published before 2017, resulting in 80 papers in this first
corpus.

For each of these 80 papers, we documented whether
there was information about the training time, whether the
number of parameters was specified (search “param*” 2 ),
and whether the computational resources used for train-
ing were documented (search “GPU*”, “CPU*”, “TPU*”).

1 Interestingly, the first editions (2021, 2022) of this checklist included
a recommendation to use a CO2 emissions tracker [37], but this aspect has
been omitted from the latest version of the guidelines.

2 The asterisk character (*) is used to find all spelling variations of a
search term, e.g. parameter, parameters, parametric etc.

We further searched the papers for discussions on energy
consumption and environmental impact of the models, us-
ing terms “environment*”, sustainab*, “ecolog*”, “car-
bon”, “energy” and “kWh”. Finally, as an effort to connect
these aspects to the wider perspectives of political ecol-
ogy, we documented whether the paper indicated company
connections in the author affiliations, whether funding in-
formation was included in the acknowledgments or else-
where (search “fund*”, “support*”), whether there were
indications of full or partial corporate funding, as well as
which countries were the author affiliations related to. The
full information retrieved is available in a published data
table [42]. Whereas our analysis mainly focuses on the
documentation of energy consumption, the additional in-
formation included in our data collection was intended to
facilitate further contextualization and future research in-
vestigations.

To account for the most recent work at ISMIR in our
second corpus, we searched the proceedings documents
of 2022 and 2023 for the keywords “GPU*” and “TPU*”.
We did not consider papers that discuss CPU usage in or-
der to focus on DL models, and we excluded all papers that
are already part of the first corpus. This way, we obtained a
corpus of 33 papers that present models for analysis rather
than generation, with some consideration of computational
resources (15 papers from 2023, 18 papers from 2022).
From the papers we obtained, we collected further infor-
mation relating to training time, computational resources,
and company connections. We focused on energy-related
aspects in the second corpus in order to facilitate a com-
parison with AMG models.

For both corpora, the energy used in the training of
a model was estimated for papers that provided informa-
tion about the type and number of GPUs/TPUs used, along
with the training time. We found that websites or GitHub
sources did not add information for the vast majority of
papers and, therefore, focused on information provided in
the published papers. The Thermal Design Power (TDP)
of each processor type was obtained from the datasheets of
the manufacturer, and the energy used for a single training
run was computed as the product of a number of proces-
sors, computing time in hours, and TDP. Using the TDP
as a basis for energy consumption is a rather conservative
estimate, as it ignores the energy consumption of the re-
maining computer hardware [19]. To take these factors
into account, the use of tools (e.g. [3, 43]) to measure ac-
tual energy consumption during model development and
the publication of this overall consumption would be re-
quired. We refrain from attempting to estimate the carbon
emissions related to the computed energy consumption of
individual papers because a reliable estimate would require
detailed information about the energy sources used in the
specific computation environment [43]. In our analysis, we
do not consider the energy consumption related to model
inference, but we will discuss insights related to the energy
demands of inference.

Authors 1 and 2 collaborated on collecting data from
both corpora by dividing the conference years between
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Figure 1. Geographical distribution of the authors in corpus 1 (N=80) at ISMIR 2017–2023, as indicated by the author
affiliations. The block chart includes only countries from which at least two publications were found in the corpus.

them. The proceedings’ PDF files were searched for the
above-listed terms, and the identified occurrences were an-
alyzed manually without the use of scripts. Papers that pre-
sented unclear aspects in the data collection were flagged
and discussed between both co-authors. Author 1 con-
ducted the estimates of energy use for models in both cor-
pora.

4. RESULTS

4.1 Results from Corpora 1 and 2

Our analysis revealed that 60 of the 80 papers (75%) in
corpus 1 do not provide any information about the time
and hardware required to train the model proposed in the
paper. Of the remaining 20 papers, seven only provide
information about the type and numbers of GPU but do
not specify the time required for training. The remaining
13 papers provide full information about GPUs as well as
training time. For corpus 2 (33 papers), we identified 13
papers that disclose full information about the computa-
tional hardware and training time, another 15 papers that
provide partial compute information, and 5 papers that do
not include such information. Overall, only 23 % of the
papers in corpora 1 and 2 are fully transparent about the
hardware and the model training.

When investigating potential change over time in cor-
pus 1, we see that between the years 2017 and 2021, one
or two papers annually disclose the full training and hard-
ware data. In 2022, an exceptional six papers provided
the full information (30% of the submissions analyzed for
that year), whereas, in 2023, only three papers were par-
tially transparent with the information about the GPU bud-
gets. While this may indicate a general trend of increasing
transparency in reporting the computational hardware and
training cost of the AMG models, it would be misleading
to claim this as the current norm in the ISMIR commu-
nity. The lack of general reflection around the issues of
environmental impact is furthermore evident from how the
keywords “environment*”, “sustainab*”, “ecolog*”, “car-
bon’, “energ*”, and “kWh” were completely missing from
the analyzed corpus (0 hits for proceedings of 2013–2023).

A few recent papers include reflections regarding increas-
ing computational demands [44–46], but these reflections
are motivated by the cost of computing and do not make a
relation to environmental impact explicit.

It is also noteworthy how the increase in research en-
gagement with AMG, as documented by Morreale at al.
[1], coincides with corporate participation in these efforts.
In the years 2020 until 2023, ca. 40 % of the papers in
our corpus are co-authored by individuals with affiliations
in private companies, compared to 27% in the years be-
fore that. This interestingly compares to the 27% of papers
with industry-affiliated co-authors in our second corpus,
i.e. papers that train models for non-generative purposes.
Overall, these numbers suggest a certain focus of corporate
interest on generative approaches.

Direct corporate funding of the research efforts is,
however, rarely documented, with only four papers in
the whole analyzed first corpus (N = 80) indicating ei-
ther involvement of private funding or GPU support from
NVIDIA. Overall, a slight majority of papers does not
report any funding sources at all. The remainder refers
mainly to public funding agencies, most likely as a re-
sponse to the demands by the agencies for acknowledg-
ment. This suggests an overall situation in which vested
financial interests –– by private and public stakeholders ––
are documented in a way that is not very transparent.

As shown in Figure 1, the majority of the AMG model
development comes from researchers affiliated with insti-
tutions in the US (20 papers) or China (16), followed by
Taiwan (11), Japan (11), and the UK (8). In total, these
five countries account for over 60% of the ISMIR publica-
tions included in corpus 1. These numbers will gain sig-
nificance in the context of carbon footprint estimates in the
next section.

4.2 Energy Use Calculations

For the set of models from corpora 1 and 2 described above
that reported the full details of the computational hardware
and training time (N = 26), we conducted calculations on
the estimated energy use based on the type and number of
GPUs/TPUs, the reported training time, and the Thermal
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Design Power (TDP) of each processor type, as provided
by the manufacturers. The energy used for a single train-
ing run was consequently computed as the product of the
number of processors, computing time in hours, and TDP.
The results of this calculation for each model analyzed are
shown in Table 1.

Based on our calculations, the mean/median amount re-
quired to train an ISMIR model (for either corpus 1 or 2)
is about 224.8kWh (mean) and 18.46kWh (median). This
amounts roughly to the energy demand of a single-person
household for two months/three days in a Western country,
such as Germany. 3 As is evident from Table 1, there is
no clear distinction between the energy use of generative
or analytic models, which implies that the pursued MIR
task may not be an important factor. Instead, the distribu-
tion of values is strongly focused around smaller values,
and only four outlier models require an amount of energy
that lies above the average of 225kWh (hence, the large
difference between mean and median). Out of these, the
three most energy-demanding models in terms of training
come from large IT corporations. The amount of energy
required to train the models provided in these papers sums
to 5.11MWh, which is about 87% of the total energy de-
mand related to all 26 papers with full resource disclosure.
In total, taking into account the full range of energy re-
quirements, the papers with industry-affiliated authors de-
mand about 89% of the total resources related to all 26
full-disclosure papers. In contrast, industry-affiliated au-
thors are found only in 40 out of the 113 papers (35%) in
our two corpora.

As mentioned in Section 3, an estimate of the actual car-
bon footprint requires – among other aspects – detailed in-
formation about the data centers at which the computation
takes place and their energy sources. Nevertheless, we will
approach a preliminary estimate of the carbon footprint
related to model training at the most recent ISMIR con-
ference. We carefully checked all papers in ISMIR 2023
and determined the number of papers that train a machine
learning model, resulting in 62 out of 104 papers (59.6%).
We accommodate for the fact that a small amount of these
papers train “shallow” machine learning models and use an
estimate of 50% of ISMIR papers that train deep learning
models in recent years. Assuming the median as the repre-
sentative statistic for the average energy consumption for
training a model, we arrive at an energy consumption of
18.46kWh * 52 papers = 959.92kWh.

Starting from this number, two further obstacles impede
a reliable estimate of the carbon footprint: 1) In each pa-
per, the model has not been trained only once, but the to-
tal development of the presented model will have required
more energy. Strubell et al. [14] have documented how
the process of fine-tuning a specific model exceeded the
energy demand of one training run by 24 times, and that
a whole R&D cycle is three orders more expensive than
a single training run. Lacking more precise numbers, it
seems, therefore, fair to assume that the actual energy con-

3 5.77kWh per day for a one-person household in 2021 in Germany
according to www.destatis.de.

Article Corpus Energy cost

Hawthorne et al 2022 [47] 4 1 4 375 kWh
McCallum et al 2022 [44] 2 444 kWh
Toyama et al 2023 [48] 2 296 kWh
Sarkar et al 2022 [49] 2 240 kWh
Ma et al 2023 [50] 2 144 kWh
Alonso-Jiménez et al 2 79 kWh
2023 [51]
Perez et al 2023 [52] 2 36 kWh
Brunner 2018 [53] 1 33 kWh
Teng 2017 [54] 1 29 kWh
Di Giorgi et al 2022 [55] 2 24 kWh
Wu, Hsiao et al 2022 [56] 1 22 kWh
Zhao et al 2022b [57] 2 20 kWh
Donahue et al 2019 [58] 1 20 kWh
Donahue et al 2022 [59] 2 17 kWh
Yeh et al 2022 [60] 1 12 kWh
Wu, Chiu et al 2022 [61] 1 12 kWh
Singh et al 2022 [62] 2 10 kWh
Wei et al 2022 [46] 2 8 kWh
Wu & Yang 2020 [63] 1 6 kWh
Pasini & 1 6 kWh
Schlüter 2022 [64] 5

Zhao et al 2022a [65] 1 4 kWh
Zhang et al 2022 [66] 1 3 kWh
Srivatsan & 2 3 kWh
Berg-Kirkpatrick 2022 [67]
Mittal et al 2021 [68] 1 3 kWh
Foscarin et al 2023 [69] 2 0,3 kWh
Peracha 2020 [70] 1 0,2 kWh

Table 1. Energy cost of model training in corpora 1 (N=13)
and 2 (N=13).

sumption related to a paper is at least that of fine-tuning
an existing model. Hence, with a very conservative as-
sumption of a factor of 20, we arrive at an estimate of
Eest = 19.20MWh for all model development related to
a recent ISMIR conference.

The second obstacle is that the location of the data cen-
ter at which computation took place is not documented.
Therefore, we decided to use the countries of author affili-
ations as an indicator of where computation took place. In
terms of carbon footprint, this has an impact as the USA
and China are both on the high end of the carbon intensity
spectrum [19]. We retrieved the average carbon intensity
of the grids in 2022 6 for each country depicted in Figure
1, Ic (in gCO2eq/kWh) and computed the estimate for the
total carbon footprint Ctotal of one conference as

Ctotal = (Eest/Ntotal) ·
∑

c∈C

Nc · Ic (1)

with Nc being the number of times co-authors were from

4 For the four models in this paper, only the minimum and maximum
training times were specified. We use the mean of these two values as an
estimate.

5 Full compute info for one of the included models only.
6 https://ember-climate.org/data-catalogue/yearly-electricity-data/
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a specific country out of the set C of all countries as de-
picted in Figure 1, Ntotal = 96 is the total count of the
histogram. This results in an estimate of Ctotal = 7.593
tons of carbon dioxide from training processes related to
one recent ISMIR conference.

Putting this number into context, according to the es-
timates by [43], the training of GPT-3 has caused energy
consumption of about 189 MWh. With the carbon inten-
sity of the USA in 2017 (higher than in 2022) of 449.06
gCO2eq/kWh, this has produced 85 tons of carbon diox-
ide, one order larger than our estimate for the whole of
ISMIR.

5. DISCUSSION

While this paper focused on the training phase of music-AI
models, more information is needed about the energy con-
sumption along the full pipeline of model development, in-
ference 7 , and deployment. To this end, authors of ISMIR
papers should – at the very least – clearly document the
resources (compute time; type and number of processors)
needed for training and inference, and – ideally – include
more minute documentation of actual energy use during
the whole development cycle. We encourage a discussion
to adopt standards similar to NeurIPS within the ISMIR
submission process.

A commonly used framework that can guide the direc-
tion towards considering the environmental impact of IS-
MIR in a broader sense can be found in the concept of plan-
etary boundaries [71]. There are nine planetary bound-
aries that can help us to understand and analyze how our
actions might influence the environmental systems. These
include, for example, biodiversity loss and species ex-
tinction, stratospheric ozone depletion, ocean acidification,
land-system change/deforestation, freshwater use, and at-
mospheric aerosol load. Taking the example of freshwa-
ter use, these dimensions can be directly applied to ISMIR
research to examine the environmental impact in relation
to the planetary boundaries. Efforts can be directed to-
ward questions such as what is the level of water use for
hardware cooling in computational tasks at ISMIR, and
whether the life cycles of the used hardware are contribut-
ing to environmental processes such as ocean acidification
or species extinction. Unfortunately, six of nine planetary
boundaries are currently transgressed [72], and that places
us on track for increased climate change and breakage of
the prevailing ecosystems.

While energy estimates provide a baseline for under-
standing the scale of the specific issue of energy consump-
tion and for comparing individual model types to one an-
other, they are not in and of themselves a sufficient solution
to the problem of environmental sustainability in model de-
velopment at ISMIR or elsewhere. In order to address the
complexity of the issues in all dimensions of the planetary
boundaries, context-specific inquiries into the impact and
effect of the ISMIR research and technologies developed

7 Two models in the second corpus discuss the use of GPU resources
for inference, but the included information does not allow conclusions
about the energy consumption during the experiments.

and used by the community are needed. Furthermore, a
broader cultural shift in thinking around AI development is
necessary to bring environmental sustainability to the IS-
MIR research agenda. We argue that ISMIR can lead by
a good example of more environmentally conscious model
development, more mindful and minimalistic energy use,
and reflective accounting for the environmental externali-
ties and their political economies in current research and
development practices.

We acknowledge that the calculations presented here
are necessarily tentative by their nature. This is inherently
a result of the lack of transparency in the ISMIR publica-
tions. While the information currently provided can pro-
vide us with indications of the scale of energy used in
training the models, there are several details that may im-
pact the exact values of these variables, which cannot be
accounted for due to partial or lacking information. Such
inaccuracies may skew the implied environmental impact,
with undesirable consequences for social practices in the
community. However, we argue that our estimate is very
conservative on several points: First, the factor of 20 mul-
tiplied with the energy used for one training is below the
estimates of [14], second, the use of TDP ignores all ad-
ditional energy consumption by other hardware, and third,
we use the median as a statistic. We would therefore like to
point out that the likely underestimated energy costs could
lull the research community into a false sense of security
and encourage it to refrain from efforts that would be valu-
able for the environment. These estimates nevertheless
provide an important basis upon which further inquiries
into the complete environmental and ecological footprint
of the conference can build.

Furthermore, we understand that the authors who con-
tributed to our estimates were those who actively docu-
mented resource requirements. These papers may seem
unfairly a focus of critique in our work, as many other
authors who did not volunteer resource information at all
were not cited in the paper. We believe it is instrumental
to document the need for specifying the use of resources
in the ISMIR community, and encourage further proactive
efforts toward that goal.

6. CONCLUSION

In the era of acute climate crisis, the interest in resource-
demanding music generation and analysis tasks shows
signs of acceleration rather than slowing down. It is essen-
tial that research communities such as ISMIR apply criti-
cal self-reflection and acknowledge their role in promoting
practices that may be excessively harmful to the environ-
ment. Increased transparency in documentation in ISMIR
papers would serve better accounting for the current im-
pacts of the research, steering the community norms and
guidelines towards more sustainable practices, and provid-
ing a positive example for the wider industry. We encour-
age the ISMIR community to continue these critical dis-
cussions around the ethical impacts of MIR, including en-
vironmental sustainability and its political ecologies and
beyond.
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ABSTRACT 

Regular weekly lessons and daily home practice are key 

for skill development. This paper focuses on identifying 

the challenges within such practice routines and develop-

ing a system to address these issues, thereby enhancing 
teacher support and elevating student performance in pi-

ano. Observations from real-world lessons and an analysis 

of practice videos spanning 177 days from 30 students re-

veal successful tactics, including the assignment of suita-

bly challenging pieces and motivational rewards like stick-

ers or stamps. Furthermore, the study underscores issues 

such as tension in parent-led practice and ineffective repe-

tition. Insights from the field study suggest the potential of 

third-party feedback, practice segmentation, reporting 

practice records to teachers, and rewarding practice ses-

sions. We developed a system incorporating these solu-
tions and tested it with 80 children over 4 months. Results 

showed increased teacher engagement with students' home 

practice, improved student motivation and practice dura-

tion, and enhanced sight-reading skills, demonstrating the 

system's effectiveness in supporting piano education. 

1. INTRODUCTION 

Weekly lessons and daily home practice are vital for skill 

growth in young piano students [1-3]. However, teachers 

often rely solely on lesson performance to address issues 

in unseen home practice. Fostering resilience is essential 

in daily piano education. Research suggests praising not 
just outcomes, but also effort and perseverance [4]. There-

fore, piano instructors should evaluate and commend not 

only performance outcomes but also efforts during home 

practice and the ability to overcome difficulties.  

Identifying home practice challenges enables efficient 

skill improvement through targeted interventions and sup-

port systems. This paper aims to (1) identify home practice 

challenges and (2) develop a system to address them. This 

study aims to address issues and evaluate the system's ef-

fectiveness in improving practice outcomes. 
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Figure 1. (Left) Current practice (Right) Enhanced System 

with App. 

In 2023, with the cooperation of Piano Teachers’ Na-

tional Association of Japan (PTNA)  [5], (1a) interviews 

were conducted with 8 piano teachers, (1b) observations 

were made of the piano lessons of their 12 students, (1c) 
survey results regarding home practice were collected 

from 81 piano teachers, (1d) one-week home practice rec-

ords were obtained from 37 students (Average age: 7.02), 

and (1e) the analysis of 177 days of home practice videos 

from 30 of those students (Average age: 6.93) was per-

formed. (2) Based on these findings, a support system (Fig. 

1) was developed and tested over 4 months with 80 stu-

dents (Average age: 7.11) and 46 teachers, aiming to en-

hance practice efficiency and outcomes. These students are 

a different population from the subjects in survey (1a-1e).  

The evaluation of the system's effectiveness, based on 
its usage and surveys conducted before and after the trial, 

revealed the following: 

l Segmenting tasks of target musical score, which is 

assigned as homework, increased students' practice 

time and improved their sight-reading skills. 

l Reporting practice time and frequency to teachers in-

creased teachers' awareness of home practice. 

l Providing incentives for each piece practiced en-

hanced students' motivation and initiative to practice. 
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2. FIELD STUDY 

2.1 Cultural Background 

In Japan, piano lessons are the second most popular extra-

curricular activity for elementary school students [6], and 

almost all students attending piano classes have a piano at 

home and practice daily. Throughout the 9 years of com-

pulsory education from the first year of elementary school 

to the third year of middle school, music is consistently a 
compulsory subject, resulting in high levels of music liter-

acy. Although few children aim to become piano profes-

sionals, it is presumed that many parents recognize the ed-

ucational value of learning music and piano [7]. The edu-

cational value of music and piano learning is evident from 

the fact that many students at major U.S. universities like 

Harvard and MIT [8] study music as part of their liberal 

arts education and focus on developing non-cognitive 

skills [9]. The role of parents in their children's piano learn-

ing in Japan is multifaceted. Parents manage the daily 

practice schedule and maintain their children's motivation 

through feedback and encouragement. They also work 
closely with piano teachers, correcting mistakes in place of 

the teachers to ensure effective practice at home. In this 

way, active parental involvement significantly impacts the 

duration and progress of their children's piano learning. 

2.2 Lesson Observations and Teacher Interviews 

To explore how to maximize the effectiveness of home 

practice, we invited 8 experienced piano teachers (30s to 

60s) to observe 12 lessons across 4 piano classes. These 

observations, coupled with interviews, highlighted 3 key 

factors essential for enhancing home practice: 

(1) Receiving objective feedback from a third party to gain 
a clearer perspective on one’s own performance [10]. 

(2) Assigning homework that is appropriately challenging, 

considering the student’s age, experience, parental sup-

port, and skill level [11-12]. 

(3) Rewarding completed assignments with stickers or 

stamps to motivate students [13]. 

These teachers, with their deep expertise, foster substantial 

musical skills, contributing to students' continued engage-

ment with piano through high school and college. 

2.3 Teacher and Student Questionnaires 

A questionnaire was set up on the website of the Piano 
Teachers' National Association to clarify teachers' percep-

tions and students' actual practice conditions at home. Re-

sponses were collected from 81 teachers of various ages, 

genders, and skill levels. The student survey was con-

ducted through teachers, with 37 students from  schools 

reporting their practice status daily for 1 week using 

Google Forms. 

Teacher Questionnaire: The top concern for teachers re-

garding students' home practice was “insufficient practice 

days,” accounting for 83% of responses. This was fol-

lowed by 59% of the teachers indicating that students prac-

ticing with incorrect sounds and rhythms was a concern. 

Student Questionnaire: The home practice records were 

submitted via Google Form every day after piano practice. 

 

Figure 2. Survey Results on Practice Content for Elemen-

tary School Students. 

 

Figure 3. Timeline of home practice for first graders: most 

of the time was run-through practice. 

Days and duration: Out of the total 259 days surveyed (37 

students × 7 days), 250 days of responses were received. 

The number of practice days was 188, averaging 5.08 days 

per week per person, indicating that they practice on week-
days. In addition, 69.1% of the respondents (130 out of 188 

days) practiced for more than 15 minutes at a session. 

Practice content: An analysis of responses (Fig. 2) to ques-

tions about actual practice content revealed that 92.0% 

(173 out of 188 days) of students reported performing “full 

run-throughs” of pieces from start to finish. However, only 

about half of the students practiced “partial sections” such 

as practicing difficult parts (46.3% or 87 days), practicing 

parts pointed out in lessons (44.7% or 84 days), or practic-

ing with 1 hand (35.1% or 66 days). 

The survey results from both teachers and students re-
vealed a gap in their perceptions. While 83% of the 81 

teachers surveyed expressed concerns about the insuffi-

cient number of practice days, the student survey results 

showed that students practiced an average of 5.08 days per 

week, with 69.1% spending more than 15 minutes per 

practice session. These results highlight a significant dis-

crepancy between teachers' perceptions and the actual 

practice conditions of students. 

2.4 Analysis of Home Practice Videos from Students 

Thirty of the students in the study recorded their home 

practice for the same week and uploaded the video to 
Google Drive. As a result, a total of 177 days practice vid-

eos were collected. These videos were viewed and ana-

lyzed by 5 active teachers, with each teacher assigned a 

different set of videos to review. The analysis was con-

ducted based on a format that included 5 items: timeline, 

piece, practice sections, practice methods, and free com-

ments, allowing each teacher to record their observations.
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Figure 4. Screenshot of perfor-

mance assessment. 

Figure 5. Example of Part Practice 

Method B 

Figure 6. User Interface: students 

push “Did it !” button after each part 

practice was completed 

For example, Fig. 3 shows a timeline of home practice 

of first-grade elementary school student who worked on 4 

pieces labeled A to D over 5 days of the week. The videos 

showed the student independently engaging in practice, 
with a high proportion of full run-throughs in their practice 

routine. On 1 day, the student repeated a full run-through 

of the same section 3 times, making the same mistakes 

each time, but then moved on to the next piece without 

correcting them. On the day of the lesson (May 25, 2023), 

the practice time was longer than usual, and the mother's 

involvement was also observed. 

In other videos, various methods of counting the num-

ber of plays were observed, such as using an iPad or note-

book to keep track, or using educational toys like “Pop-It” 

to count. There was a tendency to end the practice session 

after a certain number of repetitions, regardless of whether 
they could play the sections correctly or not. 

Moreover, from the perspective of parental involvement, 

a correlation was observed between the extent of parental 

involvement, the completion of assignments, and the stu-

dents’ initiative. Active parental involvement was seen to 

accelerate technical progress in students, although it 

tended to suppress their autonomy. While children’s skills 

improved when parents pointed out mistakes in sound or 

gave prompts similar to those of teachers in lessons, this 

also led to situations where the child felt pressured and be-

came overly tense. On the other hand, when parents were 
not overly involved and only supported when prompted by 

their child, the students tended to practice independently. 

Although practice often ended based on the number of 

times played, mistakes sometimes remained uncorrected 

over time. Furthermore, parents encouraging children to 

think about the next steps and motivating them through 

praise and encouragement helped support the children in 

approaching practice in a relaxed and thoughtful manner. 

2.5 Identified Challenges from Field Study 

The field study revealed the following challenges: (1) Stu-

dents themselves find it difficult to objectively view mis-
takes in sound and rhythm. However, it is challenging for 

parents, who may not have a deep understanding of piano 

instruction, to provide appropriate support that is neither 

too interfering nor disinterested. (2) Merely completing a  

set number of full run-throughs makes it difficult to over-

come sections that are not well-played. (3) There is a gap 

between teachers’ perceptions and the actual practice con-

ditions of students. (4) Rewards are effective in improving 

motivation, but since they are only received during weekly 

lessons, they do not easily motivate home practice. 

3. SYSTEM DESCRIPTION 

Based on the identified challenges in the previous section, 

a system was designed to enhance the efficiency of stu-

dents' home practice. The implemented features in this sys-

tem are as follows: 

(A) Providing feedback on whether a performance is cor-

rect or incorrect by a third party other than parents 

(B) Encouraging targeted practice of difficult sections by 

segmenting practice pieces [3],[14] 

(C) Enabling teachers to review home practice records at 

any time 

(D) Motivating students by providing rewards every time 
they play their practice pieces, visualizing these re-

wards 

3.1 Overview of the Practice App 

To achieve the objectives (A) through (D), we imple-

mented the system as follows. It is important to note that 

while objective (A) is only accessible to users of digital 

pianos with MIDI output, objectives (B) through (D) are 

available for both electronic and acoustic piano users. 

(A)Design of Performance AI Assessment by System 

The system is designed to allow a third party other than 

parents to provide feedback on the correctness of a perfor-
mance.  

After selecting the homework piece, the student 

chooses which section of the piece, previously divided into 

units of about 4 measures, they wish to practice. They start 

the performance by pressing the “Start” button. The stu-

dent’s performance is recorded in MIDI and converted into 

a Standard MIDI File (SMF). The recording is done with-

out a metronome or click track to allow the student to play 

at their own tempo. The student’s performance SMF is 

then compared with a pre-prepared exemplary perfor-

mance SMF. As a preprocessing step before comparison, 
the note ON events in the SMF are sorted chronologically. 

Note ON events within 50 ms of each other are considered 
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simultaneous and are sorted by MIDI note number in as-

cending order. The preprocessed SMFs are compared us-

ing Dynamic Programming (DP) matching [15] to find 

corresponding notes between the student’s performance 

and the exemplary performance, and any discrepancies are 

detected as mistakes. Since this is intended for beginners, 

a simple method like this is sufficient for now. However, 

using symbolic music alignment instead of DP matching is 
a subject for future consideration. 

If the performance is flawless, the system responds with 

“Well played!” If there are mistakes, the system points out 

the first bar where a mistake occurred (Fig. 4). 

(B) Design for Segmenting Practice Pieces 

Video observation of home practice sessions revealed that 

it is difficult to compensate for mistakes and weaknesses 

by simply practicing through the piece. Therefore, we 

aimed to encourage segmented practice in order to im-

prove overall mastery of the piece. 

Students select their homework piece and, after receiv-

ing system feedback on any 4-bars block, they can choose 
to work on segmented practice pieces using 1 of following 

2 methods: 

Part Practice Method A: Simplifies the homework piece 

by concealing parts of the score every 4 measures. This 

method aims to focus on specific sections by maintaining 

the original sheet music's staff lines, bar spacing, and note-

head sizes, while intentionally hiding parts to help students 

focus on particular areas. 

Part Practice Method B: This method involves identify-

ing key learning elements that are either crucial for learn-

ing or where many students stumble. Short 4-bars pieces, 
simpler than the original, are composed that include some 

of these learning elements (Fig. 5). The contents were 

composed by 6 music majors, including three active piano 

instructors. The following conditions apply to the compo-

sition process [16]: 

#1: Include at least one challenging learning element from 

the original phrase. 

#2: Maintain the same time signature, position, and key as 

the original phrase. 

#3: Include fewer learning elements than the original. 

#4: Maintain or lower the level of learning elements. Low-
ering is defined as reverting to already learned related 

elements. 

#5: If using elements other than melody and rhythm, em-

ploy the same starting note, melody, and rhythm as the 

practice phrase from the original. 

#6: Use a melody that the students may have heard before. 

In both Part Practice Method A and B, students can either 

play the presented 4-bars practice piece or choose to skip 

it by pressing the skip button located at the bottom right of 

the sheet and move on to the next original practice piece. 

(C&D) Design of Monitoring and Rewarding 

Instead of teachers assessing students' home practice 
solely based on their performance during weekly lessons, 

the design allows teachers to continuously check daily and 

cumulative practice time since the start of using the Prac-

tice App, the number of times practice pieces are played, 

and the points earned. 

The rewarding design: 1 point for just logging in, 1 to 5 

points for pressing the “Did it!” button (Fig. 6), and 10 to 

50 points awarded by teachers as a reward. The educa-

tional philosophy of this system is “from result-oriented to 

process-oriented.” In a result-oriented approach, perfect 

performances evaluated by the AI performance assessment 

would likely earn higher points. However, in a process-

oriented approach, value is found in the attempt itself, and 

regardless of the performance outcome, a consistent 5 

points are awarded. Thus, these experimental results are 
evaluated without a strong AI performance assessment 

component, other than the simple pitch errors. 

3.2 Overview of PoC (Proof of Concept) 

Students participating in the PoC were recruited via the 

website of an organization for piano teachers. The PoC is 

not an independent experiment but is incorporated into ac-

tual students' regular lessons and practice. Participants 

were selected based on their responses to questions about 

teaching materials, instruments owned, and devices owned. 

Additionally, 30 tablets for the PoC were lent out, and it 

was anticipated that students would use devices (tablets, 

smartphones, computers) alongside their usual sheet music. 
For the performance assessment feature, students who 

mainly use digital pianos at home were targeted, although 

some students with acoustic pianos were also accepted. 

The teaching materials used were “Bastien New Tradi-

tions: All In One Piano Course - Level 1A” and “Bastien 

Piano Basics [17]: Piano - Level 1,” both of which have 

been translated into over 16 languages worldwide. 

The PoC was conducted from October 2023 for 4 

months. Piano students using the Practice App were intro-

duced by their teachers, and the teachers' surveys were 

linked to individual students for analysis. To validate the 
Practice App, a pre-assessment questionnaire was con-

ducted at the beginning and a post-assessment question-

naire after 4 months. 

3.3 Results of System Usage 

3.3.1 Period and number of participants 

Students who participated in the PoC were referred by 46 

teachers, and 80 students used the Practice App at least 

once. The age of the students mainly ranged from first to 

third grade of elementary school, with a few preschoolers 

and fourth to 6th graders included. The number of days the 

Practice App was used ranged from a minimum of 1 day 
to a maximum of 117 days, with an average usage of 39.2 

sessions. The Total points, indicating the level of ac tivity 

in using the Practice App, ranged from a minimum  

of 5 points to a maximum of 8,628 points, averaging 1,399 

points. 36 teachers monitored their students' practice ses-

sions at least once using the Practice App. 

3.3.2 Comparison of Pre/Post PoC Questionnaire 

The same questionnaires were administered to students be-

fore and after the PoC to validate the effectiveness of the 

Practice App. The questionnaires used a 5 level Likert 

scale to ask about students' attitudes towards piano practice 

and their parent-child relationships. The responses were 
based on the respondents' subjective perceptions of these 

aspects. 52 students responded to both the pre and post 

questionnaires. The students who earned more than 1,000 
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Questionnaire for HPG Students 
Mean 

before after 

Does your child enjoy daily practice? ** 3.20 3.64 
Is your child self-motivated in daily piano 

practice? ** 
2.76 3.52 

How long do you practice each day? * 3.12 3.52 

How do you feel about your relationship 

with your child during daily piano practice? 
3.16 3.24 

Table 1. Paired t-test of Pre- and Post-PoC Questionnaires 

for HPG Students (N=25, **p<0.01, *p<0.05) 

points with the Practice App were categorized as the High-

Practice Group (HPG) with 25 students, and those who 

earned less than 1,000 points were categorized as the Low-

Practice Group (LPG) with 27 students. For the group of 

25 HPG participants, a paired t-test was conducted on the 

pre- and post-assessment questionnaire results. As shown 

in Table 1, significant improvements were observed in 

Daily Practice Time, Voluntariness in Practice, and Enjoy-
ment of Practice. However, no significant effect was ob-

served in improving parent-child relationships. 

3.3.3 Validation by questionnaire after PoC 

Responses to questions included only in the post-PoC 

questionnaire were collected from 64 participants. These 

were divided into two groups: 30 in the High-Practice 

Group (HPG) and 34 in the Low-Practice Group (LPG). 

The average scores for HPG were listed in descending or-

der in Table 2. Independent sample t-tests were conducted 

for each question. 

In the HPG, half of the 14 question items averaged 4.0 

points or higher. Furthermore, HPG received significantly 
higher scores than LPG in 9 out of the 14 questions. The 

item “Increased Voluntariness for Practice” in Table 2 cor-

responds to “Voluntariness in Practice,” which showed 

significant effects in the paired t-test described in previous 

section. Therefore, even though there were no significant 

differences found in the independent samples t-test for 

items like “Motivated by 'Did it!' Button,” “Supported by 

AI performance assessment,” and “Supported by Part 

Practice Method A,” the higher scores in “Increased Vol-

untariness for Practice” suggest that system was effective. 

Thus, it is estimated that the system influenced 13 out of 
the 14 items. 

3.3.4  Results of the Teacher Questionnaire 

After the PoC, feedback was obtained via a Likert scale 

questionnaire from 46 teachers, as shown in Table 3. An 

independent samples t-test was conducted between 26  

teachers (HPG) who had at least 1 student scoring over 

1,000 points and 20 teachers (LPG) who did not.  

Out of 15 questionnaire items, 7 averaged 4.0 points or 

higher. Moreover, HPG received significantly higher re-

sponses in 10 items compared to LPG. The item "Have 

Students Use Part Practice Method A" scored particularly 

high for HPG at 4.69 points, with a significant difference 
from LPG. Conversely, "Have Students Use Part Practice 

Method B" was the only item among all 15 where both 

HPG and LPG teachers scored above 4.0 points. Signifi-

cant responses were also seen in items relating to teacher  

 

Questionnaire for Students 
Mean 

LPG HPG 

Did tracking practice motivate you? ** 3.59 4.30 

Did Method B support your practice? ** 3.50 4.29 
Did the "Did it!" button motivate you? 3.76 4.27 
Did AI assessment support your practice? 3.67 4.27 

Did Method B support your practice? 3.55 4.12 

Did practice points motivate you? * 3.41 4.10 
Did practicing become more enjoyable? ** 3.15 4.00 
Did your practice time and frequency increase? * 3.06 3.83 
Did your piano skills improve? ** 2.85 3.70 
Did using Practice App motivate you? ** 2.82 3.60 
Did it reduce the burden on parents? * 2.85 3.60 
Practice independently without parents? ** 2.71 3.53 
Did your motivation for practicing increase? 3.09 3.43 
Did your teacher give you a passing mark earlier? 2.68 3.20 

Table 2. Results and Mean Values from Independent Sam-
ples t-Test of Post-PoC Student Questionnaires Between 

HPG and LPG  (N ranges from LPG: 9-34, HPG: 11-30, 

**p<0.01, *p<0.05) 

 

Questionnaire for Teachers 
Mean 

LPG HPG 

Do you want students to use Method A? ** 3.85 4.69 
Did it spark home practice talks with students? ** 3.30 4.42 
Do you want students to use Method B? 4.15 4.38 
Was Method B effective in improving sight-reading 

skills? * 
3.95 4.38 

Any insights from checking students' practice amount? ** 3.20 4.27 
Any positive changes in students? ** 3.25 4.19 
Did it help observe students' home practice? ** 3.30 4.00 
Did lesson efficiency improve? ** 3.00 3.92 
Did it lead to better lessons? 3.35 3.85 
Did students' performance improve by the next lesson? ** 2.85 3.85 
Did students' sight-reading improve? * 3.20 3.73 
Did it change how you assign homework? 3.15 3.65 
Did AI assessment reduce pitch and rhythm mistakes? 3.05 3.54 
Did points awarded by teachers motivate students? * 2.75 3.50 
Did it increase the number of assigned pieces? 2.90 3.23 

Table 3. Comparison of Mean Values Between Teachers 

with 1 or More Students in HPG and Those Without 

(N=LPG: 20, HPG: 26, **p<0.01, *p<0.05) 

engagement with home practice, such as providing oppor-

tunities for discussions about home practice and observing 

the process. 

The questions “Have Students Use Part Practice 
Method A,” “Have Students Use Part Practice Method B,” 

and “Part Practice Method B is effective for reading skills” 

reflect teachers' opinions on the functionality rather than 

the change in students due to implementation, which might 

explain the higher scores from LPG. As a result, while 

“Have Students Use Part Practice Method B” did not show 

a significant difference in scores between HPG and LPG, 

the high average score of 4.38 points for HPG indicates 

substantial positive expectations from the teachers. 

3.4 Summary of Results 

Results from section 3.3.2 indicated that there were signif-
icant differences in the Likert scale questionnaire scores 
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before and after the start of the PoC, demonstrating im-

provements in “Daily Practice Time,” “Voluntariness in 

Practice,” and “Enjoyment of Practice.” 

From section 3.3.3, significant differences between the 

High-Practice Group and Low-Practice Group in the post-

PoC questionnaire suggest that motivation for practice, 

practice time and frequency, and the sense of improvement 

increased while reducing parental burden. Items that 
scored an average of 4 points or higher in the HPG are con-

sidered to indicate the effectiveness of the Practice App. 

According to the results from section 3.3.4, the significant 

differences in scores between the HPG and LPG indicated 

an increase in teachers' awareness of home practice. Both 

Part Practice Method A and B being highly rated by both 

groups indicates that these methods are perceived as effec-

tive practices by teachers and hold high expectations. 

4. DISCUSSION 

4.1 Factors Enhancing Engagement 

Motivational Effects: The visualization of the effort pro-

cess has been shown to be effective in motivation in other 
studies as well [18], but this time, visualizing the efforts of 

child students at home practice with points confirmed sig-

nificant motivational effects. For example, a second-grade 

elementary school monitor student practiced a song from 

the introductory tutorial book 3 times through, totaling 

about 2 minutes of practice before the PoC in October. 

However, two months after starting to use the Practice App, 

the student began practicing more than 30 minutes every 

day and was able to progress to “Burgmüller: 25 Progres-

sive Etudes, Op. 100”[19]. This substantial change in mo-

tivation was attributed to daily point rewards by teachers, 
as revealed in interviews. The total points, including both 

self-reward points and teacher reward points, were always 

displayed. Students who noticed the addition of teacher 

points showed increased motivation. Moreover, segment-

ing practice pieces and increasing the frequency of press-

ing the “Did it!” button increased opportunities for earning 

points, enhancing students' autonomy and providing a 

game-like experience. This led to an increase in frequency 

and duration, thereby improving sight-reading skills. 

Analysis of Part Practice Methods A and B: Field stud-

ies show that teachers have traditionally assigned students 

to practice with one hand or rhythm practice as homework 

[20], using methods such as writing instructions on the 
score or using sticky notes. However, in Part Practice 

Method A, for example, when practicing only with the 

right hand, the system hides the left-hand part, allowing 

focus solely on right-hand practice. The system displaying 

only the part being practiced helps students concentrate on 

the task without being distracted or overwhelmed by hav-

ing to cognitively process the whole score first and subse-

quently disregard some parts. This focus on individual 

tasks was perceived as effective based on questionnaire re-

sults and post-interviews with teachers. Part Practice 

Method B is not just a specialized part-practice for the as-
signed homework piece but focuses on learning elements 

intended to be acquired in that piece, aimed at improving 

sight-reading skills overall. Interviews and questionnaires 

with teachers suggest that compared to adult students aim-

ing to master specific songs, there is a high expectation for 

child students to improve their sight-reading skills overall 

to play many pieces in the future. 

Feedback and System Impact: In the free-response sec-

tion of the post-use survey, both students and parents 

shared feedback such as, “It was helpful that the AI perfor-

mance assessment could identify mistakes even when par-
ents couldn't supervise the practice,” and “Knowing that 

the teacher was monitoring daily practice motivated the 

child (student).” Teachers also provided positive feedback, 

saying, “The system's suggestion for part practice helped 

students who tend to play through the entire piece from 

start to finish to adopt sectional practice,” and “The pres-

ence of the system as a third party seemed to reduce par-

ents' frustration.” These responses aligned with the goals 

of our study, indicating a successful outcome. 

4.2 Limitation 

This study primarily aimed to conduct a PoC; hence, for 

the performance assessment, it did not involve using 
acoustic pianos with automatic musical acoustic alignment 

[21-24], but instead conducted validations using digital pi-

anos, which offer higher recognition accuracy. Although 

the effectiveness of segmenting practice pieces was con-

firmed, the study did not perform detailed analyses such as 

comparing the impact of Part Practice Method A and B 

separately or comparing the effects of practice with and 

without segmentation. The interface was changed to Eng-

lish for the paper, but we use Japanese in practice. Addi-

tionally, feedback indicated the current teacher UI is diffi-

cult to use in multi-student classrooms. This suggests the 
need for UI improvements to reduce management costs for 

actual classroom deployment. Furthermore, while the 

study has statistically summarized outcomes, reports indi-

cate that some students felt monitored during home prac-

tice, and it has not been possible to perform usability eval-

uations that consider such individual differences. 

5. CONCLUSION 

This study, through a large scale field study of piano teach-

ers and students, revealed that the challenges in children's 

home piano practice include not recognizing errors in play-

ing without parental support, repeating inefficient full run-
throughs, teachers not understanding the practice process, 

and maintaining motivation. To address these problems, a 

system was developed incorporating performance assess-

ment, presentation of segmented practice pieces, reports to 

teachers, and point allocation, and a PoC was conducted. 

The results confirmed that (1) the system identified mis-

takes, reducing parental burden, (2) increased practice 

time and improved sight-reading skills, (3) increased 

awareness among teachers about the practice process, and 

(4) enhanced student motivation and spontaneity. These 

outcomes suggest that the proposed system has the poten-

tial to enhance efficiency and effectiveness in children's 
piano learning. Challenges such as individual differences 

in UI and usability, as well as environmental settings, re-

main for actual deployment and are targeted for future 

work.  
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ABSTRACT

Inner Metric Analysis (IMA) is a method for sym-
bolic music analysis that identifies strong and weak
metrical positions according to coinciding periodicities
within note onsets. These periodicities are visualized
with bar graphs known as metric weight and spec-
tral weight profiles. Analyzing these profiles for the
presence of syncopation has thus far required man-
ual inspection. In this paper, we propose a simple
measure using chi-squared distance for quantifying the
level of syncopation found in IMA weight profiles by
considering each as a distribution to be compared
against (1) a uniform distribution ‘nominal’ weight
profile, and (2) a non-uniform distribution based on
beat strength. We apply this measure to the task
of predicting perceptual ratings of syncopation us-
ing the Song (2014) dataset of 111 single-bar rhyth-
mic patterns and compare its performance to seven
existing models of syncopation/complexity. Our re-
sults indicate that the proposed measure based on (1)
achieves a moderately high Spearman rank correla-
tion (rs = 0.80) to all ratings and is the only single
measure that reportedly works across all categories.
For so-called polyrhythms in 4/4, the measure based
on (2) surpasses all other models and further outper-
forms five models for monorhythms in 6/8 and three
models for monorhythms in 4/4.

1. INTRODUCTION

Much research has gone into understanding the per-
ception of temporal patterns [1–3] and many more re-
cent studies within this scope have focused on the per-
ceived levels of syncopation and complexity in these
patterns [4–11]. Subsequently, a number of different
computational methods have been proposed for mod-
eling these, including models that are based on a met-
ric hierarchy using tree-based structures [7,12–14] and
those that are not [15–19]. Many of these models have
been tested on various perceptual tasks, such as syn-

© B. Bemman, and J. Christensen. Licensed under
a Creative Commons Attribution 4.0 International License (CC
BY 4.0). Attribution: B. Bemman, and J. Christensen, “In-
ner Metric Analysis as a Measure of Rhythmic Syncopation”, in
Proc. of the 25th Int. Society for Music Information Retrieval
Conf., San Francisco, United States, 2024.

copation prediction, and their respective performances
have been compared [6,9,20–23]. However, none of the
comparisons carried out to date have considered Inner
Metric Analysis [24].

Inner Metric Analysis (IMA) is a method of sym-
bolic music analysis for identifying strong and weak
metrical positions in a piece based on coinciding peri-
odicities found in its note onsets [24]. Over the years,
IMA has been applied to the tasks of automatic me-
ter detection [25] and dance music classification [26],
but it has largely been used in more traditional mu-
sic analysis contexts [24,27]. An important feature of
IMA is its ability to provide a representation of the
inner metric structure of a piece rather than a repre-
sentation tied to its outer metric structure–––the me-
ter as indicated by the time signature in a score. This
feature allows IMA to identify, for example, instances
where the notated music conflicts with the implied or
perceived meter. For this reason, it has been used to
aid in the identification of syncopation [24], which has
typically been defined as a temporary displacement of
the regular metrical accent [28]. However, until now
the use of IMA to identify syncopation in a musical
passage has required manual analysis by a music the-
orist or other domain expert.

In this paper, we propose using chi-squared dis-
tance as a first step towards computing a quantifiable
measure of syncopation from weight profiles produced
by IMA. We apply this method to the task of pre-
dicting perceptual ratings of syncopation in the Song
(2014) [22] dataset containing 111 one-bar rhythmic
patterns in two different meters and rhythm types
(i.e., monorhythms in 4/4, monorhyhms in 6/8, and
so-called polyrhythms in 4/4). In section 2, we ex-
plain how IMA produces a metrical analysis of a mu-
sical passage and detail the rhythmic patterns in the
Song (2014) dataset. In section 3, we introduce our
proposed measure based on chi-squared distance for
comparing the weight profiles produced by IMA to
a uniform distribution or ‘nominal’ weight profile as
well as to a non-uniform distribution based on beat
strength [29]. We evaluate this measure in section 4
by testing it on the aforementioned dataset and com-
pare its performance to the reported performances of
seven existing models of syncopation/complexity. We
summarize our findings in section 5 and suggest pos-
sible directions for future work.
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Figure 1. Opening bars of the “Twinkle, Twinkle
Little Star” melody and single local meter (A) with
its pulses (black circles) generated by Inner Metric
Analysis (IMA). Note that stars denote onsets (On).

2. RELATED WORK

2.1 Inner Metric Analysis (IMA)

IMA computes, from the note onsets of a piece, an
exhaustive listing of local meters—each of which must
be a sub-sequence of onsets or pulses that are (1) at
least 3 in number, (2) separated by a fixed inter-onset
interval, called the period, (3) not able to be extended
further (forwards or backwards in time) within the
sequence of all onsets of the piece, and (4) not con-
tained within the pulses belonging to any other local
meter. Figure 1 shows the opening two bars of “Twin-
kle, Twinkle Little Star” with its single local meter.
Note that the single local meter (A) contains at least
3—in this case, 7, evenly-spaced pulses (black circles),
each aligned with a corresponding onset in the music
above. The numbers at the bottom indicate the posi-
tions within an underlying “grid” called time points,
equivalent to tatums, upon which the onsets are fitted.
Because all adjacent onsets have an equal, constant
spacing, represented in the score as quarter-note du-
rations, no time point exists between them. In such
passages, there will be only a single local meter as
any other possible set of pulses would necessarily be
contained within this local meter. For more complex
rhythms, this will not be the case.

Following the enumeration of all local meters in a
piece, IMA computes a metric weight for each onset
based on the number of pulses in local meters that
coincide with this onset and the lengths of those local
meters to which these pulses belong. Formally, let On
be the set of all onset time points in a piece and m

be a local meter that contains an onset, o, and where
km denotes the length of m minus 1. M(l) denotes
the set of all local meters of length at least l, where in
straight-forward implementations of IMA, l is 2 (equal
to the minimum number of pulses, 3, minus 1). The
metric weight of o is defined as the sum of the values,
km, of the local meters, m, that contain o. The metric
weight of an onset o ∈ On is thus given by

Wl,p(o) =
∑

{m∈M(l):o∈m}

(km)p, (1)

where p is a weighting parameter typically set to p = 2
that is used to control the relative influence of the
length of local meters on the metric weight [24]. For
example, the metric weight assigned to each of the
7 onsets of the melody shown in Figure 1, using the

Figure 2. Opening bars of a syncopated variation of
the “Twinkle, Twinkle Little Star” melody with all ten
(A–J) local meters and their extensions (red triangles)
generated by Inner Metric Analysis (IMA).

typical weighting parameter of p = 2, would be (7 −
1)2 = 36, as each onset has only a single pulse (i.e.,
no coinciding pulses) belonging to one local meter of
length 7− 1 = 6.

In addition to the metric weight, IMA also com-
putes a spectral weight that considers the extension
of each local meter to certain time points on the grid
that align with either onsets or silence (i.e., rests) in a
piece. Formally, an extension, ext(m), of a local me-
ter, m, is defined as the set of time points, {s+id, ∀i},
where s denotes the time point of the first onset in m,
d is the period, and i is an integer time point in the un-
derlying grid. Figure 2 shows a syncopated variation
of the melody shown in Figure 1 with all ten of its lo-
cal meters (A–J) and extensions (red triangles). Note
that, in contrast to Figure 1, there are multiple local
meters (ten) where no one local meter is contained
within the pulses belonging to any other local meter.
Take, for example, local meter (E), which shares two
of its pulses (time points 1 and 7) with local meter
(D), but contains a third (time point 4) that is not
shared with (D). The purpose of extensions in IMA
is to allow for pulses to contribute to parts of pas-
sages where they are not even present. The case for
projecting pulses further in time in this way through
extensions, for example, is made stronger when one
considers the possibility for some latent or persisting
pulse in the listener’s perception. The spectral weight
is computed in a similar manner to the metric weight
(shown in Equation 1), except that it assigns a weight
to each time point (rather than only to each onset)
based on the pulses and now extensions which coin-
cide with this time point. For a time point, t, the
spectral weight is given by

SWl,p(t) =
∑

{m∈M(l):t∈ext(m)}

(km)p. (2)

Whereas the metric weight of, for example, the first
onset (at time point 0) shown in Figure 2, would con-
sider only local meter (H) due to it having the only
coinciding pulse, the spectral weight would consider
the additional contributions of local meters (A, B, C,
G), due to their coinciding extensions.
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Figure 3. The metric and spectral weight profiles
of the opening two bars of the syncopated “Twinkle,
Twinkle Little Star” melody from Figure 2 with metric
weights shown in (a) and spectral weights shown in
(b), as computed by Inner Metric Analysis (IMA).

Whether an analysis of a piece by IMA uses met-
ric weights or spectral weights, it is typical for the
weights to be plotted in the form of a bar graph called
a profile. With a trained eye, musical features of a
piece such as a possible meter (whether notated or
not) and syncopation often emerge through visual in-
spection of the profile. Figure 3 shows the metric
weight profile and spectral weight profile for the open-
ing two bars of the syncopated “Twinkle, Twinkle Lit-
tle Star” melody shown in Figure 2. Given that the
actual meter of the syncopated melody in Figure 2 is
known, we can see in its corresponding weight profiles,
shown in Figure 3, that all lower weights at time points
0, 2, 4, 6, 8, 10, 12, 14 appear at on-beat locations while
all higher weights at time points 1, 3, 5, 7, 9, 11, 13, 15
appear at offbeat locations, suggesting a strong possi-
bility for the presence of syncopation.

2.2 The Song (2014) Syncopation Dataset

Datasets containing rhythmic (or temporal) patterns
for studying human perception remain relatively few
in number and small in size [1–4,7, 30,31]. A number
of these early datasets were originally constructed as a
means for evaluating perceptual complexity and have
since been co-opted for the study of syncopation [5,

6]. Even fewer datasets exist for the explicit study of
syncopation [7, 22, 32, 33], however, the Song (2014)
[22] dataset is arguably one of the largest.

The Song (2014) [22] dataset contains 111 single-
bar rhythmic patterns (and their mean listener per-
ceptual ratings from 0 to 4) in two possible meters,
4/4 and 6/8, and of two different rhythm types, mono
and poly. 1 There are 27 monorhythm patterns in 4/4
(15 on quarter-note grid; 12 on eighth-note grid), 36
monorhythm patterns in 6/8 (eighth-note grid), and
48 so-called polyrhythm patterns in 4/4 (quarter-note
triplet grid)—each of which were preceded for listeners
by an audible two-bar metronome in their respective
meter. Patterns in each category range from having a
single onset (e.g., ⟨0, 0, 0, 1⟩ monorhythm in 4/4 with
an onset on the fourth beat) up to a number of onsets
equal to the number of time points in the underly-
ing grid (e.g., ⟨1, 1, 1, 1, 1, 1⟩ monorhythm in 6/8 of all
eighth notes).

3. PROPOSED MEASURE OF
SYNCOPATION USING IMA

The central premise motivating our proposed measure
is the consideration of weight profiles produced by
IMA as distributions through which comparisons with
other distributions using chi-squared distance [34] can
provide insight into the underlying rhythmic struc-
ture that is relevant to predicting syncopation. We
consider two possible distributions that we will com-
pare against the weight profiles produced by IMA for
a given rhythmic pattern: (1) a uniform distribution
based on what we call a ‘nominal’ weight profile that
operates conservatively and in the spirit of IMA with-
out knowledge of the underlying meter, and (2) a non-
uniform distribution based on beat strength [29] that
operates with explicit knowledge of the underlying me-
ter and is nearly analogous to a nominal weight pro-
file but for metrical (hierarchy) structure. A nominal
weight profile is the uniform distribution of weights
that results from an IMA analysis of any sequence
consisting entirely of equally-spaced onsets irrespec-
tive of the hierarchical metrical level at which these
are expressed. For example, a pattern in 4/4 consist-
ing of all quarter notes, half-notes, or eighth notes will
each result in a nominal weight profile. Our motiva-
tion for considering nominal weight profiles is based
on a simplifying assumption that a less syncopated
rhythmic pattern or passage of music will have more
equal weighting across its weight profile than a more
syncopated pattern or passage. This was observed,
for example, in Figures 1 and 2, with the less synco-
pated melody containing a single local meter result-
ing in a metric weight profile containing at each on-
set a constant weight and its syncopated version con-
taining multiple local meters resulting in weight pro-

1 The complete Song (2014) [22] dataset and perceptual rat-
ings can be found in the following repository: https://code.
soundsoftware.ac.uk/projects/syncopation-dataset.
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files (shown in Figure 3) containing a variable weight
that fluctuates over time. Our motivation in (2) for
considering non-uniform distributions based on beat
strength comes from the fact that clearly not all rhyth-
mic patterns consist of all equally-spaced onsets, and,
much like previous models of syncopation, such as
Weighted Note-to-Beat Distance (WNBD) [17] or the
Longuet-Higgins and Lee (LHL) model [12], providing
additional information beyond what is explicitly avail-
able in the onsets (e.g., beat locations or rests), can
provide relevant (or indeed necessary) information for
modelling or predicting syncopation.

The proposed measure adopts two different con-
structions for handling normalization across patterns
and distributions, both of which we will use in our
evaluation. The first of these constructions considers
a given metric or spectral weight profile produced by
IMA as a normalized distribution, P ′, scaled to unit
length and a second, un-normalized uniform distribu-
tion, Q, representing a nominal weight profile hav-
ing some constant value, Qi for all i. The measure-
normalized (weighted) chi-squared distance, χD1, be-
tween two distributions P ′ and Q of length n (time
points) is given by

IMAM,S
χ
D1 =

1

n

n−1
∑

i=0

(

(P ′
i −Qi)

2

(P ′
i +Qi)

)a

, (3)

where a is a weighting parameter (discussed in sec-
tion 4) and 1

n
serves to normalize the distance by

measure length. By calculating the distance of an
observed weight profile from a nominal weight pro-
file, we obtain a measure of the overall aperiodicity
or irregularity of the rhythmic content (relative to the
constant, Qi, in the uniform distribution), where the
higher the overall value, the greater the amount of
perceived syncopation there is predicted to be. In
principle, while the constant Qi could be any rational
value, for the purposes of this paper, we will utilize
a constant value between [0, 1] corresponding to the
maximum upper and minimum lower ranges of the P ′

distribution. In addition to the a weighting parame-
ter, an optimal constant value for Qi will be learned
in section 4.

Whereas the Q uniform distribution in Equation 3
was left un-normalized to allow for various constant
values to be learned, which would otherwise disappear
with normalization, other distributions, such as our
non-uniform distribution based on beat strength, will
require normalization for fair comparisons with P ′.
Thus, an alternative weighted construction, χ

D2, of
Equation 3 appears below for the same normalized
distribution, P ′, and another normalized distribution,
S′, also of length n and scaled to unit length:

IMAM,S
χ
D2 =

n−1
∑

i=0

(

(P ′
i − S′

i)
2

(P ′
i + S′

i)

)a

, (4)

where a is the same weighting parameter as in

the earlier construction. Note that because both
distributions have been scaled to unit length, nor-
malizing by measure length, n, as was done in
Equation 3, is no longer necessary. In our use of
Equation 4, we consider four different distribu-
tions for S′, corresponding to the beat strengths
produced by music21 [29] (using the beatStrength
method) for each of the four different types of
meter/rhythm types found in the Song (2014) [22]
dataset. The following four (un-normalized) beat
strength distributions are those used with this
construction: (1) 4/4 meter with quarter-note grid
⟨1.0, 0.25, 0.5, 0.25⟩, (2) 4/4 meter with eighth-note
grid ⟨1.0, 0.125, 0.25, 0.125, 0.5, 0.125, 0.25, 0.125⟩,
(3) 6/8 meter with eighth-note grid
⟨1.0, 0.25, 0.25, 0.5, 0.25, 0.25⟩, and (4)
4/4 meter with quarter-note triplet grid
⟨1.0, 0.0625, 0.0625, 0.25, 0.0625, 0.0625, 0.5, 0.0625,
0.0625, 0.25, 0.0625, 0.0625⟩.

4. EVALUATION

We have evaluated our IMA-based measure on the
Song (2014) [22] dataset of 111 one-bar rhythmic pat-
terns and their perceptual ratings of syncopation for
three reasons: (1) there is a relatively large number of
stimuli in comparison to other available datasets, (2)
the stimuli were constructed specifically for the pur-
pose of studying syncopation and not, for example,
complexity or groove, and (3) there has been signifi-
cant work already done on evaluating other computa-
tional models of syncopation with this dataset. The
reader is referred to [22] for an in-depth discussion of
the performances of existing models using this dataset.

4.1 Procedure

We have adopted an optimization approach using
leave-one-out cross-validation in which we performed
a grid search over the pair of parameters, Qi, and a

from Equation 3 for 1002 value-pairs within the range
[0, 1] in increments of 0.01. For each distinct weighting
parameter pair, we carried out the procedure below for
all rhythmic patterns in the training set:

1. Repeat the time-span note sequence of the
given Song (2014) [22] one-bar rhythmic pat-
tern twelve times. As IMA requires at least
three pulses to form a local meter, it is gener-
ally less effective with short rhythmic patterns
having few onsets. For this reason, it has been
suggested in [26] to repeat short patterns in this
way when using IMA.

2. Convert this extended time-span note sequence
from (1) to an ordered set of note onset indices
suitable for analysis by IMA e.g., ⟨0, 1, 0, 1⟩ to
⟨1, 3⟩ (using 0-based indexing).

3. Compute IMA metric and spectral weight pro-
files for this extended twelve-bar rhythmic pat-
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tern from (2) using an IMA weighting parameter
p = 2 and minimum local meter length, l = 2.

4. ‘Fold’ the metric and spectral weight profiles in
(3) into single bars and sum those weights at
each time point having equivalent within-bar lo-
cations. Then scale each weight profile to unit
length such that they each sum to 1.

5. Compute a measure of syncopation from each
normalized single-bar metric and spectral weight
profile from (4) using Equation 3 and the given
weighting parameter pair, Qi and a.

Following the procedure above for all training
rhythmic patterns and a given weighting parameter
pair, the respective sets of syncopation scores com-
puted for each of the metric and spectral weight pro-
files are min-max normalized. The Spearman rank
correlation coefficient, rs, is then computed for each of
these sets of syncopation scores and the min-max nor-
malized mean perceptual ratings, in the same way that
was done for each of the computational models evalu-
ated in [22, pp. 92–94] so that fair comparisons could
be made. The procedure for using Equation 4 and the
non-uniform distributions based on beat strength is
identical to the steps outlined above, except the grid
search was performed across all 100 values between
[0, 1] for a only, and the set of beat strengths chosen
for any given pattern was that matching in number of
time points, n. The weight parameter (Equation 4)
or weight parameter pair (Equation 3) that produced
the highest mean rank correlation achieved across all
k-folds was retained and the final results below are
reported using the best parameters across the entire
dataset. All syncopation-dependent procedures were
implemented in Julia (v. 1.10.0) and all statistical cal-
culations were made with R (v. 4.3.2).

4.2 Results and Discussion

We compare the performance of the proposed mea-
sure to the reported performances of seven models of
syncopation/complexity previously evaluated in [22]
and [21, 23] on the same dataset. These models are
Longuet-Higgins and Lee (LHL) [12], Off-Beatness
(TOB) [16], Metric Complexity (TMC) [14], Weighted
Note-to-Beat Distance (WNBD) [17], Cognitive Com-
plexity (PRS) [13], Off-beat model (KTH) [15], and
Sioros et al. (SG) [7]. Table 1 shows the results of
our IMA-based measure of syncopation for both the
metric and spectral weight profiles using the two pro-
posed distributions across the dataset in comparison
to these other models.

In Table 1, the best weighting parameters found
for Equation 3 (χD1) were a = 1.0 for both metric
and spectral weight and Qi = 0.74 for metric weight
and Qi = 0.83 for spectral weight. The best weight-
ing parameters for Equation 4 (χD2) were a = 0.82

3 There may be disagreement as to whether polyrhythms in
the Song (2014) [22] dataset are what they claim and whether
some existing models are in fact incapable of analyzing these

Rhythm Type & Meter
Model/Measure Mono 44 Mono 68 Poly 44 Total

1. IMAM
χ
D1 0.53* 0.67* 0.46* 0.80*

2. IMAS
χ
D1 0.51* 0.67* 0.39* 0.79*

3. IMAM
χ
D2 0.86* 0.74* 0.73* 0.66*

4. IMAS
χ
D2 0.83* 0.74* 0.70* 0.61*

5. LHL 0.86* 0.68* -
6. TMC 0.92* 0.67* -
7. PRS 0.95* 0.76* -
8. SG 0.88* 0.73* -
9. TOB 0.36 0.17 NA
10. WNBD 0.52* 0.47* 0.41*
11. KTH 0.79* - −0.23

Table 1. Spearman correlation rank coefficients (rs)
of 9 different models/measures of syncopation for 111
mono- and poly-rhythmic patterns in two meters and
their perceptual ratings. For the proposed measures
based on IMA (1–4), IMAM and IMAS denote use of
metric and spectral weight, respectively. Note that
results for models 5–11 are the values reported in [22,
pp. 92–94]. An asterisk denotes where p < 0.01, a
hyphen indicates where a given measure is reported
as being incapable of providing a result 3 , and empty
cells mark no reported results.

for metric weight and a = 0.35 for spectral weight.
It is clear from these results that while Equation 3
worked best across the entirety of the dataset (e.g.,
IMAM

χ
D1: rs = 0.80∗; p < 0.01—an improvement

over no a weighting parameter and Qi set to an ar-
bitrary 0.5, rs = 0.73∗; p < 0.01), it resulted in rel-
atively poor performance within the individual cate-
gories. Perhaps not surprisingly, however, providing
additional information about the underlying meter,
in the form of beat strengths as done in Equation 4,
significantly improved the performance in these indi-
vidual categories but to the detriment of overall per-
formance (e.g., IMAM

χ
D2: rs = 0.66∗; p < 0.01—

same as without a). In all cases except monorhythms
in 6/8, metric weight performed better than spectral
weight. In particular, IMAM

χ
D2, outperformed all

three of the existing models (TOB, WNBD, KTH) re-
portedly capable of providing a result for the so-called
polyrhythms in 4/4 (rs = 0.73∗; p < 0.01); five of the
existing models (LHL, TMC, SG, TOB, WNBD) ca-
pable of providing a result for monorhythms in 6/8
(rs = 0.74∗; p < 0.01); and only three (TOB, WNBD,
KTH) of all seven models for monorhythms in 4/4
(rs = 0.86∗; p < 0.01; tying with LHL). It should
be noted that in [22, p. 139] a so-called weighted-
multiple combined (WMC) model using optimized
versions of the best combinations of these previous
models was able to achieve a rank correlation across
the entire dataset of rs = 0.89 ∗ (p < 0.01). While
the proposed IMA measure falls short in this regard

without reinterpreting their meter (e.g., 4/4 to 12/8). The
reader is referred to [22] for detail on these possible concerns.
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(a)

(b)

Figure 4. Normalized syncopation predictions pro-
duced by IMAM

χ
D1 (rs = 0.80∗; p < 0.01) in (a) and

IMAM
χ
D2 (rs = 0.66∗; p < 0.01) in (b) against the

normalized human ratings for the 111 rhythmic pat-
terns in the Song (2014) [22] dataset. Note that re-
gression lines are plotted with shaded areas indicating
a 95% confidence interval.

(rs = 0.80∗; p < 0.01), it remains noteworthy that its
performance is close to approaching the performance
of a significantly more complex method consisting of
many different models. For completeness, Figure 4
shows regression plots of the predicted syncopation
scores across the entire dataset for both IMAM

χ
D1

and IMAM
χ
D2 against the human ratings.

The reason for the difference in performances for
both constructions across the dataset versus within
the individual categories is not immediately clear,
however, the use of rank correlation combined with
the distributed locations and smaller sizes of the re-
spective sets of rhythm and meter type examples
within the dataset is likely a contributing factor. De-
spite the better overall performance of Equation 3
over Equation 4, one problem with our first construc-
tion using this dataset concerns the density of pat-
tern onsets, which has been shown to interact with
their perceived displacement from a metrical hierar-

chy in regards to syncopation [33]. Many of the pat-
terns are highly sparse, and Equation 3 is unable to
differentiate, for example, between two distinct pat-
terns each having a single onset, such as ⟨1, 0, 0, 0⟩ and
⟨0, 1, 0, 0⟩, or the same number of equally-spaced on-
sets shifted in time, such as ⟨1, 0, 1, 0⟩ and ⟨0, 1, 0, 1⟩.
This would help to explain its relatively low perfor-
mance in the individual categories. Equation 4, on the
other hand, does not encounter these same difficulties,
and its improved performance in the individual cate-
gories suggests an informative structural correspon-
dence between the metrical strengths as identified by
IMA weight profiles and the beat strengths they were
compared against. In an actual piece of music, how-
ever, one might expect to find relatively less sparse
and more complex examples, so more ecologically valid
comparisons may provide deeper insights into whether
syncopated patterns have generally less equal weight-
ing in their profiles as unsyncopated patterns, as is
assumed by Equation 3. Finally, while the choice of
chi-squared distance is motivated by the desire to ob-
tain the best possible results across the entirety of
the dataset using the simplest method, multiple other
distance measures were tested (e.g., Euclidean and
Minkowski) with the relatively more complex Jensen-
Shannon divergence [35] performing marginally bet-
ter across the dataset (rs = 0.81∗; p < 0.01) but
marginally worse within the individual categories.

5. CONCLUSION

In this paper, we proposed a first step towards us-
ing Inner Metric Analysis (IMA) to provide a quan-
tifiable measure of syncopation based on chi-squared
distance and comparisons to two different types of dis-
tributions. We evaluated our method using a dataset
of rhythmic patterns constructed specifically for the
task of studying syncopation and compared its perfor-
mance to the performances of seven existing computa-
tional models. Our results indicate that the proposed
measure based on comparisons with a uniform distri-
bution achieves a moderately high Spearman rank cor-
relation (rs = 0.80) to all perceptual ratings and is the
only single measure that reportedly works across all
meters and rhythm types (mono, poly, 4/4 and 6/8).
For so-called polyrhythms in 4/4, the measure based
on comparisons with a distribution of beat strengths
surpasses all other models and further outperforms
five models for monorhythms in 6/8 and three models
for monorhythms in 4/4. Finally, considering the en-
tirety of a rhythmic sequence as done here rather than
summing isolated instances of syncopation as in, for
example, the LHL [12] model, appears to have higher
validity [36]. In future work, it would be useful to
consider other datasets, particularly ones which con-
tain more ecologically valid examples, as well as with
other distributions, possibly coming from statistical
corpora studies or perceptual profiles, that could be
automatically selected for in comparisons.
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ABSTRACT

The advent of accessible artificial intelligence (AI) tools

and systems has begun a new era for creative expression,

challenging us to gain a better understanding of human-AI

collaboration and creativity. In this paper, we introduce

Human–AI Songwriting Processes Dataset (HAISP), con-

sisting of 34 coded submissions from the 2023 AI Song

Contest. This dataset offers a resource for exploring the

complex dynamics of AI-supported songwriting processes,

facilitating investigations into the possibilities and chal-

lenges posed by AI in creative endeavors. Overall, HAISP

is anticipated to contribute to advancing understanding of

human-AI co-creation from the users’ perspective. We

suggest potential use cases for the dataset, including ex-

amining AI tools used in songwriting and exploring users’

ethical considerations and creative approaches. This could

help inform academic research and practical applications

in music composition and related fields.

1. INTRODUCTION

Open and easy to access artificial intelligence (AI) tech-

nologies have created new opportunities for creativity,

challenging conventional notions of authorship, expres-

sion, and human-AI creativity [1]. Within this landscape,

the AI Song Contest (AISC) has emerged as a unique plat-

form where teams of musicians, data scientists, researchers

and AI enthusiasts can leverage AI tools to compose orig-

inal songs, providing a prolific ground for studying the

interplay between human creativity and machine intelli-

gence [2].

In this paper we present the Human-AI Songwriting

© L. Morris, R. Leger, M. Newman, J. A. Burgoyne, R.

Groves, N. Mangal and J. H. Lee. Licensed under a Creative Commons

Attribution 4.0 International License (CC BY 4.0). Attribution: L.

Morris, R. Leger, M. Newman, J. A. Burgoyne, R. Groves, N. Mangal

and J. H. Lee, “HAISP: A Dataset of Human–AI Songwriting Processes

from the AI Song Contest”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

Processes Dataset (HAISP), a curated dataset extracted

from the written process documentation of participants in

the AI Song Contest. This dataset provides a useful re-

source for exploring various aspects of AI-supported song-

writing processes. It consists of 34 submissions from

the 2023 AISC teams, cleaned, organized, and cross-

annotated by four annotators using our data dictionary. The

HAISP dataset includes information on the AI systems uti-

lized, creative and technical inspirations, methodologies

for working with AI, teams’ assessments of the songs, and

reflections on ethical considerations in AI-generated con-

tent. This dataset provides researchers with a unique per-

spective into the complex relationship between human cre-

ativity and AI assistance in songwriting. By analyzing how

songwriting processes are affected by the use of AI tools,

scholars can gain insights into how AI systems may aug-

ment, complement, or challenge creative endeavors. The

dataset also supports investigations into the ethical aspects

of AI-generated music, including considerations like di-

versity in training data, intellectual property rights, and

accessibility in music creation. It can serve as a valu-

able resource for scholars, practitioners, and enthusiasts

alike, fostering deeper understanding, critical inquiry, and

informed discourse in the burgeoning field of human-AI

collaboration and creativity. Overall, it provides various

insights and opportunities for further research, contribut-

ing to our understanding of the interaction between tech-

nology and creativity in the digital age.

2. BACKGROUND

2.1 Human–AI Music Creation

Using computational methods for music creation that

would be classified as AI today, began in the 1950s, with

early examples including Iannis Xenakis using Markov

Chains for composition [3] or David Cope’s Experiments

in Musical Intelligence in the 1980s [4]. For more de-

tail on the history of AI music we refer to The Oxford

Handbook of Algorithmic Music by Roger Dean and Alex

McLean [5]. Although the use of neural networks for mu-
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sic modeling was mentioned as early as 1989 [6], the recent

progress in the field of deep learning led to an increase of

powerful and easy-to-use AI tools for music creation [7],

from accessible applications for a large audience [8], to

tools intended for professional musicians (e.g. [9]).

2.2 AI and Music Information Retrieval

In the area of music composition, researchers have devel-

oped many methods [10] and machine learning-powered

interfaces that enable interactive exploration of musical

variations by mapping user inputs to musical structures.

Other tools have recently emerged to assist in various as-

pects of the music creation process, including infilling

missing parts of compositions [11–14], creating new in-

struments [15, 16], counterpoint improvisation [17], and

generating and recommending chord progressions [18–

20], harmonies [21–23], and even accompaniment [24,25].

Many AI models have also been created to aid in mu-

sic information retrieval (MIR) research. With the explo-

sive growth of digital music archives and streaming plat-

forms, the need for effective MIR systems has become in-

creasingly pronounced, driving research efforts to develop

more sophisticated methods for understanding and pro-

cessing music data through AI, such as the utilization of

deep learning, neural networks, and large language mod-

els [26–29]. Existing datasets in the realm of AI in MIR

primarily focus on training data, such as audio features

[30, 31], music [32, 33], and metadata [34, 35].

2.3 AI Song Contest

The AI Song Contest is an annual international music com-

petition wherein teams from diverse musical traditions and

disciplines collaborate to compose songs using AI meth-

ods. It was launched in 2020 by the Dutch public broad-

caster VPRO [2], and has been organized independently

afterwards every year. There have been 132 teams so far,

with 35 from the 2023 edition included in the dataset. We

plan to extend the dataset with the other year’s team en-

tries in the future. To participate in the AI Song Contest

2023, teams had to submit their song, a team image, cover

art, and an online form in which they described their team,

their creative vision, their motivation to participate, the

steps of composition, their impression of the human-AI co-

creation process, their workflow, all AI tools and databases

used and their ethical and cultural considerations. The

form has been developed by the AI Song Contest organiz-

ing team, slightly modified for each new edition. After

successful submission, the songs and process documents

are sent to a jury. The top ten entries of the jury voting

are open for a public online vote. Whichever team gets the

most points from the jury voting combined with the public

voting wins the AI Song Contest.

3. OBJECTIVE AND SCOPE

There is a growing recognition of the need for comple-

mentary data that provides insights into the qualitative as-

pects of human-AI collaboration in music creation – the

human side of training and using these AI tools and sys-

tems. Recently, researchers have called for a cultural and

ethical turn in MIR [36]. Rezwana and Maher [37] and

Lee et al. [38] emphasize the importance of understand-

ing not only perspectives but also expectations and ethical

concerns of users of AI tools.

To our knowledge, there is no dataset exploring the

qualitative processes and reflections of those who have

used AI tools for music creation. Recognizing this gap, we

were motivated to curate the written submissions of AISC

participants into a unique and publicly available dataset

that would allow researchers to go behind the scenes and

explore the AI-supported songwriting and creation pro-

cesses of the teams, beyond the final song submissions.

By complementing existing quantitative datasets in AI in

MIR, the HAISP dataset contributes to a more holistic un-

derstanding of the role of AI in creative endeavors and fa-

cilitates deeper insights into the collaborative dynamics be-

tween human composers and AI systems.

However, there are limitations to the data in this dataset.

Firstly, the dataset relies solely on the words of the 34 par-

ticipants in their written (subjective) process documenta-

tion. Compared to other datasets in MIR publications, this

qualitative dataset is of limited size which might not lead to

conclusions that are broadly applicable. Additionally, the

dataset may not capture the full spectrum of AI tools and

methodologies employed by participants, as teams may

choose not to disclose certain details or may use propri-

etary technologies. Furthermore, the dataset represents a

snapshot of a specific event and a specific outcome, the

song, which may not fully generalize to other contexts of

AI-supported music creation such as AI tools for jazz im-

provisation (e.g. see GenJam [39]).

Nonetheless, the amount of detail and depth provides

an extensive and rich insight into the creative experience

of the teams. By compiling and analyzing the teams’ pro-

cess documentation, we seek to illuminate the landscape

of human-AI creative collaboration. Through the creation

of this dataset, we aim to facilitate deeper insights into the

collaborative dynamics between human composers and AI

systems, thereby fostering a richer understanding of the

potential, limitations, and societal implications of AI in

music production.

4. DATASET DESCRIPTION

The HAISP Dataset is accessible as a .csv and .xlsx on OSF

under a Creative Commons Attribution-NonCommercial

4.0 International (CC BY-NC) license, which allows for

broad access and utilization for research purposes. 1

4.1 Data Collection

For submission to the contest each team had to fill in the

AI Song Contest 2023 Submission Form via Google forms.

The form consists of entry fields to upload the song and

1 https://creativecommons.org/licenses/by-nc/

4.0/

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

398



Category Subcategory Definition

Team Data

Team_ID The given label of the team for the dataset.

Number of Team

Members
The number of team members in a team.

Type of Affiliation The given work or personal affiliation of the team members.

Country The given country(s) of origin of the team.

Found Out About

Contest
The way that the team discovered or were informed of the AI Song Contest.

Motivation to Partici-

pate in the Contest
The reason the team gave for joining the competition.

Song Data

Song Length The length of the submitted song given in minutes and seconds.

Song Description The short description of the song written for the contest website.

Final Ranking Denotes the final ranking of the team’s song in the competition.

Song Title The title of the song submitted to the AI Song Contest.

Song Concept The overarching idea or theme of the song.

Process Creation Process
The given order in which the separate pieces of the song, or potentially the

whole song, was created, as described by the team.

Song Elements

Use of AI

Melody Whether an AI system was used to generate the melody.

Harmony Whether an AI system was used to generate the harmony.

Bassline Whether an AI system was used to generate the bassline.

Drums Whether an AI system was used to generate drum patterns or rhythms.

Formal Structure Whether an AI system was used to generate the formal structure.

Lyrics Whether an AI system was used to generate the lyrics of the song.

Voice Synthesis Whether an AI system was used to generate the singing voice of the song.

Song Process

Use of AI

Idea Generation Whether an AI system was used to generate the idea for the song.

Composing/Arranging Whether an AI system was used to organize the elements of the song.

Evaluation Whether an AI system was used to evaluate the output or final song.

Mixing & Mastering
Whether an AI system was used to do the mixing and mastering of the

song

Performance Whether an AI system is or would be used for live performance.

AI Tools Used
Model Used

The AI models as used and indicated by the teams in the song creation

process.

Database(s) Used
The databases as used and indicated by the teams in the training and song

creation process.

Ethical

Considerations

Diversity, Ethical,

and Cultural Consid-

erations

Ethical and cultural considerations stated by the teams regarding their pro-

cess and use of AI.

Human

Evaluation of

AI Co-Creation

Evaluation of Output The words that teams used to assess the output of the AI system(s).

Evaluation of Process
The words that teams used to assess the process of working with the AI

system(s).

Ownership
Teams statements regarding ownership of the system output and/or final

song.

Motivation to Use AI The reasons that teams mentioned why they used AI in the process.

Other Other Additional information that does not fit in another category.

Table 1. Categories of HAISP Dataset. The HAISP dataset consists of data collected in 31 categories in total.
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visual material (team image and song cover), and a free-

text and multiple choice questionnaire. The questions that

the teams filled in covered everything in these categories:

• team (bio for the website, location, level of exper-

tise, motivation to participate, how they heard about

the AISC);

• song (title, length, link to music video/soundcloud/

blogpost, concept/idea, lyrics, live performance);

• human–AI process (short description for the web-

site, models and databases used, steps of the pro-

cess, creative vision, capabilities/limitations of AI

tools in the creative process, workflow, collaboration

with team members and AI, input data, ownership

and conflict with intellectual property law);

• and diversity, ethical and cultural considerations

All teams had to further give consent for their answers

description to be published in a scientific paper.

The answers were collected automatically in a Google

Sheet. In total there were 40 submissions collected with

one being a corrective submission replacing an existing

entry and four submissions being incomplete. After unan-

swered inquiry these submissions were excluded, leading

to 35 participating teams in the 2023 edition. Their com-

plete questionnaires were then handed over to the research

group excluding any personal data. One process documen-

tation (teamID: 2023_14) was submitted in Spanish which

was excluded from the dataset for linguistic consistency.

4.2 Data Statistics

The HAISP dataset consists of the data from 34 teams of

the 2023 edition of the AISC. Looking at the team data,

there is a total of 104 team members involved, with an av-

erage of three members per team, and 14 countries rep-

resented. Of the countries represented, eight teams were

based in the United States, six were based in the United

Kingdom, and four were based in Guatemala, Sweden, and

Germany. Other countries represented included South Ko-

rea, Spain, North Macedonia, and more.

Type of affiliation – the given work or personal affil-

iation of the team members – was determined by coders

based on the data, with teams being assigned multiple

affiliations based on team members. A majority of the

team members (58.8%) were members of academic field

(20 mentions), meaning they worked primarily within aca-

demic institutions; this included universities, archives, or

museums. A partially overlapping 44.1% of the team

members were artists or worked in the creative industries,

17.6% worked as researchers outside academia, and 8.8%

were classified as independent, (i.e., working in fields un-

related to the study/research/creation of AI or the creation

of music but rather participating out of their own curiosity,

hobby, or interest).

Teams had primarily heard about the contest from

academia (29%), web search, or participation in prior edi-

tions of the AISC. The motivation for why teams used AI

in their process and why they decided to take part in the

competition can be described as exploratory, while seven

teams were also participating in order to display the use of

their own or institutionally-created software.

Regarding the AI tools, there were 74 different tools

used by teams in the 2023 edition. On average, there were

2.17 tools used per team. Half of the teams used a form

of GPT by OpenAI (e.g., ChatGPT) and 38.24% of the

teams used tools by Google Magenta (e.g., Magenta Stu-

dio, Tensorflow, DDSP). Other tools that were frequently

used were TransformerXL [40] (14.1%), AIVA (11.4%) or

MusicGen by Meta (3 teams). There were 57 models that

have been only used once.

Looking at the use of AI in the compositional process,

illustrated in Figure 1, it shows that 21 teams used only AI

or co-created with AI for arranging, 18 teams used AI for

idea generation and 10 (would) use AI in a performance.

Nine teams mentioned the use of AI for mixing/mastering

while only four teams used AI for evaluation of the out-

put. Co-creation means this part was created by the human

working with AI, human that only human was involved,

AI that only AI was involved. Failed attempts to use AI

in a specific step of the process were mentioned only in

one case. Interestingly, the number of using “AI only” for

these steps are low, with most uses (8) for “idea genera-

tion”. Only one team, 2023_28, mentioned a failed attempt

to use AI in a specific step of the process: mixing and mas-

tering.

Looking at the use of AI to create the elements of the

songs – melody, harmony, bassline, drums, formal struc-

ture, lyrics, voice – depicted in Figure 2, 29 teams used AI,

either in co-creation or solely for melody, while 19 used it

for harmony and lyrics. Interestingly, while for melody,

harmony, bassline, and drums the co-creation outweighs

the AI-only approach, this is the opposite for formal struc-

ture, lyrics and voice synthesis. Team 2023_20 was the

only team reporting a failed use of AI for creating harmony

and voice synthesis with AI.

The teams’ own writings on their song concepts, their

described creation process, their evaluation of diversity and

ethical issues within said process, their thoughts on own-

ership of the song, and their overall evaluation of their

human-AI co-creation process and the outcome of said

process can be found in the dataset and can be used for

further analysis.

4.3 Methodology and Validation

After reviewing the initial survey responses, we proceeded

to create the data dictionary through a mixed-methods ap-

proach. The categories were created inductively by five

researchers, iterating four times to reach final consensus.

For each iteration of the data dictionary, two coders tested

it on two sample entries to ensure that the categories were

properly defined and applicable for the data.

We generated the dataset via consensus coding [41].

One researcher coded a selection of the data entries, col-

lecting them into the dataset. A second coder then re-

viewed the initial coding, validating the coding by either
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Figure 1. Overview of the Use of AI for the Compo-

sitional Process in HAISP: Idea Generation, Arrange-

ment, Evaluation, Mixing & Mastering, Performance.

Figure 2. Overview of the Use of AI for the Elements

of the Song in HAISP: Melody, Harmony, Bassline,

Drums, Formal Structure, Lyrics and Voice.

citing a +1 for agreement with the coding choices or -1 for

disagreement with the coding within the dataset, adding

what they felt the coder was missing within their codes

from the data. In the case of disagreement a third re-

searcher helped decide on the final code as a tie-breaker.

4.4 Ethical Considerations

The study was approved by the university Institutional Re-

view Board. When submitting to the contest, one question

in the submission form asked directly and transparently for

the team’s consent for their song and documentation to be

used for research purposes. Teams gave consent by ticking

a box in the form. While we erased all personal data from

the dataset, song names are included due to their public

availability on the AI Song Contest website.

5. USE CASE AND APPLICATIONS

Our dataset can be used to understand a variety of MIR

tasks and work related to human-AI creative interactions,

ranging from goals focused on research to practical cre-

ation of music. This section presents four possible use

cases.

5.1 Use Case 1: More Insights on the AI Tools used in

the Songwriting Process

HAISP lists not only all AI tools that teams used and indi-

cated, but also contains the teams’ description of the pro-

cess of utilizing said tools, with data showing which parts

of the creative process (idea generation, composition, mix-

ing/mastering, performance) AI was used on its own, in co-

creation with the team, or even when co-creation with the

AI system failed. Additionally, it reports the teams’ level

of expertise and location. This provides not only valuable

insights for tool developers and inspiration or guidance on

using AI for other artists but also helps to answer research

questions such as “How does the utilization of AI tools

in music creation vary across different professional affilia-

tions and stages of the creative process?”

5.2 Use Case 2: Understanding Attitudes and Impact

of AI on the Creative Process

Within our dataset, there is reference to how creators use

AI within their process, as well as their perceptions around

the capabilities and limitations of AI. Additionally, cre-

ators share their perceptions of the final creation result-

ing from their collaboration with AI, providing valuable

insights into the impact of AI on artistic expression and

creative outcomes.

In their work Beyond Diverse Datasets [36], Huang et

al. pose questions such as “What is valuable to those com-

munities [that MIR investigates] and what is valuable to

the community contributing to MIR?” and “How do mu-

sical communities wish for their practices to interact with

emerging technologies (if at all), and what do they consider

as potential misuses of their traditions?”. Our dataset of-

fers a unique opportunity to start exploring these questions,

drawing from the diverse perspectives of creators from var-

ious cultural, educational, and experiential backgrounds.

By analyzing the reflections and experiences of creators

documented in the dataset, researchers can gain insights

into how different musical communities perceive and in-

teract with AI technologies in their creative practices.

5.3 Use Case 3: Gaining Insight into Users’

Understanding of Ethics Around H-AI Co-Creation

Ethical considerations and questions about the validity of

data were found frequently in the responses of AISC par-

ticipants. Working with AI tools during the creation pro-

cess can trigger questions around control [42], ownership

of the final output [43], and freedom of personal expres-

sion [44]. Additionally, many participants spoke on the

issue of AI systems and tools used during their process po-

tentially being trained on datasets that violate the intellec-

tual property rights of the original artists.

By examining how creators navigate ethical consider-

ations in their process, researchers can uncover how AI

tools are adopted and used within different musical tradi-

tions. This deeper understanding can inform discussions

around the ethical implications of AI in music creation and
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contribute to the development of responsible approaches to

AI-driven creativity. One research question that this data

can provide insight on is “What are the ethical consider-

ations and challenges faced by creators when utilizing AI

tools in their creative process, and how do these consider-

ations impact their creative workflows?”

5.4 Use Case 4: Execution of Creative Possibilities

Our dataset can be used to understand the ways in which AI

tools can expand the range of creative possibilities in song-

writing and music creation. By leveraging this dataset, re-

searchers can analyze how AI models have allowed users

to generate innovative methods to address creative chal-

lenges, potentially expanding beyond the field of music

creation into other creative fields.

One research question that can be explored with this

dataset is “How do AI tools, particularly those leveraging

big data and machine learning techniques, expand the cre-

ative possibilities in songwriting and music creation, and

what novel approaches to executing creative problems do

they enable?”. Specifically, one can explore the utiliza-

tion of big data and machine learning techniques to address

challenges such as data processing, limited musical ability,

and idea generation. For example, AI-powered algorithms

can analyze vast amounts of musical data to identify pat-

terns and trends, providing inspiration for melody creation,

chord progressions, and rhythmic structures. Additionally,

machine learning techniques can assist in data processing

tasks focused on mechanisms of creation, enabling creators

to focus more on the higher level of creation process in mu-

sic composition [45].

Extending the scope of research beyond music creation

into other creative fields, researchers can use HAISP to

examine how AI algorithms are applied to address creative

challenges and gain insight into the broader implications

of AI for fostering creativity and innovation.

6. COMPARISON WITH OTHER DATASETS

There are extensive datasets of AI-based music tools that

focus on the methods of the respective AI systems [7] or

reviews of AI-based music tools that focus on the meta-

data of the publication [1]. Another way to approach the

topic of AI-supported creative processes is analyzing in-

terfaces of AI-supported tools for creative endeavors [37].

In the MIR community, datasets are common, especially

quantitative datasets and training datasets. Apart from [2],

who analyzed the creation process of the first AISC teams,

there have been no datasets consisting of qualitative data of

the human-AI co-creation process released in MIR venues.

The HAISP dataset presented in this paper, is a qualitative

dataset of a substantial amount of curated user data, includ-

ing a subjective description and evaluation of the process,

practices, and ethical issues around the creative process

with AI. Due to the international character of the AISC

– with teams from over 20 countries in the 2023 edition

alone – these descriptions come from individuals with di-

verse cultural backgrounds and musical traditions, which

is shown in their reflections and experiences.

The limited amount of data makes HAISP unsuitable

for making general and widely applicable statements about

human-AI interaction in songwriting. Rather, we see

HAISP as a dataset that can be used to extend existing

research in various academic disciplines, as it gives very

detailed and rich insights that are well-suited to compli-

ment quantitative research insights. Therefore, we made

HAISP publicly available and encourage researchers from

different fields to work with the data, bringing in their re-

spective perspectives and methods in order to foster an in-

terdisciplinary dialogue on human-AI co-creation.

7. CONCLUSION

In conclusion, the Human-AI Songwriting Processes

dataset stands as a potentially significant resource for the

exploration of human-AI collaboration and creativity in

music composition. Curated from submissions to the AI

Song Contest, this dataset offers a view of the dynamics

underlying AI-supported songwriting processes. It pro-

vides valuable insights into how creators from diverse

backgrounds integrate AI tools into their creative work-

flows, reflecting on the capabilities, limitations, and ethical

considerations inherent in human-AI collaboration. Fur-

thermore, the adoption of the HAISP dataset has the po-

tential to advance interdisciplinary inquiry, inspire further

research, and contribute to ongoing discourse surrounding

human-AI collaboration and creativity. By fostering criti-

cal inquiry and facilitating informed discourse, this dataset

contributes to our understanding of technology’s role in

creativity and innovation in the digital age. Future work

on the Human-AI Songwriting Processes dataset will in-

volve expanding the dataset to include information from

participants in the AI Song Contest prior to 2023, enrich-

ing the dataset with a broader range of submissions and

perspectives. Additionally, there are plans to conduct fur-

ther analysis on the dataset, including analysis to explore

the descriptive terminology used for AI tools and systems.

In closing, the HAISP dataset holds promise for advanc-

ing our understanding of human-AI collaboration in mu-

sic composition. Through its insights and reflections, it

encourages continued exploration of the dynamic relation-

ship between human creativity and machine intelligence.
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ABSTRACT

Cue points indicate possible temporal boundaries in a tran-

sition between two pieces of music in DJ mixing and con-

stitute a crucial element in autonomous DJ systems as well

as for live mixing. In this work, we present a novel method

for automatic cue point estimation, interpreted as a com-

puter vision object detection task. Our proposed system is

based on a pre-trained object detection transformer which

we fine-tune on our novel cue point dataset. Our pro-

vided dataset contains 21k manually annotated cue points

from human experts as well as metronome information

for nearly 5k individual tracks, making this dataset 35x

larger than the previously available cue point dataset. Un-

like previous methods, our approach does not require low-

level musical information analysis, while demonstrating

increased precision in retrieving cue point positions. More-

over, our proposed method demonstrates high adherence to

phrasing, a type of high-level music structure commonly

emphasized in electronic dance music. The code, model

checkpoints, and dataset are made publicly available. 1

1. INTRODUCTION

The skills required by a “Disc Jockey” (DJ) are diverse.

To record and play live DJ mixes, DJs need to prepare

and know their tracks well. An integral part of the track

preparation phase is the placement of cue points. Coined

by scratch DJs who placed stickers on vinyl records to in-

dicate important sections, the functionality of cue points

remains unchanged in the digital setting. A cue point may

serve as an annotation for musical highlights, suitable mix-

ing boundaries, or the general track structure which con-

sists of musical phrases. Furthermore, digital cue points

allow DJs to quickly loop a track segment or skip back-

and forward during a live performance, altering the track

structure on the spot. Unfortunately, placing cue points

and track preparation is often a cumbersome and time- con-

suming process. Similarly to other music information re-

trieval (MIR) tasks, such as onset detection or beat track-

ing, cue point placement is not straightforward, despite

1 https://github.com/ETH-DISCO/cue-detr

© G. Argüello, L. A. Lanzendörfer, and R. Wattenhofer. Li-
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(CC BY 4.0). Attribution: G. Argüello, L. A. Lanzendörfer, and R.

Wattenhofer, “Cue Point Estimation using Object Detection”, in Proc. of

the 25th Int. Society for Music Information Retrieval Conf., San Fran-

cisco, United States, 2024.

the prominent structural regularity in electronic dance mu-

sic (EDM) [1]. For instance, the presence of a prelude

shifts the track structure, creating irregularity, and simi-

larly, tracks with arbitrary number of additional bars or

tempo variations create a significant challenge which needs

to be addressed. We therefore ask the question whether cue

point estimation can be automated with a learned approach,

imitating human cue point placements by training a model

on a manually annotated dataset.

This work addresses the placement of cue points, one

of the first tasks during the preparation phase of a DJ

mix. With this goal in mind we present CUE-DETR, a

fine-tuned DETR image object detection model trained for

cue point estimation on EDM tracks. We show CUE-

DETR outperforms previous approaches without requiring

detailed and meticulously curated rule sets, which leverage

underlying low-level audio information.

Our contributions can be summarized as follows:

• We propose CUE-DETR, an object detection model

capable of predicting cue points in EDM tracks.

Compared to previous methods, our model achieves

higher precision and shows significantly closer

alignment with manually placed cue points.

• We make our EDM-CUE dataset publicly available,

which is 35x larger than the previously available cue

point dataset [2]. EDM-CUE contains the metadata

for 4,710 EDM tracks, which includes tempo, beat,

downbeat, and 21k manually placed cue point anno-

tations provided by human experts.

• To increase evaluation objectivity, we introduce ad-

ditional phrase aligned points to evaluate prediction

accuracy. Moreover, we open-source the code and

model checkpoints to further the research of DJ-

related MIR tasks.

2. RELATED WORK

Recent years have seen emerging interests in building au-

tomated DJ systems where most approaches try to recreate

a fully automated DJ pipeline [3–9]. Such systems aim

to create seamless transitions between two tracks, each fo-

cusing on a different subset of challenges in the DJ’s task

pipeline. Cue points are predominantly addressed in the

context of finding suitable mix positions in automatic mix-

ing systems [3,6,7,10]. Music structure analysis forms the

basis for most cue detection algorithms, as DJ mixes tend

to adhere to the underlying high-level track structures [11].
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High-novelty regions found through self-similarity [12],

for instance, allow the determination of suitable mix sec-

tions based on the high-level music structure [6, 13, 14].

Furthering the structural knowledge of a track, crowd-

sourced scrubbing data from streaming services uncovers

additional structural context, as listeners tend to skip for-

ward to the most prominent section of a track [10]. Apply-

ing learning-based concepts for the direct search of musi-

cal highlights [7] reveals useful information about the mu-

sical structure in a similar manner.

Generally, the accuracy of algorithmically chosen cue

points varies depending on the granularity and complete-

ness of the rule set implemented in conjunction with the

structural analysis [13]. Adding further rules into the set,

for instance, introduces a trade-off between the number

of correctly estimated cue point positions and the correct-

ness of each estimated cue point [14]. The main focal

point of the open-source DJ system Automix [14] is a rule-

based cue point estimation algorithm, including a valida-

tion dataset containing 145 tracks [2]. Automix imple-

ments four empirically chosen rules describing possible lo-

cations of “switch points,” a subset of cue points, on top

of structural analysis. Furthermore, the implementation of

Automix depends on underlying MIR tasks, such as beat

tracking.

DJ mix reverse-engineering [15, 16] is a related task to

cue point estimation, as it addresses the lack of available

and ready-to-use datasets [17]. Such “unmixing” meth-

ods extract latent mixing information from recorded DJ

mixes, whose retrieval typically relies on manual annota-

tions, such as mix-in and mix-out points or volume gain

curves. The use of pure DJ mix reverse-engineering for

cue point estimation is limited as no novel cue points can

be retrieved from existing DJ mixes.

In the context of lower-level MIR tasks, convolutional

neural networks (CNNs) have been studied, for example,

in onset detection [18] or beat tracking [19]. Furthermore,

CNNs have proven helpful in musical structural analysis

and boundary estimation [20]. Using an attention mech-

anism in conjunction with a CNN can help alleviating the

challenges posed by the sequential nature of music. Never-

theless, adding an attention mechanism does not solve the

main concern posed by the large amounts of data required

for training. Another possible solution is to instead use

a large pre-trained model and to then fine-tune the model

on task-specific datasets. The Audio Spectrogram Trans-

former [21], for instance, demonstrates the possibility to

transfer a pre-trained ViT model [22] from the image do-

main to the audio domain. Transformer architectures are

often designed to apply the attention mechanism together

with a pre-trained CNN backbone, leveraging the feature

space previously learned by the CNN [23, 24].

3. METHODOLOGY

3.1 Dataset

We created EDM-CUE, a dataset containing music meta-

data from four private collections of professional DJs.
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Figure 1. Top: Distribution of cue point positions in EDM-

CUE. Bottom: Distribution of distances between two sub-

sequent cue points in EDM-CUE. The inter-cue distances

indicate that 16 bars is the most represented phrasing

length in our dataset.

Each of the four DJs uses the library management tool

rekordbox 2 from which we collect the track name, artist

name, tempo, beat grid, and cue points for each contained

track. Cue points are given by their absolute position in

seconds. The beat grid represents a visual metronome,

which can be calculated from its stored values: the tempo

and grid offset return the beat positions. Applying the

time signature in combination with the initial beat num-

ber reveals the downbeat. Since we aggregate tracks from

four individual collections, all duplicate tracks need to be

merged. We summarize the tempo and grid offset to their

respective mean values for all duplicate track entries. In or-

der to merge duplicate cue points, we group all cue points

based on their distance to neighboring points. Cue points

within a distance of a quarter beat of one another form

a group. The merged cue point value corresponds to the

group center position. All dataset tracks are based on a 4/4

time signature and show constant tempo over time, out-

lier tracks were excluded during collection. We then pair

the information of each track with the track ID found on

Deezer 3 to provide an additional reference.

Our dataset contains 4,710 EDM tracks consisting of

around 380 hours of music. The tempo-range lies between

95 and 190 bpm, and track duration ranges from 1 minute

37 seconds to 10 minutes with an average of 4 minutes and

50 seconds. In total, the dataset contains 21,461 cue point

annotations with an average count of 4.6 cue points per

track. All tracks used to train the model are compressed to

128 kbps MP3 at 44.1 kHz.

3.2 Phrasing

Although cue points frequently align with high-level struc-

tural boundaries and tend to strongly coincide with phrase

boundaries [11], the placement of cue points is a subjective

task with no clear definition; therefore, annotations col-

lected from DJs may not contain all plausible cue points.

We first examine the distribution of our training data for

2 https://rekordbox.com
3 https://www.deezer.com
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Figure 2. Calculation of phrase boundaries bi using cue

points ci. Phrase boundaries, highlighted in blue, serve as

additional points to evaluate prediction accuracy. Exam-

ple a) represents a track with regular phrasing whereas b)

shows a track with an irregular phrase between cue points

c0 and c1. The computed phrase boundaries bi include the

cue points.

cue point positions quantized to bars. Our training cue

points exhibit a periodicity with high occurrences of cue

points on multiples of 8 and 16 bars, as illustrated in Fig-

ure 1. When also taking the inter-cue spacing between

neighboring cue points into account, we observe that a ma-

jority of our training tracks adhere to phrase lengths of 16

bars, followed by 8 bars. Due to the strong regularity, we

will refer to sections with phrase lengths other than 8 or 16

bars as “irregular.” Furthermore, analyzing the cue points

in EDM-CUE we find DJs often place cue points at the

start of such irregular sections.

Since regular and clearly defined phrasing is common in

EDM [1], we generalize our collected ground-truth data by

estimating phrase boundaries B. Phrase boundaries serve

as an approximation of the track structure which we use

to further validate model accuracy. Using track duration

t, phrase length l, and an ordered, ground-truth cue point

set C, we find B. The non-empty set C must include cue

points ci which mark the start point of irregular phrase

boundaries. Traversing the section preceding the first cue

point c0 = b0 in increments of l yields the first entries of B.

When the iteration reaches a negative value, the remaining

track section from c0 is traversed in the opposite direction

until bi ≥ t. A new boundary bi is added to B if the itera-

tion step did not skip or reach any ci. Otherwise, the next

cue ci is added to B as bi. The two simplified examples in

Figure 2 show resulting boundaries.

3.3 Model

Our proposed cue estimation system is based on

DETR [23], a pre-trained object detection transformer. For

each track in the dataset, we generate Mel spectrograms

using 128 Mel bands at a sampling rate of 22,050 Hz.

Our window length measures 2,048 samples, and the hop

length is 512 samples.

The input of the model consists of 128×355 pixel spec-

trogram segments to fit the expected input image format

for DETR while also maximizing the duration of the de-

picted audio to approximately 11 seconds per image. In

the following, we refer to a complete track spectrogram as

S. The training spectrogram segments ST and inference

spectrogram segments SI denote the input images of the

model. The model returns positional encodings for the pre-

dicted bounding boxes alongside the accompanying confi-

dence scores and class labels represented by logits. The

data pipeline is illustrated in Figure 3.

3.4 Preprocessing

We differentiate between preprocessing for training and

inference, as the model is required to process complete

spectrograms during inference, whereas for training, the

model only requires image segments depicting cue points.

A training image segment ST is cut from S around a

cue point p found in S. Using a random integer offset

o ∈ [0, 355), image ST is defined as the segment with left

side p − o and right side p − o + 355. If image ST partly

lies outside of spectrogram S, the additional space in ST

is zero-padded. The inclusion of image offset o acts as a

simple data augmentation strategy. For the training anno-

tations, each cue point in an image ST is encapsulated by a

bounding box. The aforementioned box occupies the entire

height of ST and is centered around the cue point. In the

event that the box extends beyond the image, it is cropped

to align with the image borders. Due to this cropping strat-

egy, all training tracks are split into training and validation

sets and are indexed by their respective cue annotations.

To make predictions over the span of a full track, during

inference, the complete spectrogram needs to be shown to

the model. We employ a sliding window cropping strategy

on spectrogram S with an overlap of 0.75 in order to gen-

erate inference image segments SI . Similarly to training,

the left side of spectrogram S is zero-padded with an arbi-

trary offset o ∈ [89, 266] prior to cropping. Applying the

zero-padding approaches the uniform distribution of cue

point positions seen in the training data, thus increasing

the chance to detect cue points at the very start of a spec-

trogram. As the final step, the resulting image sequence is

normalized.

3.5 Postprocessing

We implement additional postprocessing for inference

only since additional processing of the basic DETR out-

put is not necessary during training. The model outputs

contain the logits and positional encodings mapping to the

predicted bounding box coordinates over images SI . Ap-

plying a softmax function to the logits yields the class la-

bels and confidence scores for each prediction, cue points

are retrieved from the respective positional encodings. The

positional box representation is converted to pixel coordi-

nates in corner format to find the center point on the x-

axis. The resulting point is mapped back to the absolute

coordinates of track spectrogram S using the left edge of

image segment SI . Once all conversion results for spec-

trogram S have been accumulated, the confidence scores

are sorted by their associated position, resulting in peaks

where the confidence is highest. We implement a peak se-

lection strategy using radius r; final cue point candidates

are selected in descending order based on their predicted

confidence score. Candidates within radius r of a previ-

ously selected candidate are ignored. We use a confidence
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Figure 3. Pipeline of the proposed CUE-DETR architecture. During training, an input Mel spectrogram S is segmented into

training images ST . Each ST consists of a spectrogram segment containing a cue point which is represented as a bounding

box. Inference images SI move across S using a sliding window. The predicted bounding boxes are converted to their

center x-coordinate. The highest scoring positions are selected greedily among all candidates with minimum confidence

t = 0.9. A selected position excludes all other candidates within a radius r. The bottom spectrogram shows the predicted

positions as peaks based on the confidence value.

score threshold of 0.9 as the lower bound for selected can-

didates. Figure 4 shows three example spectrograms with

sorted confidence scores. The highest peaks in the curve

representation of confidence scores coincide with ground-

truth cue points or phrase boundaries, however with no-

ticeable additional high scoring positions. The additional

high peaks are predominantly present at 4 bar intervals. As

discussed in Section 3.2, we found ground-truth cue points

align best with 16-bar phrases. We found that enforcing a

minimum spacing r of 16 or 8 bars between consecutively

predicted cue points improves the outcome of the final pre-

dictions with respect to precision.

4. EVALUATION

The final evaluation is conducted on 101 tracks which were

excluded from the training and validation split. This test

set contains 607 ground-truth cue point annotations.

4.1 Experiment Setup

We initialize CUE-DETR with pre-trained weights from

DETR. 4 The backbone is initialized with the ResNet-50

weights, and we set the backbone learning rate to 10−6.

For the transformer, we choose a learning rate of 10−5,

and set the weight decay to 10−4. The bounding box width

w is set to 21 pixels and the postprocessing radius r is fixed

at 16 and 8 bars, referenced as r16 and r8, respectively. We

train the model using AdamW [25] and schedule a learning

rate reduction by factor 10 when the validation loss does

not improve for 10 epochs. The final model is trained for

50 epochs on one NVIDIA TITAN Xp GPU with a batch

size of 192.

While we experimented with training CUE-DETR us-

ing randomly initialized transformer weights, we found

using pre-trained weights provided significantly better re-

sults. Even though the pre-trained transformer weights

were trained on COCO 2017 [23,26], a distinctly different

4 https://huggingface.co/facebook/

detr-resnet-50

data distribution compared to Mel spectrograms, we cor-

roborate previous findings of visual feature space transfer

learning [21, 27].

We compare our model with two other methods, namely

“Mixed In Key 10” (MIK), a commercial DJ software, 5

and Automix [14], an open-source research project. We

analyze all tracks directly without manual interference in

MIK, as the program simultaneously estimates the beat

grid to which it snaps generated cue points. From Au-

tomix, we used the cue point generation method directly.

4.2 Evaluation Metrics

We investigate the predicted cue points with respect to the

manually annotated cue points and phrase alignment sepa-

rately. In the following, we address the manually annotated

cue point ground-truth set by cues-only and use the phrase

length, measured in bars, to reference phrase alignment.

Similarly to Automix, we assess the predictions using a

tolerance window around the ground-truth cue points to es-

timate the hit rate of the predictions. We evaluate the mod-

els on two different tolerance windows T1 and T1/2 which

measure one beat and one half-beat, respectively. On aver-

age, one half-beat in our test data measures approximately

172 milliseconds, which is comparable to the standard 150

milliseconds tolerance in beat tracking [28]. The values for

precision, recall, the F1-score and Average Precision (AP)

scores are retrieved from the hit rate. Lastly, we measure

the cosine similarity between the sets of the predicted and

actual cue point positions.

4.3 Ablations

As cue points have no clearly defined object boundaries,

we further investigate the influence of the spectrogram

context around a cue point included in a bounding box.

We report the impact of the bounding box width w for the

quality of predictions in Table 1 using AP. We report AP

for cues-only as APC and report AP for phrase alignment

5 https://mixedinkey.com
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Figure 4. Predicted and ground-truth cue point positions shown over three Mel spectrograms of different random tracks

from the evaluation split of EDM-CUE. The confidence score for each position is illustrated as the white curve. Magenta

lines indicate correct model predictions, red lines indicate wrong model predictions. For reference, solid orange lines

represent ground-truth positions and dashed orange lines illustrate 16-bar phrase boundaries.

Table 1. Ablation of the bounding box width w used dur-

ing training of CUE-DETR. The Average Precision (AP)

scores are reported as APC for cues-only ground-truth,

AP16 and AP8 indicate phrase alignment. The best results

per scenario are bold and larger values are better.

T1 (one beat) T1/2 (half beat)

w APC AP16 AP8 APC AP16 AP8

r16

7 0.41 0.51 0.52 0.34 0.37 0.37

15 0.41 0.57 0.60 0.36 0.42 0.42

21 0.41 0.57 0.60 0.38 0.47 0.48

r8

7 0.32 0.42 0.45 0.23 0.26 0.27

15 0.32 0.49 0.53 0.25 0.33 0.34

21 0.32 0.50 0.54 0.28 0.38 0.41

as AP16 and AP8. We trained three models with identi-

cal initialization parameters except for w which we set to

w7 = 7, w15 = 15, and w21 = 21 pixels, respectively.

Looking at the results for T1, the box width shows no

impact on APC . The larger peak radius r16 increases APC

for all models. Furthermore, AP increases from APC to

AP16 for all models, most notably by 0.18 from 0.32 to

0.5 for w21 with r8. From AP16 to AP8 we report an addi-

tional increase in AP. Using a larger w improves AP for the

phrase alignment cases. The overall best AP score mea-

sures 0.6 for w15 and w21 with radius r16. This radius

produces identical results for w15 and w21. The results for

T1/2 exhibit similar patterns, with the exception of w21 re-

porting improved AP over w15 on all accounts. Overall,

the model with w7 performs the least favorable, followed

by w15, which in turn is outperformed by w21.

4.4 Results

The evaluation of the mean precision, recall, and the F1-

score is summarized in Table 2. For all methods, the preci-

sion increases from the cues-only to the 16-bars and 8-bars

ground-truth sets. Our r16-model achieves the highest pre-

cision in all cases. The precision increases most notably

for tolerance T1 from the cues-only to phrase alignment
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Figure 5. Distribution of ground-truth cue point positions

in blue and predicted cue point positions in orange quan-

tized to bars. The cosine similarity between the predicted

cue point positions and ground-truth is 0.425 (Automix),

0.371 (MIK), and 0.851 (CUE-DETR).

ground-truth sets. More precisely, our r8-model shows

an increase in precision by 0.31 from cues-only to 8-bar

phrasing. The change from 16 to 8-bars is not as preva-

lent. Automix shows an improvement in precision from

0.14 to 0.24 and 0.3 over the three ground-truth sets. MIK

shows little improvement over the different scenarios and

produces more stable precision values. Using the tighter

tolerance T1/2, all precision values fall in proportion to

each other. For recall, the difference of values between the

two tolerances is similar to what is observed for precision.

With the added phrasing boundaries, all methods show a

reduction in recall, opposite to precision. The most sig-

nificant drop in recall is observed from 16 to 8-bars. Our

r8-model reports the highest recall on all accounts. The

changes in the F1-score are less pronounced for all meth-

ods as the values remain nearly stable for cues-only and

16-bar phrase alignment. The best reported F1-score is as-

sociated with our r8-model over 16-bar phrasing at 0.46.

For further insight, we look at the distribution of the

predicted results in Figure 5. Automix favors cue posi-
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Table 2. Comparison of precision, recall, and the F1-score of Automix, Mixed In Key (MIK), and our method. Higher

values correspond to better results. The upper rows show the evaluation using tolerance T1 and the lower rows using T1/2.

From left to right, the results are given for the manually placed cue point only, the computed 16-bar phrasing and the

computed 8-bar phrasing. We observe that CUE-DETR outperforms previous methods on precision, recall, and F1-score.

cues-only 16-bars 8-bars

Precision Recall F1 Precision Recall F1 Precision Recall F1

T1

Automix 0.14 0.12 0.13 0.24 0.11 0.15 0.30 0.07 0.11

MIK 10 0.20 0.25 0.22 0.21 0.13 0.16 0.25 0.08 0.12

CUE-DETR (r16) 0.38 0.35 0.36 0.62 0.27 0.38 0.69 0.16 0.26

CUE-DETR (r8) 0.32 0.49 0.39 0.53 0.41 0.46 0.63 0.26 0.36

T1/2

Automix 0.11 0.10 0.10 0.20 0.09 0.13 0.24 0.06 0.10

MIK 10 0.14 0.19 0.16 0.15 0.09 0.12 0.18 0.06 0.09

CUE-DETR (r16) 0.27 0.25 0.26 0.43 0.19 0.27 0.48 0.11 0.18

CUE-DETR (r8) 0.22 0.34 0.27 0.37 0.28 0.32 0.43 0.17 0.25

tions around the first three phrases with high alignment to

ground-truth. The second cluster is predicted at the start

of phrases 6 to 8 with an increased tendency for early pre-

dictions. MIK on the other hand exhibits more evenly dis-

tributed cue placements over the first 7 phrases. However,

an increased number of predictions lie in between phrases

where no ground-truth points lie. We observe that both Au-

tomix and MIK tend not to predict possible cue points in

the second half of tracks. CUE-DETR predicts cue points

with the highest adherence to ground-truth. Despite a few

additional predictions similar to MIK, positions with the

highest accumulation of cue points are covered by our pre-

dictions in a similar pattern. The cosine similarity of our

quantized predictions reports the highest score of 0.851. In

comparison, Automix scores 0.425 whereas MIK reaches

0.371.

4.5 Discussion

CUE-DETR shows strong adherence to ground-truth com-

pared to other methods. Our method suggests good phrase

alignment based on the distribution of our predicted cue

point positions, as well as the increase in precision from

cues-only to 16 bar phrases. A slight increase in precision

is expected for all methods, however, a significant increase

is only associated with strong phrase alignment due to the

decrease in false positive predictions. The higher number

of possible ground-truth positions decreases recall in re-

turn. If our method successfully detects irregular sections,

the phrasing algorithm from Section 3.2 can be applied in

postprocessing, which could further increase the precision

while keeping the recall score high.

Despite using a metronome-agnostic approach, for

which we fixed the distances r to the length of a phrase in

terms of the dataset median tempo, the chosen values for

r yield results with higher precision compared to the other

methods. We assume the relatively homogeneous nature

of our dataset minimized the impact of different tempos

in the test data. For more diverse styles of music, includ-

ing the tempo and beat grid information, similar to MIK,

might be beneficial. On the other hand, it might be possible

to train a model on beat and cue detection simultaneously.

The beat detection could then be used during postprocess-

ing to identify the tempo, making the need for additional

ground-truth beat grid or tempo information redundant.

One key limitation remains in the availability of training

data, despite building our own dataset. Since we only had

access to data with high similarity in style, we would like to

investigate the performance of our method over a broader

domain of electronic music in the future. Furthermore, our

dataset annotations were provided by DJs who specialize

in club DJing. Therefore, annotations from other types of

DJs, such as scratch DJs or mobile DJs, would likely result

in a largely different cue point distribution. We believe one

main difference would lie in more cue points distributed

around vocals or pickups instead of the first downbeat of

phrases.

5. CONCLUSION

In this work we introduced CUE-DETR, an object detec-

tion model fine-tuned on Mel spectrograms capable of es-

timating cue points in EDM tracks. Candidate cue points

produced by CUE-DETR demonstrate high adherence to

the underlying music structure and exhibit a higher resem-

blance to manually placed cue points compared to previous

approaches. Furthermore, we created EDM-CUE, a dataset

containing 21k manually annotated cue points from four

professional DJs. EDM-CUE also contains tempo, beat,

and downbeat annotations for almost 5k EDM tracks. Our

implementation includes a postprocessing step to filter the

model predictions for the best positions, including a con-

version of the results to timestamps. For the evaluation,

we presented a complementary phrasing-based evaluation

method, which is useful to assess cue point predictions in

a more objective manner.

Furthermore, we demonstrated that CUE-DETR is ca-

pable of detecting large structural boundaries in music, de-

spite only seeing small excerpts of the entire track. Our

findings further acknowledge the potential of transformer-

based architectures for the detection of time-based events

in music.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

410



6. REFERENCES

[1] M. J. Butler, Unlocking the groove: Rhythm, meter, and

musical design in electronic dance music. Indiana

University Press, 2006.

[2] M. Zehren, M. Alunno, and P. Bientinesi, “M-djcue: A

manually annotated dataset of cue points,” 2019.

[3] D. Cliff, “Hang the dj: Automatic sequencing and

seamless mixing of dance-music tracks,” Tech. report,

HP Laboratories, 2000.

[4] H. Ishizaki, K. Hoashi, and Y. Takishima, “Full-

automatic dj mixing system with optimal tempo adjust-

ment based on measurement function of user discom-

fort,” in International Society for Music Information

Retrieval Conference, 2009.

[5] T. Hirai, H. Doi, and S. Morishima, “Musicmixer:

computer-aided dj system based on an automatic song

mixing,” Proceedings of the 12th International Confer-

ence on Advances in Computer Entertainment Technol-

ogy, 2015.

[6] L. Veire and T. Bie, “From raw audio to a seamless

mix: creating an automated dj system for drum and

bass,” EURASIP Journal on Audio, Speech, and Music

Processing, vol. 2018, 2018.

[7] A. Kim, S. Park, J. Park, J.-W. Ha, T. Kwon, and

J. Nam, “Automatic dj mix generation using highlight

detection,” Proc. ISMIR, late-breaking demo paper,

2017.

[8] H.-W. Huang, M. Fadli, A. K. Nugraha, C.-W. Lin, and

R.-G. Cheng, “Ai dj system for electronic dance mu-

sic,” 2022 International Symposium on Electronics and

Smart Devices (ISESD), pp. 1–6, 2022.

[9] B.-Y. Chen, W.-H. Hsu, W.-H. Liao, M. A. M.

Ram’irez, Y. Mitsufuji, and Y.-H. Yang, “Automatic

dj transitions with differentiable audio effects and gen-

erative adversarial networks,” ICASSP 2022 - 2022

IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 466–470, 2021.

[10] R. M. Bittner, M. Gu, G. Hernandez, E. J. Humphrey,

T. Jehan, H. McCurry, and N. Montecchio, “Automatic

playlist sequencing and transitions,” in International

Society for Music Information Retrieval Conference,

2017.

[11] T. Kim, M. Choi, E. Sacks, Y.-H. Yang, and J. Nam,

“A computational analysis of real-world dj mixes us-

ing mix-to-track subsequence alignment,” ArXiv, vol.

abs/2008.10267, 2020.

[12] J. Foote, “Automatic audio segmentation using a mea-

sure of audio novelty,” 2000 IEEE International Con-

ference on Multimedia and Expo. ICME2000. Proceed-

ings. Latest Advances in the Fast Changing World of

Multimedia (Cat. No.00TH8532), vol. 1, pp. 452–455

vol.1, 2000.

[13] D. Schwarz, D. A. Schindler, and S. Spadavecchia,

“A heuristic algorithm for dj cue point estimation,” in

Sound and Music Computing, 2018.

[14] M. Zehren, M. Alunno, and P. Bientinesi, “Automatic

detection of cue points for dj mixing,” ISMIR, vol.

abs/2007.08411, 2020.

[15] D. Schwarz and D. Fourer, “Methods and datasets for

dj-mix reverse engineering,” in Perception, Represen-

tations, Image, Sound, Music: 14th International Sym-

posium, CMMR 2019, Marseille, France, October 14–

18, 2019, Revised Selected Papers 14. Springer, 2021,

pp. 31–47.

[16] L. Werthen-Brabants, “Ground truth extraction & tran-

sition analysis of dj mixes,” 2018, master Thesis, Ghent

University, Ghent, Belgium.

[17] D. Schwarz and D. Fourer, “Unmixdb: A dataset for

dj-mix information retrieval,” 19th International Sym-

posium on Music Information Retrieval (ISMIR), 09

2018.

[18] J. Schlüter and S. Böck, “Improved musical onset

detection with convolutional neural networks,” 2014

IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 6979–6983,

2014. [Online]. Available: https://api.semanticscholar.

org/CorpusID:1262099

[19] S. Durand, J. P. Bello, B. David, and G. Richard, “Ro-

bust downbeat tracking using an ensemble of convo-

lutional networks,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 25, pp. 76–89,

2016.

[20] K. Ullrich, J. Schlüter, and T. Grill, “Boundary de-

tection in music structure analysis using convolutional

neural networks,” in International Society for Music

Information Retrieval Conference, 2014.

[21] Y. Gong, Y.-A. Chung, and J. R. Glass, “Ast: Audio

spectrogram transformer,” ArXiv, 2021.

[22] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-

senborn, X. Zhai, T. Unterthiner, M. Dehghani,

M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,

and N. Houlsby, “An image is worth 16x16 words:

Transformers for image recognition at scale,” In-

ternational Conference on Learning Representations

(ICLR), 2021.

[23] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kir-

illov, and S. Zagoruyko, “End-to-end object detection

with transformers,” ArXiv, vol. abs/2005.12872, 2020.

[24] K. Miyazaki, T. Komatsu, T. Hayashi, S. Watanabe,

T. Toda, and K. Takeda, “Conformer-based sound event

detection with semi-supervised learning and data aug-

mentation,” in Workshop on Detection and Classifica-

tion of Acoustic Scenes and Events, 2020.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

411



[25] I. Loshchilov and F. Hutter, “Decoupled weight decay

regularization,” in International Conference on Learn-

ing Representations, 2017.

[26] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Gir-

shick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick,

and P. Dollár, “Microsoft coco: Common objects in

context,” 2015.

[27] S. Forsgren and H. Martiros, “Riffusion - Stable diffu-

sion for real-time music generation,” 2022. [Online].

Available: https://github.com/riffusion/riffusion

[28] M. Davies, N. Degara Quintela, and M. Plumbley,

“Evaluation methods for musical audio beat tracking

algorithms,” Centre for Digital Music, Queen Mary

University of London, Tech. Rep., 10 2009.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

412



THE LISTENBRAINZ LISTENS DATASET

Kartik Ohri

MetaBrainz Foundation Inc.

lucifer@metabrainz.org

Robert Kaye

MetaBrainz Foundation Inc.

rob@metabrainz.org

ABSTRACT

The ListenBrainz listens dataset is a continually evolv-

ing repository of music listening history events submitted

by all ListenBrainz users. Currently totalling over 800

million entries, each datum within the dataset encapsu-

lates a timestamp, a pseudonymous user identifier, track

metadata, and optionally MusicBrainz identifiers facilitat-

ing seamless linkage to external resources and datasets.

This paper discusses the process of raw data acquisition,

the subsequent steps of data synthesis and cleaning, the

comprehensive contents of the refined dataset, and the di-

verse potential applications of this invaluable resource. Al-

though not the largest dataset in terms of music listening

events (yet), its distinctiveness lies in its perpetual evolu-

tion, with users contributing data daily. This paper under-

scores the significance of the ListenBrainz listens dataset

as a significant asset for researchers and practitioners alike,

offering insights into music consumption patterns, user

preferences, and avenues for further exploration in the

fields of music information retrieval and recommendation

systems.

Keywords: novel datasets, digital archives, metadata,

linked data

1. INTRODUCTION

The advent of digital music streaming has led to an explo-

sion of data on user listening habits. As the most prevalent

form of music consumption today, with streaming account-

ing for 84% of total U.S. music revenue in 2023 1 , this data

holds immense potential for understanding trends, devel-

oping recommendation systems, and personalizing the user

experience. However, most of this data is locked within

commercial platforms and inaccessible to researchers or

the public [1]. This lack of transparency hinders open-

source development and independent research efforts in the

music information retrieval field. AI-driven music recom-

mendation systems, personalized playlists, and even music

generation algorithms rely heavily on vast datasets of user

1 U.S. Recorded Music Revenues Data by Format taken from the
RIAA U.S. Music Revenue Database https://www.riaa.com/u-s-sales-
database/

© K. Ohri and R. Kaye. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution:

K. Ohri and R. Kaye, “The ListenBrainz Listens Dataset”, in Proc. of the

25th Int. Society for Music Information Retrieval Conf., San Francisco,

United States, 2024.

behavior to function effectively [2]. Open access to mu-

sic consumption habits datasets is crucial in ensuring that

these algorithms are developed and trained in a manner that

is fair, transparent, unbiased, and representative of diverse

musical tastes.

This paper introduces the ListenBrainz listens dataset,

explores its contents, and potential applications. We will

discuss the unique characteristics that distinguish it from

other music datasets and highlight its significance as a

valuable resource for researchers, practitioners, and mu-

sic enthusiasts alike. Our goal is to provide the research

community with a valuable resource for analyzing evolv-

ing music consumption patterns, exploring user prefer-

ences, and advancing open-source music information re-

trieval systems.

2. RELATED WORK

A few public music listening history datasets exist, most

built upon data extracted from the social music platform

Last.fm. These include the Last.fm Dataset-360K [5]; the

Last.fm Dataset-1K [5], the LFM-1B dataset [6] and the

LFM-2B dataset [7]. The LFM-1B dataset 2 and the LFM-

2B dataset 3 are not available anymore due to licensing is-

sues.

All of these datasets were superseded by the introduc-

tion of the Music Listening History Dataset (MLHD) in

2017. MLHD stands out as one of the largest and most

comprehensive publicly available datasets of music listen-

ing histories even today. It contains over 27 billion times-

tamped listening events from 583,000 users, enriched with

demographic information and MusicBrainz identifiers for

linking with external resources [3]. MLHD has been ex-

tensively used in research on music recommendation, user

behavior analysis, and temporal trends in music consump-

tion. To our knowledge, no newer datasets of comparable

size and scope surpassing MLHD have been released since,

highlighting the continued relevance and value of this re-

source. However, it is no longer possible to update MLHD

with new data from Last.fm as the API endpoints originally

used to curate the dataset have now been taken down [8].

The Music Streaming Sessions Dataset (MSSD), un-

veiled by Spotify, takes a unique approach by centering

on listening sessions rather than individual track plays.

It encompasses 160 million sessions, each providing in-

2 Hosting page for LFM-1B dataset
http://www.cp.jku.at/datasets/LFM-1b/

3 Hosting page for LFM-2B dataset
http://www.cp.jku.at/datasets/LFM-2b/
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Feature MLHD [3] MSSD [4] ListenBrainz

Source Last.fm Scrobbles Spotify Streaming Logs ListenBrainz User Submis-

sions

Size 27 Billion Listening Events 160 Million Listening Ses-

sions

800+ Million (and growing)

Listening Events

Scope Individual Track Plays Listening Sessions (upto 20

tracks)

Individual Track Plays

Content Timestamp, Basic Track

Metadata, Limited MBIDs,

User Demographics

Timestamp, User Actions,

Track Metadata, Audio Fea-

tures, Playlist Snapshots

Timestamp, Extended Track

Metadata, Comprehensive

MBIDs Links

Updates Static (Last Updated 2017) Static (Last Updated 2019) Dynamic (Continuously Up-

dated)

Strengths Large size, Comprehensive

user demographics, MBIDs

for linking

Focus on listening sessions,

Includes audio features,

Counterfactual evaluation

subset

Continuously updated,

User-controlled data, Di-

verse data sources (stream-

ing, local files), Extended

Metadata Coverage, MBIDs

for linking

Table 1: Comparison of the important music listening datasets

sights into user actions within the session, audio features

of the tracks, and corresponding track metadata [4]. While

MSSD offers valuable data for analyzing the dynamics of

listening sessions, its scope is more confined compared to

MLHD. MSSD encompasses a smaller user base and cov-

ers a shorter time frame. As of today, the MSSD dataset is

not available for download publicly 4 .

A common limitation shared by all the mentioned

datasets, including both MLHD and MSSD, is their static

nature. They represent snapshots of data frozen at a par-

ticular moment in time, lacking updates since their ini-

tial release. This inherent static nature raises concerns

about their ability to accurately reflect contemporary mu-

sic consumption patterns and trends. Furthermore, these

datasets are missing data on music released after their cre-

ation, potentially restricting their usefulness for research

inquiries focused on recent musical trends and user prefer-

ences. Additionally, the track metadata provided in MLHD

and MSSD is limited to basic information such as artist,

track, and album names. In contrast, ListenBrainz allows

users to submit any additional metadata they deem rele-

vant alongside their listening events, providing a richer and

more comprehensive dataset for analysis.

Table 1 offers a concise overview of the key character-

istics and differences between the Music Listening History

Dataset, the Music Streaming Sessions Dataset, and the

ListenBrainz Listens Dataset.

3. BACKGROUND

3.1 Music Listening History

Music listening histories serve as extensive timelines of an

individual’s music consumption, offering valuable insights

into their preferences, habits, and evolving tastes. Aggre-

gating these histories across different timeframes uncovers

4 MSSD Dataset downlad page https://www.aicrowd.com/challenges/spotify-
sequential-skip-prediction-challenge

broader patterns and trends in listening behavior [9] [10].

The open availability of such data holds immense poten-

tial for advancing music information retrieval research, en-

hancing recommendation systems, and fostering a deeper

understanding of the relationship between individuals and

music.

3.2 Data Donation

Data donation is a method of data collection which typi-

cally involves users proactively sharing their digital trace

data, often by requesting and exporting their data from on-

line platforms, with researchers [11]. Data donations are

commonly used in the field of communications, especial

social media, research [12]. The usefulness of data dona-

tions in music research being increasingly recognized as

exemplified by the Fair Muse project [13].

3.3 The ListenBrainz Project

The ListenBrainz listens dataset has been developed as

a part of the broader open source project, ListenBrainz
5 . The project is maintained by the MetaBrainz Foun-

dation, a non-profit organization dedicated to promoting

open data initiatives in the music domain. The organiza-

tion is renowned for its over two-decade-long stewardship

of the comprehensive free and open source MusicBrainz

database 6 . All ListenBrainz data is generously licensed

under the CC0 license, granting unrestricted use and creat-

ing a collaborative environment for research and develop-

ment.

4. THE LISTENBRAINZ LISTENS DATASET

4.1 Data Collection

The ListenBrainz dataset is entirely crowdsourced, with

users actively contributing their listening histories. Lis-

5 https://listenbrainz.org/
6 History and deatils of the MetaBrainz Foundation Inc. and the Mu-

sicBrainz project can be found at https://metabrainz.org/about
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Traditional Data Donation ListenBrainz

Data Acquisition Users request data from platform and do-

nate to researchers.

Data submitted directly to ListenBrainz

(automatically or manually).

Temporality One-time or infrequent bulk data dona-

tions.

Continuous, regular data contribution.

User Effort Active user involvement required in export

and donation

Minimizes user effort after initial setup.

Data Scope Limited to a single platform or service. Aggregates data from multiple sources.

User Control Limited control post data donation. Offers ongoing user control ( editing, dele-

tion, or contribution cessation).

Data Utilization Often for specific research projects with

limited broader application.

Continuously growing, multi-purpose

dataset for diverse research and the music

community.

Table 2: Data Collection: Traditional Data Donation vs. ListenBrainz Approach

tenBrainz’s data collection approach shares its ethos with

traditional data donation approaches. Both involve volun-

tary participation and aim to provide transparency regard-

ing data usage.

However, the traditional data donation approach has

some limitations. The donated data is retrospective and

represents a one-time export. Repeated donations require

users to navigate potentially complex processes which dis-

courage participation [12]. To overcome these limitations,

ListenBrainz provides multiple ways for users to setup au-

tomatic submission of listening events from their music

streaming platforms and local music players on a contin-

uous basis. Table 2 sums up the differences between the

traditional and ListenBrainz approach.

Users can submit their data through various methods.

1. APIs and local media players: ListenBrainz provides

a free and open API 7 allowing manual submission

of listening histories and facilitates the development

of plugins for music players, automating the process

for seamless and reliable data collection 8 . There is

a Last.fm compatible API available as well which

allows existing Last.fm clients to readily integrate

with ListenBrainz 9 .

2. Streaming services integration: ListenBrainz inte-

grates with popular streaming services like Spotify,

enabling users to effortlessly link their accounts and

contribute their streaming listening history.

3. Mobile applications and browser extensions: Vari-

ous mobile applications can be used to submit lis-

ten events from mobile devices. Browser Exten-

sions like WebScrobbler 10 provide convenient tools

for submitting listening data from web-based music

platforms.

4. Import of streaming services data exports: Listen-

Brainz supports conventional data donation meth-

ods, allowing users to upload data packages from

streaming platforms like Spotify’s extended stream-

7 ListenBrainz API documentation is available at
https://listenbrainz.readthedocs.io/en/latest/users/api-usage.html

8 A list of known music player supporting ListenBrainz submission
can be found at https://listenbrainz.org/add-data/

9 Last.fm compatible API documentation at
https://listenbrainz.readthedocs.io/en/latest/users/api-compat.html

10 WebScrobbler https://web-scrobbler.com/

ing data export.

It is important to note that ListenBrainz empowers users

with complete control over their data. They can edit,

delete, or export their listening history as desired, ensur-

ing transparency and user agency.

{

"user_id": 1,

"user_name": "rob",

"timestamp": 1720644002,

"track_metadata": {

"track_name": "Tokara",

"artist_name": "Fakear",

"release_name": "All Glows",

"additional_info": {

"duration_ms": 206230,

"tracknumber": 9,

"artist_mbids": [

"7c707d22-1c9c-4e72-bc8d-640baa5e2ba5"

],

"release_mbid":

"2524b5bd-03d2-48ea-b85c-8cdebc8bbfe4",↪→

"recording_mbid":

"ba97f6e5-f4ff-404f-b95b-e3aabade5e2e",↪→

"submission_client": "navidrome",

"submission_client_version": "0.51.0

(fd61b29a)",↪→

"recording_msid":

"886bf922-8041-4e02-9991-596ffebddb7a"↪→

}

},

"recording_msid":

"886bf922-8041-4e02-9991-596ffebddb7a"↪→

}

Listing 1: A listen event in the ListenBrainz dataset

4.2 Data Cleaning and Synthesis

ListenBrainz ensures data quality through a robust clean-

ing and synthesis process. Every listening event requires

a UTC epoch timestamp, a user identifier assigned by

ListenBrainz, track name, and artist name. The addi-

tional_info field permits users to submit free-form JSON

data. This flexibility empowers users to contribute any rel-

evant information they deem valuable, fostering a richer

understanding of music listening behaviors. Commonly

used additional metadata fields include release name, Mu-

sicBrainz identifiers, track position, duration, and music

service or media player used. A MBID is a 36 character
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Universally Unique Identifier that is permanently assigned

to each entity in the MusicBrainz database. The range of

MusicBrainz identifiers (MBIDs) supported by the Listen-

Brainz dataset is broader than MLHD [3] and hence, opens

doors to a wealth of additional information. For exam-

ple, a release MBID allows access to detailed label data

and cover art from the MusicBrainz ecosystem. Listing 1

shows an example of a listen history event in the Listen-

Brainz dataset.

To prevent duplicates, ListenBrainz employs a real-time

deduplication system based on the unique combination of

user ID, timestamp, and a MessyBrainz identifier (MSID).

MSIDs are random UUIDs assigned to the hash of the

track, artist, and release names, serving as a robust method

for identifying unique listening events.

While submitting MusicBrainz identifiers (MBIDs)

alongside listening events greatly enhances the dataset’s

connectivity and analytical potential, it’s not always a

straightforward task for users. Local music collections of-

ten lack MBIDs in their ID3 tags, necessitating additional

efforts to improve metadata quality. ListenBrainz encour-

ages users to utilize tools like MusicBrainz Picard 11 to

tag their collections effectively. Tagging collections be-

comes impractical when users engage with music through

streaming services, where control over metadata submis-

sion is limited. To address this challenge, ListenBrainz

employs a sophisticated background service known as the

MBID mapper. This service automatically searches and as-

sociates relevant MBIDs with listening events based on the

available metadata, enriching the dataset’s interconnected-

ness which is very helpful in downstream analysis. The

inner workings of the MBID mapper involve complex al-

gorithms and matching techniques beyond the scope of this

paper. The MBIDs linked by the mapper are stored sepa-

rately from user-submitted identifiers, empowering users

of the dataset to choose whether or not to incorporate them

into their analyses.

4.3 Dataset Format and Updates

The ListenBrainz dataset is available in two formats:

ListenBrainz full export Dumps and ListenBrainz Spark

Dumps. The ListenBrainz full export dumps contain the

entire data submitted to ListenBrainz split in monthly

chunks. Monthly data is organized into JSON lines files

within yearly directories, providing comprehensive infor-

mation for each listening event. The ListenBrainz spark

dumps consist of chronologically ordered parquet files of-

fering a subset of relevant fields optimized for batch pro-

cessing and analysis.

The entire dataset is updated every 15 days, while incre-

mental dumps capturing the listening events of the last 24

hours are produced daily. This ensures researchers and de-

velopers have access to both the comprehensive historical

record and the most recent trends in music consumption.

11 MusicBrainz Picard https://picard.musicbrainz.org/

5. DATASET ANALYSIS

As of today, the ListenBrainz listens dataset boasts a sub-

stantial collection of 876 million listening events con-

tributed by approximately 28,000 users. Impressively, 764

million of these entries have been successfully linked with

MusicBrainz identifiers, allowing for deeper analysis and

connections with external music information resources.

The dataset encompasses a diverse musical landscape, rep-

resenting 900 thousand artists, 2.07 million albums, and

a staggering 12.1 million recordings. Table 3 provides a

summary of these key figures and a comparison with the

corresponding figures of the MLHD dataset.

MLHD [3] ListenBrainz

Users 583 K 28,419

Listens (All) 27 B 876 M

Listens (with MBIDs) - 764 M

Recordings 7 M 12.1 M

Albums 900 K 2.07 M

Artists 555 K 900 K

Table 3: Comparision of the size of the MLHD and Lis-

tenBrainz dataset

While the number of users and listening events in Lis-

tenBrainz is currently smaller compared to MLHD, it ex-

cels in its coverage of musical content, with several times

the number of unique recordings, albums, and artists repre-

sented. This richness shows the potential of ListenBrainz

for exploring a wider range of musical tastes and prefer-

ences.

The additional metadata recorded by ListenBrainz in-

troduces several innovative features not present in the

MLHD dataset. Specifically, 11% of listening events

in ListenBrainz include track number information, while

12% of entries offer track duration data, which facili-

tates the analysis of listening session lengths and poten-

tial skipping behaviors. Additionally, 68% of listening

events record the submission client. Although more than

half of these clients are from Last.fm imports and Spo-

tify, the remaining entries encompass a diverse array of

user setups, including self-hosted music servers such as

Navidrome and Funkwhale, as well as popular applica-

tions like Plex, PanoScrobbler, and WebScrobbler. This

additional metadata enables new research opportunities to

explore platform-specific listening behaviors and the influ-

ence of various music access modes on consumption pat-

terns.

The temporal span of the ListenBrainz dataset is note-

worthy, encompassing listening events dating back to 2005

and extending to the present year, 2024. Figure 2 illustrates

the distribution of listening events across different years.

Notably, the ability to submit past listening data to Listen-

Brainz suggests that the representation of earlier years may

continue to grow over time. The lower number of events

for 2024 is expected, given that only a portion of the year

has elapsed.

Figure 1 shows the global coverage of the ListenBrainz
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Figure 1: Artist Origins: Logarithm of number of listens of artists originating from a country

Figure 2: Temporal distribution of listening events

dataset, the artists in the dataset originate from a wide ar-

ray of countries and regions. Although there is a notice-

able concentration of artists originating from the United

States, as evidenced by the darker shading, the dataset en-

compasses a diverse representation of artists from across

the world particularly prominent in Europe, parts of South

America, and Australia. This exploration also acts as an

example of how MBIDs in the ListenBrainz dataset can

be used to obtain useful information from the MusicBrainz

database, in this case the country of an artist’s origin.

Figure 3 displays another temporal aspect of the dataset,

the distribution of listening events based on the release

year of the music. The graph reveals a clear trend towards

a preference for newer music, with a significant surge in

listening events observed from the 1990s onwards. This

pattern aligns with the increasing availability and acces-

sibility of digital music during this period. Nevertheless,

the presence of listening events for music spanning several

decades, dating back to the 1960s and earlier, emphasizes

the assorted range of musical interests within the Listen-

Brainz community and the enduring appeal of older music.

6. USE CASES

The dataset is actively by the ListenBrainz project itself

internally to power collaborative filtering algorithms that

generate personalized recommendations, playlists, and en-

gaging user reports. By combining these collaborative fil-

tering techniques with content-based recommendations de-

rived from MusicBrainz’s genre and folksonomy data, Lis-

tenBrainz creates a multifaceted and tailored music discov-

ery experience for its users 12 . In a further commitment

to open-source music recommendation development, the

ListenBrainz team has created the Troi recommendation

toolkit 13 . This standalone toolkit adopts an API-first phi-

losophy, enabling the construction of diverse and engag-

ing playlists by utilising ListenBrainz data alongside other

compatible datasets. Similarly, the Calliope project is an

external initiative that leverages the ListenBrainz dataset

to curate playlists and aid research and development in the

field of open-source music recommendation systems 14 .

Beyond its applications in understanding general music

preferences and trends, the listens data in ListenBrainz has

proven valuable in exploring the impact of music recom-

mendation diversity on listeners’ long-term attitudes and

engagement [14]. Researchers have leveraged listens data

available in ListenBrainz to develop and evaluate sequen-

tial music recommendation systems that utilize the power-

ful BERT transformer model [15].

Like MLHD, ListenBrainz is built upon a foundation

of user-generated listening histories, making it concep-

tually similar and offering comparable data for analysis.

Although the user base and overall size differ, the core

data structure allows for the application of similar research

methodologies and comparisons between findings. Addi-

12 Weekly Recommendation Playlists
https://community.metabrainz.org/t/our-weekly-recommendations-
are-now-live/646950?u=lucifer

13 Troi recommendation toolkit https://troi.readthedocs.io/en/latest/
14 Calliope Project https://calliope-music.readthedocs.io/
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Figure 3: Listening events by original release year of albums

tionally, music sessions can be extracted from individual

listening events of the ListenBrainz dataset to reproduce

and extend studies initially conducted on the session-based

MSSD dataset. Consequently, we are certain that this

dataset holds immense potential for reproducing and val-

idating previously conducted studies on similar datasets.

ListenBrainz also presents itself as a significant ad-

vancement in music consumption research tools. Instead

of developing custom data collection and processing tools

for data donations, researchers can leverage ListenBrainz.

Researchers are relieved from the technical burdens and

logistical complexities of data collection, allowing them

to dedicate their time and resources to the core aspects

of their studies and analytical inquiries. The ListenBrainz

platform provides participants with insights into their lis-

tening behavior which can potentially increasing study en-

gagement as well. In return, the listening events submitted

by the participants enrich the overall listens dataset.

7. LIMITATIONS

The dataset utilizes UTC timestamps which prevents its us-

age in temporal analyses involving time zones, such as the

diurnal music preferences explored by Park et. al [10]. Fu-

ture iterations of the dataset aim to incorporate timestamps

aligned with users’ respective time zones, further enhanc-

ing its analytical capabilities.

The dataset can only as diverse as the individuals who

choose to share their listening histories, potentially creat-

ing limitations in representing the full spectrum of music

consumption across various cultures, genres, and commu-

nities. For instance, Figure 1 reveals a geographic bias in

ListenBrainz’s user demographics, with a disproportionate

number of users located in the Anglosphere. Efforts are

underway to integrate demographic data, such as user re-

gion and gender, to provide additional context to detect and

eliminate such biases.

An inherent challenge within music listening datasets,

including ListenBrainz, is the difficulty in discerning

whether a listening event reflects a user’s genuine music

preference or merely their exposure to a track due to al-

gorithmic recommendations or shuffle mechanisms within

music streaming services. This ambiguity makes it diffi-

cult to determine if a specific listening event represents an

active choice by the user or a passive encounter with a sug-

gested track.

Further, growing concerns surrounding online privacy

may lead users to be hesitant in sharing their personal data,

including seemingly benign information like music listen-

ing habits, impacting the growth of the dataset. Individuals

are becoming increasingly aware of data collection prac-

tices and harbor reservations about potential privacy risks

and the possible misuse of their information [16].

8. CONCLUSION

In conclusion, the ListenBrainz listens dataset provides a

rich and dynamic resource for understanding the complex-

ities of music consumption. Its comprehensive collection

of user listening histories, accurate to the second, offers

valuable insights into individual preferences and general

trends. The inclusion of MusicBrainz identifiers further

enhances its utility, enabling seamless integration with ex-

ternal music databases and facilitating in-depth analyses.

To reiterate, the ListenBrainz listens dataset addresses

a significant gap in the field by providing a continuously

updated resource that can represent rapidly changing mu-

sic preferences. As the ListenBrainz project is run by a

non-profit entity devoid of vested corporate interests, we

believe that it will emerge as an indispensable resource

for future research endeavors. By embracing openness,

user agency, and continuous growth, ListenBrainz listens

dataset paves the way for a deeper understanding of how

we engage with music.

The dataset can be downloaded from https://data

.metabrainz.org/pub/musicbrainz/listen

brainz/fullexport/.
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ABSTRACT

Recent advances in generative models that iteratively syn-

thesize audio clips sparked great success in text-to-audio

synthesis (TTA), but at the cost of slow synthesis speed

and heavy computation. Although there have been at-

tempts to accelerate the iterative procedure, high-quality

TTA systems remain inefficient due to the hundreds of it-

erations required in the inference phase and large amount

of model parameters. To address these challenges, we pro-

pose SpecMaskGIT, a light-weight, efficient yet effective

TTA model based on the masked generative modeling of

spectrograms. First, SpecMaskGIT synthesizes a realis-

tic 10 s audio clip in less than 16 iterations, an order of

magnitude less than previous iterative TTA methods. As

a discrete model, SpecMaskGIT outperforms larger VQ-

Diffusion and auto-regressive models in a TTA benchmark,

while being real-time with only 4 CPU cores or even 30×

faster with a GPU. Next, built upon a latent space of Mel-

spectrograms, SpecMaskGIT has a wider range of appli-

cations (e.g., zero-shot bandwidth extension) than similar

methods built on latent wave domains. Moreover, we in-

terpret SpecMaskGIT as a generative extension to previous

discriminative audio masked Transformers, and shed light

on its audio representation learning potential. We hope

that our work will inspire the exploration of masked audio

modeling toward further diverse scenarios.

1. INTRODUCTION

Text-to-audio synthesis (TTA) allows users to synthesize

realistic audio and sound event signals by natural language

prompts. TTA can assist the sound design and editing in

the music, movie, and game industries, accelerating cre-

ators’ workflow [1]. Therefore, TTA has earned increasing

attention in the research community.

Recent advances in deep generative models, espe-

cially iterative methods such as diffusion [2–5] and auto-

*Equal contribution. Marco Comunità was an intern at Sony.

© M. Comunità and Z. Zhong. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribu-

tion: M. Comunità and Z. Zhong, “SpecMaskGIT: Masked Generative

Modeling of Audio Spectrograms for Efficient Audio Synthesis and Be-

yond”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.
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Figure 1. Audio synthesis performance and number of syn-

thesis iterations of different methods. The size of circle rep-

resents the model size. SpecMaskGIT achieves good qual-

ity with only 16 iterations and a small model size.
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Xeon CPU cores with standard Python implementation.

regressive models [6–8], have brought significant success

to the sound quality and controllability in TTA tasks, but

at the cost of slow synthesis speed. Since the synthesis

speed of iterative methods is dominated by the number of

iterations required at inference, techniques have been in-

troduced to reduce iterations, e.g., higher compression rate

of raw audio signals [6] or more efficient diffusion sam-

plers [4, 9]. Nevertheless, these iterative methods remain

slow in synthesis speed and demanding for computing re-

sources, as they typically require hundreds of iterations to

synthesize a short audio clip. Moreover, the runtime of a

single iteration increases due to the huge model size.

To further improve inference efficiency, Garcia et al. in-

troduced the MaskGIT [10] synthesis strategy from com-

puter vision to the audio domain and proposed VampNet

[11]. Although VampNet can inpaint a 10-second clip with

24 iterations, 6 seconds are needed on GPU [11], which is

still heavy for non-GPU environments. Moreover, Vamp-

Net is not compatible with text prompts or TTA tasks. Con-

current to our work, MAGNeT extended VampNet to text-

conditional audio synthesis [12]. However, the method is

less efficient as it requires 180 iterations, which is heav-
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ier than some diffusion models that only require 100 it-

erations [4, 9, 13, 14]. Since both VampNet and MAG-

NeT work in a wave-domain latent space, it is difficult to

conduct frequency-domain inpainting tasks such as band-

width extension (BWE) in a zero-shot manner. Besides the

aforementioned limitations, the audio representation learn-

ing potential of a masked generative Transformer has not

been investigated yet.

As a summary, an audio synthesis method that is com-

patible with text prompts, highly efficient in synthesis

speed, and flexible for various downstream tasks is yet to

be explored. To this end, we propose SpecMaskGIT, an ef-

ficient and flexible TTA model based on the masked gen-

erative modeling of audio spectrograms. Our contributions

lie in the following aspects:

• Efficient and effective TTA. SpecMaskGIT synthesizes

a realistic 10-second audio clip in less than 16 iterations,

which is one order of magnitude smaller than previous it-

erative methods (Fig. 1. As a discrete generative model,

SpecMaskGIT outperforms larger VQ-Diffusion (Diff-

Sound [2]) and auto-regressive (AudioGen-base [6])

models in a TTA benchmark, while being real-time with

4 CPU cores (Fig. 2) or even 30× faster on a GPU.

• Flexibility in downstream tasks. SpecMaskGIT is in-

terpreted and implemented as a generative extension

to previous discriminative audio masked Transformers

[15–18]. The masked spectrogram modeling principle

and architecture design similar to Audio Masked Auto-

encoder (MAE) [16–18] is believed to have contributed

to the representation learning potential of SpecMaskGIT.

Unlike prior art about finetuning MAE-like architectures

for BWE [18,19], SpecMaskGIT enables BWE in a zero-

shot manner.

We hope this efficient, effective and flexible framework

paves the way to the exploration of masked audio mod-

eling toward further diverse scenarios [20]. 1

2. RELATED WORKS

Synthesizing audio signals in raw waveform is challeng-

ing and computationally demanding [21]. Therefore, the

mainstream approach to audio synthesis is to first generate

audio in a compressed latent space, and then restore wave-

forms from latent representations. Auto-regressive mod-

els such as Jukebox [22], AudioGen [6] and MusicGen

[23] use vector-quantized (VQ) variational auto-encoders

(VAE) [24] to tokenize raw waveforms into a discrete la-

tent space. While AudioGen and MusicGen use a higher

compression rate than Jukebox, 500 iterations are required

to synthesize a 10-second clip, slowing generation down.

Advances in audio representation learning such as Au-

dio MAE ( [16–18]) indicate that Mel-spectrogram is an ef-

fective compression of raw audio signals, as it emphasizes

acoustic features of sound events while maintaining suf-

ficient details to reconstruct raw waveforms. Inspired by

the above success of representation learning, several meth-

ods used discrete [2] or continuous [3,4,9,13,14] diffusion

1 Demo: https://zzaudio.github.io/SpecMaskGIT

VQGAN
DEC

VQGAN
ENC

Loss

= Trainable

Figure 3. SpecVQGAN encodes/decodes non-overlapping

16-by-16 time-mel patches into/from discrete tokens.

models upon the latent Mel-spectrogram space created by

a VAE or SpecVQGAN [25]. These diffusion models re-

quire up to 200 iterations for high-fidelity synthesis, which

is still challenging for low-resource platforms and inter-

active use cases. While distilling a diffusion model can

effectively reduce the required iterations [26–28], we limit

our discussion to non-distilled methods for a fair compari-

son. For Mel-based synthesis methods, waveforms are re-

constructed from Mel-spectrogram with a neural vocoder,

such as HiFiGAN [29] or BigVSAN [30].

In pursuit of higher synthesis efficiency, VampNet [11]

and the concurrent MAGNeT [12] adopted the parallel

iterative synthesis strategy from MaskGIT [10]. Origi-

nally proposed for class-conditional image synthesis tasks,

MaskGIT uses a Transformer with bi-directional atten-

tion - instead of the uni-directional counterpart of auto-

regressive methods - to reduce the required number of it-

erations. Although VampNet and MAGNeT reduced the

number of iterations compared to their auto-regressive

counterparts, VampNet does not support text prompts,

while MAGNeT takes 180 iterations, which is even heav-

ier than some diffusion models that only require 100 it-

erations [4, 9, 13, 14]. Moreover, it is difficult for methods

built upon wave-domain latent spaces to address frequency

domain tasks such as BWE, limiting their applications.

3. SPECMASKGIT

The efficiency, effectiveness and flexibility of Spec-

MaskGIT is due to a combination of efforts, including

among other, the high compression rate in the tokenizer,

the small model size, and the fast synthesis algorithm.

3.1 Spectrogram Tokenizer and Vocoder

A modified SpecVQGAN [25] is trained to tokenize non-

overlapping 16-by-16 time-mel patches into discrete to-

kens, and recover the tokens back to Mel-spectrogram

as in Fig. 3. Reconstructed Mel-spectrograms are then

transformed to waveforms by a pre-trained vocoder. On

top of the 3.2× compression offered by the wave-to-mel

transform in our configuration, SpecVQGAN further of-

fers 256× compression of the spectrogram, resulting in a

total of over 800× compression of the raw waveform, ef-

fectively reducing the number of tokens to synthesize.

We utilize the standard Mel transform widely used in

vocoders [29–32] for optimal Mel computation, as hyper-

parameters of Mel transform have an impact on tokeniz-

ers’ performance [9]. To stabilize the training, we keep the

spectrogram normalization in the original SpecVQGAN,

which clips Mel bins lower than -80 dB or louder than

20 dB, and then maps the spectrogram into the [-1.0, 1.0]

range. Our modified SpecVQGAN is shown competitive

in reconstruction quality in Sec. 5.1.
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Figure 4. Self-supervised training of SpecMaskGIT. The

Transformer is trained to reconstruct SpecVQGAN token

sequences - randomly masked with varying ratios - uncon-

ditionally via a learned mask token ("M"); or conditioned

on a semantic token from the CLAP encoder ("C").

3.2 Masked Generative Modeling of Spectrograms

We train a masked generative Transformer upon the dis-

crete latent space of the pretrained SpecVQGAN as in Fig.

4. First, the pretrained CLAP encoder [33] maps the in-

put audio to a semantic embedding aligned with its corre-

sponding text descriptions. Meanwhile, the input audio is

tokenized by SpecVQGAN. Finally, similar to representa-

tion learning such as Audio MAE [16–18], a bi-directional

Transformer is trained to reconstruct Mel-spectrogram to-

ken sequences from a randomly masked input.

There are two major differences from Audio MAE.

First, the masking ratio is not a fixed value but sampled

on-the-fly from a truncated Gaussian distribution that is

centered at 55% [34] and ranges from 0% to 100% [10].

As a result, although in each training step SpecMaskGIT

behaves similarly to Audio MAE, it learns the training

data distribution from various masking ratios, hence gain-

ing the ability to iteratively refine audio tokens by grad-

ually decreasing the masking ratio across multiple itera-

tions, which is explained in Sec. 3.4. Second, while Audio

MAE works on raw Mel-spectrogram, optimizing the mask

reconstruction by mean square error; SpecMaskGIT works

in a discrete latent space, which means the reconstruction

of a masked position evolves to retrieval of the correct code

from the SpecVQGAN codebook, i.e., a multi-class single-

label classification procedure. Therefore, the loss function

becomes the cross entropy (CE) loss with label smoothing

equal to 0.1. Following Audio MAE, visible positions in

the input are not considered in the loss calculation:

Loss = CE(prediction[mask], label[mask]). (1)

3.3 Text Conditioning via Sequential Modeling

Similarly to [4], we train SpecMaskGIT without audio-text

pairs by using a pretrained CLAP model [33], for which

audio and text embeddings are aligned in a shared latent

space. Leveraging such alignment, after training with the

audio branch of CLAP (see Fig. 4), we can directly con-

dition our pretrained model with the text branch as shown

in Fig. 5. We use a publicly available CLAP checkpoint

(“630k-audioset-best.pt” [33]) for better reproducibility.

Although the above design is inspired by AudioLDM

[4], SpecMaskGIT is different in the way CLAP embed-

dings are injected. Besides the FiLM mechanism ( [35])

used in AudioLDM, prior works inject text conditions via

cross-attention [2, 3, 9, 13, 14], even for methods based

on sequential modeling such as AudioGen [6] and MAG-

NeT [12], which inevitably involves efforts to modify basic

DNN modules. We believe that reusing modules, such as

the Vision Transformer (ViT) [36], across different tasks

is beneficial for efficient development, so we choose to

achieve text-conditional audio synthesis by pure sequen-

tial modeling, i.e., prepending the CLAP embedding to

the input sequence to the Transformer. Note that the

CLAP embedding is mapped to the same dimension as

the Transformer by a linear layer in advance. As a re-

sult, SpecMaskGIT can be implemented with the same

ViT used in Audio MAE [16–18], thus we view Spec-

MaskGIT as a generative extension to previous discrimina-

tive masked spectrogram modeling methods. We hypothe-

size the masked modeling and ViT implementation similar

to Audio MAE has contributed to the representation learn-

ing potential of SpecMaskGIT, as is shown in Sec. 5.2.

While the common practice in [10, 16–18] is to use a

learnable but input-independent token to indicate which

parts in the sequence are masked (“M” in Fig. 4), the mask

reconstruction task is challenging as the input-independent

mask offers no hint for a better reconstruction. To further

guide the mask reconstruction procedure, we propose to di-

rectly use the input-dependent CLAP embedding as a con-

ditional mask (“C” in Fig. 4), which offers semantic hints

like “a dog barking sound” to the model, and is found ben-

eficial to TTA performance in Sec. 5.1.

3.4 Iterative Synthesis with Classifier-free Guidance

We follow the parallel iterative synthesis strategy pro-

posed in MaskGIT [10] in general, but additionally employ

classifier-free guidance (CFG) [37] to improve the synthe-

sis quality. This iterative algorithm allows SpecMaskGIT

to synthesize multiple high-quality tokens at each iteration,

reducing the number of iterations to a value one order of

magnitude smaller than previous TTA methods.

To enable CFG, we replace the CLAP embedding with

the learned mask token on a random 10% of training steps.

At inference phase, both the conditional (ℓc) and uncondi-

tional (ℓu) logits for each masked token are computed. The

final logits ℓg are made by a linear combination of the two

logits based on t, the guidance scale:

ℓg = ℓu + t(ℓc − ℓu). (2)

Intuitively, CFG balances between diversity and audio-text

alignment. Inspired by [38], we introduce a linear sched-

uler to the guidance scale t, which linearly increases t from

0.0 to an assigned value through the synthesis iterations.

This allows the result of early iterations to be more diverse

(unconditional) with low guidance, but increases the influ-

ence of the conditioning for late iterations, and is proved

beneficial to synthesis quality in Sec. 5.1.

The parallel iterative synthesis of SpecMaskGIT shown

in Fig. 5 is explained as follows:

1. Estimating. For each masked position, the Transformer

estimates the probability of each code in the SpecVQGAN

codebook to be the correct one, i.e., the categorical distri-

bution in the SpecVQGAN latent space.
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Figure 5. The iterative text-to-audio synthesis in SpecMaskGIT.
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Figure 6. Zero-shot time inpainting and bandwidth extension for general audio data via SpecMaskGIT.

2. Unmasking. Given the categorical distribution over the

codebook for each masked position, a code is randomly

sampled. This step is different from the deterministic un-

masking in Audio MAE.

3. Scheduling. Although SpecMaskGIT can unmask all

positions at once, the quality of the synthesized audio is

low. To iteratively refine the synthesis, we need to re-mask

the result to a masking ratio that is lower than the current

iteration. We follow the common practice in [10–12,34] to

use a cosine scheduler to decide the masking ratio at each

iteration. The cosine scheduler re-masks a larger portion

of the synthesized tokens for early iterations, which is in-

tuitive as the quality in earlier iterations is lower.

4. Top-k sampling. Given the masking ratio for the next

iteration, we know k tokens are going to be re-masked.

The log-likelihood of unmasked tokens is used to decide

the k worst tokens. Since it is observed that a deterministic

top-k retrieval leads to the synthesis of monotonous images

in [39], we follow [11, 34] and add Gumbel noise to the

log-likelihood, making the top-k sampling stochastic:

confidence = log(p) + tgumbel · ngumbel, (3)

where p is the probability of each unmasked token calcu-

lated from the CFG logits in Eq. 2, ngumbel is the Gum-

bel noise, and tgumbel is the noise temperature. Follow-

ing [34], we linearly anneal tgumbel by a coefficient defined

as iter/num_iter, with “iter” index of the current iteration

and “num_iter” the total number of scheduled iterations.

5. Repeating. Repeat all steps until the cosine scheduler

reduces the masking ratio to 0.

For TTA, SpecMaskGIT starts the above iterative proce-

dure from a fully masked sequence as in Fig. 5. Neverthe-

less, the iterative algorithm is also valid when the masking

ratio of an input sequence is lower than 100%, which au-

tomatically enables zero-shot inpainting in both time and

frequency domain as is shown in Fig. 6. It is worth notic-

ing that since VampNet [11] and MAGNeT [12] employ

a wave-domain tokenizer, frequency inpainting or band-

width extension (BWE) are difficult.

4. EXPERIMENTS

We pretrained the SpecVQGAN [25] and two vocoders

(HiFiGAN [29] & BigVSAN [32]) on AudioSet (AS) un-

balanced and balanced subset [40] for 1.5M steps. The AS

we collected contains around 1.8 million 10-second audio

segments of diverse sound sources and recording environ-

ments. AS has been widely used in general audio repre-

sentation learning [16–18]. We followed the “VGGSound”

configuration in the original SpecVQGAN repository [25]

without using LPAPS loss as suggested in the repository

itself. Our SpecVQGAN has around 75M parameters, and

a codebook of 1024 codes, each of which is represented by

a 256-dim embedding. As mentioned in Sec. 3.1, the stan-

dard Mel-spectrogram transform from vocoders [29, 30] is

utilized, which transforms a 10-second audio clip at sam-

pling rate 22.05kHz into 848 frames with 80 Mel bins. The

Mel-spectrogram is further tokenized into 265 tokens.

SpecMaskGIT employs the ViT implementation widely

used in previous audio masked Transformers [15, 16, 18,

41]. To be consistent with the image MaskGIT [10], 24

Transformer blocks are used, in which the attention dimen-

sion is 768 with 8 heads and the feedforward dimension is

3072, resulting in around 170M parameters. We trained

SpecMaskGIT on AS for 500k steps with a batch size of

112. When training the model on AudioCaps (AC) [42],

we train for 250k steps with a batch size of 48, as AC

only contains 50k 10-second audio clips. To stably train

SpecMaskGIT, we follow the common practice in [16–18]

to employ a linear warmup and then a cosine annealing

of the learning rate (LR). We warmup 16k steps for AS

and 5k steps for AC. The base LR is set to 1e-3, and the

LR equates to the base LR times the batch size divided by

256 [17, 34]. The iterative synthesis algorithm is based on

the open-source implementation of [34].

To evaluate the TTA synthesis quality of Spec-

MaskGIT, we benchmark on the AudioCaps (AC) test set

with the text prompts released by [4] for fair comparison.

To investigate the flexibility of SpecMaskGIT in down-

stream tasks, we use the checkpoint trained on AS for 500k

steps in the following tasks: Zero-shot time inpainting.

We manually mask out the 25th to 35th Mel-spec frames

(around 1.9s) of AC test set, and employ SpecMaskGIT

to inpaint the lost regions in a zero-shot manner, i.e., no

task-specific finetuning. Zero-shot audio bandwidth ex-

tension. The top 16 Mel-spec bins (i.e., components be-

yond 4.3kHz) of AC test set are masked, which creates
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Table 1. Comparing SpecMaskGIT with other discrete

TTA methods on AudioCaps test set.

Method Params Text Num_iter FAD

Diffsound [2] 400M Yes 100 7.8

MAGNeT-small [12] 300M Yes 180 3.2

AudioGen-base [6] 285M Yes 500 3.1

AudioGen-large [6] 1.5B Yes 500 1.8

SpecMaskGIT (ours)

170M No 16

2.7

- w HiFiGAN 2.8

- w/o conditional mask 3.2

- w/o CFG 3.1

- w/o CFG linear scheduler 3.1

a 2.5× BWE task. For all tasks above, we compute the

Fréchet Audio Distance (FAD) using [43] since FAD is

widely adopted to evaluate TTA [4, 9, 13, 14], time in-

painting [4] and BWE [44] tasks. To investigate the rep-

resentation learning potential of SpecMaskGIT, we further

linear probe the model for the multi-label (genre, instru-

ment and mood) music tagging task in MagnaTagATune

(MTAT) [45] - a dataset widely used to evaluate music tag-

ging models [46–49] - with ROC-AUC and mAP as met-

rics [46]. We use a single linear layer with batch normal-

ization and 0.1 dropout as the probe.

5. RESULTS

5.1 Text-to-audio Synthesis

We report FAD scores of SpecMaskGIT in Tab. 1 to-

gether with other discrete models. Our model is first

trained on AS for 500k steps and then finetuned on AC

train set for 250k steps. The CFG scale is set to 3.0

empirically. SpecMaskGIT outperforms Diffsound (VQ-

Diffusion), MAGNeT-small (similar to SpecMaskGIT but

in latent wave domain), as well as AudioGen-base (auto-

regressive) in terms of FAD with one order of magnitude

fewer iterations. The FAD score is achieved training with-

out any audio-text pairs, which proves the effectiveness of

such self-supervised approach for discrete models. We also

find the proposed conditional mask described in Sec. 3.3 to

improve FAD score without additional parameters or com-

putations. Both CFG and its linear scheduler contribute to

improve the FAD.

Given the small number of iterations and model size,

SpecMaskGIT can synthesize realistic 10-second audio

clips in real-time with only 4 cores of a Xeon CPU (Fig. 2),

or 30× faster than real-time on an RTX-A6000 GPU,

making it attractive for interactive applications and low-

resource environments.

When compared to state-of-the-art (SOTA) continu-

ous diffusion models in Tab. 2, SpecMaskGIT could not

achieve a comparable FAD score, but we emphasize that

the proposed method offers good performance with high

efficiency, i.e., smaller model size and fewer iterations,

which can be clearly seen in Fig. 1. Overall, continuous

methods are advantageous in terms of FAD with respect to

discrete methods. We leave the further improvement of our

discrete generative model as future work.

Ablation study: Gumbel noise and iterations number.

We use HiFiGAN in all ablation studies. As mentioned

in Sec. 3.4, Gumbel noise is essential to the top-k sam-

Table 2. Benchmarking on AudioCaps test set. Dis.: dis-

crete methods. Con.: continuous methods.
Method Params Dis. Con. Num_iter FAD

Diffsound [2] 400M ! 100 7.8

Make-an-Audio [3] 330M ! 100 4.6

MAGNeT-small [12] 300M ! 180 3.2

AudioGen-base [6] 285M ! 500 3.1

AudioLDM-Medium-full-FT [4] 420M ! 100 2.6

AudioLDM-Large-full-FT [4] 740M ! 200 2.0

Make-an-Audio 2 [9] 940M ! 100 1.8

AudioGen-large [6] 1.5B ! 500 1.8

AudioLDM2-Small-AC [14] 350M ! 200 1.7

TANGO-AC [13] 870M ! 100 1.6

AudioLDM2-Large-AC [14] 710M ! 200 1.4

SpecMaskGIT (ours) 170M ! 16 2.7

pling during iterative synthesis. Fig. 7 shows that a tem-

perature of 1.5 is optimal. SpecMaskGIT achieves good

quality (FAD = 3.4) with only 8 iterations, and reaches its

best (FAD = 2.8) with 16. More iterations do not improve

performance, which is consistent with MaskGIT [10].
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Figure 7. Left: FAD vs. Gumbel temperature. Right: FAD

vs. Number of iterations.

Ablation study: Audio reconstruction quality. We

evaluate the reconstruction FAD (rFAD) scores of two

vocoders and SpecVQGAN in Tab. 3 with previous meth-

ods reported in [9]. Even with a similar architecture,

rFAD of DiffSound and SpecMaskGIT can vary a lot due

to different Mel computation and vocoder. Our pipeline

achieves SOTA level rFAD scores for Mel-spectrogram

methods while maintaining the highest compression rate

(i.e., the lowest latent rate) which helped SpecMaskGIT

to outperform methods such as Diffsound and Make-an-

audio by a large margin, yet with higher efficiency. We fur-

ther analyze the rFAD of vocoders using ground truth input

Mel-spectrograms, and find a significant performance gap

between HiFiGAN and BigVSAN, which is not observed

when vocoders are combined with SpecVQGAN. This in-

dicates that SpecVQGAN is the bottleneck for reconstruc-

tion quality and asks for future improvements.

Ablation study: Bias in AudioCaps benchmark. The

dataset gap between AC and other larger, more diverse

datasets is investigated. It is observed in [4] that finetun-

ing (FT) a TTA model on AC improves the TTA perfor-

Table 3. rFAD of Mel-spectrogram VAEs and Vocoders on

AudioCaps test set. Bold: best overall rFAD.

Method Mel-spec VAE Vocoder Latent rate rFAD

Diffsound [2] SpecVQGAN MelGAN 27Hz 6.2

Make-an-audio [3] VAE-GAN HiFiGAN 78Hz 6.0

AudioLDM [4] VAE-GAN HiFiGAN 410Hz 1.2

Make-an-audio 2 [9] VAE-GAN BigVGAN 31Hz 1.0

SpecMaskGIT (ours)

-
HiFiGAN 27Hz

0.4

SpecVQGAN 1.1

-
BigVSAN 27Hz

0.1

SpecVQGAN 1.0
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Table 4. Music tagging performance on MTAT.

Method CLMR [47] MusiCNN [48] MERT-330M [46] MULE-contrastive [49] Jukebox [22, 50] SpecMaskGIT

mAP (%) 36.1 38.3 40.2 40.4 41.4 40.5

ROC-AUC (%) 89.4 90.6 91.3 91.4 91.5 91.5

Table 5. AC test set performance w/ or w/out AC finetune.

Method Params Num_iter
FAD

before FT after FT

AudioLDM-Small-full [4] 180M 200 4.9 2.3

AudioLDM-Large-full [4] 740M 200 4.2 2.0

SpecMaskGIT (ours) 170M 16 4.2 2.8

Table 6. Small-scale AudioCaps training results in better

scores than large-scale dataset.

Method Params Num_iter
FAD

Other datasets AudioCaps

AudioLDM-Small [4] 180M 200 4.9 2.4

AudioLDM-Large [4] 740M 200 4.2 2.1

AudioLDM2-Small [14] 350M 200 2.1 1.7

AudioLDM2-Large [14] 710M 200 1.9 1.4

SpecMaskGIT (ours) 170M 16 4.2 2.9

mance in terms of FAD, though the model is pretrained

on a larger dataset. We reproduced this phenomenon with

SpecMaskGIT as shown in Tab. 5. We also observed that

training on the small-scale AC alone brought better FAD

score than the model trained with larger datasets in Tab. 6,

which is consistent with [13, 14].

We hypothesize that there is a data distribution gap be-

tween AC and other datasets, such that when a model fully

fits other datasets, the distribution of its synthesis deviates

from AC, resulting in worse FAD. Therefore, we continued

to train SpecMaskGIT on AS until 800k steps, and depict

the “FAD vs. training step” curves on both the valid and

test set of AC to verify our hypothesis. It is clear in Fig. 8

that SpecMaskGIT learns to synthesize audio in the early

stage and keeps improving the FAD on AC. As the training

goes on, SpecMaskGIT just fits toward AS, which worsens

the FAD on AC.
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Figure 8. FAD vs. AudioSet training steps.

Inspired by audio classification tasks in which early stop

is applied to prevent the model from overfitting to the train

set, we propose to apply early stop to the SpecMaskGIT

model trained solely on AS, and report the competitive

FAD score with other methods that are without AC fine-

tuning or AC-alone training in Tab. 7. We believe that

a more comprehensive and less biased benchmark would

contribute to future advances in TTA research.

5.2 Downstream Inpainting, BWE and Tagging Tasks

Results of the time inpainting and audio BWE tasks are

shown in Tab. 8. We utilize the pipeline in Fig. 6 un-

conditionally, with Gumbel temperature 1.5 and 16 iter-

ations. SpecMaskGIT significantly improves the input sig-

nals in terms of FAD, validating its zero-shot ability in

Table 7. Benchmarking on AudioCaps test set without AC

finetuning or AC-alone training.
Method Params Dis. Con. Num_iter FAD

Diffsound [2] 400M ! 100 7.8

AudioLDM-Small-full [4] 180M ! 200 4.9

Make-an-Audio [3] 330M ! 100 4.6

AudioLDM-Large-full [4] 740M ! 200 4.2

MAGNeT-small [12] 300M ! 180 3.2

AudioGen-base [6] 285M ! 500 3.1

AudioLDM2-Small-full [14] 350M ! 200 2.1

AudioLDM2-Large-full [14] 710M ! 200 1.9

Make-an-Audio 2 [9] 940M ! 100 1.8

AudioGen-large [6] 1.5B ! 500 1.8

SpecMaskGIT-AS-EarlyStop (ours) 170M ! 16 2.9

Table 8. Zero-shot time inpainting and BWE FAD scores.

BWE Time inpaint

Unprocessed 2.7 1.6

SpecMaskGIT (ours) 1.5 1.2

- w/ LFR 0.4 -

Ground truth 0.0 0.0

such tasks. BWE performance can be further improved

by applying low-frequency replacement (LFR) [51, 52].

Unlike prior arts that finetune MAE-like architectures for

BWE [18, 19], SpecMaskGIT achieves it zero-shot. In

Tab. 4, the potential of SpecMaskGIT in representation

learning is confirmed by the music tagging performance

on the MTAT dataset. As a TTA model, SpecMaskGIT out-

performs classification-specialized models such as CLMR,

MusiCNN, MULE, and MERT (the MAE-like model in

wave domain). SpecMaskGIT achieves an ROC-AUC

comparable to Jukebox, which contains 5B parameters.

We hypothesize the tagging capability comes from the

masked spectrogram modeling and ViT implementation

similar to Audio MAE, as explained in Sec. 3. We leave

the in-depth investigation of SpecMaskGIT in downstream

tasks as future work.

6. CONCLUSION

Generative models that iteratively synthesize audio clips

sparked great success to text-to-audio synthesis (TTA).

However, due to the hundreds of iterations required for in-

ference and the large amount of model parameters, high-

quality TTA systems remain inefficient. To address the

challenges, we propose SpecMaskGIT, a light-weight, effi-

cient yet effective TTA model based on masked generative

modeling of spectrograms. SpecMaskGIT synthesizes re-

alistic audio clips in less than 16 iterations, an order of

magnitude less than previous iterative TTA methods. It

also outperforms larger discrete models in a TTA bench-

mark, while being real-time with 4 CPU cores and 30×

faster with a GPU. Compared to similar methods, Spec-

MaskGIT is more flexible for downstream tasks such as

zero-shot bandwidth extension. Moreover, we interpret

SpecMaskGIT as a generative extension to Audio MAE

and shed light on its audio representation learning poten-

tial. We hope our work inspires the exploration of masked

audio modeling toward further diverse scenarios.
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7. ETHICAL STATEMENT

SpecMaskGIT is supposed to assist creators in the sound

design and editing workflow. Our method presents a huge

advancement in the efficiency of TTA technology, which

makes TTA accessible to a broader range of users, includ-

ing creators who do not have GPUs. Despite of the tech-

nical advances, there is concern for the potential reflec-

tion of training data biases. The model may not be able to

maintain a consistent sound quality or audio-text alignment

when prompted by text descriptions or audio clips that are

rarely presented in the training data. We also pointed out

that the benchmark widely used to evalute TTA models

in the research community is biased, and hope our find-

ings here can contribute to a less biased benchmark in the

future. The challenge in dataset bias emphasizes the im-

portance for in-depth consideration and collaboration with

stakeholders across various communities.
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ABSTRACT

Audio-based generative models for music have seen great

strides recently, but so far have not managed to produce

full-length music tracks with coherent musical structure

from text prompts. We show that by training a generative

model on long temporal contexts it is possible to produce

long-form music of up to 4m 45s. Our model consists of a

diffusion-transformer operating on a highly downsampled

continuous latent representation (latent rate of 21.5 Hz).

It obtains state-of-the-art generations according to met-

rics on audio quality and prompt alignment, and subjective

tests reveal that it produces full-length music with coherent

structure.

1. INTRODUCTION

Generation of musical audio using deep learning has been

a very active area of research in the last decade. Initially,

efforts were primarily directed towards the unconditional

generation of musical audio [1, 2]. Subsequently, attention

shifted towards conditioning models directly on musical

metadata [3]. Recent work has focused on adding natural

language control via text conditioning [4–7], and then im-

proving these architectures in terms of computational com-

plexity [8–11], quality [12–15] or controlability [16–19].

Existing text-conditioned models have generally been

trained on relatively short segments of music, commonly

of 10-30s in length [4–7] but in some cases up to 90s [14].

These segments are usually cropped from longer compo-

sitions. Although it is possible to generate longer pieces

using (e.g., autoregressive [8]) models trained from short

segments of music, the resulting music shows only local

coherence and does not address long-term musical struc-

ture (see Table 4, MusicGen-large-stereo results). Further-

more, the analysis of a dataset of metadata from 600k pop-

ular music tracks 1 (Figure 1) confirms that the majority of

songs are much longer than the lengths addressed by pre-

vious works. Therefore, if we want to produce a model

1 www.kaggle.com/yamaerenay/spotify-tracks-dataset-19222021

© Z. Evans, J. D. Parker, CJ Carr, Z. Zukowski, J. Taylor
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national License (CC BY 4.0). Attribution: Z. Evans, J. D. Parker,

CJ Carr, Z. Zukowski, J. Taylor and J. Pons, “Long-form music gener-

ation with latent diffusion”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.
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Figure 1: Cumulative histogram showing the proportion

of music that is less than a particular length, for a rep-

resentative sample of popular music1. Dotted lines: pro-

portion associated with the max generation length of our

model (285s) and of previous models (90s). The vertical

axis is warped with a power law for greater readability.

that can understand and produce natural musical structure,

it is likely necessary to train and generate on a longer time

window. We identify 285s (4m 45s) as a target length, as it

is short enough to be within reach of current deep learning

architectures, can fit into the VRAM of modern GPUs, and

covers a high percentage of popular music.

In previous works [4, 20] it has been hypothesized that

“semantic tokens enable long-term structural coherence,

while modeling the acoustic tokens conditioned on the

semantic tokens enables high-quality audio synthesis” [20].

Semantic tokens are time-varying embeddings derived

from text embeddings, aiming to capture the overall

characteristics and evolution of music at a high level. This

intermediate representation is practical because it operates

at low temporal resolution. Semantic tokens are then

employed to predict acoustic embeddings, which are later

utilized for waveform reconstruction. 2 Semantic tokens

are commonly used in autoregressive modeling to provide

guidance on what and when to stop generating [4, 20].

Another line of work [14] implicitly assumes that con-

ditioning on semantic tokens is unnecessary for long-form

music structure to emerge. Instead, it assumes that struc-

ture can emerge by training end-to-end without semantic

tokens. This involves generating the entire music piece at

once (full-context generation), rather than generating audio

autoregressively guided by semantic tokens [4, 20]. This

approach has the potential to simplify the pipeline from

four stages2 to three (text→text-embedding→acoustic-

token→waveform) or even one (text→waveform). While

the single-stage approach represents the closest approxi-

2 [4, 20] are typically conformed by four stages (denoted here as →):
text→text-embedding→semantic-token→acoustic-token→waveform.
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mation to end-to-end learning, its may be challenging to

implement due to the VRAM limitations of current GPUs.

Our model consists of three stages able to generate an en-

tire music piece of 4m 45s at once without semantic tokens.

Most music generation works rely on autoencoders to

condense the long waveforms into compact latent repre-

sentations (acoustic tokens or embeddings). Prominent

examples utilize residual-vector-quantizers to provide dis-

crete acoustic tokens [21–23] for autoregressive or masked

token modeling [8–10, 16]. Another prominent line of

work focuses on variational autoencoders to provide a con-

tinuous and normalized acoustic embedding [5, 7, 12, 14]

for latent diffusion modelling. Our work relies on latent

diffusion modeling to generate music from text prompts.

Yet, and differently from prior works operating with latent

rates of 40Hz to 150Hz [14,23,24], our autoencoder relies

on a highly downsampled latent operating at 21.5Hz (Ta-

ble 5). We argue that maintaining perceptual quality at low

latent rates can be essential for training generative models

on long temporal contexts, enabling the creation of long-

form music without the need to rely on semantic tokens.

In our work we scale a generative model to operate over

the 285s (4m 45s) time interval. This is achieved by using

a highly compressed continuous latent, and a generative

model relying on latent diffusion (Sections 2 and 3). The

resulting model obtains state-of-the-art results in terms of

audio quality and text-prompt coherence (Section 4.1), and

is also capable of generating long-form music with coher-

ent structure (Sections 4.2 and 4.4) in 13s on a GPU.

Code to reproduce our model 3 and demos 4 are online.

2. LATENT DIFFUSION ARCHITECTURE

Our model generates variable-length (up to 4m 45s) stereo

music at 44.1kHz from text prompts. It comprises three

main components: an autoencoder that compresses wave-

forms into a manageable sequence length, a contrastive

text-audio embedding model based on CLAP [25, 26] for

text conditioning, and a transformer-based diffusion model

that operates in the latent space of the autoencoder. Check

their exact parametrizations online in our code repository.3

2.1 Autoencoder

We employ an autoencoder structure that operates on raw

waveforms (Figure 3). The encoder section processes these

waveforms by a series of convolutional blocks, each of

which performs downsampling and channel expansion via

strided convolutions. Before each downsampling block,

we employ a series of ResNet-like layers using dilated

convolutions and Snake [27] activation functions for fur-

ther processing. All convolutions are parameterized in a

weight-normalised form. The decoder is almost identical

to the encoder structure, but employs transposed strided

convolutions for upsampling and channel contraction at the

start of each upsampling block. The encoder and decoder

structures are similar to that of DAC [23], but with the ad-

dition of a trainable β parameter in the Snake activation,

which controls the magnitude of the periodicity in the acti-

vation. We also remove the tanh() activation used in DAC

at the output of the decoder, as we found it introduced har-

monic distortion into the signal. The bottleneck of the au-

toencoder is parameterized as a variational autoencoder.

We train it using a variety of objectives. First, the recon-

struction loss, consisting of a perceptually weighted multi-

resolution STFT [28] that deals with stereo audio as fol-

lows: the STFT loss is applied to the mid-side (M/S) rep-

resentation of the stereo audio, as well as the left and right

(L/R) channels separately. The L/R component is weighted

by 0.5 compared to the M/S one, and exists to mitigate po-

tential ambiguity around L/R placement. Second, an ad-

versarial loss term with feature matching, utilizing 5 con-

3 https://github.com/Stability-AI/stable-audio-tools/
4 https://stability-ai.github.io/stable-audio-2-demo/
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DiT AE CLAP Total

Parameters 1.1B 157M 125M 1.3B

Table 1: Number of learnable parameters of our models.

volutional discriminators [22] with hyperparameters con-

sistent with previous work [14], but with channel count

scaled to give ≈4 times the parameter count. And third,

the KL divergence loss term that is weighted by ×10−4.

2.2 Diffusion-transformer (DiT)

Instead of the widely used convolutional U-Net struc-

ture [5–7, 12], we employ a diffusion-transformer (DiT).

This approach has seen notable success in other modal-

ities [29], and has recently been applied to musical au-

dio [30]. The used transformer (Figure 2) follows a stan-

dard structure with stacked blocks consisting of serially

connected attention layers and gated multi-layer percep-

trons (MLPs), with skip connections around each. We em-

ploy layer normalization at the input to both the attention

layer and the MLP. The key and query inputs to the atten-

tion layer have rotary positional embedding [31] applied to

the lower half of the embedding. Each transformer block

also contains a cross-attention layer to incorporate condi-

tioning. Linear mappings are used at the input and out-

put of the transformer to translate from the autoencoder

latent dimension to the embedding dimension of the trans-

former. We utilize efficient block-wise attention [32] and

gradient checkpointing [33] to reduce the computational

and memory impact of applying a transformer architecture

over longer sequences. These techniques are crucial to vi-

able training of model with this context length.

The DiT is conditioned by 3 signals: text enabling natu-

ral language control, timing enabling variable-length gen-

eration, and timestep signaling the current timestep of the

diffusion process. Text CLAP embeddings are included

via cross-attention. Timing conditioning [3, 14] is calcu-

lated using sinusoidal embeddings [34] and also included

via cross-attention. Timing conditioning is also prepended

before the transformer, along with a sinusoidal embedding

describing the current timestep of the diffusion process.

2.3 Variable-length music generation

Given that the nature of long-form music entails varying

lengths, our model also allows for variable-length music

generation. We achieve this by generating content within a

specified window length (e.g., 3m 10s or 4m 45s) and rely-

ing on the timing condition to fill the signal up to the length

specified by the user. The model is trained to fill the rest

of the signal with silence. To present variable-length audio

outputs shorter than the window length to end-users, one

can easily trim the appended silence. We adopt this strat-

egy, as it has shown its effectiveness in previous work [14].

2.4 CLAP text encoder

We rely on a contrastive model trained from text-audio

pairs, following the structure of CLAP [26]. It consists

of a HTSAT-based [35] audio encoder with fusion and

a RoBERTa-based [36] text encoder, both trained from

scratch on our dataset with a language-audio contrastive

loss. Following previous work [14], we use as text features

the next-to-last hidden layer of the CLAP text encoder.

3. TRAINING SETUP

Training the model is a multi-stage process and was con-

ducted on a cluster of NVIDIA A100 GPUs. Firstly, the

autoencoder and CLAP model are trained. The CLAP

model required approximately 3k GPU hours 5 and the au-

toencoder 16k GPU hours4. Secondly, the diffusion model

is trained. To reach our target length of 4m 45s, we first

pre-train the model for 70k GPU hours4 on sequences cor-

responding to a maximum of 3m 10s of music. We then

take the resulting model and fine-tune it on sequences of

up to 4m 45s for a further 15k GPU hours4. Hence, the dif-

fusion model is first pre-trained to generate 3m 10s music

(referred to as the pre-trained model), and then fine-tuned

to generate 4m 45s music (the fully-trained model).

All models are trained with the AdamW optimiser, with

a base learning rate of 1e − 5 and a scheduler including

exponential ramp-up and decay. We maintain an exponen-

tial moving average of the weights for improved inference.

Weight decay, with a coefficient of 0.001, is also used. Pa-

rameter counts for the networks are given in Table 1, and

the exact hyperparameters we used are detailed online3.

The DiT is trained to predict a noise increment from

noised ground-truth latents, following the v-objective [37].

We sample from our model using DPM-Solver++ [38] (100

steps), with classifier-free guidance [39] (scale of 7.0).

3.1 Training data and prompt preparation

Our dataset consists of 806,284 files (19,500h) containing

music (66% or 94%) 6 , sound effects (25% or 5%)5, and

instrument stems (9% or 1%)5. This audio is paired with

text metadata that includes natural-language descriptions

of the audio file’s contents, as well as metadata such as

BPM, genre, moods, and instruments for music tracks. All

of our dataset (audio and metadata) is available online 7

for consultation. This data is used to train all three compo-

nents of the system from scratch: the CLAP text encoder,

the autoencoder and the DiT. The 285s (4m 45s) target tem-

poral context encompasses over 90% of the dataset.

During the training of the CLAP text encoder and the

DiT, we generate text prompts from the metadata by con-

catenating a random subset of the metadata as a string.

This allows for specific properties to be specified dur-

ing inference, while not requiring these properties to be

present at all times. For half of the samples, we include

the metadata-type (e.g., Instruments or Moods) and join

them with a delimiting character (e.g., Instruments: Guitar,

Drums, Bass Guitar|Moods: Uplifting, Energetic). For the

other half, we do not include the metadata-type and join the

5 GPU hours represent one hour of computation on a single GPU. The
training process was distributed across multiple GPUs for efficency.

6 Percentages: number of files or GBs of content, respectively.
7 https://www.audiosparx.com/

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

431



properties with a comma (e.g., Guitar, Drums, Bass Gui-

tar, Uplifting, Energetic). For metadata-types with a list of

values, we shuffle the list. Hence, we perform a variety of

random transformations of the resulting string, including

two variants of delimiting character (“,” and “|”), shuffling

orders and transforming between upper and lower case.

4. EXPERIMENTS

4.1 Quantitative evaluation

We evaluate a corpus of generated music using previously

established metrics [14], as implemented in stable-audio-

metrics. 8 Those include the Fréchet distance on OpenL3

embeddings [40], KL-divergence on PaSST tags [41], and

distance in LAION-CLAP space [26, 42] 9 .

We set MusicGen-large-stereo (MusicGen) [8] as base-

line, since it is the only publicly available model able to

generate music at this length in stereo. This autoregressive

model can generate long-form music of variable length due

to its sequential (one-sample-at-a-time generation) sam-

pling. However, note that MusicGen is not conditioned

on semantic tokens that ensure long-term structural coher-

ence, and it was not trained to generate such long contexts.

The prompts and ground-truth audio used for the quan-

titative study are from the Song Describer Dataset [43].

We select this benchmark, with 2m long music, because

other benchmarks contain shorter music segments [4] and

are inappropriate for long-form music evaluation. As vo-

cal generation is not our focus and MusicGen is not trained

for this task either, we opted to ensure a fair evaluation

against MusicGen by curating a subset of 586 prompts that

exclude vocals. 10 This subset, referred to as the Song De-

scriber Dataset (no-singing), serves as our benchmark for

comparison. We assess 2m generations to remain consis-

tent with the ground-truth and also evaluate our models at

their maximum generation length—which is 3m 10s for the

pre-trained model or 4m 45s for the fully-trained one (Ta-

bles 2 and 3, respectively). For each model and length we

study, we generate one render per prompt in our bench-

mark. This results in 586 generations per experiment.

Our model is first pre-trained to generate 3m 10s music

(pre-trained model) and then fine-tuned to generate 4m 45s

music (fully-trained model). Tables 2 and 3 show the

quantitative results for both models and inference times.

Comparing metrics between the pre-trained model and the

fully-trained one shows no degradation, confirming the vi-

ability of extending context length via this mechanism.

The proposed model scores better than MusicGen at all

lengths while being significantly faster.

4.2 Qualitative evaluation

We evaluate the corpus of generated music qualitatively,

with a listening test developed with webMUSHRA [44].

8 https://github.com/Stability-AI/stable-audio-metrics
9 https://github.com/LAION-AI/CLAP

10 Prompts containing any of those words were removed: speech,
speech synthesizer, hubbub, babble, singing, male, man, female, woman,
child, kid, synthetic singing, choir, chant, mantra, rapping, humming,
groan, grunt, vocal, vocalist, singer, voice, and acapella.

Mixed in with our generated music are generations from

MusicGen and also ground-truth samples from the Song

Describer Dataset (no-singing). Generations of our fully-

trained model are included at both 4m 45s and 2m long,

whilst ground-truth is only available at 2m. We selected

two samples from each use case that were competitive for

both models. For MusicGen it was difficult to find coher-

ently structured music, possibly because it is not trained

for long-form music generation. For our model, we found

some outstanding generations that we selected for the test.

Test material is available on our demo page.

Test subjects were asked to rate examples on a number

of qualities including audio quality, text alignment, musi-

cal structure, musicality, and stereo correctness. We re-

port mean opinion scores (MOS) in the following scale:

bad (1), poor (2), fair (3), good (4), excellent (5). We ob-

served that assessing stereo correctness posed a significant

challenge for many users. To address this, we streamlined

the evaluation by seeking for a binary response, correct or

not, and report percentages of stereo correctness. All 26

test subjects used studio monitors or headphones, and self-

identified as music producers or music researchers. In or-

der to reduce test time and maximise subject engagement,

we split the test into two parts. Each participant can choose

one of the parts, or both, depending on their available time.

Results in Table 4 indicate that the generations from our

system are comparable to the ground-truth in most aspects,

and superior to the existing baseline. Our model obtains

good (4) MOS scores across the board and stereo correct-

ness scores higher than 95%, except for 2m long gener-

ations where its musical structure is fair (3). Differently

from our quantitative results in Table 3, qualitative met-

rics show that 2m long generations are slightly worse than

the 4m 45s generations (specially musical structure). We

hypothesize that this could be due to the relative scarcity

of full-structured music at this length in our dataset, since

most music at this length might be repetitive loops. These

results confirm that semantic tokens are not strictly essen-

tial for generating music with structure, as it can emerge

through training with long contexts. Note, however, that

the temporal context must be sufficiently long to obtain

structured music generation. It was not until we scaled to

longer temporal contexts (4m 45s), that we observed mu-

sic with good strcuture, reflecting the inherent nature of

the data. It is also noteworthy that the perceptual evalu-

ation of structure yields to a wide diversity of responses,

as indicated by the high standard deviations in Table 4.

This highlights the challenge of evaluating subjective mu-

sical aspects. Finally, MusicGen achieves a stereo correct-

ness rate of approximately 60%. This may be attributed

to its tendency to generate mixes where instruments typi-

cally panned in the center (such as bass or kick) are instead

panned to one side, creating an unnaturally wide mix that

was identified as incorrect by the music producers and re-

searchers participating in our test.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

432



output inference

channels/sr length FDopenl3 ↓ KLpasst ↓ CLAPscore ↑ time

MusicGen-large-stereo [8] 2/32kHz 2m 204.03 0.49 0.28 6m 38s

Ours (pre-trained) 2/44.1kHz 2m† 78.70 0.36 0.39 8s

MusicGen-large-stereo [8] 2/32kHz 3m 10s 213.76 0.50 0.28 9m 32s

Ours (pre-trained) 2/44.1kHz 3m 10s 89.33 0.34 0.39 8s

Table 2: Song Describer Dataset (no-singing subset): results of the 3m 10s pre-trained model. †Our pre-trained model

generates 3m 10s outputs, but during inference it can generate 2m outputs by relying on the timing conditioning. We trim

audios to 2m (discarding the end silent part) for a fair quantitative evaluation against the state-of-the-art (see Section 2.3).

output inference

channels/sr length FDopenl3 ↓ KLpasst ↓ CLAPscore ↑ time

MusicGen-large-stereo [8] 2/32kHz 2m 204.03 0.49 0.28 6m 38s

Ours (fully-trained) 2/44.1kHz 2m† 79.09 0.35 0.40 13s

MusicGen-large-stereo [8] 2/32kHz 4m 45s 218.02 0.50 0.27 12m 53s

Ours (fully-trained) 2/44.1kHz 4m 45s 81.96 0.34 0.39 13s

Table 3: Song Describer Dataset (no-singing subset): results of the 4m 45s fully-trained model. †Our fully-trained model

generates 4m 45s outputs, but during inference it can generate 2m outputs by relying on the timing conditioning. We trim

audios to 2m (discarding the end silent part) for a fair quantitative evaluation against the state-of-the-art (see Section 2.3).

Results with the fully-trained model: 2m long 4m 45s long

Stable MusicGen- ground Stable MusicGen-

Audio 2 large-stereo truth Audio 2 large-stereo

Audio Quality 4.0±0.6 2.8±0.8 4.6±0.4 4.5±0.4 2.8±0.8

Text Alignment 4.3±0.7 3.1±0.8 4.6±0.5 4.6±0.4 2.9±1.0

Structure 3.5±1.3 2.4±0.7 4.3±0.8 4.0±1.0 2.1±0.7

Musicality 4.0±0.8 2.7±0.9 4.6±0.5 4.3±0.7 2.6±0.7

Stereo correctness 96% 61% 96% 100% 57%

Table 4: Qualitative results. Top: mean opinion score ± standard deviation. Bottom: percentages.

sampling STFT MEL latent latent

rate distance ↓ distance ↓ SI-SDR ↑ rate (channels)

DAC [23] 44.1kHz 0.96 0.52 10.83 86 Hz discrete

AudioGen [24] 48kHz 1.17 0.64 9.27 50 Hz discrete

Encodec [8, 22] 32kHz 1.82 1.12 5.33 50 Hz discrete

AudioGen [24] 48kHz 1.10 0.64 8.82 100 Hz continuous (32)

Stable Audio [14] 44.1kHz 1.19 0.67 8.62 43 Hz continuous (64)

Ours 44.1kHz 1.19 0.71 7.14 21.5 Hz continuous (64)

Table 5: Autoencoder reconstructions on the Song Describer Dataset (all the dataset). Although different autoencoders

operate at various sampling rates, the evaluations are run at 44.1kHz bandwidth for a fair comparison. Sorted by latent rate.

4.3 Autoencoder evaluation

We evaluate the audio reconstruction quality of our autoen-

coder in isolation, as it provides a quality ceiling for our

system. We achieve this by comparing ground-truth and re-

constructed audio via a number of established audio qual-

ity metrics [22, 23]: STFT distance, MEL distance and SI-

SDR (as in AuraLoss library [28], with its default param-

eters). The reconstructed audio is obtained by encoding-

decoding the ground-truth audio from the Song Describer

Dataset (all the dataset, 706 tracks) through the autoen-

coder. As a comparison, we calculate the same metrics

on a number of publicly available neural audio codecs in-

cluding Encodec [22], DAC [23] and AudioGen [24]. En-

codec and DAC are selected because are widely used for

generative music modeling [4, 8, 10]. We select the En-

codec 32kHz variant because our MusicGen baseline re-

lies on it, and DAC 44.1kHz because its alternatives oper-

ate at 24kHz and 16kHz. Further, since our autoencoder

relies on a continuous latent, we also compare against Au-

dioGen, a state-of-the-art autoencoder with a continuous

latent. Notably, AudioGen presents both continuous and

discrete options, and we report both for completeness. All

neural audio codecs are stereo, except DAC 44.1kHz and

Encodec 32 kHz. In those cases, we independently project

left and right channels and reconstruct from those.
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The results in Table 5 show that the proposed autoen-

coder is comparable or marginally worse in raw recon-

struction quality with respect to the other available base-

lines, whilst targeting a significantly larger amount (2x-

5x) of temporal downsampling, and hence a lower latent

rate. Our results are not strictly comparable against dis-

crete neural audio codecs, but are included as a reference.

For a qualitative assessment of our autoencoder’s recon-

struction quality, listen to some examples on our demo site.

4.4 Musical structure analysis

We explore the plausibility of the generated structures by

visualizing the binary self-similarity matrices (SSMs) [45]

of randomly chosen generated music against real music of

the same genre. Real music is from the Free Music Archive

(FMA) [46]. Similarly to real music, our model’s genera-

tions can build structure with intricate shifts, including rep-

etition of motives that were introduced at the first section.

Red marks in Figure 4 show late sections that are similar

to early sections. In MusicGen examples, early sections

rarely repeat (e.g., see diagonal lines in Figure 4c) or music

gets stuck in a middle/ending section loop (repetitive/loop

sections are marked in blue in Figure 4). Note that our

model’s middle sections can also be repetitive, while still

maintaining an intro/outro. We omit MusicGen’s second

row because most of its SSMs exhibit a similar behaviour.

(a) SSMs of real music.

(b) SSMs of our model’s generations.

(c) SSMs of MusicGen-large-stereo generations.

Figure 4: Each column shows the SSMs of different gen-

res (left to right): rock, pop, jazz, hip-hop, and classical.

4.5 Memorization analysis

Recent works [47,48] examined the potential of generative

models to memorize training data, especially for repeated

elements in the training set. Further, musicLM [4] con-

ducted a memorization analysis to address concerns on the

potential misappropriation of creative content. Adhering to

principles of responsible model development, we also run

a comprehensive study on memorization [4, 47, 48].

Considering the increased probability of memorizing

repeated music within the dataset, we start by studying if

our training set contains repeated data. We embed all our

training data using the LAION-CLAP8 audio encoder to

select audios that are close in this space based on a man-

ually set threshold. The threshold is set such that the se-

lected audios correspond to exact replicas. With this pro-

cess, we identify 5566 repeated audios in our training set.

We compare our model’s generations against the train-

ing set in LAION-CLAP8 space. Generations are from

5566 prompts within the repeated training data (in-

distribution), and 586 prompts from the Song Describer

Dataset (no-singing, out-of-distribution). We then iden-

tify the top-50 generated music that is closest to the train-

ing data and listen. We extensively listened to potential

memorization candidates, and could not find memoriza-

tion. We even selected additional outstanding generations,

and could not find memorization. The most interesting

memorization candidates, together with their closest train-

ing data, are online for listening on our demo page.

4.6 Additional creative capabilities

Besides text-conditioned long-form music generation, our

model exhibits capabilities in other applications. While we

do not conduct a thorough evaluation of these, we briefly

describe those and showcase examples on our demo page.

Audio-to-audio — With diffusion models is possible to

perform some degree of style-transfer by initializing the

noise with audio during sampling [15, 49]. This capability

can be used to modify the aesthetics of an existing record-

ing based on a given text prompt, whilst maintaining the

reference audio’s structure (e.g., a beatbox recording could

be style-transfered to produce realistic-sounding drums).

As a result, our model can be influenced by not only text

prompts but also audio inputs, enhancing its controllabil-

ity and expressiveness. We noted that when initialized

with voice recordings (such as beatbox or onomatopoeias),

there is a sensation of control akin to an instrument. Ex-

amples of audio-to-audio are on our demo page.

Vocal music — The training dataset contains a subset of

music with vocals. Our focus is on the generation of instru-

mental music, so we do not provide any conditioning based

on lyrics. As a result, when the model is prompted for vo-

cals, the model’s generations contains vocal-like melodies

without intelligible words. Whilst not a substitute for in-

telligible vocals, these sounds have an artistic and textural

value of their own. Examples are given on our demo page.

Short-form audio generation — The training set does

not exclusively contain long-form music. It also contains

shorter sounds like sound effects or instrument samples.

As a consequence, our model is also capable of producing

such sounds when prompted appropriately. Examples of

short-form audio generations are also on our demo page.
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5. CONCLUSIONS

We presented an approach to building a text-conditioned

music generation model, operating at long enough context

lengths to encompass full musical tracks. To achieve this

we train an autoencoder which compresses significantly

more in the temporal dimension than previous work. We

model full musical tracks represented in the latent space

of this autoencoder via a diffusion approach, utilizing a

diffusion-transformer. We evaluate the trained model via

qualitative and quantitative tests, and show that it is able to

produce coherent music with state-of-the-art results over

the target temporal context of 4m 45s.

6. ETHICS STATEMENT

Our technology represents an advancement towards aiding

humans in music production tasks, facilitating the creation

of variable-length, long-form stereo music based on tex-

tual input. This advancement greatly enhances the creative

repertoire available to artists and content creators. How-

ever, despite its numerous advantages, it also brings in-

herent risks. A key concern lies in the potential reflection

of biases inherent in the training data. Additionally, the

nuanced context embedded within music emphasizes the

necessity for careful consideration and collaboration with

stakeholders. In light of these concerns, we are dedicated

to ongoing research and collaboration with those stake-

holders, including artists and data providers, to navigate

this new terrain responsibly. Adhering to best practices in

responsible model development, we conducted an exhaus-

tive study on memorization. Employing our methodology,

we found no instances of memorization.
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ABSTRACT

We introduce Composer’s Assistant 2, a system for inter-

active human-computer composition in the REAPER digi-

tal audio workstation. Our work upgrades the Composer’s

Assistant system (which performs multi-track infilling of

symbolic music at the track-measure level) with a wide

range of new controls to give users fine-grained control

over the system’s outputs. Controls introduced in this work

include two types of rhythmic conditioning controls, hor-

izontal and vertical note onset density controls, several

types of pitch controls, and a rhythmic interest control. We

train a T5-like transformer model to implement these con-

trols and to serve as the backbone of our system. With

these controls, we achieve a dramatic improvement in ob-

jective metrics over the original system. We also study

how well our model understands the meaning of our con-

trols, and we conduct a listening study that does not find a

significant difference between real music and music com-

posed in a co-creative fashion with our system. We release

our complete system, consisting of source code, pretrained

models, and REAPER scripts.

1. INTRODUCTION

Composers using generative systems to help them create

music desire the ability to steer the systems towards out-

puts reflective of their style and intent [1]. A study of

the challenges that composers faced in the 2020 AI Song

Writing Contest found that the systems used in that con-

test were not easily steerable, and called for new systems

and interfaces that are more decomposable, steerable, and

adaptive [2]. A 2023 user study of the MMM [3, 4] multi-

track MIDI infilling model, integrated into a digital au-

dio workstation (DAW) with an interface containing only a

temperature parameter, found that users desired additional

steering control over the outputs of the model [5]. An-

other multi-track MIDI infilling model, Composer’s As-

sistant [6], was adopted by a team of composers to help

recreate the lost music of the opera Andromeda [7]. Those

composers expressed difficulty using the model to create

melodies that fit the lyrics they already had, since lyrics

© M. E. Malandro. Licensed under a Creative Commons

Attribution 4.0 International License (CC BY 4.0). Attribution: M. E.

Malandro, “Composer’s Assistant 2: Interactive Multi-Track MIDI Infill-

ing with Fine-Grained User Control”, in Proc. of the 25th Int. Society for

Music Information Retrieval Conf., San Francisco, United States, 2024.

Figure 1. A 4-measure prompt in REAPER, followed by a

model output. Users place empty MIDI items in REAPER

to tell the model in which measures to write notes, and

track names to tell the model what instrument is on each

track. A track-measure in the prompt is boxed.

tend to have a natural rhythm to them and that model does

not offer rhythmic control over its outputs [8].

Composer’s Assistant (hereafter, “CA”) is a DAW-

integrated multi-track MIDI infilling model. The multi-

track infilling problem is the following: Given a slice of

measures from a multi-track song, where the notes have

been deleted from some of the track-measures (a track-

measure is a measure within a track), fill in the notes for the

deleted track-measures using the notes that remain as the

context—see Figure 1. A model trained to complete this

task without any further instruction might write parts that

are musically coherent but different from what the user had

in mind. For instance, a composer who generates a guitar

track to accompany a drum track and bass track might re-

ceive a busy, high-pitched solo, a medium-speed, medium-

pitched solo, a strummed rhythmic part, or any number of

other types of outputs that may not match the composer’s

intent for the track. It would be useful for the user to have
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the ability to condition the output on parameters such as

rhythm (or, if a specific rhythm is not provided, horizontal

note density instead), vertical note density, and pitch range.

In this work, we build upon CA to train a new model

that offers a wide range of user controls. This work was

guided by conversations with several composers who have

used CA for co-creative composition, and represents an ef-

fort to remedy perceived shortcomings of that system. New

controls introduced to the CA system in this work include

two types of rhythmic conditioning, horizontal and vertical

density controls, pitch step and leap propensity controls,

several types of pitch range controls, and a rhythmic in-

terest control. We also include a control that instructs the

model not to generate octave-shifted copies of music that

exists in the prompt. All of our controls are designed with

a DAW-integrated interface in mind. We study the power

of our controls via objective metrics, we study the extent to

which the model has learned the meaning of our controls,

and we conduct a listening study to evaluate music created

in a co-creative fashion with our model. We release our

complete, DAW-integrated system and our source code. 1

2. PREVIOUS WORK

A wide range of generative music models predate this

work, including MusicVAE [9], Piano Transformer [10],

Coconet [11], and many others [12–19]. FIGARO [20] ex-

plored symbolic music generation with fine-grained user

control, and Music SketchNet [21] explored single-track

monophonic infilling with pitch and rhythm controls.

Previous DAW-integrated models include DeepBach

[22], the Piano Inpainting Application [23], and Magenta

Studio [24]. Cococo [25] is a DAW-like interface to Co-

conet, supporting 4 tracks and arbitrary user-driven infill-

ing/part rewriting, similar to DeepBach. NONOTO [26] is

a model-agnostic interface for symbolic music infilling.

Prior multi-track infilling models include MMM [3, 4],

MusIAC [27], and CA [6], all of which are transformer

models. The 8-bar web demo of MMM can handle up to

6 tracks, and is limited to a 4/4 time signature. MMM

has two DAW-integrated versions; however, at the time

of this writing they are not publicly available. MusIAC

limits inputs to 3 tracks (melody, bass, and accompani-

ment), 16 bars, and a collection of four time signatures.

CA can handle an arbitrary collection of tracks and time

signatures, provided that the time signatures contain no

more than 8 quarter notes per bar. CA is integrated into

the REAPER DAW, and the underlying model runs locally

on the user’s machine. Each of these models offers its own

set of user controls for infilling: CA offers polyphony con-

trols, MMM offers note density and polyphony controls,

and MusIAC offers five controls including note density.

In most previous works, note density is computed sim-

ply by dividing the number of notes by the number of time

steps. This means that a slow part with many thick chords

can have the same density as a fast monophonic part, mak-

ing it difficult for a user to steer the model towards the de-

1 https://github.com/m-malandro/composers-assistant-REAPER

Figure 2. A prompt with 1D rhythmic conditioning in

REAPER, followed by a model output. Users draw the

rhythms they want in the selected MIDI items, and the

model chooses pitches for these rhythms that fit with the

rest of the prompt. Unselected MIDI items are included in

the prompt to the encoder, and remain unchanged.

sired rhythmic speed with a density control. Additionally,

most prior works have density control sliders (with values

ranging from, e.g., 1–10) whose quantiles were defined by

the training data. While this approach is attractive from a

training perspective, it is difficult to navigate from a user

perspective—e.g., what does a density of 7/10 mean?

In this work, we take a different approach to note

density, first by factoring note density into horizontal

(rhythmic) and vertical densities, and second by adopting

musically meaningful quantiles for these measurements.

We note that MuseMorphose [28] also decomposed note

density into horizontal and vertical densities, albeit with

a different definition of vertical density (in their work,

“polyphony score”) than ours. We also develop a wide

range of additional steering controls, including a user op-

tion for explicit rhythmic control. With this option, the user

can supply rhythms in their model prompts, and the model

chooses only the pitches—see Figure 2. To our knowledge,

the controls we implement in this paper comprise the most

comprehensive and user-friendly set of steering controls

for multi-track MIDI infilling to date.

3. MEASUREMENTS FOR USER CONTROLS

In this section we describe the measurements underlying

the user controls implemented in this work. Recall that

music in MIDI format is time-quantized to a uniform grid

of some number of ticks per quarter note.
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Figure 3. Six examples of rhythmic interest levels. Points

mark note onsets in a 4/4 measure.

3.1 Horizontal Measurements

Horizontal note onset density. We define the horizontal

note onset density of a collection of measures from a track

to be the number of ticks with a note onset divided by the

total number of ticks. In interval notation, we quantize hor-

izontal note onset densities to the following six bins: Less

than half notes; [Half notes, Quarter notes); [Quarter notes,

Eighth notes); [Eighth notes, 16th notes); [16th notes, 4.5

onsets per quarter note); ≥ 4.5 onsets per quarter note.

Rhythmic interest. Given a slice of measures from a

track, let v denote the binary rhythm vector of those mea-

sures. Let v̂ = v − v̄ denote v, re-centered at 0. We com-

pute dot products of v̂ with its nontrivial shifts and record

the highest of their absolute values as a measure of rhyth-

mic uniformity. Rhythmic uniformity is scaled by 1/||v̂||2

and subtracted from 1 to yield rhythmic interest, which we

divide into Low (< 0.14), Medium (≥ 0.14 and < 0.4),

and High (≥ 0.4) bins. These quantiles were hand-selected

by looking at many examples. See Figure 3 for examples.

3.2 Vertical Measurements

Vertical note onset density. We define the vertical note

onset density of a collection of track-measures from a track

to be the number of notes divided by the number of ticks

containing an onset. In interval notation, we quantize verti-

cal note onset densities into the following five bins: 1 note

per onset; (1 note per onset; 2 notes per onset]; (2 notes

per onset, 3 notes per onset]; (3 notes per onset, 4 notes

per onset]; > 4 notes per onset.

Average number of pitch classes per note onset. This

measure is the same as vertical note onset density,

but with pitches replaced with pitch classes. It is

(
∑

t
#pitch classes at t)/#ticks containing an onset. We

use the same bins as vertical note onset density: 1 pitch

class per onset; (1 pitch class per onset, 2 pitch classes per

onset]; (2 pitch classes per onset, 3 pitch classes per onset];

(3 pitch classes per onset, 4 pitch classes per onset]; > 4

pitch classes per onset.

3.3 Pitch Measurements

Pitch step and leap propensity. Given two consecutive

notes, a step is a difference in pitch of 1–2 semitones, while

a leap is a difference of more than 2 semitones. Pitch repe-

titions are neither steps nor leaps. We generalize to chords

as follows: Given a chord C1 followed by a chord C2, de-

fine the chord distance d(C1, C2) to be the average of the

minimum pitch movements needed to get from the notes in

C1 to the notes in C2:

d(C1, C2) =
1

|C1|

∑

n1∈C1

min
n2∈C2

|pitch(n1)− pitch(n2)|.

Going from a chord C1 to a chord C2, we have a repetition

when d(C1, C2) = 0, a step when 0 < d(C1, C2) ≤ 2,

and a leap when d(C1, C2) > 2. Given a slice of measures

from a track containing n chords, we count the number of

steps and leaps and divide by n − 1 to obtain the pitch

step propensity and pitch leap propensity for the slice. We

quantize pitch step and leap propensities into the follow-

ing seven bins: [0, 0.01), [0.01, 0.2), [0.2, 0.4), [0.4, 0.6),
[0.6, 0.8), [0.8, 0.99), [0.99, 1.0].

Note onset chromagrams. When prompted to generate

new tracks to accompany an arrangement already contain-

ing several tracks, we observed that the CA model would

often generate a copy (possibly shifted by some number of

octaves) of one of the tracks in the prompt. While this is

often “correct,” it is not particularly useful for co-creative

composition—if that is what the composer wanted, they

could easily create this themselves. To create a control that

tells the model to write genuinely new parts, for each track-

measure in a song, we record whether that track-measure

has the same note onset chromagram as another track-

measure in its measure. (Given a track-measure T , the

set of ordered pairs {(pitch(n)(mod 12), onset tick(n)) :
n is a note whose onset is in T} is the note onset chroma-

gram of T .)

3.4 Other Measurements

Pitch range. The pitch range of a collection of track mea-

sures is simply a record of their lowest and highest pitch.

Rhythmic information. We define the 1D rhythmic in-

formation of a collection of measures from a track to be

the set of note onset ticks and corresponding note dura-

tions after flattening all notes to the same pitch. If multiple

notes share an onset, we record only the longest of their

durations. The 2D rhythmic information of a collection of

measures from a track is the same, but with the number of

note onsets and number of pitch classes at each onset also

recorded.

4. CONTROLS AND MODEL

We use the MIDI-like token-based language from [6] to

tokenize music. This language supports masking of ar-

bitrary subsets of track-measures from any slice of mea-

sures from a song. We add additional tokens to the lan-

guage to serve as control tokens for the measurements in-

troduced in Section 3. For each of the measurements that

are quantized into bins in Sections 3.1–3.3, for each bin,

we create a separate control token. We also create a con-

trol token to indicate when a track-measure has a different

note onset chromagram from all other track-measures in

its measure—we call this token the different-note-onset-

chromagram (DNOC) token. We also create pitch range
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controls and explicit rhythmic controls. For pitch range

control, we create four control tokens: high (strict), low

(strict), high (loose), and low (loose), and we follow such a

token by a pitch token to indicate the value of the measure-

ment. With strict pitch range controls, which can be sup-

plied on a per-track or per-track-measure basis, the model

is expected to generate at least one pitch at each extreme.

With loose pitch range conditioning, the model is expected

to generate at least one note within 7 semitones of each ex-

treme and not extend beyond the extremes. The idea is that

a user could supply a loose pitch range for, e.g., a vocal

melody, whose bounds are given by the range of the vocal-

ist. For rhythmic conditioning, we create masked pitch to-

kens, which are included with rhythmic tokens (describing

note onset position and note duration) in prompts. For 1D

rhythmic conditioning, we include a single masked pitch

token at each tick containing any number of note onsets.

For 2D rhythmic conditioning, we include masked pitch

tokens describing both the number of note onsets and the

number of pitch classes at each onset.

As in [6], we train a T5-like [29] encoder-decoder trans-

former [30] model. Our main model (which we refer to

as our large model) is 512-dimensional, with 16 encoder

layers and 16 decoder layers. This model has about 3.5×
the number of parameters of the CA model, which is 384-

dimensional, with 10 encoder layers and 10 decoder layers.

To examine the effect of model scaling on performance, we

also train a small model having the same dimension and

number of layers as the CA model. For inference, we use

nucleus sampling [31] with a threshold of p = 0.85.

During training, we mask a random subset of track-

measures from a slice of measures within a song, and we

ask our model to generate the tokens for the masked track-

measures. All unmasked track-measures within the slice

are included in the prompt provided to the encoder. In each

example, we include a random subset of our control tokens

in our prompts. Control tokens operating on the track level

are appended to the prompt, while control tokens operating

on the track-measure level are inserted into the prompt in

place of the masked tokens that the model is asked to gen-

erate. For training, values for control tokens are computed

using only the masked track-measures. For inference, this

allows a user to specify attributes for track-measures to be

filled that differ arbitrarily from the attributes of the un-

masked track-measures in the prompt. During inference in

the DAW, we apply only the control tokens supplied by the

user.

We quantize music to a mixed grid that accommodates

32nd notes and 16th note triplets. This grid has 24 ticks per

quarter note, of which 12 are valid locations for note on-

sets. To train our models, we use the CA training dataset (a

dataset of public-domain and permissively-licensed MIDI

files). As in [32], we take the “e” folder of the Lakh MIDI

dataset (LMD) [33, 34] to be our validation set.

5. EVALUATION

In [6], CA generally outperformed MMM [3, 4] on ob-

jective and subjective measures. However, whether this

Model \ Task Random Track Last-bar

infill infill fill

Note F1 results ↑

CA2 large 77.01a 70.74a 78.34a

CA2 small 76.27b 69.67b 77.24b

CA 52.59c 31.65c 53.74c

Precision ↑

CA2 large 77.15a 70.85a 78.45a

CA2 small 76.39b 69.78b 77.35b

CA 53.02c 33.76c 54.72c

Recall ↑

CA2 large 76.90a 70.64a 78.24a

CA2 small 76.15b 69.58b 77.15b

CA 52.67c 32.22c 53.75c

Pitch class histogram entropy difference ↓

CA2 large 10.78a 14.69a 8.90a

CA2 small 11.28b 15.49b 9.75b

CA 31.65c 50.53c 31.60c

Groove similarity ↑

CA2 large 99.97b 99.97a 99.97a

CA2 small 99.98a 99.97a 99.98a

CA 97.84c 96.01b 97.87b

Table 1. Objective infilling summary statistics. All cells

are percentages of the form means, where s is a letter. Dif-

ferent letters within a metric and column indicate signif-

icant location differences (p < 0.01) in the samples for

those table entries according to a Wilcoxon signed rank

test with Holm-Bonferroni correction.

was due to training approach, training dataset, model size,

and/or other factors is unclear. To make a direct compari-

son between our work and previous work, we adopt CA as

our baseline for comparison on objective metrics.

5.1 Objective Evaluation

We take the “f” folder of the LMD to be our test set. From

each file, we select random 8-measure slices and attempt

to prepare three test examples:

• Random infilling: Each track-measure in the slice is

masked with probability 0.5.

• Track infilling: One track from the slice, containing

note onsets in at least 7 measures, is masked com-

pletely.

• Last-bar infilling: Every track-measure in the last

measure of the slice is masked.

We take 5000 examples of each type of infilling to be

our test set. For each example, we take the masked notes to

be the ground truth, and after evaluating the example with

our models we compute precision and recall as in [6]. The

F1 score for an example is the harmonic mean of its preci-

sion and recall: F1 = (2 · precision · recall)/(precision +
recall). We also compute the pitch class histogram entropy

difference and the groove similarity (as defined in [35]) be-

tween the ground truth and the output for each example.
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We evaluate our test examples with our models, provid-

ing user controls describing the information in the masked

track-measures to the maximum extent possible. In par-

ticular, we provide 2D rhythmic conditioning, pitch step

and leap propensity, pitch range per track-measure, and the

DNOC token (wherever applicable) to our models. Re-

sults are averaged and presented in Table 1. For exam-

ples evaluated by CA, we provide all of the control infor-

mation available to that model—in particular, mono/poly

switches at the track-measure level. We note that supply-

ing rhythmic conditioning and pitch range information for

track-measures containing only one pitch is equivalent to

unmasking those track-measures. Therefore, to make a

fair comparison between our models and CA, we unmask

those track-measures in our prompts to CA and we give

that model “credit” for those track-measures as if it had

generated them itself. (14.46% of the track-measures from

our test set fall into this category.) We see a dramatic in-

crease in performance of our models relative to CA. As

expected, our large model outperforms our small model

(except for groove similarity for the random infilling task),

but the differences in performance between our models are

small. Note that the groove similarity score for our models

is not 100%, indicating that our models sometimes (albeit

rarely) fail to follow exactly the rhythms in their prompts.

Next, we examine the effect of each control introduced

in this paper by repeating our test examples, but with

only limited control information supplied to the model.

For each control introduced in this paper, we examine the

F1 scores obtained by supplying only that control to the

model. We also examine what happens when we supply

a growing collection of controls, roughly in order of how

much effort is required for a user to supply such controls

in practice—specifically, we supply, in order: vertical con-

trols, horizontal controls, our DNOC control, pitch/step

leap controls, pitch range (per track), 1D rhythmic condi-

tioning, 2D rhythmic conditioning, and finally pitch range

(per track-measure). The resulting large table of F1 scores

is omitted, but the primary observation is that pitch range

and rhythmic conditioning controls have the largest pos-

itive effect on the F1 scores of model outputs. Model

size has only a minor effect. Horizontal, vertical, pitch

step/leap propensity, and DNOC controls also have only

minor effects on F1 scores. This raises the questions of

whether the model understands the meaning of these con-

trols and whether these controls are useful for co-creative

composition, which we address in the next two sections.

5.2 Model Understanding of Control Tokens

Our model can generate music from scratch by prompt-

ing it with prompts containing no notes. To examine the

understanding our model has of our control tokens, we

use an empty prompting strategy: We prompt the model

to generate some number of bars of single-track music

from scratch, with no control tokens, and then we repeat

the empty prompt with a single control token added. We

use this approach to examine our horizontal, vertical, pitch

step, pitch leap, and DNOC control tokens. For each con-

Figure 4. Horizontal density distributions.

Figure 5. The observed probability of success for each

control token in our empty prompting test.

trol token we generate 5000 examples, and we examine the

resulting distributions. (For the DNOC control, we use a

1-bar example where a viola and cello play an ostinato one

octave apart, and prompt the model to write a violin part to

accompany them.)

A plot of our horizontal note onset density distributions

is given in Figure 4. Plots of other distributions are similar.

For each control token, we also compare the observed

probability of obtaining an output described by that to-

ken when the token is supplied versus when it is not sup-

plied, finding that all 34 tokens mentioned above indeed

push our model towards outputs having the characteris-

tics they are intended to encode. Probabilities of success

vary, however—see Figure 5. Our DNOC token performs

well, with a success rate of 90.5%, as compared to uncon-

ditioned outputs having a different note onset chromagram

14.2% of the time. Our model has also done a good job

of learning the concepts of horizontal density, high and
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low rhythmic interest, high and low vertical density, mono-

phonic versus polyphonic generation, and high and low

step and leap propensity. However, when supplied with

the appropriate control token, our model has trouble gen-

erating parts with medium rhythmic interest (with a 42%

chance of success, versus 35.2% for unconditioned out-

puts), and with more than 4 pitch classes per onset (with a

8.92% chance of success, versus 0.04% for unconditioned

outputs).

Additionally, our model has not learned the precise

boundaries for our bins. For instance, when asking the

model to generate a part with a horizontal density in the

interval [Quarter notes, Eighth notes), we observed that

our model would often generate a straight eighth note pat-

tern. When allowing for a tolerance of up to one bin away,

though, all of our control tokens have a success rate of over

50%, and 26/34 of them have a success rate of over 80%.

Our model learned the meaning of each of these control

tokens solely via natural training data. In future work, it

may be possible to achieve better control token understand-

ing performance by training on synthetic examples and/or

by changing the boundaries of the bins.

5.3 Subjective Evaluation

We used our model in an iterative, co-creative fashion to

create 12 snippets of music, each about 16 bars long. To

create these snippets, we started with 6 pieces of real music

and deleted one or more tracks in the music. We then used

our model interactively to fill these deleted tracks. Specif-

ically, each time the model generated music, we kept the

generated track-measures we liked, and continued using

the model to fill the remaining track-measures until done.

We carried out this process under two sets of rules:

• CA-: We did not use rhythmic conditioning, and did

not hand-edit the notes in any outputs.

• CA+: We were allowed to use every control avail-

able, including rhythmic conditioning, and we were

allowed to make small hand edits to outputs. This

is the approach closest to how the model would be

used in practice.

In both cases we were allowed as many generations as

we wanted. We recorded the creation of these examples,

which took about 2 hours in total. 2 Volunteers were

asked to score as many of these 18 snippets of music as

they wished, according to perceived Rhythmic correctness,

Pitch correctness, Memorability, and Overall, each on a

scale of 0 to 4. Volunteers were not told which pieces of

music were real and which were composed with our sys-

tem. 28 individuals volunteered and ranked an average of

10.4 snippets along each of our 4 axes. Aggregated results

are presented in Figure 6. Each bar in this figure represents

94–99 data points.

We compare real music to music composed with our

two approaches CA- and CA+ with paired t-tests, using

data from whenever a volunteer ranked both. Each of these

2 https://www.youtube.com/watch?v=WUQTlOEv3WM

Figure 6. Subjective evaluation of our model.

Metric Real

R
CA- 0.693
CA+ 0.887

P
CA- 0.791
CA+ 0.211

Metric Real

M
CA- 0.052
CA+ 0.422

O
CA- 0.039
CA+ 0.099

Table 2. Uncorrected p-values from paired t-tests in our

subjective comparisons.

8 tests involved 93–96 pairs of values. See Table 2. After

Holm-Bonferroni correction, we do not find a significant

(p < 0.05) difference between real music and music com-

posed with either approach in any of these 8 tests. We

know that our model is competent at avoiding rhythmic

and pitch errors, so we are not surprised by our R and P

results. However, we had some difficulty creating a proper

drum part in one example with the CA- approach, and we

expected to find at least one significant M or O difference.

We suspect that there are subjective quality differences, at

least between real music and the music we created with the

CA- approach, that are not large enough for this study to

detect reliably. Nevertheless, we believe that this indicates

that music co-created with our model has the potential to

be on par with human-composed music. We also believe

that results of similar studies would vary greatly depend-

ing on the skill of the composer using the system. We invite

the reader to listen to our samples 3 and to try our system.

6. CONCLUSION

We have introduced a wide range of steering controls for

multi-track MIDI infilling, and we have trained a trans-

former model to implement these controls. We have cre-

ated an interface for our controls, and we have integrated

our model and controls into the REAPER digital audio

workstation for co-creative symbolic music composition.

Our work in this paper comprises Composer’s Assistant

2, and we have released our complete system and source

code. 4

3 https://www.youtube.com/watch?v=4xt9fBqluQg
4 https://github.com/m-malandro/composers-assistant-REAPER
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7. ETHICS STATEMENT

There are currently unresolved ethical and legal questions

regarding the inclusion of copyrighted data in training sets

for generative models. While we suspect it would be pos-

sible to obtain better objective (and possibly subjective)

results by training a model on a larger and more varied

dataset (e.g., the Lakh MIDI dataset [33, 34]), we chose to

train our models only on copyright-free and permissively

licensed files, primarily for the following two reasons:

First, we want our model outputs to be usable by com-

posers. While there is a possibility that our models may

output copyrighted musical information (even if such in-

formation was not present in the training dataset), we be-

lieve that training only on copyright-free and permissively-

licensed musical data minimizes this possibility.

Second, for many composers, we view the models that

we have released not as the models that the composers

would actually use in their work, but rather as starting

points for customization and personalization. Many com-

posers we have spoken to have said that models that write

“generic” music are not useful to them. Instead, they

want generative systems that can suggest ideas in their own

style. Due to our training set, the models we have released

are most proficient at infilling classical, choral, and folk

music. However, informal experiments suggest that our

models can be finetuned on a relatively small number of

MIDI files to write in the style of those files, and hence

the style limitations of our released models may not mat-

ter. The code we have released supports finetuning by end

users. While this can benefit composers who wish to use

our system, there is also the risk that our models may be

finetuned by users to impersonate the styles of others.
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ABSTRACT

Replicating analog device circuits through neural audio ef-

fect modeling has garnered increasing interest in recent

years. Existing work has predominantly focused on a one-

to-one emulation strategy, modeling specific devices indi-

vidually. In this paper, we tackle the less-explored scenario

of one-to-many emulation, utilizing conditioning mecha-

nisms to emulate multiple guitar amplifiers through a sin-

gle neural model. For condition representation, we use

contrastive learning to build a tone embedding encoder that

extracts style-related features of various amplifiers, lever-

aging a dataset of comprehensive amplifier settings. Tar-

geting zero-shot application scenarios, we also examine

various strategies for tone embedding representation, eval-

uating referenced tone embedding against two retrieval-

based embedding methods for amplifiers unseen in the

training time. Our findings showcase the efficacy and po-

tential of the proposed methods in achieving versatile one-

to-many amplifier modeling, contributing a foundational

step towards zero-shot audio modeling applications.

1. INTRODUCTION

Neural audio effect modeling, the task of simulating analog

circuitry and digital audio effects using neural networks,

has garnered significant interest driven by advances in deep

learning [1–9]. Various network architectures have been

proposed for emulating different effect pedals and guitar

amplifiers (amps). Through modeling nonlinearities, har-

monic distortions, and transient responses inherent to ana-

log circuitry, neural models offer an alternative to their

physical counterparts. Such models enable widespread ap-

plications in automatic mixing [10–12], audio style trans-

fer [13,14] and beyond, contributing to new music produc-

tion and sound design workflows.

Real-world audio effect pedals or amplifiers are known

for their rich acoustic diversity, leading to different “tones.”

© Y. H. Chen, Y. T. Yeh, Y. C. Cheng, J. T. Wu, Y. H. Ho,

J. S. R. Jang and Y. H. Yang. Licensed under a Creative Commons Attri-

bution 4.0 International License (CC BY 4.0). Attribution: Y. H. Chen,

Y. T. Yeh, Y. C. Cheng, J. T. Wu, Y. H. Ho, J. S. R. Jang and Y. H. Yang,

“Towards Zero-Shot Amplifier Modeling: One-to-Many Amplifier Mod-

eling via Tone Embedding Control”, in Proc. of the 25th Int. Society for

Music Information Retrieval Conf., San Francisco, United States, 2024.

Figure 1: A one-to-one approach cannot emulate an un-

seen audio effect. In contrast, the proposed one-to-many

approach can achieve zero-shot modeling by using a tone

embedding encoder that turns a reference audio example

of that effect into a conditioning input at inference time.

There are multiple types of pedals (e.g., compression, EQ,

distortion, reverb, modulation), possessing different char-

acteristics. Even pedals of the same effect type can sound

fairly differently due to different implementations. A user

can further adjust the device parameters via tuning the as-

sociated knobs (e.g., a gain knob) to shape the tone. More-

over, it is common to interconnect effect pedals in various

orders and forms to constitute an “effect chain,” collec-

tively creating a unique tone. A guitar amplifier can also be

viewed as an effect chain as there are pre-amp, tone stack,

power amp, and cabinet components arranged in specific

order that vary across brands and underlying circuitries.

The rich diversity of tones represents a central challenge

for neural audio effect modeling.

While exciting progress is being made, to simplify the

task, most prior research has concentrated on the one-to-

one mapping setting, building a neural model for emulat-

ing the behavior of only one device (i.e., a pedal or an amp)

at a time [15, 16]. Some models make further simplifi-

cation and model only a certain parameter setting (a.k.a.,

“snapshot”) of a device and do not take any condition sig-

nals [3,4,6], while others incorporate device parameters as

conditions for a “full” modeling of the device [2, 17].

Little work, if any, has been done to tackle the more

challenging task of building a single universal model that

can emulate multiple devices at once. This is harder as

different devices are built from varying combinations and

configurations of analog circuits, leading to distinct sonic

characteristics. We posit that a transition to such a one-to-

many setting is beneficial. On one hand, it holds the key

towards neural audio effect modeling with broader versatil-

ity, better reflecting the complexity seen in the real world.
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On the other hand, doing so may empower the single model

to learn the similarities and distinctions among different

audio effects, building up a “tone space” that permits inter-

polation and extrapolation of seen tones (i.e., tones made

available to the model during training time) to approximate

an unseen tone or to create a new tone. 1

We are in particular interested in the case of emulat-

ing unseen tones in this paper. Specifically, we envision

a zero-shot scenario where we have a model that can take

a reference audio signal in the style of an unseen tone as

the input condition, and learn to clone the tone on-the-fly

during the inference time, with no (i.e., “zero”) model re-

training. See Figure 1 for an illustration.

In this paper, we set forth to tackle one-to-many neu-

ral modeling of multiple guitar amps by a single model.

Our training data contains pairs of clean (dry) signal and

the corresponding wet signal rendered by an amp, out of

N = 9 possible guitar amps featuring low-gain and high-

gain ones. Instead of buildingN models, one for each amp,

our one-to-many model can take a condition signal indi-

cating the specific amp tone of interest and convert a given

clean signal into the corresponding wet signal at inference

time. The attempt to build such an end-to-end one-to-many

model represents the first contribution of this work.

While a straightforward approach to condition the gen-

eration process is via using a look-up table (LUT) to in-

dicate the target amplifier, the LUT approach cannot deal

with unseen amplifiers. Targeting zero-shot applications,

we use contrastive learning [18] to build a tone embedding

encoder to capture tone- (or style-) related information of

a referenced audio, and then use the resulting tone embed-

ding as the condition for generation, as illustrated in Figure

2. We show via experiments that, for seen guitar amps, the

tone embedding seems information richer than the LUT

embedding, leading to more effective one-to-many model-

ing. Moreover, the tone embedding approach also works

well for zero-shot learning of unseen amps, as we can turn

arbitrary referenced audio of that amp into a condition to

clone its style. In our evaluation, we use not only two ad-

ditional guitar amps not seen during training time, but also

self-recorded audio signals of guitar playing to validate the

model’s effectiveness in real-world conditions. The idea to

realize zero-shot tone transfer in our one-to-many model

stands as the second contribution of our work.

We invite readers to visit our demo website for audio

samples demonstrating the result of our model. 2

2. BACKGROUND

The process of applying effects to an audio signal in the

real world can be described by y = f(x, ϕ), where x ∈
R
C×T denotes the input signal with C channels and T

samples, y ∈ R
C′×T the processed output, and ϕ ∈ R

M

the control signal with M distinct control parameters. The

function f encapsulates the accumulative transformation

1 We note that, the idea of using “devices” to define tones is less appli-
cable in the neighboring automatic mixing tasks [11, 12].

2 https://ss12f32v.github.io/Guitar-Zero-Shot/

Figure 2: Diagram of the audio processing workflow. A

clean signal x is input into the generator G, which uses

the tone embedding from the tone embedding encoder to

produce the wet signal y. The encoder E generates the

tone embedding ϕ by analyzing a reference wet signal z.

exerted by the devices involved in the effect chain connect-

ing the input and the output. Neural audio effect modeling

aims to replicate this implicit function f using either a sin-

gle neural network [4,11] (i.e., the “end-to-end” approach)

or a cascade of modularized networks [10, 14]. The latter

approach is feasible only when the devices involved in the

transformation is known beforehand, not applicable to the

envisioned zero-shot scenario. Therefore, we focus on the

the end-to-end approach in this work.

Common backbone models for end-to-end audio ef-

fect modeling include convolution neural network (CNN)-

based [1, 3, 6, 17], recurrent neural network (RNN)-based

[2, 5], and hybrid models [4, 11]. As mentioned in Sec-

tion 1, existing models mostly model one device at a time,

sometimes even neglecting the control parameters ϕ. For

those models that consider control parameters, a “condi-

tion representation” to represent the control signal and a

“conditioning mechanism” to condition the generation pro-

cess by the control signal is needed.

For the condition representation, the common approach

in the field of neural audio effect modeling is via quantiz-

ing the device parameters and then using a one-hot encod-

ing or look-up table (LUT) to indicate the specific parame-

ter setting of interest. Such ID-based embeddings has also

been used in other one-to-many audio modeling tasks, such

as singing voice conversion (SVC) [19–21]. Importantly,

the LUT embeddings are learned at training time and then

fixed at inference time, thereby failing to accommodate un-

seen conditions. This is not a problem for modeling the

parameters of a device, because there will not be unseen

parameters for a known device. However, it is an issue in

our one-to-many setting, as we are not able to exhaustively

include all the possible devices at training time.

For the conditioning mechanism, a common approach

is via “concatenation,” expanding ϕ over time to get ϕ+ ∈
R
M×T and concatenating it with the input x channel-

wisely, forming a new input x+ ∈ R
(C+M)×T to the

model. Concatenation has been used by both CNN- [1]

and RNN-based models [2]. Another common approach is

via “feature-wise linear modulation” (FiLM) [22], which

has usually been adopted by CNN-based models [7, 17].
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FiLM injects conditions to the model by using ϕ ∈ R
M

as the input to predict different scaling γcl and shifting βcl
coefficients through a few linear (dense) layers, and then

performing element-wise affine transformation of the inter-

mediate feature maps of each layer of the backbone model,

i.e., FiLM(Fcl , γ
c
l , β

c
l ) = γclF

c
l + βcl , for each layer l and

each c-th channel of the corresponding feature map.

Our work differs from the prior work in the following

three aspects. First, we tackle multi-device modeling, con-

ditioning our network by “devices” rather than “parame-

ters” of a single device. Second, we adopt the idea of

content-based embeddings developed in SVC [23–27] to

compute the condition representation instead of the ID-

based embeddings, so as to deal with unseen devices. This

is specifically done via the proposed tone embedding en-

coder, whose details are introduced in Section 3.1. Finally,

we report experiments on zero-shot tone transfer.

3. MULTI-TONE AMPLIFIER MODELING

Our goal is to develop a conditional generator, denoted as

G(x, ϕ), that can replicate the effect of an amplifier’s audio

effect chain f , guided by a tone embedding ϕ. The objec-

tive of the generator G is to produce an output y from the

input x, where x and y are temporally aligned and share

the same musical content, but exhibit different tones (i.e.,

clean tone vs. a target amp tone). In our work, the tone

embedding ϕ is a learnable representation of various tones.

Specifically, as depicted in Figure 2, we employ a tone em-

bedding encoder, denoted as E , to derive the tone embed-

ding ϕ from a reference audio signal z, with ϕ = E(z).
It is important to note that the reference signal z and the

target y must match in tone, but their musical content can

be different. More details on this in Section 3.3.

3.1 Tone Embedding Encoder

Our goal is to train an encoder E that can extract tone- (or

style-) related features from a given wet guitar audio sig-

nal, while neglecting content-related information. Namely,

this entails style/content disentanglement. We propose to

employ the self-supervised contrastive learning framework

of SimCLR [18], which was originally for images [28,29],

to train such an audio encoder. Specifically, our idea is

to treat pairs of audio clips with different playing contents

but the same tone as the “positive” pairs, and otherwise

the “negative” pairs. Any audio clip would go through the

same audio encoder to get an embedding representation of

that clip, and the learning objective of SimCLR is to train

the encoder such that the embeddings of clips from a posi-

tive pair are close to each other, while embeddigns of clips

from a negative pair are separated apart. By virtue of the

way positive and negative data pairs is constructed, the en-

coder learns to project clips of the same tone to similar

places in the embedding space, regardless of the underly-

ing musical content. 3

3 The use of contrastive learning for representation learning has been
widely done in the musical audio domain before, for tasks such as music
classification [30–33] and automatic mixing [12]. What’s different here is
the application of contrastive learning to the domain of guitar amp tones

Figure 3: Diagram of a layer of the generator G, which

uses gated convolutional neural network (GCN) [6] as the

backbone and FiLM [22] for conditioning; hl denotes the

output of the previous layer and hl+1 the current layer.

It is easier to train the encoder if we have a collection of

realistic wet guitar signals featuring different combinations

of contents and tones. Such a dataset, however, is hard to

come by. Guitar signals collected in the wild need to be

transcribed and labeled to get content- and style-related in-

formation. Alternatively, we may use software simulation

to convert a set of clean signals into different wet signals,

but the tones supported by open-source tools such as Ped-

alboard [34, 35] are limited in diversity. Through a joint

work with Positive Grid, a leading guitar amp and effect

modeling company, we have the advantage of accessing

high-quality and diverse data. The training data for the

encoder E is from using a larger number of clean guitar

signals as input to the company’s commercial software to

render wet signals with a great diversity of tones using dif-

ferent combinations of amplifiers and effect pedals.

3.2 Conditional Generator

Paying more attention on the condition representation part

(i.e., ϕ and E), we use existing methods for the model back-

bone and the conditioning mechanism for our conditional

generator G. Specifically, we adapt the gated convolutional

neural network (GCN) [6] as our model backbone, for its

demonstrated efficacy in neural audio effect modeling. For

the conditioning mechanism, we use FiLM [22]. As shown

in Figure 3, each layer of GCN passes the output of the

previous layer hl through a 1D convolution with a progres-

sively increasing dilation factor, followed by sigmoid and

tanh for gated activation. The resulting feature map is then

modulated by the FiLM module, before being processed

by a 1x1 conv1d and then added with the output of the pre-

vious layer with a residual link. The same tone embedding

ϕ is used in all the L layers of GCN, but each layer l has

its own learnable parameters. The outputs from all layers

are finally concatenated and processed through a final 1x1

(which has not been attempted before, to our best knowledge), and the
way we prepare positive/negative pairs for tone representation learning.
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conv1d mixing layer to generate the output signal y. 4

The tone embedding encoder E is trained with a large

set of wet signals rendered with different combinations of

amps and effect pedals, while the generator G is trained

separately with a smaller set of paired data of clean and wet

signals rendered with different amps (not using effect ped-

als). The encoder E is trained beforehand and then fixed

(i.e., parameters frozen) while training the generator G.

The training data of G is also from Positive Grid, con-

taining 30 minutes of clean input data (for x) rendered with

9 different guitar amplifiers (for y). For performance eval-

uation, we divide the clean signals into training, validation,

and test sets with an 80/10/10 ratio. According to the com-

pany’s taxonomy, there are 3 types of amps:

• High-gain tones are perceived as highly distorted. We

have Mesa Boogie Mark IV (amp1), PRS Archon 100

(amp2), and Soldano SLO-100 (amp3).

• Low-gain tones are often recognized as an overdrive

sound. Our data contains Fender Tweed Deluxe (amp4),

Vox AC30 (amp5), and Matchless DC30 (amp6).

• Crunch tones exhibit a mid-range gain level, in between

low- and high-gain. Our data contains Vox AC30 Hand-

wired Overdriven (amp7), Friedman BE100 (amp8), and

Overdriven Marshall JTM45 (amp9).

3.3 Source of the Reference Audio Signal

While training G, for each data pair {x,y}, the encoder E
takes a reference signal z providing information of the tone

of y. Therefore, y and z must match in tone. However,

interestingly, y and z can be different in content.

The naïve paired reference method of simply setting

z = y demands the reference signal and target output, and

accordingly the input x, to play the same content. This

is fine at training time, but is too restrictive and not prac-

tical at inference time, especially for zero-shot scenarios.

Following the idea of using “target-unaligned audio” of a

prior work [8], we instead employ an unpaired reference

method, selecting a signal z at random from the training

set as long as it is rendered with the same amp tone as y.

Besides zero-shot capability, the proposed unpaired ref-

erence method may further encourage style/content disen-

tanglement, because here ϕ only provides information con-

cerning the tone of the target, not its content.

3.4 Zero-shot Tone Transfer

At inference time, the proposed model G holds the poten-

tial to clone the tone of a reference signal z∗ for even un-

seen tones and unseen reference signals, via using E(z∗)
as the condition ϕ∗. This might be feasible as the encoder

E has actually been trained on a great diversity of tones

besides the limited number of N tones used to train G.

4 Unlike [6], we pad zeros at the start of the signal but not in the inter-
mediate feature maps, for otherwise there would be unwanted impulse-
like sounds. This means each layer ends up being shorter in our case. To
keep the output size consistent across layers, we crop the residual part of
each layer following the causal principle.

Besides using ϕ∗ = E(z∗), we consider the following

two retrieval-based alternatives to get ϕ∗, referred to as

“nearest-embedding” and “mean-embedding” respectively.

• ϕ∗ = argmax
ϕ∈Φ

sim(E(z∗), ϕ), where ϕ = E(z) denotes

the embedding for a reference signal seen and sampled

from the training set, sim(·, ·) the cosine similarity be-

tween two vectors, and Φ the collection of embeddings

for such seen reference signals from the training set to be

compared against the query E(z∗). Namely, this method

picks the known reference signal z whose embedding is

closest to that of the unseen reference z∗ as the surro-

gate to condition the generation process. We set the size

of the candidate set |Φ| = 3, 600 in our implementation.

• ϕ∗ = argmax
ϕ∈{ψ1,ψ2 ...,ψN}

sim(E(z∗), ϕ), where ψn stands

for the average of the embeddings associated with the

n-th amp tone (out of the N seen amp tones) from the

aforementioned candidate set Φ. This can be viewed as

an LUT-like approach because we use one mean embed-

ding to represent each amp tone for retrieval.

3.5 Implementation Details

The encoder E is developed by Positive Grid using in-

house data and implementation. It is an audio encoder that

processes mel-spectrograms of guitar signals, trained with

a batch size of 200 short audio clips sampled at 16kHz,

along with data augmentation techniques such as adding

noise and random cropping.

For the generator G, we followed [14] and applied –12

dBFS peak normalization to the training data to balance the

sound levels of different amplifiers and ensure headroom

for distortion. We randomly paired a 3.5-second monaural

clean input sampled at 44.1kHz with an amp output from

the 9 amplifiers as the training examples. We trained the

generator G on an NVIDIA RTX 3090 GPU (with 24 GB

memory), using the Adam optimizer [36] with a learning

rate of 1e–3 and a batch size of 12. While both the in-

put and output of G are time-domain waveforms, we used

complex-valued spectral loss as the training objective, with

an STFT window length of 2,048 and a hop length of 512,

for this loss function led to better result in our pilot study.

For the architecture of G, we configured the GCN with

L = 12 conv1D layers, each with 16 channels, followed

by a final 1x1 conv1d layer combining the outputs of all

the preceding layers to a monaural waveform. For condi-

tioning, we firstly projected each 512-dim tone embedding

produced by E to a 128-dim vector, then applied a series

of 10 linear layers at each GCN layer to predict the scal-

ing and shifting coefficients γcl and βcl for FiLM. The total

number of trainable parameters of G is around 120k, and

the model training of G converged in 1/2 days.

4. EXPERIMENTAL RESULTS

4.1 Tone Embedding Visualization

We examine the tone embedding space of the 9 target amps

first, using t-SNE [37] for dimension reduction and visual-
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GCN FiLM-GCN Concat-GCN

one-to-one LUT ToneEmb (paired) ToneEmb (unpaired) LUT ToneEmb (paired)

Amp1 0.0420 0.1441 0.1189 0.0777 0.1593 0.1523

high-gain Amp2 0.0268 0.1951 0.0670 0.1189 0.1741 0.1208

Amp3 0.0527 0.1659 0.1254 0.1143 0.1777 0.1304

Amp4 0.0087 0.0698 0.0230 0.0275 0.0618 0.0775

low-gain Amp5 0.0004 0.0813 0.0167 0.0138 0.0334 0.0166

Amp6 0.0014 0.0947 0.0169 0.0121 0.0779 0.0275

Amp7 0.0393 0.1022 0.0860 0.0885 0.0733 0.0988

crunch Amp8 0.0124 0.1583 0.0760 0.0604 0.1562 0.0775

Amp9 0.0035 0.1593 0.0375 0.0290 0.1211 0.0407

Table 1: Efficacy of various models in modeling 9 guitar amplifiers, measured in complex STFT loss on the test data.

The leftmost column shows the result of the baseline one-to-one GCN approach, building one model per amp. The others

are one-to-many, building a single model for all the 9 amps, using FiLM (middle three) or concatenation (last two) as the

conditioning mechanism. For conditioning representation, we evaluate LUT and the proposed tone embedding (‘ToneEmb’)

with either paired or unpaired reference (cf. Section 3.3). Best results of one-to-many models are highlighted.

Figure 4: A t-SNE visualization of the tone embeddings

from the wet signals of the N = 9 amps. Each point rep-

resents a tone embedding extracted from a wet signal, with

color and shape indicating the category of the amp tone.

We see 2 big cross-amp clusters and 9 small clusters for

each amp, suggesting the ability of the encoder E to distin-

guish between different tones based on their embeddings.

ization. Figure 4 shows that the embeddings of the wet sig-

nals of the same amp, while differing in musical content,

indeed cluster together in the projected 2-D space, demon-

strating the efficacy of our encoder E in capturing tone-

related information. Moreover, we see two big clusters,

which somehow separate high-gain amps (amps 1–3) from

low-gain amps (amps 4–6). There are also overlaps, sug-

gesting some similarity among the amps. Amp 7 is closer

to high-gain, while amps 8 and 9 closer to low-gain.

4.2 Efficacy of One-to-many Neural Amp Modeling

Next, we evaluate the efficacy of modeling the 9 target

amps, comparing different approaches (one-to-one versus

one-to-many), conditioning mechanisms (FiLM or the sim-

pler concatenation), and condition representation (the pro-

posed tone embedding, ‘ToneEmb’ for short, or LUT). We

implement all models using GCN as the backbone.

Result shown in Table 1 leads to several observations.

From the leftmost column, we see low-gain amps seem

easier to model than crunch amps, while high-gain amps

are the most challenging (i.e., with higher testing losses).

Signals from a high-gain amp are highly-distorted, with

more high-frequency components that may be harder to be

modeled. Similar trends can be seen from other columns.

The middle columns show the result of the one-to-many

GCN with FiLM conditioning (‘FiLM-GCN’). Firstly, we

see the losses are in general higher than those of the one-

to-one non-conditional baseline. This is expected, as we

treat the result of the one-to-one model as a performance

upperbound, for one-to-one modeling is inherently eas-

ier. Among the three variants of FiLM-GCN, ToneEmb

with unpaired reference leads to the best result for most

amps, reducing greatly the performance gap between the

one-to-one approach and the variant with the straightfor-

ward LUT-based conditioning representation. While LUT

only learns N unique embeddings ϕ, one for each amp,

ToneEmb is much more versatile as it computes a unique

embedding for each reference wet signal. It seems that the

ToneEmb embeddings are thereby information richer, ben-

efiting multi-amp modeling.

For ToneEmd, we initially expect that the advantage

of ‘unpaired reference’ over ‘paired reference’ is on zero-

shot learning of unseen amps. For seen amps, paired ref-

erence simply uses the target wet signal y as the refer-

ence signal z, providing direct and potentially stronger

condition signals. To our surprise, while both ‘ToneEmd

(paired)’ and ‘ToneEmd (unpaired)’ greatly outperform the

LUT approach, the unpaired approach slightly outperforms

the paired approach for most amps. This may be due to

the stronger incentive of style/content disentanglement in-

duced by unpaired referencing, as discussed in Section 3.3,

but more empirical studies (which we leave as future work)

are needed to confirm this.
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non-retrieval retrieval-based

(ϕ∗ = E(z∗)) nearest mean

unseen high gain 0.2511 0.2560 0.2593

unseen low gain 0.0338 0.0274 0.0404

Table 2: Efficacy of using different methods for FiLM-

GCN (cf. Section 3.4) for zero-shot modeling of two un-

seen amps, measured again in complex STFT loss.

Finally, Table 1 shows that the ablated version of us-

ing concatenation as the conditioning mechanism leads to

worse results most of the time. We hence use FiLM-GCN

trained with unpaired referencing in experiments below.

4.3 Zero-shot Learning on Unseen Amplifiers

To investigate the potential of the proposed methodology

on zero-shot learning, we create wet signals using two

“unseen” amplifiers—High Gain EL34 V2 (high gain) and

Dumble ODS 50 (low gain)—using the clean signals from

the test set, and use them as the reference signals z∗ for

FiLM-GCN, to see whether it can learn the tones zero-shot.

Namely, both the content and style are unseen at training

time. Here, we evaluate the non-retrieval-based method of

using ϕ∗ = E(z∗) and the two retrieval-based methods in-

troduced in Section 3.4.

Table 2 shows that the non-retrieval-based method

slightly outperforms the other two for the unseen high-gain

amp, while nearest-embedding performs the best for the

unseen low-gain amp. More importantly, comparing the

losses tabulated in Tables 1 and 2, we see that the loss for

the unseen low-gain amp is not greatly larger than the loss

for the seen low-gain amps, only 1–2 times larger. The

loss of the unseen high-gain amp is a bit high, but is only

about 2 times larger than those of the seen high-gain amps.

We take this as a positive indication of the efficacy of the

proposed model in dealing with unseen tones.

Table 2 also shows that mean-embedding performs the

worst, adding support of using more versatile embeddings

for conditioning. In this regard, the non-retrieval-based

method is actually more flexible than nearest-retrieval, as it

can compute the reference embedding ϕ∗ on-the-fly with-

out referring to a pre-computed presumably large collec-

tion of embeddings. Future work can be done to study its

effectiveness with more amps (i.e., larger N ).

4.4 Case Study on Zero-shot Amp Tone Transfer

To further study the zero-shot scenario, we present finally

a case study employing a self-recorded (by one of the au-

thors) guitar solo audio signal with content and tone both

unseen at the training time. This recording was captured

using a Boss GT-1000 effects processor with a default fac-

tory preset based on a high-gain Marshall amplifier setting.

The effect chain included not only this unseen amp but also

an equalizer (EQ) with a high-cut filter at 10kHz.

The visualization of the spectrograms shown in Figure

5 suggests that the generated result possesses characteris-

Figure 5: Spectrograms of the input clean signal, target

wet signal, and the generated result of the proposed one-

to-many FiLM-GCN model, in the zero-shot case study re-

ported in Section 4.4. The orange squares show that our

model still struggles to model high-frequency components.

tics similar to those of the target wet signal, but there are

notable difference in the high-frequency area. Since we do

not consider EQ as a modeling target, our model cannot

produce filter-based effects on the signal, resulting in addi-

tional harmonics in the spectrum. Furthermore, the sustain

of each note is not perfectly reproduced, as the harmon-

ics in the highlighted orange squares are not sequentially

connected compared to the case of the target, indicating a

struggle to model the high-frequency content accurately.

Despite these limitations, our model can still generate

reasonable harmonics according to the input. For the quick

string-bending content around frames 6,000 to 7,000, the

generated harmonics are correctly damped. Our tone em-

bedding encoder recognizes that the tone of the reference

signal is closer to high-gain, empowering the generator

to process the input accordingly. We provide audio sam-

ples in the supplementary material, including a multi-track

recording and a remixed audio created by rendering multi-

ple track separately using our model.

5. CONCLUSION

In this paper, we have presented an end-to-end one-to-

many methodology that uses conditions from a tone em-

bedding encoder to emulate multiple guitar amps through

a single model, providing empirical evidences of its poten-

tial for zero-shot amp modeling. Moving forward, several

avenues for future work emerge. First, for more compre-

hensive audio effect modeling, we can apply our method-

ology with various configurations of audio effect chains.

Second, we can further improve the model’s effectiveness

on one-to-many modeling by incorporating more advanced

architectures and conditioning mechanisms, such as hyper-

network-based conditioning [9, 38]. Finally, for more ef-

fective zero-shot tone transfer, we can train the model on a

wider range of amplifier types, which might also pave the

way for universal amplifier modeling.
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ABSTRACT

Developing a versatile deep neural network to model mu-

sic audio is crucial in MIR. This task is challenging due to

the intricate spectral variations inherent in music signals,

which convey melody, harmonics, and timbres of diverse

instruments. In this paper, we introduce Mel-RoFormer,

a spectrogram-based model featuring two key designs: a

novel Mel-band Projection module at the front-end to en-

hance the model’s capability to capture informative fea-

tures across multiple frequency bands, and interleaved

RoPE Transformers to explicitly model the frequency and

time dimensions as two separate sequences. We apply Mel-

RoFormer to tackle two essential MIR tasks: vocal sepa-

ration and vocal melody transcription, aimed at isolating

singing voices from audio mixtures and transcribing their

lead melodies, respectively. Despite their shared focus on

singing signals, these tasks possess distinct optimization

objectives. Instead of training a unified model, we adopt

a two-step approach. Initially, we train a vocal separation

model, which subsequently serves as a foundation model

for fine-tuning for vocal melody transcription. Through

extensive experiments conducted on benchmark datasets,

we showcase that our models achieve state-of-the-art per-

formance in both vocal separation and melody transcrip-

tion tasks, underscoring the efficacy and versatility of Mel-

RoFormer in modeling complex music audio signals.

1. INTRODUCTION

Modeling musical audio signals with deep neural net-

works (DNNs) for MIR tasks has emerged as a vibrant

and promising area of research [1–5]. Most of such DNN

models are built upon the spectrogram, a fundamental

frequency-time representation of audio signals. Traditional

approaches typically treat the spectrogram as a sequence

of spectra over time, with the frequency axis represent-

ing the feature dimension. However, recent advancements

have encompassed explicit modeling of the frequency di-

mension as a sequence in their architecture designs [5–9],

recognizing its rich semantic information in music audio

© J.-C. Wang, W.-T. Lu, and J. Chen. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: J.-C. Wang, W.-T. Lu, and J. Chen, “Mel-RoFormer for

Vocal Separation and Vocal Melody Transcription”, in Proc. of the 25th

Int. Society for Music Information Retrieval Conf., San Francisco, United

States, 2024.

signals, including melody, harmonics, and instrument tim-

bres. These architectures have showcased state-of-the-art

performance in various MIR tasks such as vocal melody

extraction [5], section segmentation [10], instrument tran-

scription [8], and music source separation [11], leveraging

the model’s ability to discern spectral patterns effectively.

The Transformer architecture [12] has demonstrated re-

markable efficacy not only in Natural Language Processing

but also in various MIR tasks, where it excels at modeling

sequences to predict high-level musical semantics such as

tags, beats, chords, sections, and notes [5, 8–10, 13–15].

However, its potential to accurately predict low-level au-

dio signals remained uncertain. Lu et al. proposed a novel

architecture, called BS-RoFormer [11], to tackle the task

of music source separation (MSS), which aims to separate

audio recordings into musically distinct sources such as vo-

cals, bass, and drums [16, 17]. Inspired by the Band-Split

RNN (BSRNN) model [7], BS-RoFormer adopts the in-

terleaved sequence modeling, treating time and frequency

dimensions as two separate sequences. Notably, it re-

places Recurrent Neural Networks (RNNs) with Trans-

former encoders, demonstrating exceptional performance.

This was evident in its first-place ranking and substan-

tial margin of performance gain over the runner-up in the

Music Separation track of the Sound Demixing Challenge

2023 (SDX’23) [18].

Another key attribute contributing to the success of BS-

RoFormer is the band-split module at the front-end. Tradi-

tional Transformer-based models typically rely on a Con-

volutional Neural Network (CNN) front-end to extract fea-

tures from the spectrogram for the succeeding Transformer

blocks (e.g., [5, 13, 19]). However, CNNs are not inher-

ently designed to model two spectral events that are far

apart in frequency, which could limit the model to charac-

terize detailed spectral patterns. In contrast, the band-split

module divides the frequency dimension into a number of

subbands and employs multi-layer perceptrons (MLPs) to

directly project the raw subband spectrograms into a se-

quence of band-wise features for the succeeding Trans-

former to model it along the frequency axis. From another

perspective, the band-split mechanism can be seen as a set

of learnable band-pass filters, underscoring the importance

of designing an effective band-division scheme.

In this paper, we introduce Mel-RoFormer, which is

a successor of BS-RoFormer with an enhanced band-

division scheme that leverages the Mel-scale [20] to im-

prove the model’s generalization ability. The Mel-scale is
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engineered to mimic the non-linear perception of sound by

the human ear, exhibiting higher discrimination at lower

frequencies and reduced discrimination at higher frequen-

cies. It has a long history as a reference for designing

acoustic features [21] such as MFCC and mel-spectrogram

in audio signal processing. We develop the Mel-band map-

ping based on the Mel-scale, resulting in a band-division

that generates overlapping subbands in frequency. In con-

trast, the band-split scheme in BS-RoFormer is defined em-

pirically and produces non-overlapping subbands.

Mel-RoFormer is applied to address two fundamental

MIR tasks: vocal separation and vocal melody transcrip-

tion, which involve isolating singing voices from audio

mixtures and transcribing their lead melodies, respectively.

Mel-RoFormer demonstrates superior performance com-

pared to BS-RoFormer and other MSS models in experi-

ments. For vocal melody transcription, we propose a two-

step approach instead of training a unified model. We first

pretrain a vocal separation model and then fine-tune it for

vocal melody transcription. The resulting model achieves

state-of-the-art performance across all metrics and exhibits

strong robustness in detecting note offsets, which is con-

sidered to be the most challenging aspect of the task [22].

Readers can refer to the open-sourced implementation 1

and configurations 2 for Mel-RoFormer and its variants.

2. RELATED WORK

To address the capabilities of DNN models that pay atten-

tion to modeling the frequency dimension for MIR tasks,

SpecTNT is one of early successful attempts. Central

to SpecTNT’s architecture is the TNT block, where two

Transformer encoders are strategically arranged to model

along both frequency and time axes. A novel concept intro-

duced by SpecTNT is the Frequency Class Token (FCT),

which serves to bridge of the two Transformers, enabling

the interchangeability of embeddings across both axes

within the TNT block. However, SpecTNT relies on CNNs

at the front-end, and the FCT is obtained through aggregat-

ing features from the frequency sequence, potentially lead-

ing to information loss. Nonetheless, SpecTNT has show-

cased remarkable performance across various MIR tasks

such as beat tracking [14], chord recognition [5], struc-

ture segmentation [10], and vocal melody estimation [5].

Its successor, Perceiver TF [8], is designed to enhance ef-

ficiency while demonstrating outstanding performance in

multitrack instrument/vocal transcription tasks.

Moving on to MSS, a key MIR task that has signif-

icantly benefited from DNNs, approaches typically span

frequency-domain and time-domain methodologies. The

benchmark MUSDB18 dataset [23] offers 4-stem sources

including vocals, bass, drums, and others, adhering to the

definition established by the 2015 Signal Separation Eval-

uation Campaign (SiSEC) [24]. Frequency-domain ap-

proaches rely on spectrogram-based representations as in-

put, leveraging models such as fully connected neural net-

1 https://github.com/lucidrains/BS-RoFormer
2 https://github.com/ZFTurbo/

Music-Source-Separation-Training

works [25], CNNs [26–28], and RNNs [29] to achieve

separation. Conversely, time-domain approaches such as

Wave-U-Net [30], ConvTasNet [31], and Demucs [32]

construct their DNNs directly on waveform inputs. Re-

cently, Hybrid Transformer Demucs (HTDemucs) [33] has

proposed a novel approach, utilizing a cross-domain Trans-

former to amalgamate both frequency- and time-domain

models, showcasing promising potential in this field. How-

ever, none of the mentioned approaches employ Trans-

formers to model the inter-context of frequency and time

as two separate sequences.

The output of vocal melody transcription is a sequence

of non-overlapping notes, each comprising onset and off-

set times along with a pitch key, assuming the melody is

monophonic. Due to limited training data availability, only

a few studies have focused on transcribing note-level out-

puts from polyphonic music audio, underscoring the sig-

nificance of pre-training [34] or semi-supervised [35] tech-

niques. Recently, Wang et al. released a human-annotated

dataset comprising 500 Chinese songs [36], along with a

baseline CNN-based model. Donahue et al. [34] propose

leveraging pre-trained representations from Jukebox [37]

to enhance melody transcription, primarily focusing on

lead instruments such as synthesizers, guitars, piano, and

vocals. They curate a dataset of 50 hours of melody tran-

scriptions sourced from crowdsourced annotations. How-

ever, clarity regarding the quality and identification of

vocal melody annotations within songs remains lacking.

In [35], a teacher-student training scheme is introduced

to leverage pseudo labels derived from fundamental fre-

quency (F0) estimations of vocals. On the other hand, [38]

presents a system that necessitates a vocal separation as a

front-end. In our approach, we employ vocal separation

as a pre-trained model for fine-tuning a specialized model,

which can be more efficient and task-optimal.

3. MODEL

Figure 1 illustrates the diagram of Mel-RoFormer, con-

sisting of three major modules: Mel-band Projection, Ro-

Former blocks, and Embedding Projection. Subsequent

subsections will delve into the Mel-band Projection and

Embedding Projection modules, while readers can find fur-

ther details on the RoFormer blocks in [11], where they are

referred to as “RoPE Transformer blocks.”

Mel-RoFormer takes the input of a complex spectro-

gram X with dimensions (C × F × T ), where C, F ,

and T denote the number of channels, frequency bins, and

time steps, respectively. This frequency-time representa-

tion X is typically obtained via a short-time Fourier trans-

form (STFT), encompassing both real and imaginary parts.

In stereo mode, C is defined as 2 × 2 = 4, reflecting the

presence of two channels for real and imaginary spectro-

grams. The output of Mel-RoFormer is denoted by Y , with

dimensions (Z×T ), where Z and T represent the number

of output features and time steps, respectively. One can

treat Y as the feature matrix over time. Depending on the

downstream tasks, appropriate values for Z can be set, and

Y can be rearranged accordingly, as detailed in Section 4.
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Figure 1. The diagram of Mel-RoFormer, which is consist of three major modules: Mel-band Projection, RoFormer Blocks,

and Embedding Projection. The input is a Complex Spectrogram, and the output is an Embedding tensor, which can be

rearranged into the desired shape.

Figure 2. Illustration of Mel filter-bank with 7 bands. In

this example, the length of frequency bins is 1024. Here,

the frequency bins from 1 to 46 are encompassed by the

0-th Mel-band (i.e. F0), those from 24 to 77 are encom-

passed by the 1-th Mel-band (i.e. F1), and so forth.

3.1 Mel-band Projection Module

The Mel-band Projection module comprises a frequency-

to-Mel-band mapping and a set of K multi-layer percep-

trons (MLPs). Each subband of X is denoted as Xk with

dimensions (C×|Fk|×T ), where Fk ∈ {0, 1, . . . , F −1}
represents the indices of frequency bins for the k-th sub-

band, and F is the length of frequency bins.

The frequency-to-Mel-band mapping, represented as

{Fk}
K−1
k=0 , stems from the Mel filter-bank, as depicted in

Fig. 2, where triangular-shaped filters are centered at dif-

ferent Mel frequencies on the Mel-scale. The indices of

non-zero values of a filter correspond to the frequency bins

of the respective Mel-band. Mathematically, the Mel-scale

follows a quasi-logarithmic function of acoustic frequency,

ensuring that perceptually similar pitch intervals (e.g., oc-

taves) possess equal width across the entire audible range.

The width of a Mel-band (i.e., |Fk|) is twice the distance

between its center and the center of the preceding Mel-

band. Consequently, the latter half of a Mel-band overlaps

with its subsequent Mel-band, and so forth, until reaching

the final Mel-band. In contrast, due to the band-split de-

sign in BS-RoFormer [11], the frequency ranges of differ-

ent subbands do not overlap. The Mel-band Map depicted

in Fig. 1 exemplifies the frequency-to-Mel-band mapping,

illustrating a binary relationship between 1024 frequency

bins and 7 Mel-bands.

The input Xk is rearranged into a shape of (C|Fk|×T )
for the MLP layer. The k-th MLP, denoted as Λk, com-

prises an RMSNorm layer [39] followed by a linear layer.

The linear layer transforms from C|Fk| dimensions to D

dimensions, where D is the number of latent features.

The resulting outputs {Λk(Xk)}
K−1
k=0 are stacked to form

a shape of (D × K × T ), serving as input to the subse-

quent RoFormer blocks. The Mel-band Projection module

can be conceptualized as a learnable Mel filter-bank, with

the MLP layer functioning as the mechanism to learn the

filters. This grants the model greater flexibility in deter-

mining the optimal shapes for different filters, without be-

ing confined to predefined filter designs such as triangle-

shaped ones (see Fig. 2).

3.2 RoFormer Blocks

The RoForMer blocks consist of a stack of L interleaved

RoPE Transformer encoders [40]. The interleaved se-

quence modeling processes the data across time (T ) and

subband (K) dimensions alternately. In BS-RoFormer

[11], the authors observed that Rotary Position Encoding

(RoPE) played a crucial role in enhancing Transformer

performance compared to using traditional absolute posi-

tion encoding. It is suggested that RoPE aids in preserving

the positional information within the sequence, making it

invariant to repetitive processes of rearrangement.

Specifically, the data is first rearranged into a time-

indexed shape of (DK × T ), allowing modeling across

time. Subsequently, it is rearranged into a band-indexed

shape of (DT × K), facilitating modeling across sub-

bands. The former step treats the data as a time sequence,

while the latter treats it as a subband sequence. By repeat-

ing this process, information from different time steps and

subbands becomes interchangeable, thereby enhancing the

model’s ability to generalize.

3.3 Embedding Projection Module

The Embedding Projection module plays a crucial role

in generating suitable embeddings necessary for various

downstream tasks. It has been observed that utilizing

MLPs can lead to more effective mask estimation com-

pared to using plain linear layers in source separation tasks

[41]. Our preliminary investigation also suggests that re-

moving this module can result in unstable training.
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This module comprises K individual MLPs, denoted as

Φk, each containing an RMSNorm layer, a linear layer fol-

lowed by a Tanh activation, and another linear layer fol-

lowed by a gated linear unit (GLU) layer [42]. The first lin-

ear layer transforms from D to 4D dimensions, while the

subsequent linear layer with GLU transforms from 4D to a

desired length Zk. Here, Zk specifies the number of output

features for Φk based on its specific purpose, as elaborated

in Section 4. All the MLP outputs are concatenated along

the feature dimension, resulting in a final output shape of

(Z × T ), where Z =
∑

k Zk.

4. DOWNSTREAM TASKS

This section details the application of Mel-RoFormer tai-

lored for vocal separation and vocal melody transcription.

4.1 Vocal Separation

For vocal separation, the Embedding Projection estimates

the mask for the complex spectrogram. Each MLP Φk is

designed to align its output shape with that of the corre-

sponding input Mel-band complex spectrogram, with Zk

set as C|Fk|. The output Y is rearranged into

[

Φ̂0, Φ̂1, . . . , Φ̂(K−1)

]

, (1)

with dimensions (C × Ẑ × T ), where Φ̂k with a shape of

(|Fk| × T ) is the output corresponding to the k-th Mel-

band, and Ẑ =
∑

k |Fk|. Because adjacent Mel-bands

overlap, the estimated mask values of the overlapping fre-

quency bins are averaged:

M̂ [c, f, t] =
1

Sf

∑

k

Φ̂k[c, f, t], (2)

where M̂ represents the estimated mask, c, f , and t are

the indices of channel, frequency bin, and time step, re-

spectively, and Sf is the count of the overlapping fre-

quency bins. The estimated mask M̂ has the same shape

(C × F × T ) as that of the input X , encompassing both

the real and imaginary parts of the complex spectrogram.

We utilize complex Ideal Ratio Masks (cIRMs) [43] as

our optimization goal for the vocal separation model. The

estimated mask M̂ derived from Embedding Projection

can serve as the cIRMs. The separated complex spectro-

gram Ŷ is obtained by element-wise multiplication of the

cIRM with the input complex spectrogram: Ŷ = M̂ ⊙X .

Subsequently, an inverse STFT (iSTFT) is applied to Ŷ to

reconstruct the separated signal ŷ in the time-domain.

Let ψ denote the target time-domain signal, and Ψ(w,r)

denote the corresponding complex Spectrogram using a

window size w and time-resolution r for STFT. We em-

ploy the mean absolute error (MAE) loss to train the cIRMs

M̂ . Specifically, the objective loss encompasses both the

time-domain MAE and the multi-resolution complex spec-

trogram MAE [44]:

L = ||ψ − ŷ||+
∑

w∈W,r∈R

||Ψ(w,r) − Ŷ (w,r)||, (3)

where the configurations for multi-resolution STFTs cover

5 window sizes with W = {4096, 2048, 1024, 512, 256},

and 2 resolutions with R = {100, 300} frames per second.

4.2 Vocal Melody Transcription

Instead of starting training from scratch, we utilize a pre-

trained vocal separation Mel-RoFormer and fine-tune it

for vocal melody transcription. Given that the Embed-

ding Projection module in the pre-trained vocal separation

model functions as a mask estimator, it might inherently

possess biases towards signal-level semantics. Therefore,

we opt to replace the pre-trained Embedding Projection

with a newly initialized one, with a modification specifi-

cally on the output dimension. To ensure equal contribu-

tion from each Mel-band to the feature dimension, we set a

uniform value of 64 for all Zk’s. The resulting embeddings

take the shape of (64K×T ), with a 64K-dimensional fea-

ture vector for each time step.

We adopt the "onsets and frames" approach [45], em-

ploying two frame-wise predictors: an onset predictor and

a frame predictor, both of which receive embeddings from

Mel-RoFormer. The onset predictor identifies the onset

event of a pitched note, while the frame predictor deter-

mines the continuation of a pitched note. This design fa-

cilitates a post-processing method where the initiation of a

new note is determined only if the onset predictor indicates

the start of a pitch, and simultaneously, the frame predictor

confirms the presence of an onset for that pitch within the

succeeding frames. The onset and frame predictors oper-

ate at a time-resolution of 50 frames per second. In cases

where the Mel-RoFormer embeddings do not match this

time-resolution, we employ 1-D adaptive average pooling

over the time dimension.

We employ an MLP layer for the onset predictor, con-

sisting of a linear layer followed by a Rectified Linear Unit

(ReLU), dropout with a rate of 0.5, and another linear

layer. The linear layer has 512 hidden channels, and the

output dimension is set to 60, representing 60 supported

pitches. For the frame predictor, a single linear layer is

utilized, outputting 61 pitch classes, with one indicating

non-pitch. Binary cross-entropy losses of the two predic-

tors are summed as the final loss to train the entire model.

The thresholds for the onset and frame predictors are set at

0.45 and 0.25, respectively.

5. EXPERIMENT

Our experiments cover vocal separation and vocal melody

transcription. In the vocal separation evaluation, we train

and test two types of models: the first on 44.1kHz stereo

audio recordings, and the second on 24kHz mono audio

recordings. Next, we utilize the model trained on 24kHz

mono audio recordings as the pre-trained model for fine-

tuning in the vocal melody transcription evaluation.

5.1 Datasets

Table 1 overviews the datasets used in this study. We use

four public datasets for evaluation. The data splitting ad-
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Dataset Task Songs Split

MUSDB18HQ [23] sepa 150 train 100, test 50

MoisesDB [46] sepa 240 train 200, val 40

MIR-ST500 [36] trans 500 train 330, val 37, test 98

POP909 [47] trans 909 train 750, val 50, test 109

In-House sepa 1533 train 1433, val 100

Table 1. Summary of the datasets used in this study.

Abbreviations: ‘sepa’: vocal separation, ‘trans’: vocal

melody transcription, ’val’: validation.

heres to the official guidelines of each dataset, except for

POP909, where songs with IDs ranging from 801 to 909

are reserved for testing. The ‘Split’ column of Table 1 in-

dicates the numbers of songs allocated for training, vali-

dation, and testing. All data for separation tasks are stereo

recordings with a sampling rate of 44.1kHz, and stem-level

recordings are pre-mixed into four stems: vocals, bass,

drums, and other. The audio of transcription data was re-

sampled to mono with a 24kHz sampling rate to follow the

conventional setting [38]. Although access to some songs

in MIR-ST500 was restricted, our test set, comprising 98

songs, closely resembles the original setting of 100 songs.

5.2 Configuration for Vocal Separation

To obtain the frequency-to-Mel-band mapping, we employ

the Mel filter-bank implementation in librosa [48], which

emulates the behavior of the function in MATLAB Audi-

tory Toolbox [49]. By using librosa.filters.mel,

we acquire the mapping matrix comprising a triangle filter

for each Mel-band. Subsequently, we binarize this matrix

by setting all non-zero values to 1, thereby discarding the

triangle filters. This process yields the Mel-band Map de-

picted in Figure 1.

We follow the method outlined in [11] for perform-

ing random remixing data augmentation. This strategy in-

volves cross-dataset stem-level combination, resulting in a

significantly larger number of examples than the original

size of the datasets combined.

Tree evaluation scenarios are considered: a⃝ musdb18-

only: train a 44.1kHz stereo model only on the MUSDB18-

HQ training set; b⃝ all-data: all additional data, includ-

ing MUSDB18HQ, MoisesDB, and In-House, are used

to train a 44.1kHz stereo model; c⃝ musdb18+moisesdb:

MUSDB18HQ and MoisesDB are resampled to train a

24kHz mono model, serving as the pre-trained model for

fine-tuning for the melody transcription task.

Our main baseline is BS-RoFormer [11]. For scenar-

ios a⃝ and b⃝, we set the parameters as follows: T=800

(8-second chunk), K=60, D=384, L=12, and a window

size of 2048 and a hop size of 441 for STFT. In sce-

nario c⃝, two models are trained: 24k-small and 24k-large.

The small model uses T=300 (6-second chunk), K=32,

D=128, L=12; while the large model uses T=300 (6-

second chunk), K=32, D=256, L=24. Both models adopt

a window size of 1024 and a hop size of 480 for STFT.

All the separation models use the “overlap & average” de-

framing method [11] with a hop of half a chunk. These

Model Vocals # Param

HDemucs [52]† 8.04 -

Sparse HT Demucs [33]† 9.37 -

BSRNN [7]† 10.01 -

TFC-TDF-UNet-V3 [53]† 9.59 -

BS-RoFormer a⃝ 11.49 93.4M

Mel-RoFormer a⃝ 12.08 105M

BS-RoFormer b⃝† 12.82 93.4M

Mel-RoFormer b⃝† 13.29 105M

Tested with resampled 24kHz mono audio

BS-RoFormer (24k-small) c⃝ 10.56 8.0M

Mel-RoFormer (24k-small) c⃝ 11.01 9.1M

BS-RoFormer (24k-large) c⃝ 12.19 48.4M

Mel-RoFormer (24k-large) c⃝ 12.69 50.7M

Symbol † indicates models trained with extra data.
Symbols a⃝, b⃝, and c⃝ indicate the three evaluation scenarios.

Table 2. Result (in SDR) on MUSDB18HQ test set.

above mentioned settings remain consistent between Mel-

RoFormer and BS-RoFormer.

For training, we utilize the AdamW optimizer [50] with

a learning rate (LR) of 0.0005. The LR is reduced by 10%

every 40k steps. To optimize GPU memory usage, we em-

ploy flash-attention [51] and mixed precision. Specifically,

the STFT and iSTFT modules use FP32, while all other

components use FP16. Regarding hardware configura-

tions, we employ different setups for each scenario. In sce-

nario a⃝, 8 Nvidia A-100-80GB GPUs with batch_size=64

are used, and the training stopped at 400K steps (~40

days). For scenario b⃝, 16 Nvidia A100-80GB GPUs

with batch_size=128 are utilized, and the training halted

at 1M steps (~93 days). In scenario c⃝, 16 Nvidia V100-

32GB GPUs with batch_size=96 are used, and the training

stopped at 500K steps (~31 days).

The reason to use a large number of training steps is

driven by the continuous improvement observed in the

model’s performance, coupled with the absence of overfit-

ting. This can be attributed to two main factors: the effect

of the random remixing augmentation and the inherent ca-

pability of the model itself. These factors contribute to the

model’s ability to continuously learn and adapt to the train-

ing data, resulting in sustained performance improvements

without encountering overfitting issues.

5.3 Result for Vocal Separation

Table 2 presents the results, with the signal-to-distortion

ratio (SDR) values [54] computed by museval [55] as

the evaluation metric. The median SDR across the me-

dian SDRs over all 1-second chunks of each test song is

reported, following prior conventions. Several representa-

tive existing models are included for comparison.

From the result, we see that Mel-RoFormer achieve

state-of-the-art performance. It is evident that Mel-band

Projection significantly enhances vocal separation perfor-

mance, leading to a consistent improvement over BS-
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Model #Param COn COnP COnPOff

Efficient-b1 [36] - .754 .666 .458

JDCnote [35] - .762 .697 .422

A-VST [56] - .783 .707 .538

Perceiver TF [8] - - .777 -

MERT [15] d⃝ 324M .775 .751 .530

SpecTNT [5] d⃝ 8.4M .801 .778 .550

Mel-RoF-small d⃝ 14.5M .807 .786 .609

Mel-RoF-large d⃝ 64.6M .819 .798 .625

Mel-RoF-small f⃝ 14.5M .780 .765 .574

Mel-RoF-large f⃝ 64.6M .790 .776 .594

Symbols d⃝, e⃝, and f⃝ indicate three evaluation scenarios.

Table 3. Model comparison on MIR-ST500 test set.

Model COn COnP COnPOff

MERT [15] e⃝ .745 .697 .315

SpecTNT [5] e⃝ .797 .775 .371

Mel-RoF-small e⃝ .831 .805 .398

Mel-RoF-large e⃝ .869 .842 .486

Mel-RoF-small f⃝ .833 .808 .405

Mel-RoF-large f⃝ .864 .839 .494

Table 4. Model comparison on POP909 test set. Evaluated

with a time tolerance of 80 ms.

RoFormer, with an average gain of 0.5 dB across all sce-

narios. This showcases the effectiveness of the Mel-band

mapping scheme in capturing human voices. Qualitative

analysis indicates that Mel-RoFormer produces smoother

vocal sounds with more consistent loudness. On the other

hand, the 24kHz mono model also performs admirably,

which bodes well for downstream tasks like vocal melody

transcription, as they do not necessitate high-quality audio

with high sampling rates. Furthermore, the smaller model

with 9.1M parameters achieves over 11 dB, demonstrating

its potential for resource-constrained environments.

5.4 Configuration for Vocal Melody Transcription

Three evaluation scenarios are studied: d⃝ trained on MIR-

ST500; e⃝ trained on POP909, and f⃝ trained on a com-

bination of MIR-ST500 and POP909. With T=300 and

K=32 for Mel-RoFormer, the resulting embedding ma-

trix for the onset and frame predictors has a shape of

(2048 × 300), representing a 6-second input with a frame

rate of 50Hz. We also consider a variant that is trained

from scratch without a pre-trained model.

For fine-tuning, we use the AdamW optimizer with a

LR of 0.001 for the onset and frame predictors and 0.0001

for the Mel-RoFormer module. The LR is reduced by 10%

with a patience of 15 epochs, where an epoch comprises

100 steps. The best model is selected based on validation

performance for testing.

For baselines, we implement SpecTNT [5] and MERT

[15]. SpecTNT features 5-layer TNT blocks and is trained

with the random mixing augmentation method outlined in

[8]. For MERT, we use the pre-trained weights of “MERT-

v1-330M,” where the model accepts 5-second input with a

24kHz audio sampling rate and produces embeddings with

a shape of (1024×375). All mentioned models are trained

or fine-tuned using 8 Nvidia V100-32GB GPUs.

Evaluation metrics include the F-measures of Correct

Onset (COn), Correct Onset and Pitch (COnP), and Cor-

rect Onset, Pitch, and Offset (COnPOff). These metrics are

computed using mir_eval [57], with a pitch tolerance of

50 cents and a time tolerance of 50 ms. For POP909, we

adjust the time tolerance to 80ms due to the less precise na-

ture of note onsets and offsets in its labeling method [47].

5.5 Result for Vocal Melody Transcription

Tables 3 and 4 display the results on MIR-ST500 and

POP909, respectively, featuring a comparison with vari-

ous existing models. It is worth noting that fine-tuning a

pre-trained model typically converges in fewer than 15K

steps, while training from scratch requires significantly

more steps (e.g., 50k steps) and yields significantly infe-

rior performance compared to fine-tuned models.

Several key observations emerge from the results.

Firstly, our proposed model (Mel-RoF-large and Mel-

RoF-small) achieves state-of-the-art performance across

all metrics on both MIR-ST500 and POP909, showcasing

its effectiveness. Particularly noteworthy is the substan-

tial performance improvement in COnPOff over the base-

lines (e.g., a 7.5 percentage point increase in Mel-RoF-

large compared to SpecTNT), highlighting the robustness

of Mel-RoFormer in accurately determining full notes, in-

cluding onset, pitch, and offset. This can be attributed to

its capability to extract clean singing voices, thereby min-

imizing the influence of irrelevant instruments. Compar-

ing our models to MERT underscores the superiority of

Mel-RoFormer, owing to its architectural design and pre-

training with a relevant task. This emphasizes the impor-

tance of explicitly modeling frequency with Transformers

and suggests that the separation task can be a valuable ob-

jective when training a foundation model.

Cross-comparing MIR-ST500 and POP909, we note

that annotations are relatively more consistent in MIR-

ST500. In contrast, POP909 exhibits errors primarily at

note offsets, along with global time shifts in several songs.

Consequently, we accept a larger time tolerance of 80 ms in

the evaluation scenario. Particularly, in scenario f⃝, train-

ing with combined datasets improves test performance on

POP909 but degrades that of MIR-ST500, consistent with

our observations about labeling quality.

6. CONCLUSION

We have presented the Mel-RoFormer model, which inte-

grates the Mel-band Projection scheme to enhance its abil-

ity to model musical signals effectively. Our experiments

have shown highly promising results in vocal separation

and vocal melody transcription. These findings suggest

the potential of Mel-RoFormer as a foundation model for

various other MIR tasks, including chord recognition and

multi-instrument transcription [58].
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ABSTRACT

The field of Optical Music Recognition (OMR) focuses on

models capable of reading music scores from document

images. Despite its growing popularity, OMR is still con-

fined to settings where the target scores are similar in both

musical context and visual presentation to the data used

for training the model. The common scenario, therefore,

involves manually annotating data for each specific case,

a process that is not only labor-intensive but also raises

concerns regarding practicality. We present a methodol-

ogy based on training a neural model with synthetic im-

ages, thus reducing the difficulty of obtaining labeled data.

As sheet music renderings depict regular visual character-

istics compared to scores from real collections, we propose

an unsupervised neural adaptation approach consisting of

loss functions that promote alignment between the features

learned by the model and those of the target collection

while preventing the model from converging to undesir-

able solutions. This unsupervised adaptation bypasses the

need for extensive retraining, requiring only the unlabeled

target images. Our experiments, focused on music written

in Mensural notation, demonstrate that the methodology is

successful and that synthetic-to-real adaptation is indeed a

promising way to create practical OMR systems with little

human effort.

1. INTRODUCTION

Encoding and transcribing sheet music by hand is a com-

plex and error-prone task that often requires individuals

with specialized knowledge of the music notation at hand.

An alternative to this manual digitization is the utilization

of advanced artificial intelligence technologies, which en-

able the automated interpretation of musical documents.

This technology is known as Optical Music Recognition

(OMR) [1].

© N. Luna-Barahona, A. Roselló, M. Alfaro-Contreras, D.

Rizo, J. Calvo-Zaragoza. Licensed under a Creative Commons Attribu-

tion 4.0 International License (CC BY 4.0). Attribution: N. Luna-

Barahona, A. Roselló, M. Alfaro-Contreras, D. Rizo, J. Calvo-Zaragoza,

“Unsupervised Synthetic-to-Real Adaptation for Optical Music Recogni-

tion”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

OMR has been a subject of research for several

years [2], experiencing slow progress initially [3]. How-

ever, the recent adoption of advanced machine learning

techniques, notably Deep Learning, has catalyzed signifi-

cant improvements in the field [4]. Current OMR systems,

albeit not fully perfected, present a more efficient and ac-

curate alternative to manual transcription efforts [5].

In the context of machine learning, existing literature

reports models that achieve satisfactory levels of accuracy

when processing collections that share graphic character-

istics with the training corpus [6–9]. This situation poses

challenges for applying OMR technology to new collec-

tions, as it is not always feasible, practical, or resource-

efficient to dedicate efforts towards annotating a segment

of the target collection for training purposes.

This work explores the potential of creating OMR mod-

els to address diverse music collections by leveraging syn-

thetic data for training. Given the vast availability of sym-

bolic music data and score engraving tools, generating

synthetic data for training presents itself as a viable and

promising approach. However, the significant graphical

disparities between renderings and real music collections

suggest that a straightforward application of such synthetic

data might not suffice. To address this issue, we con-

sider the strategy proposed by Alfaro-Contreras & Calvo-

Zaragoza [10], aimed at adapting pre-trained transcription

models—in our case, initially trained on synthetic data to

accommodate real-world music collections. Some previ-

ous works on OMR also implement domain adaptation but

in other related tasks such as layout analysis [11] or music-

object detection [12].

Our experimentation focuses on early monophonic mu-

sic written in Mensural notation, as there exists a signifi-

cant number of collections in this notation, each with spe-

cific characteristics. This abundance enables us to conduct

a thorough examination, aiming to derive conclusions that

are broadly applicable and representative. We will use the

same synthetic data (and model) to independently adapt to

five different Mensural collections. Our experiments indi-

cate that our approach enables consistent synthetic-to-real

adaptation, leading to notable improvements in many set-

tings compared to the baseline. While there is still poten-

tial for better adaptation, our method represents a signif-

icant step towards developing practical OMR models that

do not rely on corpus-specific labeled data.

462



2. BACKGROUND

The traditional OMR pipeline comprises four stages [13]:

(i) image pre-processing, which includes tasks such as bi-

narization, distortion correction, or staff separation; (ii)

music symbol detection, which involves steps such as staff-

line removal, connected-component search, and classifica-

tion; (iii) notation assembly, which relates the individual

identified components to reconstruct the musical notation;

and (iv) encoding, which exports the recognized notation

to a specific language for storage and further computa-

tional processing.

With the rise of Deep Learning, the so-called end-to-end

formulation has emerged as an alternative to OMR. This

approach, which has been dominating the state of the art in

other applications such as text or speech recognition [14,

15], is currently considered the reference model in OMR.

The related literature includes many successful solutions

of this type [16–18], often with some prior pre-processing

such as staff segmentation [19, 20].

However, as introduced above, there is still no computa-

tional approach for creating a universal OMR system; i.e.,

one that is capable of dealing with any kind of collection.

Instead, in this work, we take a more practical strategy that

leverages synthetic data and domain adaptation. Synthetic

data, generated through score engraving tools, provides a

seemingly infinite resource for training machine learning

models without the necessity for laborious manual annota-

tion.

Nevertheless, the utilization of synthetic data presents a

critical challenge: while synthetic scores are generated un-

der precise, controlled conditions, real-world music scores

exhibit a wide variety of visual characteristics. This vari-

ance results in a significant domain gap, where models

trained exclusively on synthetic data struggle to generalize.

Domain Adaptation (DA) becomes essential to reduce per-

formance degradation by fine-tuning a pre-trained model

with unlabeled data from the target domain [21]. While

DA has been applied to some stages of the legacy OMR

workflow [12,22], its application to end-to-end approaches

remains unexplored. Our contribution is the introduction

of an unsupervised synthetic-to-real DA method that em-

ploys a specific set of loss functions to adapt pre-trained

models using only target staff images.

3. METHODOLOGY

The methodology followed in this work is illustrated in

Figure 1. First, a general OMR model is trained in a super-

vised way using synthetic data. Then, before processing

a real collection, for which images but no annotations are

available, we apply an unsupervised adaptation approach

that modifies the pre-trained model. Then, the adapted

model is used to perform OMR on the targeted collection.

The following sections describe the operation of the

OMR model and the unsupervised adaptation approach.

OMR 

model

Training1

Test3

Prediction4

Unsupervised

adaptation
2

Unlabeled target data

Synthetic source data

Figure 1: Overview of the unsupervised synthetic-to-real

Optical Music Recognition methodology followed in this

work.

3.1 Optical Music Recognition model

Our OMR model works at the staff level, assuming that a

certain layout analysis has already detected the different

staves of the score, as in recent literature [6,7,9,23]. Then,

the goal of the model is to retrieve the sequence of music-

notation symbols that appear in a given staff.

The state of the art for the aforementioned formula-

tion is to train a Convolutional Recurrent Neural Network

(CRNN), using the so-called Connectionist Temporal Clas-

sification (CTC) [9, 23]. The convolutional part learns dis-

criminative features from images, while the recurrent block

models these features in terms of music-symbol sequences.

CTC allows training without explicit information about the

location of the symbols in the image [24], which enables

an end-to-end learning framework from just pairs of staff

images and corresponding transcripts.

Given a staff image x, the output of the CRNN is a

stochastic sequence πx = (πx1
, . . . , πxK

), πxi
∈ [0, 1]Σ,

where K is the number of frames (columns) processed

by the recurrent block and Σ represents the vocabulary of

music-notation symbols. 1 πσ
xi

represents the probability

of observing music-notation symbol σ in the i-th frame of

the input (
∑

σ∈Σ
πσ
xi

= 1). The whole sequence πx is of-

ten referred to as the posteriorgram of x.

For performing OMR, the posteriorgram is converted

into an actual sequence of music-notation symbols by fol-

lowing a greedy policy based on retrieving the most proba-

ble symbol per frame and applying some direct operations

to remove repeated symbols and “blank” tokens.

3.2 Unsupervised adaptation

The model explained in the previous section has demon-

strated its goodness in scenarios where the training data

belongs to the same collection to be processed. However,

this is not interesting in most practical cases, especially

when the model is trained with synthetic data, as it barely

generalizes to real collections. In this section, we explain

the considered approach to adapt a pre-trained model to a

(real) target collection using only its images.

Specifically, given a mini-batch b = (x1,x2, . . . ,xN )
of target staff images, we fine-tune the pre-trained model

with the following loss:

1 The number of frames is usually less than the number of columns
of the original image because the convolutional block typically includes
pooling operations.
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L = α · La(b) + β · Lr(b) (1)

The loss involves two terms, weighted by parameters α

and β (to be tuned empirically), respectively: i) one that

modifies the model’s weights to perform adaptation to a

real collection (La), and ii) a regularization term that pre-

vents meaningless convergence for OMR (Lr). These are

formally introduced in the following sections.

For this adaptation stage, we are not allowed to use the

synthetic training corpus, despite being available in our

particular case. This is because we are interested in the

case for which the original training set is not accessible.

3.2.1 Adaptation term

The first mechanism aims to reduce the discrepancy be-

tween the pre-trained model and the target collection by

aligning extracted features. Specifically, we approximate

the distribution of the pre-trained model as a Gaussian

distribution NS(µS , σ
2

S
), using the Batch Normalization

(BN) statistics stored in the corresponding layers. 2 During

training, BN normalizes layer outputs within each mini-

batch, ensuring zero-mean and unit-variance. Exponen-

tially weighted averages of these mean and variance vec-

tors, represented as µS and σ2

S
, respectively, are stored dur-

ing training so that they can be used in the prediction phase

to perform standardization.

To reduce distribution discrepancies between the pre-

trained and the target collection, we fine-tune the layers

preceding BN by forcing their extracted features to have

mean and variance vectors similar to those of the source

data. Specifically, when given batch b, we compute the

mean µb and variance σ2

b
. The target batch feature distribu-

tion is subsequently approximated as Nb(µb, σ
2

b
). We then

employ the feature-averaged Kullback-Leibler (KL) diver-

gence to align the target batch feature distribution with the

pre-trained feature distribution:

La(b) = DKL (Nb||NS) (2)

This is described in the context of a single BN layer, but

it can be applied to many of them by calculating the loss

for each and then adding them up.

3.2.2 Regularization

The previous mechanism can lead to an informational col-

lapse, where the model consistently extracts the same fea-

tures, regardless of the input image, to match the expected

distribution. This would lead to eventually predicting the

same music-notation symbol in all frames, which is useless

for OMR.

Furthermore, we want to encourage predictions that ex-

hibit music-symbol diversity. This can be induced by max-

imizing entropy within each frame’s predictions across the

batch with the following loss: 3

2 Assuming BN layers for this purpose is a soft constraint since most
of the considered CRNN architectures for OMR include these.

3 Note that the equation is negating the entropy so that the loss is per-
forming maximization during gradient descent.

−
K
∑

k=1

∑

σ∈Σ

H(πσ

bk
) =

K
∑

k=1

∑

π∈Σ′

S

|b|
∑

i=1

(

πσ

xik

log πσ

xik

)

(3)

Specifically, this term penalizes that the same frame in

different samples of the batch provides an identical proba-

bility distribution over the vocabulary Σ.

Unfortunately, minimizing Eq. 3 might lead to proba-

bilities for a specific frame to be uniformly distributed. In

other words, this encourages the model to predict that all

music-notation symbols are equiprobable in each frame.

However, these distributions should ideally resemble a

one-hot distribution, linking each image frame to a single

symbol from Σ. To mitigate this, we must further regu-

larize the model to encourage the predictions to behave as

one-hot vectors by minimizing the entropy of each frame’s

output:

|b|
∑

i=1

K
∑

k=1

H(πxik
) = −

|b|
∑

i=1

K
∑

k=1

∑

σ∈Σ

(

πσ

xik

log πσ

xik

)

(4)

Therefore, the regularization term of our unsupervised

adaptation process becomes:

Lr(b) =

|b|
∑

i=1

K
∑

k=1

H(πxik
)−

K
∑

k=1

∑

σ∈Σ

H(πσ

bk
) (5)

where predictions are encouraged to behave like the output

of an OMR process, while preventing all predictions from

providing the same symbol.

4. DATA

This section covers data handling and preparation, encom-

passing synthetic data generation to pre-train the model,

the considered real datasets for the adaptation experiments,

and the encoding of the output vocabulary of the OMR.

4.1 Synthetic data generation

We have considered a modified version of the Printed Im-

ages of Mensural Staves (PRIMENS) dataset [9]. The PRI-

MENS dataset is a synthetic corpus designed to emulate

low-quality scans of printed mensural sources. It was ob-

tained by transforming compositions by composers such

as Agricola, Frye, and Ockeghem, which are accessible

through the Josquin Research Project (JRP) 4 . The origi-

nal JRP files consist of transcriptions in Common West-

ern Modern notation encoded using **kern format. To

obtain a Mensural notation dataset, Martínez-Sevilla et al.

converted the original files to **mens format [25]. Given

the polyphonic nature of these compositions, they isolated

individual monophonic excerpts by segmenting them into

randomly chosen measures spanning from 3 to 18. The

4 https://josquin.stanford.edu/. Last accessed April 12th, 2024.
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authors also modified the original clefs accordingly to in-

crease variability and thus expand the dataset size.

The images were generated using the digital engraver

Verovio [26], with random values applied to all available

options within permitted ranges. Subsequently, these im-

ages were also distorted to mimic genuine printed image

scans by employing a random sequence of graphical filters

through GraphicsMagick Image Processing System. Fur-

thermore, this simulation of real images was further en-

hanced by blending randomly damaged old paper textures

with distorted images. Figure 2a shows a staff example of

the PRIMENS dataset.

When analyzing the music-symbol distribution of the

original PRIMENS dataset, we found that it lacked bar

lines and custodes, two common elements in Mensural cor-

pora. To standardize the vocabulary, we randomly intro-

duced bar lines with a probability of 10% per monophonic

excerpt. Custodes were added at the end of each staff, po-

sitioned at the most repeated pitch of that region to ensure

meaningful vertical staff alignment.

4.2 Real datasets

We have considered five corpora of Mensural music, both

handwritten and typeset:

• CAPITAN corpus [27]: a set of 97 manuscript pages

dated from the 17th century of liturgical music. An

example of a particular staff from this corpus is de-

picted in Figure 2b.

• Il Lauro Secco (SEILS) corpus [28]: a collection

of 151 typeset pages corresponding to an anthology

of Italian madrigals of the 16th century. Figure 2c

shows a staff example of this set.

• GUATEMALA corpus [29]: a collection of 385 hand-

written pages from a polyphonic choir book, part of

a larger collection held at the “Archivo Histórico Ar-

quidiocesano de Guatemala”. An example of a par-

ticular staff from this corpus is depicted in Figure 2d.

• MOTTECTA corpus [9]: a set of 297 printed pages

from a collection of the “Biblioteca Digital His-

pánica” dated from the 17th century. Figure 2e

shows a staff example of this set.

• MAGNIFICAT corpus [5]: a set of 127 typeset pages

corresponding to a Spanish choir book of the 16th

century. See Figure 2f for a sample of this corpus.

4.3 Output encoding

OMR primarily deals with image signals, leading OMR

systems to prioritize learning graphic concepts over mu-

sical ones. This explains why, when training end-to-end

OMR models, an internal representation referred to as “ag-

nostic” is used instead of a semantic representation where

music symbols are encoded based on their musical signif-

icance [28, 30]. This agnostic representation categorizes

elements within a collection of musical symbols according

(a) PRIMENS

(b) CAPITAN

(c) SEILS

(d) GUATEMALA

(e) MOTTECTA

(f) MAGNIFICAT

Figure 2: Staff samples of the synthetic data (a) used to

train the initial OMR model, which is then adapted to the

five Mensural corpora (b-f).

to their form, representing event duration, and their height

or vertical position on the staff, denoting pitch. In essence,

each symbol is denoted as the 2-tuple zi = ⟨fi, hi⟩ : fi ∈
ΣF , hi ∈ ΣH , where ΣF and ΣH represent the spaces

for the different form and height labels, respectively. This

approach effectively describes all symbols, including rests

that symbolize silence and can be positioned at various ver-

tical locations.

The concise structure of the agnostic representation not

only facilitates faster convergence of OMR models but

also enables non-experts to annotate music data, making

the subsequent conversion to a semantic representation au-

tomatable [31]. However, holistic OMR models do not

leverage this dual dimensionality. Instead, they treat each

combination of form and height as a single category—

|Σ| = |ΣF | × |ΣH |. Recent works [8, 23] have shown that

splitting the symbols in zi into their two components and

retrieving them sequentially—first, the form and then, the

height—leads better recognition rates. Note that the cardi-

nality of the set of symbols in this split-sequence encoding

is |Σ| = |ΣF |+|ΣH |, much lower than that of the standard

encoding, at the expense of doubling the length of the se-

quence to be predicted. Figure 3 shows a staff sample and

its encoding representations in standard and split-sequence

encoding.

In this work, we consider both the standard encoding

and the split-sequence encoding representations. When us-

ing the latter encoding, we adhere to the 2D-greedy de-

coding method proposed in [8]. This method adjusts the

standard CTC greedy decoding to ensure that the output

predictions conform to the form-height pattern of the split-
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barline:L1, clef.C:L4, note.quarter_up:S0,

note.wholeBlack:L2, note.half_up:S2

barline, L1, clef.C, L4, note.quarter_up, S0,

note.wholeBlack, L2, note.half_up, S2

Figure 3: Staff sample and its encoding representations

in standard (above) and split-sequence (below) encoding.

Note that Ln and Sn respectively denote the line or space

of the staff on which the symbol may be placed, which

refers to its height property.

sequence encoding representation.

Note that when using the split-sequence encoding rep-

resentation, we transition from a cardinality of ΣF ×ΣH to

one of ΣF +ΣH . This implies fewer different symbols and

subsequently enables a greater overlap of vocabularies be-

tween the source and target collections. This feature makes

it particularly suitable for our synthetic-to-real scenario.

Table 1 provides a summary of the characteristics of

each label space for the considered corpora. As for data

partitioning, we adhere to the same training, validation,

and test splits as outlined in the referenced works.

Table 1: Overview of the corpora used in this work: num-

ber of staves, vocabulary size for each label space con-

sidered (form and height separately for the split-sequence

encoding, and a single token combining these two pieces

of information for the standard encoding), and engraving

style.

Staves
Vocabulary

Engraving style

Form Height Combined

PRIMENS 42 136 37 34 386 Synthetic

CAPITAN 828 62 16 372 Handwritten

SEILS 1 136 37 17 205 Typeset

GUATEMALA 3 263 52 17 315 Handwritten

MOTTECTA 1 847 38 15 228 Typeset

MAGNIFICAT 1 340 42 19 220 Typeset

5. EXPERIMENTAL SET UP

This section describes the evaluation protocol and the im-

plementation details.

5.1 Evaluation metric

We consider the Symbol Error Rate (SER) for assessing

the performance of the presented recognition scheme, as in

previous works [6–9]. This metric is computed as the av-

erage number of elementary editing operations (insertions,

deletions, or substitutions) required to match the sequence

predicted by the model with that in the ground truth, nor-

malized by the length of the latter. In mathematical terms,

this is expressed as:

SER (%) =

∑|S|
i=1

ED (ẑi, zi)
∑|S|

i=1
|zi|

(6)

where S ⊂ X ×Z is a set of test data, ED : Z ×Z → N0

denotes the string edit distance [32], and ẑi and zi re-

spectively represent the estimated and target sequences.

For comparative purposes, we convert all predicted and

ground-truth sequences to split-sequence before comput-

ing the metric.

5.2 Implementation details

The CRNN scheme is based on that used typically for

OMR [7, 9, 27]. Specifically, we used four convolutional

layers that applied 64 filters of size 5× 5, 64 filters of size

5× 5, 128 filters of size 3× 3, and 128 filters of size 3× 3,

respectively. We considered a Leaky ReLU activation with

a negative slope of α = 0.2 and max-pooling stages of size

and striding factors of 2× 1 (except the first convolutional

layer, which is 2 × 2). The produced feature maps were

fed into two Bidirectional Long Short-Time Memory lay-

ers with 256 hidden units each and a dropout value of 50%,

followed by a fully-connected network with |Σ′| units that

provide a probability for each possible music-notation to-

ken.

The evaluation pipeline consisted of two stages: (i)

training the source model, and (ii) adapting it to the tar-

get dataset using the AMD method. For (i), we used the

ADAM optimizer with a batch size of 16 elements and a

fixed learning rate of 10−3. We stopped the training using

an early stopping strategy with a patience of 20 epochs,

retaining the weights that minimize the SER metric in the

validation partition. In (ii) we maintained the batch size

of 16, the learning rate was selected through a random

search ranging from 10−3 to 3× 10−4, and a maximum of

50 training-adaptation epochs was considered as we fine-

tuned an already trained model.

Regarding data pre-processing, we replicated the ex-

act experimental conditions outlined in the aforementioned

reference works. Specifically, we resized each staff image

to a height of 64 pixels, preserving the aspect ratio (in-

dividual samples may vary in width), and converted them

to grayscale without any additional pre-processing steps.

Additionally, following the approach outlined in the afore-

mentioned works, we incorporated a data augmentation

step during the training of the source models.

6. RESULTS

This section presents the results obtained from applying

the experimental scheme to the different presented corpora.

Specifically, Table 2 depicts the performance of the PRI-

MENS model before and after adaptation for each real tar-

get Mensural corpus in terms of the SER metric. 5

The most important remark is that the considered

synthetic-to-real adaptation framework improves the per-

formance of the synthetic-only scenario across all datasets.

The approach does not solve the adaptation challenge com-

pletely (the reference value is still far in most cases), but

it allows taking the model to more usable levels without

5 Code at: https://github.com/OMR-PRAIG-UA-ES/ISMIR-2024-
SYNTHETIC2REAL-OMR.
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Table 2: Results in terms of the SER (%) metric for each real Mensural corpus before and after the unsupervised adaptation

of the OMR model trained with the synthetic PRIMENS dataset. For completeness, we also include the in-collection

performance, where the real corpus is used for both training and testing. These performances are shaded in gray, serving as

an upper-bound reference. Final row reports the relative improvement (↓∆%) when adaptation is performed.

Target corpus

CAPITAN SEILS GUATEMALA MOTTECTA MAGNIFICAT

Standard Split-sequence Standard Split-sequence Standard Split-sequence Standard Split-sequence Standard Split-sequence

In-collection (reference) 6.7 6.2 1.8 1.7 1.6 1.6 3.3 2.9 1.5 1.5

Before adaptation 45.9 43.1 23.9 21.3 46.9 53.4 25.8 29.2 12.8 12.8

After adaptation 32.9 32.9 19.3 18.5 21.4 18.1 17.1 16.4 9.1 10.6

Relative improvement ↓ 28 % ↓ 23 % ↓ 19 % ↓ 14 % ↓ 54 % ↓ 66 % ↓ 34 % ↓ 44 % ↓ 29 % ↓ 17 %

the need to initially annotate data. This is quite useful, for

example, in the context of OMR plus post-correction.

The degree of relative improvement varies depending

on the specific dataset, ranging from 66% to 14%. In this

sense, it is difficult to draw a correlation between the dif-

ferent factors and the degree of improvement. However, it

is worth highlighting that the scenarios with a greater mar-

gin (for example, GUATEMALA and CAPITAN) lead to a

greater absolute improvement. This may indicate that there

is a glass ceiling to the performance that can be obtained by

training with a synthetic corpus, since in the cases where

the result is already relatively successful (e.g. MAGNIFI-

CAT) the improvement is rather limited.

Concerning the output encoding, the split-sequence

encoding generally yields better SER figures in the in-

collection scenario. However, the differences are marginal

in the other two scenarios. Therefore, this does not repre-

sent a relevant factor for adaptation.

To provide more insights into the adaptation process, we

explored the “relevant” parts of the image that the different

OMR models consider to predict the symbols. Gradient-

weighted Class Activation Mapping (Grad-CAM) [33] is

an interpretability method that uses the gradients of any

target prediction to produce a coarse localization map high-

lighting the important regions in the image for such predic-

tions. Figure 4 shows the activation map over the same test

image for the three different scenarios considered: (a) in-

collection, (b) before adaptation, and (c) after adaptation.

Specifically, we display here the case of processing the real

collection GUATEMALA. We can observe how the initially

misplaced pixel activations in scenario (b) are corrected to

the actual music symbols after adaptation in scenario (c),

showing a high degree of similarity to the activation map

of the in-collection model of scenario (a).

7. CONCLUSIONS

Existing end-to-end OMR approaches have exhibited re-

markable performance in transcribing collections that

share graphic characteristics with the training corpus.

However, when this condition is not met, allocating re-

sources to manually annotate training data to maintain

performance levels becomes impractical and resource-

intensive. Our work proposes a possible solution to this

challenge. Firstly, we train an initial OMR model with syn-

thetic scores. By doing so, we eliminate the need for hu-

(a) GUATEMALA → GUATEMALA, SER of 0%

(b) PRIMENS → GUATEMALA, SER of 77.6%

(c) PRIMENS → GUATEMALA (adapted), SER of 0.9%

Figure 4: Activation maps over the same GUATEMALA

test image using an OMR model trained with (a)

GUATEMALA scores, (b) PRIMENS scores, and (c) PRI-

MENS scores but adapted to GUATEMALA images.

man manual annotation of training data. Subsequently, we

tailor this model to the specific characteristics of the target

corpus through unsupervised adaptation, using only unla-

beled images from the target corpus. This adaptation pro-

cess employs a loss function to align the learned features of

the model with those of the target collection while ensur-

ing the model does not converge to undesirable solutions.

Our experiments across five distinct Mensural datasets val-

idate the effectiveness of our synthetic-to-real adaptation

as a viable approach to developing universal OMR systems

with little human effort. However, there remains room for

improvement. Future research avenues may explore lever-

aging self-labeled samples obtained through the adapted

model to further enhance its performance and robustness

or exploring few-shot scenarios.
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ABSTRACT

We propose a novel symbolic music representation and

Generative Adversarial Network (GAN) framework spe-

cially designed for symbolic multitrack music generation.

The main theme of symbolic music generation primarily

encompasses the preprocessing of music data and the im-

plementation of a deep learning framework. Current tech-

niques dedicated to symbolic music generation generally

encounter two significant challenges: training data’s lack

of information about chords and scales and the require-

ment of specially designed model architecture adapted to

the unique format of symbolic music representation. In

this paper, we solve the above problems by introducing

new symbolic music representation with MusicLang chord

analysis model. We propose our MMT-BERT architecture

adapting to the representation. To build a robust multitrack

music generator, we fine-tune a pre-trained MusicBERT

model to serve as the discriminator, and incorporate rel-

ativistic standard loss. This approach, supported by the

in-depth understanding of symbolic music encoded within

MusicBERT, fortifies the consonance and humanity of mu-

sic generated by our method. Experimental results demon-

strate the effectiveness of our approach which strictly fol-

lows the state-of-the-art methods.

1. INTRODUCTION

Music plays an indispensable role in our daily lives, and

there is a significant demand for creating new musical con-

tents. Automatic music generation is one of the most in-

triguing tasks in bringing new music experiences to con-

sumers [1]. The earliest studies in the 1950s focused on

a combination of music theory and Markov-chains-based

probabilistic models, and realized randomly creating mu-

sic parts and combining them into a synthesis [2]. Con-

temporary studies have achieved higher quality and faster

music generation by utilizing advanced neural networks
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Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: J. Zhu, K. Sakurai, R. Togo, T. Ogawa

and M. Haseyama, “MMT-BERT: Chord-aware Symbolic Music Genera-

tion Based on Multitrack Music Transformer and MusicBERT”, in Proc.

of the 25th Int. Society for Music Information Retrieval Conf., San Fran-

cisco, United States, 2024.

such as Generative Adversarial Networks (GANs), Trans-

former, and diffusion models [3–5]. Despite significant

advancements, previous methods continue to suffer from

challenges such as insufficient data extraction and unsta-

ble training trajectories. Consequently, there is room for

new approaches for more effective music representations

and more robust deep learning architectures.

In particular, chords are crucial for conveying emo-

tional and humanistic expressions in music, yet few meth-

ods take chords into account in symbolic music represen-

tation. Consequently, previous methods are deprived of

indispensable information about chords and scales. This

lack results in the generation of music that exhibits a di-

minished degree of humanity. Therefore, previous meth-

ods for music generation face limitations in their ability

to produce human-like and high quality expressions [6].

A feasible solution to overcome this difficulty is the in-

tegration of a chord analysis model [7]. Chord analysis

model aids in the extraction of chord data from raw audio,

fostering a novel representation method that encompasses

chord information [8–11]. With the aid of state-of-the-art

chord analysis models, we can generate more harmonious

and structured music with more regular chord progressions

by automatically extracting and encoding chords from raw

audio files. Therefore, it is expected that adopting chord

analysis models in creating new symbolic representations

of music will enable the generation of music that is closer

to human composition.

Another problem arises from the ever-changing format

of symbolic music representation, which makes design-

ing the model’s architecture that fits symbolic music gen-

eration to be another challenge. GANs are widely ap-

plied in the symbolic music generation field because the

addition of a discriminator obviously strengthens the fi-

delity of the overall generative model [12–17]. The per-

formance of GANs is deeply influenced by the architec-

ture of the generator and discriminator. Previous stud-

ies have demonstrated the effectiveness of transformer-

based generators [6, 7, 18–23]. Whereas, the architecture

of the discriminator has been extensively discussed in re-

cent years. Some methods [12, 14, 16, 17] involve con-

structing a discriminator based on CNN or Transformer,

while others [15] utilize pre-trained models adapted to

their tasks. Compared to hand-crafted discriminators, us-

ing pre-trained models often achieves a fairly good result

470



because pre-trained models are already trained on large and

diverse datasets. Therefore, the application of pre-trained

models will allow the GAN to leverage their learning and

knowledge, ensuring the training efficiency and stability.

However, there are few choices of pre-trained mod-

els designed for symbolic music representation that can

be used as the discriminator considering the input format

and length limitation. We solve this problem by apply-

ing BERT-based scores, which are well correlated with

human ranking and can jointly measure quality and diver-

sity [24,25]. Since BERT is trained using a self-supervised

loss on bidirectional contexts of all attention layers, it can

effectively extract representations [26–28]. Muhamed et

al. employ a pre-trained Span-BERT model and achieve

considerable results on harmonic choices and overall mu-

sic quality, showing that pre-trained BERT-based models

outperform CNN-based discriminator [15]. Hence, em-

ploying a pre-trained model as a discriminator can amplify

the overall performance of the GAN model.

In this paper, we propose a novel symbolic music gen-

eration method using the chord-aware symbolic music rep-

resentation and MusicBERT-based discriminator. In terms

of symbolic musical expression, we introduce the novel

symbolic music representation with chord information de-

rived from MusicLang 1 , one of the state-of-the-art chord

analysis models. By employing symbolic music represen-

tation with chord information, our model can achieve the

generation of more human-like music that considers chord

progressions. For the model architecture, we employ the

Multitrack Music Transformer (MMT) [6] as the gener-

ator and fine-tune the MusicBERT [29], a symbolic mu-

sic understanding model pre-trained in large-scale dataset,

as the discriminator. Leveraging the superior comprehen-

sion capabilities of MusicBERT, we can improve GAN’s

performance, thereby facilitating the creation of higher-

quality music. Furthermore, we introduce relativistic stan-

dard loss to further optimize the stability and consistency

of the training process [30]. The use of Relativistic Stan-

dard GAN (RS-GAN) has realized great results in the field

of image generation. It enables models to account for the

fact that half of the data in a mini-batch is fake, leading to

more accurate estimations of data realism [14, 31]. Build-

ing upon the innovations mentioned above, our model is

capable of retrieving substantial information about chords

and scales, acquiring knowledge in music theory, and au-

tonomously generating multitrack music of superior qual-

ity and enriched with human-like characteristics.

The contributions of this paper are summarized as fol-

lows.

• We propose a modified MMT style symbolic mu-

sic representation including chord and scale infor-

mation.

• We develop MMT-BERT, an optimized GAN archi-

tecture utilizing MMT and MusicBERT, with rela-

tivistic standard loss to enhance the stability of the

training process and achieve better results.

1 https://musiclang.github.io/tokenizer/

Representation Multitrack
Instrument

control

Compound

tokens

Chord

awareness

REMI [7] ✓

MMM [21] ✓

CP [18] ✓ ✓

FIGARO [23] ✓ ✓

MMT [6] ✓ ✓ ✓

MMT-BERT (ours) ✓ ✓ ✓ ✓

Table 1. Comparisons of related representations.

2. RELATED WORKS

2.1 Symbolic Music Representation

To enable computers to properly understand music, re-

search on symbolic music representation has been con-

ducted for many years [32]. Musical Instrument Digital In-

terface (MIDI) is the most commonly used format for sym-

bolic music representation, containing performance data

and control information for musical notes. In the music

processing community, many researchers symbolize music

with MIDI-like events [33].

Huang et al. have proposed REvamped MIDI-derived

events (REMI), which adds note duration and bar events,

enabling models to generate music with subtle rhythmic

repetition [7]. However, the REMI representation often en-

counters a challenge that the sequence is too long. Build-

ing upon the REMI framework, Hsiao et al. have pro-

posed Compound Word Transformer (CP) [18]. CP mod-

ifies REMI’s approach by transforming one-dimensional

sequence tokens into compound words sequence using spe-

cific rules. Although this modification significantly short-

ens the average token sequence length and simplifies the

model’s ability to capture musical nuances, CP is hard

to generate multitrack music [6]. Dong et al. have pro-

posed their multitrack music representation, which rep-

resents music with a sequence of sextuple tokens, along

with a Transformer-XL-based generation method Multi-

track Music Transformer (MMT). This approach utilizes

a decoder-only Transformer architecture, adept at process-

ing multi-dimensional inputs and outputs. MMT leverages

the advantages of the Transformer to enable the generation

of longer multitrack music compositions than previous mu-

sic generation methods. However, MMT’s representation

scheme lacks chord event inclusion, an essential element

in musical compositions. In contrast, our symbolic mu-

sic representation technique builds on the foundation laid

by MMT by integrating chord information, enabling our

model to produce more harmonically rich compositions.

2.2 Generative Adversarial Network-based Music

Generation

Previous studies have employed various GANs to realize

symbolic music generation [12, 13, 17]. In early states,

Dong et al. have proposed MuseGAN, a CNN-based

GAN architecture, managing to generate multitrack music

pieces [16]. However, CNN-based GANs often suffer from

problems such as limited local perception, fixed-size in-

puts, etc. Muhamed et al. solved this problem by introduc-

ing their Transformer-GANs model, using a Transformer-
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Event type tj Quintuple token x
tj
i

start-of-song (0, 0, 0, 0, 0)

instrument (0, 0, 0, 0, instrument)

start-of-score (0, 0, 0, 0, 0)

note (beat, position, pitch, duration, instrument)

chord (beat, degree, root, mode, extension)

end-of-song (0, 0, 0, 0, 0)

Table 2. The elements of the quintuple token x
tj
i for each

event type tj .

XL-based generator and pre-trained Span-BERT as the dis-

criminator [15]. Transformer-XL introduces the notion of

recurrence into the deep self-attention network, enabling

the reuse of hidden states from previous segments as mem-

ory for the current segment, allowing for the modeling

of long-range dependencies. For the discriminator, Span-

BERT is utilized to extract sequence embeddings followed

by a pooling and linear layer. The bidirectional transformer

has a comparable capacity to the transformer-based gen-

erator and uses the self-attention mechanism to capture

meaningful aspects of the input music sequence. Their re-

search validates the efficacy of employing a Transformer-

XL-based generator in conjunction with a BERT-based dis-

criminator [34]. Building on this concept, we developed

the MMT-BERT model by utilizing MMT as the generator

and Music-BERT as the discriminator.

3. METHODOLOGY

3.1 Proposed Symbolic Music Representation

In our approach, we introduce a novel symbolic music rep-

resentation that incorporates chords. Table 1 shows differ-

ences between the conventional approaches and the pro-

posed symbolic music representation. While most conven-

tional representations omit details about chords, we focus

on chord information-aware representation to facilitate the

process of generating music that more closely resembles

humans. First, we extract music data including chords and

notes from MIDI files based on MuspyToolkit [35] and

MusicLang. During the extraction process, we recognize a

chord once per bar, i.e., every four beats. We exclude songs

with a time signature other than 4/4, limit the number of

chords in a bar to one, and ignore chord changes within a

bar since MusicLang only detects chord changes once per

bar. Each time MusicLang detects a chord change, it ex-

tracts the scale degree, tonality root, tonality mode, chord

octave and extension note of the chord. After extracting

chord and note information, we encode a piece of music

into a sequence of quintuple tokens X = (x0, ...,xN−1),
where xi and N denote the i-th quintuple token and the to-

tal number of quintuple tokens, respectively. Here, t repre-

sents the following event type: {start-of-song, instrument,

start-of-score, note, chord, end-of-song}. The meanings of

each event type are shown as follows:

• Start-of-song: The beginning of the music piece

• Instrument: An instrument used in the music piece

chord
5

( 0, 0, 0, 0, 0)

( 0, 0, 0, 0, 6)

( 0, 0, 0, 0, 40)

( 0, 0, 0, 0, 42)

( 0, 0, 0, 0, 0)

( 1, 1, 7, 2, 9)

( 1, 1, 46, 6, 6)

( 5, 1, 7, 2, 6)

( 5, 7, 48, 5, 42)

( 0, 0, 0, 0, 0)

Start of song

Instrument

Instrument

Instrument

Start of score

Chord

cello

violin

harpsichord

Note

Chord

Note

End of song

:

:

:

:

:

:

:

:

:

:

:

:

MeaningQuintuple tokens

beat=1,position=1, pitch=A2,duration=6, instrument=harpsichord

extension=9thbeat=1,degree=1,root=G,mode=minor,

extension=6thbeat=5,degree=1,root=G,mode=minor,

beat=5, position=7, pitch=G2,duration=5, instrument=cello

xstart-of-song
0

xinstrument
1

xinstrument
2

xinstrument
3

xstart-of-score

4

x

xnote
6

xchord
12

. . . 

xnote
13. . . 

xend-of-song
N-1

bar 1

bar 2

:

:

:

:

:

Figure 1. An example of the proposed representa-

tion. Compared to the conventional representation, the

proposed representation incorporates an additional chord

event (highlighted by red blocks) per bar, thereby aiding

the model in understanding the relationship between the

notes and chords.

• Start-of-score: The beginning of a sequence of mu-

sical events, including notes and chords

• Note: A note characterized by beat, position, pitch,

duration, and instrument

• Chord: A chord characterized by beat, scale degree,

root note, mode, and extension note

• End-of-song: The end of the music piece

The meaning of each element in the quintuple token xt
i

varies depending on the event type t . The correspondence

between the event type t and the meanings of the quintu-

ple token xt
i is shown in Table 2. Additionally, it is noted

that we apply different embeddings for the different fea-

tures sharing the same axis. A schematic diagram of the

proposed representation is illustrated in Figure 1. In this

way, we can obtain a symbolic music representation that

incorporates chords that is suitable for input into the afore-

mentioned MMT-BERT architecture.

3.2 MMT-BERT Architecture

The fundamental structure of our MMT-BERT architec-

ture is based on a GAN architecture, employing MMT as

the generator and MusicBERT as the discriminator. The

overview diagram of MMT-BERT is illustrated in Figure 2.

The primary concept of GAN is minimizing the loss to en-

hance the generator’s ability to deceive the discriminator

by producing fake music indistinguishable from real mu-

sic, while simultaneously maximizing the discriminator’s

accuracy in distinguishing between real and fake music.

Details of the generator and discriminator will be discussed

later.

3.2.1 Generator

As the generator, we employ MMT [6], a Transformer-XL-

based model that consists solely of decoders. In MMT, ele-

ments in the quintuple token xi are individually embedded

first, and then concatenated, followed by the addition of
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Figure 2. The diagram of the MMT-BERT. The generator is built upon Transformer-XL architecture, and the discriminator

is built upon MusicBERT. A MIDI file from the dataset is firstly encoded into a sequence of quintuple tokens before fed

into the model. Embeddings of the 6 elements are concatenated by a linear layer and converted into a single vector. Then

they are fed into the encoder and decoder layers with the addition of position embeddings.

positional embeddings. Subsequently, this combined input

is passed through transformer decoder blocks, which are

composed of a masked multi-head self-attention layer and

a feedforward layer. The output from the decoder blocks

is then processed by a dense layer and a softmax layer,

resulting in the generation of new music samples. MMT

proves advantageous due to its capability to handle multi-

dimensional input and output spaces, aligning perfectly

with the requirements of symbolic music representation.

Significantly, MMT can retain hidden states from previous

segments, thereby eliminating the need for recalculating

from scratch with each new segment. These retained states

function as a memory aid for the current segment, estab-

lishing a recurrent connection between segments.

The application of MMT as the generator allows for

instrument-controllable multitrack music generation with

extended duration and higher training speed. Such a key

feature facilitates the modeling of extensive long-range de-

pendencies.

3.2.2 Discriminator

As the discriminator, we adopted MusicBERT [29], a

large-scale Transformer model developed for symbolic

music understanding. MusicBERT consists of a Trans-

former encoder and utilizes a masked language modeling

approach where certain tokens in the input music sequence

are masked and then predicted by the model output. The

original proposed encoding method, called OctupleMIDI

process transforms a symbolic music piece into a sequence

of octuple tokens, each containing eight basic elements re-

lated to a musical note. In order to make MusicBERT act

as a discriminator adapted to the proposed representation

mentioned in Sec. 3.1, we refine the input and output for-

mat of MusicBERT. Quintuple tokens are converted into a

single vector through the concatenation of embeddings and

a linear layer. The resulting vector is combined with posi-

tion embeddings and provided as input to the Transformer

encoder. To predict each of the five tokens within the quin-

tuple, separate softmax layers are added to map the hidden

states of the Transformer encoder to the vocabulary sizes

of the different element types. MusicBERT’s proficiency

in comprehending symbolic music as the discriminator in-

tegrates with MMT’s generation process, thereby aiding in

the stability of the training process and faster convergence.

3.2.3 Relativistic Standard Loss

Inspired by RS-GAN [31], one of the state-of-the-art meth-

ods in GANs, we adopt the relativistic standard loss as our

objective function. Applying relativistic standard loss pre-

vents the network from becoming overconfident, leading to

slower and more careful decisions, allowing the generator

more room to adjust its weights and improve the training

process [30]. The probability that the given fake data is

more realistic than a randomly sampled real data is defined

as follows:

D(x̃) = sigmoid(C(f)− C(r)), (1)

where C(·) denotes a non-transformed layer, and x̃ denotes

real/fake data pairs x̃ = (r, f). Hence, the loss function

of the generator G and the discriminator D are defined as

follows:

LG =E(r,f)∼p(r,f)
[log(sigmoid(C(r)− C(f))]

−
∑

i

rilog fi,
c (2)

LD =E(r,f)∼p(r,f)
[log(sigmoid(C(f)− C(r))], (3)

where ri and fi denote ground truth logits and generated

music logits, respectively. It is noted that we add cross en-

tropy to the loss function of generator in order to accelerate
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the convergence process of the loss function. By training

both the generator and discriminator with the relativistic

standard loss to emulate human-like musical compositions,

our MMT-BERT model can generate high quality music

pieces that incorporate sophisticated chord information.

4. EXPERIMENT

4.1 Experiment Setup

In the experiment, we utilize the Symbolic Orchestral

Database (SOD) [36], which comprises 5,864 music pieces

encoded as MIDI files along with associated metadata.

The dataset is partitioned into training, testing, and val-

idation sets, receiving 80%, 10%, and 10% of the data,

respectively. We set a temporal resolution of 12 time

steps per quarter note for detailed timing accuracy. The

Transformer-XL generator is composed of six decoder lay-

ers with 512 dimensions and eight self-attention heads,

and the MusicBERT discriminator consists of one encoder

layer with two self-attention heads. The maximum length

for symbolic music sequences is set at 1024, with a maxi-

mum of 256 beats. To optimize the models, we employ the

Adagrad optimizer to mitigate issues of gradient explosion

and vanishing [37]. Additionally, to enhance the robust-

ness of the data, we augment it by randomly transposing

all pitches by s ∼ U(−5, 6)(s ∈ Z) semitones and assign

a starting beat. Here, U denotes a uniform distribution.

As comparative methods, we employ three state-of-the-

art music generation models: MMM [21], FIGARO [23],

and MMT [6]. We validate the performance of our MMT-

BERT model by conducting quantitative evaluations using

existing metrics and subjective experiments to assess the

human-like qualities of the generated music pieces.

4.2 Quantitative Evaluation

Following [6], we evaluate the generated music pieces us-

ing four metrics: pitch class entropy similarity (PCES),

scale consistency similarity (SCS), groove consistency

similarity (GCS), and average length (AL). We consider

higher values of PCES, SCS, and GCS as indicators of su-

perior quality, while a higher AL denotes a greater capa-

bility to produce long-duration music pieces.

In preparation for calculating PCES, the pitch class en-

tropy (PCE) is defined as follows:

PCE = −
11∑

i=0

hi log2(hi), (4)

where hi denotes the number of occurrences of each note

name in the 12-dimensional pitch class histogram. As the

PCE values increase, the tonality of the generated music

pieces exhibits greater instability. However, it is important

to recognize that more stable tonality does not necessarily

imply higher quality. Subsequently, we calculate PCES be-

tween generated music samples and human compositions

as follows:

PCES = 1−
|PCEgen − PCEtr|

PCEtr
, (5)

where PCEgen and PCEtr denotes the PCE value of gener-

ated music samples and human compositions, respectively.

Moreover, noticing that PCE is intrinsically linked to the

volume of data, we truncate the generated musical pieces

to the preceding k seconds and calculate their PCES.

The scale consistency (SC) is derived by calculating

the proportion of tones that conform to a conventional

scale and presenting the value for the most closely aligned

scale [38]. SC serves as an indicator of the model’s pro-

ficiency in generating musical segments that demonstrate

cognizance of chords and scales within the current bar. The

SCS between generated music samples and human compo-

sitions is defined as follows:

SCS = 1−
|SCgen − SCtr|

SCtr
, (6)

where SCgen and SCtr denote the SC values of generated

music samples and human compositions, respectively.

To calculate GCS, we first define a groove pattern g as

a 64-dimensional binary vector. The groove consistency

(GC) between two grooving patterns (ga,gb) is defined as

follows:

GC = 1−
1

Q

Q−1∑

i=0

XOR(gai , g
b
i ), (7)

where XOR(·, ·) denotes the exclusive OR operation, and

gi denotes a position in a bar at which there is at least a note

onset. Q is the dimensionality of ga and gb. GC is a mea-

sure of music’s rhythmicity. The value of GC stands for the

steadiness in rhythm of the generated music pieces. The

GCS between generated music samples and human com-

positions is defined as follows:

GCS = 1−
|GCgen −GCtr|

GCtr
, (8)

where GCgen and GCtr denote the GC values of generated

music samples and human compositions, respectively.

AL denotes the mean duration of the generated music

pieces, which collectively illustrates the model’s ability to

generate musical sequences with significant length.

The results of the quantitative evaluation are shown

in Table 3. To facilitate a fair comparison by standardizing

the lengths of music pieces, PCES is assessed over a 15-

second span due to the limitations of MMM and FIGARO

in producing extended compositions. Experimental re-

sults show that MMT-BERT achieves higher performance

in PCES, SCS, and GCS compared to the other methods,

demonstrating its effectiveness in generating high quality

music pieces. This achievement is attributed to its chord

awareness and the symbolic music understanding facili-

tated by MusicBERT. MMT-BERT’s AL is marginally less

than that of MMT, and this results from integrating chord

events that are not converted to audio during the decoding

phase. However, MMT-BERT’s AL significantly surpasses

that of MMM and FIGARO, confirming its capability to

generate longer compositions. Additionally, the AL of all

the music pieces in the SOD we used, which also serve as
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PCES (%) SCS (%) GCS (%) AL (sec)

MMM [21] 92.93±1.22 98.64±0.92 98.28±0.29 38.69

FIGARO [23] 94.33±0.31 98.70±0.22 98.84±0.67 28.69

MMT [6] 95.19±0.45 98.94±0.77 98.44±0.55 100.42

MMT-BERT w/o Chord event 95.57±1.32 98.81±0.23 99.56±0.32 100.25

MMT-BERT w/o MusicBERT 96.22±0.44 99.14±0.29 98.61±0.44 97.43

MMT-BERT (ours) 99.73±0.21 99.64±0.31 99.66±0.25 99.87

Table 3. Quantitative evaluation results. The boldface denotes the highest value, and the underlined denotes the second

highest value, respectively.

R H C S O

MMM [21] 3.83±0.92 3.78±0.87 3.78±0.73 3.67±0.84 3.83±0.79

FIGARO [23] 3.78±1.11 3.78±1.11 3.89±1.02 3.89±1.13 3.83±0.92

MMT [6] 3.22±0.70 3.17±0.98 3.44±1.03 3.33±1.09 3.22±0.78

MMT-BERT (ours) 3.55±0.94 3.55±0.92 3.33±0.98 3.39±0.90 3.44±0.80

Table 4. Subjective evaluation results. Each metric is rated on a five-point scale, with the average score being calculated.

the ground truth, is 99.88 seconds. Evaluation results show

that MMT-BERT can produce music of higher quality than

MMT, and of longer duration than MMM and FIGARO.

4.3 Impacts of Chord Event and Discriminator

MMT-BERT aims to generate more harmonious, more

human-like music pieces through the addition of chord

events and adversarial generative learning by employing

MusicBERT as its discriminator. To evaluate aspects re-

lated to richness and humanness, we have conducted sub-

jective experiment and ablation study.

In the subjective experiment, we asked 18 music am-

ateurs as the following five questions and requested that

they rated each on a five-point scale.

• Richness (R): Does the music piece have diversity

and interestingness?

• Humanness (H): Does the music piece sound like it

was composed by an expressive human musician?

• Correctness (C): Does the music piece contain per-

ceived mistakes in composition or performance?

• Structureness (S): Does the music piece exhibit

structural patterns such as repeating themes or the

development of musical ideas?

• Overall (O): What is the general score of the music

piece?

As mentioned in Sec. 4.2, FIGARO and MMM employ a

music representation that considers percussive sounds and

typically generates much shorter pieces. Therefore, the

nature of the music pieces generated by these models, FI-

GARO and MMM, differs significantly from that of MMT-

BERT and MMT due to their use of percussive sounds and

shorter compositions. To fairly evaluate the human-like

quality of the generated music pieces, we compared MMT-

BERT with MMT, a state-of-the-art approach whose gener-

ated compositions have lengths and musical styles that are

relatively similar to those of MMT-BERT. Additionally, to

ensure clarity in subjective evaluation, we included the re-

sults for MMM and FIGARO. The results of the subjec-

tive evaluation are shown in Table 4. Table 4 indicates that

MMT-BERT scores are particularly high in both richness

and humanness compared to MMT. This suggests that the

application of chord events and MusicBERT contribute to

the generation of music pieces that more closely resemble

human compositions. On the other hand, regarding cor-

rectness, our method did not specifically aim to enhance

this metric, which may cause the gap in this value. For the

same reason, our method exceeds MMT by a small margin

in structureness mainly because of uncertainty. Although

there is no clear advantage between MMT and MMT-

BERT in correctness and structureness, our method still

outperforms MMT in richness and humanness. The over-

all score also proves the superiority of MMT-BERT, which

indicates that chord events and MusicBERT enhance the

ability to create music similar to that produced by humans.

The results of the ablation study are shown in Table 3

along with the quantitative evaluation results. It is evident

that the addition of chord events improves PCES and SCS.

MusicBERT also contributes to the enhancement of PCES

and GCS.

5. CONCLUSION

In this paper, we have proposed the chord-aware symbolic

music generation approach, named MMT-BERT. By ex-

tracting chord information from raw audio files, we have

devised a chord-aware symbolic music representation. We

also developed a novel RS-GAN architecture based on

MMT and MusicBERT. Both experimental evaluations val-

idate the efficacy of our method in producing music pieces

of superior quality, enhanced human likeness, and consid-

erable length. In future works, we plan to explore methods

that refine musical structure and incorporate information

from various musical modalities.
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ABSTRACT

Current version identification (VI) datasets often lack suf-

ficient size and musical diversity to train robust neural net-

works (NNs). Additionally, their non-representative clique

size distributions prevent realistic system evaluations. To

address these challenges, we explore the untapped poten-

tial of the rich editorial metadata in the Discogs music

database and create a large dataset of musical versions con-

taining about 1,900,000 versions across 348,000 cliques.

Utilizing a high-precision search algorithm, we map this

dataset to official music uploads on YouTube, resulting in

a dataset of approximately 493,000 versions across 98,000

cliques. This dataset offers over nine times the number of

cliques and over four times the number of versions than

existing datasets. We demonstrate the utility of our dataset

by training a baseline NN without extensive model com-

plexities or data augmentations, which achieves competi-

tive results on the SHS100K and Da-TACOS datasets. Our

dataset, along with the tools used for its creation, the ex-

tracted audio features, and a trained model, are all publicly

available online.

1. INTRODUCTION

Artists continue to cover, remix, and reinterpret musical

works, creating a rich tapestry of musical versions that

celebrate the originals. This proliferation presents a com-

plex challenge: how to accurately identify different ver-

sions of a musical work within vast digital catalogs. Ver-

sion identification (VI) addresses this problem using au-

dio processing methods to find versions of query tracks

in music catalogs [1–3]. VI has thus emerged as a cru-

cial solution with significant implications across multiple

applications including music discovery, musicological re-

search, and copyright enforcement. From both the artists’

and copyright holders’ perspectives, VI has substantial im-

portance as it offers a tool for financial compensation to

many music industry stakeholders.

Recently, multiple datasets, all derived from scraping

© R. O. Araz, X. Serra, and D. Bogdanov. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: R. O. Araz, X. Serra, and D. Bogdanov, “Discogs-VI: A

Musical Version Identification Dataset Based on Public Editorial Meta-

data”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

the SecondHandSongs 1 website, were proposed for de-

veloping VI systems [4–7]. These datasets have facili-

tated the development of various systems based on con-

volutional neural networks (CNNs) [5–12]. However, their

limited sizes have restricted the feasibility of employing

larger architectures, such as transformers, which are in-

creasingly utilized in other music information retrieval

(MIR) tasks [13, 14]. Additionally, existing datasets such

as Da-TACOS [5] and SHS100K [4] lack comprehensive

metadata, such as genre, style, and release year, which can

be useful for detailed performance evaluation and sophis-

ticated training approaches. Furthermore, they fall short in

presenting sufficient challenges regarding the distribution

of clique sizes, genres, styles, and track durations.

This study introduces a significantly larger and more

challenging VI dataset. Rather than relying on Second-

HandSongs, we use public editorial metadata from the

Discogs 2 database, which has not been explored in the

field previously. Discogs is collaboratively maintained by

music enthusiasts and professionals who submit detailed

metadata about music releases, including artist details, re-

lease information, and extensive credit descriptions. These

descriptions not only list track artists and writers but also

provide aliases, name variations, and artist relationships,

offering a rich framework for identifying versions.

Using this metadata, we propose a methodology for

identifying a large dataset of versions and mapping this

dataset to various music audio collections. The resulting

dataset is the largest open-source VI dataset to date. Our

contributions can be summarized as follows:

1. A metadata-only dataset, Discogs-VI, containing

over 1,900,000 versions of around 348,000 works.

2. A subset of this dataset, Discogs-VI-YT, contain-

ing about 493,000 versions of around 98,000 works

matched to YouTube URLs of official music up-

loads. It contains over nine times as many works and

over four times as many versions as other datasets.

3. A larger and more challenging test set that contains

other publicly available test sets.

4. A pre-trained baseline model, Discogs-VINet.

The dataset 3 , together with the tools for its creation,

the extracted audio features, and the model trained on this

data 4 , are publicly available online.

1 https://secondhandsongs.com/
2 https://www.discogs.com/
3 https://mtg.github.io/discogs-vi-dataset/
4 https://github.com/raraz15/Discogs-VINet
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Dataset Source Cliques Versions MCS ACS mCS A-URL m-URL OV Content

covers80 [15] private 80 160 2 2 2 - - - Full audio, title, album, artist
YouTubeCovers [16] YouTube 50 350 7 7 7 - - ✗ Features (full track)
Da-TACOS [5] SHS 1,000 13,000 13 13 13 1.0 1.0 ✗ Features (full track), metadata
CoversDataset [6] SHS 26,905 110,794 24 4 3 1.0 1.0 ✗ Features (first 3 min)
SHS-100K [4] SHS 9,999 116,353 387 12 8 1.0 1.0 ✗ Title, artist

Discogs-VI-YT Discogs 98,785 493,049 658 5 2 1.5 1.0 ✓ Rich metadata, features (full track)
Discogs-VI Discogs 348,796 1,911,611 1,837 6 2 - - - Rich metadata

Table 1. Overview of publicly-available VI datasets. Da-TACOS refers to the benchmark subset, for which the 2,000 noise

works are not reported as they do not form cliques. SHS refers to the SecondHandSongs website. MCS: maximum clique

size; ACS: average clique size; mCS: median clique size; A-URL: average YouTube URLs per version; m-URL: median

YouTube URLs per version; OV: use of official YouTube videos only. “-” denotes that the property is not applicable.

2. IDENTIFYING VERSIONS ON DISCOGS

Discogs database metadata has been previously used in

other MIR tasks [17–19]. In this section, we describe the

proposed methodology to identify versions and cliques us-

ing its metadata. The complete Discogs data is shared as

monthly data dumps under a Public Domain license, mak-

ing it easy to access. In our study, we used the July 2024

data dump.

Numerous metadata fields are provided for releases,

tracks, and artists, some of which are relevant for VI. We

use the track title, track artists, featuring track artists, re-

lease artists, track writer artists, and release writer artists

metadata. The artist metadata contains unique artist IDs

and provides information regarding group memberships,

artist aliases, and artist name variations, which we use ex-

tensively. In addition, we include genre, style, record la-

bel, release format, release date, master release, and re-

lease country metadata that can be potentially useful.

2.1 Version finding from metadata

We use two critical pieces of information to establish the

version relationship between two tracks: the track title

and the track writer artists, indicated by the “Written-By”

metadata field. Specifically, we consider two tracks with

the same title and a shared writer artist as versions. This

is a sufficient but not necessary condition since two tracks

with different names can also be versions. Nonetheless,

this condition facilitates finding a significant amount of

cliques and versions from the database with high precision.

The search for cliques operates on a set of tracks from

the database whose track titles are normalized by apply-

ing string processing. This includes transliterating Latin

characters by removing diacritics, removing leading arti-

cles, replacing “&” with “and”, eliminating any text within

parentheses, and removing punctuation marks. These steps

aim to mitigate potential differences in metadata between

different releases and eliminate mix or edit indicators en-

closed in parentheses, e.g., “(Radio Edit)”, thus facilitating

the process of identifying cliques. Later, such differences

are considered for differentiating between versions.

Using the normalized track titles, we partition the set

of tracks into disjoint subsets using exact string matching.

Then, we further partition these subsets by the common

track writer relation to distinguish different cliques with

the same title. To do so, we compile a set of writer artist

IDs for every track. Given that an artist on Discogs may

represent a group with several members, we extend our

collection to contain all associated members and incorpo-

rate each artist’s known aliases and name variations. As

a result of the two-step partitioning, tracks that have the

same normalized title and share a track writer are joined in

the same cliques. We opted for the shared writer approach

because not all writers are consistently included in credits

on some releases.

Once the cliques are formed, we identify different ver-

sions by the track or release artists. In cases where track

artists metadata is available, it is used; otherwise, the re-

lease artists metadata is used. If there are featuring track

artists, they are also included. Therefore, a set of tracks

belonging to the same clique and performed by the same

set of artists is defined as a version. After identifying the

versions, we discard the cliques with only one version.

In previous VI datasets, versions are not treated as sets

of tracks as in our dataset. This difference arises be-

cause Discogs often lists multiple releases for essentially

the same version of a track, which may vary only by the

year or country of the release. Without direct access to

these releases, it is impossible to confirm their differences

in advance. Therefore, we treat such tracks as identical ver-

sions. Remarkably, our dataset comprehensively includes

a variety of version types as systematized in [20], including

live versions, remixes, and radio edits, which add valuable

diversity and potential utility.

The resulting dataset, Discogs-VI, contains numerous

cliques and versions. Statistics about the dataset in com-

parison to other datasets are provided in Table 1.

2.2 Limitations

Due to the complex processes of composing, performing,

and releasing music, along with issues related to incom-

plete or inaccurate metadata, there are potential issues re-

lated to our approach.

Title variability: Versions can have different names,

e.g. “Moon Over Naples” is the original version of both

“Spanish Eyes” and “Blue Spanish Eyes”. Due to hav-

ing different names, our algorithm falsely places these ver-

sions into different cliques. To address this issue, comple-
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mentary data from SecondHandSongs or a large language

model with music history knowledge can be used.

Rule-based text matching: Even for a single language,

capturing all syntactic variations with simple rules is diffi-

cult. Yet, the database contains many languages with dif-

ferent syntaxes. A music named-entity recognition model

may help to resolve this issue.

Metadata ambiguity: “You’re My Everything” is cred-

ited to “Miles Davis” in some releases while to “Miles

Davis and John Coltrane”, and to “The Miles Davis Quin-

tet” in others. These credential differences often arise from

practical or legal reasons associated with publishing mu-

sic. However, we can not know beforehand if they are dif-

ferent versions using only metadata. To reduce duplicate

versions, we treat them as the same version.

3. VERSION SEARCH IN YOUTUBE

Owing to its detailed metadata, Discogs-VI can be mapped

to music audio catalogs or other metadata sources. For our

research purposes, we use YouTube. To match the Discogs

metadata of a version to the YouTube metadata of a video,

we design a rule-based algorithm.

In the matching process, we only accept videos pro-

vided by an official distributor, which can be the artists

themselves or third parties such as record labels. This ap-

proach is adopted because we expect the official uploads to

have more accurate metadata and be more persistent on the

platform over time. Consequently, our dataset is the only

VI dataset containing official uploads exclusively. In ad-

dition, due to this selectivity, our algorithm demonstrates

high retrieval accuracy.

Discogs provides YouTube URL annotations for some

of the releases associated with versions. However, these

annotations are not on the track level and they are rarely

provided. For a unified approach, we instead query

YouTube for all versions. The queries are created using

the Discogs version metadata in the format “artist1, artist2

- track title”, and if featuring artist information is avail-

able, we concatenate “(featuring artist3)”. We then store

the top five results for each query and apply our metadata-

matching algorithm to all stored results, which allows al-

ternative URLs for certain versions.

As a result, we successfully matched 34% of the ver-

sions of Discogs-VI to a YouTube URL. Between these

matched versions, we were able to download 98% success-

fully, corresponding to 33% of the total versions. We then

discarded the versions that were not downloaded and the

cliques without at least two downloaded versions to create

the Discogs-VI-YT dataset. It contains 26% of the versions

and 28% of the cliques of Discogs-VI.

3.1 Metadata matching algorithm

From Discogs metadata, our algorithm utilizes the track

title, track artists, or, if unavailable, the release artists,

along with any featuring artists. From YouTube, it uses

the video’s category, uploader, artist, description, duration,

and title. We process the strings similarly to the method de-

scribed in Section 2.1, except that the punctuation marks

and possible texts within parentheses are not deleted to

identify different versions.

The algorithm initially checks if the video metadata

contains the “Music” category and if the video is an of-

ficial YouTube upload. We consider a video official un-

der the following conditions: an artist or a label provided

the video, which is indicated in the video description; the

video uploader is an artist topic channel auto-generated by

YouTube; or the Discogs artist name is the same as the

video uploader’s. Videos with a duration longer than 20

minutes are discarded to deal with the potential but un-

likely issue of tracks sharing their titles with their albums

or EPs, which could lead to full-release audio downloads.

If a video metadata passes these controls, we use the ti-

tle and artist information to decide a match. If two titles

are equal, we use the artist information. If the titles do not

match exactly, we apply some heuristics to strip the video

title from any additional information related to remaster-

ing, HD, lyrics, etc., and re-attempt the match. We then

compare all possible permutations to deal with video titles

in the “artist1, artist2 - track title (featuring artist3)” for-

mat, using exact string matching. This approach makes the

dataset less noisy at the cost of losing potential matches.

3.2 Limitations

Since search results and the availability of YouTube videos

can be affected by geolocation, re-creating the dataset may

yield differences. 5 Moreover, some URLs may become

unavailable in the future. 6 To mitigate this issue, we pro-

vide multiple YouTube URLs per version when possible.

Therefore, even if the main URL becomes inactive, numer-

ous versions can still be recovered from alternative URLs.

Furthermore, since we only include official uploads, the

probability of a video disappearing should be lower than

in other datasets. These features have not been considered

in previous datasets that share YouTube URLs [4, 21].

Another limitation of our methodology is that less than

8% of versions are matched to the same YouTube URLs.

Analysis showed that almost all of these versions are mem-

bers of the same cliques. For the cliques that exhibit this

issue, we manually kept one of the duplicate versions.

4. DATASET ANALYSIS

Following the methodologies described in Section 2 and

Section 3, we created the Discogs-VI and Discogs-VI-YT

datasets, respectively. Table 1 reports their sizes. The large

amount of detailed metadata in Discogs-VI shows great po-

tential: combined with an industrial-scale music audio cat-

alog, it can create new possibilities for VI system develop-

ment. Moreover, Discogs-VI-YT contains more clique and

version audio than all the others combined, promising to

boost model performance and generalization capability.

The range of clique sizes in our dataset is unparalleled

by others in the field. The presence of cliques with many

5 We conducted YouTube queries from Barcelona, Spain.
6 The URLs were accessed between March 2023 and July 2024.
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versions is beneficial for metric learning, as it provides nu-

merous examples within each clique [22]. The average,

median, and maximum clique sizes in the dataset indicate

that the distribution has a long tail, with the weight con-

centrated on small clique sizes. Unlike other datasets, this

distribution is highly representative of real use cases.

Figure 1 reports the genre distribution of Discogs-VI-

YT, demonstrating significant coverage over 13 genres.

The distribution of styles, which is included in the project

repository, covers 512 styles from Mambo to Tech House.

Importantly, such genre metadata opens new possibilities

for developing and evaluating VI systems. Previous stud-

ies have not delved into genre and style analyses, leaving

their effect on performance underexplored. Given that our

dataset contains relatively reliable genre and style annota-

tions 7 such analysis is now possible [17].
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Figure 1. Discogs-VI-YT version genre distribution.

Table 2 compares the total number of artists of several

VI datasets. Da-TACOS and SHS100K datasets provide

only one artist per version while Discogs-VI offers multi-

ple. For a consistent comparison, we count one artist per

Discogs-VI version and do not include the group mem-

bers. In addition, Da-TACOS noise works are not con-

sidered. The number of versions and artists comparisons

between SHS100K and Discogs-VI-YT implies that our

dataset contains more versions per artist on average.

Dataset Artists

Da-TACOS 6,375
SHS100K 34,170

Discogs-VI-YT 67,345
Discogs-VI 239,949

Table 2. Number of track artist comparison between se-

lected datasets. One artist per version is reported.

Figure 2 reports the audio duration distribution of

Discogs-VI-YT, reflecting a comprehensive music collec-

tion. We observed that the long-duration tracks are mostly

live versions and jazz or electronic music tracks, which can

be notoriously long. Having long tracks increases the diffi-

culty of training VI systems due to requiring effective time

aggregation techniques or small embedding dimensions.

4.1 Development and test splits

We split the Discogs-VI-YT dataset into training, valida-

tion, and test sets. To increase the compatibility with other

7 Discogs genre and style annotations are release-level, however, they
serve as a reasonable approximation for individual tracks.
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Figure 2. Discogs-VI-YT audio duration distribution.

datasets, the cliques in Discogs-VI that intersect with the

Da-TACOS benchmark and SHS100K-Test sets are en-

sured to be part of our test set. We excluded CoversDataset

from this consideration due to its lack of metadata.

To determine the intersection between our dataset and

the Da-TACOS benchmark set, we conducted a thorough

comparison of track titles and track writers using artist

names, aliases, and name variations. We successfully iden-

tified 935 out of the 1,000 (93%) Da-TACOS cliques and

1,412 out of the 2,000 (71%) “noise” tracks. Given the de-

tailed artist metadata we employed, it is unlikely that the

unidentified works are included in our training set. More-

over, since Da-TACOS selects its “noise” tracks from those

lacking alternate versions and our Discogs-VI consists ex-

clusively of tracks with at least two versions, these tracks

are also unlikely to be included in our training set. Regard-

ing the SHS100K-Test set, we identified 1,555 out of the

1,692 cliques (90%). The union of the identified cliques

from both datasets is reserved for our test set.

We aimed for a 90-10% development-test split; there-

fore, we sampled new cliques to add to the reserved

cliques. While sampling the additional cliques, we did not

exclude the SHS100K-Train set to use our dataset with-

out restrictions. The reserved cliques from the Da-TACOS

benchmark and SHS100K-Test sets had large enough sizes

in our dataset. Moreover, similar to [7], we believe that

having small-sized cliques in the test set simulates real use

cases better. Therefore, we randomly sampled the addi-

tional cliques from sizes two to six. The remaining cliques

were assigned to the development set and were further par-

titioned into training and validation sets following a 90-

10% split. Figure 3 shows the clique size distribution of

our splits, and Table 3 compares the split sizes of different

datasets.
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Figure 3. Discogs-VI-YT splits clique size distributions.
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Dataset Split Cliques Versions MCS ACS mCS

Da-TACOS
Benchmark 1,000 13,000 13 13 13
Noise 2,000 2,000 - - -

SHS100K
Test 1,692 10,547 162 6 5
Validation 1,842 10,884 17 6 6
Train 5,324 87,091 359 16 12

Discogs-VI-YT
Test 9,878 116,197 658 12 3
Validation 8,890 37,081 258 4 2
Train 80,017 339,771 455 4 2

Table 3. Dataset partition sizes. MCS: maximum clique

size; ACS: average clique size; mCS: median clique size

4.2 Audio representations

We computed the following audio representations com-

monly used in VI systems: chroma, HPCP [2], and

CQT [23]. They are available under request for non-

commercial scientific research purposes.

5. BASELINE MODEL

To demonstrate the utility of Discogs-VI-YT we search

for a baseline model that uses computationally inexpen-

sive input representations and is feasible for training on a

consumer-grade GPU.

TPP-Net [8] and its successor CQT-Net [10] rely on

the classification loss for training. Due to the large num-

ber of cliques in Discogs-VI-YT, these models are diffi-

cult to train on this dataset without modifications. Byte-

Cover [11], ByteCover2 [12], and LyraC-Net [24] are also

difficult to train as they employ the classification loss with

additional losses and feature complex architectures having

significantly more parameters. Additionally, the code and

pre-trained weights for these three models are not pub-

licly available. We do not consider ByteCover3 [25] and

CoverHunter [26] as they do not target full-track inputs.

MOVE [9] and Re-MOVE [3] are not considered due to

their reliance on computationally expensive input repre-

sentations. Ultimately, we selected CQT-Net, primarily

due to its adaptability for use with Discogs-VI-YT.

5.1 CQT-Net

The original model is trained with the classification task,

where clique IDs of the SHS100K dataset are used as class

labels. A multi-length training strategy that presents the

model with three different segments from each version is

used to reduce possible biases toward input duration. Ad-

ditionally, tempo change and spectral masking data aug-

mentation techniques are used. During retrieval, the clas-

sification head is discarded and the remaining network is

used for extracting version embeddings, whose similarity

is computed with cosine similarity.

5.2 Discogs-VINet

Training CQT-Net with classification loss is challenging

due to the large number of cliques in Discogs-VI-YT.

Therefore, we utilize the triplet loss, similar to previous

research [6, 9]. To this end, we remove the classification

head from the architecture and change the affine projec-

tion layer to a linear projection with 512-dimensional out-

puts. Additionally, we include an L2 normalization layer

to ensure that embeddings lie on the unit hypersphere. The

resulting model contains 5.2 million parameters.

At each training iteration, a mini-batch is created by

randomly sampling 48 distinct cliques and two random

versions per clique. With this configuration, each sam-

ple can only have one positive; hence, the positive min-

ing strategy is equivalent to offline random sampling. For

mining negatives, we use online hard-negative mining.

We extract the CQT input representations before train-

ing with CQT-Net’s setting. However, we store them with

16-bit precision due to the large storage requirement of our

dataset. Unlike CQT-Net’s multi-length training strategy,

we use fixed-length inputs where consecutive CQT frames

of about 185 seconds are taken randomly. Then the fea-

tures are mean downsampled with a factor of 20, following

the authors. To demonstrate the benefits of using our large

dataset, we do not use any data augmentation method dur-

ing training, such as tempo and key modifications, spectral

masking techniques, or audio degradation methods used in

previous VI research.

We train Discogs-VINet for 50 epochs, which takes

about 25 hours using a single Nvidia RTX2080. We use

the AdamW optimizer, setting the initial learning rate to

1e-3 and adjusting via exponential decay. The triplet loss

margin is set to 0.1.

During training, we use our validation set to monitor

performance. Every five epochs, we simulate the VI task

and save the best model in terms of mean average precision

(MAP). However, we evaluate the model at the end of the

training on Discogs-VI-YT, Da-TACOS, and SHS100K

datasets using MAP and the mean rank of the first relevant

item (MR1) metrics.

5.3 Evaluation on Discogs-VI-YT

Due to potential overlaps between the training sets of pub-

licly available VI models and the Discogs-VI-YT test set,

we could not benchmark the publicly available models. For

instance, as discussed in Section 4.1, there can be shared

tracks with the SHS100K-Train set. Similarly, the Da-

TACOS training set, which is not publicly available, may

share tracks with our test set, rendering comparisons with

models trained on this dataset unreliable. Additionally,

as discussed in Section 5, training numerous models on

Discogs-VI-YT were not possible. We acknowledge these

limitations and suggest that benchmarking models is a crit-

ical area for future research.

Despite these challenges, we present the scores ob-

tained by Discogs-VINet. Our model obtains a MAP score

of 0.443 and an MR1 score of 614.1 on the Discogs-VI-

YT test set, which establishes the baseline scores on this

dataset. The contrast between the MR1 and MAP val-

ues can be attributed to the realistic clique size distribu-

tion. As shown in Figure 3, the test set contains numerous

cliques with size two. When a query is made with a ver-
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Training data Model d
Da-TACOS SHS100K-Test SHS100K-Test**

MAP ↑ MR1 ↓ MAP ↑ MR1 ↓ MAP ↑ MR1 ↓

Da-TACOS
MOVE [9] 4,000 0.495 48†

✗ ✗ ✗ ✗

MOVE [9] 16,000 0.507 46†
✗ ✗ ✗ ✗

Re-MOVE [3] 256 0.524 43†
✗ ✗ ✗ ✗

SHS100K-Train

TTP-Net [8] 300 ✗ ✗ 0.465 72 ✗ ✗

CQT-Net [10] 300 ✗ ✗ 0.655 55 ✗ ✗

ByteCover [11] 2,048 ✗ ✗ 0.836 47 ✗ ✗

ByteCover2 [12] 128 ✗ ✗ 0.839 46 ✗ ✗

ByteCover2 [12] 1,536 ✗ ✗ 0.863 39 ✗ ✗

SHS100K-Train*
ByteCover [11] 2,048 0.714 23 ✗ ✗ ✗ ✗

ByteCover2 [12] 128 0.718 23 ✗ ✗ ✗ ✗

ByteCover2 [12] 1,536 0.791 19 ✗ ✗ ✗ ✗

SHS100K-Train** LyraC-Net [24] 1,024 ✗ ✗ ✗ ✗ 0.765 48

Private LyraC-Net [24] 1,024 0.813 15 ✗ ✗ 0.884 33

Discogs-VI-YT Discogs-VINet 512 0.607 24 ✗ ✗ 0.660 61

Table 4. Performance comparison on the Da-TACOS benchmark and SHS100K-Test sets. * denotes that the Da-TACOS

benchmark set tracks were removed, ** denotes that the corresponding authors of that model downloaded the available URLs

(therefore LyraC-Net [24] and Discogs-VINet are not evaluated on the same data), d denotes the embedding dimension, ✗

denotes that the result was not available, and † denotes the corrected calculations described in Section 5.4.

sion from these cliques, retrieving the only other version in

high rankings contributes significantly to the MAP metric.

5.4 Evaluation on Da-TACOS and SHS100K

We tested Discogs-VINet on the Da-TACOS benchmark

and SHS100K-Test sets. From the SHS100K-Test set, we

could download 8,489 versions (80% of the total). As dis-

cussed in Section 4.1, we perform an extensive analysis to

ensure that our training set has a minimal intersection with

the evaluated sets.

The results are presented in Table 4, relying on results

reported in the literature except for MOVE and Re-MOVE,

for which we recomputed the results due to a metric calcu-

lation problem we discovered. In the public Da-TACOS

evaluation script, "noise" works are wrongly boosting the

MR1 score instead of being excluded. We corrected this is-

sue, tested the official MOVE and Re-MOVE models, and

listed the updated MR1 values.

In Table 4, Discogs-VINet outperforms both MOVE

and Re-MOVE on the Da-TACOS benchmark set, which

is a significant improvement given the simplicity of our

input representation and lack of data augmentations. Un-

like such, Discogs-VINet does not depend on pre-trained

models for input representation. As a result, it exhibits

significantly faster embedding extraction, similar to those

reported in [12].

On the SHS100K-Test set, even though we used a

slightly smaller subset due to some URLs becoming un-

available, we could not improve over other considered

models, except for the TTP-Net and CQT-Net. In partic-

ular, CQT-Net, which we modified for our baseline, per-

formed similarly. We posit that these differences may stem

from the absence of data augmentation techniques in our

methodology or from the classification loss possibly struc-

turing the latent space more effectively than the triplet loss

we implemented. Nonetheless, further experiments are re-

quired.

ByteCover, ByteCover2, and LyraC-Net outperform

Discogs-VINet by a significant margin. This performance

difference can be attributed to several factors: the com-

bined use of classification and triplet losses, as reported

in the literature [27], the advantages obtained by training

larger architectures, or the absence of data augmentations

in our model. However, it is important to note that indepen-

dent studies have raised concerns about the reproducibility

of the published results associated with the ByteCover ap-

proach [24, 28].

6. CONCLUSION

We presented a new methodology to create a VI dataset

from a previously unused metadata source, Discogs. Using

this metadata, we identified a large number of cliques and

versions to create the Discogs-VI dataset and matched a

large portion of the versions with official YouTube URLs

to create its Discogs-VI-YT subset. Our datasets surpass

existing datasets by far in size and provide unprecedented

metadata detailing genre, style, and artist relationships.

To demonstrate the utility of Discogs-VI-YT, we

trained a baseline model, Discogs-VINet, on the training

set and evaluated the model performance on the test set,

establishing baseline results. Additionally, we assessed

Discogs-VINet’s performance on the Da-TACOS bench-

mark and SHS100K-Test sets, where it demonstrated com-

petitive performance. Notably, our model achieved these

results without relying on any data augmentation tech-

niques, multiple training losses, or complex architectural

designs.

We leave training large models, using the metadata rela-

tions for training and evaluation, and investigating the role

of data augmentations as future work.
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ABSTRACT

The meteoric surge of AI-generated music has prompted
significant concerns among artists and publishers alike.
Some fear that the adoption of AI is poised to result in
massive job destruction; others sense it will jeopardize and
eventually upend all legal frameworks of intellectual prop-
erty. AI, however, is not the first instance where humanity
has confronted the prospect of machines emulating musi-
cal creativity. Already in the Baroque, various modes of
musical artificiality were explored, ranging from automata
and organ stops mimicking human performance and nat-
ural sounds, up to devices for mechanized composition
(e.g., Athanasius Kircher, Johann Philip Kirnberger, C.P.E.
Bach, Antonio Calegari and Diederich Nickolaus Winkel).
Valuable insights emerge from the reconsideration—and
digital implementation—of these curiosities through the
lens of present-day generative models. It can be argued that
the very notion of ‘artificiality’ has presented humanity
with long-standing philosophical dilemmas, in addressing
the debate on the role of art as a substitute of (divine) na-
ture. By digitally implementing and formalizing some pi-
oneering instances of algorithmically-generated music we
wish to illustrate how mechanical devices have played a
role in human art and entertainment prior to our digital era.

1. INTRODUCTION

The rise of AI-generated music has sparked consider-
able concern among both artists and publishers. Some
worry that the integration of AI technology may lead to
widespread job displacement, while others foresee poten-
tial threats to existing legal structures governing intellec-
tual property rights. The very notion of ‘artificiality’ has
a decidedly negative ring to most people, evoking feelings
of distrust, inauthenticity, and deviations from the ‘natu-
ral’ or ‘genuine.’ This can be attributed to the Platonic
tradition. In The Republic (c. 375 BCE), Book X, Plato fa-
mously criticised the act of imitation (mimesis) in art and
poetry as the ‘copy of a copy,’ merely satisfying the in-
ferior senses and base pleasures, and lacking connections

© N. Cornia and B. Forment. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attri-

bution: N. Cornia and B. Forment, “Who’s afraid of the ‘Artyfyshall
Byrd’? Historical notions and current challenges of musical artificiality”,
in Proc. of the 25th Int. Society for Music Information Retrieval Conf.,

San Francisco, United States, 2024.

with truth, virtue, or other higher ideas. The imitator, Plato
contended, was a person who “has neither knowledge nor
right opinion about whether the things they make are fine
or bad." [1, p. 1206]

But art is of course ‘artificial’ by its very nature, as
a cultural expression, and vice versa: all artificiality re-
quires art. Like ‘artifact’ and ‘artifice,’ ‘artificiality’ com-
bines the Latin noun ars with the verb facere into one
expression which means ‘doing art.’ ‘Art,’ consequently,
can be understood as something so well-made (or ‘artful’)
that it can substitute for the real or natural, which it is
inseparably paired with. Artificiality, in this sense, does
not need to possess any pejorative connotation; it simply
amounts to ‘art’ or ‘artistry’ itself. As man-made contrap-
tion, an artifice demands art, being the craftsmanship or
‘science’ required to entice the beholder or listener through
its mimicry. The past teaches us important lessons in this
regard.

Artificiality, or “Nature’s Changeling,” [2, p. 51]
as Margaret Cavendish termed it in The Blazing World

(1666), has long fascinated humanity for providing an il-
lusion of divine creation. The idea of building an alterna-
tive reality, which can be controlled by its human creators,
has appealed to artists, scholars, and musicians through the
ages. In particular in the long Baroque (c. 1550–1800) ‘ar-
tificial’ even denoted anything that was ‘artful.’ When, for
example, the English diarist John Evelyn (1620–1706) vis-
ited the royal park of Brussels, on 8 October 1641, he mar-
veled at “artificial cascades, rocks, grots” and a “grot of
more neat and costly materials, full of noble statues, and
entertaining us with artificial music.” [3, p. 37] In 1635,
the French literary critic Jean Chapelain (1595–1674) con-
tended that:

imitation in all poems, must be so perfect
that no difference appears between the thing

imitated and that which imitates [emphasis
added], for the principal effect of the latter
consists in proposing to the mind, in order to
purge it of its unbridled passions, the objects
as true and present”. [4, p. 115]

The Italian painter and architect Federico Zuccaro
(1539–1609), furthermore, distinguished three types of de-
sign: natural (implying the imitation of nature), artifi-
cial (being a stylized distortion of nature), and fantastic-
artificial (producing images of an entirely imaginary and
unusual kind). [5] In sum, the Baroque revelled in artifi-
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ciality, hailing the trompe l’œil, masquerade, automaton,
and other sorts of mimicry as pinnacles of art. 1 [6, p. 10]

The Baroque did not perceive anything deceptive per se
about artificiality, as long as not the mimicry itself—the
relationship between artifice and nature—and the meth-
ods to obtain it were denied. Thus, François Hédelin,
abbé d’Aubignac (1604–1676), argued in La Pratique du

théâtre (1657) that spectators in the theatre knew all too
well they were tricked when being “shown a new heaven,
a new Earth, and an infinity of wonders that we believe to
be present, at the very time we are quite sure we are be-
ing deceived.” 2 Conscious of the fact they were beholding
painted canvases, handled by mechanical equipment, they
relished the thought of artists producing such wonders. In
a similar vein, Francis Bacon (1561–1626) included “all
manner of feats of juggling, false apparitions, impostures,
and illusions” in Salomon’s house, the utopian research in-
stitute evoked in New Atlantis (publ. posth., 1627):

[a]nd surely you will easily believe that we,
that have so many things truly natural which
induce admiration, could in a world of partic-
ulars deceive the senses, if we would disguise
those things and labour to make them seem
more miraculous. But we do hate all impos-

tures, and lies; [emphasis added] insomuch as
we have severely forbidden it to all our fel-
lows, under pain of ignominy and fines, that
they do not show any natural work or thing,
adorned or swelling; but only pure as it is, and
without all affectation of strangeness. [7, p.
40]

Consequently, the Baroque accepted and even actively
endorsed methods of replicating nature as expressions of
supreme craftsmanship, but it demanded that the mechan-
ics of those “miraculous” devices be fully acknowledged
and revealed.

It was only in the nineteenth century, as ‘authority’ and
‘originality’ emerged as core values of a “new code of
artistic morality,” [8, p. 319] that a shift occurred in the
understanding of art. This transformation altered the per-
ception of the artwork from a handcrafted, artisanal prod-
uct—an ‘artifice’—into a cerebral, isolated, and unique ex-
pression of genius. To replicate something came to be seen
as an act of unoriginality, forgery, or plagiarism, [9] while
technologies for mechanical reproduction (including pho-
tography, audio recording, and cinematography) were held
responsible for the destruction of art’s ‘aura.’ [10] Plato
returned with a vengeance.

In what follows, we will revisit the Baroque, and more
particularly the devices for mechanised music composi-

1 German Bazin argued that “Perhaps the most surprising feature of
Baroque art,” the art historian and former Louvre curator Germain Bazin
argued, is how the artists “who in thought and deed created new worlds
could indulge in childish games of make-believe. One might pretend to
be Apollo, Rinaldo, the Grand Turk, or even Confucius, but never simply
oneself...”

2 “on nous montre un nouveau Ciel, une nouvelle Terre, & une infinité
de merveilles que nous croyons avoir présentes, dans le temps même que
nous sommes bien assurés qu’on nous trompe.”

tion through which it explored artificiality in music. In
discussing and digitally implementing a select number of
these curiosities, our intention is not necessarily to en-
gage in history for the sake of history itself, but rather to
gain transhistorical insights into the workings and ethics
of generative models in music composition.

By digitally implementing and formalizing some pio-
neering instances of algorithmically-generated music we
wish to illustrate how mechanical devices have played a
role in human art and entertainment prior to our digital era.

2. A SELECTED HISTORY OF GENERATIVE

MODELS IN MUSIC

Whenever mechanical music is mentioned,
one naturally thinks of our latest inventions, of
the most highly perfected products of a techi-
cal, industrial age. [11]

The opening of 1934 article by Hugo Leichtentritt on
mechanical musical instruments is an instructive example
of how humanity has regularly confronted itself with cul-
tural changes caused by technological progress, such as the
early 20th century media revolution of radio broadcasting,
movies and musical recordings. [12] Breakthrough tech-
nologies, such as the printing press, musical automata and
clockworks, and audio recordings have always transformed
artistic practice into new, unforseen modes of expression.
For instance, musical styles such as hip-hop, electronic
dance music and musical collages such as Luciano Berio’s
Sinfonia (1968), [13] laid their foundation on the possibil-
ity to repeat, transform, assemble and interact with pre-
recorded material.

In a similar fashion, watching automata playing music
in action, ingeniously designed using programmed cylin-
ders and cogwheels mechanisms, [14] must have been an
unimaginable experience for our forerunners, only compa-
rable to our modern wonder for AI tools. These devices
were able to entertain their public with musical pieces
composed on the spot without any apparent human inter-
vention.

We can even reassess Henry Purcell’s famous “Wonder-
ous Machine” bass aria from Ode for St Cecilia’s Day Z.
328, reinterpreting the lyrics through the lens of an im-
potent Baroque musician (in this case a lute player) con-
fronting themselves with the infinite possibilities of inde-
fatigable mechanical devices:

Wondrous machine!

To thee the warbling lute,

though used to conquest,

must be forced to yield,

with thee unable to dispute.

The voice and instrumental accompaniment’s patters
seem to emulate the perpetuum mobile of mechanically
driven musical instruments, the like of which are described
in later treatises like Engramelle’s La Tonotechnie ou l’art

de noter les cylindres (1775) or ambitious implementations
such as Diederich Nickolaus Winkel Componium (1821), a
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Figure 1. Detail from the opening engraved page of Marie-
Dominique-Joseph Engramelle La Tonotechnie ou l’art de

noter les cylindres (1775).

Figure 2. Opening ground bass, accompaniment of the two
oboes and singing voice dotted diminutions of respectively
measures 1-2, 3-4 and 15-16.

mechanical device able to play an almost endless amount
of variations on a pre-programmed piece of music. [15]

But how to translate a highly complex activity, such as
music, into an algorithmic procedure? The act of music-
making, either planned by a composer or made ex tem-

pore by an improviser, arises from selecting musical ges-
tures from an associative knowledge base stored in the mu-
sician’s long-term memory. [16] For centuries, musicians
have built such repositories, organising the vast palette of
musical gestures, or schemata, through various systems of
classification. [17] Tables, decision trees and voice-leading
matrices have helped musicians to create a repertoire of
melodic, harmonic and rhythmic patterns reflecting their
contemporary musical style and performance practice.

Archetypical musical schemata were represented by
rules, such as Thomas Campion’s procedure for four-voice
harmonisation of a given bass line. [18, p. 1-8] More-
over, Pietro Cerone encyclopaedic work El melopeo y mae-

stro, [19] provided an endless series of musical tables and
examples, similar in fashion to our modern “training sets”
for AI models, that musicians internalised in their long
term-memory, ready to be used during improvisation or
composition of new pieces. [20]

Figure 3. Voice-leadning rules four four-voice harmoni-
sation of a given bass melody. The procedure is based on
the bass movements and relative consonances between the
upper and lower voices.

Several treatises, like Giovanni Battista Chiodino’s Arte

Pratica Latina et Volgare di far contrapunto a mente, et a

penna (1610), focussed on contrapuntal patterns that could
be used by musicians to harmonise a given melody or
bassline, while others, like Francesco Rognoni Selva de

varii passaggi (1620), provided the students with complex
rhythmic patterns for ornamenting melodic lines and ca-
dential formulas not very dissimilar to 20th-century col-
lections like Nicolas Slominsky’s Thesaurus of Scales and

Melodic Patterns (1947) or Jerry Coker’s Patterns for Jazz

(1970).
Of particular interest for our discussion is the ‘Arca

Musarithmica’, a computational device designed by the
German polymath Athanasius Kircher (1602–1680) and
described in the second volume of his Musurgia Univer-

salis (1650). [21] Kircher’s compositional tool generates
four-voice homophonic and polyphonic harmonisations
(respectively named contrapunctus simplex and floridus)
on the basis of a given set of verses and a musical scale, ac-
cording to the conteporary Renaissance theory of authentic
and plagal modes. The machine was designed to generate
hymns for Jesuit missionaries working in religious com-
munities outside Europe: thanks to Kircher algorithm, the
priests could easily generate music from a liturgical text
in the native language of their communities and compose
the music according to the “affect” of the verses. [22] As
if anticipating Purcell’s “Wonderous Machine,” the author
describes the algorithm as “wondrous music” (musurgiae

mirificae), referring to the device’s capacity to instill won-
der (meraviglia) in listeners and composers (or operators)
alike. 3 To the best of our knowledge, Kircher is one
of the first to use an abstract representation of the four-
voice counterpoint: he assigned numerals to the scale’s rel-
ative degrees and provided tables of rythmical patterns that

3 A recent digital implementation of the arca has been made by An-
drew A. Cashner of University of Rochester. The code is publically
available on GitHub at https://github.com/andrewacashner/kircher while
a web-based application can be found at https://arca1650.info
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Figure 4. An erlier example of the use of dice and ran-
domness in musical composition is Pietro Cerone Enigma

de la suerte, ò de los dados appearing his his El melopeo y

maestro (1613), pag. 1124. [31]

could be independently assembled with each other. A more
"serialistic" approach can be found in the Anonymous trea-
tise Ludus Melothedicus (1758), where the author created
a series of numerical tables, where each number corre-
sponded to a chromatic pitch and a given duration.

A detailed analysis of Kircher’s voice-leading patterns
reveals that these four-voice harmonies conform to typi-
cal 16th century musical schemata and chord progressions.
Many of these progressions are based on counterpoint rules
encoded in other treatises, like the one of Thomas Cam-
pion, the musical examples of Vicente Lusitano Introdut-

tione facilissima, et novissima, . . . (1553), [23] Thomas
Morley A Plain and Easy Introduction to Practical Music

(1597) [24] and Tomás de Santa María Libro llamado arte

de tañer fantasía (1565) [25]. [26]
Furthermore, the idea of encoding contrapuntal struc-

tures in a series of mathematical operations has found
several resonances in the works of C.P.E. Bach Einfall

einen doppelten Contrapunct in der Octave von 6 Tacten

zu machen (1757), [27] the stylistic analysis of “Palestrina
style” counterpoint of Serge Taneiev Convertible Counter-

point in the Strict Style (first publication, 1909) [28] and
in the theories of melody, harmony and rhythmn of 18th
century mathematician Leonard Euler. [29]

A step ahead of pure deterministic rules, was the in-
troduction of randomness in the compositional process,
reducing the musician’s agency on the generated artifact.
The development of combinatorics, with its first applica-
tion to music theory can be found in the early 17th cen-
tury works of Kircher and Marin Mersenne, musicians
explored the possibility of generating music from a se-
ries of exemplars through a randomized process, usually
implemented by appending musical fragments according
to numerical tables and dice rolling. To the best of our
knowledge, the first published “dice game” (würfelspiel

in German) is Johann Philipp Kirnberger Der allezeit fer-

tige polonoisen- und menüettencomponist (1757), provid-
ing random tables to generate popular dance music (a
polonaise and a menuet) for two violins and harpsichord
accompaniment. [30]

In the coming decades, many other musicians imitated

Figure 5. Ingestion of lyrics into the generated music in
Calegari’s Gioco Pitagorico Musicale.

Kirnberger’s curious experiment to generate music in an
algorithmic fashion, leaving the user’s agency to pure
chance. The best known of these "dice games" is probably
Anleitung so viel Walzer oder Schleifer mit zwei Würfeln zu

componiren, attributed to W.A. Mozart and published by
Nikolaus Simrock around 1790. Its fame is so great that
a digital implementation of the compositional device had
already been developed by David Caplin in 1955. [32, 33]

Of particular interest is Antonio Calegari’s Gioco

Pitagorico Musicale (1801), which provides a framework
for including lyrics to the generated airs and duets. In
the title the author states clearly that the game is designed
“for people without any knowledge of music”, 4 willing to
amuse themselves at home with a seamless infinite combi-
nation of songs in the then current operatic style. [34]

A similar statement, made in the introduction of An-
drea Mangeruva’s Nuovo Metodo per Comporre Migliaja

di Walser (1839), where the author designed a complicated
randomised procedure based on modular arithmetic, en-
courages the use of the book for domestic music-making
and amusement but warns the reader about the “serious-
ness” of his device: according to Mangeruva a “mechanical
musician” (un musico meccanico) cannot aspire to “true
music” (la vera musica), making an analogy between rules
and procedures of prosody with the art of poetry. [35, p. 4]
Unfortunately, Mangeruva’s treatise is nothing more than
a plagiarism of a 1811 French publication Barême musi-

cal, ou l’Art de composer la musique sans en connaître les

principes attributed to Italian composer Gioseffo Catrufo.
[30]

Many of these publications address a specific facet of
music-making, namely amusement and entertainment. Is
not by chance that these "dice games" were mainly used to
generate popular music, in the form of songs and dances.
Furthermore, we have noticed how many publishers have
attributed their publications to famous composers, such in
the case of the Gioco Filharmonico, attributed to Joseph
Haydn by Luigi Marescalchi in 1793. Misattributions, re-
arrangement and even unauthorized reprints have been sur-
prisingly commond in the genre, as previously stated in the

4 "Col quale potrà Ognuno, anco senza sapere di Musica, formarsi una
Serie quasi infinita di picciole Ariette"
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Figure 6. Musical table from Andrea Mangeruva Nuovo

Metodo.

instance of Mangeruva’s "borrowing" from Barême musi-

cal.
Concerning the algorithms, they are mostly based on a

series of basic musical variations of a piece, like a menuet
or countrydance, composed beforehand by the author. Af-
terwards, a series of puzzles, enigmas, and randomizations
are used as expedients to deceive the user, keeping the il-
lusion that the procedure must be of some kind of magic.
In several manuscript sources of early "dice games" the
term cabala is often used, 5 alluding to the duality be-
tween modern science, in the nascent theory of probabil-
ity, and proto-scientific disciplines like alchemy and as-
trology. [36]

3. DIGITAL IMPLEMENTATIONS

A series of digital implementations of the treatises de-
scribed in our paper are publically available on our GitHub
repository. 6 Alongside the Python code, we are provid-
ing the digital images of the discussed treatises and a small
dataset of musical examples in LilyPond 7 , MIDI and PDF
format, both from the generated music as for the input
exemplars. The transcriptions of each musical fragment
could be used as ground truth for Optical Music Recog-
nition tasks involving the transcription of individual mea-
sures, both for printed as for handwritten music. [37] Fur-
thermore, this unique musical corpus might be used in fu-
ture research as baselines for evaluating generative mod-
els emulating 18th century Western classical music. A de-
tailed list of pre-digital generative models for music can be
found on the aforementioned Artyfyshall Byrd GitHub.

4. CONCLUSIONS

The present article wishes to present the current discus-
sion on Artificial Intelligence and music from an histori-
cal perspective. The desire to artificially emulate nature

5 Several 18th century musical dice games refer explicitly to the Jew-
ish kabbalah in their title and content, such as Johann P. Kirnberger Ca-

bala per componendi minuetti, Bernardo Ottani Tavola per la Cabala and
the anonymous Musicalische Cabala preserved in the National Library of
France. For a detailed list of tretise visit our GitHub repository.

6 https://github.com/NicholasCorniaOrpheus/Artyfyshall-Bird
7 https://lilypond.org/

is a fascinating feature of human beings, and can find its
roots in history, as well as in myths like Pygmalion, de-
scribed in Ovid’s Metamorphoses (c. 8 CE), Book X. [38,
p. 128-148] With the technological developments of the
Modern Period we have increasingly refined our craft to
a point where the differences between the ‘artificial‘ and
the ‘natural‘, between the ‘authentic‘ and the ‘forged‘, are
almost impossibile to discern. [39] On the other hand, the
challenges afforded by technology and its artificial devices
encourage us to reconsider the meaning of creativity and
the role of art in our culture. [40] New technologies pose
a "challenge to the imagination" for composers and per-
formers, [41] extending the boundaries of human’s creative
effort. This statement is still valuable to our modern "won-
drous" times, where the dreams of Leonard Euler [42] and
Ada Lovelace 8 [14] to mathematically encode every facet
of music so that a machine could generate new pieces have
become a tangible reality. Studing what it meant for our
forerunnes to interact with the wonders of musurgiae mir-

ificae can help us frame the current issue from a historical,
dialectical perspective.
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ABSTRACT

Automatic singing skill evaluation (ASSE) systems are

predominantly designed for solo singing, and the scenario

of singing with accompaniment is largely unaddressed.

In this paper, we propose an end-to-end ASSE system

that effectively processes both solo singing and singing

with accompaniment using data augmentation, where a

comparative study is conducted on four different data

augmentation approaches. Additionally, we incorporate

bi-directional cross-attention (BiCA) for feature fusion

which, compared to simple concatenation, can better ex-

ploit the inter-relationships between different features. Re-

sults on the 10KSinging dataset show that data augmen-

tation and BiCA boost performance individually. When

combined, they contribute to further improvements, with

a Pearson correlation coefficient of 0.769 for solo singing

and 0.709 for singing with accompaniment. This repre-

sents relative improvements of 36.8% and 26.2% com-

pared to the baseline model score of 0.562, respectively.

1. INTRODUCTION

In recent years, the widespread use of digital media has

changed the way users interact with music, giving rise

to new applications like streaming services and online

karaoke platforms [1, 2]. As numerous singing content is

published daily by these applications, it becomes very ex-

pensive and practically unscalable to retrieve high-quality

content manually. One such scenario is the discovery of

vocal talent in the vast online platforms, where automatic

singing skill evaluation (ASSE) systems can be used to ex-

amine and rate all the singing content, so that the top-tier

can be distributed for more views, subscribers, and ulti-

mately more profits.

© Y. Ju, C. Y. Wu, B. C. Lorenzo, J. Yang, J. Deng, F. Fan,

and S. Lui. Licensed under a Creative Commons Attribution 4.0 Inter-

national License (CC BY 4.0). Attribution: Y. Ju, C. Y. Wu, B. C.

Lorenzo, J. Yang, J. Deng, F. Fan, and S. Lui, “End-to-end automatic

singing skill evaluation using cross-attention and data augmentation for

solo singing and singing with accompaniment”, in Proc. of the 25th

Int. Society for Music Information Retrieval Conf., San Francisco, United

States, 2024.

Despite the potential commercial values, ASSE is a dif-

ficult task that encompasses both subjective preferences

and multi-dimensional objective features (e.g., intonation

accuracy, rhythm accuracy, range, and dynamics) that pro-

fessional judges also consider when evaluating vocal per-

formances [3]. Over the years, different ASSE systems

have been proposed. Depending on whether a reference

melody is taken as the ground truth, these ASSE sys-

tems can be classified as reference-dependent [4–9] or

reference-independent approaches [10–18]. Recent re-

search on ASSE has been mainly focused on reference-

independent deep learning-based approaches, where CNN-

based architectures are often used to extract useful patterns

from input spectrograms [11,14,15,17,18]. Other features

including pitch histograms [11,14,15,17] and singer timbre

embeddings [17, 18] are also used, and these features are

usually fused via concatenation. Although this is a simple

way of feature fusion, the more advanced techniques that

could uncover deeper relationships between these features

are still unexplored in ASSE.

Another limitation of the current ASSE research stems

from the lack of open-source datasets and high-quality an-

notations. For example, among the three recent datasets:

neither the Smule DAMP dataset [14] nor the YJ-16K

dataset [18] is open-sourced, and although Lyra-SA [19] is

available after filling out an application form 1 , the authors

claimed that singing skill annotations are still immature

and therefore not sufficiently curated for research purposes

yet. Other ASSE datasets including self-made recordings

[9,20] or collections from singing platforms [7,12] are also

non-public. The lack of publicly available datasets is one

of the major impediments that significantly hinder the ad-

vancement of ASSE research.

Finally, most ASSE systems require solo singing as in-

put, leaving the scenario of singing with accompaniment

largely unexplored [7–9, 11, 12, 14, 15]. On the other

hand, [17] proposed an ASSE system that can process

singing with accompaniment, but it is achieved by employ-

ing a singing voice separation tool [21] as a pre-processing

step to remove the accompaniment, which not only re-

sults in a more complicated and computationally expen-

sive system, also the model input is still essentially solo

1 Available at: https://lyracobar.y.qq.com/singvoicedataset.html
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singing. In this paper, we propose a new ASSE system

capable of processing both solo singing and singing with

accompaniment in an end-to-end manner, thereby elimi-

nating the need for a singing voice separation tool. This is

achieved through data augmentation during training, where

we present the same singing clip in three distinct versions:

solo singing, singing with its original accompaniment, and

singing remixed with a different accompaniment. For the

remixed version, we explore and compare four different

approaches, which will be detailed in Section 2.2.2. Fur-

thermore, we explore feature fusion techniques beyond

simple concatenation, since such methods can better in-

tegrate and amalgamate diverse data sources with greater

efficacy [22, 23]. In particular, we adopt a Bi-directional

Cross-Attention (BiCA) mechanism during feature fusion,

given its effectiveness in capturing the reciprocal knowl-

edge exchange between the source and target features in

both directions [24]. The contributions of this paper are:

• We propose an ASSE system that processes both

solo singing and singing with accompaniment. The

system functions in an efficient end-to-end manner,

thereby eliminating the need for a singing voice sep-

aration tool required by the baseline model [17].

• We adopt a BiCA mechanism during feature fu-

sion, which better exploits the inter-relationships be-

tween different features and facilitates their recipro-

cal knowledge exchange, compared to simple fea-

ture concatenation (see Section 2.2.1).

• We explore data augmentation for ASSE and com-

pare four different approaches: the existing Shuffle-

And-Remix [25], the proposed Same-Song Remix,

the proposed Key-Match Remix, and All Remix that

combines the data augmented from the above three

methods (see Section 2.2.2).

• Results show that BiCA and data augmentation

boost performance individually (see Section 3.4).

The combination of both results in further improve-

ments, with a Pearson correlation coefficient of

0.769 for solo singing and 0.709 for singing with ac-

companiment on the 10KSinging dataset. This rep-

resents relative improvements of 36.8% and 26.2%

compared to the baseline score of 0.562 [17], respec-

tively.

2. METHODOLOGY

2.1 The Baseline Model

In the ASSE literature, singing skills can be presented as

a ranking [11], a category [8, 9, 12, 18] (e.g., awesome,

mediocre, or inferior), or a numerical score [14, 15, 17, 20]

(e.g., 60 out of 100). We consider numerical scores for

singing skills since they can be mapped into discrete cate-

gories or sorted as a ranking, which can be used in differ-

ent scenarios. Within this range, the existing literature on

ASSE is quite limited, and we consider [17] the baseline

model for our study, due to its superior performances to

the recent ASSE system [14].

The pipeline of the baseline model is shown in Fig. 1(a):

it begins by extracting solo singing from the input using

an existing singing voice separation tool [21], then the

Constant-Q Transform (CQT) is computed and processed

by a Convolutional Recurrent Neural Network (CRNN)

with an attention mechanism. Following this, the 200-

dimensional output from the CRNN and attention is fused

with the 120-dimensional pitch histogram 2 and the 512-

dimensional X-vector 3 using concatenation. Finally, the

combined features are subsequently fed into a streamlined

pair of dense layers to output the predicted singing rating. 4

Compared to [14], three improvements were made in

[17]: (1) the attention mechanism was added to the CRNN

structure to further explore the useful, long-term relation-

ships in the feature space; (2) X-vector [26] was added as

additional features to depict the singing voice timbre, rep-

resenting the control, resonance, and power that can be es-

sential in singing skill evaluations; (3) the network struc-

ture was also finetuned to accommodate the first two im-

provements, where an extra dense layer was added to op-

timize the performance. Furthermore, they presented the

10KSinging dataset, which includes the singing skill rat-

ings for 9,756 songs from 93 Chinese male singers and

97 Chinese female singers, and it was further divided into

training, validation, and testing sets with 8,000, 756, and

1,000 songs, respectively. Each song from 10KSinging

has two versions: the original singing with accompaniment

version and the solo singing version, where the accompani-

ment of the latter was removed using a singing voice sep-

aration tool [21]. They used both versions to train their

proposed ASSE model and found the solo singing version

achieved better performances. Therefore, they considered

singing voice separation an integral part of the pipeline,

extracting solo singing as the input to their ASSE model

shown in Fig. 1(a). As a result, a 62.4% relative improve-

ment was achieved on Pearson correlation coefficient com-

pared to [14] (0.562 VS. 0.346) on the 10KSinging dataset,

serving as a solid baseline in this paper.

2.2 The proposed Model

Our proposed ASSE model is shown in Fig. 1(b), which

highlights the three improvements compared to the base-

line model Fig. 1(a) in different colours. The yellow part

indicates that the proposed model can process both solo

singing and singing with accompaniment, while the base-

line model requires singing voice separation to extract solo

singing from the input; the blue part represents the use of

bi-directional cross-attention between the pitch histogram

2 Originally proposed in [14], pitch histogram is a global representa-
tion of pitch distribution for music, where all octave-equivalent pitches
are folded, resulting a range of 12 pitch classes. The distance between
two adjacent pitch classes is represented with 10 bins.

3 According to [26], X-vector distinguishes different kinds of voice
timbre. It has been applied to areas including speaker/emotion recogni-
tion [27], and singer identification [28].

4 The reader can refer to [14] for more specifics regarding the CRNN
structure and the pitch histogram generation, and [17] for details on the
attention mechanism integrated into the CRNN and X-vector extraction.
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(a) The baseline model from [17].

(b) The proposed model, with three key distinctions compared to (a) highlighted in different colours.

Figure 1. Illustration of the baseline model (a) and the proposed model (b). The diagram on the right of the dashed line

indicates the architecture of the two ASSE systems, where (a) requires singing voice separation as pre-processing [21] to

extract solo singing while (b) can process both solo singing and singing with accompaniment (yellow) in a more efficient,

end-to-end manner. The proposed model features Bi-directional Cross-Attention (BiCA, blue) and data augmentation

(green) using the three distinct training sets of 10KSinging, namely: subindex 1 as singing with accompaniment, subindex 2

as solo singing, and subindex 3 as singing and accompaniment remix discussed in Section 2.2.2. The number in parentheses

represents the number of dimensions, while Aph and Axv denote the attention output for the pitch histogram and X-vector,

respectively. Both Aph and Axv enter a sum operation with their respective input feature via residual connections.

and X-vector features (see Section 2.2.1); the green part

represents data augmentation, where three distinct sets of

10KSinging: singing with accompaniment, solo singing,

and singing and accompaniment remix are used during the

training process (see Section 2.2.2).

2.2.1 Bi-directional Cross-Attention

As discussed above, the baseline model [17] includes a

self-attention mechanism in CRNN to capture the long-

term relationships from the input CQT spectral represen-

tation. This is based on the scaled dot-product attention

layer proposed by Vaswani et al [29]:

Attn(Q,K, V ) = softmax

(

Q×KT

√
D

)

× V

= softmax(S)× V,

where Q, K, V , S, and D denote the query, key, value,

similarity matrix, and dimension of the attention layer, re-

spectively.

In addition to the self-attention mechanism adopted by

the baseline model, we further improve our approach by

applying cross-attention to the remaining two features:

pitch histogram and X-vector, since there can be correla-

tions between singers’ pitch accuracy and timbre quality

that are beneficial for ASSE. In the cross-attention mecha-

nism, the query Qt is derived from the target t, with the key

Ks and the value Vs derived from the source s. The atten-

tion output Attnt(Qt,Ks, Vs) is then added to the target

t via a residual connection, leaving the source s unmodi-

fied. This means if we aim to apply cross-attention to both

pitch histogram and X-vector features, we need to do it

twice: one using pitch histogram as target (t), X-vector as

source (s) and vice versa for the other one. To reduce the

excessive computational demands in this case, we adopted

Bi-directional Cross-Attention (BiCA) [24] that contains a

reciprocal attention mechanism, where a shared query-key

(QK) matrix [30] is applied to update both the target t and

the source s in parallel. Concretely, the similarity matrices

of St and Ss in BiCA can be calculated as:

St =
(QK)t × (QK)Ts√

D
= ST

s ,

where (QK)t and (QK)s are the shared query-key matri-

ces projected from t and s, respectively. As a result, the at-

tention features of t and s can be respectively obtained by

multiplying the corresponding similarity matrix with the

value matrix projected from both t and s:

Attnt = softmax(St)×Vs; Attns = softmax(Ss)×Vt

Finally, we perform a residual connection in both t

and s to add the corresponding attention features Attnt

and Attns. Overall, we enhance the learning of inter-

relationships between pitch histogram and X-vector by
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implementing the cross-attention mechanism, specifically

BiCA 5 to our approach illustrated in Fig. 1(b). This way,

our proposed model is capable of maintaining the effec-

tiveness of cross-attention while being computationally ef-

ficient [24].

2.2.2 Data Augmentation for ASSE

As discussed in Section 1, the lack of data can hinder

the research and development of ASSE models, and we

aim to mitigate this problem by adopting data augmen-

tation. For this purpose, we use the 10KSinging dataset

from [17], which contains 9,756 songs in two versions:

singing with accompaniment and solo singing. It is fur-

ther divided into training, validation, and testing sets with

8,000, 756, and 1,000 songs, respectively. We combine

the two versions (singing with accompaniment and solo

singing) of the training sets and develop a third one called

“singing and accompaniment remix”, with an additional

8,000 songs generated by remixing the solo singing with

a different accompaniment to create more data. For this

purpose, we compare three different remixing approaches:

• Shuffle-And-Remix [25]: this existing approach

remixes each solo singing with a randomly selected

accompaniment from another song. Note that with

this approach, the singing and accompaniment may

not be in the same musical key, and combining the

two will introduce differences in musical key irrel-

evant to ASSE and may interfere with the training

process. Therefore, we propose two new remixing

techniques that ensure the same key between singing

and accompaniment as follows.

• Same-Song Remix: instead of using a different

song, we can shift the accompaniment track of the

same song by a random duration between 5 to 15

seconds ahead or behind the singing track and remix

both. This creates a unique alignment where the vo-

cals and music are out of their original synchroniza-

tion but still ensures both are in the same musical

key.

• Key-Match Remix: we use the Madmom key detec-

tion algorithm [31] to iterate all the accompaniments

and eliminate the ones that are in a different key than

the solo singing. Among the remaining candidates,

we randomly pick one accompaniment, and remix it

with the solo singing.

As a result, we have an augmented training set of 24,000

songs in total, where singing with accompaniment, solo

singing, and singing and accompaniment remix all con-

tribute 8,000 songs, indicated respectively as subindex 1,

2, 3 in Fig. 1(b). Furthermore, we can extend the set of

subindex 3 by combining the augmented data from all three

remixing approaches above (8000× 3 songs) and propose

a fourth approach: All Remix, with 40,000 songs in total.

5 We use an open-source implementation of BiCA available at:
https://github.com/lucidrains/bidirectional-cross-attention.

3. EXPERIMENTS

As indicated in [17], each song of the 10KSinging dataset

is associated with an overall, normalized rating between 0

and 1, and the goal of our ASSE model is to predict a re-

gressed value close to the ground truth rating. Although

the work presented in this paper is not open-source for

proprietary restrictions, most of the essential components

are open-source as follows: the code base and the funda-

mental structure of CRNN, including the pitch histogram

calculation can be found at Github 6 ; the annotations for

10KSinging, the attention machism appended after CRNN,

and the X-vector calculation can be found at [17], and we

will respectively explain our experimental settings and rel-

evant implementation details in Section 3.1 and Section 3.2

for the ease of reproducing our work.

3.1 Experimental Settings

We first investigate the effect of data augmentation in

five settings: no data augmentation, Shuffle-And-Remix

(SAR), Same-Song Remix (SSR), Key-Match Remix

(KMR), and All Remix (ALL) proposed in Section 2.2.2.

In each data augmentation setting, we can either use the

baseline architecture (Fig. 1(a)) or adopt BiCA (Fig. 1(b)),

resulting in a total of 10 experiments. In each experiment,

we present the performance on the 1000-song test set from

the two versions of 10KSinging: singing with accompani-

ment (“w/ acc”) and solo singing (“w/o acc”). As shown

in Table 1, the first two experiments involve no data aug-

mentation and each has two distinct ASSE models that are

trained using the two versions of 10KSinging (“w/ acc”

and “w/o acc”), same as [17].

For the remaining eight experiments involving data

augmentation, each uses an augmented training set of

10KSinging, which contains songs from the following

three sets: singing with accompaniment, solo singing,

and singing and accompaniment remix introduced in Sec-

tion 2.2.2. Unlike the first two experiments, each of the

eight experiments has only one ASSE model, which is

evaluated in both “w/ acc” and “w/o acc” test sets. Alto-

gether, 12 models are trained in total to explore the effects

of data augmentation and BiCA.

3.2 Implementation Details

We adopt the same parameters for generating CQT and

pitch histograms as described in [17], namely 96-bin CQT

and 120-bin pitch histogram. For training, we use Mean

Squared Error (MSE) as the loss function, where the epoch

with the lowest MSE on the validation set is chosen as the

best-performing model, both in the “w/ acc” and “w/o acc”

settings. We use the Adam optimizer and a learning rate of

0.0001. The number of epochs is set to 250 with a batch

size of 4. All other parameters remained consistent with

those outlined in [17], except for a few adjustments, which

are detailed below.

6 Implementation can be found at:
https://github.com/AME430/Towards-Training-Explainable-Singing-
Quality-Assessment-Network-with-Augmented-Data.
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Data Aug BiCA
MSE(↓) MAE(↓) Bad P%(↓) Pearson(↑)

w/o acc w/ acc w/o acc w/ acc w/o acc w/ acc w/o acc w/ acc

No (8,000) No [17] 0.0042 0.0046 0.0495 0.0524 10.1% 11.8% 0.562 0.497

No (8,000) Yes 0.0038 0.0043 0.0459 0.0499 8.7% 10.5% 0.623 0.539

SAR (24,000) No 0.0041 0.0044 0.0495 0.0519 9.3% 9.4% 0.561 0.522

SAR (24,000) Yes 0.0031 0.0033 0.0386 0.0415 6.5% 7.3% 0.697 0.670

SSR (24,000) No 0.0041 0.0044 0.0497 0.0515 9.6% 10.2% 0.555 0.514

SSR (24,000) Yes 0.0029 0.0033 0.0385 0.0416 5.8% 7.0% 0.714 0.673

KMR (24,000) No 0.0041 0.0044 0.0496 0.0521 8.9% 9.8% 0.562 0.517

KMR (24,000) Yes 0.0028 0.0031 0.0375 0.0413 6.2% 6.9% 0.730 0.687

ALL (40,000) No 0.0039 0.0040 0.0471 0.0478 9.4% 10.1% 0.593 0.576

ALL (40,000) Yes 0.0025 0.0030 0.0351 0.0387 4.7% 6.1% 0.769 0.709

Table 1. The ASSE results of Mean Squared Error (MSE), Mean Absolute Error (MAE), Bad Case Proportion (Bad P

%), and Pearson correlation coefficient (Pearson) on the singing with accompaniment test set (w/ acc, 1,000 songs) and

the solo singing test set (w/o acc, 1,000 songs) from the 10KSinging dataset [17]. SAR, SSR, KMR, and ALL refer to the

four different data augmentation methods introduced in Section 2.2.2: Shuffle-and-Remix, Same-Song Remix, Key-Match

Remix, and All Remix, respectively, where the number in parenthesis indicates the number of songs used as training data.

For experimental purposes, no data augmentation, SAR, SSR, KMR, and ALL is respectively applied to the model archi-

tecture without and with Bi-Directional Cross-Attention (BiCA, illustrated in Fig. 1(b)) to demonstrate the individual and

reciprocal effects of data augmentation and BiCA. The downward and upward arrows on the evaluation metrics respectively

represent the desirable lower or higher values for better performances. The best results are highlighted in bold, which con-

centrate on the ASSE model employing both All Remix data augmentation and BiCA (ALL-Yes), is therefore our proposed

method in this paper.

We use the sigmoid activation function following the

final dense layer to constrain the output range between 0

to 1. Also, the Exponential Linear Unit (ELU) activation

function is introduced within the dense layer. These ad-

justments can facilitate the model’s ability to learn a more

accurate distribution of the output score.

3.3 Evaluation Metrics

Although correlation coefficients are often used as the eval-

uation metric in ASSE [5, 13–15, 17, 32], we aim to incor-

porate additional metrics to demonstrate the performances

of ASSE models more comprehensively. Overall, four

evaluation metrics are considered:

• Mean squared error (MSE) (↓): same as the loss

function introduced in Section 3.2.

• Mean absolute error (MAE) (↓): it shows how much

the predicted rating deviates from the ground truth

in the linear scale.

• Bad case proportion (↓): same as [17], the predicted

rating will be considered a bad case if its MAE is no

less than 0.1.

• Pearson correlation coefficient (↑): it demonstrates

the degree of correlation between the predicted rat-

ing and the ground truth, within the range of [−1, 1].

3.4 Results and Discussions

The results are shown in Table 1, where we use acronyms

to represent each experiment. For example, No-No indi-

cates the experiment without data augmentation nor BiCA,

and KMR-Yes indicates the experiment using both KMR

augmentation and BiCA, etc.

3.4.1 Results on BiCA

We first investigate the effects of BiCA by comparing

the models with and without BiCA under five different

data augmentation settings (No-No VS. No-Yes; SAR-

No VS. SAR-Yes; SSR-No VS. SSR-Yes; KMR-No VS.

KMR-Yes; ALL-No VS. ALL-Yes), finding that using

BiCA results in consistent performance improvements in

all cases. This demonstrates that the employment of BiCA

effectively helps the ASSE models capture useful inter-

relationships between pitch histogram and X-vector and

facilitate their reciprocal knowledge exchange, leading to

better results. This is reasonable since there can be cor-

relations between singers’ pitch accuracy and timbre qual-

ity that are beneficial for ASSE. For example, singers with

excellent singing skills tend to have great pitch accuracy

(indicated by pitch histogram) and timbre quality (indi-

cated by X-vector), and vice versa for mediocre or inferior

singers.

3.4.2 Results on Data Augmentation

We then compare the four data augmentation approaches:

SAR, SSR, KMR, and ALL to no data augmentation.

When using the baseline architecture (Fig. 1(a) without

BiCA), results show overall marginal improvements in al-

most all cases (SAR-No VS. No-No; SSR-No VS. No-

No; KMR-No VS. No-No; ALL-No VS. No-No). When
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BiCA is applied, the improvement is much more apparent

(SAR-Yes VS. No-Yes; SSR-Yes VS. No-Yes; KMR-Yes

VS. No-Yes; ALL-Yes VS. No-Yes). These results demon-

strate the effectiveness of data augmentation and its recip-

rocal advantage with BiCA. As discussed in Section 3.4.1,

it seems that data augmentation provides more samples

for BiCA to further exploit correlations between pitch his-

togram and X-vector, which can be beneficial for evaluat-

ing singing skills in ASSE.

Of particular interest, we notice that KMR achieves

superior results among all three data augmentation ap-

proaches (KMR-Yes VS. SSR-Yes VS. SAR-Yes). This

could be that KMR combines the advantages of SAR and

SSR, where the former mixes the singing with a different

accompaniment and the latter ensures the same key be-

tween singing and accompaniment, leading to better per-

formances. Despite their differences, we can combine the

augmented data from SAR, SSR, and KMR as All Remix

(see Section 2.2.2) for even more training data, resulting in

the best results overall (SAR-Yes VS. SSR-Yes VS. KMR-

Yes VS. ALL-Yes).

3.4.3 Results on Solo Singing and Singing with

Accompaniment

Additionally, we compare the performances presented in

solo singing (w/o acc) and singing with accompaniment

(w/ acc) scenarios. Results show that the ASSE models

consistently perform better in solo singing, which is under-

standable considering singing with accompaniment con-

tains irrelevant accompaniment information that can inter-

fere with the training of ASSE models. Although we can

follow [17] to add a singing voice separation step (see Fig.

1(a)) to remove accompaniment for better performances,

we choose to keep the end-to-end nature of our ASSE sys-

tem (see Fig. 1(b)) and consider the performance gap be-

tween solo singing and singing with accompaniment for

our proposed ASSE model (ALL-Yes) non-essential, since

both are performing better than the baseline No-No in the

solo singing (w/o acc) condition.

3.4.4 Overall Results

Finally, once we combine data augmentation with BiCA,

our proposed ALL-Yes model yields notably better results

than the baseline [17] (No-No) across all metrics: reach-

ing relative improvements of 40.5% on MSE (0.0025 VS.

0.0042, likewise for the following ones), 29.1% on MAE,

53.5% on Bad P %, and 36.8% on Pearson in solo singing

(w/o acc); 34.8% on MSE (0.0030 VS. 0.0046, likewise

for the following ones), 26.1% on MAE, 48.3% on Bad P

%, and 42.7% on Pearson in singing with accompaniment

(w/ acc) scenario.

As discussed in Section 3.1, there are two models un-

der No-No, one trained for w/o acc and the other trained

for w/ acc conditions. [17] then proposed the former in

the paper due to its superior performance. However, it can

only process solo singing data and requires a singing voice

separation tool to remove accompaniment from the input.

In comparison, our proposed ALL-Yes model can process

both solo training and singing with accompaniment inputs,

and this is what we refer to as an end-to-end ASSE model,

which does not require singing voice separation and also

yields notably better performances, with Pearson correla-

tion coefficients of 0.769 in w/o acc and 0.709 in w/ acc,

compared to the baseline model of 0.562.

4. CONCLUSIONS

In this paper, we introduce a new ASSE system using data

augmentation and compare four specific augmentation ap-

proaches: the existing Shuffle-And-Remix [25], the novel

Same-Song Remix, Key-Match Remix, and All Remix

we propose. Results show that our All Remix approach

achieves the best performances, and our system can pro-

cess both solo singing and singing with accompaniment

in an end-to-end manner, thereby eliminating the need for

a singing voice separation tool required by the baseline

model [17]. We also introduce a Bi-directional Cross-

Attention mechanism (BiCA) as a feature fusion method

to ASSE for the first time, which discovers useful inter-

relationships between pitch histogram and X-vector and

results in consistent performance improvements in our ex-

periments.

With the combination of BiCA and All Remix data

augmentation approach, we not only achieve notable im-

provements in ASSE performances compared to the base-

line [17], we also develop a versatile model capable of pro-

cessing both solo and instrumentally accompanied vocal

performances. To the best of our knowledge, such encom-

passing ASSE models have not been proposed in existing

literature before.

5. FUTURE WORK

Looking ahead, we will continue this research by incorpo-

rating future open-source ASSE datasets proposed in the

literature. Indeed, we could only make use of the 10KSing-

ing dataset due to the lack of open-source datasets in this

domain. Our future work also includes exploring alter-

native features that could potentially improve the perfor-

mances of our ASSE models. For instance, we will con-

sider large-scale music models that employ self-supervised

learning, since features extracted by those models such as

Jukebox [33] and MERT [34] have recently been proven

effective and even established new SOTA performances

in various music-related tasks. Therefore, these features

will be incorporated into our model to exert their potential.

Finally, since data augmentation combining solo singing

with different versions of accompaniment results in con-

sistent performance improvements, we will explore more

data augmentation methods for solo singing by, for exam-

ple, adding noise, adjusting gain, and applying high/low-

pass filters that have been employed in other MIR-related

tasks [35] for better performances.
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ABSTRACT

This paper approaches the problem of separating the notes

from a quantized symbolic music piece (e.g., a MIDI file)

into multiple voices and staves. This is a fundamental part

of the larger task of music score engraving (or score type-

setting), which aims to produce readable musical scores for

human performers. We focus on piano music and support

homophonic voices, i.e., voices that can contain chords,

and cross-staff voices, which are notably difficult tasks

that have often been overlooked in previous research. We

propose an end-to-end system based on graph neural net-

works that clusters notes that belong to the same chord

and connects them with edges if they are part of a voice.

Our results show clear and consistent improvements over

a previous approach on two datasets of different styles.

To aid the qualitative analysis of our results, we support

the export in symbolic music formats and provide a di-

rect visualization of our outputs graph over the musical

score. All code and pre-trained models are available at

https://github.com/CPJKU/piano_svsep.

1. INTRODUCTION

The musical score is an important tool for musicians due

to its ability to convey musical information in a compact

graphical form. Compared to other music representations

that may be easier to define and process for machines, for

example, MIDI files, the musical score is characterized by

how efficiently trained musicians can read it.

An important factor that affects the readability of a mu-

sical score for instruments that can produce more than one

note simultaneously, is the separation of notes into different

voices (see Figure 1). This division may follow what a lis-

tener perceives as independent auditory streams [1], which

can also be reflected in a clearer visual rendition of a musi-

cal score [2]. A similar point can be made for the division

* Equal contribution.

© F. Foscarin, E. Karystinaios, E. Nakamura and G. Widmer.

Licensed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: F. Foscarin, E. Karystinaios, E. Nakamura

and G. Widmer, “Cluster and Separate: a GNN Approach to Voice and

Staff Prediction for Score Engraving”, in Proc. of the 25th Int. Society for

Music Information Retrieval Conf., San Francisco, United States, 2024.

into multiple staves (generally 2) for instruments with a

large pitch range, such as piano, organ, harp, or marimba.

We will consider in this paper piano music.

The term voice is frequently used to describe a sequence

of musical notes that do not overlap, which we call a mono-

phonic voice. However, this definition may be insufficient

when considering polyphonic instruments. Voices could

contain chords, which are groups of synchronous notes (i.e.,

notes with the same onset and offset) and are perceived as a

single entity [3]. We name a voice that can contain chords

a homophonic voice. Note that partially overlapping notes

cannot be part of a homophonic voice.

Music encoded in MIDI (or similar) formats, even when

containing quantized notes, time signature, or bar informa-

tion, often does not contain voice and staff information.

The same can be said for the output of music generation [4],

transcription [5], or arranging [6] systems. Therefore, such

music cannot be effectively converted into a musical score,

to be efficiently read and played by human musicians. 1

The tasks of producing voice and staff information from

unstructured symbolic music input are called voice sepa-

ration (or voice segregation in some papers [3]) and staff

separation, respectively.

Most of the existing approaches to voice separation have

focused only on music with monophonic voices [7–12],

which is not sufficient for our goal of engraving 2 piano

music. The task of homophonic voice separation is much

harder to solve: the presence of chords within voices makes

the space of solutions grow much bigger; and the choice of

the “true voice separation” can be ambiguous, with multiple

valid alternatives among which experts may disagree.

The existing approaches to homophonic voice separa-

tion can be divided into two groups: the first [1, 3, 5, 13]

use dynamic programming algorithms based on a set of

heuristics, which makes for systems that are controllable

and interpretable, but also hard to develop and tune. Such

systems are often prone to fail on exceptions and corner

cases that are present in musical pieces. The second group

of approaches [14–17] applies deep learning models to pre-

dict a voice label for each note. Such an approach creates

1 Voice and staff separation are only two of the multiple elements, such
as pitch spelling, rhythmic grouping, and tuplet creations, which need to
be targeted by a score engraving system, but we will only focus on the
former two in this paper.

2 “score engraving” and “score typesetting” are used interchangingly.
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Figure 1. Comparing different voice/staff assignments for

two bars from C. Debussy’s Estampes - Pagodes. (top)

original; voices can be inferred from the beam grouping and

(horizontal lines connecting notes), rests, and stem sharing,

and are colored for clarity. (bottom) hard-to-read rendition

with voice and staff assigned according to heuristics we

propose as a baseline.

two fundamental issues: i) the necessity of setting a maxi-

mum number of voice labels, and ii) a (highly) unbalanced

ratio of occurrence of some voice labels. Moreover, all

these approaches assume that a voice cannot move between

the two staves, which is not true for complex piano pieces.

In this work, we propose a novel system for homophonic

voice separation that can efficiently and effectively assign

notes to voices and staves for polyphonic music engraving.

Efficiency is ensured by a graph neural network (GNN) en-

coder, which can create input embeddings with a relatively

small number of parameters. Effectiveness is targeted by ap-

proaching voice prediction not as a note labeling, but as an

edge prediction problem [12], which solves the maximum

voice number and the label imbalance problems presented

above. Our system predicts staff and voice separately and

does not make any assumption on the number of voices;

therefore it can deal with cross-staff voices and complex cor-

ner cases. We avoid the problem of ground truth ambiguity

since we focus specifically on voice separation for musi-

cal score engraving, therefore we can extract the (unique)

ground truth directly from digitized musical scores.

We evaluate our system on two piano datasets of dif-

ferent difficulty levels, one containing popular, the other

classical music. A comparison with a baseline and the ap-

proach of Shibata et al. [5] shows a consistent improvement

in performance on both datasets. Finally, we develop a visu-

alization tool to display the input and output of our system

directly on the musical score, and discuss some predictions

and comments on homophonic voice separation.

2. RELATED WORK

The most influential work for this paper is the monophonic

voice separation system by Karystinaios et al. [12]. Simi-

larly, we consider voice separation a edge prediction task

and use a similar score-to-graph routine and the same GNN

encoder. Differently from that work, we consider homo-

phonic voices and staves and, therefore, we extend the

model formulation, the deep learning architecture, and the

postprocessing routine to deal with this information.

Shibata et al. [5] developed a voice and staff separation

technique applied after music transcription to quantized

MIDI files. It works in two stages: first, an HMM separates

the notes of the two hands (which will then be used as staff),

and then a dynamic programming algorithm that maximizes

the adherence to a set of heuristics is applied to separate

voices in the two hands independently. We compare against

this method since it is the most recent approach focusing

specifically on homophonic voice separation.

There are some approaches based on neural net-

works [14–17], but they never perform this task in isolation,

but rather in combination with other tasks such as sym-

bolic music transcription, full scorification, and automatic

arrangement. This means that they can only train on a much

smaller dataset and a comparison would not be fair.

All the approaches mentioned before, except [12], per-

form voice separation as a label prediction task, which is

problematic, as discussed in the introduction, due to the

label imbalance and choice of the maximum number of

voices. The former is particularly problematic for the neu-

ral network approaches.

3. METHODOLOGY

Our system inputs data in the form of a set of quantized

notes (e.g., coming from a quantized MIDI or a digitized

musical score), each characterized by pitch, onset, and

offset. This information is modeled as a graph, which we

call input graph, and then passed through a GNN model

to predict an output graph containing information about

voices, staves, and chord groupings. We remind the reader

that in our ‘homophonic voice’ scenario, chords are groups

of synchronous notes that belong to the same voice.

3.1 Input Graph

From the set of quantized notes representing a musical

piece we create a directed heterogeneous graph [18] Gin =
(V,Ein,Rin) where each node v ∈ V corresponds to one

and only one note, and the edges e ∈ Ein of type r ∈ Rin

model temporal relations between notes [12]. Rin includes

4 types of relations: onset, during, follow, and silence,

corresponding, respectively, to two notes starting at the

same time, a note starting while the other is sounding, a

note starting when the other ends, and a note starting after a

time when no note is sounding. We also create the inverse

edges for during, follows, and silence relations. Each node

corresponds to a vector of features: one of the 12 note pitch

classes 3 (C, C#, D, etc.), the octave in [1, . . . , 7], the note

duration, encoded as a float value d ∈ [0, 1] computed as

the ratio of the note and bar durations, passed through a tanh

function to limit its value and boost resolution for shorter

3 We don’t consider tonal pitch classes [19] since they are not specified
in MIDI files which we assume to be our input.
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notes, as proposed in [12]. We don’t consider grace notes

in our system, and we remove them from the input notes.

3.2 Output Graph

The output graph Gout = (V,Eout,Rout) has the same set

V of nodes as the input graph, but a staff number in {0, 1}
is assigned to every node. There are two edge types in Eout:

chord and voice, i.e. Rout = {"chord", "voice"}.

Voice edges [8, 12] are an alternative in the literature

to the more straightforward approach of predicting a voice

number for every note; the usage of voice edges has the

advantage of enabling a system to work with a non-specified

number of voices, and avoiding the label imbalance problem

for high voice numbers. Voice edges are directed edges that

connect consecutive notes (without considering rests) in

the same voice. Formally, let u1, u2 ∈ V be two notes in

the same voice then (u1, "voice", u2) ∈ Eout if and only

if offset(u1) ≤ onset(u2) and ∄ u3 ∈ V within the same

voice such that offset(u1) ≤ onset(u3) < onset(u2).

The previous definition also holds in our setting with

homophonic voices. Let us extend the definition of chord

(a set of synchronous notes) to include the limit case of a

single note. Two chords are consecutive if any two notes,

respectively, from the first and second chords are consecu-

tive. In the case of two consecutive chords with m and n
notes in the same voice, there will be m ∗ n voice edges.

Chord edges are undirected and connect all notes that

belong to the same chord without self-loops, so for a n-note

chord, there are n(n− 1) edges. They serve to unambigu-

ously identify which notes together form a single chord.

The same output graph can be created from an already

properly engraved score. To obtain the graph we only need

to draw the true voice edges between consecutive notes

in the same voice within a bar and for chord edges we

draw the chord ground truth between synchronous notes

with the same voice number assignment. This graph can

subsequently serve as the ground truth during training.

3.3 Problem Simplification

In this section, we apply some obvious musical constraints

to reduce computation and memory usage in our pipeline,

without impacting the results. Let us first focus on chord

edge prediction. Given the simple constraint that all notes

of a chord must start and end simultaneously, we can restrict

the chord edge prediction process to only consider pairs of

sychronous notes (same onset and offset values) as candi-

dates. We do this by creating a set of chord edge candidates

Λc which are calculated automatically and associated with

our input graph. Only notes connected by such candidate

edges will be considered in the chord prediction part of the

model (see next section).

The same reasoning can be applied to the voice edges,

by creating a set of voice edge candidates Λv such

that ∀u1, u2 ∈ V, (u1, "voice", u2) ∈ Λv only when

offset(u1) > onset(u2). Another step can be taken to-

wards reducing the number of candidates in the set Λv by

incorporating some musical engraving considerations.

The separation of notes in multiple voices does not have

to be consistent in the whole score, but only within each

bar, to produce the intended visual representation. There

are no graphical elements that show if two notes in different

bars are or are not in the same voice 4 . Music engraving

software does not force users to use consistent voices across

bars. This can be often observed in digitized musical scores

where music motives that belong to the same voice, are as-

signed different voices in different bars. Such observations

have motivated projects such as the Symbolic Multitrack

Contrapuntal Music Archive [20] that explicitly encode a

“global” voice number.

Since cross-bar consistency is not necessary for our goal

of engraving (and is often wrongly annotated in our data)

we limit the voice edge candidates Λv to contain only pairs

of notes that occur within the same bar. This design choice

is also reflected in our evaluation, i.e. we do not evaluate

how the voices propagate across bars, but only within each

bar. Note that this process is different from processing each

bar independently since our network (detailed in the next

section) considers music content across bars.

3.4 Model

We design an end-to-end model (see Figure 2) that receives

an input graph as described in Section 3.1 and produces an

output graph as in Section 3.2. The model is organized as

an encoder–decoder architecture.

The encoder receives an input graph created from a quan-

tized MIDI score and passes it through three stacked Graph

Convolutional Network (GCN) blocks to produce a node

embedding for each note. We use the heterogeneous version

of the Sage convolutional block [18] with a hidden size of

256; the update function for each node u is described by:

h
(l+1)
N (u) =

∑

(

{hl
v, ∀v ∈ N (u)}

)

h
(l+1)
u = σ

(

W · concat(hl
u,h

l+1
N (u))

) (1)

where N (u) are the neighbors of node u, σ is a non-linear

activation function, W is a learnable weight matrix.

The decoder consists of three parts that all use the same

node embedding as input: i) a staff predictor; ii) a voice

edge predictor; and iii) a chord clustering (i.e., a chord

edge predictor). The staff predictor is a 2-layer Multi-Layer

Perceptron (MLP) classifier that produces probabilities for

each graph node (i.e., each note) to belong to the first or

second staff. The voice edge predictor receives the embed-

dings of pairs of notes connected by edge candidates and

produces a probability for each pair to be in the same voice.

It works by concatenating the pairs of note embeddings and

applying a 2-layer MLP. The final decoder part, chord clus-

tering, receives the embeddings of pairs of notes connected

by chord edge candidates (i.e., pairs of synchronous notes)

and produces the probability for a pair to be merged into a

chord. This is achieved by computing the cosine similarity

between the elements of the pair. This process forces the

4 This may change for cross-bar beamings, but they are very rarely used
in standard music notation (there are no occurrences in our datasets) and
therefore we do not consider them in this work.
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Figure 2. Our Architecture. For simplification, we display the output graph as having “hard” voice predictions, while these

are probabilities over voice candidates.

node embeddings created by the decoder to be similar to

each other for notes of the same chord, which helps the

voice predictor produce consistent voice edge probabilities

for notes of the same chord. We apply a threshold to pass

from probabilities to decisions on which notes to cluster.

The complete model contains ∼ 3M parameters and

we train it end-to-end with the (unweighted) sum of three

Binary Cross Entropy loss functions, one for each task.

3.5 Postprocessing

A straightforward approach to deciding whether to connect

two notes with a voice edge would be to threshold the

predicted voice edge probabilities. However, even when

using edge and chord candidates, we could still produce

three kinds of invalid output: (1) multiple voices merging

into one voice, (2) one voice splitting into multiple voices,

and (3) notes in the same chord that are not in the same

voice. To eliminate these issues, we add a postprocessing

phase that accompanies our model and guarantees a valid

output according to music engraving rules.

The first step, which we call chord pooling, merges

all nodes that belong to the same chord to a single new

"virtual node". This is done by looking for the connected

components considering only chord edges in the output

graph, then pooling in a single node all original nodes in

each connected component, creating a new node which has

as incoming and outgoing voice edges all edges entering and

exiting the original nodes, respectively. If multiple edges

collapse in one edge (e.g. in the case of two consecutive

chords in the same voice), the new edge has a probability

that is the average of the corresponding edge probabilities.

After the first step, we are left with monophonic streams,

which could still exhibit problems (1) and (2). We can solve

this with the technique proposed in [12] for monophonic

voices, i.e. by framing the voice assignment problem as a

linear assignment problem [21] over the adjacency matrix

obtained by the updated edge candidates Λ′
v. We follow

the linear assignment step by unpooling or unmerging the

nodes that were previously pooled, in this way, obtaining the

original nodes again. During unpooling, the incoming edges

and outgoing edges of the "virtual nodes" are reassigned to

each original node, thus resolving problem (3).

Figure 3. Output graph postprocessing. We do not display

the predicted staff labels.

The complete postprocessing method is depicted in Fig-

ure 3. It is worth noting that the staff labels are not consid-

ered during the postprocessing phase, and we copy them

unchanged to the postprocessed output graph.

3.6 Evaluation

We evaluate the predicted voice assignments with the metric

proposed by Hiramatsu et al. [15], which formalizes the

metric of McLeod and Steedman [22]. This is a version of

the F1-score for voice separation [8] which is adapted to

work on homophonic voices, by reducing the importance

of notes if they are part of a chord. This is important since

chords create many voice edges (e.g., two 4-note chords in

the same voice are connected by 16 edges), which could

potentially overshadow the importance of edges in mono-

phonic voices (or voices with fewer/smaller chords).

Formally, the homophonic voice F1-score F1 is calcu-

lated as:

P =

∑

i<j aij âij/ŵi
∑

i<j âij/ŵi

, R =

∑

i<j aij âij/wi
∑

i<j aij/wi

F1 =
2PR

P +R

(2)

where i < j, in the sum, considers all pair of notes

i, j such that offset(i) < onset(j); aij , âij are equal to 1

or 0 if a voice edge exists or not in the ground truth and

predictions, respectively; and wi and ŵi are the number of

notes that are chorded together with the note i in the ground

truth and predictions, respectively. Unlike [15], we consider
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only notes j in the same bar of i, for the reasons presented

in Section 3.3. We evaluate the staff prediction part of our

model with binary accuracy, and we assess chord prediction

with the F1 score computed on the chord edges.

3.7 From Network Prediction to Readable Output

The computation of voice and staff numbers is sufficient

for the system evaluation, but not for producing a usable

tool, which we are interested in in this paper. The missing

step, to be described in this section, is the integration of

the network predictions into a readable musical score. To

achieve this integration we need to undertake two essential

steps: beam together notes within the same voice, and infill

rests to "fill holes" within each voice.

For the first step, we proceed according to the rules of

engraving [2]. We beam two consecutive notes (or chords)

in the same voices if their duration is less than a quarter note

(excluding ties) unless they belong to different beats. Fol-

lowing the music notation convention we consider the com-

pound time signatures, i.e., 6
x

, 9
x

, 12
x

to have, respectively,

2,3, and 4 beats. When confronted with tied notes, the

algorithm prioritizes producing notations with the fewest

number of notes, an heuristic with promotes easier-to-read

notation [23].

The second step consists of introducing rests so that

each voice fills the entire bar and can be correctly displayed.

Some rests could be set as invisible to improve the graphical

output when their presence and duration are easy to assume

from other score elements, but we display all of them for

simplicity. As for the notes, we choose the rest types (with

eventual dots) to minimize the number of rests in the score.

The two steps described above cover common cases and

produce a complete score in MEI format [24]. However, the

score export is still a prototype, since developing one that

is robust against all corner cases is an extremely complex

task, and is outside the scope of this paper. Since score

output problems may obscure the output of our system,

we also develop a graph visualization tool. Both the input

and output graphs (including the candidate edges) can be

displayed on top of the musical score in an interactive web-

based interface based on Verovio [25]. Some examples of

the output graph visualization are in Figure 4.

4. EXPERIMENTS

We train our model with the ADAM optimizer with a learn-

ing rate of 0.001 and a weight decay of 5 ∗ 10−4 for 100

epochs. For a quantitative evaluation, we compare our re-

sults with those of a baseline algorithm and the method pro-

posed by Shibata et al. [5], on two rather diverse datasets.

Our baseline algorithm assigns all notes under C4 (mid-

dle C) to the second staff and the rest to the first. Then it

groups all synchronous notes (per staff) as chords. Finally,

it uses the time and pitch distances between the candidate

pairs of notes as weights to be minimized during the linear

assignment process (the same as we use in our postprocess-

ing) which creates the voice edges.

4.1 Datasets

We use two piano datasets of different styles and difficul-

ties to evaluate our system under diverse conditions. The

ability to handle complex corner cases should not reduce

the performance on easier (and more common) pieces.

The J-Pop dataset contains pop piano scores introduced

by [5]. Most of the scores consist of accompaniment chords

on the lower staff and some simple melodic lines on the

upper staff. The dataset contains 811 scores; we randomly

sampled 159 (roughly 20%) of these for testing and used

the rest for training and validation.

The DCML Romantic Corpus is more challenging. It

was created by [26] and contains piano pieces from the

17th to 20th centuries with some virtuosic quality. It in-

cludes characteristics such as cross-staff beaming, a high

number of voices, challenging voicing, etc. Similarly to the

pop dataset we randomly sample 77 out of the 393 scores

(approx. 20%) and use the rest for training and validation.

The J-Pop dataset is available in MusicXML format,

while the DCML Romantic Corpus is in Musescore file

format. We use Musescore to convert DCML files to

MusicXML and load them with the Python library Par-

titura [27] to extract the note list.

4.2 Results

Our model aims to be generic across a variety of music,

therefore we train a single model on the joined training

set of pop and classical scores, not two individual ones.

The rules that govern the handling of voices may be funda-

mentally different in the two datasets, but we assign to the

model the task of handling these differences. This approach

ensures better future scalability on bigger and more diverse

datasets. We compute the metrics separately on the test part

of our two datasets.

Table 1 reports results for three versions of our graph-

based model: the complete model from Section 3, a variant

without postprocessing, and a variant without chord pre-

diction and postprocessing (our postprocessing technique

cannot be run without the chord prediction task, since it

pools nodes that belong to the same predicted chord). The

method of Shibata requires the specification of the number

of voices per staff. For compactness, we report only the

results with one voice per staff (2 voices total); the results

degrade by increasing the number of voices.

Our results show that even our system without pool-

ing and without postprocessing obtains consistently better

results than both Shibata et al. [5] and our baseline. In-

terestingly, the chord prediction task improves the Voice

F1 results even when the post-processing is not used; this

confirms the benefits of multi-task training, and of enforc-

ing notes of the same chord to have similar representations

in the hidden space, with cosine similarity, to predict co-

herent voice edges. However, we observe a reduction in

staff accuracy, probably for the same reason, since the same

hidden representation is also used to predict chords, making

it harder (though not impossible) to split notes of the same

chord in different staves. When the full system is used,

there are further improvements in Voice F1.
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Dataset
J-pop Dataset DCML Romantic Corpus

Staff Acc Chord F1 Voice F1 Staff Acc Chord F1 Voice F1

Baseline 89.9 86.9 85.4 80.7 65.2 78.2
Shibata et al. [5] 92.8 - 92.2 88.5 - 84.9

GNN wo Chord wo Post 96.5 ± 0.1 - 95.2± 1.9 91.5 ± 0.1 - 87.2± 3.3
GNN wo Post 96.3± 0.1 94.9± 0.1 95.7± 0.4 91.0± 0.1 79.5 ± 0.4 88.9± 0.4
GNN 96.3± 0.1 94.9± 0.1 96.6± 0.1 91.0± 0.1 79.5 ± 0.4 89.9± 0.2

Table 1. Metrics for our the J-Pop and DCML test sets. “GNN” denotes our method, without postprocessing (“GNN wo

Post”), and without both postprocessing and chord prediction parts (“GNN wo Chord wo Post”). All GNN model runs are

repeated 5 times: ± refers to the standard deviation of results across runs.

We are also evaluate our system on the bar-level and

study performances for music excerpts of varying difficul-

ties. We compute the voice F1 score for each bar and

average them based on the number of voices in the ground

truth. We compare with Shibata et al. [5] with 1 & 2 voices

per staff (vps). Table 2 shows the results for the DCML Ro-

mantic Corpus. Both our model and [5] perform best with

2 voices, the most common number in our dataset. Interest-

ingly, Shibata et al. approach with 2 vps never outperforms

vps 1, not even when the target number of voices is 3 or 4,

a situation that vps 1 cannot handle. This can be explained

by the fact that Shibata et al. parameters were tuned on a

simpler dataset, and accepting more voices creates more

errors than benefits. Setting vps > 2 consistently degraded

the performances, probably also for similar reasons.

#Voices #Bars GNN [5] 1vps [5] 2vps

1 322 96.6 88.3 87.9

2 4576 94.1 89.3 88.1

3 2464 89.0 84.2 81.5

4 719 81.6 80.5 75.1

5 99 81.6 76.7 73.7

6 17 78.4 68.9 61.6

Table 2. Voice F1 score aggregated by bars with the same

number of voices in the ground truth, on the DCML Corpus.

Shibata et al. [5] is used with 1 and 2 voices per staff (vps).

4.3 Qualitative Analysis

Let us take a closer look into the predictions of our deep-

learning approach (GNN) on the excerpt of Figure 4 pro-

duced by our visualization tool. Our approach captures cor-

rectly the cross-staff voice in the first two bars, while such a

situation causes performance degradation for all other voice

separation approaches that don’t support it. We observe

some disagreements with the original score in Measure 3:

our model predicts a single chord (instead of splitting across

the staff) containing all the synchronous syncopated quarter

notes, and also mispredicts the staff for the first D#4 note.

A more in-depth study of why this happens is not trivial, as

neural networks are not interpretable. This is a drawback

compared to heuristic-based separation techniques.

Synchronous notes with the same pitch are problematic.

Figure 4. Comparison of voice and staff assignment be-

tween the original score (Ground Truth) and our method

(GNN) on the first bars of C. Debussy’s Estampes-Pagodes.

Voice edges are drawn in red and chord edges in blue.

Our system can predict different voices for these notes,

while Shibata et al. always predict them as a chord in the

same voice, and this reduces the performances for pieces

that contain a lot of them, like Schumann Kinderszenen

Op.15. For fairness, we should note that we should expect

the output of a music transcription system to only contain

one of these notes, instead of multiple like in our current

input. An enhancement of our system would then be able

to receive a single note as input, assign multiple voices to

it (with multiple incoming and outgoing edges) and then

split it into multiple notes. Another current limitation of

our system is the missing support for grace notes, which in

the actual version are ignored and removed from the input.

5. CONCLUSION AND FUTURE WORK

This paper presented a novel graph-based method for ho-

mophonic voice separation and staff prediction in symbolic

piano music. Our experiments highlight our system’s ef-

fectiveness compared to previous approaches. Notably, we

obtained consistent improvements over two datasets of dif-

ferent styles with a single model.

Future work will focus on integrating grace notes and

the possibility of multiple voices converging on a single

note. We aim to create a framework that produces complete

engravings from quantized MIDI, including the prediction

of clef changes, beams, pitch spelling, and key signatures.
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ABSTRACT

Our study investigates an approach for understanding musi-

cal performances through the lens of audio encoding mod-

els, focusing on the domain of solo Western classical piano

music. Compared to composition-level attribute understand-

ing such as key or genre, we identify a knowledge gap in

performance-level music understanding, and address three

critical tasks: expertise ranking, difficulty estimation, and

piano technique detection, introducing a comprehensive

Pianism-Labelling Dataset (PLD) for this purpose. We

leverage pre-trained audio encoders, specifically Jukebox,

Audio-MAE, MERT, and DAC, demonstrating varied ca-

pabilities in tackling downstream tasks, to explore whether

domain-specific fine-tuning enhances capability in captur-

ing performance nuances. Our best approach achieved

93.6% accuracy in expertise ranking, 33.7% in difficulty

estimation, and 46.7% in technique detection, with Audio-

MAE as the overall most effective encoder. Finally, we

conducted a case study on Chopin Piano Competition data

using trained models for expertise ranking, which highlights

the challenge of accurately assessing top-tier performances.

1. INTRODUCTION

Traditional music understanding tasks focus on

composition-level attributes: key, tempo, genre and

instrumentation are widely explored [1–3]. These attributes

are not only tagged individually via end-to-end approaches

but have also been the focus of foundation models

and various musical representations aimed at learning

them in a unified manner [4, 5], facilitating cross-modal

understanding [6, 7].

However, a large portion of human music activity is

focused not on the composed songs or pieces themselves,

but on the process of learning and performing them [8].

Despite its great importance to the vast community of stu-

dents, teachers and musicians, the ability to understand

performance nuances (challenging techniques, skill vari-

eties, stylistic differences, difficulty grading, etc.) has not

been grasped by machines. Sporadic experiments [9] of

© H. Zhang, J. Liang, S. Dixon. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribution:

H. Zhang, J. Liang, S. Dixon, “From Audio Encoders to Piano Judges:

Benchmarking Performance Understanding for Solo Piano”, in Proc. of

the 25th Int. Society for Music Information Retrieval Conf., San Francisco,

USA, 2024.

these tasks are conducted, often on small-scale [10, 11] or

proprietary [12–14] datasets. Performance understanding,

in contrast to the more recognized composition-level mu-

sic understanding, suffers from scarcity of data [15, 16],

ambiguity of tasks [17], and the inherent complexity of

modelling and representing expressive elements in perfor-

mances [18, 19].

Meanwhile, unified representations and foundation mod-

els have advanced several fields by providing robust and

versatile frameworks [6, 20], demonstrating their potential

to overcome challenges related to data scarcity and task

specificity. Building on this precedent and their applications

to compositional-level understanding [21], we extend the

capacities of pre-trained audio encoders such as MERT [22]

and MULE [5] into the performance-understanding realm,

investigating the shared knowledge between composition-

and performance-level understanding: Do pre-trained audio

encoders capture performance nuances? Can they catego-

rize performance-related attributes? If not, how can we

improve their performance?

This work is a first step in filling the gaps within

the performance understanding realm. Applying domain-

adaptation to pre-trained audio encoders, we work towards

a piano judge that specializes in ranking performers’ skill

level, determining the given repertoire’s difficulty and core

techniques, thus pursuing a human piano teacher’s capabil-

ity and paving the way to performance understanding in an

educational context. Our contributions 1 include:

1. We benchmark three tasks in the realm of audio per-

formance understanding: expertise ranking, difficulty

estimation, and solo piano technique detection.

2. We leverage four audio representation learners (Juke-

box, Audio-MAE, MERT, DAC) and compare their

capabilities in tackling the downstream tasks.

3. We release the Pianism-Labelling Dataset (PLD) with

detailed labeling curated for the three tasks, the first

large-scale dataset (136 hrs in total) that aims to ad-

dress performance understanding.

4. We fine-tune DAC [23] and AudioMAE [24] by

domain-adaptation with solo piano, and compare

their performances with pre-trained versions.

5. We conduct a case study on Chopin Piano Compe-

tition data (ICPC-2015), exploring how a trained

expertise ranking model can be transferred to rank

candidates in the most prestigious competition of the

pianistic scene.

1 Code available at: https://github.com/anusfoil/PianoJudges
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2. RELATED WORK

2.1 Performance and education focused understanding

The exploration of performance through recordings pro-

vides rich resources for music understanding. Automatic

performance analysis (APA) [17] delves into dimensions

from dynamics [25,26] to timing [27,28], forming the basis

for tasks such as performer identification and automatic

music performance assessment (MPA) [15]. The former

seeks to attribute performances to their respective musicians

based on stylistic and technical signatures [29, 30], and the

latter aims to evaluate the quality and expression of per-

formances. MPA approaches can be further divided by the

level of proficiency. For novice players, the emphasis is on

technical accuracy, ensuring correct notes and rhythm via

score alignment [16, 31] or detecting conspicuous mistake

regions [14] in a score-free context. Advanced performers

are assessed by their expression and musicality, usually

in the form of predicting rating scores on multiple dimen-

sions [12, 32]. Recently, the release of feedback-based

assessment data [33, 34] offers the possibility to conduct

multimodal MPA in a more personalized manner.

On the other hand, the analysis of performances in an

educational context emphasizes the identification of chal-

lenges and learning opportunities within the repertoire:

expert-annotated difficulty level is predicted from symbolic

scores [35] via a machine learning classification approach

that merges musicologically-inspired score features. At a

more granular level, we would like to identify instrument-

specific techniques that demand practice. For example,

techniques such as acciacatura and portamento on Chinese

bamboo flute can be identified from spectro-temporal pat-

terns [36], but similar problems have yet to be explored on

piano because of the homogeneity of piano sound. Other

learning aid information such as fingering [9, 37] and bow-

ing [38] can also be predicted. In this work, we focus on

expertise, difficulty and technique estimation by extracting

relevant information from performance audio. This work

is the first of its kind in piano technique detection and ex-

pertise ranking, and the first to use an audio representation

approach for difficulty estimation [9, 39].

2.2 Leveraging audio representations for downstream

tasks

The surge of learning audio representations was originally

motivated by generative models such as AudioLM [40]

and MusicLM [41]. Jukebox [42] is a generative model

trained on 1.2M songs. Subsequent work [4, 43] has shown

that Jukebox’s representations can be effective features for

task-specific linear classifiers. Jukebox embeddings have

also been employed in multimodal learning [6] of music

captioning and reasoning tasks. MERT [22] uses masked

language modelling (MLM) style acoustic self-supervised

pre-training. With a music teacher and an acoustic teacher,

MERT demonstrates good performance in downstream mu-

sic understanding tasks and extends its music understanding

ability into question answering and captioning [44] by gen-

erating music representations to aid language models.

Audio-MAE [24] is a vanilla 12-layer transformer that

learns to reconstruct randomly-masked spectrogram patches.

The output feature map from the penultimate block of an

Audio-MAE encoder has been used to encode fine-grained

patterns in audio [45]. Different from previous approaches,

Descript-Audio-Codec (DAC) [23] is a neural audio com-

pression autoencoder that compresses high-dimensional

signals into lower dimensional discrete tokens. DAC has

been proven useful in a generative context [46], but there

have been few attempts to explore it with downstream un-

derstanding tasks [47].

The four aforementioned audio representations are cho-

sen for our investigation. Since they are constructed from

different theoretical approaches (quantized codecs vs. con-

tinuous spectrograms) and trained on different data (general

audio vs. music), this variety presents an opportunity to

evaluate the extent to which the encoded information con-

tributes to performance understanding.

3. METHODOLOGY

3.1 Downstream problem definitions

3.1.1 Expertise ranking

We formulate our assessment into a ranking problem: given

audio performances p1 and p2, which one has the higher

expertise? We define three coarse levels of expertise (be-

ginner, advanced and virtuoso), represented by integers 0, 1

and 2, respectively, and define a function Q which maps a

performance to one of these levels. Instead of directly pre-

dicting the absolute expertise level Q, we learn a 2-way or

4-way ranking function between each pair of performances

from different levels, R2 or R4, as below:

R2 =

{

0 Q(p1) < Q(p2)

1 Q(p1) > Q(p2)
R4 =



















0 Q(p2) − Q(p1) = 2

1 Q(p2) − Q(p1) = 1

2 Q(p1) − Q(p2) = 1

3 Q(p1) − Q(p2) = 2

(1)

The motivation is to teach the model a relative notion

of expertise, instead of an absolute level or category of the

performance quality. In real life and competition settings

(as will be discussed in Sec 5.1.1), we are more interested

in the comparative skill level among a set of candidates.

3.1.2 Difficulty estimation

Following the literature [9, 18, 35] on difficulty level pre-

diction, we formulate the problem as a classification task

with 9 difficulty classes, given the dataset described in Sec-

tion 4.2, which has 9 levels of difficulty annotation. Given

that the difficulty annotation is subjective and boundaries

between levels are fuzzy, we also report the results of 3-

class estimation by merging the level groups, as in [35].

3.1.3 Technique identification

Given a piece, a piano teacher can immediately identify

the most challenging passage(s) that would require students

hours of practice to master: intense octave runs, fast flowing

scales, repeating notes that require finger iteration, etc.
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Encoder C F (Hz) Dim

Jukebox 2048 345 64

MERT - 75 1024

Audio-MAE - 51.2 768

DAC 9×1024 87 1024

Spectrogram - 150 128

Table 1. Specifications of the audio encoders as well as

the spectrogram baseline: C is the codebook size, F is the

frame rate in Hz and Dim is the hidden dimension of the

embedding (mel-bins for spectrogram).

Figure 1. Overview of our tasks and experiment

pipeline.For the expertise ranking, two audio embeddings

are concatenated in the time dimension.

In the technique-specific dataset (Section 4.3), we in-

clude 7 common techniques and formulate a multi-label

classification task for technique identification. Given that

our labels are relatively sparse, we also experiment with the

case of single-label prediction in which predicting any one

of the multiple labels is considered correct.

3.2 Audio embeddings and encoder fine-tuning

An overview of the used audio embeddings is given in

Table 1. For Jukebox, we employ the 345 Hz sample

rate encoding, and for Audio-MAE, the 768-dimensional

embedding is taken from the ViT-B Transformer encoder.

Additionally, we considered a spectrogram baseline, as a

low-level representation to compare with the trained embed-

dings. We use 128 mel bins, an FFT of 400 samples, and

hop size of 160 samples, resulting in a spectrogram with

frame rate of 150 Hz and 128 dimensions that feeds into

the prediction head module like the trained embeddings.

We examine whether fine-tuning the two generic-audio-

trained encoders DAC and Audio-MAE with domain-

specific data results in a performance boost. The two en-

coders are fine-tuned using their original self-supervision

objective on around 2k hours of solo piano recordings,

from datasets of MAESTRO [48], ATEPP [49], SMD [50],

Mazurkas 2 as well as the novel PLD data introduced in

this work. For DAC, the fine-tuning lasts for 25k iterations

while the Audio-MAE is fine-tuned for 64 epochs.

3.3 Experiments

For all encoders, we first compute 10-second segment audio

embeddings (or spectrograms), and include a maximum of 5

2 http://www.charm.rhul.ac.uk/index.html

task type classes tracks len. (s)

Expertise Multi-class 2 or 4 1694 167.4

ICPC-2015 Multi-class 2 137 1827.0

Difficulty Multi-class 3 or 9 737 269.8

Techniques Multi-label 7 222 45.5

Table 2. Dataset statistics (number of classes, number of

tracks and average duration) for each task.

minutes (30 segments) of audio as input with padding. The

concatenated embedding of each audio track is of shape

(30, F × 10, D) where F is the frame rate and D is the

embedding dimension as shown in Table 1.

Given the audio embedding, we transform it through a

prediction head module that consists of two 2D convolu-

tional layers (nkernel = 7, nstride = 5), one linear layer

to align different input dimensions, and one self-attention

layer (nheads = 2, d = 128), followed by a final linear

layer that projects to the desired classes of each task. A

full pipeline of the experiments is shown in Figure 1. As

is standard practice [4, 43], we maintain a straightforward

projection module design, aiming to minimize its influence

on the probing performance.

Regarding each individual task, we run a grid search on

the hyper-parameters for learning rate, weight decay, batch

size, etc. The details for the final training parameters for

each task are documented in the project page 3 . All fine-

tuning and training are conducted on one NVIDIA A5000.

4. PIANISM-LABELING DATASET

The pianism-labeling dataset (PLD) includes audio and an-

notations for three notions that are centrally relevant to

pianism and piano education: expertise, piece technique

and difficulty, where dataset statistics are specified in Ta-

ble 2. All of the labeling, metadata correspondence, as well

as examples are available on the project page.

4.1 Expertise

We curated a collection of solo piano recordings from

YouTube, each annotated with an expertise level. Their

categorization was based on information gleaned from the

YouTube channels’ descriptions, which provided insights

into the background of the recordings. This categorization

process was validated by two college-level piano students

to ensure accuracy.

• Beginner (562): Amateur level, featuring mostly

adult self-taught learners’ practice recordings.

• Advanced (570): Performances of music students

and junior competition recordings.

• Virtuoso (562): Famous pianists’ recordings sourced

from the ATEPP [49] dataset. To balance with the

other groups, we randomly select a subset of 562 of

the 11K recordings.

The repertoire of selected performances is mainly fo-

cused on the Western classical repertoire, with some rear-

ranged folk and pop songs at the Beginner level. Indeed,

3 https://bit.ly/3SYzozY
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it is challenging to align the performed repertoire across

levels since the complexity of played pieces increases with

the expertise: e.g. Beginners’ pieces are shorter (av. 128.9

s) than Advanced (201.1 s) or Virtuoso (171.8 s) tracks.

In experiments, the three levels are first individually split

into train and test subsets and then paired up randomly.

Each recording only shows up once in the pairs to prevent

leakage, which results in 2694 pairs in training.

4.1.1 ICPC-2015

In this task we aim to assess whether the learnt compar-

ative ranking objective can be applied to the professional

domain, the International Chopin Piano Competition, with

data gathered from the 2015 edition (ICPC-2015 dataset) 4 .

We employ only the preliminary round performances to en-

sure limits on the length and instrumentation (i.e. solo), and

assume that the overall better players clearly demonstrate

their skills in the preliminary round performance. Out of

160 candidates, 137 recordings are successfully retrieved.

We compile the data into ranking pairs similar to Sec-

tion 4.1, by first assigning a score S(c) for each candidate

based on their progression into the following rounds. For

every round that the candidate passes into, the score is

incremented with 1 point. For candidates a, b with their

respective scores S(a), S(b), all preliminary round record-

ings are formed into pairs with ranking as in Eq. 1. As

shown in Table 2, the preliminary round recordings have

an average duration of 30 minutes. Thus, we obtain paired

ranking results for each pair of 5-minute segments (30 seg-

ments in total) and use majority voting to obtain the final

rank among two recordings.

4.2 Difficulty

We employ the Can I Play It? (CIPI) [35] dataset for our

task of difficulty prediction. Given that the original dataset

is sourced in symbolic MusicXML, we obtain the perfor-

mance audio from YouTube by querying the metadata fol-

lowed by manual correction to enforce piece alignment.

Note that the performances are sourced from different lev-

els of playing rather than virtuoso recordings only, with the

aim of learning a more general view of audio difficulty. In

the CIPI dataset, difficulty labels are annotated by Henle

Verlag 5 , a renowned publisher in the music education com-

munity. The ratings range from 1-9 and span 29 composers.

Note that we split the movements from sonata or other

multi-movement compositions, resulting in the 737 audio

tracks shown in Table 2 compared to 637 compositions in

the original metadata. We also use the same train-test split

as the original dataset.

4.3 Techniques

The technique dataset contains 222 recordings with an av-

erage duration of 45 seconds, demonstrating one or more

canonical piano techniques from seven categories taken

from piano practice literature [51]. The excerpts are taken

4 https://github.com/cyrta/ICPC2015-dataset
5 https://www.henle.de/

from etude books like Beyer or Czerney, or passages from

performance repertoire (e.g. dense octave run from Chopin

op.25 no.10). Besides YouTube sourcing, 41 out of 222

recordings are recorded by the authors, if the specific pas-

sages containing the techniques are not publicly available

in any recording. The categories of techniques are:

• Scales (48): Pure scale run across octaves. Can be

both hands or one hand.

• Arpeggios (40): Pure arpeggio run across octaves, or

music passages that are accompanied with arpeggios,

or melody that is constructed on arpeggiated chords.

• Ornaments (31): Including grace notes, trills, mor-

dents, acciacatura. Note that we do not balance these

subclasses, and the most common ornament in our

samples is grace note.

• Repeated notes (35): Musical passages that feature

a series of repeated single notes.

• Double notes (36): Musical passages that feature

sequences of simultaneous intervals (mostly thirds,

but also fourths and sixths), where the intervals are

performed with one hand.

• Octaves (35): We differentiate octaves from dou-

ble notes because of their sheer importance in piano

repertoire, as well as their distinctive sonority.

• Staccato (41): Musical passages that are predomi-

nately performed by staccato articulation.

We formulate the prediction task as multi-label classi-

fication since a musical passage is often associated with

multiple techniques. Among the 222 recordings, we have

40 labeled with two techniques and two recordings with

three techniques. Note that besides scales and arpeggios,

few other techniques exist in their pure form (e.g. an entire

music passage of trills). Thus we aim to identify the most

prominent technique present in the recording.

5. RESULTS

5.1 Expertise Ranking

We train the projection module in 2-way and 4-way ranking

as described in Section 3.1.1, and show results in Table 3

(left). For 2-way ranking, we achieve up to 93.56% ac-

curacy, indicating a clear distinction between recordings

of varying levels of expertise in most cases. Audio-MAE

outperforms the other three audio encoders while Jukebox

embeddings contain the least information for discerning the

level of playing. The result of 4-way prediction is similar

with Audio-MAE performing the best with 84% accuracy,

indicating a good capability to distinguish larger expertise

differences (beginner vs. virtuoso) from smaller ones. The

baseline spectrogram achieves much lower metrics on both

classifications, indicating that the pre-trained encoders cap-

ture more relevant nuances of musical performance. How-

ever, we are also aware that the three levels of data differ

not only on performance but also on repertoire and record-

ing environment. The effect of fine-tuning with solo piano

domain data is not salient in this task: the fine-tuned Audio-

MAE achieved roughly the same performance while DAC

actually declined.
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Expertise Ranking Difficulty Estimation Technique Identification

2-way 4-way 9-way 3-way Multi Single
Acc F1 Acc F1 Acc0 Acc1 Acc0 F1 mAP AUC Acc Acc F1

pre-trained

Spec 75.90 74.73 52.34 49.94 32.98 59.17 67.21 66.75 57.49 71.13 73.02 46.67 39.26
Jukebox 84.51 83.79 60.41 56.75 33.41 55.36 60.49 58.27 49.33 59.79 73.33 25.44 23.53
Audio-MAE 93.48 92.84 84.21 81.20 31.60 66.09 79.03 75.11 60.69 67.51 77.46 42.22 39.81
MERT 89.48 88.73 82.12 78.81 26.55 62.28 73.13 71.38 55.76 69.05 79.37 37.78 35.85
DAC 86.84 87.91 77.77 76.24 27.61 59.86 69.64 69.87 48.50 57.87 78.73 24.44 23.61

fine-tuned

Audio-MAE 93.56 90.22 82.26 77.82 33.67 60.21 77.73 75.84 61.81 67.61 79.05 35.56 33.73
DAC 82.87 81.83 78.41 76.23 28.63 61.59 64.45 62.34 50.77 59.80 79.68 26.67 25.66

Table 3. From left to right: results of 2-way and 4-way expertise ranking, 9-way and 3-way difficulty estimation, multi-label

and single-label technique prediction. Best results are highlighted in bold.

5.1.1 Discussion: How far are we from predicting the

Chopin Competition winner?

From the trained 2-way expertise ranking module, we ap-

ply the ICPC-2015 pairs as a testing set as described in

Section 4.1.1. Ideally, the model should discern the three

levels of piano expertise by identifying specific nuances in

performance that distinguish, for example, virtuosi from

advanced students. Such insights could then be applicable

to evaluating competition-level performances. In Table 4,

“fitting” indicates that we first fit the trained model on half

of the candidates’ pairs for 5 epochs and test on the other

half. Without fitting, we only evaluate on these same testing

pairs using the model trained in Section 5.1.

w/o. fitting w. fitting

Acc F1 Acc F1

pre-trained

Spec 52.91 52.79 49.27 49.04
Jukebox 46.63 44.92 48.27 47.13
Audio-MAE 56.86 55.86 59.08 58.76
MERT 49.07 46.78 53.05 52.54
DAC 42.17 41.71 53.67 53.67

fine-tuned

Audio-MAE 54.32 50.14 54.89 49.81
DAC 60.49 60.27 59.87 59.84

Table 4. 2-way paired-ranking test result for the competi-

tion dataset ICPC-2015.

Several interesting observations are made from this ex-

periment: 1) Transferring the learnt expertise ranking into

assessing competition-level playing (which should all be-

long to the virtuoso tier within our training) is challenging,

considering the random guess baseline of 50% accuracy in

predicting the better performer within a pair. The best we

achieve is slightly above 60%, possibly because the out-

comes of competitions often transcend mere audio content

to include performative expression like gestures, resulting

in a sight over sound phenomenon [52]. 2) Adaptation

on the competition set does not significantly boost the per-

formance. For the pre-trained embeddings the accuracies

slightly increase after fitting, but it has no effects on the

fine-tuned embeddings. 3) The fine-tuned DAC embed-

dings, despite having a lower performance in the ranking

task with three levels, largely outperform other models in

ranking the candidates in a competition setting.

Using the paired prediction results from best model (fine-

tuned DAC w/o. fitting), we translate pair-wise predictions

into a global ranking. Each candidate is ranked by how

many wins they obtain in the ‘paired matches’. Each candi-

date is involved in 272 pairs, given 137 candidates and we

infer on each pair (136) and its inverse. Figure 2 shows the

relationship between our predicted candidate win counts

and the preliminary round pass hit-rate (i.e. what propor-

tion of candidates actually passed the preliminary round).

Michał Szymanowski is the predicted best candidate who

wins in the most pairs. Overall, there exists a good correla-

tion between our predicted win counts rank and candidates’

ground truth performance: the top 18 predicted candidates

all passed the preliminary round, with many of them pro-

gressing into round 2 or 3 (demonstrated by the color in

Figure 2). Down to the cut-off threshold of half of the candi-

dates, 65% of them passed the preliminary round. Finalists,

however, are not necessarily predicted accurately: the win-

ner Seong-Jin Cho only “wins” 39 matches and is placed

towards the end in this rank, as is the third placed Kate Liu.

Only Charles Hamelin (2nd place) is placed relatively high

in our ranking.

Figure 2. Paired win count threshold vs. hit-rate for prelim-

inary round pass prediction. Each candidate is a data point

colored by their ground-truth result tier (i.e. the highest

round they progressed from). The red dashed line is the

cut-off of half the candidates.
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5.2 Difficulty estimation

The difficulty estimation experiments are defined in Sec-

tion 3.1.2 on the CIPI dataset. In Table 3 (middle), we

report the accuracy within n (Accn) for the 9 class predic-

tion. Defined as Eq. 2, Accn aligns with the ordinal nature

of the task and we observe results for n = 0 (exact match)

and n = 1 (allowing for one-class deviation).

Accn =
1

|C|

∑

c∈C

|{y ∈ Sc : |f̂(x)− c| ≤ n}|

|Sc|
(2)

The Audio-MAE embeddings yield overall the best per-

formance for both 9-way and 3-way estimation. But it

is worth noting that the untrained spectrogram baseline

actually achieved accuracy metrics on-par with the audio

encoders (32.98% vs. 33.67% in 9-way estimation), even

higher than the worst-performing embedding of DAC.

The best we achieve with 9-class Acc0 is 33.67% (com-

pared to the same-set symbolic data baseline [35] of

39.47%). However, this is based on the fact that our audio

embeddings are capped to 5 minutes, removing the effect of

the major feature of piece length. For the 3-way classifica-

tion we achieved accuracy that is on-par with the symbolic

baseline, with the best Acc of 79.03%, demonstrating that

the complexity of piano repertoire can also be encoded with

the current pre-trained representation.

Interestingly, the Acc0 and Acc1 metrics do not improve

hand-in-hand: Jukebox embeddings achieved the highest

Acc0 among the pre-trained models, but performed worst

on Acc1 since its prediction is sparse and scattered from

observing the confusion matrix. The fine-tuned models

exhibit a modest enhancement in performance metrics, as

in the Acc0 for Audio-MAE and 3-way F1 for DAC, as well

as better generalization and less overfitting.

5.3 Technique identification

The technique identification experiment is performed as

both multi-label and single-label prediction, as formulated

in Section 3.1.3. In Table 3 (right), we report the mean-

Averaged-Precision (mAP) and Area Under the Receiver Op-

erating Characteristic Curve (AUC). The former accounts

for the balance between precision and recall, while the latter

computes area under the false positive rate and true pos-

itive rate (recall) which reflects the influence of the true

negatives. We also note the multi-label accuracy Acc which

accounts for all binary predictions of each class.

The most important observation on the result is that the

spectrogram representation easily outperforms the audio

encoder embeddings on this task, especially on the single-

label prediction case (46.67%). This offers an interesting

perspective on the learned embedding content: exact note

onsets and texture patterns (that are associated with the pi-

ano technique classes) seem to be overlooked by the embed-

dings, capturing less performance-related details compared

to the lower-level spectrogram. The results demonstrate

that DAC and JukeBox are the least informative audio em-

beddings for this task (24.44% and 25.44%). Audio-MAE

is the best-performing audio encoder, but the single-label

prediction results do not improve with fine-tuning. On the

other hand, fine-tuning DAC on the solo piano data im-

proved performance on this task by 2%, compared with its

pre-trained version.

To gain a better understanding of the identified tech-

niques we observe the class-wise mAP from the best-

performing representation of spectrogram. As depicted

in Figure 3, Repeated Notes emerge as the most accurately

identified technique. Conversely, the Staccato class exhibits

a decline in performance throughout the training, hinting at

a potential acoustic overlap with Repeated Notes, as sug-

gested by prior research [53]. Meanwhile, the precision

for other techniques shows consistent improvement dur-

ing training, achieving 40% to 60% even in more distinct

technique categories like Scales and Arpeggios. However,

with the highest accuracy for single-label 7-way prediction

being 46.67%, it is clear that the model’s ability to pinpoint

techniques could be further refined, especially considering

these are easily discernible to the human ear.

Figure 3. Average Precision for each class over epochs in

multi-class prediction, from spectrogram representation.

6. CONCLUSION

Our research aimed to extend the capabilities of audio

encoding models to the domain of solo piano perfor-

mance understanding. Through this effort, we addressed

tasks such as expertise ranking, difficulty estimation, and

solo piano technique detection. The study introduced the

Pianism-Labelling Dataset (PLD) and utilized a range of

pre-trained audio encoders for evaluation. The curated set

of performance-related attribute labels can contribute to

multi-task learning or contrastive learning tasks in the fu-

ture.

Our results, with the highest accuracy of 93.6% in

expertise ranking, suggest that models like Audio-MAE

hold promise for assessing aspects of musical performance,

while the codified representations such as DAC or Jukebox

struggle with capturing performance nuances. However, the

studies on difficulty and especially techniques suggest the

limitations of current pre-trained representations in captur-

ing pianistic textures and patterns, as they fail to outperform

the spectrogram baseline, prompting for the design of a

performance-oriented audio representation. Meanwhile, the

case study on the Chopin Piano Competition via transferring

the assessment objective confirmed that we are still far from

capturing the nuances of top-level human performance.
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ABSTRACT

Estimating music piece difficulty is important for orga-
nizing educational music collections. This process could
be partially automatized to facilitate the educator’s role.
Nevertheless, the decisions performed by prevalent deep-
learning models are hardly understandable, which may im-
pair the acceptance of such a technology in music edu-
cation curricula. Our work employs explainable descrip-
tors for difficulty estimation in symbolic music represen-
tations. Furthermore, through a novel parameter-efficient
white-box model, we outperform previous efforts while de-
livering interpretable results. These comprehensible out-
comes emulate the functionality of a rubric, a tool widely
used in music education. Our approach, evaluated in piano
repertoire categorized in 9 classes, achieved 41.4% accu-
racy independently, with a mean squared error (MSE) of
1.7, showing precise difficulty estimation. Through our
baseline, we illustrate how building on top of past research
can offer alternatives for music difficulty assessment which
are explainable and interpretable. With this, we aim to pro-
mote a more effective communication between the Music
Information Retrieval (MIR) community and the music ed-
ucation one.

1. INTRODUCTION

Estimating the difficulty of music pieces aids in organiz-
ing large collections for music education purposes. How-
ever, manually assigning difficulty levels is laborious and
might lead to subjective errors [1]. To address this, Music
Information Retrieval (MIR) research has focused on au-
tomating this process for piano works represented in vari-
ous modalities [2–6] as well as repertoires from other in-
struments [7, 8]. Furthermore, the interest of companies
like Muse Group [9, 10] and Yousician [11] highlights the
industry’s recognition of the importance of the task.

Previous work in this field has mainly focused on pro-
cessing machine-readable symbolic scores [1–4, 12–15].

© P. Ramoneda, V. Eremenko, A. D’Hooge, E. Parada-
Cabaleiro, X. Serra. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: P. Ramoneda, V.
Eremenko, A. D’Hooge, E. Parada-Cabaleiro, X. Serra, “Towards Ex-
plainable and Interpretable Musical Difficulty Estimation: A parameter-
efficient approach”, in Proc. of the 25th Int. Society for Music Informa-

tion Retrieval Conf., San Francisco, USA, 2024.

Music Piece

Level of Difficulty

RUBRIC INTERPRETABILITY

1. Pitch Complexity

2. Hand movements diversity

3. Rhythmic Density

4. Structural Complexity

...

+ ...

+ ...

+ ...

FINAL SCORE

...

Figure 1: To promote a more objective and transparent as-
sessment, in our white-box model RubricNet, similarly as
educational rubrics, scores (here difficulty) are dependent
on descriptors’ values. The Rubric Interpretability table
displayed at the right is inspired by [17, Fig. 1]

These, unlike acoustic features extracted from audio whose
understanding depends on signal processing knowledge,
are both analyzable by computers and interpretable by hu-
mans. Musicians find also easier to understand symbolic
features since based on music theory knowledge. Initial
works towards interpretable difficulty assessment focused
on visualization [12], with Chiu and Chen [13] making
the first attempt to classify difficulty in the piano reper-
toire with explainable descriptors. Still, the continually in-
creasing trend towards deep-learning based solutions [3,4],
whose lack of transparency limits users’ understanding and
therefore leads to an eventual non-acceptance in real life
applications [16], can impair a fruitful implementation of
such technologies in music educational practices.

With this background, we propose a white-box [18]
model (cf. Figure 1), which through the concept of a rubric,
i. e., an evaluation instrument from music education used
to support objective assessment [19–22], allows a trans-
parent interpretation of music difficulty. From this point
forward, the white-box model will be denoted by Rubric-

Net. Furthermore, to gain a profound understanding of
what music difficulty means from an explainable perspec-
tive, we build upon the descriptors of Chiu and Chen [13]
by proposing a new one focusing on music repetitive pat-
terns. We also provide an interactive companion page 1

to visualize the evaluated data and scrutinize the results in
light of its interpretability from a musical point of view.

Through eXplainable Artificial Intelligence (XAI), we

1 At: https://pramoneda.github.io/rubricnet
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Figure 2: Detailed RubricNet’s architecture.

aim to contribute to music education by facilitating the un-
derstanding of measurable factors that determine a piece’s
difficulty. Our work builds on methods from music edu-
cation, where objectively assessing abstract competences
through measuring concrete criteria is consolidated by em-
ploying rubrics, i. e., tools which, unlike a black-box, break
down complex concepts into simpler ones [19, 22].

Our interpretable methodology aims to bridge the gap
between computational models and practical music educa-
tion needs, enabling educators to make facilitated, but also
informed decisions about curriculum development based
on the difficulty levels of pieces. We release all the code
and models of this research 2 , in order to offer a baseline
for further research in music difficulty assessment.

2. RELATED WORKS

Previous research aiming to automatically assess the dif-
ficulty of piano repertoire examined the link between fin-
gering patterns and the pieces’ difficulty level [2, 14, 15].
Recent studies [1, 3, 4, 23] have also made significant con-
tributions. In [3], representations are used to feed three
deep learning models—covering music notation, physical
gestures, and expressiveness—to emulate Cook’s dimen-
sions [24]. These models’ predictions are merged using an
ensemble method to estimate the scores’ difficulty. While
we appreciate their musicology-inspired approach, its lack
of interpretability harms its usability.

Difficulty estimation of piano pieces has also been in-
vestigated through hybrid methods that merge features
with deep learning models [1, 23]. However, the absence
of publicly shared data and code complicates perform-
ing comparative analyses with reference to these works.
In [23], the authors combine the methods from Chiu and
Chen [13] with deep learning models trained using piano
roll as input. In a similar vein, [1] uses JSymbolic features
[25] and deep learning models on a proprietary dataset.

In the study by Chiu and Chen [13], 159 pieces from
the 8notes website were used, whereas [23] utilized 1800
MIDI files from the same source. The categorization of
these pieces, provided by users of 8notes, raises concerns
about their reliability. Unfortunately, neither study pro-
vides access to their data or details on how they were seg-
mented. Other work [26] has attempted to understand the
effectiveness of various features, including those proposed
in [13] for categorizing the grade levels of a specific pi-
ano curriculum. Recent efforts by Zhang et al. [4] and

2 At: https://github.com/pramoneda/rubricnet

Ramoneda et al. [3] have focused on compiling datasets
with difficulty annotations from the established piano pub-
lisher Henle Verlag, with the latter’s dataset not only be-
ing the most extensive but also the only one made pub-
licly available. Therefore, for our comparative analysis, we
will use the open-source datasets presented in [3], namely
Can I Play It? (CIPI), which has 9 levels of difficulty, and
Mikrokosmos-difficulty (MKD), which includes 3 levels.

Finally, in order to validate our approach, we con-
sider a different and established feature set, i.e., the stan-
dard music symbolic features available through Music21
library [27], which includes (amongst others) established
JSymbolic features [25], thus facilitating a meaningful
comparison with our proposed descriptors. In addition,
we also contrast the results achieved with our novel de-
scriptors with those obtained with the features by Chiu
and Chen [13], which are also reimplemented and open-
sourced in this study. Note that none of the approaches
previously mentioned has focused on the interpretability
of the descriptors, which is a key contribution of our work.

3. INTERPRETABLE RubricNet

The RubricNet model (cf. Figure 2) is designed to provide
interpretability akin to a rubric, enabling its analysis and
results to be intuitively aligned with established practices
in music education. This approach ensures that the model’s
logic and outcomes are easily comprehensible, facilitating
their usage in music education along to traditional tools.

3.1 Model Architecture

The network, comprising a series of linear layers dedicated
to process individual input descriptors and followed by a
nonlinear activation function, is formulated as follows:

Given a set of N input descriptors, each descriptor xi

is first processed through its dedicated linear layer with
weight wi and bias bi, followed by a hyperbolic tangent
activation function to yield:

si = tanh(wi · xi + bi) (1)

where si represents the processed score for the i-th de-
scriptor. Scores are then aggregated in a single score Sagg:

Sagg =
n∑

i=1

si (2)

The aggregated score Sagg is then passed through a final
linear layer to obtain the logits for the class predictions,
which are mapped to probabilities with a sigmoid function:

P⃗ = σ(Sagg ·
−→wf +

−→
bf ) (3)

where σ denotes the sigmoid function, −→wf and
−→
bf are the

weight and bias of the final linear layer, respectively.

3.2 Ordinal Optimization

This model applies an ordinal optimization approach [28],
predicting ordered categorical outcomes, i. e., difficulty
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Descriptor Explanation

Pitch Entropy Indicates pitch variety; higher values
mean more diverse pitch collection

Pitch Range Distance between the lowest and highest
notes.

Average Pitch Indicating the central pitch level.
Displacement
Rate

Measures hand movement intensity across
keys reflecting physicality in performance.

Average IOI The average timing between note onsets,
indicative of rhythmic density.

Pitch Set LZ Indicative of structural complexity and
repetitiveness within a pitch set sequence.

Table 1: Explanation of descriptors in musical terms.

levels such as beginner (1), intermediate (2), and advanced
(3), through logits. These logits, computed using a mean
squared error (MSE) loss, indicate the model’s predictions
on the ordinal scale. Difficulty level is then obtained as:

max{i where Pi ≥ 0.5 and Pj ≥ 0.5, ∀j < i} (4)

3.3 Interpretability

In RubricNet, the descriptors (automatically computed
from the data) are, to some extent, comparable to the for-
malized evaluation criteria defined in traditional rubrics;
similarly, the aggregated score, might be comparable to
a final grade/mark assigned in an educational scenario.
Given the correspondences between both, we could con-
sider the model a “white-box” approach, able to promote
transparency and interpretability, similarly to a rubric.

It uses independent linear transformations on input de-
scriptors to generate scores between -1 and 1, which di-
rectly influence the regression output, Sagg . Since negative
scores, might be not fully understood in terms of difficulty
level, we normalize scores between 0 and 1, rescaling Sagg

between 0 and 12. This approach mirrors rubric’s ability
to provide objective and structured feedback, with the sim-
plicity of these transformations aiding in understanding the
impact of features in predictions.

The interpretability of the model lies in its ability to dis-
sect each descriptors’ influence on a piece’s difficulty level.
Consequently, analyzing each descriptor’s scores might re-
veal its overall importance on the prediction. Lastly, Sagg

is a continuous-ordered scalar with rank correlation to dif-
ficulty. Therefore, from Sagg , we retrieve ordered and dis-
crete categories with clear decision boundaries.

4. EXPLAINABLE DESCRIPTORS

From codified musical scores, we extracted numeric fea-
tures which are feed to a classification algorithm. We re-
implemented a set of features from the literature [13] while
proposing a novel one, Pitch Set LZ. In addition to explain-
ing the features (cf. Table 1), we will provide their tech-
nical descriptions and analyze their relevance to difficulty
and interdependencies using the data.

4.1 Descriptors

In our work, we analyze music sheets encoded in symbolic
format, focusing on extracting pitch and timing. Follow-
ing the approach suggested by Chiu and Chen [13], we

process left and right hand parts separately to clarify peda-
gogical aspects of musical difficulty. Our primary analysis
involves sequences of pitch set events, each characterized
by a pitch set S and onset time T . Pitch sets, represented
by sets of MIDI numbers, are defined over the alphabet
of all pitch sets S that occurred in a score part, while on-
set times are calculated in seconds from the performance
start by the music21 library [27] with reference to marked
tempo information. This method emphasizes the timing of
note attacks, duration and rests. Additionally, we consider
a collection of pitch events, each defined by pitch P over
the alphabet of all pitches P. Our analysis started with
the five features identified by Chiu and Chen [13] as most
relevant to understanding musical difficulty.

Pitch Entropy. The entropy of pitches in the pitch events:

−
∑

i∈P

p(P = i) log2 p(P = i) (5)

Pitch Range. The distance between the minimum and
maximum MIDI pitches in a score part.

Average Pitch. The average MIDI pitch in a music sheet.

Displacement Rate. Initially proposed by [13], it quanti-
fies the extent of hand movement across the keyboard dur-
ing the performance of a score. It analyzes maximum pitch
distances between consecutive pitch set events and is cal-
culated as a weighted average of three categories: distances
less than 7 semitones (assigned a weight of zero); distances
over 7 semitones but under an octave (assigned a weight
of one); and distances of an octave or larger (assigned a
weight of two to emphasize larger movements).

Average IOI: Average Inter Onset Interval. A concept
similar to the “Playing speed” introduced by [13], a term
we consider deceptive since it actually decreases as the
hand’s “speed” increases. This is an average time in sec-
onds between onsets of two consecutive pitch set events.
Let’s denote ith onset time with Ti, then the value is:

∑
1≤i≤Nevents−1

(Ti+1 − Ti)

Nevents − 1
(6)

In 23% of the scores, information about the recommended
performance tempo is missing. We then assume the tempo
is 100 beats per minute (bpm). Thus, in cases of missing
bpm, the Average IOI feature might not be relevant.

Pitch Set LZ. Lempel-Ziv complexity of pitch set se-
quence. Before introducing our proposed descriptor, it
is crucial to provide context and motivation. Pitch En-
tropy, as emphasized by Chiu and Chen [13], is particu-
larly relevant—a conclusion supported by the analysis of
correlations between difficulty and features in the follow-
ing section, as well as by informal experiments. As Sayood
discusses [29], there’s a link between entropy of a task and
the cognitive load it imposes on the performer, a concept
that may also apply to music performance [30]. However,
music is often perceived in terms of larger structures like
phrases and sections, not just isolated pitches, prompting
us to seek a descriptor that captures the “repetitiveness”
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Feature τc

Pitch Entropy (R) 0.583
Pitch Set LZ (L) 0.583
Pitch Entropy (L) 0.582
Pitch Set LZ (R) 0.573
Pitch Range (L) 0.567
Pitch Range (R) 0.554
Displacement Rate (R) 0.332
Displacement Rate (L) 0.273
Average IOI (R) -0.209
Average IOI (L) -0.208
Average Pitch (R) 0.088
Average Pitch (L) 0.017

Table 2: Features ordered by absolute values of their τc
rank correlation with the difficulty level.

of music on a broader scale. To this end, we employ LZ-
complexity, a measure of redundancy introduced by Lem-
pel and Ziv [31]. In context of music research, it was
used for binary encoded rhythm analysis by Shmulevich
and Povel [32]. We apply LZ-complexity to sequence of
pitch sets: scan a score part, identify all subsequences of
pitch sets that cannot be reproduced from preceding mate-
rial through a recursive copying procedure. The number of
such unique subsequences is defined as the LZ-complexity
of the part. This approach allows us to assess the structural
complexity and redundancy of a musical piece, highlight-
ing the cognitive demands placed on performers.

4.2 Feature Analysis

We assume that, for easier interpretability, features must
on average change monotonically with the difficulty level.
To measure this quality, we use the τc version of Kendall
rank correlation coefficient due to its ability to deal with
“heavily tied” rankings [33] (many musical pieces have the
same difficulty, hence, we have multiple ties in the ranking
by difficulty). τc is equal to 1 when feature and difficulty
rankings are perfectly aligned in the same direction, -1 if
they are aligned in opposite directions. As the number of
nonconcordant cases increases, the coefficient approaches
zero. In Table 2, the results show that the features related
to pitch organization are the most correlated to difficulty.
Hand displacement and Inter-onset intervals are less corre-
lated, while average pitch seems almost irrelevant.

In addition, we aim to uncover dependencies among the
features themselves while mitigating the influence of diffi-
culty, with whom most features are correlated. To achieve
this, we calculate conditional τc correlations for all feature
pairs given a fixed difficulty level, and average the coeffi-
cients across all difficulty levels. We then convert these co-
efficients into a distance matrix and apply hierarchical ag-
glomerative clustering based on average distance to iden-
tify clusters of correlated features. From the resulting den-
drogram (cf. Figure 3), we observe that features correlated
with difficulty—namely Pitch Entropy, Pitch Set LZ, and
Pitch Range—are also interrelated. This is remarkable be-
cause the three most correlated features are not inherently
dependent: one could envision a music piece with any of
them maximized while maintaining low values for the oth-
ers. However, pieces in CIPI typically exhibit coordinated
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Figure 3: Hierarchical clustering of features based on their
average correlation distance within each difficulty class.

values in these descriptors. Thus, we mostly observe the
combined effect of these features, making it challenging to
reliably decompose “difficulty” into an aggregate of inde-
pendent components.

5. EXPERIMENTS

5.1 Experimental Setup

To evaluate the effectiveness of our proposed method, we
utilized the Mikrokosmos-difficulty (MKD), and Can I play

it? (CIPI) datasets [3]. For fair comparison, we use the 5-
fold cross-validation approach defined in [3]. In each split,
60% of the data is used as a train set, while the remaining
is equally divided into validation and test sets.

As in [3], we employ mean squared error (MSE) and
accuracy within n classes (Acc-n) for evaluation. These
metrics are chosen for their applicability to ordinal classifi-
cation challenges, with Acc-n assessing the model’s accu-
racy for n classes from the true labels, and MSE measuring
the average squared prediction error across classes. The
effects of dataset imbalances and a fair evaluation across
classes are mitigated by macro-averaged metrics.

We optimize the models during training through Adam
optimizer with a learning rate of 10−2. The training pro-
cess incorporates early stopping, based on the Acc-n and
MSE metrics from the validation set, to prevent overfit-
ting. Through Ordinal Loss, we frame difficulty prediction
as an ordinal classification task, as mentioned in Section 3.
We apply a standard scaler and dropout to the features to
prevent individual ones from dominating. For each experi-
ment, we look for the best hyperparameters using Bayesian
optimization [34]: batch size within the range from 16 to
128, dropout rate between 0.1 and 0.5, learning rate decay
from 0.1 to 0.9, and the learning rate itself, tested over a
logarithmic scale from 1e− 5 to 1e− 1. This approach al-
lows us to systematically explore the hyperparameter space
and identify the optimal settings for our models; thus, en-
abling a fair comparison between experiments.

5.2 Experimental Results

In Table 3, the results from the comparison between the
performance of our novel approach with the presented de-
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CIPI MKD
Acc-9 MSE Acc-3

argnn [3] 32.6(2.8) 2.1(0.2) 75.3(6.1)
virtuoso [3] 35.2(7.3) 2.1(0.2) 65.7(7.8)
pitch [3] 32.2(5.9) 1.9(0.2) 74.2(9.2)
ensemble [3] 39.5(3.4) 1.1(0.2) 76.4(2.3)
Ours 41.4(3.1) 1.7(0.5) 79.6(8.8)

Table 3: Experiment comparison of previous individual
deep learning models [3], their ensemble and our explain-
able and interpretable method on CIPI and MKD.

Experiment Acc-9 MSE
RubricNet proposed 41.4(3.1) 1.7(0.5)
"" with Chiu and Chen [13] descriptors 36.2(5.2) 1.7(0.3)
"" with Music21 descriptors 36.7(6.0) 1.3(0.2)
"" with ALL descriptors 38.9(4.3) 1.3(0.1)
"" proposed without Avg P. 39.0(5.6) 1.5(0.4)
"" with positive scores 38.5(3.5) 1.6(0.6)
"" without ordinal regression 36.2(1.3) 2.1(0.4)
Logistic regression 40.0(4.3) 1.5(0.3)

Table 4: Ablation study results for different feature sets (5
first rows) and model configurations (last 3 rows) on CIPI.

scriptors (cf. Sections 3 and 4) and the results achieved
by three previous models from the literature (argnn [35],
virtuoso [36], pitch) as well as their collective ensem-
ble, are shown. Our model achieves the highest Acc-9
score of 41.4(±3.1) in CIPI, surpassing the ensemble’s
39.5(±3.4), while displaying the second lower MSE of
1.7(±0.5), only overtaken by the ensemble’s 1.1(±0.2).
With an Acc-3 score of 79.6(±8.8) in the MKD dataset,
our approach is superior to previous ones but with a higher
standard deviation.

In the following, we examine the impact of various fea-
ture and model configurations on RubricNet performance
(cf. Table 4). As baseline for comparison, we consider the
configuration previously discussed (cf. Ours in Table 3).

Employing only the five Chiu and Chen [13] descrip-
tors, i. e., excluding Pitch Set LZ, leads to a decrease in
Acc-9 by −5.2, reflecting a performance drop from the
baseline. The use of Music21 [27] descriptors, which in-
clude JSymbolic [25] and other descriptors widely used in
the community, results in a decrease in Acc-9 by −4.7 and
a decrease in MSE by −0.4, showing slight improvements
in MSE but not in accuracy. However, note that a larger
number of descriptors could decrease the explainability.
Combining all the descriptors slightly decreases Acc-9 and
MSE: −2.5 and −0.4, respectively; with the accuracy re-
sults still under the baseline. These results indicate that the
descriptors discussed in Section 4 constitute the best op-
tion for difficulty estimation on CIPI. Since average pitch
showed no relation to difficulty in the feature analysis, we
repeated the experiments without this feature. This lead,
however, to non-significant worsening of the results.

Concerning the impact of different model configura-
tions, we replace the tanh by sigmoid non-linearities to
guarantee positive scores. The obtained MSE rate is simi-
lar but the accuracy drops by −3.1. This means that neg-
ative scores could aid in training, which is why we keep
them, but normalize the scores after the training phase. Be-
sides, substituting the ordinal encoding used in the base-
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Figure 4: Decision boundaries of the model between
grades on Sagg (X axis) for all splits (Y axis) on CIPI.

line with a traditional one-hot encoding with cross-entropy
loss, results in a decrease in Acc-9 by −5.2 and an increase
in MSE by +0.4, highlighting the importance of ordinal
regression in achieving lower MSE rates. Lastly, logistic
regression with ordinal loss decreases the Acc-9 by −1.4
while showing a decrease of MSE by −0.2. This offers a
compromise for both metrics but without beating our setup
and to our understanding, being less interpretable.

Overall, the gains offered by Rubricnet with the features
proposed are relatively modest compared to the baselines.
However, having a smaller feature set is necessary for ex-
plainability. The novelty of our approach lies in aligning
the interpretability of music education with rubric-like in-
terpretability feedback. This alignment is essential for a
successful application of our model in practice, as we will
discuss in further sections.

5.3 Decision Boundaries

In RubricNet, the input features are combined into a sin-
gle scalar before performing the final ordinal classification.
Analysis of the results shows that the final layer defines
optimized decision boundaries, setting thresholds for Sagg

that progressively increase along with difficulty levels. Be-
cause of the final sigmoid activation, once Sagg exceeds a
boundary, the corresponding difficulty level will always be
active, which guarantees the ordinality of the predictions.
By examining the decision boundaries (cf. Figure 4), we
observe that the trends are similar across splits, displaying
shorter valid ranges around intermediate levels. Note that
in split 2, there are only 8 classes because the model ig-
nored the last class. This can happen as we use numeric
optimization, which sometimes falls into local minima.
These minima might seem optimal based on the validation
metrics but do not meet our overall performance expecta-
tions.

6. DISCUSSION AND LIMITATIONS

Now, we analyze whether RubricNet is interpretable from
a musical point of view. To understand how features im-
pact the final level suggested by the model, we evaluate
the contribution of each descriptor to the aggregated score.
Since learning to play an instrument is a progressive pro-
cess, relative contributions of features to different levels
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1 2 3 4 5 6 7 8 9
Grade

P. Set LZ (L)
P. Set LZ (R)

Disp. Rate (L)
Disp. Rate (R)

Avg IOI (L)
Avg IOI (R)

Avg P. (L)
Avg P. (R)

P. Range (L)
P. Range (R)

P. Entropy (L)
P. Entropy (R)

Figure 5: Average relative contribution of descriptors (Y
axis) normalized between 0 and 1, across grades (X axis).

Figure 6: Simplified difficulty interpretable rubric for the
Nocturne op. 9, no. 3 (F. Chopin). Descriptors’ values for
the right hand and final score (for both hands) are shown.

with reference to the grade 1 are displayed instead of abso-
lute values. These contributions are averaged across splits
on the test set and shown in Figure 5.

We observe a trend of higher contributions when the
level increases for every descriptor. This observation is
consistent with the fact that Sagg value increases for higher
levels (cf. Figure 4). The most discriminative features are
pitch entropy and pitch range, as well as the LZ descriptor
for higher levels. Conversely, some features, e. g., aver-
age IOI or the average pitch, have low contribution to the
model’s decisions, as shown by their relatively constant
and small values across grades. The latter is expected,
since very different pieces could have the same average
pitch, not disclosing anything about difficulty. The former
might be explained by the averaging, which can remove in-
formation, especially when a piece can alternate between
fast and slow parts. Besides, as mentioned before, tempo
is often poorly annotated in the dataset.

To better understand the explainable capabilities of the
proposed descriptors, in the following, we provide a musi-
cal examination of two concrete samples, by this demon-
strating the interpretability of our approach. Nocturne

op. 9, no. 3 by F. Chopin, is labelled as level 7, but classi-
fied as level 2. All the descriptors are below the grade av-
erage, as shown in the rubric (cf. Grade Divergence in Fig-
ure 6). Our hypothesis is that this nocturne contains many
challenges that go beyond the descriptors used. There are
constant changes in dynamics, a variety of articulations,
and as a key difficulty aspect, many types of polyrhythms
between the right and left hands. Further research should
address all the types of difficulty challenges, probably un-
derrepresented in the existing datasets.

(a) Berceuse in D-flat major, Op.57 (F. Chopin). Bars 6-10.
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from original rubric (grade divergence column).

Figure 7: Musical excerpt (a) and a rubric outcome (grade
divergence) plotted (b) from a piece in level 7.

The piece Berceuse in D-flat major, Op.57 by F. Chopin,
shown in Figure 7 is appropriately classified as grade 7.
This is because it maintains a left-hand accompaniment
with few changes, in contrast to the higher virtuosity of
the right hand. The left hand has scores below average in
most descriptors because of its few changes: Pitch Range
(-0.41), Average IOI (-0.04), Pitch Set LZ (-0.34), Average
Pitch (-0.01), and Pitch Entropy (-0.52). In contrast, the
right hand shows more virtuosity, with higher than average
scores for all the right hand features. These scores collec-
tively contribute to a final cumulative score that accurately
reflects the overall difficulty.

Finally, it should be noted that our approach primarily
focuses on descriptors related to pitch sequences and on-
sets, while disregarding others. Still, the ablation study
showed that other features sets (e. g., those from music21),
even covering aspects like rhythm variety, do not enhance
our classifier’s performance either. In addition, expressive
elements [37] such as dynamics, tempo changes, and artic-
ulation, since often left to performers’ interpretation, are
not always captured in musical notation [3], and therefore
is a dimension our score-based model does not consider.

7. CONCLUSION AND FUTURE WORK

In our study, we proposed a novel white-box parameter-
efficient model aligned with the music education commu-
nity tools, i. e., rubrics, which outperforms previous ap-
proaches on difficulty estimation. In addition, we created
an interactive companion page for visualizing CIPI and
MKD datasets. In summary, we showed that analyzing
explainable descriptors, unlike deep learning models, of-
fers clarity, which gives both teachers and students specific
insights into pieces. This approach not only underscores
the importance of explainable artificial intelligence (XAI)
in understanding music difficulty, but also emphasizes the
potential for such technologies to contribute to the broader
field of music education. For future research, we consider
interesting to creating a dataset based on technical chal-
lenges like finger fluency and polyphonic complexity, as
well as user studies for understanding the perception of in-
terpretable feedback by music education community.
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8. ETHICS STATEMENT

The system presented in this paper aims at obtaining the
difficulty of a musical piece through several descriptors.
In previous work, descriptors were not available, limiting
access to the area. This situation underscores the need for
open science practices. Therefore, we open our implemen-
tation, to facilitate access for new researchers. Besides,
the dataset used for this study is available upon request
for non-profit and academic research purposes. While this
limits its use in commercial applications, it ensures the
reproducibility of the results. The data consists of open-
source scores of music that is no longer copyrighted, its
use for open research can thus be considered fair.

The proposed work belongs to the area of assisted mu-
sic learning. One might argue that such a tool can have
a detrimental impact on music teaching jobs. While this
is a valid concern, we think that an eventual solution of
the addressed task, would not endanger music educators
profession, whose role naturally goes much beyond than
categorizing music in difficulty levels. Instead, this tech-
nology should be seen as a way to support them in the own
teaching practices, for instance, by alleviating their burden
on some duties, such as exploring large collections, and
by this enabling them to easily discover forgotten musical
works from our cultural heritage which fit students’ needs.
Moreover, through this research, we also aim to convey
the message that the path to advancement does not solely
lie in acquiring more data or creating larger models. By
highlighting what drives its decisions, our proposed model
aligns with the goals of eXplainable AI, something cru-
cial for its acceptance in music education. Although our
efforts in making the system interpretable and explainable
will partly answer the common criticisms made to black-
box approaches, the real impact of our system remains to
be verified by its future use in real scenarios.

9. ACKNOWLEDGEMENTS

We want to thank Alia Morsi’s previous work on difficulty
estimation from a feature engineering perspective, which
encouraged research in tabular data [26]. The team would
also acknowledge Marius Miron for continuously insist-
ing on aligning difficulty estimation with explainability.
He also highlighted the direction of using a rubric-like ex-
plainability feedback, pointing out Ustun et al.’s work [17].
We also thank Roser Batlle-Roca for helping to discuss
some concepts between interpretability and explainability
based on her research [38].

This work was supported by “IA y Música: Cátedra
en Inteligencia Artificial y Música” (TSI-100929-2023-1),
funded by the Secretaría de Estado de Digitalización e In-
teligencia Artificial, and the European Union-Next Gener-
ation EU, under the program “Cátedras ENIA 2022 para
la creación de cátedras universidad-empresa en IA”. This
work was also supported by the ANR project TABASCO
(ANR-22-CE38-0001) and the travel grant MERMOZ2-
012047. Finally, this work was also possible through the
support of the Hightech Agenda Bayern, funded by the
Free State of Bavaria (Germany).

10. REFERENCES

[1] D. S. Deconto, E. L. F. Valenga, and C. N. Silla, “Au-
tomatic music score difficulty classification,” in Proc.

of the 30th IEEE Int. Conf. on Systems, Signals and

Image Processing (IWSSIP), Ohrid, North Macedonia,
2023.

[2] P. Ramoneda, N. C. Tamer, V. Eremenko, M. Miron,
and X. Serra, “Score difficulty analysis for piano per-
formance education,” in Proc. of the IEEE Int. Conf.

on Acoustics, Speech and Signal Processing (ICASSP),
Singapore, Singapore, 2022.

[3] P. Ramoneda, D. Jeong, V. Eremenko, N. C. Tamer,
M. Miron, and X. Serra, “Combining piano perfor-
mance dimensions for score difficulty classification,”
Expert Systems with Applications, vol. 238, pp. 1–16,
2024.

[4] H. Zhang, E. Karystinaios, S. Dixon, G. Widmer, and
C. E. Cancino-Chacón, “Symbolic music representa-
tions for classification tasks: A systematic evaluation,”
in Proc. of the 24th Int. Society for Music Information

Retrieval Conf. (ISMIR), Milan, Italy, 2023.

[5] P. Ramoneda, D. Jeong, J. J. Valero-Mas, and X. Serra,
“Predicting performance difficulty from piano sheet
music images,” in Proc. of the 19th Int. Society for Mu-

sic Information Retrieval Conf. (ISMIR), Milano, Italy,
2023.

[6] P. Ramoneda, M. Lee, D. Jeong, J. J. Valero-Mas, and
X. Serra, “Can audio reveal music performance diffi-
culty? insights from the piano syllabus dataset,” arXiv

preprint arXiv:2403.03947, 2024.

[7] M. A. V. Vásquez, M. Baelemans, J. Driedger,
W. Zuidema, and J. A. Burgoyne, “Quantifying the
ease of playing song chords on the guitar,” in Proc. of

the 24th Int. Society for Music Information Retrieval

Conf. (ISMIR), Milan, Italy, 2023.

[8] E. Holder, E. Tilevich, and A. Gillick, “Musiplectics:
Computational assessment of the complexity of music
scores,” in Proc. of the ACM Int. Symposium on New

Ideas, New Paradigms, and Reflections on Program-

ming and Software (Onward!), Pittsburgh, USA, 2015.

[9] “Musescore have automatic difficulty categories from
year 2022,” https://musescore.com/, accessed on April
12, 2024.

[10] “Ultimate guitar have automatic difficulty categories
from year 2022,” https://www.ultimate-guitar.com/,
accessed on April 12, 2024.

[11] “System for estimating user’s skill in playing a music
instrument and determining virtual exercises thereof,”
Patent US9 767 705B1, 2017.

[12] V. Sébastien, H. Ralambondrainy, O. Sébastien, and
N. Conruyt, “Score analyzer: Automatically determin-
ing scores difficulty level for instrumental e-learning,”

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

526



in Proc. of the 13th Int. Society for Music Information

Retrieval Conf. (ISMIR), Porto, Portugal, 2012.

[13] S.-C. Chiu and M.-S. Chen, “A study on difficulty
level recognition of piano sheet music,” in Proc. of

the IEEE Int. Symposium on Multimedia (ISM), Irvin,
USA, 2012.

[14] E. Nakamura, N. Ono, and S. Sagayama, “Merged-
output hmm for piano fingering of both hands.” in Proc.

of the 15th Int. Society for Music Information Retrieval

Conf. (ISMIR), Taipei, Taiwan, 2014.

[15] E. Nakamura and S. Sagayama, “Automatic piano re-
duction from ensemble scores based on merged-output
hidden markov model,” in Proc. of the 41st Int. Com-

puter Music Conf. (ICMC), Denton, USA, 2015.

[16] D. Branley-Bell, R. Whitworth, and L. Coventry, “User
trust and understanding of explainable ai: Exploring
algorithm visualisations and user biases,” in Proc. of

the Int. Conf. on Human-Computer Interaction (HCII),
Copenhagen, Denmark, 2020.

[17] B. Ustun and C. Rudin, “Learning Optimized Risk
Scores,” Journal of Machine Learning Research,
vol. 20, no. 150, pp. 1–75, 2019.

[18] O. Loyola-Gonzalez, “Black-box vs. white-box: Un-
derstanding their advantages and weaknesses from a
practical point of view,” IEEE access, vol. 7, pp.
154 096–154 113, 2019.

[19] M. E. Latimer, M. J. Bergee, and M. L. Cohen, “Reli-
ability and perceived pedagogical utility of a weighted
music performance assessment rubric,” Journal of Re-

search in Music Education, vol. 58, pp. 168 – 183,
2010.

[20] M. Álvarez-Díaz, L. M. Muñiz-Bascón, A. Soria-
Alemany, A. Veintimilla-Bonet, and R. Fernández-
Alonso, “On the design and validation of a rubric for
the evaluation of performance in a musical contest,” In-

ternational Journal of Music Education, vol. 39, pp. 66
– 79, 2020.

[21] B. C. Wesolowski, “Understanding and developing
rubrics for music performance assessment,” Music Ed-

ucators Journal, vol. 98, pp. 36 – 42, 2012.

[22] A. Jonsson and G. Svingby, “The use of scoring
rubrics: Reliability, validity, and educational conse-
quences,” Educational Research Review, vol. 2, pp.
130–144, 2007.

[23] Y. Ghatas, M. Fayek, and M. Hadhoud, “A hybrid deep
learning approach for musical difficulty estimation of
piano symbolic music,” Alexandria Engineering Jour-

nal, vol. 61, no. 12, pp. 1–14, 2022.

[24] N. Cook, “Analysing performance and performing
analysis,” Rethinking Music, vol. 8, pp. 1–23, 1999.

[25] I. F. McKay, Julie E. Cumming, “jSymbolic 2.2: Ex-
tracting features from symbolic music for use in musi-
cological and MIR research.” in Proc. of the 19th Int.

Society for Music Information Retrieval Conf. (ISMIR),
Paris, France, 2018.

[26] A. Morsi, “Characterizing difficulty levels of keyboard
music scores,” Master’s thesis, Music Technology
Group, Universitat Pompeu Fabra, 2020. [Online].
Available: https://doi.org/10.5281/zenodo.4090526

[27] M. S. Cuthbert and C. Ariza, “Music21: A toolkit for
computer-aided musicology and symbolic music data,”
in Proc. of the 11th Int. Society for Music Information

Retrieval Conf. (ISMIR), Utrecht, Netherlands, 2010.

[28] J. Cheng, Z. Wang, and G. Pollastri, “A neural network
approach to ordinal regression,” in Proc. of the IEEE

Int. Joint Conf. on Neural Networks (IJCNN), Hong
Kong, China, 2008.

[29] K. Sayood, “Information theory and cognition: A re-
view,” Entropy, vol. 20, pp. 1–19, 2018.

[30] C. Palmer, “The nature of memory for music perfor-
mance skills,” in Music, Motor Control and the Brain,
E. Altenmüller, J. Kesselring, and M. Wiesendanger,
Eds. Oxford, UK: Oxford University Press, 2012.

[31] J. Ziv and A. Lempel, “Compression of individual se-
quences via variable-rate coding,” IEEE Transactions

on Information Theory, vol. 24, no. 5, pp. 530–536,
1978.

[32] I. Shmulevich and D.-J. Povel, “Measures of temporal
pattern complexity,” Journal of New Music Research,
vol. 29, no. 1, pp. 61–69, 2000.

[33] M. Kendall, Rank Correlation Methods, ser. Griffin
books on statistics. Griffin, 1962.

[34] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama,
“Optuna: A next-generation hyperparameter optimiza-
tion framework,” in Proc. of the 25th ACM SIGKDD

Int. Conf. on Knowledge Discovery & Data mining

(KDD), Anchorage, USA, 2019.

[35] P. Ramoneda, D. Jeong, E. Nakamura, X. Serra,
and M. Miron, “Automatic piano fingering from par-
tially annotated scores using autoregressive neural net-
works,” in Proceedings of the 30th ACM International

Conference on Multimedia (MM ’22), Lisboa, Portu-
gal, 2022.

[36] D. Jeong, T. Kwon, Y. Kim, K. Lee, and J. Nam,
“VirtuosoNet: A Hierarchical RNN-based System for
Modeling Expressive Piano Performance,” in Proceed-

ings of the 20th International Society for Music In-

formation Retrieval Conference (ISMIR), Delft, The
Netherlands, 2019.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

527



[37] H. Zhang and S. Dixon, “Disentangling the horowitz
factor: Learning content and style from expressive pi-
ano performance,” in ICASSP 2023-2023 IEEE Inter-

national Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2023, pp. 1–5.

[38] R. Batlle-Roca, E. Gómez, W. Liao, X. Serra,
and Y. Mitsufuji, “Transparency in music-generative
ai: A systematic literature review,” 2023. [Online].
Available: http://dx.doi.org/10.21203/rs.3.rs-3708077/
v1

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

528



PURPOSEFUL PLAY: EVALUATION AND CO-DESIGN OF CASUAL 
MUSIC CREATION APPLICATIONS WITH CHILDREN 

Michele Newman1 Lidia Morris1 Jun Kato2 

Masataka Goto2 Jason Yip1 Jin Ha Lee1 

1 Information School, University of Washington, United States 
2 National Institute of Advanced Industrial Science and Technology (AIST), Japan 

mmn13@uw.edu, ljmorris@uw.edu, jun.kato@aist.go.jp, 

m.goto@aist.go.jp, jcyip@uw.edu, jinhalee@uw.edu 

ABSTRACT 

The rise of digital technologies has increased interest in 
democratizing music creation, but current creativity sup-

port tools often prioritize literacy and education over meet-

ing children’s needs for casual creation. To address this, 
we conducted Participatory Design sessions with children 
aged 6-13 to explore their perceptions of casual music cre-

ation activities and identify elements of creative applica-

tions that support different expressions. Our study aimed 
to answer two key questions: (1) How do children per-

ceive casual music creation activities and which elements 
of creative applications facilitate expression? and (2) What 
insights can inform the design of future casual music cre-

ation tools? Our findings indicate that children view casual 
music creation as involving diverse activities, with visuals 
aiding in understanding sounds, and engaging in various 
playful interactions leading to creative experiences. We 
present design implications based on our findings and in-

troduce casual creation as "purposeful play". Furthermore, 
we discuss its implications for creative MIR. 

1. INTRODUCTION 

Digital technologies have sparked interest in democratiz-

ing creation as they enable diverse individuals to produce 
cultural objects [1–3], suggesting we may understand these 
tools as enhancers of human creativity [4–7]. For example, 
over the past two decades, there has been a rise in the de-

velopment and study of Creativity Support Tools (CSTs) 
in the field of Human-Computer Interaction (HCI) [8]. 
Despite the abundance of music-related CSTs, including 
tools such as digital audio workstations [9–11], notation 
software [12, 13], style-specific composition/identification 
tools [14,15], and music generation systems [16,17], many 
fail to cater to children. 

© M. Newman, L. Morris, J. Kato, M. Goto, J. Yip, and J.H. 
Lee. Licensed under a Creative Commons Attribution 4.0 International 
License (CC BY 4.0). Attribution: M. Newman, L. Morris, J. Kato, M. 
Goto, J. Yip, and J.H. Lee, “Purposeful Play: Evaluation and Co-Design 
of Casual Music Creation Applications with Children”, in Proc. of the 
25th Int. Society for Music Information Retrieval Conf., San Francisco, 
United States, 2024. 

Children’s creative experiences are often shaped by a 
limited understanding of social norms [18], implying that 
systems designed for adults may not fully support their 
creative endeavors. Moreover, many music applications 
designed for youth primarily focus on literacy or are de-

ployed in formal education contexts [19, 20]. However, 
previous work highlights the value of informal and ca-

sual music experiences in education [21, 22]. Building on 
this work, we explore the potential of casual music experi-

ences for children, focusing on casual music creation. We 
define casual music creation as creative musical experi-

ences prioritizing the process of enjoyment over product 
outcome, drawing inspiration from Compton’s research on 
casual creation systems [23, 24]. While casual musical ex-

periences relate to informal learning [22], this study fo-

cuses on how music technology as part of CSTs supports 
these experiences, providing new ways for children’s self-

expression rather than skill development. Research shows 
that supporting creativity is vital for children, as it helps 
to foster children’s identities [25, 26], develop confidence 
in their creative abilities [27, 28], as well as support brain 
development [29, 30] and social skills [31]. 

However, there is a gap in understanding children’s 
MIR needs. This is particularly true in creative MIR, or 
the use of retrieved music information for creative pur-

poses [7, 32], despite growing interest in creative applica-

tions [7,33]. For instance, only two ISMIR papers address 
children: one develops the Children’s Song Dataset for 
song synthesis [34], and the other involves children in de-

signing a music organization app [35]. While these studies 
provide insights to children’s experiences with MIR tasks, 
there is still a broader question about how children interact 
with MIR tasks to meet their unique creative needs. Build-

ing off this prior research in MIR, music education, and 
HCI, we utilized a method of Participatory Design (PD) 
called Cooperative Inquiry, a type of PD that focuses on 
designing technology with and for children [36]. As chil-

dren are a growing user group of creative technologies, PD 
can generate developmentally appropriate design ideas and 
feedback [37, 38], boosting children’s self-esteem through 
facilitating design in a casual setting [39]. We examine 
children’s creative needs while using musical CSTs within 
creative MIR contexts through two PD sessions with chil-

dren aged 6-13, addressing two questions: (1) How do chil-
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dren perceive casual music creation activities and which el-

ements of creative applications facilitate expression? and 
(2) What insights can inform the design of future casual 
music creation tools? This paper contributes to the de-

mocratization of music creation by addressing children’s 
unique creative needs in casual music application design. 
Furthermore, we present a set of design principles to sup-

port more playful interactions with music and discuss their 
implications for future work in creative MIR. 

2. RELATED WORK 

2.1 Children’s Musical Creativity 

Creativity is the ability to generate original and valuable 
ideas [4]. In the realm of music, this translates to real-

izing such ideas through composition, analysis, or perfor-

mance [40]. Scholars argue that musical creativity is em-

bodied, meaning environmental factors play a role in shap-

ing creative cognition in music [40–43]. Furthermore, mu-

sic educator Peter Webster has suggested that musical cre-

ativity is more akin to creative processes, or what he terms 
as moving from a musical idea to a product [44]. 

For children, there has been a particular focus on un-

derstanding their creativity in reference to composition 
[45–47] in music education contexts. Yet, musical expe-

riences begin early in childhood and are increasingly im-

pacted by popular music experiences with new forms of 
technology [48–51]. Therefore, children experience mu-

sic via playful interactions in a variety of modalities [52]. 
Notably, social-emotional environments, especially those 
shaped by parents and teachers, can serve as catalysts for 
children’s musical creativity through play [53–55], sug-

gesting that children’s musical experiences are impacted 
by their development, environment, and interactions with 
technology. While play and technology are crucial in mu-

sic education and cognitive development, questions remain 
about how CSTs can enhance casual music experiences 
and whether these interactions impact children’s creativity. 

2.2 Creativity Support Tools 

Creativity Support Tools (CSTs) are digital resources de-

signed to enhance creativity [8]. Interactive musical 
systems (IMSs) have shown promise in supporting non-

musicians’ engagement in music making [56], but domain 
expertise can influence creativity [40, 57]. Hence, special-

ized tools have been developed to meet novices’ needs, of-

ten incorporating critique [58], such as those for novice 
filmmakers [59] or digital painting systems [60]. Recog-

nizing the importance of personally meaningful creative 
activities, referred to as "mini-c" creativity, there is a grow-

ing emphasis on integrating this perspective into CST eval-

uation methods [61, 62]. This acknowledgment under-

scores the significance of understanding children’s creative 
experiences with musical CSTs and adapting design and 
evaluation approaches accordingly [63]. While technol-

ogy’s impact on children’s creativity has been explored in 
areas like storytelling and video creation [64, 65], its ef-

fects on musical creativity remain relatively unexplored 

Pseudonym Age Gender Ethnicity Sessions 

Annie 6 Female Latino DS2 
Emma 9 Female Black / White DS1, DS2 
Han 10 Male Latino DS2 

Jayden 9 Male Asian / Black DS2 
Keon 9 Male Asian / Black DS1, DS2 
Liam 9 Male Asian / White DS1 
Jin 13 Female Asian / White DS1, DS2 

Taylor 10 Female Asian / White DS1, DS2 
Seiko 10 Female Asian DS1 

Zachary 8 Male Asian / White DS1, DS2 

Table 1. Demographics of Child Participants 

[50, 58, 66]. Though tools aiding children in music com-

position exist, they are often designed for general novices 
[63], even though previous work has suggested specific de-

sign recommendations for other musical acts by children, 
such as composition at home [45]. Previous research rec-

ognizes children’s unique creative needs and the potential 
of CSTs to foster creativity and learning. However, there 
is still uncertainty about the differences between children’s 
structured and casual creation with CSTs, and how these 
differences relate to creative MIR. 

3. METHODS 

3.1 Participatory Design 

For this study, we utilized Cooperative Inquiry (CI) [36, 
67], a Participatory Design (PD) method facilitating col-

laboration between designers and users, thus democratiz-

ing the design process. CI specifically emphasizes allow-

ing children and adults to design as equals. This method 
offers insights into children’s learning [67], empowering 
them to articulate thoughts on complex issues such as fam-

ily finances [68], gender [69], and creativity [70, 71]. 

3.2 Participants 

The KidsTeam UW co-design group comprises adult de-

sign researchers (investigators, master’s students, and un-

dergraduate students) and 10 child participants, using 
pseudonyms for confidentiality (see Table 1). Children 
were recruited through mailing lists and snowball sampling 
with parental consent and child assent obtained. The re-

search received approval from the university’s Institutional 
Review Board. Two 90-minute design sessions were held 
in January and February 2024, with five to eight adult fa-

cilitators serving as design partners in each session. 

3.3 Design Sessions 

Our design sessions started with a 15-minute Snack Time 
for socializing, followed by a 15-minute Circle Time fea-

turing a "Question of the Day" to warm up for the design 
activity. Then, participants engaged in small group design 
activities for 45 minutes in Design Time, followed by a 
15-minute Full Group Discussion for presentations and re-

flection. 
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Child App Name Description 

Annie Color Block Users compose by dragging and dropping colored blocks. Users can download the music to share. 
Emma Cat Choir An app where users may drag different clothing representing different sounds onto cats to compose songs. 
Han Mixtape Users create and share "mixtapes" by pulling music from streaming services and creating playlists. Also 

allows for composing with provided sounds and AI. 
Jayden Untitled Users organize their music and can search, filter, and create albums. They can also remix other songs. 
Keon Untitled An app to store music files, allowing users to drag and drop music files from other apps. 
Jin Dreamer A music composition app that acts as a game where users are able to manipulate different environments to 

create music for a story. 
Taylor Sing-a-Song Users can create songs by dragging instruments onto tracks and export them with a video or animated 

characters. Others can remix these songs. 
Zachary Piano God An app meant to help pianist practice songs using animations to tell users which keys to play. 

Table 2. Descriptions of Applications designed by children in DS2 

3.3.1 Design Session 1: Playing with Casual Music CSTs 

Design Session 1 (DS1) took place in January 2024. We 
asked the children to play with four different casual music 
tools to elicit their feedback on different types of casual 
music applications. The first is TextAlive [72, 73], a web-

site that automatically synchronizes lyrics text with mu-

sic, detects timing information of beats and other musi-

cal elements, and allows users to interactively create “lyric 
videos” – music videos in which lyrics animate in sync 
with the music. The second tool, TextAlive Flow [74] 
(available on tablet and desktop), is an extension of Tex-

tAlive that has a more casual user interface. It allows users 
to touch the screen to change the video’s visuals (typog-

raphy, colors, motion patterns, etc.) while listening to the 
music. Incredibox [75] lets users create songs by dragging 
and dropping outfits onto animated characters, combining 
pre-recorded beatbox sounds and melodies. Lastly, Sketch-

a-Song [76] is a tablet application that lets users tap and 
drag to add different pitches and sounds. These tools were 
selected to allow children to engage with various modes 
of interacting and making with music. During the session, 
we captured what the children liked, disliked, and design 
ideas for each app on a sticky note, organizing them into 
thematic groups on a whiteboard [36]. 

3.3.2 Design Session 2: Designing Casual Music CSTs 

Design Session 2 (DS2) took place in Februrary 2024. We 
asked the children to “design a casual music creation app.” 
We asked them to define what their app allowed them to 
do with music, and develop a user flow including how they 
moved between the homepage, creation interface, and to 
sharing their creations with others. We derived these de-

sign aspects from the themes that arose during DS1. Be-

fore breaking into our design groups, we shared an exam-

ple of what a user flow looked like using TextAlive Flow. 
We supplied the children with a large bag with different 
craft materials and paper, asking them to engage in low-

fidelity prototyping of their application [77]. 

3.4 Data Collection and Analysis 

Our hybrid design sessions utilized Zoom for video and 
screen recordings across three computers for each design 
group. We recorded a total of 6 hours and 10 minutes 
of video. Researchers also documented creative artifacts 

with a camera and took notes on a legal pad. Children’s 
thoughts were summarized during group discussions and 
collected on a Google Slides deck. 

We utilized an inductive qualitative approach for data 
analysis [78]. The initial codebook was developed by the 
first author through inductively coding recorded session 
videos. Codes like “Musical Activities – Remixing” and 
“Control – Variety of Options” were included in the first 
iteration. Subsequently, two authors conducted consensus 
coding [79] on design artifacts, researcher memos, and ses-

sion videos, adjusting the codebook as needed. In cases of 
disagreement, a third team member resolved discrepancies. 
This process led to the final version of the codebook. For 
example, we applied the code “App Elements – Control” 
to the quote “when you could see or hear a difference, it 
makes you feel like you’re in more control.” Further de-

scriptions of design artifacts and applications of our codes 
can be found in our supplemental material. 1 

4. FINDINGS 

4.1 Children’s Perceptions of Casual Music Creation 

Consistent with previous work [48,52], children saw music 
making as a holistic, process-focused experience [44], and 
expected to engage in multiple musical activities within a 
single app. Composing was the most referenced activity, 
as all DS2 apps except Keon’s, which stored music files, 
involved music composition. Listening to music was also 
prominent (Han, Jayden, Jin, & Taylor, DS2). Remixing, 
proposed only in Taylor’s and Jayden’s apps, was the least 
suggested activity. 

Children’s views on the applications were shaped by 
their past experiences with music and technology, in-

dicating their preferences often reflect experiences with 
other applications such as music streaming apps [48], as 
well as their cultural backgrounds and existing knowl-

edge [80]. For example, many applications from DS2, 
shown in Table 2, also included references to other applica-

tions. Emma and Taylor’s applications referenced Incredi-

box and Sketch-a-Song respectively, imitating the drag and 
drop features for layering musical sounds. The interface of 
Zachary’s application was similar to the application Syn-

1 Our supplemental material can be found at: https://doi.org/ 
10.17605/OSF.IO/5DNS6. 
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thesia, with falling blocks that demonstrated which keys to 
play on a piano keyboard. Additionally, there were various 
ways suggested to supplement listening methods that were 
similar to other applications such as organizing playlists 
(Han & Jayden, DS2) or watching music videos (Jin & 
Taylor, DS2). Additionally, some of the children refer-

enced their previous music education experiences. In our 
study, Jin, who has taken piano lessons, found Sketch-a-

Song limiting due to its representation of musical pitches 
stating it felt “pedantic” (DS1). Zachary’s app included 
a piano in the interface, including letters for the different 
keys. Similarly, Annie included solfège (i.e., do, re, mi) as 
the notes for her app “Color Block.” 

While the children’s interactions initially focused on 
the process of exploring with music, they mentioned the 
importance of these customization options to give them a 
sense of control as they created. This was especially im-

portant as the children formed creative products. As an il-
lustration, reflecting on TextAlive and Sketch-a-Song, Tay-

lor noted “You can’t create your own song [in the apps], 
you’re just designing it, and even then, you don’t have 
much control over it” (DS1). 

4.2 Visuals as a Bridge to Music 

Within our sessions, we found a connection between vi-

suals and sounds, with children noting that the aesthet-

ics of an application changed the way the music was per-

ceived. For example, Jin stated: “I liked changing the col-

ors because even if you’re given this format [in TextAlive 
Flow], since colors have a strong effect on how music is 
portrayed, you can change the whole vibe, even if you are 
restricted” (DS1). Other children noted changing colors to 
fit their experience was important demonstrated by three 
distinct sticky notes expressing appreciation for “many op-

tions for colors,” “all the color options,” and “cool color 
range” when discussing customization in TextAlive. Dur-

ing DS1, an adult co-designer also noted that children also 
became visibly excited when able to use animations in us-

ing TextAlive and TextAlive Flow, as evidenced by a sticky 
that read the options for animation in TextAlive Flow “are 
cool” and another that they liked the “active lyrics” as they 
moved across the screen (DS1 – Sticky Note 2 ). Anima-

tions also were added into some of the children’s apps, 
such as Zachary, who had boxes that represented musical 
notes "fly down" from the top of the screen. 

Furthermore, the children in our study showed a 
propensity toward characters and narrative to support their 
experiences with music. Children noted the reason they 
enjoyed Incredibox was because they “liked [the] incredi-

box character’s designs” (DS1 – Sticky Note). Yet, other 
children highlighted with their dislike of the “bad outfits,” 
(DS1 – Sticky Note), suggesting they would like other op-

tions that suited their ideas. Children extended the idea of 
characters into their own apps, such as Taylor and Emma 
who included an option to have animated characters sing or 

2 We use “DS1–Sticky Note” to refer to Likes/Dislikes/Design Ideas 
captured on stickies during the design activity that were not attributed to 
a specific child, but instead to the design group. 

perform the song the user created (DS2). During the full 
group discussion in DS1, Jin summed up the importance 
of the visuals noting, “when you could see or hear a differ-

ence, it makes you feel like you’re in more control of what 
is going on.” 

Our analysis further suggests that the visual aspects of 
an app act as a bridge to better understand musical possi-

bilities. One sticky note from DS1 captured that the kids 
disliked that the “MVs [referencing the animation of the 
characters in Incredibox] don’t seem to match/vibe [of the 
music] naturally” with the sounds and that it was distract-

ing that the people were “not wearing clothes before you 
dress them” (DS1). In DS2, children also considered colors 
and aesthetics in their own designs. The sounds in Emma’s 
remixed version of Incredibox, “Cat Choir,” were all re-

lated to cats and cat activities (e.g., scratching, meowing, 
and purring), to match the sounds to the visuals of cats. 
Similarly, Annie used different colors to represent differ-

ent pitches. Jin created the app “Dreamer,” a game that lets 
users play through a young girl’s dreams. Each dream had 
its own visual aesthetic or “vibe,” corresponding with the 
sounds and instruments, such as clam shells as percussion 
instruments in an “aquatic dream” as seen in Figure 1. 

4.3 Interface Preferences and User Interactions 

Children also showed a preference for direct interac-

tions, preferring the ability to manipulate elements through 
touch, drag, and drop actions. For example, Taylor noted 
that she “like[ed] touching [the iPad] instead of the mouse 
because the mouse was harder to use” (DS1). Similarly, 
many of the children’s designs in DS2 also included the 
ability to drag and drop elements, such as the outfits that 
could be dragged onto cats in Emma’s application or the 
color blocks that could be dragged in Annie’s app. 

When the gulf of execution [81] in the interfaces was 
large (i.e., the interfaces do not afford what happens when 
manipulated), children became frustrated. For example, 
some disliked the "confusing" parameter tuning interface 
of TextAlive that appears next to the video, sometimes forc-

ing them to tweak parameters indirectly. They favored 
the more direct control of TextAlive Flow instead, which 
allows them to touch the video and change the parame-

ters with their hands. They recommended design enhance-

ments to improve interface usability, citing dislikes such 
as the absence of instrument labels and clarity on color-to-

instrument/note mapping in Sketch-a-Song (DS1 - Sticky 
Note). In contrast, Emma noted a preference for Incredi-

box because it was "less frustrating" and "ignited creativ-

Figure 1. Jin’s app “Dreamer” from DS2 
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ity" by representing sounds with symbols rather than tra-

ditional instruments (DS1). This suggests that achieving 
a balance between visual interface design and a certain 
level of ambiguity is crucial to foster casual creative ex-

periences. 

4.4 Sharing and Casual Creative Experiences 

In our study, participants highlighted the importance of 
sharing their creations and ensuring the quality of the fi-

nal product. For example, children suggested that a shar-

ing option should be added to Sketch-a-Song (DS1 – Sticky 
Note), a feature present in the application, though many of 
the children were unable to find it. During DS1, another 
adult facilitator noted some children physically left their 
groups to share their creations with friends, explaining in-

teresting interactions and experiences documenting their 
creative choices while using the apps. Taylor and Seiko re-

quested time to share their song from Sketch-a-Song with 
the entire group, indicating pride in their work (DS1), and 
noted that they felt that it sounded good enough to share. 
In DS2, Emma, Han, Taylor, and Jin incorporated features 
allowing users to share and listen to others’ creations or 
playlists in their apps as well. Jin and Taylor’s apps even 
enabled users to create songs with accompanying videos 
inspired by others (DS2). This suggests that though chil-

dren were exploring, they also wanted the output of these 
casual systems to sound good enough to share with others. 

5. DISCUSSION 

5.1 Purposeful Play: From Process “to” Outcome 

Children in our study attempted to balance exploring the 
possibilities provided by the application with creating per-

sonal intermediate outcomes to help express themselves, 
seeing casual interactions with music as a form of purpose-

ful play. We suggest that casual creation is better under-

stood as a "process to outcome" rather than "process over 
outcome," as we initially stated. In this view, children see 
themselves as designers of creative works, with the play 
experience focused on expression. 

In our findings, we observed that children wanted the 
ability to have some sense of control over their experiences 
(4.1) but that these came via scaffolds such as the visu-

als of the application (4.2) and interactions with the appli-

cation (4.3) that lead to shareable outcomes (4.4). This 
conception of supported play aligns with previous work 
within music education [22] as well as MIR. Cunningham 
and Zhang, who conducted PD sessions with children to 
create a music organizer called Kids Music Box suggested 
the final design of their application offered a “playground” 
for interaction while listening to songs [35, p.190]. Simi-

larly, PlaceAndPlay, an application design for creating and 
recording music, focused on children’s ability to simply 
try things out, with their results noting “all children had a 
great time when allowed to just play with the system” [82, 
p.738]. Facilitating children’s enjoyment and understand-

ing of musical involvement entail not only promoting play 

but also nurturing their comprehension of cultural con-

texts [18] and social conventions [25]. More broadly, play 
can be understood in relation to creative processes [83–85], 
as many of the cognitive and emotional functions linked to 
creativity are also evident during play [86]. 

Importantly, children also expressed a desire for their 
final product to be share-worthy (4.4), indicating an ex-

pectation that their experience would yield a creative prod-

uct representing their musical experience and tastes (4.1). 
We suggest that what sets casual CSTs apart from other 
educational technologies are the creation of “intermediate 
products.” The term "intermediate" can be understood as 
creative products that move users from what Beghetto and 
Kaufman suggest are “intrapersonal creativity that is part 
of the learning process” [61], to products recognized by 
others as creative. This concept of creativity is increas-

ingly integrated into the evaluation of CSTs [62]. Further-

more, our findings underscore the importance of ensuring 
that casual CSTs for children focus on helping users cre-

ate intermediate creative outcomes that remain coherent 
and aesthetically pleasing to support users’ creative self-

efficacy [28]. 

5.2 The Purposeful Play Design Toolbox 

In this section, we introduce four design principles, 
deemed “tools,” to foster the elements that lead to purpose-

ful play, suggesting specific design features for each. 

5.2.1 Controlled Serendipity 

Previous work in creative MIR has shown that serendip-

ity is a crucial aspect for supporting meaningful interac-

tions with music information during the creative process 
[32]. This was an important element in supporting non-

musicians in musical creativity [56]. When surprised by 
an app, children in our study felt excited and inspired, like 
Emma’s excitement with Incredibox (4.3). However, they 
also wanted their creations to feel genuinely theirs, i.e., 
their individual exploration mattered (4.4). Therefore, ca-

sual music tools should offer structured control while guid-

ing users towards aesthetically pleasing results that reflect 
their goals. Novices often do not have the domain knowl-

edge to identify how to execute specific creative goals or 
whether those goals are domain relevant [87, 88]. There-

fore, a system taking on the role of the guiding professional 
by supplying options that support a pleasing final prod-

uct, may help children to feel excited about their creative 
outputs. For example, both Incredibox and Sketch-a-Song 
only supplied notes that corresponded to a specific chord 
progression, and as a result, any "seemingly" random com-

bination of sound layers or feature options also sounded 
good to the children. Similarly, TextAlive and TextAlive 
Flow supplied templates or color combinations that looked 
aesthetically pleasing and matched the music. The care-

fully and intentionally constrained environment was able 
to provide the sense of serendipity but at the same time 
produce outcomes that children felt good about and wanted 
to show off. 
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Design Features. Implementing structured guidelines 
alongside controlled randomness provides a framework 
for fostering creativity. Feedback mechanisms that allow 
transparency serve to facilitate children in revisiting and 
elaborating upon moments of unexpected discovery. 

5.2.2 Visual Scaffolds 

The term scaffold can be understood as the use of a tem-

porary framework for supporting learners as they aim to 
gain new skills [89]. During our analysis, children ex-

pressed consideration of the role of an application’s visu-

als when creating (4.2). In a sense, musical experiences 
were “scaffolded” by the visual aesthetics of the applica-

tion, since the intention of the musical technology is to en-

courage children to develop an aesthetic perspective [90] 
through clear and direct visual communication of the ap-

plication’s possibilities for creation. When visuals do not 
align with the sounds, or at least align in a way that a 
child expected, such as when the animations in Incredi-

box did not align with the music, it can be distracting and 
take away from understanding of the music, even if the UI 
design in clear. Yet, as Emma noted (4.3), some ambi-

guity in the visual scaffolding can also spark creative ex-

periences as well. Specifically, our results emphasize that 
color and characters are two visual scaffolds that are ef-

fective for children. Furthermore, our findings suggest that 
children perceive casual creation as encompassing mul-

tiple mediums, often utilizing sound and video, aligning 
with the conception of children’s musical experiences be-

ing multimodal [52]. Prior research advocates for multime-

dia authoring activities that enable collaborative reflection 
among children [91,92], promoting self-expression [93] at 
both individual and social levels. 

Design Features. Visual elements like real-time visu-

alizations, character-based imagery, customizable aesthet-

ics, and visual ambiguity, when integrated into features de-

signed to evoke serendipitous moments, along with multi-

modal outputs like videos, can act as scaffolds to support 
children’s musical interest. 

5.2.3 Direct Manipulation 

Children in our study preferred the ability to directly in-

teract with the interface, which can be understood as a 
form of direct manipulation [94]. Shneiderman, who sug-

gested the term, notes four features of user interfaces that 
utilize this concept: continuous representation of the ob-

ject of interest, physical actions, immediate feedback, and 
the ability of novices to gain knowledge of the system 
quickly. Moreover, helping kids manipulate things effec-

tively means showing clear connections within the sub-

ject area, which helps them link new skills with what 
they already know [95]. Furthermore, computer scientist 
Alan Kay [96] suggests that visuals play an important role 
in digital spaces–they offer representational systems that 
through manipulation lead to chains of abstract reasoning 
that creates symbols; in the semiotic terms, these symbols 
allow a user to externalize through the manipulation of rep-

resentations [97]. This suggests a connection between the 

visual scaffolds and potential direct interactions that lead 
to moments of play in digital creative systems. 

Design Features. Interactive elements such as drag-

and-drop functionalities, objects responding to user ac-

tions, and tactile interactions, will enhance children’s en-

gagement and maintain their interest over time. 

5.2.4 Shareable Intermediate Outputs 

The children in our study wanted the ability to share the 
creative outputs they were proud of during their explo-

ration of different tools (4.4). Allowing children to share 
their creative outputs can help build creative self-efficacy 
[28], which is essential to fostering their view of them-

selves as creators. Allowing children to share these ob-

jects encourages creativity at not only an individual level, 
but also a social level, which is particularly important as 
social-environmental factors have been shown to influence 
creativity of individuals [98]. This is particularly important 
for children as creativity is largely social for them [53,55]. 

Design Features. Sharing options (email, file down-

loads, replay), galleries of user-generated content, ability 
to remix or elaborate on others outputs will help support 
self-efficacy of children as developing creators. 

6. LIMITATIONS AND FUTURE WORK 

While our research follows established precedents, it has 
limitations. The small sample size of 10 children, while 
comparable to similar co-design studies [68, 69], may 
limit the generalizability of the result. Participants were 
mainly from a single geographic area, with privileged 
backgrounds, and familiar with technology and co-design, 
which may not represent diverse socio-economic perspec-

tives. Future studies should include more diverse demo-

graphics, explore evaluation methods for supporting de-

sign principles, and investigate features tailored to differ-

ent MIR tasks in support of purposeful play. 

7. CONCLUSION 

Our study explored the creative preferences of one user 
group, children, in casual music creation applications. 
Through two Participatory Design sessions, we observed 
children’s perceptions of casual musical creation as a 
personally-oriented process, where visuals and direct in-

teractions allowed children to generate creative works they 
wished to share with others. We highlighted the impor-

tance of purpose in play duirng casual music creation, sug-

gesting that casual creation applications should facilitate 
the process of exploration of music with the intention of 
expression. Additionally, we discussed the potential im-

pact of this playful approach on creative MIR by present-

ing four design tools to support purposeful play and sug-

gesting a set of design features that support these princi-

ples. We further believe that these insights transcend chil-

dren, offering design implications for individuals of vari-

ous musical skills and recreational adults who wish to ex-

plore musical experiences in a variety of ways. 
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ABSTRACT

We present El Bongosero, a large-scale, open-source sym-

bolic dataset comprising expressive, improvised drum per-

formances crowd-sourced from a pool of individuals with

varying levels of musical expertise. Originating from an

interactive installation hosted at Centre de Cultura Con-

temporània de Barcelona, our dataset consists of 6,035

unique tapped sequences performed by 3,184 participants.

To our knowledge, this is the only symbolic dataset of its

size and type that includes expressive timing and dynamics

information as well as each participant’s level of expertise.

These unique characteristics could prove to be valuable to

future research, particularly in the areas of music gener-

ation and music education. Preliminary analysis, includ-

ing a step-wise Jaccard similarity analysis on a subset of

the data, demonstrate that this dataset is a diverse, non-

random, and musically meaningful collection. To facilitate

prompt exploration and understanding of the data, we have

also prepared a dedicated website and an open-source API

in order to interact with the data.

1. INTRODUCTION

Symbolic drum datasets derived from live performance

typically feature a select number of experienced drummers

improvising or playing a composed piece. However, given

that rhythm perception is a fundamental human trait [1],

we contend that an expressive crowd-sourced drum dataset

representing a diverse range of musical expertise could of-

fer unique research utility not fulfilled by existing datasets.

Although it may be possible to compile a dataset of this

nature by scraping the web for recorded performances, it

would be unlikely that a web-scraped dataset would in-

clude expressive performance information along with the

level of expertise of each performer.

* Equal contribution

© N. Evans, B. Haki, D. Gómez-Marín, S. Jordà. Licensed

under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: N. Evans, B. Haki, D. Gómez-Marín, S. Jordà, “El

Bongosero: A Crowd-sourced Symbolic Dataset of Improvised Hand Per-

cussion Rhythms Paired with Drum Patterns”, in Proc. of the 25th Int. So-

ciety for Music Information Retrieval Conf., San Francisco, United States,

2024.

This past year, our research lab participated in an ex-

hibition at Centre de Cultura Contemporània de Barcelona

(CCCB) centered around the history, ethics, and creative

possibilities of Artificial Intelligence. More specifically,

we were tasked with preparing a 6-month installation that

would be included in the "Data Worlds" section of the ex-

hibition, the purpose of which was to examine the role of

data in generative systems and the methods employed to

gather data. We addressed both of these aspects with a

two-part installation. In the first activity, participants used

a “bongo-like” two-voice MIDI pad to interact with a Vari-

ational Auto-Encoder (VAE) model. This model had the

capability to transform the participant’s tapped rhythmic

sequences into symbolic multi-voice, expressive drum pat-

terns [2,3], which were subsequently synthesized to audio.

In the second activity, which serves as the focus of this pa-

per, participants were given the opportunity to contribute to

a crowd-sourced dataset that may later be used to improve

the generative model they had just interacted with. They

were invited to use the MIDI pad to tap along to a multi-

voice drum pattern in a genre and tempo of their choosing.

Providing minimal instructions, this task serves as an ex-

amination of how participants freely improvise alongside

another rhythm. Upon completing the task, the partici-

pant could choose to contribute their tapped, improvised

sequence to our public dataset or to submit nothing and

delete their data.

In this paper, we present El Bongosero, a crowd-

sourced expressive symbolic dataset consisting of 6,035

improvised tapped sequences performed by 3,184 partic-

ipants with varying levels of musical expertise. Each sam-

ple contains expressive timing and dynamics information

and is annotated with the participant’s level of musical ex-

pertise, the genre of the selected pattern, the chosen tempo,

the total duration to complete the activity, and a user-rating

for their performance and how much they enjoyed the ex-

hibit. We anticipate that this dataset can promote further

research in the following areas:

• Advancing the development of more nuanced gener-

ative models capable of accommodating a range of

skill levels.

• Facilitating music education studies focused on mu-

sic understanding and rhythm expertise.
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• Evaluating the proficiency, diversity, and creativity

with which humans improvise rhythms.

Furthermore, the collection of data in this study ad-

heres to rigorous ethical standards. Unlike other collection

methods such as web-scraping, which may involve utiliz-

ing data in ways unintended by the original providers, our

approach prioritizes clarity and consent with the partici-

pants throughout the entire process.

2. RELATED WORK

In this section, we will review other notable datasets

consisting of human-performed recordings or synthe-

sized web-scraped symbolic sequences. Reviewing these

datasets aims to underscore the various applications and

constraints associated with each approach.

The earliest open-source drum dataset we identified is

the ENST-Drums dataset [4]. This is a fairly comprehen-

sive dataset, consisting of around 225 minutes of annotated

audio and video recordings of 3 live drummers. While still

useful, this is significantly smaller than other datasets com-

piled via web-scraping or crowd-sourcing.

The TMIDT (Towards Multi-Instrument Drum Tran-

scription) dataset, consisting of 259 hours worth of syn-

thesized audio, was created via web-scraping every MIDI

track from a freely available online collection 1 [5]. In

a similar manner, the ADTOF (Automatic Drums Tran-

scription On Fire) dataset, containing over 114 hours of

annotated music, is constructed of openly shared 2 crowd-

sourced symbolic annotations, typically a MIDI file, of

real songs for use in rhythm games [6]. As such, this

data does not contain detailed expressive information un-

like Magenta’s MAESTRO (MIDI and Audio Edited for

Synchronous TRacks and Organization) [7]. Although

MAESTRO consists of ten years of International Piano-

e-Competition performances on a Yamaha Disklavier, it is

relevant to include here as it is a large-scale, crowd-sourced

dataset. This dataset, which has been used effectively in

generative models, is comprised of over 172 hours of finely

aligned (∼3 ms) audio waveforms and expressive MIDI in-

formation.

Similar to MAESTRO, Magenta’s Groove MIDI

Dataset (GMD) is composed of 13.6 hours of aligned MIDI

and (synthesized) audio of human-performed, expressive

drumming [8]. The nature of this dataset has proven to be

useful for predictive generative models such as GrooVAE

[8] as well as for perceptual experiments such as TapTam-

Drum [9].

The TapTamDrum dataset was the result of an experi-

ment in which 4 experienced drummers were given the task

of reducing expressive, multi-voice drum patterns from

Magenta’s GMD to dual-voice representations. The re-

sultant dataset includes 1,116 total dualizations annotated

with expressive timing and velocity from 345 unique pat-

terns.

1 http://www.midiworld.com
2 https://rhythmgamingworld.com/

Format Annotations

Dataset Audio Symbolic
Human-

Performed
Velocity Genre

Level of

Expertise

ENST ✓ ✓ ✓

TMIDT ✓ ✓

ADTOF ✓ ✓

GMD ✓ ✓ ✓ ✓ ✓

MAESTRO ✓ ✓ ✓ ✓

TapTamDrum ✓ ✓ ✓ ✓

MAST ✓ ✓

El Bongosero ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of datasets.

Lastly, there is the MAST (Musical Aptitude Standard

Test) Rhythmic Dataset, sourced from university exami-

nations in which candidates were expected to reproduce a

tapped rhythmic pattern after it had been played two times

by a member of the jury [10]. Therefore, this audio dataset

includes 2,681 recordings of jury members performing the

target rhythm, along with 1,040 recordings of student at-

tempts annotated with their grade (pass or fail).

Table 1 offers a comparison of the datasets based on two

key attributes: format and annotations. Format indicates

whether the dataset comprises audio or symbolic samples

and whether these samples are derived from recorded hu-

man performances. Annotations, on the other hand, en-

compass details such as the presence of velocity anno-

tations for each onset, the genre of the sample, and the

level of expertise of the performer. As shown in the table,

El Bongosero is the only dataset that annotates the per-

former’s level of expertise.

3. METHODOLOGY

As mentioned above, the installation consisted of two

parts. In the first part, participants were to engage with

a generative model. In the second part, they were asked to

contribute to a dataset that may be used for training future

iterations of the generative model used in the first part. The

focus of this paper is on the latter part of the installation,

specifically, the collection of a symbolic dataset of rhyth-

mic improvisations played alongside a selected number of

drum patterns.

As the installation was to be used in a public exhibition

space, it was imperative to design an interface that could

accommodate a broad spectrum of participants without as-

suming specific technical or musical expertise. To this end,

we made several decisions in designing the data collec-

tion stage of the installation. First, we ensured that the

interactive elements in the system were nearly identical to

the first stage of the installation. This strategy was aimed

at eliminating any need for participants to acquaint them-

selves with the mechanics of the system. Second, we mini-

mized the instructions provided to participants. The inten-

tion here was to encourage the participants to improvise

freely using their personal intuition and creativity, rather

than adhering to a very specific procedure. Lastly, before

initiating the second part of the installation, we informed

the participants that we would ask for their consent to con-

tribute to our dataset at the conclusion of this activity. The

purpose of this approach was to ensure that participants
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were fully aware of this aspect of the activity prior to de-

ciding if they wished to interact. While the primary moti-

vation behind implementing this level of transparency was

to adhere to ethical principles, it was also our aim to foster

more open and genuine interaction with the installation by

making participants feel valued and secure.

In the following subsections we discuss the tasks pre-

sented to the participants (3.1), the installation setup (3.2),

and the drum pattern curation process (3.3).

3.1 Overview of Tasks

Figure 1 provides an overview of the tasks involved in the

installation.

Figure 1. Flow-chart of the installation steps

The main objective of the data collection part of the in-

stallation was to present the participants with a randomly

selected drum pattern and ask them to improvise alongside

the pattern. To accommodate the diverse musical tastes

and backgrounds of the participants, we allowed the par-

ticipants to select the genre of the drum pattern.

Once the genre was selected, the improvisation envi-

ronment was initiated. In this environment, the participant

was presented with a looping 2-bar drum pattern and was

asked to improvise alongside it using a provided two-voice

MIDI pad.

The starting tempo of the session would be associated

with the selected drum pattern, however, to accommodate

participants of various skill levels, we allowed them to

modify the tempo of the session. Each tap on the MIDI

pad was recorded in a real-time looping 2-bar buffer, al-

lowing participants to listen to previous taps and overdub

additional taps. Lastly, participants were given as much

time as needed.

Once the participant stopped the session, we asked

them to self-assess their performance using a 5-level Likert

scale. Once the assessment was provided, the participant

was given two choices. They could select a new pattern to

improvise alongside or they could finish the session. Once

the participant finished the session, they were asked if they

wish to contribute to the dataset. If they decided not to

contribute, the session would end. Otherwise, they were

presented with a brief questionnaire and then subsequently

asked to press a button to explicitly submit their data.

Given that this was a public installation, we presented

consenting users with only 2 questions: (1) "How would

you assess your level of musical expertise?", and (2) "How

much did you enjoy this exhibit?". In order to assure the

participants that the only aim of the installation was to

collect improvisations, as opposed to metadata related to

the participants, we avoided any demographic questions

on gender, age, and occupation. Recognizing the vast

spectrum of musical proficiency among participants, from

novices to experienced musicians, the question on "Musi-

cal Expertise" aimed to contextualize the improvisational

outcomes within a broader narrative of skill and experi-

ence. Furthermore, we recognize that the term "expertise"

in this context may be subject to interpretation, with par-

ticipants not necessarily associating it solely with musical

proficiency. Our intention was to allow participants to de-

fine "expertise" based on their own understanding within

the context of their improvisations.

Once the final questions were answered, the submission

button would be enabled to finalize the contribution. Note

that participant data was only added to the dataset if the

"Submit" button was pressed. That is, we wanted to en-

sure that participants explicitly consented to the contribu-

tion. In any case that the participants left the session mid-

experiment, explicitly chose not to contribute, or forgot to

press the submission button, their data was immediately

deleted.

3.2 Installation Setup

The installation, shown in Figure 2, consisted of a touch

screen application and an Embodme’s ERAE Touch MPE

controller 3 for registering the improvisations.

Figure 2. A photo of the installation (photo credit: CCCB)

The touchscreen application was used to prompt the

participant and to allow the user to navigate through differ-

ent stages of the installation. During the improvisation ses-

sions, the graphical interface visualized the “bongo” per-

formance using a circular representation of the 2-bar loop-

ing buffer filled with each tap onset registered on the MIDI

pad (refer to the center of Figure 3 for the actual graphic

representation). In this section, the participant was allowed

to remove a specific onset by double tapping its location in

the buffer, or to remove all of the onsets using a dedicated

button; however, they were not allowed to reposition any

registered onsets. In other words, the timing of the onsets

were only to be associated with the timing registered from

the performed taps on the MIDI pad.

The visual interface was implemented using the

PyQt5 4 Graphical User Interface (GUI) toolkit. To ensure

3 https://www.embodme.com/erae-touch
4 https://www.qt.io/
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Figure 3. Installation setup

precise synchronization between the synthesis and play-

back of the source drum pattern and the MIDI recording

of each improvisation, we developed a C++ backend using

JUCE framework 5 . The recorded performances are pro-

vided in two formats: (1) a linear sequence preserving the

timing of each tap onset throughout the activity’s entire du-

ration, and (2) a 2-bar loop preserving the timing of each

overdubbed onset within the 2-bar recording buffer.

As shown in Figure 3, the touch MIDI pad was cus-

tomized into two distinct pitch regions, with the right re-

gion pitched lower than the left. Each “bongo” tap was

displayed on the graphical interface using a circle located

within the 2-bar looping buffer. Each circle was color-

coded to match the region from which the tap onset was

registered and the radius of the circle was correlated with

the velocity of the registered tap onsets.

In order to ensure that participants could properly listen

to the sounds of the installation and to reduce the the pos-

sibility of a participant feeling that their performance was

being judged by other visitors, we decided to only provide

headphones to the participants rather than loudspeakers 6 .

Lastly, dedicated sliders were provided on the interface

to allow the participant to adjust the volumes of the bongo

sounds and the drum sounds as needed. Moreover, a ded-

icated slider (initially muted) was also provided to partici-

pants to utilize a synchronized metronome track if needed.

3.3 Drum Pattern Selections

The source drum patterns were in a 4/4 metric, selected

from a large in-house collection of over 200,000 MIDI

files, which included both open-source and proprietary

MIDI collections. The MIDI files in this collection were

divided into 10 genres: Afrobeat, Afrocuban, Bossanova,

Disco, Electronic, Funk, Hiphop, Jazz, Rock, and Soul.

For each pattern in the collection, we extracted the

rhythmic features provided in GrooveToolbox [11] and

Rhythm Toolbox [12]. The extracted features were nor-

malized and subsequently mapped to a two-dimensional

5 https://juce.com/
6 A loudspeaker was available in the setup (as in Figure2), however, it

was only used in special occasions decided by CCCB organizers.

space using Principal Component Analysis (PCA). For

each genre, the mapped values were grouped into 100 clus-

ters using k-means clustering method, and subsequently, a

single pattern was randomly selected from each cluster.

In order to ensure a small subset of patterns with a size-

able collection of varied responses per pattern, we opted to

limit the Electronic genre to 16 patterns. We selected this

genre as we suspected it would be the most popular choice

among participants. 7

4. DATASET

In this section the contents of the collected dataset are de-

scribed. A total of 4 variables were recorded per partici-

pant (ID, number of attempts, level of musical expertise,

and exhibition rating). The ID was assigned in sequential

order and each participant could attempt multiple impro-

visations. For each attempt 8 variables were collected (at-

tempt duration, assessment time, attempt tempo, drum pat-

tern, genre, improvisation pattern, level of expertise, and

exhibition rating).

Table 2 presents a summary segmented by participants’

level of musical expertise. The mean level of musical ex-

pertise is 2.95 (std = 1.25). The most common level of

musical expertise is level 2 (915 participants) and the least

common is level 1 (392 participants). The mean number

of attempts per participant is 1.89 (std = 1.32). The high-

est amount of attempts were carried out by participants of

musical expertise level 2 (1692) and the lowest amount of

attempts were carried out by participants of musical ex-

pertise level 1 (691). The mean number of unique pat-

terns presented per level is 591.8 (std = 103.8). Partici-

pants with musical expertise of level 2 were exposed to the

largest number of unique musical patterns (720) while par-

ticipants with musical expertise of level 1 were exposed to

the least number (433). The mean number of attempts in-

creases with the level of musical expertise, as participants

with more expertise made more attempts on average.

Figure 4 presents the number of attempts per genre.

The mean number of attempts per genre is 603.5 (std =

7 The results discussed in next section confirm this speculation.
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Level of Musical Expertise
1 2 3 4 5

No. participants 392 915 805 594 478

Attempt count 691 1692 1536 1074 1042

Mean no. attempts 1.76 1.85 1.91 1.81 2.18

Unique patterns 433 720 691 562 553

Table 2. Summary of participants, attempts, patterns, and

musical expertise.

169.67). The Electronic and Rock genres represent the

highest amount of attempts (919 and 850 respectively)

while the Soul genre represents the lowest amount (371).

Figure 4. Histogram of attempts per genre.

Figure 5 presents an overview of the number of attempts

per level of expertise and genre. The combination with

the highest number of attempts is the Rock and Electronic

genres combined with expertise levels 2 and 3. The com-

bination with the least attempts is the Afrobeat genre and

expertise level 1.

Figure 5. Attempts per genre and level of expertise.

As described in Section 3.3, all drum patterns used in

the installation are in the 4/4 metric. Figure 6 presents the

step densities of both the original patterns and the recorded

improvisations, obtained by adding onsets at each step and

dividing by the step with most onsets. Patterns are wrapped

to 16 steps for convenience and onsets quantized to the

closest 16th note. In order to establish a comparison, the

normalized theoretical metrical weight is displayed. No-

tice how densities at each inter-pulse group of steps (0-3,

4-7, 8-11, 12-15) complies with the "high, low, mid, low"

contour expressed in the theoretical metrical weights for a

4/4 rhythmic pattern. This suggests that participants con-

sistently induced a meter from the source drum patterns.

The improvised rhythms by the participants (Figure 6 be-

low) showcase the same general intra-pulse contour with

two differences. First, the low contours are higher (uneven

steps), and second, the first step contains less onset den-

sity than its intra-pulse set (steps 1, 2 and 3). However

steps 1, 2, and 3 comply with the "low-mid-low" contour

observed in the original pattern’s intra-pulse density. We

believe many of the participants were slightly inaccurate at

the beginning of the loop, thus causing onsets intended for

the first step to be played early, registering in the last step

of the previous bar, or played late, registering in the second

step of the current bar.

Figure 6. Onset density and metrical weight per step.

Typical of crowd-sourced datasets, these general obser-

vations led us to identify some instances of crowd-driven

bias. Specifically, we observed a preference for two gen-

res (Rock and Electronic) out of a possible ten, along with

a distribution of musical expertise leaning towards mid-

low levels. On the other hand, the general compliance

of participants’ patterns with metrical expectations suggest

that their improvisations were carried out under expected

pulse-entrainment conditions. Thus, in general, it seems

that the data gathered corresponds to sensory-motor activ-

ities and not a random collection of taps.

5. PRELIMINARY INSIGHTS

As explained in Section 3.3, we limited the number of

Electronic patterns to 16 in order to increase the number

of reproductions per pattern for different levels of musical

expertise. The brief preliminary analysis presented here fo-

cuses solely on the Electronic genre and explores the pat-

terns used and assesses the similarity between the repro-

duced drum patterns and the participants’ improvisations.

The number of attempts per Electronic pattern is pre-

sented in Figure 7. The range of attempts fluctuates be-

tween 46 (pattern 1) and 65 (pattern 9). The mean is 57.44

attempts and the standard deviation is 5.33.

Figure 7. Number of attempts per Electronic pattern.
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In order to establish a first metric that can account for

comparing the multi-voice drum patterns with the partici-

pants’ tapped improvisations, the Jaccard similarity metric

is used. Jaccard is a common similarity metric used in data

analysis, especially suited for comparing two sets of ele-

ments. The simplest implementation of the metric is the

quotient of the sum of the intersection elements with the

sum of the union elements. The more elements in com-

mon between the intersection and the union, the closer the

Jaccard similarity gets to 1.

We implemented Jaccard similarity comparing a step-

wise flattened version of the drum pattern and participants’

improvisations. The rationale of this metric is: in a step

where (at least) one onset in the drum pattern is observed,

(at least) one onset is expected in the participant’s impro-

visation. The intersection is composed of steps with onsets

in the drum pattern that coincide with steps with onsets in

the improvised pattern. The union comprises all steps from

the pattern and the improvisation containing an onset. If a

participant produces an onset every time the drum pattern

produces an onset, Jaccard similarity is equal to one. If

all of a participant’s onsets are on steps where the drum

pattern is silent, Jaccard similarity is 0.

Figure 8. Jaccard similarity means and standard deviation

for every pattern in the Electronic music genre.

Figure 8 shows that all participant improvisations to

Electronic patterns exhibit a very similar mean (from 0.348

for pattern 8 to 0.574 for pattern 4) and spread standard de-

viation (from 0.115 for pattern 12 to 0.249 for pattern 13).

There is no apparent agreement (there are no high mean

values) towards any of the Electronic patterns, suggesting

diversity in the improvisations for all patterns of this genre.

For more detail, Figure 9 presents a spread of simi-

larity by Electronic pattern and level of musical exper-

tise. The expertise level with the highest Jaccard similar-

ity sum for all patterns (5.98) is level 1 while level 2 has

the lowest Jaccard similarity sum for all patterns (5.63).

The most diverse case, signified by a low mean Jaccard

similarity (0.18), is observed in improvisations for pattern

7 performed by participants of expertise level 5. On the

other hand, improvisations with the most average agree-

ment with the reference, signified by a high mean Jaccard

similarity (0.51), is observed in improvisations for pattern

10 performed by participants of expertise level 1.

The consistent mid agreement presented in Figure 8 and

Figure 9 suggests improvisations were not exhibiting an

automatic onset-for-onset behavior. On the contrary, there

seems to be rich musical behavior to be explored within

the Electronic genre.

Figure 9. Jaccard similarity among all improvisations for

different musical levels and pattern.

6. DISCUSSION AND CONCLUSION

In this paper, we introduced El Bongosero, a crowd-

sourced dataset consisting of 6,035 tapped improvised

rhythms performed by a total of 3,184 participants with

varying levels of musical expertise. The improvisations

are collected across 10 genres, each corresponding to a set

of 100 unique drum patterns selected for that genre, except

for the Electronic genre, which includes 16 samples. The

main focus of this work was the collection, curation, and

organization of this data from an interactive public exhibit.

Preliminary analysis, including a step-wise Jaccard sim-

ilarity analysis on the Electronic genre data subset, demon-

strate that this dataset is a diverse, non-random, and

musically meaningful collection of improvised rhythms.

Through our review of existing datasets, we identified the

unique qualities of El Bongosero that could make it partic-

ularly useful for music generation and music education re-

search. More specifically, it is the combination of the sheer

number of participants, the diverse range of participants’

level of musical expertise, and the inclusion of expressive

performance information that distinguishes this dataset.

For example, in the context of a model that generates

music based on a rhythmic input, a skilled musician may

have different expectations than a novice musician regard-

ing how a model should interpret an input rhythm or how

it should respond to subtle variations in timing or dynam-

ics. Integrating a diverse crowd-sourced dataset, such as

El Bongosero, with the development of generative mod-

els could prove to be an effective approach to constructing

more nuanced models that are capable of adjusting to indi-

viduals with varying skill levels.

Similarly, in the context of music education, deep anal-

ysis of El Bongosero may allow educators to gain insights

into the learning trajectory of percussion students and help

them to better develop a curriculum that supports skill de-

velopment. As an evaluation tool, this dataset could serve

as a valuable resource for developing assessments and cri-

teria for drumming proficiency. Furthermore, researchers

may be able to identify key indicators of musical growth

and proficiency by comparing performances across differ-

ent levels of expertise.

To conclude this work and facilitate prompt exploration

of the collected data, we have prepared a dedicated website

and an open-source API available at:

https://elbongosero.github.io/
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7. ETHICS STATEMENT

Conscientious consideration of ethical principles has been

central throughout this project. We recognize that as re-

searchers it is our responsibility to ensure that there is com-

plete transparency of the collection process and that partic-

ipants have a full understanding of their involvement. Ac-

cordingly, this study attempts to uphold ethical standards

at every stage of the data life cycle, from collection to uti-

lization.

Firstly, the installation was crafted so that prior to start-

ing the activity, participants were explicitly notified that

we would later request their permission to store the data

they generate while interacting with the exhibit. At the

end of the activity, participants had to explicitly consent

once more in order to be included in the dataset. If they

declined, or took no action, their data was not stored.

In addition to ensuring explicit consent from partici-

pants, we also gave careful consideration to exactly which

data we collected. To this end, we opted to collect no per-

sonal or demographic information from the participants.

The collected data from consenting participants included

only their interactions with the installation, resulting in a

symbolic representation of their tapped improvised pattern,

along with their responses to two questions: “How would

you assess your level of musical expertise?” and “How

much did you enjoy this exhibit?”.

Moreover, ethical considerations extend beyond the ini-

tial data collection phase to encompass the subsequent use

and application of the data. As stewards of this dataset, we

are committed to employing the collected data solely for

academic research purposes, ensuring that it is used in a

manner consistent with what was communicated to partic-

ipants.
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ABSTRACT

This work introduces a data-driven approach for assign-

ing emotions to music tracks. Consisting of two dis-

tinct phases, our framework enables the creation of syn-

thetic emotion-labeled datasets that can serve both Music

Emotion Recognition and Auto-Tagging tasks. The first

phase presents a versatile method for collecting listener-

generated verbal data, such as tags and playlist names,

from multiple online sources on a large scale. We com-

piled a dataset of 5, 892 tracks, each associated with tex-

tual data from four distinct sources. The second phase

leverages Natural Language Processing for representing

music-evoked emotions, relying solely on the data ac-

quired during the first phase. By semantically matching

user-generated text to a well-known corpus of emotion-

labelled English words, we are ultimately able to represent

each music track as an 8-dimensional vector that captures

the emotions perceived by listeners. Our method departs

from conventional labeling techniques: instead of defin-

ing emotions as generic “mood tags” found on social plat-

forms, we leverage a refined psychological model drawn

from Plutchik’s theory [1], which appears more intuitive

than the extensively used Valence-Arousal model.

1. INTRODUCTION

Several studies on music listener behavior have identified

an increasing interest in music discovery based on its emo-

tional content [2]. It is therefore hardly surprising that

the field of Music Emotion Recognition (MER), which ex-

plores how emotions can be identified in music [3], is a

growing area of research.

MER research is dominated by the use of supervised

machine learning methods, in which systems are trained on

music excerpts previously labeled with emotion descrip-

tors through crowdsourcing. A major hurdle in this field

is the lack of large-scale emotion-annotated datasets [4].

The complexity of collecting suitable training data con-

tributes significantly to this issue, as the process is time-

consuming, labor-intensive and expensive. The subjective

© J. Affolter, M. Rohrmeier. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribu-

tion: J. Affolter, M. Rohrmeier, “Utilizing Listener-Provided Tags for

Music Emotion Recognition: A Data-Driven Approach”, in Proc. of the

25th Int. Society for Music Information Retrieval Conf., San Francisco,

United States, 2024.

nature of musical emotions further complicates the data

collection process [5].

Recognizing language as a powerful medium for

conveying musical signification, we proceed on the

premise that emotions can be inferred from tex-

tual data—specifically, from listener-generated tags and

playlist names on music platforms. We thus introduce a

novel method for assigning, to any given song, an emotion

vector within an 8-dimensional space defined by Plutchik’s

model. This enables us to propose a new dataset compris-

ing 5, 892 tracks, specifically tailored for Music Emotion

Recognition (MER) tasks.

2. RELATED WORK

Yuan et al. [4] propose the Music Audio Representation

Benchmark for universaL Evaluation (MARBLE) as a uni-

fied standard for assessing various Music Information Re-

trieval (MIR) tasks. They employ 12 publicly available

datasets to evaluate 18 distinct tasks, including the Emo-

music [5] and MTG-MoodTheme [6] datasets for MER

evaluation. Table 1 provides an overview of commonly

used datasets in MER research, along with their size, data

collection method and emotion labeling approach.

Dataset Size
Data

collection
Emotion

model
Ref.

Emomusic 744 C AV [5]
MTG-MT 17,982 DM 56 labels [6]

AMC 600 C 5 clusters [7]
EMMA 364 C GEMS [8]
CAL500 500 C 174 labels [9]

MoodSwings 240 Game AV [10]
NTWICM 2,648 C AV [11]

Soundtracks 470 C 9 labels [12]
DEAP 120 EEG AVD [13]

AMG1608 1,608 C AV [14]
Emotify 400 Game GEMS [15]
Moodo 200 C AV [16]

4Q-emotion 900 C AV [17]
PMEmo 794 EEG AV [18]

Table 1: Overview of existing MER datasets.
C: crowdsourcing, DM: data mining, AV(D): arousal/valence/dominance,
EEG: electroencephalography, GEMS: Geneva Emotion Music Scale

Through the examination of these datasets, three areas

for potential improvement have been identified.

Dataset size. Datasets annotated with labels accord-

ing to a psychological emotion model (AV, AVD, GEMS)

do not exceed 2, 648 tracks, with an average size of 801.

Furthermore, most datasets fail to cover a wide range of
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musical genres—they are often limited to four or fewer, or

do not provide clear genre definition, resulting in imbal-

anced datasets. This limited size and diversity complicate

the training of accurate music emotion recognition mod-

els, raising concerns about issues such as group fairness

and generalization capability.

Data collection. Most datasets rely on human annota-

tions from crowdsourcing/online games, or from EEG ex-

periments, which, while reliable, are both expensive and

time-consuming. Moreover, these datasets encounter chal-

lenges in participant diversity. Typically, the assignment

of an emotion label to a track requires consensus between

few annotators. In the case of datasets featuring mood tags,

it is common for tracks to have, on average, no more than

two tags associated with them, potentially leading to mis-

leading data.

Emotion model. Emotion labeling generally falls into

two categories. (1) Mood-based emotion tags. For in-

stance, in MTG-MoodTheme, the 56 emotion labels cor-

respond to tags directly retrieved from the Jamendo mu-

sic platform. This can result in a large number of emo-

tion labels, making it difficult for end-users to under-

stand and use the system. This approach may also not

align with an established emotion model. (2) Discrete-

or continuous-based annotations derived from a prede-

fined emotion model. While the VA model, with its

two-dimensional structure, has been criticized to be re-

strictive and open to overly subjective interpretation [19],

the Geneva Emotion Music Scale (GEMS) is specifically

crafted for the music domain, and proposes a more detailed

taxonomy.

3. APPROACH

This section introduces the key design decisions underly-

ing our methodology for inducing music-evoked emotion

descriptors from a collection of tracks. Our approach aims

to enhance the study of emotions in music by introducing a

novel representation of emotions based on a psychological

model that has been hitherto unacknowledged in the field

of MER.

3.1 Plutchik’s Emotion Model

We recognize the importance of grounding our research

framework in a well-established emotion model. In search

of a more intuitive alternative than the Valence/Arousal

(VA) framework, we opted for Plutchik’s model, which, to

our knowledge, has not yet been utilized in the field of mu-

sic and, we believe, strikes a good balance between com-

plexity and usability. Plutchik’s emotion model is founded

on eight primary emotions (joy, fear, anger, sadness, dis-

gust, surprise, anticipation, trust) that we believe are acces-

sible and instinctive for listeners. As a recognized model

in psychology, it has been employed across various do-

mains beyond music, enabling us to leverage existing re-

sources, such as the NRC Lexicon [20], a crowdsourced

list of 14, 182 English words and their binary associations

with Plutchik’s primary emotions. Highly aligned with

our research goal, its single-word structure bears a strong

resemblance to our textual data, which includes tags and

playlist names. Its origin in actual annotations by human

subjects, rather than derivative interpretations, is also cru-

cial to the accuracy of our emotion mappings. Further-

more, the model’s categorical approach can be expanded

by combining emotions as depicted in Figure 1, thus en-

abling the representation of more complex emotions.

Figure 1: Plutchik’s wheel of emotions [1].

3.2 Emotion Vector Representation

Instead of viewing emotions as discrete labels, as tradi-

tional classification MER systems do, we propose to rep-

resent a music track as an 8-dimensional emotion vector

that captures the emotions perceived by listeners. We de-

fine our emotion domain mathematically as a vector space

V , represented by a basis B={joy, fear, anger, sadness,

disgust, surprise, anticipation, trust}. Each emotion in B

corresponds to a standard basis vector in V , with ejoy =
[1, 0, ..., 0] through etrust = [0, ..., 0, 1]. The emotion vec-

tor v of a track is defined as

v =
∑

i∈B

λiei, (1)

where λi ∈ [0, 1] represents the intensity of emotion i.

By representing emotion intensities within an 8-

dimensional vector, our framework aims to effectively cap-

ture the complex spectra of music-evoked emotions and

discern the subtle emotional nuances of music tracks.

3.3 Textual Data Encoding

To effectively encode textual data, we selected the

Sentence-BERT (SBERT) model [21], an NLP neural net-

work known for generating semantically meaningful em-

beddings at the sentence level. Specifically fine-tuned for

semantic similarity tasks, SBERT enhances the original

BERT architecture by integrating siamese and triplet net-

work structures. NLP techniques such as Semantic Search

are significantly enhanced with this encoding model, as it

enables the retrieval of the closest elements in the embed-

ding space based on semantic similarity.

By using SBERT, we are able to create single embed-

dings that accurately encode the semantic content of each
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textual element while preserving context. This choice is

particularly suitable for our data, which includes short

phrases—such as single- and multi-word tags, playlist

names, and English words from the NRC Lexicon—that

need to be compared in terms of semantic similarity.

4. IMPLEMENTATION: A TWO-STAGE

FRAMEWORK FOR EMOTION ATTRIBUTION

Building upon the challenges and insights discussed in

Section 2, we introduce a two-stage framework for extract-

ing music-evoked emotions from a collection of tracks.

Drawing inspiration from MTG-MoodTheme, the first

phase focuses on collecting verbal tags through data min-

ing across platforms such as Last.fm and Spotify, while the

second phase leverages NLP techniques to computation-

ally associate emotion vectors with music tracks by relying

solely on the tags acquired during phase one.

4.1 Large-Scale Listener-Generated Data Collection

4.1.1 Track Selection Process.

We started with a baseline dataset of 20, 000 music tracks,

spanning 20 distinct genres. We selected the top 1, 000
tracks with the highest popularity index on Spotify for each

genre, in order to increase the likelihood of finding them in

multiple sources when retrieving tags.

4.1.2 Data Mining.

We extracted listener-generated tags from three popular

rating websites—Last.fm, AllMusic, Rate Your Music 1 —

and retrieved playlist names from the dataset provided for

the Spotify Million Playlist Dataset Challenge, which in-

cludes 1, 000, 000 playlists created by Spotify listeners be-

tween 2010 and 2017 [22].

4.1.3 Data Pre-Processing.

While the tags from Rate Your Music and All Music were

already normalized by the platform, those from Spotify and

Last.FM required extensive cleaning. The objective was

twofold: first, to eliminate irrelevant data, such as playlist

names along the lines of ’Favorite hits’, and second, to re-

move tags that could introduce bias when assigning emo-

tions. Indeed, some tags—such as album names, artist

names, or musical genres—are intended as mere filters for

finding music. Others, like ‘roadtrip tunes’, are too neu-

tral and may suggest contexts unrelated to emotions, while

tags such as ‘love it’ reflect personal opinions and could

bias our results by conflating perceived with induced emo-

tions [23].

We first translated multilingual text into English, ex-

panded abbreviations, replaced slang words and emoticons

with their standard equivalents, and corrected misspelled

words. We then implemented four iterative filtering pro-

cesses to eliminate listener-generated tags that cannot be

considered emotion descriptors.

1 https://www.last.fm/, https://www.allmusic.

com/, https://rateyourmusic.com/

Metadata Filtering. Since artists, song titles, album

names, and musical genres were retrieved as metadata for

all tracks in our dataset, we first eliminated any textual in-

puts containing terms from these categories. The set of

musical genres was expanded to include a broader range

beyond the 20 genres under study.

Named Entities Filtering. We then used the pre-

trained BERT model fine-tuned for Named Entity Recog-

nition (NER) 2 to identify named entities within prede-

fined categories, such as person names, song titles, and lo-

cations. We filtered out sequences containing at least one

token classified as a named entity of a target category with

a confidence score above 0.9.

Neutral Tag Filtering. Sentiment analysis was subse-

quently performed using the pre-trained RoBERTa model

fine-tuned for this task 3 . We removed tags with a neu-

tral sentiment proportion greater than 70% (where 100%

was distributed among positive, neutral, and negative sen-

timents for each input sequence). This threshold was delib-

erately chosen to avoid losing potentially useful tags like

‘energetic’. In subsequent stages of this framework, tags

that are too neutral and not intended for emotion descrip-

tion will nonetheless be matched with words from the NRC

Lexicon that do not have associated emotions, thereby not

impacting the final emotions associated with music tracks.

Listener Judgment Filtering. Finally, we eliminated

tags closely tied to listener preferences and judgments.

Briefly put, we established predefined categories specifi-

cally designed to capture tags for exclusion, based on their

semantic content. For example, we defined a category ti-

tled ’This track is great’ and tags like ’Love it!’ would se-

mantically align with this category and be filtered out. To

do so, we computed sentence-level embeddings for both

the tags and the categories (augmented by the NRC Lex-

icon) using the SBERT model to capture their semantic

content. We then matched each tag to its closest category

using cosine similarity on their embeddings, removing tags

that fell into any unwanted category.

4.2 Emotion Vector Attribution

The second phase of our approach relies on the NRC Lexi-

con to computationally associate emotion vectors with mu-

sic tracks by relying solely on the acquired tags. We de-

cided to represent words from the Lexicon as vectors w

within the Plutchik emotion space, where w =
∑

i∈B ciei
and ci is a binary indicator denoting the absence or pres-

ence of the corresponding emotion.

Given that tags are assigned by individual listeners on

music platforms, we can treat them as independent entities.

This assumption enables us to first assign emotions to each

unique tag in the dataset, and then derive the emotion vec-

tor of a track by combining the emotions of its associated

tags.

2 https://huggingface.co/dslim/bert-base-NER
3 https://huggingface.co/cardiffnlp/

twitter-roberta-base-sentiment-latest
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4.2.1 Assigning Emotions to Individual Tags

To infer the emotions connoted by a given tag, we first

input both the tag and words from the NRC Lexicon into

the SBERT model. This model generates embeddings for

each, representing both the tag and words in the same se-

mantic space.

We then perform semantic search, which involves re-

trieving the top-k entries {yi}i=1,...,k ∈ Y of a corpus

(NRC Lexicon) that are closest to a query x (the tag) by

maximizing the cosine similarity on their embeddings, ef-

fectively identifying the words that are semantically simi-

lar to the tag: yi ∈ argmaxy∈Y
x·y

∥x∥∥y∥ .

Finally, a weighted majority vote is performed. This

method involves directly selecting emotion vectors when

a match with a high similarity score is found. If no such

match exists, emotions with the highest consensus among

a broader set are chosen.

Algorithm 1 Weighted Majority Vote

1: Input: Hyperparameters α1, α2, α3, β; tag embedding x;
embeddings, similarity scores, and emotion vectors from the
top-k matches {(xi, si, wi) | su ≥ sv when u < v}i=1,...,k;

2: Output: Emotion vector of the tag v ∈ R8

3: Initialize the set of chosen matches : m← ∅.
4: if s1 ≥ α1 then
5: m← {w1}
6: else
7: m← {wi | si ≥ α2}
8: if m = ∅ then
9: m← {wi | si ≥ α3}

10: µ←
∑

wi∈m
siwi ∈ R8

11: v ← (vi)i where vi = 1 if µi > β, 0 otherwise
12: Return v

We conducted hyperparameter tuning using Grid Search

to optimize the parameters α1, α2, α3, β and k with the

evaluation method outlined in Section 5.2. By selecting

hyperparameters that maximize the F1-score between the

original and inferred vectors, we ensured optimal accuracy

in identifying the correct emotion vectors from words in

the lexicon, considering both false positives and false nega-

tives. The optimal values obtained were 0.95, 0.9, 0.5, 0.5,

and 7, respectively.

4.2.2 Deriving the Emotion Vector for Each Track

Now that each tag is assigned an emotion vector with bi-

nary values indicating the presence or absence of each pri-

mary emotion, we can derive the emotion vector for each

track. However, two issues must be addressed first. Tag

occurrences should be normalized to ensure comparability

across different sources; and intersubjective variability in

music perception should be accounted for, since it can lead

to differing tags among listeners and misleading inferred

emotion vectors.

Tag Occurrences Normalization. We divide each oc-

currence by the maximum occurrence encountered within

the source, resulting in normalized occurrences within the

[0,1] range. For tags from Rate Your Music, where occur-

rences were not provided, we set their count to the average

occurrence at the track level.

Tag Selection for Inter-rater Agreement. For each

track, we select tags that exhibit good inter-rater agree-

ment, estimated using the Intra-class Correlation Coef-

ficient (ICC) with one-way random effects for absolute

agreement [24]—a widely used metric for assessing inter-

rater reliability when the same set of raters evaluates all

subjects. In our approach, each emotion is treated as an

individual "subject" and each tag as a "rater". The emotion

vectors of each tag, weighted by their normalized occur-

rences, serve as ratings for the respective emotion.

To attain the acceptable threshold of 0.75 for inter-rater

agreement (values between 0.75 and 0.90 indicate good re-

liability, according to [24]), we perform backward selec-

tion to iteratively eliminate conflicting tags. Starting with

the initial set of tags for a given track, we remove the tag

whose exclusion results in the highest ICC score. This pro-

cess continues until the threshold is attained or only two

tags remain.

Track Emotion Vector. We derive the emotion vec-

tor of a track by calculating the weighted average of the

emotion vectors vi from the p tags that demonstrated good

inter-rater agreement. The weights αi are set to the tags’

normalized occurrences, thus giving more importance to

emotions from prevalent tags.

v =
1∑p

i=1
αi

p∑

i=1

αiwi =
∑

j∈B

λjej , (2)

5. EVALUATION

5.1 Tag Extraction Method

To assess the reliability of our tag extraction method, we

compared our tags to human-generated annotations from

two crowdsourced MER datasets: AMC Mirex [7] and

Cal500 [9]. These datasets were selected for being the only

ones to include emotion tags and share common tracks

with our collection.

First, we calculate the percentage of common tags at the

track level between each dataset and ours. Next, to assess

the alignment between emotion tags, we derive emotion

vectors of tracks from the two crowdsourced datasets us-

ing our method for emotion vector attribution (see Section

4.2), and then compare them with ours using semantic sim-

ilarity.

AMC Cal500
mean med. mean med.

Percentage of common
tags for each track

56.0 100.0 3.24 0.0

Similarity score
between emotion vectors

0.68 0.78 0.75 0.82

Table 2: Comparison of tags and emotion vectors

Comparing the resulting tags either directly or via the

emotions they convey, our findings demonstrate that our

method’s results align well with human-generated anno-

tations. In the AMC dataset we observed a strong direct

match with our tags, with an average tag overlap of 56% at

the track level ([41.69, 70.81] 95% CI) and a median reach-

ing 100%. Considering the structure of the AMC dataset,
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whose tracks are usually assigned only one tag, this means

that for 56% of the tracks the AMC tag is contained in the

set of tags we collected from music platforms. For Cal500,

despite a low tag overlap of 3.24%, we observed significant

alignment, with a mean similarity score of 0.75 between

the derived emotion vectors. Note that the lower similarity

score observed in AMC (0.68) may be attributed to its lim-

ited number of tags—with an average of one per track—

compared to ours (~8 tags per track) and that of Cal500

(~15 tags per track).

5.2 Tag Emotion Assignment Method

To assess the reliability of our method for assigning emo-

tions to individual tags (see Section 4.2.1), we applied the

same technique to the words in the NRC Lexicon. By treat-

ing each word as a ‘query’ and using the NRC Lexicon,

excluding the query word itself, as the ‘corpus’, we derive

emotion vectors for each word and compare them with the

original vectors provided by the NRC Lexicon.

We achieved an average accuracy of 84% in identifying

emotions represented by a given tag, with balanced scores

across emotions. Joy was the most accurately identified

emotion (93%), while fear had the lowest score (76%). Our

F1-score was 77%—an expected result, as our method pri-

oritizes emotions that align across all matched words, lead-

ing to a higher number of false negatives and thus lower

recall. Nonetheless, the method’s ability to generally iden-

tify emotions demonstrates its overall effectiveness.

6. DISCUSSION

In this section, we discuss the strengths and weaknesses of

our approach for generating emotion-labeled datasets.

6.1 A Dual-Use Model and a Reproducible

Framework

The proposed framework, methodically divided into two

distinct phases, facilitates the creation of synthetic datasets

suitable for both Music Emotion Recognition (with emo-

tion vectors) and auto-tagging tasks (with tags retrieved

from music platforms). Its flexibility renders it applicable

to any existing dataset that includes tags on music tracks,

therefore allowing researchers to create their own emotion-

labeled dataset 4 .

Additionally, our work can be easily extended to incor-

porate future resources similar to the NRC Lexicon, albeit

based on other emotion models (GEMS etc.), as such re-

sources become available. Since this approach only re-

quires a mapping from English words to emotion labels,

collecting these resources is significantly easier than ob-

taining direct emotion annotations on music excerpts.

6.2 Large-Scale Data Collection with Emphasis on

Data Quality

Our method for extracting listener-generated textual data

from music platforms overcomes the usual limitations

4 Python code to derive emotion vectors from a set of tags is provided:
https://github.com/joanne-affolter/PlayMood

of data collection—including time, cost and feasabil-

ity constraints—through crowdsourced experiments and

therefore enables data collection on a larger scale. Our

final collection contains 5, 892 emotion-labelled tracks,

more than twice the size of the hitherto largest emotion

model-based dataset of 2, 648 tracks (NTWICM [11]).

Notably, specific attention was paid to retain only rele-

vant tags, removing those that lack overt emotional signifi-

cation, represent value judgments, or describe musical gen-

res. Consequently, our dataset underwent significant re-

finement, with only a small percentage of total and unique

tags retained (4.8% and 1.1%, respectively), enhancing its

quality while maintaining its diversity (see Table 3). We

actually ended up with 1, 013 unique emotion tags, sig-

nificantly more than the 157 emotion labels in the MER

dataset with the largest number of labels to our knowledge

(Cal500). Tag distribution across the dataset and within

each source is presented in Figure 2, where the size of

each tag reflects its frequency, taking into account its oc-

currence.

Before After

Tags across all tracks 1,007,847 48,737 (4.8%)

Unique tags 90,699 1,013 (1.1%)

Unique tracks 12,515 5,892 (47.1%)

Table 3: Data filtering overview, before pre-processing,

after pre-processing

Figure 2: Tag Frequency Across Dataset and Sources

6.3 Reliance on Music Platforms

Our proposed framework relies on the availability of data

on music platforms and may face challenges due to the

under-representation of certain musical genres. Indeed, the

final dataset exhibits a significant imbalance across genres,

with world music and classical music represented only by

29 and 24 tagged tracks. We nonetheless pursued the cre-

ation of a balanced dataset by selecting the 280 most popu-

lar tracks for the top 15 most-represented genres, yielding

4, 200 tracks in total 5 .

The tag frequencies (see Figure 2) reveal a prevalence

of certain tags, with positive-emotions particularly promi-

nent. However, it is uncertain whether this reflects listener

preferences, a wider music industry trend, or a tendency

of listeners to engage with music platforms when in a pos-

itive mood. The latter possibility could potentially intro-

duce bias into our results.

5 The dataset and its balanced version are made public : https://
github.com/joanne-affolter/PlayMood
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6.4 Emotion Association: A Focus on Explainability

Some critics might argue that our methodology for gener-

ating emotion-labeled datasets could introduce bias when

training Music Emotion Recognition (MER) systems, as it

relies on synthetic data. However, the use of a direct map-

ping from tags to emotions using a crowd-sourced Lexicon

aims to ensure model explainability and interpretability.

We deliberately chose not to use machine learning mod-

els to predict word emotions, opting instead for a resource

curated by humans. However, we acknowledge that the

strong reliance on the NRC Lexicon renders our work sub-

ject to the latter’s limitations, including socio-cultural bi-

ases [25], the possibility of incorrect, nonsensical, or pe-

jorative entries due to human error—inevitable with large-

scale annotations—and potential ambiguities due to a lack

of context in the lexicon [26].

6.5 Towards More Generalizable Findings

In addition to significantly reducing the need for human-

generated annotations, our synthetic dataset in fact lever-

ages the size and diversity of social music platforms. For

instance, it features a larger average number of tags per

track (mean: 7.52, min: 1, max: 171) compared to crowd-

sourced datasets, which typically rely on a few tags (on

average 1.62 for MTG-MT and 1.01 for AMC Mirex). This

variety enables a broader range of interpretations and a

more nuanced evaluation of listener feedback, although it

may also present challenges in identifying emotions. Fur-

thermore, agreement among listeners on music platforms

tends to be relatively high, as indicated by the frequency

of tag occurrences at the track level (mean: 6.01, min:

1, max: 200). In contrast to crowdsourced studies that

generally require agreement between a few annotators, our

method has an intrinsic potential for more robust and gen-

eralizable findings thanks to the higher number of listeners

involved in the tagging process.

6.6 Emotion Modeling: Paving the Way for Future

Research

By grounding our method on a set of eight primary emo-

tions, we offer an intuitive alternative to the VA framework.

Meanwhile, by using a continuous vector representation in

the Plutchik emotion space, our framework is also able to

capture subtle emotional nuances of music tracks, as illus-

trated by the emotional profiles in Figure 3 6 .

Notably, we found that as the number of tags increased,

the emotional spectra of a track became more complex, in-

volving a wider variety of emotions with varying intensi-

ties. One may wonder whether to consider feedback from

all listeners, resulting in more intricate emotion represen-

tations, or retain the best-aligned tags alone, thereby in-

creasing consistency at the risk of missing individual nu-

ances. In this work, we opted for mutually consistent emo-

tion vectors with an emphasis on inter-rater agreement. By

6 A notebook for visualizing the emotional profiles across all
tracks in our collection is available: https://github.com/

joanne-affolter/PlayMood

filtering out tags that represent contrasting emotions, we

negotiated, on the one hand, the intersubjective variabil-

ity of music perception and, on the other hand, its socially

communicative potential by selecting a significant number

of tags with high agreement, effectively producing com-

plex emotion representations validated by the majority. We

thus achieved an average ICC score of 0.76 for the emotion

ratings associated with the selected tags for each track, in-

dicating good reliability according to [24], compared to the

initial score of 0.52, which suggested moderate reliability.

It is noteworthy that, despite the filtering process, the aver-

age number of tags per track decreased only slightly from

7.52 to 6.55, demonstrating that our dataset still reflects

the diversity of its participant pool.

Figure 3: Visualization of tracks’ emotions.

7. CONCLUSION

Our investigation introduces a novel approach to Music

Emotion Recognition (MER) by benefiting from large-

scale, listener-generated tagging alongside an original ap-

plication of Plutchik’s emotion model. With this work

we aimed not only to address the scarcity of annotated

datasets in the MER domain, but also to challenge tra-

ditional paradigms of music emotion by adopting an in-

tensely empirical, psychological model-based framework.

Through meticulous data collection and cleaning, we gen-

erated a dataset that surpasses existing collections in size

and diversity, while maintaining a high degree of align-

ment with human-generated annotations. We believe that

the integration of Natural Language Processing techniques

in the semantic analysis of music tags is a methodological

innovation that may effectively transpose the problem from

audio to the textual domain. Furthermore, our approach’s

dual utility in MER and Auto-Tagging tasks demonstrates

its versatility and potential for wide-ranging applications

in Music Information Retrieval. By narrowing the gap be-

tween psychological emotion theories and computational

music analysis, we pave the way for future research en-

deavors aimed at enriching our understanding of listeners’

emotional engagement with music.
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8. ETHICS STATEMENT

Ethical Considerations in Data Handling It is impor-

tant to note that our dataset does not contain any listener-

specific information; our research involved the analysis

of publicly available data only. By design, our approach

prevents any direct links to individual listeners within the

dataset, mitigating concerns around privacy and data secu-

rity.

Addressing Societal and Cultural Considerations

The diversity of music across cultures presents a chal-

lenge for Music Information Retrieval technologies, which

should strive to prevent cultural homogenization in inter-

pretive systems. Despite efforts to include a wide range

of genres and styles, our dataset may not fully capture the

breadth of global musical diversity. Additionally, the plat-

forms from which data was sourced may primarily serve

specific demographics, potentially biasing our dataset to-

wards the musical preferences and emotional expressions

of a particular segment of the global population. Future re-

search should prioritize the collection of tags from a more

culturally diverse set of sources, work towards the further

mitigation of such biases, and enhance the inclusivity of

MIR technologies.
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ABSTRACT

Piano cover generation aims to create a piano cover from
a pop song. Existing approaches mainly employ super-
vised learning and the training demands strongly-aligned
and paired song-to-piano data, which is built by remap-
ping piano notes to song audio. This would, however, re-
sult in the loss of piano information and accordingly cause
inconsistencies between the original and remapped piano
versions. To overcome this limitation, we propose a trans-
fer learning approach that pre-trains our model on piano-
only data and fine-tunes it on weakly-aligned paired data
constructed without note remapping. During pre-training,
to guide the model to learn piano composition concepts
instead of merely transcribing audio, we use an existing
lead sheet transcription model as the encoder to extract
high-level features from the piano recordings. The pre-
trained model is then fine-tuned on the paired song-piano
data to transfer the learned composition knowledge to the
pop song domain. Our evaluation shows that this train-
ing strategy enables our model, named PiCoGen2, to at-
tain high-quality results, outperforming baselines on both
objective and subjective metrics across five pop genres.

1. INTRODUCTION

Piano cover generation, which involves recreating or ar-
ranging an existing music piece as a new piano version, is
popular within music-creative communities and the music
production industry. On media sharing sites like YouTube,
piano cover creators often have lots of subscribers. Addi-
tionally, many music producers create and distribute piano
arrangements on music streaming platforms.

Attempts have been made in the field of music informa-
tion retrieval (MIR) to automatically generate piano cov-
ers from existing musical pieces. Takamori et al. [1] pro-
posed a regression method to generate piano reductions,
which can be considered simplified versions of piano cov-
ers, using acoustic features and structural analysis of the

© C.-P. Tan, H. Ai, Y.-H. Chang, S.-H. Guan, and Y.-H.
Yang. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: C.-P. Tan, H. Ai, Y.-H. Chang,
S.-H. Guan, and Y.-H. Yang, “PiCoGen2: Piano cover generation with
transfer learning approach and weakly aligned data”, in Proc. of the 25th

Int. Society for Music Information Retrieval Conf., San Francisco, United
States, 2024.

Figure 1. The proposed model is trained with two stages:
firstly pre-trained on piano-only data and then fine-tuned
on the weakly-aligned song-to-piano pairs.

input music. With the recent surge in deep learning, Choi
et al. [2] introduced a model named Pop2Piano that tack-
les piano cover generation by leveraging the concept of pi-
ano transcription and employing the MT3 architecture [3],
originally designed for transcription, as their model back-
bone. They collected pop songs and the corresponding pi-
ano covers from the Internet, and built a song-piano syn-

chronized dataset by “remapping” the piano notes to the
song audio with a warping algorithm (thereby modifies, or
warps, the piano cover). The algorithm entails evaluating
the similarity between the pitch contour of the vocal signal
extracted from the song audio with the top line of the piano
MIDI. They then trained the model with the synchronized
data, guiding the model to learn the pitch and onset/offset
timing of each note in the generated piano cover.

However, as shown in Table 1, the statistics in the ratio
of audio length difference and tempo difference between
the original songs and original piano covers (i.e., before
note-remapping) they collected 1 show that a piano cover
and its original song are not perfectly aligned to each other
(for otherwise the difference ratio would be equal to 1.00).
This indicates that the tasks cover generation and transcrip-
tion are inherently different, and that forcing a piano cover
to be synchronized with its original song may be inappro-
priate. Actually, we notice that the note-remapping process
of Pop2Piano—i.e., adjusting piano note timing according
to the time mapping function obtained by synchronizing
piano notes to the song audio—breaks the relation of orig-
inal piano notes and thereby incurs loss of piano informa-

1 https://github.com/sweetcocoa/pop2piano/blob/

main/train_dataset.csv
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duration deviation tempo deviation IOI deviation

1.10 ± 0.12 1.16 ± 0.25 1.14 ± 0.17

Table 1. The first two statistics contrast the original songs
with their original piano covers (i.e., no note-remapping)
in the Pop2Piano dataset [2], evaluating the length of the
duration (in seconds) of the longer one divided by that of
the shorter one, and similarly the deviation ratio in BPM.
The last statistic is similarly the deviation ratio in terms of
the average inter-onset intervals (IOIs; in seconds), but be-
tween the original & adjusted (synchronized) piano covers.

tion. Moreover, from a musical perspective, the way hu-
man creates piano covers is by nature different from the
way human transcribes music. For cover generation, musi-
cians may firstly analyze the original song in terms of as-
pects such as melody, chord progression and rhythm sec-
tion, then decide how to interpret the original song with
their composition knowledge, and finally make the piano
cover based on the piano performance techniques.

Inspired by the process of human composition for piano
cover songs, we propose in this paper a novel approach for
piano cover generation by involving the concept of trans-
fer learning [4]. Instead of relying on the strongly-aligned

pairs [5] that necessitates note-remapping, we use weakly-

aligned data with the correspondence in “beat” level be-
tween song-piano pairs. This approach incurs no rhythmic
distortion of the piano covers, retaining their musical qual-
ity. Besides, to mitigate the inaccuracy of data alignment,
the model is pre-trained on piano-only data to learn the
concept of piano performance first, and then fine-tuned on
the weakly-aligned paired data to learn the conversion of
song to piano, as shown in Figure 1. We also employ a
prior model SheetSage [6], pre-trained for lead sheet tran-
scription, as an encoder component that helps our model
learn high-level musical concepts for cover generation.

We compare the proposed model, named “PiCoGen2”,
against other baselines with objective and subjective mea-
sures, validating the effectiveness of the weak-alignment
method for pairing and the two-step training strategy. We
share source code and audio samples at a project page. 2

2. BACKGROUND

Piano arrangement, i.e., the process of reconstructing and
reconceptualizing a piece, is related to various conditional
music generation tasks, including lead sheet 3 -conditioned
accompaniment generation, transcription and reorchestra-
tion, and piano reduction [7–9]. Beyond arrangement, pi-
ano cover generation involves creating new musical ele-
ments and modifying the original elements via improvisa-
tion, tempo changes, stylistic shifts, etc. We briefly review
some related topics below.

Symbolic-domain music generation is about generating
music in a symbolic form such as pianorolls [10] and dis-

2 https://tanchihpin0517.github.io/PiCoGen/
3 A music notation consisting of lead melody and chord progression.

crete MIDI- (Musical Instrument Digital Interface) [11] or
REMI-like tokens [12–15], rather than audio signals. The
task encompasses unconditional generation (i.e., from-
scratch generation) and conditional generation. While the
goal of piano cover generation is to generate piano audio
given a song audio input, we can treat it as a conditional
symbolic music generation task, for we can generate piano
in the MIDI domain first, and then use off-the-shelf high-
quality piano synthesizers to convert it into audio.

Automatic music transcription (AMT), which aims to
precisely transcribe music content from audio signals into
a symbolic representation over time, is also related to pi-
ano cover generation. AMT tasks can be categorized based
on the completeness of information captured from the in-
put audio. One category of AMT tasks aims to capture
all music content presenting in the audio, such as auto-
matic piano transcription [3, 16–20]. These methods tran-
scribe the complete polyphonic piano performance from
the audio signal. Another category focuses on transcrib-
ing a reduced representation of the input, like melody tran-
scription [21, 22] and lead sheet transcription [6, 23, 24].
These tasks extract only the lead melody line and chord
progressions, representing a sparse subset of the full mu-
sical content. Piano cover generation also requires the ex-
ploration of music content reduction and additionally re-
lies on generative modeling conditioned on the reduced
representation. For example, Pop2Piano uses MT3 [3] as
its backbone to convert audio features into a symbolic pi-
ano performance representation. However, following the
paradigm of transcription approaches, Pop2Piano requires
paired data consisting of pop songs and their correspond-
ing temporally-synchronized piano cover.

Transfer learning is generally consider as the concept
of adopting the model to the target domain by re-using pa-
rameters that are trained on a source domain, thereby trans-
ferring the knowledge between the domains [25]. There
have been several works on transfer learning in the field of
MIR, e.g., music classification [26–28] and music recom-
mendation [29, 30]. However, to our best knowledge, little
attempts have been made to apply transfer learning to the
task of cover song generation.

Besides Pop2Piano [2], this work is also closely related
to PiCoGen [31], an early version of the current work. We
explore the two-stage training strategy for piano cover gen-
eration for the first time there. However, in PiCoGen we
use discrete symbolic lead sheet as the intermediate rep-
resentation, instead of continuous conditions supplied by
an encoder as done here (see Section 3.2). We note that
the sampling process of lead sheet extraction in PiCoGen
might loss musical information such as instrumentation
and vibes of the input audio. Moreover, we do not explore
the idea of transfer learning (Section 3.3) there. 4

The work of Wang et al. [32] is also related, for they
deal with the similar problem of converting audio signals

4 As the previous work [31] was also under review at the time we
submitted the current paper, we did not empirically compare PiCoGen
and PiCoGen2 in the experiments here. Instead, we provide examples of
their generation results for the same input songs on the demo page, which
should demonstrate that PiCoGen2 works better than PiCoGen.
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Figure 2. A diagram of the proposed model, PiCoGen2. The fire and snowflake symbols indicate the trainable and frozen
parts. For example, the parameters for SheetSage [6], a model pre-trained for lead sheet transcription, are always frozen.

into piano MIDI performances. However, they apply a pi-
ano transcription prior and thus using strongly-aligned data
as Pop2Piano [2], and they employ a more sophisticated
disentanglement-based method to get an intermediate rep-
resentation. Moreover, they assume that the vocal of the
input audio has been removed beforehand, thus actually
generating a piano backing track rather than a piano cover.

3. METHODOLOGY

Viewing piano cover generation as a conditional symbolic
music generation task, we formulate it as a sequence-to-
sequence problem. The objective is to generate a sequence
of symbolic tokens Y representing the piano performance,
conditioned on the input audio X of the original song.

3.1 Weakly-Aligned Data

In Pop2Piano, Choi et al. [2] propose a data preprocessing
algorithm to synchronize the piano MIDI to the song au-
dio. They utilize SyncToolBox [33] to analyze the chroma
features of two audio segments to obtain a warping path
of mapping the time from the piano performance to the
song audio. Based on the analysis, they adjust the tim-
ing of notes transcribed from the piano performance by
using a linear mapping function calculated from the tem-
poral warping information. These remapped notes is then
quantized to align with the beat locations of the song au-
dio. However, the rhythmic distortion caused by note-
remapping is practically unavoidable, even disregarding
the inaccuracy of the synchronization process. The chroma
feature only reflects a rough overall alignment between the
piano performance and song audio which cannot precisely
describe the nuanced amount of timing shift for each indi-
vidual note. This is evident when examining the changes in
the inter-onset intervals (IOIs) between the original piano
notes and the remapped version, shown in Table 1.

To avoid the rhythmic distortion of note-remapping, we
propose a weak-alignment approach that does not change
the timing of piano notes. The idea is to let the alignment
rely on only the beats of each song-to-piano pair. We con-
struct the time mapping function Ftime by computing the

warping path for the audio pair like the way of Pop2Piano.
Given a time of piano performance tp, the function outputs
the corresponding time of song audio ts = Ftime(tp) ac-
cording to the temporal warping information. Specifically,
we detect the beat locations with Beat Transformer [34] to
get the beat times Qp = [qp

1
, . . . , q

p
lp
] of the piano perfor-

mance and Qs = [qs
1
, . . . , qsls ] of the song audio, where lp

and ls denote the number of beats of each of them. Then
we define an aligning function Fbeat as:

Fbeat(i) = argmin
j

(Ftime(q
p
i )− qsj ). (1)

For any beat index i ∈ [1, ..., lp] of the piano performance,
the aligning function outputs the corresponding beat index
j ∈ [1, ..., ls] of the song audio, and qsj is the nearest beat
time to Ftime(q

p
i ). We consider a song-piano pair to be

weakly-aligned if the correspondence between them is de-
termined by Fbeat. See the project page for an illustration.

3.2 Model

An aerial view of our model is depicted in Figure 2. We
employ a decoder-only Transformer to accept an input se-
quence bundling condition X (song audio) and target Y
(piano performance) together, and generates the output to-
kens for Y autoregressively. This approach of providing
both the condition and target as a bundled input sequence
to the Transformer has been applied in previous studies
[13, 14, 35] and has shown success in better informing the
model of the temporal correspondence between the condi-
tion and desired output. We divide Y into bars with the de-
tected beat information and get Y = [Y 1, . . . , Y Bp ], where
Bp is the number of bars in the piano cover, and there exists
an song audio sequence X = [X1, . . . , XBp ] for Y , where
each sub-sequence Xk is weakly aligned to Y k. We then
rearrange them with an interleaving form and train the de-
coder with the bar-wise mix S = [X1, Y 1 . . . , XBp , Y Bp ].
The decoder model would learn to generate k-th bar of
piano performance Y k depending on (i.e., can attend to)
the current and preceding sub-sequences of song audio
[X1, . . . , Xk] and the preceding sub-sequences of piano
performance [Y 1, . . . , Y k−1].
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To reduce the sequence length of X and extract better
musical information, we employ a prior audio encoder to
transform X into an intermediate representation Z. Dif-
ferent from those works which use Mel-spectrograms [3]
or audio codecs [36] for Z, we use SheetSage [6], which is
trained for lead sheet transcription, cascaded with an neural
adapter as the prior audio encoder. We consider the output
embeddings of SheetSage more suitable for representing
the input, since they carry information of musical elements
connecting a cover with the original song, such as melody,
chords and vibes. With the prior encoder, the song au-
dio [X1, . . . , XBp ] is transformed into a sequence of latent
embeddings [Z1, . . . , ZBp ] before being passed to the de-
coder, yielding the input sequence [Z1, Y 1 . . . , ZBp , Y Bp ]
of the decoder, as illustrated in Figure 2c.

3.3 Transfer Learning

While the weak-alignment approach eliminates inner tem-
poral distortions for piano performance, there can still be
alignment errors between the piano segments and their cor-
responding song segments. This is because a piano cover is
not guaranteed, in the beat level, to have a strict one-to-one
mapping with the original song.

To abate such alignment errors, we propose a trans-
fer learning-based training strategy, dividing the training
into two steps: pre-training (Figure 2a) and fine-tuning
(Figure 2b). In the pre-training stage, we train the model
with an input sequence S̄ = [Ȳ 1, Y 1, . . . , Ȳ Bp , Y Bp ]
where Ȳ is the original piano audio recording of the sym-
bolic piano tokens Y . The same as the song audio, the orig-
inal recording Ȳ is encoded to an inter-representation Z̄ by
the prior encoder. We expect the model to learn to generate
piano performances Y with high-level musical features ex-
tracted by SheetSage from the piano audio Ȳ , rather than
merely detecting note onsets/offsets like in a piano tran-
scription task. Importantly, there will be no alignment er-
rors between Y and Ȳ , ensuring that the model can firstly
learn the complete concept of piano composition and gen-
eration in the pre-training stage, without being impeded by
cross-domain alignment issues.

In the fine-tuning stage, we train the model with the
mixture of S̄ and S. Following [36–38], we train the model
with the objective of minimizing the cross entropy loss on
the tokens of piano performance Y . Let L1 and L2 stand
for the cross entropy losses for S̄ and S, respectively. The
loss Lp in the pre-training stage and the loss Lf in the fine-
tuning stage can be writeen as:

Lp = L1 ,

Lf = α · L1 + (1− α) · L2 ,
(2)

where α is the weighting factor determining the proportion
of losses contributed from S̄ and S during fine-tuning. We
expect that α helps the model retain the knowledge about
piano performance learned from the pre-training stage.

3.4 Data Representation

For the piano performance sequences Y , we adopt a modi-
fied version of the REMI token representation [12], which

has been shown to work well for modeling pop piano. Our
representation consists of 7 token classes. Spec contains
special tokens such as [bos] (beginning-of-sentence) and
[ss] (song-start) for controlling the model behavior. Bar
indicates the property of each bars. Position, Chord
and Tempo are metric-related tokens for 16th-note off-
sets within bars, chord changes (11 roots × 12 qualities),
and tempo changes (64 levels). Pitch, Duration and
Velocity are note-related tokens for note pitches (A0 to
C8), durations (1 to 32 16th-notes), and note velocities (32
levels). There are in total 428 tokens in the vocabulary.
In our implementation, [Bar_start] and [Bar_end]
always occur at the start and end of each bar in the input
sequence S and S̄.

4. EVALUATION

4.1 Dataset

We follow the instructions provided in the Pop2Piano
source code to rebuild the training dataset, collecting 5,844
pairs of pop songs and their corresponding piano covers
from the Internet. We filter out song pairs with a melody
chroma accuracy (MCA) [39] lower than 0.05 or an audio
length difference exceeding 15%, leaving 5,503 remaining
pairs. In the pre-training stage, all the piano performances
from these remaining pairs are used for training. In the
fine-tuning stage, we remove invalid bars from the piano
performances where the first and last beats of a bar were
mapped to the same beat of the original song by the map-
ping function Ftime. Around 50% of the bars are removed
from the piano performances accordingly. We note that the
large number of such invalid bars implies the alignment al-
gorithm of Pop2Piano [2] may not be robust enough and
future work can be done to study this.

For objective and subjective evaluations, we collect ad-
ditional 95 song-to-piano pairs from the Internet, contain-
ing 19 Chinese Pop (Cpop), 20 Korean Pop (Kpop), 16
Japanese Pop (Jpop), 20 Anime Song (Anime), 20 West-
ern Pop (Western) pairs. All the songs contain vocals. We
share the URLs of these songs at the project page.

4.2 Experiment Setup

We implement PiCoGen2 using GPT-NeoX [40] as the pi-
ano token decoder and SheetSage [6] cascaded with an
adapter network as the song audio encoder. The decoder
consists of 8 layers, each with 8 attention heads. The
adapter is a 4-layer Transformer encoder with 8 attention
heads per layer. Our full model has approximately 39M
learnable parameters, not counting the SheetSage part for
we use it as is with its parameters frozen.

There are 2 ablations compared in the experiment, both
of them sharing the same architecture as our full model,
but one ablation (Ablation 1) is trained on song-to-piano
data without pre-training, and the other ablation (Ablation
2) is trained on piano-only data (i.e., without fine-tuning).
For baselines, besides Pop2Piano, we also include the pi-
ano transcription model by Kong et al. [20] to validate the
effectiveness of the encoder component in our model.
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Model
objective evaluation subjective evaluation (∈ [1, 5])

MCA ↑ GS ↑ H4 ↓ OVL ↑ SI ↑ FL ↑

Pop2Piano [2] 0.42 ± 0.07 0.86 ± 0.09 2.46 ± 0.18 2.71 ± 0.98 2.63 ± 1.01 2.72 ± 1.1
Transcription [20] 0.19 ± 0.06 0.67 ± 0.09 2.78 ± 0.30 1.48 ± 0.74 1.69 ± 0.88 1.45 ± 0.71

Proposed (PiCoGen2) 0.17 ± 0.06 0.84 ± 0.06 2.46 ± 0.22 3.48 ± 0.93 3.55 ± 1.06 3.66 ± 1.02
- Ablation 1 (w/o pre-training) 0.16 ± 0.05 0.87 ± 0.06 2.45 ± 0.23 3.09 ± 1.03 2.96 ± 1.02 3.22 ± 1.09
- Ablation 2 (w/o fine-tuning) 0.15 ± 0.05 0.81 ± 0.06 2.57 ± 0.19 3.09 ± 1.02 3.30 ± 1.07 3.08 ± 1.16

Human 0.16 ± 0.06 0.81 ± 0.06 2.59 ± 0.18 4.30 ± 0.87 4.23 ± 0.95 4.33 ± 0.9

Table 2. The results of objective evaluations and the MOS of the subjective study (↑ / ↓: the higher / lower the better).

We train the models with Adam optimizer, learning
rate 1e−4, batch size 4 and segment length 1,024. The
full model is pre-trained for 100K steps on the piano-only
data, and then fine-tuned for an additional 70K steps on
the song-to-piano paired data. Ablation 1 is trained from
scratch for 100K steps directly on the paired data. Ablation
2 is trained for 50K steps only on the piano-only data, with-
out any exposure to the song-to-piano pairs. During the
fine-tuning stage for the full model, we tune the weight-
ing factor α that controls the balance between the piano-
only loss and song-to-piano loss, and find that the model
achieved the best performance when α is set to 0.25.

For the objective and subjective evaluations, all models
are used to generate piano covers of the 95 testing songs
(cf. Section 4.1). To eliminate the bias caused by the vary-
ing quality of piano recordings, the ground truth human
piano performances are first transcribed into MIDI note se-
quences. These MIDI sequences are then synthesized back
into audio using the same FluidSynth-based MIDI synthe-
sizer [41] employed for the model outputs.

4.3 Objective Metrics

We adopt the following existing metrics to assess the qual-
ity of the generated piano covers from different aspects,
including similarity to the original song and coherence of
the piano performance itself.

• Melody Chroma Accuracy (MCA) [39] evaluates the
similarity between two monophonic melody sequences.
The melody line plays a crucial role in deciding whether
a song cover resembles the original song. Following
Pop2Piano [2], we compute the MCA between the vo-
cals extracted by Spleeter [42] from the test song audio,
and the top melodic line extracted from the generated pi-
ano cover MIDI using the skyline algorithm [43].

• Pitch Class histogram Entropy (H4) [37] evaluates the
harmonic diversity of a musical segment by computing
the entropy of the distribution of note pitch class counts.
A lower entropy value indicates lower harmonic diver-
sity, but implies a more stable and consistent tonality
across the segment. The subscript (“4”) indicates the
number of bars over which the entropy is calculated.

• Next-Bar Grooving Pattern Similarity (GS) is mod-
ified from the grooving pattern similarity proposed in
[37]. It originally measures the global rhythmic stabil-
ity across an entire song. Instead of calculating over all

pairs in the target, we adapt the metric to focus on local
rhythmic stability within a song, evaluating the rhythmic
coherence between each bar and its succeeding bar.

4.4 User Study

For subjective evaluation, we conduct an online listening
test involving 52 volunteers: 5 professional music produc-
ers, 13 amateurs, and 34 pro-amateurs with more than 3-
year music training. The volunteers are randomly assigned
to distinct test sets, with each set containing 3 songs ran-
domly selected from different genres, and for each song,
there are 6 piano performances presented anonymously in
random order. These piano performances include: a human
piano performance, outputs of our full model and the two
ablated versions, and outputs of the Pop2Piano and piano
transcription model baselines. All of them are truncated
to 40-second audio clips from the beginning. Subjects are
asked to listen to these audio clips and provide ratings on
a 5-point Likert scale for the following aspects:

• Similarity (SI): The degree of similarity between the pi-
ano performances and the original song.

• Music Fluency (FL): The degree of perceived fluency in
the music, representing the smoothness and coherence of
the piano performances.

• Overall (OVL): How much do the participants like the
piano cover in the personal overall listening experience?

4.5 Results

Table 2 displays the results of the objective evaluation met-
rics and mean opinion scores (MOS) from the user study.
In the objective evaluation, Pop2Piano shows a leading
MCA score compared to other models and the human pi-
ano performances, which indicates it excels at matching
the original song’s melodic contour. Except for the tran-
scription baseline model, there is no significant difference
in GS and H4 across models, suggesting comparable local
rhythmic coherence and harmonic variety.

Next, we pay attention to the result of user study. Much
to our delight, the full model leads with the best scores
across all aspects in the user study with statistical signifi-
cance (p < 0.05), but there remains a gap compared to the
human reference performances. Ablation 1 achieves higher
scores than Pop2Piano in all aspects of the user study, both
of which are trained on the paired data. This suggests that
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Figure 3. The MOS in overall scores (OVL) of the user study in different genres.

utilizing the weakly-aligned paired data, which avoids dis-
torting the original piano performances, helps increase the
overall listening experience quality of the model outputs
for human raters. Moreover, both Ablation 2 and the tran-
scription baseline are trained on piano-only data, but Ab-
lation 2 performs significantly better than the baseline in
both objective and subjective evaluations. This can be seen
as evidence that SheetSage, as the encoder, extracts more
relevant features beneficial for the piano cover generation
task compared to the baseline transcription model.

5. DISCUSSION

In the experiment, we note that while Pop2Piano exhibits
a significantly higher MCA score than the other mod-
els, even higher than the human performances, it fails to
achieve comparably high SI ratings in the user study. We
suggest this conflict arises from the assumption in MCA
that two melodies must temporally correspond to each
other on a fixed “time grid.” That is, the correspond-
ing chroma features must be located at precisely the same
time instants. For human listening experiences, two sim-
ilar melodies only need to be coordinated on beats rather
than a rigid time grid. Specifically, human perception of
melodic similarity allows for the tempo or duration to be
slightly changed in the same ratio, as long as their notes
are located on the same underlying musical beat positions.
As mentioned in Sections 1 & 2, different from transcrip-
tion or arrangement, a cover song is not usually tempo-
rally aligned to the original song, i.e., the musical elements
such as tempo, melody, rhythmic changed in the composi-
tion process of the piano cover. This temporal flexibility
suggests that MCA as an objective measure for the cover
generation task may not be adequate and calls for future
endeavor to develop better alternatives.

We also find that the two ablated models have the same
OVL scores in the subjective evaluation, even though Ab-
lation 2 has never seen any pop song data during train-
ing. To investigate the reason behind this, we first exam-
ine the piano covers generated by Ablation 2. Figure 4
shows a snippet of a cover generated by this model. We
note that it tends to generate repeated short notes, resulting
in an unnatural-sounding performance. However, Figure 3
demonstrates the OVL scores across different music gen-
res. Interestingly, we see that Ablation 2 outperforms Ab-
lation 1 for the Cpop, Jpop, and Anime genres. Addition-
ally, as shown in Table 2, the former ablation also achieves
higher SI and lower FL scores than the latter. From this

Figure 4. The pianoroll representation of a snippet from an
example generated by the models. We observe that Abla-
tion 2, which trained on piano-only data, tends to generate
repeated short notes.

observation, we suggest that (i) for short audio clips (less
than 40 seconds), human raters may place more emphasis
on initial melodic accuracy when judging the overall per-
ceived quality, even if Ablation 1 tends to generate more
coherent and natural-sounding results; (ii) Ablation 1 does
not effectively learn to precisely capture the melodic con-
tour from the reference song condition due to the inher-
ent alignment errors present in the weakly-aligned song-
to-piano paired data it was trained on.

6. CONCLUSION

In this paper, we have presented PiCoGen2, which applies
the concept of transfer learning to the piano cover gener-
ation task. We propose a training strategy that involves
two stages: pre-training on piano-only data to learn funda-
mental piano performance skills, followed by fine-tuning
on weakly-aligned song-to-piano paired examples for the
cross-domain translation. A comprehensive set of exper-
iments validate the effectiveness of the proposed transfer
learning approach and the use of weakly-aligned data.

As we still require weakly-aligned data, future work can
be done to tackle cover generation without relying on data
alignment at all. Moreover, it is useful to have a systematic
analysis to evaluate the quality of piano covers and identify
the key factors influencing the result, e.g., by studying the
performance difference between PiCoGen [31] and PiCo-
Gen2. It is also interesting to generate other covers, such as
orchestral covers, and to develop better objective metrics.
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ABSTRACT

Mixing style transfer automates the generation of a multi-

track mix for a given set of tracks by inferring production

attributes from a reference song. However, existing sys-

tems for mixing style transfer are limited in that they often

operate only on a fixed number of tracks, introduce arti-

facts, and produce mixes in an end-to-end fashion, with-

out grounding in traditional audio effects, prohibiting in-

terpretability and controllability. To overcome these chal-

lenges, we introduce Diff-MST, a framework comprising a

differentiable mixing console, a transformer controller, and

an audio production style loss function. By inputting raw

tracks and a reference song, our model estimates control

parameters for audio effects within a differentiable mix-

ing console, producing high-quality mixes and enabling

post-hoc adjustments. Moreover, our architecture sup-

ports an arbitrary number of input tracks without source la-

belling, enabling real-world applications. We evaluate our

model’s performance against robust baselines and show-

case the effectiveness of our approach, architectural de-

sign, tailored audio production style loss, and innovative

training methodology for the given task. We provide code

and listening examples online1.

1. INTRODUCTION

Music mixing involves technical and creative decisions

that shape the emotive and sonic identity of a song [1].

The process involves creating a cohesive mix of the given

tracks using audio effects to achieve balance, panorama,

and aesthetic value [2]. Given the complexity of the task,

mastering the task of mixing often requires many years of

practice. To address this, several solutions have been pro-

posed to provide assistance or automation [3,4]. Automatic

mixing systems have been designed using knowledge en-

gineering [5, 6], machine learning, and more recently deep

learning methods [7–11]. Automatic mixing systems can

†These authors contributed equally to the work.
1https://sai-soum.github.io/projects/diffmst/

© S. Vanka, C. Steinmetz, J.-B. Rolland, J. Reiss, and G.

Fazekas. Licensed under a Creative Commons Attribution 4.0 Interna-

tional License (CC BY 4.0). Attribution: S. Vanka, C. Steinmetz, J.-

B. Rolland, J. Reiss, and G. Fazekas, “Diff-MST: Differentiable Mixing

Style Transfer”, in Proc. of the 25th Int. Society for Music Information

Retrieval Conf., San Francisco, United States, 2024.
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Figure 1. Diff-MST, a differentiable mixing style trans-

fer framework featuring a differentiable multitrack mixing

console, a transformer-based controller that estimates con-

trol parameters for this mixing console, and an audio pro-

duction style loss function that measures the similarity be-

tween the estimated mix and reference mixes.

be further subdivided into direct transformation systems

and parameter estimation systems, as shown in Figure 2.

Direct transformation systems operate on tracks and pre-

dict a mix directly, in an end-to-end fashion, with the loss

calculated between the ground truth mix and the predicted

mix. On the other hand, parameter estimation systems take

input tracks and predict control parameters for a dedicated

mixing console. In such systems, the loss can either be

calculated on the predicted control parameters (parame-

ter loss) based on the availability of ground truth, or on

the predicted audio against the ground truth mix (audio

loss). Parameter loss, calculated on the parameters, may

not be optimal for multiparameter signal processing blocks

since various combinations of parameters could potentially

produce similar outcomes. [7, 11] utilizes a deep learning-

based direct transformation system for mixing, while [8]

employs a parameter estimation-based deep learning ap-

proach. However, many of these systems are constrained
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to a small number of input tracks or struggle to generalize

effectively to real-world mixing scenarios. Furthermore,

most of these approaches generate a mix without account-

ing for the desired sound and emotion. Due to the sub-

jective nature of the task, an end-to-end approach without

user control is less desirable in professional practice [12].

1.1 Mixing Style Transfer

In professional practice, the audio engineer often uses ref-

erence songs and guidelines provided by the client to make

mixing decisions [13]. This encourages the development

of automatic mixing systems that are aware of the inten-

tion of the mixing engineer. In our context, mixing style

transfer refers to mixing in the style of given reference

songs [14]. This pertains to capturing the global sound,

dynamics and spatialisation of the reference song. Re-

cently, deep learning systems have been proposed for au-

dio production style transfer. While some approaches have

considered estimating the control parameters for audio ef-

fects [15], they are so far limited to controlling only a sin-

gle or small set of effects with a singular input. Whereas

[16] have implemented an end-to-end style transfer sys-

tem between two mixed songs which limits controllability

and full raw tracks mixing. In this work, we introduce a

novel deep learning-based approach to mixing multitrack

audio material using a reference song, which utilises a dif-

ferentiable mixing console to predict parameter values for

gain, pan, 4-band equalization, compressor, and a master

bus. Our proposed system is differentiable, interpretable

and controllable, and can learn the mixing style from the

given reference song. The contributions of this work can

be summarised as follows:

1. A framework for mixing style transfer that enables

control of audio effects mapping the production style

from a reference onto a set of input tracks.

2. A differentiable multitrack mixing console consist-

ing of gain, parametric equalisation, dynamic range

compression, stereo panning, and master bus pro-

cessing using dasp-pytorch2, which enables

end-to-end training.

3. Demonstration of the benefits of our system, includ-

ing generalisation to an arbitrary number of input

tracks, no requirement for labelling of inputs or en-

forcement of specific taxonomies, high-fidelity pro-

cessing without artifacts, and greater efficiency.

2. METHOD

2.1 Problem Formulation

We can formulate the mixing style transfer task as fol-

lows. Let T be a matrix of N mono input raw tracks

{t1, t2, t3, . . . , tN} and Mr be the matrix of stereo refer-

ence mix containing two channels. A shared weight en-

coder fθr and fθt are employed to extract information from

2https://github.com/csteinmetz1/dasp-pytorch/

the reference and input tracks respectively. This informa-

tion is then aggregated and fed into a transformer controller

network comprising a transformer encoder and a multi-

layer perceptron (MLP) gϕ. The primary task of this net-

work is to estimate the parameter matrix P , which consists

of N parameter vectors p, each responsible for configuring

the chain of audio effects for a respective track in T . Sub-

sequently, the differentiable mixing console h(T, P ) pro-

cesses the input tracks T using the parameters P to gener-

ate a predicted mix Mp that mirrors the style of the refer-

ence mix Mr.

P = gϕ(fθt(T ), fθr(Mr)) (1)

Mp = h(T, P ) (2)

2.2 Differentiable Mixing Style Transfer System

We propose a differentiable mixing style transfer system

(Diff-MST) that takes raw tracks and a reference mix as

input and predicts mixing console parameters and a mix

as output. As shown in Figure 1, our system employs

two encoders, one to capture a representation of the in-

put tracks and another to capture elements of the mixing

style from the reference. A transformer-based controller

network analyses representations from both encoders to

predict the differentiable mixing console (DMC) param-

eters. The DMC generates a mix for the input tracks using

the predicted parameters in the style of the given reference

song. Given that our system oversees the operations of the

DMC rather than directly predicting the mixed audio, we

circumvent potential artefacts that may arise from neural

audio generation techniques [17, 18]. This also creates an

opportunity for further fine-tuning and control by the user.

2.3 Differentiable Mixing Console (DMC)

The process of multitrack mixing involves applying a chain

of audio effects, also known as a channel strip, on each

channel of a mixing console. The audio engineer may use

these devices to reduce masking, ensure a balance between

the sources, and address noise or bleed. Incorporating this

prior knowledge of signal processing in the design of our

mixing system, we propose an interpretable and control-

lable differentiable mixing console (DMC). Our console

applies a chain of audio effects comprising gain, paramet-

ric equaliser (EQ), dynamic range compressor (DRC), and

panning to each of the tracks to produce wet tracks. The

sum of wet tracks is then sent to a master bus on which

we insert stereo EQ and a DRC. This produces a mastered

mix of the given tracks. We incorporate a master bus in

our console as it is usual to use a mastered song as a ref-

erence in workflows. Therefore, having a master bus in

the mixing console chain allows for easier optimisation of

the system. To enable gradient descent and training in a

deep learning framework, we require the mixing console

to be differentiable. To achieve this, we use differentiable

effects from the dasp-pytorch2. The pipeline of the

DMC is presented in Figure 3.
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Figure 2. Formulations for deep learning-based automatic mixing systems [4]. (a) Direct transformation (b) Parameter

estimation on parameter loss (c) Parameter estimation on audio loss. Here, xi for i ∈ [1, N ] are the N input tracks, fθ is

the transformation, h is the dedicated mixing console, Y and Ŷ are the ground truth and predicted mix, P and P̂ are the

ground truth and predicted control parameters and La and Lp are the audio and parameter loss respectively.

Gain

Pan

Comp

Summing block

Gain

EQ

Pan

Comp

Gain

EQ

Pan

Comp

Track 1 Track 2 Track N

EQ

EQ

Comp

EQ

Comp

Figure 3. Differentiable Mixing console

2.4 Spectrogram Encoder

The encoder consists of a convolutional network based on

the magnitude spectrum. It computes spectrograms by em-

ploying a short-time Fourier transform with a Hann win-

dow of size N = 2048 and a hop size of H = 512. The gen-

erated magnitude spectrogram is then processed through

the convolutional layers. The resultant convolutional en-

codings are subsequently fed into a linear layer, producing

a final embedding of size 512. The model includes separate

shared-weight encoders: fθr for the reference mix and fθt
for the input tracks. Each channel of stereo audio is treated

as an individual track. Consequently, the stereo mix and

any other stereo input tracks are loaded as separate tracks.

Embeddings are computed by passing T and Mr through

the encoder.

2.5 Transformer Controller

The controller features a transformer encoder and a shared-

weight MLP. The transformer encoder generates style-

aware embeddings using self-attention across the output of

the spectrogram encoderfθr and fθt and a master bus em-

bedding which is learned during training. The MLP pre-

dicts the control parameters corresponding to the channel

strip for each track, and the master bus embeddings are

used to predict the master bus control parameters. A shared

weight MLP is used to predict channel strip parameters for

each channel. We generate the predicted mix Mp by pass-

ing the control parameters through the DMC along with the

tracks. This architecture enables our system to be invariant

to the number of input tracks as shown in Figure 1.

2.6 Audio Production Style Loss

The style of a mix can be broadly captured using features

that describe its dynamics, spatialisation and spectral

attributes [13]. We propose two different losses to train

and optimise our models.

Audio Feature (AF) loss: This loss is composed of tra-

ditional Music Information Retrieval (MIR) audio feature

transforms [19]. The T transforms include the root mean

square (RMS) and crest factor (CF), stereo width (SW) and

stereo imbalance (SI) and bark spectrum (BS) correspond-

ing to the dynamics, spatialisation and spectral attributes

respectively. We optimise our system by calculating the

weighted average of the mean squared error on the audio

features that minimises the distance between Mp and Mr.

We compute the audio feature transforms T along with the

weights w as follows:

T1(x) = RMS(x) =

√

√

√

√

1

N

N
∑

i=1

x2

i ;w1 = 0.1 (3)

T2(x) = CF(x) = 20 log
10

(

max(|xi|)

RMS(x)

)

;w2 = 0.001

(4)

T3(x) = BS(x) = log(FB · |STFT(x)|+ ϵ) ;w3 = 0.1
(5)

T4(x) = SW(x) =
1

N

∑N

i=1
(xLi − xRi)

2

1

N

∑N

i=1
(xLi + xRi)2

;w4 = 1.0

(6)

T5(x) = SI(x) =
1

N

∑N

i=1
x2

Ri −
1

N

∑N

i=1
x2

Li

1

N

∑N

i=1
x2

Ri +
1

N

∑N

i=1
x2

Li

;w5 = 1.0

(7)
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where N represents the sequence length, x is the input ten-

sor, FB is the filterbank matrix, STFT(x) represents the

short-time Fourier transform of x, and ϵ is a small con-

stant of value 10−8 added for numerical stability. xLi and

xRi represent the input tensor corresponding to the left and

right channels, respectively. The net loss is computed as

follows:

Loss(Mp,Mr) =
1

2

2
∑

i=1

5
∑

j=1

wj ·MSE
(

Tj(Mpi
),Tj(Mri

)

(8)

where wj is the weight associated with jth transform Tj

and MSE corresponds to mean squared error. The weights

for the transforms were determined through empirical test-

ing to balance the scale of various losses.

MRSTFT loss: The multi-resolution short-time Fourier

transform loss [20, 21] is the sum of L1 distance between

STFT of ground truth and estimated waveforms measured

in both log and linear domains at multiple resolutions,

with window sizes W ∈ [512, 2048, 8192] and hop sizes

H = W/2. This is a full-reference metric meaning that

the two input signals must contain the same content.

3. EXPERIMENT DESIGN

The task requires a dataset with multitrack audio, style

reference, and the ground truth mix of the multitrack in the

style of the reference for training. However, due to the lack

of suitable datasets, we deploy a self-supervised training

strategy to enable learning of the control of audio effects

without labelled or paired training data. We achieve this

by training our model under two different regimes which

mainly vary in data generation and loss function.

Method 1: We extend the data generation technique used

in [15] to a multitrack scenario as shown in Figure 4.

We first randomly sample a t = 10 s segment from input

tracks and generate a random mix of these input tracks

by using random DMC parameters. We then split the

segment of the randomly mixed audio and the input tracks

into two halves, namely, MrA and MrB and TA and TB

of t/2 s each, respectively. The model is input with TB as

input tracks and MrA as the reference song. The predicted

mix Mp is compared against MrB as the ground truth for

backpropagation and updating of weights. Using different

sections of the same song for input tracks and reference

song encourages the model to focus on the mixing style

while being content-invariant. This method allows the use

of MRSTFT loss for optimisation as we have the ground

truth available. The predicted mix is loudness normalised

to -16.0 dBFS before computing the loss.

Method 2: We sample a random number of input tracks

between 4-16 for song A from a multitrack dataset and use

a pre-mixed real-world mix of song B from a dataset con-

sisting of full songs as the reference. We train the model

using AF loss mentioned in Section 2.6 computed between

Mp and Mr. This method also allows us to train the model

DMC (Mix Generation)

0 1 2 3

Tracks

MP

A B

A

MR

Diff-MST

Tracks
(B)

0

1
2
3

B

Loss

Figure 4. First training strategy from Section 3.

without the availability of a ground truth. Unlike Method

1, this approach exposes the system to training examples

more similar to real-world scenarios where the input tracks

and the reference song come from a different song. How-

ever, due to random sampling, some input track and refer-

ence song combinations may not be realistic.

3.1 Datasets

Multitrack: For both training methods, we utilise mul-

titrack from MedleyDB [22, 23] and Cambridge.mt3

which contains a total of 196 and 535 songs respec-

tively, sampled at fs = 44100 Hz. For both datasets,

we generate a train/test/validation split of 4:1:1. During

training, songs are picked at random from the training

split of both datasets. Thereafter, we randomly sample

a section of the song as input tracks. We find a random

offset for sampling multitrack by finding a section of

the mix x[i] that has mean energy above the threshold,
1

N

∑N

i=1
|x[i]|2 ≥ 0.001. During training, each channel

corresponding to a stereo raw track is treated as a separate

mono track. We check the mean energy of each track to

avoid loading silent tracks. All input tracks are loudness

normalised to -48.0 dBFS.

Reference Songs: For Method 1 we generate a random

mix using random parameters and input tracks as men-

tioned in Section 3 and loudness normalise the random

mix to -16 dBFS. For Method 2, we use real-world songs

from MTG-Jamendo which contains more than 55k songs

in MP3 format [24]. We pick a random segment y[i] of

a random song from the dataset as a reference and check

for mean energy above the threshold, 1

N

∑N

i=1
|xy[i]|2 ≥

0.001. We loudness normalise the reference to -16 dbFS

and load stereo information on separate channels.

3.2 Training Details

Our model contains 190 M trainable parameters, 76.5M

corresponding to the track and mix encoder, and 37.9 M

3https://cambridge-mt.com/
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for the transformer controller. We train five variations of

our model differing in the number of tracks, methodology

and loss function used. To remedy the bottleneck of

reading multitrack audio data from disk, we load data into

RAM every epoch from both the training and validation

sets respectively. The number of training steps per epoch

is comprised of passing over these examples 20 times

for training and 4 times for validation, sampling random

examples at each step. This provides a tradeoff between

training speed and data diversity. We train all our models

with a batch size of 2 and a learning rate of 10−5 with the

Adam optimiser. We accumulate gradients over 4 batches

and use pytorch for training.

Diff-MST-MRSTFT: We generate data using the method

1 described in Section 3 and calculate MRSTFT loss

for weight update and backpropogation. We train two

variations of the model with a maximum of 8 tracks and

16 tracks as input, each for 1.16 M steps.

Diff-MST-MRSTFT+AF: We fine-tune both versions of

the pre-trained Diff-MST-MRSTFT using the synthetically

generated data of method 1 in Section 3 with AF loss

described in Section 2.6 for 20k steps.

Diff-MST-AF: We follow the training strategy mentioned

in method 2 of Section 3 and use real-world songs as the

reference. We train this model for 1.16 M steps using the

AF loss described in Section 2.6. We train with a varying

number of tracks with an upper limit of 16.

3.3 Baselines

We compare the performance of our model against three

baselines: an equal loudness mix (lowest anchor), the

mix generated using the pre-trained mixing style transfer

(MST) model by [16] (state-of-the-art), and two human

mixes. We picked three songs from the Cambridge online

multitrack repository belonging to the genres of electronic,

pop, and metal for our main evaluation. Each of the songs

contains between 12 and 22 input tracks. We selected

references from popular songs.

Equal Loudness: We loudness normalise the tracks

to -48.0 dBFS and take the mean among the tracks to

generate the mix which is then normalised. This generates

a loudness-normalised sum of input tracks. We consider

this system to be the lowest anchor as it does not consider

any style information or mixing transformations.

MST [16]: The method uses a pre-trained source separa-

tion model to generate stems from input and reference mix

and perform stem-to-stem style transfer using a contrastive

learning-based pre-trained audio effect encoder. The

stems are mixed using a TCN-based model conditioned on

style embeddings. Since the model performs a mix-to-mix

transformation, we make use of the equal loudness mix of

input tracks as the input to be transformed by the model.

This allows us to extend the system to perform mixing

style transfer for any number of input tracks. This puts

the system at a disadvantage as it is trained to work for

mix-to-mix scenarios where good-quality mixes are used

as input, leading to better-quality extracted stems.

Human Mixes: We asked two audio engineers with pro-

fessional practice to mix the three songs using the corre-

sponding references. Each of them mixed all three songs

until the end of the first chorus.

4. OBJECTIVE EVALUATION

We evaluate the performance of our model against three

baselines listed in Section 3.3. For the first evaluation,

we compare the mixes generated by all five of our sys-

tems described in Section 3.2 and the baselines for three

songs belonging to the genres of pop, electronic and metal.

We manually picked the songs for the input tracks and the

references for each of these cases. A 10-second section

ranging between the middle of the first verse to the middle

of the first chorus was used for evaluation in Table 1. We

loudness normalise the reference mix to -16 dBFS and the

predicted mix to -22 dBFS before predicting the metrics.

We report the average AF loss and individual weighted au-

dio feature transforms from Section 2.6 for all three songs.

Our Diff-MST system trained on real-world songs as refer-

ence using AF loss performs the best, closely followed by

the MST [16], human engineer mix, and the mix from our

Diff-MST-MRSTFT+AF-16 system.

For the second evaluation, we compute average metrics

across 100 randomly sampled examples with multitrack

taken from the unseen set of Cambridge multitrack and ref-

erence songs from MUSEDB18 [25]. We compare the per-

formance of our systems and the baselines MST [16] and

the equal loudness system as shown in Table 2. We report

individual weighted audio features from the AF loss along

with average loss and Frèchet Audio distance (FAD) [26].

The FAD metric is employed to gauge the efficacy of mu-

sic enhancement approaches or models by comparing the

statistical properties of embeddings generated by their out-

put to those of embeddings generated from a substantial

collection of clean music. In this context, we analyze the

distributions of real-world songs against the mixes gener-

ated by various systems using the VGGish model. Again,

Diff-MST-AF-16 outperforms other approaches at captur-

ing the dynamics, spatialisation and spectral attributes of

the reference songs.

5. DISCUSSION

Overall, the results indicate the effectiveness of our ap-

proach, architecture choice, custom audio production style

loss, and novel training regime for the task. The reported

metrics for both evaluations show improved performance

when trained on a larger number of tracks. Furthermore,

we also see that the systems trained or fine-tuned using

AF loss generally perform better than those trained with

MRSTFT loss, specifically in improving the spatialisation

and dynamics of the mixes, thus showing the efficacy of
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Method RMS ↓ CF ↓ SW ↓ SI ↓ BS ↓ AF Loss ↓

Equal Loudness 3.11 0.51 3.16 0.21 33.3 33.389
MST [16] 3.15 0.45 4.64 0.13 0.09 0.185

Diff-MST

MRSTFT-8 3.63 1.44 1.97 4.29 0.17 0.379
MRSTFT-16 3.40 0.98 1.91 1.99 0.19 0.328
MRSTFT+AF-8 3.12 0.86 1.29 0.76 0.13 0.237
MRSTFT+AF-16 3.15 0.43 0.89 2.20 0.11 0.186
AF-16 2.39 0.07 1.60 0.97 0.13 0.168

Human 1 3.02 0.26 2.05 0.46 0.17 0.218
Human 2 3.21 0.14 3.63 2.29 0.11 0.180

Table 1. Average of metrics computed across the same

section of three songs from three different genres. RMS

is reported in e-04, CF in e-01, SW in e-02, and SI in e-

02. We have provided audio examples as supplementary

material.

Method RMS ↓ CF ↓ SW ↓ SI ↓ BS ↓ AF loss ↓ FAD ↓

Equal Loudness 2.31e-04 2.11 6.03 1.41 32.7 6.55e+00 17.6
MST [16] 4.07e-04 1.72 5.84 0.89 0.31 7.85e-02 17.9

Diff-MST
MRSTFT-8 3.08e+06 3.91 4.55 3.38 7.06 6.15e+05 51.3
MRSTFT-16 2.23e+03 4.07 5.00 1.97 1.81 4.47e+02 65.9
MRSTFT+AF-8 2.00e+05 1.79 4.58 2.86 6.89 4.00e+04 48.3
MRSTFT+AF-16 2.46e+00 1.14 4.29 3.44 0.92 6.92e-01 51.1
AF-16 4.24e-04 0.67 4.78 0.22 0.11 3.26e-02 15.1

Table 2. Average of metrics using unseen tracks from

Cambridge dataset and mixes from MUSDB18 [25]. CF

in e-02, SW in e-02, SI in e-02.

our hand-crafted audio feature-based loss function.

The significant difference in the Bark spectrum values be-

tween the equal loudness and our system’s mixes suggests

that mixes generated using our system have undergone

significant spectral processing, resulting in an increased

spectral similarity between the reference song and the pre-

dicted mix. The metrics indicate inferior performance for

the Diff-MST-MRSTFT-8/16 model compared to all our

proposed models. This may be attributed to the training

data, which is generated using random mixing console pa-

rameters, often resulting in mixes that sound unrealistic.

However, fine-tuning with AF loss during the last steps

notably enhances performance. This improvement could

be attributed to AF loss compelling the model to enhance

dynamics and spatialization, as evidenced by the reported

metrics. We observe a notable enhancement in perfor-

mance through training on real-world songs, underscoring

the significance of high-quality real-world data.

Although the system demonstrates promising outcomes, it

is not without its limitations. While we note higher metric

values for certain features on the human mixes, this can be

explained by the fact that human engineers often strive to

capture the overall essence of the reference song. However,

they may also incorporate creative elements leading to spa-

tialization and dynamics that diverge significantly from the

reference. Our metrics serve to quantify the similarity be-

tween the reference song and the predicted mix, which is

suitable for the task at hand but may fall short in assessing

the creative or unconventional decisions made by human

engineers during the mixing process. Additionally, while

FAD indicates the predicted audio quality, it might not cap-

ture the intricate nuances involved in the mixing process,

such as frequency masking and achieving balance and spa-

tialization.

Moreover, we noticed a decline in the system’s mixing ca-

pabilities as the number of input tracks increased beyond

what it was trained on. Additionally, our mixing console

lacks a crucial reverb module essential for comprehensive

mixing tasks. Determining the optimal method for pro-

cessing the entire song poses a challenge, as inferring over

the entire song length may result in overly sparse embed-

dings. Our current system also falls short in modelling

mixing context in all possible senses as discussed in [27].

However, we address this challenge by incorporating a ref-

erence input, typically selected by the mixing engineer or

client. The reference song serves as a proxy for some of

the contextual information that engineers typically rely on

when making mixing decisions. Lastly, while real-world

mixing often entails dynamic adjustments to effect param-

eters over the course of a song, our system is presently

constrained to static mixing configurations.

6. CONCLUSION

In this work, we proposed a framework for mixing style

transfer for multitrack music using a differentiable mixing

console. Our system is rooted in strong inductive bias, tak-

ing inspiration from real-world mixing consoles and chan-

nel strips and predicts control parameters for these sig-

nal processing blocks allowing interpretability and con-

trollability. Our system supports inputting any number

of raw tracks, without source labelling. Furthermore, we

circumvent possibilities for audio degradation and arti-

facts with our design choice for a parameter estimation-

based system. Objective evaluations demonstrate that our

Diff-MST-MRSTFT+AF-16 system surpasses all baseline

methods. The reported metrics give us an insight into the

impact of architectural and training design choices. We

show that training on a larger number of input tracks im-

proves the performance substantially while running infer-

ence on real-world examples that generally contain a larger

number of input tracks. We also demonstrate the benefits

of training on real-world quality audio examples.

While our research has produced promising results based

on objective metrics, it is important to acknowledge our

evaluation’s constraints, as we have not conducted subjec-

tive assessments via listening tests. While objective met-

rics offer valuable insights into the model’s performance,

integrating subjective evaluations would provide a more

comprehensive understanding of its efficacy in practical

applications. Future work includes conducting an exten-

sive subjective evaluation alongside assessing the usability

of a prototype of the system that is integrated into the real-

world workflow in the digital audio workstation (DAW).

Further, work towards developing a robust understanding

and objective metrics for mix similarity and mixing style

is imperative for enhancing these systems.
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ronments, our system can provide technical assistance for
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democratisation of music production. The system can be
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ABSTRACT

Despite the success of contrastive learning in Music In-
formation Retrieval, the inherent ambiguity of contrastive
self-supervision presents a challenge. Relying solely on
augmentation chains and self-supervised positive sam-
pling strategies can lead to a pretraining objective that
does not capture key musical information for downstream
tasks. We introduce semi-supervised contrastive learn-
ing (SemiSupCon), a simple method for leveraging mu-
sically informed labeled data (supervision signals) in the
contrastive learning of musical representations. Our ap-
proach introduces musically relevant supervision signals
into self-supervised contrastive learning by combining su-
pervised and self-supervised contrastive objectives in a
simpler framework than previous approaches. This frame-
work improves downstream performance and robustness to
audio corruptions on a range of downstream MIR tasks
with moderate amounts of labeled data. Our approach
enables shaping the learned similarity metric through the
choice of labeled data that (1) infuses the representations
with musical domain knowledge and (2) improves out-
of-domain performance with minimal general downstream
performance loss. We show strong transfer learning perfor-
mance on musically related yet not trivially similar tasks
- such as pitch and key estimation. Additionally, our
approach shows performance improvement on automatic
tagging over self-supervised approaches with only 5% of
available labels included in pretraining.

1. INTRODUCTION

Self-supervised learning (SSL) has emerged as a pow-
erful paradigm for learning structured representations of
data without the need for costly and time-consuming la-
beling. SSL approaches have achieved competitive per-
formance on downstream tasks with minimal labeled data
in many domains [1–8]. In the field of Music Informa-
tion Retrieval (MIR), the complexity of labeling for many

© J. Guinot, E. Quinton, G. Fazekas. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-

tribution: J. Guinot, E. Quinton, G. Fazekas, “Semi-supervised Con-
trastive Learning of Musical Representations”, in Proc. of the 25th Int.

Society for Music Information Retrieval Conf., San Francisco, United
States, 2024.

tasks - due to the high technicality and subjectivity - un-
derscores the importance of such self-supervised methods
[5,8–14]. Instance-discriminative SSL specifically, such as
contrastive learning, has proven to be effective in learning
meaningful representations for a multitude of downstream
tasks [8, 9, 15]. However, major design choices such as
positive mining strategies and augmentations are crucial to
downstream performance [8, 16–19], and selecting a strat-
egy for a given task remains a challenge, prompting the
reintroduction of supervision within the SSL framework.
In MIR, the key notion of “similarity” in contrastive learn-
ing can derive from a variety of musical attributes. Guiding
the model towards a musically informed similarity metric
is an objective that may be achieved by leveraging super-
vised labeled data, i.e. supervision signals.

In this work, we propose a novel semi-supervised con-
trastive learning method, SemiSupCon. Our method lever-
ages both unlabeled and labeled data for contrastive learn-
ing, an extension of Contrastive Learning of Musical Rep-
resentations (CLMR) in the music domain [8] and Sup-
Con [20] in Computer Vision. Our approach differs from
previous attempts at combining self-supervised contrastive
learning with an auxiliary supervision signal in that it is
the first to our knowledge to implement a fully-contrastive
semi-supervised learning pipeline. The simple machinery
of this method allows for leveraging new supervision sig-
nals beyond labels within the contrastive objective.

Briefly, the contributions of this work are the follow-
ing: (1) We propose an architecturally simple extension of
self-supervised and supervised contrastive learning to the
semi-supervised case with the ability to make use of a va-
riety of supervision signals. (2) We show the ability of
our method to shape the representations according to the
support supervision signal used for the learning task with
minimal performance loss on other tasks. (3) We propose
a representation learning framework with low-data regime
potential and higher robustness to data corruption. Our im-
plementation and experiments are made publicly available
at https://github.com/Pliploop/SemiSupCon

2. RELATED WORK

Self-supervised learning aims to learn representations that
capture the semantic structure of data without labels in or-
der to utilize these representations on downstream tasks.
Among self-supervised learning approaches, Contrastive
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Learning teaches a model to identify augmented samples
originating from the same data point amongst distractor
negative samples [1, 8]. Beyond its success in neighbor-
ing fields, MIR and audio representation learning have
largely benefited from Contrastive Learning approaches
[2, 8, 9, 21–23]. From the implementation of CLMR, sev-
eral works have expanded on contrastive learning for mu-
sic, with competitive results on many downstream tasks
and in multiple modalities [9, 10, 13, 24, 25]. One of the
key challenges of contrastive learning is establishing an ef-
fective positive mining strategy to select positive and neg-
ative samples [16–18]. Previous studies show that both
the positive mining strategy and the augmentation chain
are crucial toward the performance on a given downstream
task [16–19] - an inappropriate sampling strategy can lead
to treating similar samples as negatives, to the detriment
of downstream performance [26–28]. In MIR specifi-
cally, even the temporal proximity of two positive seg-
ments within an audio clip is influential on downstream
performance depending on the task, as shown in [18]. Pre-
vious works have attempted to design domain-appropriate
strategies for music and audio contrastive learning, includ-
ing auxiliary similarity metrics [24, 29–31], weak supervi-
sion [15, 32–34], as well as music-specific preprocessing
and augmentations [8, 10, 25].

Self-supervision is inherently limited by the ability of
the positive mining strategy to select semantically rele-
vant positives. Some approaches have attempted to rein-
troduce supervision signals for positive mining within
the contrastive objective to reduce noise induced by self-
supervised pseudolabels. SupCon [20] introduces super-
vised contrastive learning, which uses class labels to mine
positives. Other approaches have extended contrastive
learning to the semi-supervised regime by leveraging both
labeled and unlabeled data. However, these approaches of-
ten use complex machinery, such as auxiliary classifica-
tion modules or multiple losses [29, 35–37], making them
inflexible and difficult to balance with regard to the super-
vision signal. Recently, in MIR, Akama et. al [29] employ
contrastive learning as an auxiliary loss for automatic tag-
ging, with improved results over supervision alone.

3. METHODS

3.1 Self-Supervised contrastive learning

In the SSL setting for contrastive learning [1, 8], each
sample in a N -sample batch is augmented into two views
through a stochastic augmentation chain. Let B be a batch
of these augmented views xi. Indices i ∈ I = {1, 2...2N}
represent the index of a data point in the batch (anchor).
p(i) is the index of the augmented data point originat-
ing from the same original sample as the anchor (posi-
tive sample). N(i) is the set of negatives: data points in
the augmented batch excluding the anchor and positives:
N(i) = I \ {i, p(i)}. Let zi be the embedded representa-
tion of the data point by an encoder E : x 7→ E(x) ∈ R

dE

and a projection head g : E(x) 7→ g(E(x)) = zi ∈ R
dg

into the contrastive latent space. In the SSL setting, the
objective function for the contrastive method is the nor-

malised temperature-scaled cross-entropy loss [1] between
samples i and p(i) for all pairs in the batch:

Li
ssl = − log

exp(sim(zi, zp(i))/τ)
∑

n∈N(i)∪{p(i)}

exp(sim(zi, zn/τ))
(1)

Where τ is a temperature hyperparameter, sim is a sim-
ilarity function - usually, cosine similarity [1, 8]. For the
sake of brevity we notate σi,j = exp(sim(zi, zj)/τ) in
the rest of this work.

3.2 Supervised contrastive learning

In the supervised setting [20], the set of supervised posi-
tives Ps(i) are now defined by the label information in the
set of labels yi: Ps(i) = {p ∈ I|yp = yi} \ i. As in [20],
the supervised contrastive loss objective is given by:

Li
sl =

−1

|Ps(i)|

∑

p∈Ps(i)

log
σi,p
∑

n∈N(i)∪Ps(i)

σi,n

(2)

The contrastive matrix M is constructed by leveraging
class information obtained by mining the labels, i.e. if two
samples xi and xj are in the same category then Mi,j = 1.

3.3 Semi-supervised Contrastive Learning

Let U be a set of unlabeled samples, and S∗ be a set of
labeled samples. We sample a proportion ps of the labeled
dataset for training such that |S| = ps|S

∗|. Let A = U ∪S
be the set of all data points seen during training. During
training, we use both labeled and unlabeled data points by
sampling batches B comprised of proportions bs (resp. 1−
bs) of labeled (resp. unlabeled) samples. Ps(i) = ∅ if i
is the index of an unlabeled data point. We now define our
semi-supervised contrastive loss, with PA(i) = Ps(i) ∪
Pu(i), where Pu(i) is the set of self-supervised positives
(

{p(i)} in Eq. 1
)

:

Li
sem = −1

|PA(i)|

∑

p∈PA(i)

log

(

σi,p∑

n∈N(i)∪PA(i)

σi,n

)

(3)

With the inclusion of both sets of positives, we gen-
eralize to both labeled and unlabeled data in our repre-
sentation learning task: Note that if U = ∅ or S = ∅,
the semi-supervised contrastive loss reverts back to the
fully-supervised loss or the fully self-supervised loss (as
Ps(i) = ∅) respectively. The approach is shown Figure 1.

This approach differs from simply adding the super-
vised and self-supervised contrastive losses together, as
our objective maintains the number of samples to discrim-
inate against in the self-supervised setting by leveraging
labeled data as negatives for the self-supervised samples.
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Figure 1: Semi-Supervised Contrastive Learning. The sparsely labeled dataset contains a mix of unlabeled data and labeled data. Given
a batch, available labels (blue and yellow tags) are used to augment M. Unlabeled samples degenerate back to the self-supervised case.
Loss is computed between the pairwise similarity matrix from the encoded embeddings and the target matrix using Equation 3

3.3.1 Extension to other supervision signals

The range of supervision signals this method can leverage
are limited only by the ability to construct the target con-
trastive matrix. In this, SemiSupCon can make use of sup-
port data beyond single label multiclass tasks. To demon-
strate this, we devise two strategies for training on Mag-
naTagATune [38], which are studied in Section 5.4. For a
multi-label signal, if C ∈ N labels coincide between two
samples, we set the the corresponding index in the target
contrastive matrix Mi,j = 1. The criterion C is a hyperpa-
rameter which is studied in Section 5.4. By default we use
C = 1, i.e., if any labels coincide between two samples
they are considered as positives.

Further, we can construct a target continuous similarity
metric factor αi,j which denotes the degree of “semantic
similarity” between the samples by weighing the common
classes by the total number of labels:

αi,j =
2Ci,j

(Ci + Cj)

Ci,j is the number of common classes for xi and xj , Ci and
Cj are the number of classes of xi and xj . The similarity
term σi,j is then weighted by αi,j in Eq. 3.

4. EXPERIMENTS AND RESULTS

4.1 Datasets

For our experiments, we use The Free Music Archive
(FMA) dataset [39] as a self-supervised dataset, i.e., we
do not use its labels. To match the scale of the supervised
datasets, we elect to use the medium subset, containing
25000 clips of 30 seconds of audio.

We utilize several labeled datasets as support labeled
data for training and for evaluation to demonstrate the
cross-domain usefulness of SemiSupCon. For automatic
tagging and most of our experiments, we use MagnaTa-
gATune (MTAT) [38] as labeled data as a proxy evalua-
tion of general music understanding. We reproduce the
canonical 12:3:1 train-test-validation splits [8]. We use
MTG-Jamendo (all subsets, including the top 50 tags,

genre, mood/theme, and instrument) [40] as another tag-
ging dataset. We use NSynth [41] for pitch and instrument
classification of short snippets, and MedleyDB [42, 43]
for instrument classification with longer audio clips than
NSyth. We use Giantsteps [44] as a key classification
dataset - as in [45], we use the original dataset as our train-
ing set and the MTG-Giantsteps dataset as our test set.
For genre classification, we use the fault-filtered GTZAN
dataset [46, 47]. We use the VocalSet dataset [48] for two
additional tasks: singer identification and technique classi-
fication. Finally, we regress Arousal (A) and Valence (V)
on EmoMusic [49] as a downstream evaluation task only,
with the same train-test split as [45].

4.2 Model input, augmentation chain

As in [8, 9], we crop 2.7 second segments of mono
22050kHz audio as input to the encoders, SampleCNN
[50] or TUNe+ [9]. We sample and augment 2 adjacent
non-overlapping segments as positives. The dimensions
of the encoders and the 2-layer ReLU-nonlinear projec-
tion head are dE = 512 and dg = 128. We implement a
stochastic augmentation chain similar to CLMR [8], TUNe
[9], and [10]. In order, we apply (Table 1):

Augmentation probability parameter Min/Max unit

Gain 0.4 Gain -15‡ / 5† dB
Polarity inv. 0.6 - - -
Colored Noise 0.6 Signal/noise ratio 3‡ / 30‡ dB

Spectral decay -2‡ / 2† dB/octave
Filtering (One of)
Low pass 0.3 Cutoff 0.15‡ / 7‡ kHz
High pass 0.3 Cutoff 0.2† / 2.4† kHz
Band pass 0.3 center frequency 0.2 / 4 † kHz

Bandwidth fraction 0.5† / 2 -
Band cut 0.3 center frequency 0.2 / 4† kHz

Bandwidth fraction 0.5† / 2 -
Pitch shifting 0.6 transpose -4‡ / 4† semitones
Delay 0.6 reflection time 100‡ / 500 ms

reflections 1† / 3† -
attenuation -6† / -3† dB/reflection
wet/dry factor 0.25† / 1 -

Table 1: Training augmentation chain. Only one amongst
the four frequency filters is applied at once. Ranges de-
noted with † (resp. ‡) are subject to increasing (resp de-
creasing) in Subsection 5.3
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AUROC ↑ AP ↑

Ours bs = ps SampleCNN TUNe+ ‡ ⋆

(‡) (⋆)
Self-Supervised 0 88.8 88.9 41.6 41.6

Semi-Supervised

0.05 89.4 89.4 42.5 42.1
0.1 89.5 89.4 42.2 42.2
0.25 89.5 89.4 42.5 42.8
0.5 89.7 89.5 42.9 43.3
0.75 89.9 89.8 43.3 43.5
0.5/1 89.8 89.8 43.1 43.0

Supervised 1 90.3 90.1 44.3 44.6

Literature

SampleCNN [8] - 89.3∗ (88.6† [8]) 41.2∗ (34.4† [8])
CLMRFMA [8] - 86.6† 31.2†

TUNe+ [9] - 89.2† 36.6†

MERT [5] - 91.0† 39.3†

Table 2: Performance on automatic tagging. Results de-
noted by † are reported in their original paper. In our ex-
periment, we constrain ps = bs except for one run where
ps = 1, bs = 0.5. We trained our own end-to-end su-
pervised SampleCNN with the same compute budget as
SemiSupCon and report results with *.

4.3 Training and evaluation details

For our baseline models, we adopt a training setup simi-
lar to TUNe [9] and CLMR [8]. Models are trained for
200k steps on semi-supervised batches sampled from Mag-
naTagATune as labeled data and FMA-Medium as unla-
beled data [38,39] using the Pytorch Adam optimiser with
a learning rate of 1e−4. For ablation and variation studies,
we train our models for 50k steps unless otherwise stated.
All models are trained with τ = 0.1 with a non-augmented
batch size of 96 on a single RTX A5000 GPU unless oth-
erwise specified. We report steps instead of epochs to stan-
dardise the amount of data seen during training.

To evaluate pretrained models, we freeze the encoder
and discard the projection head. Frozen representations
are fed into a 2-layer ReLU-nonlinear MLP for probing
on downstream tasks. For probing, we use the Adam op-
timizer with a learning rate 0.0003 and an early stopping
mechanism conditioned on validation loss. For automatic
tagging tasks, we report area under receiver-operator curve
(AUROC) and mean Average Precision (AP). For clas-
sification tasks, we report top-1 accuracy except for key
classification: the metric for this task is a weighted score
taking into account reasonable errors [45] - We use the
mir_eval [51] implementation for evaluation . For emo-
tion regression we report R2 values between predicted and
actual values.

5. RESULTS

5.1 Automatic tagging with semi-supervised

contrastive learning

We train a self-supervised baseline, a supervised con-
trastive baseline with and without augmentations, an
end-to-end supervised baseline using the sampleCNN
architecture, and five variants of our semi-supervised
approach with different proportions of labeled data
(ps ∈ [0.01, 0.05, 0.1, 0.2, 0.5]) for Automatic Tagging on
MTAT. MTAT labels augment the contrastive matrix M

Figure 2: Evolution of AUROC and AP on MTAT probing
with proportion of supervised MTAT data used for training.

with positives in the case of supervised or semi-supervised
pretraining. We vary the in-batch and global proportion of
supervised data bs and ps simultaneously. We report re-
sults on the same task in the literature in Table 2 for com-
parable datasets and training scales.

When trained for 200k steps, the supervised con-
trastive model is competitive with larger self-supervised
approaches. Furthermore, it outperforms both our im-
plementation and the results claimed in CLMR for self-
supervised contrastive and end-to-end supervised models.
Figure 2 shows the influence of ps = bs on AUROC and
AP. As the proportion of supervised data increases, so does
the performance on the downstream evaluation. Including
only 5% of labeled data leads to an increase in performance
from 88.8 to 89.4 in AUROC. For our experiment with
ps = 1 and bs = 0.5, both architectures perform worse
than ps = bs = 0.75, as the model has seen 100k steps of
supervised data versus 150k.

5.2 Influence of pretraining labeled dataset

In this experiment, we pre-train multiple semi-supervised
models using datasets described in Section 4.1 as support
labeled data and FMA as unlabeled data - one model per
dataset, each for 50000 steps. We then freeze all mod-
els and train shallow MLP probes on all downstream tasks
for each model. We train a self-supervised baseline for
comparison. Semi-supervised approaches are trained with
bs = 0.5 and ps = 1. Table 3 shows these results.

Semi-supervised training on the target dataset always
surpasses the self-supervised baseline by a significant mar-
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Target Dataset MTAT Jamendo NSynth Giantsteps GTZAN VocalSet MedleyDB Emo
Subset 50 All 50 Genre Mood Inst. Pitch Inst. Key Genre Tech. Singer Inst. A/V
Metrics AUROC Acc. Accw Acc. R2

V / R2
A

Self-Supervised
FMA 88.4 86.2 80.1 83.3 74.0 71.6 36.8 51.7 13.5 65.5 53.8 71.1 56.5 46.7/71.5
Semi-Supervised bs = 0.5

MTAT
50 89.3 86.8 80.0 83.4 73.8 73.3 34.5 46.9 11.3 65.5 53.2 70.0 67.3 44.3/65.9
All 89.1 87.5 80.3 83.2 74.1 73.0 34.0 51.0 14.9 68.2 52.4 72.9 72.8 41.6/76.2

Jamendo

50 88.6 86.6 81.5 83.4 74.6 72.5 33.8 50.0 14.7 74.1 52.1 71.7 62.0 50.1/77.9

Genre 88.6 86.3 80.5 84.0 74.6 71.5 33.4 50.2 14.6 72.8 52.0 74.6 66.3 48.2/70.3
Mood 88.3 86.6 81.0 83.0 74.7 72.3 38.2 47.7 14.9 71.3 53.5 71.4 60.9 48.0/73.0
Instrument 88.4 86.3 80.8 83.1 74.0 71.6 37.2 52.5 14.9 69.3 54.5 67.9 63.0 52.4/70.6

NSynth Pitch† 88.3 86.3 79.7 82.6 73.5 72.0 79.0 48.6 20.1 65.5 56.9 75.6 64.1 37.5/66.6
Inst. 88.6 85.7 79.6 82.7 73.3 71.7 26.6 59.6 16.0 67.2 57.3 72.3 66.3 40.3/75.0

GiantSteps Key† 87.7 85.0 79.0 82.1 73.0 70.5 50.8 51.3 22.3 69.3 54.1 71.4 61.2 39.6/63.6
GTZAN Genre 88.8 86.8 80.9 83.9 74.1 71.5 38.6 46.9 16.3 74.0 53.4 71.7 66.3 28.7/56.4

VocalSet
Technique 88.7 86.7 79.6 82.5 73.3 71.0 46.0 53.5 12.1 63.5 63.0 77.8 67.3 41.5/70.1
Singer 88.9 86.2 80.1 82.6 73.6 72.8 45.2 52.4 15.3 67.2 54.0 87.1 69.6 54.3/74.6

MedleyDB Instrument 88.6 87.0 80.2 82.6 73.6 73.8 32.0 48.8 13.2 62.1 58.6 74.3 62.0 41.6/74.8

SOTA
92.7 95.4 84.3 88.0 78.6 78.8 94.4 78.2 74.3 86.9 76.9 87.5 - 61.7/76.3
[12] [34] [13] [14] [13] [52] [5] [53] [54] [55] [5, 45] [5, 45] [5, 14]

CLMR [45] 89.5 81.3 84.6 73.5 73.5 47.0 67.9 14.8 65.2 58.1 49.9 - 44.4/70.3

Table 3: Results for cross-task evaluation. Models are trained for 50k steps on FMA [39] as the self-supervised dataset and
support supervised datasets (rows), and evaluated on target datasets (columns). Giantsteps†, NSynth† are trained without
pitch shifting augmentation. Results in bold are the best results obtained for evaluation on a target dataset. SOTA results
are included for illustration purposes, but do not necessarily leverage comparable methodologies.

gin when evaluating on the same dataset - with minimal
loss of performance on other downstream tasks.

Some complementary tasks improve performance on
other downstream datasets, proving semi-supervised con-
trastive learning a viable transfer learning strategy. Ex-
pectedly, training on genre tagging data increases out-of-
domain performance on genre classification, instrument
tagging on instrument classification, etc. Training on mood
data from MTG-Jamendo provides a performance boost on
emotion regression. A notable example is the improvement
in performance on NSynth pitch when training with key
data as support labeled data and vice versa. This demon-
strates an improvement in the understanding of pitch by the
model on tasks which are musically related but not trivial
transfer learning instances. Most importantly, this occurs
without performance loss on general music understanding,
i.e. automatic tagging. Other musically grounded exam-
ples are pitch pretraining improving instrument classifi-
cation performance and instrument pretraining improving
emotion regression performance.

5.3 Robustness to in-domain data corruption

In this section, we evaluate the robustness of our semi-
supervised, supervised, and self-supervised contrastive ap-
proaches to audio corruptions compared to the end-to-end
baseline. We train the probing head without augmenta-
tion until convergence and evaluate the model with aug-
mentations applied. We design different severity degrees
of our augmentation chain (See Subsection 4.2) by apply-
ing a modifier to the application probabilities: for severity
s ∈ [0, 1...4], we scale probabilities of application of each
augmentation by s/2 such that s = 2 is the chain applied
during training. We sensibly multiply or divide the min
and max values of each augmentation hyperparameter (see
Table 1) by s/2. We then evaluate all models with these
augmentation chains on MagnaTagATune. The results are

Figure 3: Effect of corruption severity on downstream per-
formance. Contrastive models are more robust than Cross-
entropy trained models.

shown in Figure 3. Contrastive approaches are more ro-
bust to in-domain corruption than end-to-end approaches
- hypothetically because we train contrastive models to be
invariant to such transformations through the augmentation
chain - which is not an objective of the end-to-end super-
vised approach.

5.4 Multilabel positive mining strategy

In this experiment, we test multiple label-based positive
mining strategies. First by varying the number of common
labels for mining positives - i.e. C ∈ {1, 2, 4, 6}. Further,
we explore the “semantic weighing” strategy described in
Section 3.3.1, in which the target similarity between two
tracks is weighed by the number of common labels and the
total number of labels. We test these strategies on both
semi-supervised and supervised contrastive models. Re-
sults are reported in Table 4.

For supervised approaches, the continuous target pro-
duced by semantic weighing produces the best results, on
par with 4x training steps with a criterion C = 1 (as shown
in Table 2). In the supervised case, as the criterion in-
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Positive strategy Supervised Semi-Supervised
Class criterion AUROC AP AUROC AP
C = 1 90.1 44.2 89.3 41.3
C = 2 90.1 43.9 89.0 41.6

C = 4 89.3 42.8 89.0 41.3
C = 6 88.9 42.3 89.0 41.5
Weighing 90.6 45.3 88.9 41.6

Table 4: Multilabel positive mining strategy as described
in Section 3.3.1.

creases, performance deteriorates. We hypothesise that this
could be because it is an easier task for the model to dis-
cern that two tracks with many common tags are similar
(higher C), as they likely share many attributes, therefore
providing a weaker training signal. Understanding what
links two tracks from a single tag is more challenging and
appears to yield more robust representations. The contin-
uous “relative similarity” target created by the weighing
strategy is a more nuanced task and appears to be a stronger
supervision signal. This guides the model towards more
robust representations, which explains the higher perfor-
mance. In the semi-supervised case, we speculate that the
binary self-supervision signal overpowers the continuous
target as a less nuanced objective with harsher penalties for
failure. These penalties could overpower softer penalties
from the continuous target in the loss, preventing optimal
convergence. Future work should focus on understanding
and reconciling these aspects of the semi-supervised ap-
proach to leverage other continuous signals.

5.5 Qualitative analysis

The results reported in Section 5.2 show that performance
on downstream tasks improves when labels from a related
task are used for model training, with minimal loss of per-
formance on other tasks. We hypothesise that the internal
latent representations are given structure relative to the su-
pervision signal while maintaining the semantic structure
given by the self-supervision signal. To illustrate this, we
perform t-SNE dimension reduction on embeddings pro-
duced by the semi-supervised model from Table 3 trained
with NSynth (Figure 4a) as support labeled data and fully
self-supervised (Figure 4b) evaluated on the test set of
NSynth-pitch.

In the set of Figures 4, the latent spaces for the NSynth
test set produced by these two models are shown. When
pretrained on NSynth-pitch, the latent space is highly orga-
nized. Separability by class is much clearer than when pre-
trained on FMA. We notice that several musical structures
emerge in this latent space. Notably, octaves go from low
to high clockwise. Pitches that are “similar” are close to-
gether, i.e., semitones and octaves of the same pitch class.

6. CONCLUSION AND FUTURE WORK

We presented SemiSupCon, a simple method for leverag-
ing both supervision and self-supervision signals in con-
trastive representation learning. By leveraging reduced
amounts of labeled data during pretraining, SemiSupCon
outperforms end-to-end comparable supervised baselines

(a) Latent embeddings of the NSynth-pitch test set from a
semi-supervised model trained on FMA+NSynth-pitch

(b) Latent embeddings of the NSynth-pitch test set
from a self-supervised model trained on FMA

Figure 4: Exploration of the NSynth pitch latent space.
Octaves are denoted by size and pitch class by the color of
the dot. Each dot is a full audio sample

on downstream tasks. We find that SemiSupCon is more
robust to data corruption at inference compared to end-
to-end supervised methods. Additionally, SemiSupCon
can utilize various supervision signals with minimal per-
formance loss on out-of-domain tasks and achieve per-
formance transfer on similar tasks. While performance
gains might seem moderate on automatic tagging for in-
stance, other downstream tasks show more distinct im-
provements. Furthermore, the contrastive objective can
lead to explicitly structured latent spaces with emergent
musical structures - enhancing the musical interpretability
of latent spaces by design of the support supervision signal
- i.e. labeling small amounts of data.

Future work will focus on exploring additional super-
vision signals and tasks such as perceptual metrics, tempo
estimation, and chord estimation. Other avenues include
leveraging the low-data proficiency of SemiSupCon for
human-in-the-loop representation learning. The architec-
ture of SemiSupCon being very flexible, it can be further
adapted to multimodal approaches or hierarchical repre-
sentation learning. A more comprehensive exploration of
the influence of the proportion of labeled data and the exact
effect of labels and contrastive matrix sparsity on down-
stream performance will also be undertaken.
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ABSTRACT

Deep learning models have become a critical tool for analy-
sis and classification of musical data. These models operate
either on the audio signal, e.g. waveform or spectrogram,
or on a symbolic representation, such as MIDI. In the latter,
musical information is often reduced to basic features, i.e.

durations, pitches and velocities. Most existing works then
rely on generic tokenization strategies from classical natural
language processing, or matrix representations, e.g. piano
roll. In this work, we evaluate how enriched representations
of symbolic data can impact deep models, i.e. Transformers
and RNN, for music style classification. In particular, we
examine representations that explicitly incorporate musical
information implicitly present in MIDI-like encodings, such
as rhythmic organization, and show that they outperform
generic tokenization strategies. We introduce a new tree-
based representation of MIDI data built upon a context-free
musical grammar. We show that this grammar represen-
tation accurately encodes high-level rhythmic information
and outperforms existing encodings on the GrooveMIDI
Dataset for drumming style classification, while being more
compact and parameter-efficient.

1. INTRODUCTION

In the last few years, machine learning (ML) has signifi-
cantly changed how the Music Information Retrieval (MIR)
community deals with tasks such as style and composer
classification, music generation, pitch and rhythm detection,
etc. Yet, training deep learning models on music raises the
question of the representation of this data. Depending on
the input format (audio, MIDI, musical score. . . ), different
representations, i.e. different encodings, are possible. Each
encoding has advantages and drawbacks: some represen-
tations, e.g. waveforms, focus on raw low-level acoustic
features, while others, e.g. sheet music, encode high-level
abstract semantics of the musical language.

While deep neural networks had great success on audio
signal, i.e. waveforms and spectrograms, machine learning

© L. Géré, N. Audebert, and P. Rigaux. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: L. Géré, N. Audebert, and P. Rigaux, “Improved symbolic
drum style classification with grammar-based hierarchical representations”,
in Proc. of the 25th Int. Society for Music Information Retrieval Conf.,

San Francisco, United States, 2024.

for symbolic MIDI remains understudied. In this work, we
seek to build effective representations of symbolic music,
with a focus on recorded MIDI performances. Multiple pos-
sible representations of MIDI music coexist in the literature.
Most of them contains only low-level information, such as
the timing of the onset and the offset of each note and their
velocity. This is due to practical constraints: typical MIDI
recordings usually do not contain any information about
tonality, tempo, time-signature or rhythm. Hence, a model
trained on such MIDI samples typically needs to allocate
a part of its weights to extract these relevant high-level
features from the data. Building better representations of
MIDI data to encode semantic musical information could
therefore be beneficial to the training of deep models and
their efficiency, as they could directly focus on using these
features rather than extracting them from the data first.

Music classification has been a task of choice for MIDI
performances. Preliminary works from [1] in 2007 encoded
MIDI as strings and used Kolmogorov complexity to com-
pare music pieces. [2] introduced jSymbolic, a library to
extract high level features from MIDI files, such as pitch
histograms, a line of work extended by music21 [3] and
musif [4]. As new MIDI datasets have been introduced
for composer [5] and style classification [6], efforts have
been made to evaluate how MIDI representations affect
deep models. [7] introduced MidiTok, a tokenization frame-
work to encode MIDI files as a sequence of tokens, suitable
for Transformers and Recurrent Neural Networks (RNN).
More recently, [8] compared different neural architectures
for various MIDI encodings: Convolutional Neural Net-
works (CNN) trained on Piano rolls, Transformers trained
on sequences of tokens, and Graph Neural Networks (GNN)
trained on graphs extracted from MIDI files.

In this line of work, we aim to design a representation
of MIDI files that is both efficient and discriminative for
classification tasks, by incorporating high level musical
information directly in the preprocessing. To do so, we
explore a new representation based on the rhythmic tree

structure, built from a context-free grammar tailored to sym-
bolic music. We show that this representation outperforms
existing encodings, such as tokenizations or piano rolls, on
a drumming style classification built upon the GrooveMIDI
Dataset [6]. In addition, our rhythmic tree-based encoding
results in smaller deep models, with less parameters, able to
be trained on less data compared to existing representations.
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(a) Base score (b) Piano roll
DrumOn_42, Velocity_43,

TimeShift_0.1.8,

DrumOff_42,

TimeShift_0.1.8,

DrumOn_42, Velocity_39,

DrumOn_38, Velocity_23,

TimeShift_0.1.8,

DrumOff_42, DrumOff_38...

(c) Tokenization (MIDI-Like)

(p=42,v=0.35,d=0.1,t=0.000),

(p=42,v=0.32,d=0.1,t=0.175),

(p=38,v=0.17,d=0.1,t=0.006),

(p=36,v=0.32,d=0.1,t=0.181),

(p=42,v=0.35,d=0.1,t=0.017),

(p=42,v=0.48,d=0.1,t=0.358),

(p=38,v=0.41,d=0.1,t=0.034),

(p=46,v=0.51,d=0.1,t=0.158)...

(d) Note Tuples

(e) Linearized Rhythmic Tree

Figure 1: Different representations of the same two bars of
drums. Score (a) is present for reference only.

2. BACKGROUND

2.1 MIDI Representations

MIDI is a lightweight musical information exchange format.
It does not carry audio data, but only timestamped events,
e.g. a note being played, featuring its pitch and velocity, a
note being released, a pedal change, etc. It is suitable for
recording as it captures the performer’s expressiveness, but
does not require metadata that are found in a score, such as
tempo, time-signature 1 , tonality and voices [9]. We discuss
below the most common MIDI representations for ML.

2.1.1 Piano Roll

The piano roll is a visual representation of MIDI files in-
spired by the analog rolls for piano players. It consists in
a 2D matrix with one dimension for pitches, and one for
time. A note at pitch p with a NOTE_ON event at xon and
NOTE_OFF event at xoff is given a positive value at posi-
tions (x, p)x∈[xon,xoff], as shown in Figure 1b. Often, the
value in a matrix cell is one of the properties of the MIDI
event, e.g. the velocity. This representation is popular, as
its 2D structure allows to easily adapt deep models inspired
by image processing (e.g. CNN) to music tasks [10–12].
However, it can result in large sparse matrices with many
zeros, since the time dimension must be discretized with a
time step smaller than the shortest MIDI event. In addition,
piano rolls tend to be very long and redundant, since many
successive vectors will be identical.

1 MIDI recordings can contain tempo and time-signature, but only
through manual addition a posteriori.

2.1.2 Sequence of Tokens or Notes

Similar to Natural Language Processing (NLP) techniques,
recent works have adopted sequence-like representations,
especially suitable for RNN and Transformers architectures.
They encode MIDI files as sequences of events. These
events are in turn transformed into tokens, i.e. discrete val-
ues from a vocabulary V . Many tokenizations exist, some
consisting in a simple token/event mapping with MIDI files
(MIDI-Like [13, 14], see Figure 1c), while others include
note durations (Structured [15], TSD [16]). More sophisti-
cated tokenizers include higher level information about bar
and position in the bar, such as REMI [17].

Finally, MIDI files can be represented as “note tuples”,
i.e. sequences of notes with attributes. For example, [18]
represents each note by a set of four values: pitch, velocity,
duration and time-shift compared to the previous note (cf.
Figure 1d). This representation is much more compact than
piano rolls or sequence of tokens.

2.2 Formal Grammar

This work designs a symbolic music representation for deep
networks based on a grammar-based rhythmic tree. As a
starting point, a formal grammar defines the syntax of a
language L. It consists in a set of symbols, associated with
production rules used to rewrite non-terminal symbols into
other (non-)terminal symbols. Applied successively, those
rules can produce every possible sentence of L.

2.2.1 Context-Free Grammar

Succinctly, a context-free grammar [19] is a type of formal
grammar for which the production rules do not depend on
other context than the left-hand-side symbol. It is defined as
a 4-tuple G = (V,Σ, R, S). V is a finite set of non-terminal
symbols, including the special start symbol S. Σ is a finite
set of terminal symbols, called the alphabet. Finally, R is
a finite set of production rules of the form a → b, where
(a, b) ∈ V × (V ∪ Σ)∗ in which ∗ denotes the Kleene star
operator, i.e. a pattern repeated of 0, 1 or more times.

The application of a sequence of rules can be represented
as a tree, in which the parent node is represented by the left-
hand-side of each rule, and the child nodes are the symbols
on the right-hand-side. Once every non-terminal symbol
has been resolved into a terminal symbol, we obtain a parse

tree representing the structure of a sentence of L according
to G, with elements of Σ as leaves, and S as root.

2.2.2 Musical Grammar

In a homophonic musical score (monophonic voice that
can include chords [20]), rhythm can be represented as a
tree [21, 22]. For example, in a 4/4 music piece, a measure
could be split into two half notes. Then, each half note can
be further divided into two quarter notes, or into a triplet of
quarter notes, etc. The qparse library [23] is a MIDI-to-
score transcription framework that produces a sheet music
by parsing a MIDI file with a weighted context-free gram-
mar and dynamic programming, with applications e.g. to
automatic drum transcription [24]. While designed for a
handcrafted music transcription algorithm, the intermediate
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MIDI

IDs = [1, 5, 7, 9, 12, 0, 0,

           0, 11, 0, 0, 0, 0, 7,

           10, 0, 0, 0, 0, ...]

...

...

...

pre-order

depth-first

linearization

qparse

OHE of rule IDs 

+ pitch and velocity

for leaf nodes (ID=0)

Figure 2: Example of tree built by qparse after rules simplification and re-rooting of measures (right), with its associated
linearization and vector representation (left). In the matrix, the part above the dashed line contains the one-hot encoded rules
(blue/yellow for 0/1), and the one below contains the playing instruments for terminal nodes (color representing velocity).

parsing tree computed by qparse contains rich rhythmic
information that is also valuable as an input to deep mod-
els. Note that, while we our work uses qparse to obtain
rhythmic trees, our contribution lies in evaluating this tree
representation of music, regardless of its construction. We
expect our representation to generalize to other parsers.

3. METHODOLOGY

3.1 Linearized Rhythmic Tree

To build our high-level MIDI representation, we linearize
a rhythmic tree obtained using a context-free grammar, en-
riched by information about pitch and velocity in leaves. We
call this representation Linearized Rhythmic Tree (LRT). To
achieve this goal, we leverage the transcription framework
qparse [23] to extract its internal intermediate rhythmic
tree representation. Note that we only consider homophonic
inputs since this is what qparse MIDI grammar supports.
qparse needs the time-signature and the tempo of the
track (because measures are parsed separately), as well as
the specification of a weighted grammar. We use a rhythm-
oriented grammar similar to [24], detailed in appendix.

As described in [25], the root of the intermediate rhyth-
mic tree is the first measure. Its left child is a tree describing
its beat decomposition, and its right child is a node pointing
at the root of the next measure. We rewrite this tree so
that all measures are children of the same global root. A
n-measures-long track will therefore have a root with n
children. This rewriting allows us to reduce the maximum
depth of the rhythmic tree, which would otherwise grow
linearly with n. The resulting tree is shown on the right of
Figure 2. In this tree, each node is labeled by the identifier
of the associated production rule in the grammar. 2 Each
leaf is a terminal symbol, labeled by the note and properties
from the associated MIDI events, i.e. pitch 3 and velocity.
Note that multiple instruments can be playing at the same
time, so a leaf can be associated to several events.

As an example, in Figure 2, the first bar (red frame) is
split in two sections, each of half note length (rule 5). Then,

2 See the ruleset with IDs in Section 2 of the supplementary material.
3 In the case of drums, the “pitch” corresponds to the drum used, e.g.

cymbal, snare, tom, etc.

the first half gets split into two quarter-length sections (rule
7). The second child of this node, a quarter note, is split
into four sixteenth notes (rule 11). Finally, each of those
sixteenth notes leads to a terminal symbol (rule 0), with
MIDI events attached to it, e.g., the second child has two
NOTE_ON events, respectively with pitch 36 and velocity
0.3, and with pitch 46 and velocity 0.5.

As we cannot directly feed the tree structure to the mod-
els, we first linearize it using a pre-order depth-first traver-
sal: we start from root, and traverse the nodes recursively
following the left-most child, only going back up when the
current branch has been fully traversed. This produces a
sequence of nodes containing the identifier of their rule in
the grammar, as well as, in the case of leaves, the list of
playing instruments and their velocity. We encode every
node into a d = (m + n)-dimensional vector. m is the
number of rules in the grammar, and the first part of the
vector is the one-hot-encoded identifier of the production
rule associated with the node. n is the number of possible
instruments, and the second part of the vector contains the
normalized velocity for each instrument. If an instrument
is not playing for this note, its velocity is set to zero. For
non-terminal rules, this second part is entirely zero. This
linearization results in the matrix on the left of Figure 2,
i.e. a sequence S = {s}t∈J1,T K where st ∈ R

d is the vector
associated to a node, and T is the total number of nodes.
Therefore, our linearized rhythmic tree results in a multi-
dimensional sequence S, that can be fed in all usual deep
models such as RNN and Transformers.

Note that this representation is significantly shorter than
tokenizations or piano rolls. In average, the sequences are
only around 18% longer than note tuples, while containing
much more information about the rhythm structure.

3.2 Tree-based Positional Encoding for Transformers

While RNN can model the position in the sequence through
their hidden state, Transformers process sequences as a bag
of words, without any positional information. To overcome
this issue, positional encoding [26] was introduced to incor-
porate information about the position of an element in the
Transformer model.
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Classical positional encoding [26] creates a vector PE of
dimension d using sine and cosine functions of increasing
frequencies:

ωpos,i =
pos

τ(
2i

d )
,
PE(pos, 2i) = sin (ωpos,i)
PE(pos, 2i+ 1) = cos (ωpos,i)

(1)

where pos is the position of the element in the sequence, d
the size of the embedding, i ∈ J1, d/2K the dimension, and
τ = 10000 as in [26].

3.2.1 Continuous Positional Encoding

For musical data, this positional encoding is not related to
the temporal organization of the notes. Depending on how
the sequence S was built, the position pos of an element
can be arbitrary, such as e.g. tokenizations where a note
is split into several tokens for pitch, velocity and duration,
or note tuples where two simultaneous notes can be inter-
changed. For encoding note tuples, we therefore introduce
a continuous positional encoding that replaces the position
in the sequence by the timestamp of the note in the track:

ωt,i =
2π

TS

·
t

(TL/TS)
2i

d

,
PE(t, 2i) = sin (ωt,i)
PE(t, 2i+ 1) = cos (ωt,i)

(2)
where t is the absolute starting time of the note in seconds
and TS and TL are respectively the smallest and largest
periods of the sine functions. This encoding allows two
simultaneous notes to share the same positional encoding.

3.2.2 Tree-based Positional Encoding

A downside of linearizing the rhythmic tree is that we lose
the explicit hierarchical structure between a parent node and
its children. The structure is still implicitly encoded in the
linearized sequence S in the rule identifiers, but the model
would have to learn how the grammatical rules operate to
rebuild the tree and leverage its structure.

To better represent the rhythmic tree, we use a hierarchi-
cal tree-based positional encoding (TBPE) that encodes the
position of a node in the tree, rather than its position in the
linearized sequence. Some TBPE have been proposed in
the literature, e.g. for code translation to help Transformers
process abstract syntax trees [27, 28]. Since our trees are
bounded in depth at dmax, we associate to each node N a
vector of size 2dmax that represents the path to a node from
the root of the tree. This process is illustrated in Figure 3.
Element k represents the index of the child traversed at
depth k, while element k + dmax is the total number of chil-
dren of the parent node at depth k. For example, to reach
node F , we go through node R (child #1 over 1), then node
A (child #1 over 4), then node F (child #2 over 2). If the
depth of the node N is less than dmax, then the remaining
elements of the vector are padded with zeros. This makes
explicit in the positional encoding the parent → child rela-
tions, along with depth and breadth properties. It becomes
easier for the model to understand that notes can belong to
a larger structures (e.g. triplet or four semiquavers).
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Figure 3: Example of tree-based positional encoding
(TBPE) for a tree of maximum depth dmax = 4.

4. EXPERIMENTS AND RESULTS

4.1 Dataset and Task

Our models are trained and evaluated for style classification
on the Groove MIDI Dataset (GMD) [6]. It consists in
13.6 hours of drumming music, played by humans with a
metronome. Each track is labelled with a style provided
by the drummer, alongside tempo and time-signature. The
dataset is composed of long sequences (few minutes) and
short beats and fills. We only consider long sequences, as
short sequences are less representative of a specific style.
We also discard non-4/4 tracks (around 1% of the dataset),
as we use a 4/4 musical grammar, and a few tracks that
qparse failed to parse 4 . We focus on the 4 most repre-
sented styles: funk, jazz, latin and rock. The final subset
contains 326 tracks, representing 7.5 hours of drumming,
split into the train/validation/test sets (80%/10%/10%) as
the original dataset [6]. Each track is then further divided
into multiple chunks of n measures with a sliding window.

4.2 Representations

In addition to our LRT, we evaluate common representations
of MIDI data for style classification.

Piano Roll We sample the MIDI data at frequency f .
We compare f = 30Hz ≈ 33.3ms per time step, as 30ms
is considered as the simultaneity threshold for the human
ear [29], and f = 50Hz = 20ms per time step, to see if
models would improve with finer granularity, at the expense
of sequence length. Every time step is represented by a
vector in v ∈ [0, 1]22. Each dimension represents one of
the 22 instruments of the drum kit. vi encodes the velocity
of the i-th instrument, normalized between 0 and 1 using
maximum normalization. Note that the duration of notes
in drums MIDI files is arbitrary, as only onset and velocity
matter. All durations are set to 100ms in the Groove MIDI
dataset. In our dataset, the average length of a piano roll is
around 2455 for f = 30Hz, and 4092 for f = 50Hz.

Sequence of Tokens We experiment with various tok-
enizers from the literature, that quantify velocities and tim-

4 As these tracks are only in the train and validation sets, this does not
affect the fairness of the final comparison.
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Representation used LSTM Transformer

Type Variation Avg. len. Test F1 score # params. # bars Test F1 score # params. # bars

Piano roll
50 steps/second 4092 0.618 ± 0.033 576 522 4 0.545 ± 0.011 253 130 2
30 steps/second 2455 0.663 ± 0.023 552 458 4 0.486 ± 0.026 20 330 4

Note Tuple - 733 0.568 ± 0.024 555 530 8 0.492 ± 0.014 216 506 2

Tokenization

MIDI-Like 2767 0.565 ± 0.026 42 442 4 0.576 ± 0.011 360 586 8
REMI 2502 0.475 ± 0.051 38 282 8 0.517 ± 0.028 17 626 4

Structured 2646 0.599 ± 0.014 282 826 2 0.598 ± 0.011 232 162 8
TSD 2464 0.487 ± 0.029 23 274 8 0.486 ± 0.032 20 178 4

LRT
Simple linearization 863 0.603 ± 0.014 1 358 346 8 0.556 ± 0.037 230 378 8

With TBPE 863 0.596 ± 0.014 252 170 4 0.660 ± 0.019 88 138 4

Table 1: Performance of the different representations and model combinations on the GrooveMIDI dataset. We report macro
F1 scores on the test set for the best model of each couple model/representation, alongside the model’s number of parameters,
the length (in bars) of input samples, and the average sequence length of each representation. Best results for each model
type are in bold, second best in italics.

ings to limit the size of the vocabulary: MIDI-Like [13, 14],
TSD [16], Structured [15] and REMI [17] tokenizers. We
use the default parameters from [7], except for pitch range
which is set to the min/max instrument ID from the GMD.
Models trained on tokenizations use a 64-dimensional em-
bedding, as recommended in [8]. Akin to piano rolls, tok-
enizers produce sequences with 2400 to 2800 elements.

Note Tuples We also consider the note tuples [18] repre-
sentation that uses a single vector for each note. Each vector
has 25 dimensions: the 22 one-hot-encoded instrument, fol-
lowed by normalized velocity, note duration and time-shift
to the previous note. This results in shorter sequences, with
as many elements as there are notes. Average sequence has
733 elements, 3.5× less than tokenization methods.

Linearized Rhythmic Tree We use a simplified rhythm
grammar of 15 rules on the GMD. As this grammar does not
allow notes shorter than a 1/32nd note, the maximum depth
dmax of a leaf in the rhythmic tree is 6. Although slightly
longer than note tuples, the resulting sequences remain on
the smaller side with an average of 863 elements.

4.3 Models

We chose to focus on sequential representations and there-
fore consider two popular architectures: LSTM [30] and
Transformers [26]. The model inputs are fed as chunks of
2, 4 or 8 measures. We perform a hyperparameter search
for the number of bars, number of layers and layer width
on the validation set and retain the best architectures for
each (model, representation) combination. As our grammar
parser uses the track’s tempo, we inject this information in
non-grammatical models for a fair comparison by concate-
nating the tempo to the features vector in the last layer.

LSTM architecture We consider bidirectional LSTM
models [31] and we experiment with a depth of 1 to 4 layers
and a fixed width of 8 to 256 neurons per layer. Even though
LSTMs do not require positional encoding, we also evaluate
our LRT representation with TBPE to assess whether the
explicit rhythmic structure is beneficial to the model.

Transformer architecture We use standard Transform-
ers with an embedding layer, i.e. a linear projection, be-
tween the input and the first Transformer block. The mod-
els have 1 to 4 encoder layers, each with 2 to 16 attention
heads. We also experiment with a feature size of 2 to 32
dimensions per head and 8 to 64 neurons in the feedforward
network. We use the classical positional encoding for token
sequences, the continuous positional encoding for piano
rolls and note tuples, and either the classical or the tree-
based positional encoding for LRTs. Regarding continuous
encoding, we use TS = 100ms so that even close notes
have a different encoding, and TL = 300 s, as temporal
context is unlikely to matter beyond several minutes.

Final models are trained with a batch size of 128, using
the AdamW optimizer [32] with a learning rate of 0.001,
decayed by a factor 10 every 50 epochs with weight decay
and dropout. Early stopping occurs when the validation F1
score plateaus with a patience of 200 epochs. Models are
trained using the standard cross-entropy loss. To alleviate
the class imbalance (185 rock tracks versus 50 for the other
classes), we use class inverse median frequency weighing.
We report the macro F1 scores averaged over all classes.

4.4 Main Results

We report in Table 1 the test scores of the best combinations
from the hyperparameter search, averaged over five runs.

LSTM with 30Hz piano rolls and Transformer with
LRT/TBPE are the combinations that lead to the best F1
scores overall (≈ 0.66). The former is a 3-layer LSTM
model, each composed of 64 neurons, performing on 2-bar-
long samples. The latter is a 4-layer Transformer model,
each using 2 heads with 32 features per head (so a 64-
dimensional input vector), and a feedforward network of 32
neurons trained on 4-bar-long chunks. Although both mod-
els achieve comparable performance, note that the Trans-
former model needs 6× fewer parameters than the LSTM.

We observe that the TBPE provides important informa-
tion for style classification. Transformer models using a
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Figure 4: F1 scores on the validation set vs. number of
parameters for a selected set of models. We observe that
Transformers trained on LRT consistently outperform other
models at similar capacity.

classical positional encoding achieve lower classification
performance (≈ 0.56). Surprisingly, using TBPE is ben-
eficial for LSTMs also: both our LSTM models trained
on LRT achieve nearly identical F1 scores (≈ 0.6), how-
ever injecting the TBPE allows us to use a RNN with 5×
fewer parameters. This confirms that explicitly encoding
the node position in the tree makes it easier for the models
to understand the rhythmic structure of the track.

Finally, we observe that tokenization and note tuples
tend to underperform overall. Structured MIDI tokenization
achieves the best of tokenizer F1 score (≈ 0.6) both for
LSTM and Transformer architecture, followed by MIDI-
Like, however at the cost of a higher number of parameters.
Token or note tuple sequences seem difficult to learn for the
models. For RNN, we hypothesize that this is due to the
regular sampling assumption made by these models. Each
element is processed by the same recurrent loop, meaning
that the model needs to learn the structure of the sequence,
e.g. what each token represents. In comparison, piano rolls
with a fixed time step where all elements represent the same
object tend to have higher performances with LSTMs.

4.5 Model Parameter Efficiency

We evaluate some representative models by varying their
capacity, i.e. number of parameters. More specifically, we
experiment with 4, 8, 32 and 64 number of features per head
for the Transformer, and 16, 32, 48, 64, 96 and 128 neurons
in the hidden layers for LSTM. We report F1 scores on the
validation set in Figure 4. We observe that, at comparable
number of parameters, the Transformer trained on the LRT
always lead to higher F1 scores than the compared models.
This demonstrates that the rhythmic information embedded
in our rhythmic tree not only results in shorter sequences,
but also can be leveraged by smaller models for better or on
par performance compared to existing works.

4.6 Training Samples Efficiency

Finally, we evaluate how representation affects the amount
of data needed to train our models. We compare the same
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Figure 5: F1 scores on the validation set vs. percentage of
training samples used. Transformers trained on LRT exhibit
a less severe performance drop when the number of training
samples decreases compared to existing models.

models as in Section 4.5 and train them with a random
subset of 75%, 50%, 25% and 10% of the training set. F1
scores on the validation set are reported in Figure 5. We ob-
serve that the Transformer model trained with the linearized
rhythmic tree and the tree-based positional encoding con-
sistently outperforms the structured tokenizer and the piano
roll. The performance drop between 100% and 75% is
minimal, and overall the LRT-based Transformer degrades
more gracefully when the number of training samples de-
creases compared to the other models. This underlines the
relevance of the LRT, that encodes higher level musical
information and better represents the invariance of musical
style to spurious variations in the input MIDI file, such as
slight changes in timings or velocity.

5. CONCLUSION AND FUTURE WORK

We evaluated different representations of MIDI data for
drumming style classification. We introduced a new rep-
resentation based on the linearization of a rhythmic tree
obtained by parsing a MIDI file using a musical grammar.
This representation provides richer features while being
more compact than traditional piano rolls or tokenization
strategies. Associated with a Transformer architecture using
a tree-based positional encoding, we show that this repre-
sentation achieves style classification performance on par
with the best models from the literature with much fewer pa-
rameters. We also provide evidence that our representation
is more resilient when trained on smaller datasets.

Future works involve extending this tree-based represen-
tation beyond homophonic input, e.g. for polyphonic piano
pieces. Building the parsing tree could also be achieved on
music scores, making it possible to directly classify scores
at the mere symbolic level. In addition, we would like to
evaluate this approach on more diverse tasks, as representa-
tion could be beneficial not only for discriminative models,
but also for generative models, e.g. in music generation
tasks, to produce syntactically correct performances with
respect to the specified grammar [33].

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

585



6. ACKNOWLEDGEMENTS

We thank Florent Jacquemard for his work on qparse,
fruitful discussions on the design of the rhythmic grammar
for drums and advice throughout this project. Additional
thanks are dedicated to Lydia Rodriguez de la Nava for her
help in adapting qparse to drums rhythm parsing.

7. REFERENCES

[1] Z. Cataltepe, Y. Yaslan, and A. Sonmez, “Music
genre classification using MIDI and audio features,”
EURASIP Journal on Advances in Signal Processing,
vol. 2007, pp. 1–8, 2007.

[2] C. McKay and I. Fujinaga, “jSymbolic: A feature ex-
tractor for MIDI files.” in ICMC, 2006.

[3] M. S. Cuthbert, C. Ariza, and L. Friedland, “Feature
extraction and machine learning on symbolic music
using the music21 toolkit.” ser. Proceedings of the 12th
International Society for Music Information Retrieval
Conference, 2011, pp. 387–392.

[4] F. Simonetta, A. Llorens, M. Serrano, E. García-
Portugués, and Á. Torrente, “Optimizing feature ex-
traction for symbolic music,” Proceedings of the 24th

International Society for Music Information Retrieval

Conference, 2023.

[5] Q. Kong, K. Choi, and Y. Wang, “Large-scale
midi-based composer classification,” arXiv preprint

arXiv:2010.14805, 2020.

[6] J. Gillick, A. Roberts, J. Engel, D. Eck, and D. Bam-
man, “Learning to groove with inverse sequence trans-
formations,” in International Conference on Machine

Learning (ICML), 2019.

[7] N. Fradet, J.-P. Briot, F. Chhel, A. El Fal-
lah Seghrouchni, and N. Gutowski, “MidiTok: A python
package for MIDI file tokenization,” in Extended Ab-

stracts for the Late-Breaking Demo Session of the 22nd

International Society for Music Information Retrieval

Conference, 2021.

[8] H. Zhang, E. Karystinaios, S. Dixon, G. Widmer, and
C. E. Cancino-Chacón, “Symbolic Music Representa-
tions for Classification Tasks: A Systematic Evaluation,”
Milan, Italy, pp. 848–858, Nov. 2023.

[9] G. Wiggins, E. Miranda, A. Smaill, and M. Harris, “A
Framework for the Evaluation of Music Representation
Systems,” Computer Music Journal, vol. 17, Oct. 1993.

[10] B. Wang and Y.-H. Yang, “PerformanceNet: Score-
to-Audio Music Generation with Multi-Band Convo-
lutional Residual Network,” Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 33, no. 01, pp.
1174–1181, Jul. 2019.

[11] F. Foscarin, K. Hoedt, V. Praher, A. Flexer, and G. Wid-
mer, “Concept-Based Techniques for "Musicologist-
friendly" Explanations in a Deep Music Classifier.” [ob-
ject Object], 2022.

[12] G. Velarde, T. Weyde, C. E. Cancino-Chacón, D. Mered-
ith, and M. Grachten, “Composer Recognition Based on
2D-Filtered Piano-Rolls,” in International Society for

Music Information Retrieval Conference, Aug. 2016.

[13] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. M.
Shazeer, I. Simon, C. Hawthorne, A. M. Dai, M. Hoff-
man, M. Dinculescu, and D. Eck, “Music Transformer:
Generating Music with Long-Term Structure,” in Inter-

national Conference on Learning Representations, Sep.
2018.

[14] S. Oore, I. Simon, S. Dieleman, D. Eck, and K. Si-
monyan, “This time with feeling: Learning expressive
musical performance,” Neural Computing and Applica-

tions, vol. 32, no. 4, pp. 955–967, Feb. 2020.

[15] G. Hadjeres and L. Crestel, “The Piano Inpainting Ap-
plication,” ArXiv, Jul. 2021.

[16] N. Fradet, N. Gutowski, F. Chhel, and J.-P. Briot, “Byte
pair encoding for symbolic music,” in Proceedings of

the 2023 Conference on Empirical Methods in Natural

Language Processing, H. Bouamor, J. Pino, and K. Bali,
Eds. Singapore: Association for Computational Lin-
guistics, Dec. 2023, pp. 2001–2020.

[17] Y.-S. Huang and Y.-H. Yang, “Pop Music Transformer:
Beat-based Modeling and Generation of Expressive Pop
Piano Compositions,” Proceedings of the 28th ACM In-

ternational Conference on Multimedia, pp. 1180–1188,
Oct. 2020.

[18] C. Hawthorne, A. Huang, D. Ippolito, and D. Eck,
“Transformer-nade for piano performances,” in NIPS

2nd Workshop on Machine Learning for Creativity and

Design, 2018.

[19] J. E. Hopcroft and J. D. Ullman, “Introduction to
automata theory, languages and computation,” 1979.
[Online]. Available: https://api.semanticscholar.org/
CorpusID:31901407

[20] Y. Amagasu, F. Jacquemard, and M. Sakai, “Tokeniza-
tion of MIDI Sequences for Transcription,” in 9th Inter-

national Conference on Technologies for Music Nota-

tion and Representation (TENOR 2024), Apr. 2024.

[21] C. Agon, K. Haddad, and G. Assayag, “Representa-
tion and rendering of rhythm structures,” in Second

International Conference on Web Delivering of Music,

2002. WEDELMUSIC 2002. Proceedings., Dec. 2002,
pp. 109–113.

[22] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

586



and Computation in Music: 5th International Confer-

ence, MCM 2015, vol. 9110. Springer, Jun. 2015,
p. 12.

[23] F. Foscarin, F. Jacquemard, P. Rigaux, and M. Sakai, “A
Parse-based Framework for Coupled Rhythm Quanti-
zation and Score Structuring,” in MCM 2019 - Mathe-

matics and Computation in Music, vol. Lecture Notes
in Computer Science. Springer, Jun. 2019.

[24] M. Digard, F. Jacquemard, and L. Rodriguez-de la
Nava, “Automated Transcription of Electronic Drumk-
its,” in 4th International Workshop on Reading Music

Systems (WoRMS), ser. Proceedings of the 4th Interna-
tional Workshop on Reading Music Systems, online,
Spain, Nov. 2022.

[25] F. Jacquemard and L. Rodriguez de La Nava, “Sym-
bolic Weighted Language Models, Quantitative Parsing
and Automated Music Transcription,” in CIAA 2022 -

International Conference on Implementation and Appli-

cation of Automata, ser. Lecture Notes in Computer Sci-
ence, Vol 13266, P. Caron and L. Mignot, Eds. Rouen,
France: Springer, Jun. 2022, pp. 67–79.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. ukasz Kaiser, and I. Polo-
sukhin, “Attention is All you Need,” in Advances in

Neural Information Processing Systems, vol. 30. Cur-
ran Associates, Inc., 2017.

[27] V. Shiv and C. Quirk, “Novel positional encodings to
enable tree-based transformers,” in Advances in Neu-

ral Information Processing Systems, vol. 32. Curran
Associates, Inc., 2019.

[28] H. Peng, G. Li, Y. Zhao, and Z. Jin, “Rethinking Posi-
tional Encoding in Tree Transformer for Code Repre-
sentation,” in Proceedings of the 2022 Conference on

Empirical Methods in Natural Language Processing,
Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds. Abu
Dhabi, United Arab Emirates: Association for Compu-
tational Linguistics, Dec. 2022, pp. 3204–3214.

[29] W. Goebl, “Melody lead in piano performance: Expres-
sive device or artifact?” The Journal of the Acoustical

Society of America, vol. 110, pp. 563–72, Aug. 2001.

[30] S. Hochreiter and J. Schmidhuber, “Long Short-term
Memory,” Neural computation, vol. 9, pp. 1735–80,
Dec. 1997.

[31] A. Graves and J. Schmidhuber, “Framewise phoneme
classification with bidirectional LSTM networks,” in
Proceedings. 2005 IEEE International Joint Conference

on Neural Networks, 2005., vol. 4, Jul. 2005, pp. 2047–
2052 vol. 4.

[32] I. Loshchilov and F. Hutter, “Decoupled Weight Decay
Regularization,” in International Conference on Learn-

ing Representations, Sep. 2018.

[33] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato,
“Grammar Variational Autoencoder,” in Proceedings of

the 34th International Conference on Machine Learning.
PMLR, Jul. 2017, pp. 1945–1954.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

587



NESTED MUSIC TRANSFORMER: SEQUENTIALLY DECODING
COMPOUND TOKENS IN SYMBOLIC MUSIC AND AUDIO GENERATION

Jiwoo Ryu1 Hao-Wen Dong2 Jongmin Jung1 Dasaem Jeong3

1Dept. of Artificial Intelligence, 3Dept. of Art & Technology, Sogang University, Seoul, South Korea
2University of California San Diego, US

{judejiwoo, jongmin, dasaemj}@sogang.ac.kr, hwdong@ucsd.edu

ABSTRACT

Representing symbolic music with compound tokens, where

each token consists of several different sub-tokens repre-

senting a distinct musical feature or attribute, offers the

advantage of reducing sequence length. While previous

research has validated the efficacy of compound tokens in

music sequence modeling, predicting all sub-tokens simul-

taneously can lead to suboptimal results as it may not fully

capture the interdependencies between them. We intro-

duce the Nested Music Transformer (NMT), an architecture

tailored for decoding compound tokens autoregressively,

similar to processing flattened tokens, but with low memory

usage. The NMT consists of two transformers: the main de-

coder that models a sequence of compound tokens and the

sub-decoder for modeling sub-tokens of each compound to-

ken. The experiment results showed that applying the NMT

to compound tokens can enhance the performance in terms

of better perplexity in processing various symbolic music

datasets and discrete audio tokens from the MAESTRO

dataset.

1. INTRODUCTION

The effectiveness of the autoregressive language model be-

comes dominant in generative tasks in various domains,

including music. The language model has been the most

widely used generative model in symbolic music gener-

ation [1–4]. After the success of vector quantization or

residual vector quantization [5], the language model is also

widely applied to audio-domain music generation [6–8].

The power of the language model comes from its au-

toregressive modeling of sequential information. Once the

data is flattened to a sequence of discrete tokens, the lan-

guage model can be applied in a straightforward manner.

There have been many successive works on representing

symbolic music data in a sequence of flattened tokens, such

as MIDI-like encoding [9] or REMI [3].

However, a limitation of this approach is that the se-

quence length is quite lengthy, with the average number

© J. Ryu, H-W. Dong, J. Jung, and D. Jeong. Licensed

under a Creative Commons Attribution 4.0 International License (CC

BY 4.0). Attribution: J. Ryu, H-W. Dong, J. Jung, and D. Jeong,

“Nested Music Transformer: Sequentially Decoding Compound Tokens in

Symbolic Music and Audio Generation”, in Proc. of the 25th Int. Society

for Music Information Retrieval Conf., San Francisco, United States, 2024.

Figure 1: Diagram of the nested architecture with three

different methods for predicting sub-tokens.

of tokens for pieces within the Lakh MIDI dataset [10]

reaching 14,647. To overcome this limitation, the Com-

pound Word Transformer [4] proposed an encoding scheme

named Compound word that represents symbolic music as

a sequence of compound tokens, in which several musi-

cal features or attributes are encoded into a single multi-

dimensional token. By grouping musical features into two

different compound token types, metric and note, Com-

pound word shortens the sequence length to less than half

of what is encoded with REMI as depicted in Figure 2. Sim-

ilarly, Multitrack Music Transformer [11] employed a com-

pound token scheme that encodes beat position, instrument,

pitch, and duration into a single token, resulting in a se-

quence length approximately one-third of that encoded with

REMI. Furthermore, note-level compound tokens demon-

strated a clear advantage in performance for discriminative

tasks such as identifying the genre or style of music and

suggesting accompaniments [12].

Despite these attempts to reduce the sequence length by

packing musical features into a single compound token for

various purposes, encoding schemes which flatten tokens

like REMI are still dominant in symbolic music generation.

Both [4] and [11] in symbolic music generation showed that

the generation with REMI was favored in their listening

tests. One of the causes is that the previous models are

designed to predict multiple features in a parallel [11] or

partial-sequential [4] way without considering interdepen-

dencies between different musical features encoded within
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Figure 2: An example illustrating the proposed representations, note-based (NB) encoding (c) NB-Metric1st and (d)

NB-Pitch1st, alongside REMI and Compound word. All encodings represent the same piece of music by using five musical

features. Specifically, REMI and Compound word were not originally designed for multi-instrument pieces, which is why

we renamed the encodings with “+I” to (a) and (b). Here, k denotes the number of notes and sequence length for NB, while

r and c represent the ratios for REMI and Compound word, with values greater than 1.

the compound token, as depicted in Figure 1.

To address this challenge, we introduce a novel decoding

framework called the Nested Music Transformer (NMT).

The primary goal of this framework is to decode compound

tokens in a fully sequential manner while maintaining ef-

ficient memory usage. The proposed NMT combines two

distinct cross-attention architectures within its sub-decoder:

the intra-token decoder and the Embedding Enricher. The

intra-token decoder autoregressively decodes the sub-tokens

of a single compound token, while the Embedding Enricher

updates embedding of each sub-token by attending to the

hidden states of previous compound tokens.

We demonstrated that our proposed architecture achieves

performance comparable to that of flattening-based mod-

els, while requiring fewer computational resources in terms

of GPU memory and training time. This was confirmed

through both quantitative evaluations and subjective listen-

ing tests for symbolic music generation. Furthermore, our

experiments showed that the NMT and other nested archi-

tectures perform similarly to strong baseline models when

generating audio samples using discrete audio tokens. All

source code, pretrained models and generated samples are

available at https://github.com/JudeJiwoo/nmt.

2. NOTE-BASED ENCODING

Before we introduce the Nested Music Transformer, we

explain Note-based encoding (NB), a compound token en-

coding scheme that we utilized as the primary encoding

method. NB stands out for its ability to encapsulate the

most comprehensive set of musical features within a single

compound token, as illustrated in Figure 2.

2.1 Musical Features in Symbolic Encoding

As depicted in Figure 2, REMI, Compound word, and NB

utilize several musical features to represent music pieces.

We used a total of eight features: beat (position), pitch, and

duration were essential, while instrument, chord, tempo,

and velocity were selectively included based on the dataset

characteristics. To encode other information, such as mea-

sure boundary and change in time signature, we also em-

ployed one additional feature Type or Metric following [4].

In Compound word (CP), musical features are catego-

rized into two groups: “metrical” and “note.” Consequently,

the encoding employs two Type tokens to specify the group

of each compound token. Unlike CP, NB does not require

group indicator tokens however, since each note token in

NB is assigned a beat, unlike REMI and CP, we designed

the Metric feature to encode changes in the metrical struc-

ture. This allows the model to efficiently represent metrical

changes within a single sub-token. Specifically, the Metric

feature indicates whether the current note introduces a new

time signature, measure, or beat, or continues the previous

metrical context. For this purpose, we define four distinct

values for the Metric feature vocabulary, each representing a

different combination of metrical changes or continuations.

The Beat indicates the relative position of each note

within a measure. The Chord was derived using a rule-

based algorithm from [4]. The Tempo was set to follow an

exponential scale for value changes, with this application

varying across datasets. The Instrument feature specifies

the instrument playing the note. In order to keep the vari-

ety of instruments manageable, we adopted the approach

suggested in [11], trimming to 61 types of instruments. The
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Pitch feature utilized 128 categories of pitch values repre-

sented in MIDI. The Duration refers to the length of time

each note is played. The Velocity represents MIDI velocity

(dynamics) of each note.

For the NB encoding method, a music piece P with K

number of notes, P = {n1, n2, n3, ..., nK} can be concep-

tualized as a sequence of compound tokens, denoted by

Pnb = {x1, x2, x3, . . . , xK}, wherein each event xi is a

compound token comprising up to eight sub-tokens in the

orders like followings:

(xmetric
i , xbeat

i , xchord
i , x

tempo
i , xinst

i , x
pitch
i , xdur

i , xvel
i )

2.2 Compound Shift

By reordering the sub-tokens within a compound token,

we can position the target sub-token to be predicted first.

This adjustment enhances the objective metric of the target

sub-token, as it benefits from being processed primarily

by the more powerful main decoder rather than the sub-

decoder. Each event xi which is shifted to pitch-first option

comprises features like following:

(xpitch
i−1 , x

dur
i−1, x

vel
i−1, x

metric
i , xbeat

i , xchord
i , x

tempo
i , xinst

i )

Note that the order of prediction of each sub-token in the

entire flattened sequence does not change, and only the

grouping boundary for a single compound token is shifted

as depicted in Figure 2 (d). We will refer to the non-shifted

representation as NB-MF and the shifted version as NB-PF.

3. NESTED MUSIC TRANSFORMER

In this section, we introduce the architecture of Nested

Music Transformer (NMT), which is designed to handle

compound tokens. The structure is composed of three pri-

mary components: token embedding, main decoder, and

sub-decoder. The token embedding component summa-

rizes the embeddings of each sub-token into a single vector

which represents each compound token. Subsequently, the

main decoder processes the sequence of these vectors us-

ing a decoder-only transformer architecture. Lastly, the

sub-decoder decodes sub-tokens from the output of the

main decoder. The proposed NMT integrates two distinct

cross-attention architectures within its sub-decoder: the

intra-token decoder and the Embedding Enricher. As the

NMT generates sub-tokens, their embeddings are updated

with contextual information by the Embedding Enricher, as

illustrated in Figure 3.

3.1 Token Embedding & Main Decoder

To summarize multiple embeddings from each sub-token,

we simply sum them along the sub-token axis following [6,

11]. Additionally, we integrate learnable absolute positional

embedding [13] to denote the position of compound tokens

within the sequence. Specifically, the i-th compound token

xi in the sequence is converted into a vector through the

token embedding process and aggregated with its positional

embedding. This combined vector is then fed into the main

decoder, producing the output of the main decoder, also

known as the hidden vector hi.

3.2 Sub-decoder with Cross Attention

The main goal of the sub-decoder is to obtain proper hidden

state to predict output sub-token s
j
i which is j-th sub-token

of i-th compound token, based on output of the main de-

coder hi and the preceding output sub-tokens s0i , . . . , s
j−1
i

that are predicted before.

Many previous works have suggested using a similar

sub-decoder to sequentially predict the sub-token sequence,

such as updating hidden state by concatenating with the

embedding of sub-tokens [4], using RNN [14] or causal

self-attention [8]. However, through comparative experi-

ments presented in Section 4, we found that applying cross-

attention is one of the most effective way to model the

compound token sequence in symbolic music.

The cross-attention-based sub-decoder operates by itera-

tively concatenating a key/value pair sequence K/Vi with

embeddings of sub-tokens Emb(si), starting with an initial

key/value sequence that contains only the beginning-of-

sequence BOS token. For each sub-token to be sampled,

the architecture computes multi-head scaled dot-product

cross-attention between the query sequence, consisting of

positionally encoded output of the main decoder hi, and

the current key/value sequence. The positional encoding

of hi ensures that the hidden vector has a distinct bias for

predicting target sub-token. From the attention output a
j
i ,

the matrix W
j
logits is applied to create logits. This iterative

process continues until all sub-tokens are sampled. The

process can be expressed as follows:

Query
j
i = PositionalEncoding(hi), (1)

K/V
j
i =

{

BOS if j = 0,

Concat(BOS, . . . ,Emb(sj−1
i )) if j > 0,

,

(2)

a
j
i = Cross-Attention(Query

j
i ,K/V

j
i ), (3)

s
j
i = Sampling(Softmax(ajiW

j
logits)) (4)

3.2.1 Embedding Enricher

Since the embedding of a sub-token is a shallower vector

compared to the output of the main decoder, we designed a

cross-attention architecture called the Embedding Enricher.

This architecture updates embedding of sub-token Emb(si)
with a context sequence derived from the prior outputs of

the main decoder hi−(w−1), ..., hi, where w represents the

window size.

Contexti = Concat(BOS, hi−(w−1), ..., hi), (5)

Enrichedi = Cross-Attention(Emb(si),Contexti) (6)

In the Nested Music Transformer, the output vector

Enrichedi replaces the original embedding of sub-tokens

before being concatenated into the key/value pair sequence

in Equation (2) as depicted in Figure 3. These context-

enriched embeddings allow the architecture to process at-

tention with deeper vectors than the original embeddings,

resulting in better performance on the objective metric com-

pared to the standalone cross-attention-based sub-decoder,

as demonstrated in Table 1.
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Figure 3: Illustrations of the proposed Nested Music Transformer (NMT) and other sub-decoder structures

3.3 Other Comparative Structures

3.3.1 Feed-forward-based Architecture

The Feed-forward-based sub-decoder, inspired by [4], iter-

atively updates the output of the main decoder to predict

sub-tokens. It concatenates the previously used hidden state

with the embedding of the last sampled output to predict

the next sub-token.

3.3.2 RNN-based Architecture

RNN-based sub-decoder capitalizes on the sequential na-

ture of recurrent neural network to update hidden state. The

initial input sequence and hidden state utilize the output

of the main decoder hi, and through the iteration the em-

bedding of the sampled output is appended to the input

sequence until all the sub-tokens are generated.

3.3.3 Self-attention-based Architecture 1

The self-attention-based sub-decoder aims to get the se-

quence vector Seqi by iteratively concatenaing it with the

embeddings of the sampled output Emb(si). The initial

sequence vector consists of the output of the main decoder

hi and BOS token to ensure that the initial attention values

can be properly processed. This sequence vector Seqi is

then used as the query, key, and value in the self-attention

mechanism. The process can be summarized as follows:

Seq
j
i =

{

Concat(hi, BOS) if j = 0,

Concat(hi, BOS, ...,Emb(sj−1
i )) if j > 0,

,

(7)

a
j
i = Self-Attention(Seq

j
i ), (8)

s
j
i = Sampling(Softmax(ajiW

j
logits)) (9)

1 The proposed self-attention-based sub-decoder operates differently
from the method described in [8]. Unlike ours, [8] used hi as a base of ev-
ery vector in the sequence, which is updated by the embedding of generated
sub-tokens, similar to the operation of our proposed cross-attention-based
sub-decoder. Experimental results indicate that the architecture in [8]
outperforms our self-attention-based architecture and delivers comparable
results to our cross-attention-based architecture.

3.4 Self-attention versus Cross-attention

The preference for cross-attention over self-attention arises

from the observation that the output of the main decoder,

hi, already contains sufficient information to predict sub-

tokens, as demonstrated in the parallel prediction method

used in the Multitrack Music Transformer [11]. On the other

hand, the embedding of the sampled output is comparatively

shallow, lacking the previous context despite having the

same dimension as hi. Additionally, since both attention

layers use a residual connection for the vectors used as

keys, utilizing hi as the key facilitates a direct gradient flow.

Therefore, updating hi as the key with cross-attention can

be more advantageous than updating the embedding of the

sampled sub-token with self-attention.

3.5 Applying to Audio Tokens

MusicGen [6] has employed a four-level residual vector

quantization technique for a single token, which bears simi-

larity to using four musical features or sub-tokens for com-

pound tokens in symbolic music. Given that the optimal

architecture, particularly for decoding compound features in

a fully-sequential manner, is still being explored for audio

tokens [8], we employed the Nested Music Transformer on

discrete audio tokens to assess the potential of our proposed

architecture.

4. EXPERIMENTS

4.1 Dataset Preparation

We selected four datasets to conduct our experiments on

symbolic music generation: Pop1k7 [4], Pop909 [15], the

Symbolic Orchestral Database (SOD) [16], and the clean

version of the Lakh MIDI Dataset (LMD clean) [10], which

is free of data leakage problems. During preprocessing,

MIDI files without a time signature or with excessive or

insufficient length were filtered out, and we specifically

selected pieces featuring a minimum of four instruments

for LMD clean. Note quantization varied across datasets:

twelve resolutions per beat for SOD and four resolutions
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SOD Lakh Pop1k7 Pop909

GPU mem.(GB) Time(s) / iter. Token Len. Mean↓ Beat Pitch Mean Beat Pitch Mean Beat Pitch Mean Beat Pitch

REMI [3] 19.90 0.461 6,638(±7,518) 0.474 0.229 0.753 0.294 0.293 0.408 1.087 0.470 1.138 0.716 0.368 0.984

CP [4] 7.93 0.119 3,230(±3,480) 0.604 0.257 0.971 0.361 0.288 0.527 1.172 0.495 1.219 0.911 0.410 1.220

CP* + NMT 16.13 0.224 – 0.545 0.237 0.864 0.327 0.288 0.466 1.103 0.483 1.154 0.724 0.334 0.969

NB-MF + Par. [11] 8.40 0.123 2,398(±2,764) 0.712 0.466 1.084 0.431 0.431 0.604 1.480 0.871 1.802 1.003 0.674 1.393

NB-MF + NMT 16.14 0.215 – 0.567 0.246 0.906 0.324 0.276 0.466 1.168 0.503 1.304 0.803 0.264 1.114

NB-PF + Par. 8.30 0.120 – 0.632 0.565 0.913 0.376 0.502 0.481 1.396 0.998 1.604 0.986 0.824 1.359

NB-PF + CA 14.74 0.174 – 0.564 0.276 0.867 0.305 0.287 0.424 1.161 0.538 1.244 0.767 0.357 1.052

NB-PF + NMT 16.13 0.217 – 0.549 0.263 0.855 0.306 0.285 0.427 1.149 0.515 1.243 0.771 0.345 1.090

NB-PF + FF 8.12 0.122 – 0.607 0.361 0.881 0.338 0.372 0.449 1.280 0.635 1.396 0.850 0.431 1.121

NB-PF + RNN 9.77 0.144 – 0.591 0.300 0.915 0.315 0.297 0.437 1.166 0.531 1.257 0.792 0.366 1.077

NB-PF + SA 15.67 0.181 – 0.574 0.287 0.902 0.311 0.287 0.431 1.204 0.553 1.320 0.849 0.417 1.150

CP*: Compound word representation NB-MF: metric-first NB NB-PF: pitch-first NB NMT: cross-attention-based sub-decoder + Embedding Enricher CA:

cross-attention-based sub-decoder FF: Feed-forward-based sub-decoder SA: self-attention-based sub-decoder

Table 1: Model comparison on their average NLL loss for symbolic music. The GPU memory usage and iteration times for

each model in SOD is included. Additionally, we included the average token length and standard deviation across all pieces

in SOD.

per beat for the others. We also filtered out MIDI files

with expressive tempo and timing. We split the prepared

data, reserving 10% for validation and 10% for testing.

Additionally, augmentation techniques for pitch and chord

involved random semitone shifts s ∈ Z within a range of

s ∼ U(−5, 6).

4.2 EnCodec for MAESTRO

For discrete audio tokens, we prepared MAESTRO

dataset [9], which has 200 hours piano performance au-

dio files. We fine-tuned the audio tokenizer proposed by [6]

with MAESTRO audio files to create sequences of discrete

audio tokens, each with 30 seconds of length. The sampling

rate of the token is 50 Hz, which means 30 seconds of audio

is represented with 1500 audio tokens, each with 4 different

codebooks.

4.3 Model and Hyperparameter Configuration

The baseline models for symbolic music generation are de-

fined as follows: flattening for REMI [3], partial-sequential

Feed-forward-based sub-decoder for Compound word [4],

and parallel prediction with NB-MF [11]. Additionally, the

delay method proposed by [6] is explored as a baseline for

generating audio tokens, which utilizes rearranged residual

vectors or sub-tokens in a parallel manner. In exploring both

symbolic music and audio token generation, we conducted

experiments using the Nested Music Transformer (NMT)

and various sub-decoder architectures to assess the effec-

tiveness of our proposed model. To ensure a fair comparison

among these models, we aimed for a comparable number of

model parameters, approximately 40 million for symbolic

music and 62 million for discrete audio tokens 2 . To en-

hance efficiency in processing long sequences within the

transformer architecture, we integrated Flash attention [17].

Training the model entailed 100K steps for symbolic

music and 200k for discrete audio tokens, utilizing the

2 Both models have 8 attention heads and a dimension size of 512,
with a single layer for all sub-decoder architectures and an additional
single layer for the Embedding Enricher when using the NMT. However,
they have a total of 12 and 15 decoder layers, respectively.

AdamW optimizer [18], with a segment batch size of 8 and

16 for each task, where β1 were set to 0.9, β2 to 0.95, and a

gradient clipping threshold was set to 1.0. We implemented

a cosine learning rate schedule with a warm-up phase of

2000 or 4000 steps for each task. During this warm-up

phase, the learning rate gradually increased before reaching

its maximum value 1×e−4. To address overfitting concerns,

we applied dataset-specific dropout rates instead of using

early stopping. These dropout rates were chosen to ensure

that the optimal validation loss remained stable until the

end of training. We utilized mixed precision techniques.

4.4 Quantitative Evaluation on Symbolic Music

We evaluated the symbolic music generation task using the

average negative log-likelihood (NLL). However, directly

comparing the loss values across models using different

encoding schemes posed challenges. To address this, we

first adjusted the input sequence length for each encoding

scheme to ensure that the NLL is derived from a similar

amount of context regardless of the encoding scheme. Fur-

thermore, instead of calculating the average NLL as done

during the training steps, we calculated it based on the set

of probabilities of tokens processed with full context. To

achieve this, we used a moving-window method with a win-

dow size equal to the input sequence length to create a set

of overlapping input sequences.

Secondly, we adjusted the probabilities for each sub-

token in a compound token to account for discrepancies

between REMI and other encoding schemes like CP and

NB. REMI omits redundant tokens such as repetitive posi-

tions (beat), as depicted in Figure 2. Thus, when predicting

a new note, a model based on REMI must decide whether

to add the note at a new position by predicting a new beat

token, or to add the note at the same position by predicting

a pitch token. In contrast, CP and NB, due to the nature

of their encoding schemes, split this prediction into two

steps: first, they determine the beat position, and then they

predict the pitch. This means they have more prior infor-

mation when predicting the pitch token since changes in

beat are already fixed and provided as a condition. To ad-
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FAD-uncon↓ FAD-cond↓ KLD↓ mean NLL↓

Parallel 0.166 0.206 0.075 4.669

Flatten 0.140 0.176 0.068 4.482

Delay [6] 0.168 0.188 0.066 4.564

Self-attention 0.131 0.186 0.074 4.353

Cross-attention 0.145 0.190 0.065 4.314

NMT 0.165 0.198 0.067 4.318

Table 2: Model comparison for discrete audio tokens

just the probability of sub-tokens in NB and CP, which

differ due to the discrepancy, we accumulated the proba-

bility of each sub-token to the next token in NB or CP if

that sub-token was omitted in its corresponding REMI en-

coding. For example, when predicting a pitch token at the

same beat, P (pitch | context) in REMI can be compared to

P (same_beat | context) × P (pitch | context, same_beat)
in NB or CP.

From the results, we observe several key tendencies.

First, applying the Nested Music Transformer (NMT) en-

hances the overall performance across all types of com-

pound token encodings, including previously suggested

schemes like CP and NB-MF (similar to [11]). Second, the

NMT demonstrates a clear advantage in using the cross-

attention-based sub-decoder and the Embedding Enricher

compared to other baseline architectures. Finally, our pitch-

first NB (NB-PF) encoding outperforms the metric-first NB

(NB-MF) encoding in predicting pitch. This is because the

model can predict the next pitch feature through the main

decoder by leveraging the previously inferred note position

information. Conversely, NB-MF showed lower loss in beat

prediction. This difference arises from which sub-token

relationships are calculated through the main decoder in-

stead of the sub-decoder. Overall, the results indicate that

pitch-first token grouping is an efficient strategy.

4.5 Quantitative Evaluation on Discrete Audio Tokens

We evaluated models with discrete audio tokens using fol-

lowing metrics: Fréchet Audio Distance (FAD), Kullback-

Leibler Divergence (KL), and the mean NLL loss over

sequences. A lower FAD score suggests that the generated

audio is more plausible. To mitigate sample number bias for

the test set, we employed adaptive FAD as proposed by [19],

along with CLAP [20] embeddings for each sample. FAD

scores were computed based on 500 unconditionally gen-

erated samples and 345 samples generated given prompts.

Following [6], we computed the KL-divergence over the

probabilities of the labels between the original and the gen-

erated audio samples. Table 2 shows the evaluation results.

We observe that using a cross-attention-based sub-

decoder or the NMT achieves better NLL compared to

a self-attention-based sub-decoder. However, the tendency

differs from that seen in symbolic music. Adding the Em-

bedding Enricher did not significantly improve performance

in the audio domain. We hypothesize that this disparity

arises from the distinct characteristics of tokens in both

domains. In the symbolic domain, each musical feature

requires context to form sufficient semantic information,

whereas each token in the audio domain, with a 2048 vocab-

Coherence↑ Richness↑ Consistency↑ Overall↑

Mean(±margin of error)

REMI [3] 3.18 ± 0.20 3.33 ± 0.18 3.33 ± 0.18 3.17 ± 0.18

CP [4] 2.94 ± 0.22 3.24 ± 0.18 2.97 ± 0.20 3.06 ± 0.20

CP + NMT 3.22 ± 0.19 3.35 ± 0.17 3.39 ± 0.17 3.32 ± 0.17

NB-PF + NMT 3.37 ± 0.19 3.44 ± 0.18 3.37 ± 0.19 3.36 ± 0.20

Table 3: Results of subjective listening test, presenting

mean values with 95% confidence intervals.

ulary size codebook, contains more standalone information.

This observation suggests potential avenues for future re-

search, such as exploring effective methods to integrate the

semantic information of symbolic music with discrete audio

tokens.

4.6 Subjective Listening Test

For the subjective listening test, we used the Symbolic

Orchestral Database (SOD) [16] to generate MIDI sam-

ples given four-measure prompts. We carefully selected

eight prompts from the test split and generated continuation

results using four different models: two baseline models

(REMI and CP) and two proposed models (CP + NMT and

NB-PF + NMT). We applied different sampling methods to

each model. 3 We conducted the test with 29 participants,

asking them to evaluate the generated outputs based on

three criteria: Coherence (the naturalness of transitions),

Richness (the variety of harmony and rhythm), and Con-

sistency (the lack of errors in composition), as well as an

Overall rating for the perceptual quality of the samples as a

whole.

As summarized in Table 3, our proposed models gener-

ated samples of comparable quality to REMI, outperform-

ing the baseline CP. The smaller gap between REMI and

NB + NMT in the subjective listening test compared to the

teacher-forcing NLL evaluation suggests that NB + NMT

may be more robust to exposure bias during sequence gen-

eration. Another possible explanation is that compound

tokens are more effective at capturing the given context, as

also demonstrated in the experiments of [4].

5. CONCLUSION

In summary, this work presents the Nested Music Trans-

former, an advanced architecture that decodes compound

tokens in music generation, applicable to both in the sym-

bolic and audio domain. Our architecture distinguishes

itself by addressing the twin challenges of sequence length

and feature interdependencies through a nested transformer

setup that efficiently manages GPU resources and training

processes. The experiments validate the competitiveness of

our model over previous methods, achieving on par results

in both objective metrics and subjective listening tests while

lowering training costs.

3 During the generation process, we used nucleus sampling (top-p
sampling) with p = 0.99. Our proposed models were sensitive to the
choice of the temperature parameter, where an improperly selected temper-
ature would result in excessive repetition regardless of encoding schemes.
Therefore, we searched for the optimal temperature value for each model
within the range of [1.0, 1.3] on the validation set.
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ABSTRACT

Music classification is a prominent research area within

Music Information Retrieval. While Deep Learning meth-

ods can adequately perform this task, their classification

space remains fixed once trained, which conflicts with the

dynamic nature of the ever-evolving music landscape. This

work explores, for the first time, the application of Con-

tinual Learning (CL) in the context of music classifica-

tion. Specifically, we thoroughly evaluate five state-of-

the-art CL approaches across four different music classi-

fication tasks. Additionally, we showcase that a founda-

tion model might be the key to CL in music classification.

To that end, we study a new approach called Pre-trained

Class Centers, which leverages pre-trained features to cre-

ate fixed class-center spaces. Our results reveal that exist-

ing CL methods struggle when applied to music classifi-

cation tasks, whereas this simple method consistently out-

performs them. This highlights the need for CL methods

tailored specifically for music classification.

1. INTRODUCTION

Music Information Retrieval (MIR) is a multidisciplinary

field dedicated to retrieving information from music

sources [1]. Within the MIR domain, music classifica-

tion stands as one of the most widespread research top-

ics [2]. It involves the categorization of music into vari-

ous predefined classes, with these categories defining the

ultimate task at hand. There is a diverse range of classifi-

cation tasks, including genre classification [3], vocal tech-

nique identification [4], instrument classification [5], and

singer identification [4], among others. These tasks are es-

sential for organizing and retrieving music efficiently, en-

abling applications such as recommender systems and mu-

sic search engines to better serve the needs of users in the

ever-evolving music landscape [6].

Traditional music classification approaches predomi-

nantly relied on signal processing methods, accompanied

© P. González-Barrachina, M. Alfaro-Contreras, and J.

Calvo-Zaragoza. Licensed under a Creative Commons Attribution 4.0 In-

ternational License (CC BY 4.0). Attribution: P. González-Barrachina,

M. Alfaro-Contreras, and J. Calvo-Zaragoza, “Continual Learning for

Music Classification”, in Proc. of the 25th Int. Society for Music In-

formation Retrieval Conf., San Francisco, United States, 2024.

by heuristics and handcrafted features, to categorize mu-

sic data [7, 8]. However, these schemes often struggled

to capture the complex and nuanced aspects of musical

content, thus limiting their practical application. With the

rise of Deep Learning (DL) strategies, alternative solutions

emerged to ease this task [9,10]. DL models address these

issues by automatically learning hierarchical representa-

tions from the data itself, thereby improving the accuracy

and flexibility of music classification systems.

However, DL models become static once they are

trained; their feature space is fixed. Consequently, they

may struggle or fail to accommodate new classes. This

does not align well with the dynamic nature of music

itself—characterized by evolving genres, emerging artists,

and shifting musical trends. We could approach this chal-

lenge in two ways: either (i) retrain the model from scratch

when new music data is introduced, which is computation-

ally expensive, inefficient, and not always possible due to

privacy or storage issues [11], or (ii) fine-tune the model

only on the newly acquired music data. The latter alterna-

tive is known to lead to the so-called “catastrophic forget-

ting”, where the knowledge acquired from previous data

diminishes as new information is incorporated [12]. This

situation highlights the need for robust and adaptable mu-

sic classification systems that can be updated with just new

data.

Continual Learning (CL) promises a solution to catas-

trophic forgetting by enabling models to gradually incor-

porate new knowledge without forgetting previously ac-

quired information [11, 13]. Fig. 1 graphically depicts this

scenario. This adaptability is vital for music classifiers to

stay up-to-date, ensuring they can accurately categorize a

continuously evolving musical landscape. While some pre-

vious works in zero-shot [14] and few-shot learning [15]

propose methods for recognizing new, unseen classes, they

do not maintain nor update the knowledge acquired in one

session in subsequent sessions. In contrast, our work intro-

duces the use of CL in music classification, with the goal

of not only recognizing unseen classes but also retaining

this knowledge over time.

CL approaches are generally classified according to the

following taxonomy [16]: (i) data-centric methods, which

focus on preserving important data from previous tasks

using data replay or data regularization techniques; (ii)

model-centric methods, which focus on model develop-

ment through parameter regularization or model structure
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Figure 1. Graphical representation of class-incremental learning for music classification tasks. The process begins with

Model 1, trained to differentiate some initial classes during session S1. Through a continual learning algorithm, Model 1

preserves its acquired knowledge while incorporating new classes in a subsequent learning session, S2, thus evolving into

Model 2. This iterative learning process continues, enabling the model to progressively expand its repertoire of recognizable

classes.

expansion, i.e., dynamic networks; and, (iii) algorithm-

centric methods, which focus on the learning process itself,

employing knowledge distillation techniques or rectifying

model biases.

In this work, we investigate the applicability of state-

of-the-art CL techniques, originally designed for computer

vision, in the context of music classification tasks. Addi-

tionally, we explore the use of foundation models to in-

troduce a new CL method based on pre-trained represen-

tations to create fixed class-centers, showcasing the utility

and robustness of foundational models. Our results reveal

that existing CL methods, traditionally evaluated on im-

age classification, struggle when applied to music, whereas

our proposed method consistently outperforms them. This

raises questions regarding the effectiveness and transfer-

ability of existing CL techniques to music classification.

Moreover, it prompts us to consider whether leveraging

foundational models might represent a better approach for

addressing the CL paradigm in certain scenarios.

To summarize, the contributions of this work are as fol-

lows: (i) a first-time analysis of the applicability of CL

techniques to music classification tasks, (ii) the introduc-

tion of a simple yet effective CL method that relies on the

generalizability of large pre-trained models, and (iii) exten-

sive experimentation to quantitatively evaluate five differ-

ent CL approaches across four music classification bench-

marks with two different pre-trained feature extractors.

2. METHODOLOGY

In this work, we address the music classification task

from a CL perspective, with a specific focus on Class-

Incremental Learning (CIL). In each learning session, the

model is trained with new audio tracks from a new set

of classes. Ideally, the model should learn to classify the

new classes introduced in each session while retaining its

capacity to classify classes from previous sessions (see

Fig. 1).

Formally, let us assume a sequence of M training ses-

sions {S1, S2, · · · , SM}, where each session has a differ-

ent set of non-overlapping classes. Sm = (Xm, Ym) repre-

sents the m-th incremental step, with Xm containing audio

tracks whose labels belong to Ym, and Ym denoting the la-

bel space of session m, where Ym∩Ym′ = ⊘ for m ̸= m′.

Note that the audios in Xm are in the format [0, 1]lj×c, be-

ing lj the length of the j-th audio. 1 In this work, we con-

sider mono audio signals as input (c = 1), although other

considerations may be applicable. After each session, the

model is evaluated on all seen classes Υm = Y1 ∪ · · ·Ym.

The main objective of CIL is to sequentially build a classi-

fication model capable of classifying all seen classes.

2.1 Classification model

For this learning framework, our classification model con-

sists of a fixed pre-trained model, serving as the feature

extractor, and an out-of-the-box fully connected network,

acting as the downstream task classifier. We use this same

learning framework with different CL strategies to com-

pare their performance. In order to make our experimen-

tation agnostic to a certain degree to the pre-trained model

selected as the feature extractor, we consider two state-of-

the-art pre-trained models:

1. MERT [10] is a recently released foundational

model specifically designed for extracting rich rep-

resentations from music data. It follows a self-

supervised pre-training paradigm that relies on two

teacher models, one for the acoustic aspect and one

for the musical aspect, to generate pseudo-labels for

sequential audio clips. This multi-task paradigm al-

lows for a balanced acoustic and musical representa-

tion learning, guiding a BERT-style transformer en-

coder to better model music audio. Its state-of-the-

art performance across various MIR tasks, including

1 Audio chunks of lj are considered to accommodate different lengths,
as typically done in the literature.
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those relevant to this work, makes it a compelling

choice for our purposes.

2. CLMR [17] adapts the image self-supervised learn-

ing strategy SimCLR [18] to the domain of music.

This method employs contrastive learning to train a

convolutional feature extractor [19] to extract mean-

ingful and transferable representations from music

data. It achieves this by learning to predict sim-

ilar representations for slightly altered versions of

the same audio sample. We consider CLMR to be

a robust classification model for our work, given

its demonstrated effectiveness across various music

classification tasks, along with its lightweight archi-

tecture.

A summary of the characteristics of these two models

can be seen in Table 1. Both of these pre-trained mod-

els use raw audio samples as inputs. We chose them with

the presumption that their differences in architecture and

size would enable us to extract more nuanced insights and

conclusions from our experiments. It is worth noting that,

in order to have comparable results with recent research

works, we adhere to the same evaluation protocol as out-

lined in [10].

Table 1. Overview of the feature extractor models used

in this work, depicting their characteristics (architecture,

number of trainable parameters, input audio length, and

feature embedding size).

Architecture Audio length (s) Embedding Size

MERT
Transformer

(94.9M parameters)
5 764

CLMR
CNN

(2.4M parameters)
2.7 512

2.2 Selected methods

We select a diverse range of state-of-the-art methods in CL,

emphasizing the inclusion of methods from different sub-

types across the entire taxonomy. Specifically, we consider

five CL approaches:

1. Replay aims to prevent catastrophic forgetting by

employing a data-centric approach, which involves

revisiting past data during the learning process [20].

2. GEM adopts a data-centric strategy based on data

regularization to stabilize continuous training. It

constrains the model’s parameter updates to prevent

significant forgetting of previously learned tasks, en-

suring a balanced learning experience over time.

3. EWC employs a model-centric approach through

parameter regularization [21]. It assigns importance

to specific parameters based on their relevance in

previously learned tasks, thereby preventing exces-

sive adjustments during subsequent training on new

tasks.

4. L2P utilizes a model-centric approach based on dy-

namic networks [11]. It aims to learn to prompt

a pre-trained Transformer to adapt it to the new

tasks, managing both task-invariant and task-specific

knowledge while maintaining model plasticity. 2

5. iCaRL adopts an algorithm-centric strategy of

knowledge distillation [22]. It leverages distillation

from frozen models of past learning sessions, com-

bined with data replay, to avoid forgetting.

As a baseline method, we fine-tune the model for each

session without applying a CL strategy, referred to as Fine-

tune in the experiments, following the fine-tuning proto-

col used in state-of-the-art research [11]. This serves as

our lower bound, potentially leading to the strongest oc-

currence of catastrophic forgetting.

2.3 Pre-trained Class Centers

In addition to the CL methods considered, we explore a

novel approach that relies on the generalizability of the

representations of a foundation model. We use this method

to showcase the potential efficacy of using pre-trained

models with self-supervised learning for CL. The idea is

to use the latent representations produced by pre-trained

models to capture the underlying semantics of the data

itself, causing these representations to be distributed in

a way that enables classification. Our approach seems

particularly well-suited for music classification tasks be-

cause there exist publicly available foundation models

(e.g., MERT and CLMR) known for their strong general-

ization capabilities. The proposed method, termed as Pre-

trained Class Centers (PCC), can be separated into three

different stages:

1. Feature Extraction. We extract a pre-trained fea-

ture embedding for each training sample.

2. Prototype Generation. We compute prototype

class-centers by averaging all the feature embed-

dings obtained for each class in a training session

and store them in a prototype buffer.

3. Similarity Calculation. During the inference phase,

the class of a given test audio track is determined

by the class associated with the nearest class-center,

calculated through the Euclidean distance between

the pre-trained feature vector of the test audio and

the class-center prototype.

Although PCC is conceptually simple, it has never been

considered. The method belongs to the data-centric cate-

gory of CL methods because it focuses on leveraging the

generalizability of pre-trained representations. One no-

table advantage is its memory efficiency (only one pro-

totype per class), making it suitable for scenarios with

limited computational resources. Just as important, this

method stores representations rather than the original data,

thus avoiding privacy issues. Furthermore, in PCC, the

training process for each new class is independent of the

other classes, making it a robust method for CL.

2 Given that this method assumes a Transformer architecture as the
backbone, it cannot be evaluated with CLMR.
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3. EXPERIMENTATION

This section encompasses the experimental setup, includ-

ing the music classification tasks, evaluation protocol, and

implementation details.

3.1 Tasks

To conduct an extensive and diverse analysis, we evaluate

the selected CL methods on four distinct music classifica-

tion tasks using three different datasets:

Genre classification estimates the most appropriate

genre for a given song. We use the standard curated split

of the GTZAN dataset [23, 24], which consists of 930 30-

second audio tracks from 10 different genres.

Instrument classification determines the specific mu-

sical instrument present within a given sound. We con-

sider the NSynth dataset [5], which contains 306 000 4-

second audio samples of an instrument playing a single

note. There are 11 instrument classes in this dataset. Due

to the high computational cost associated with the large

size of the training partition, 3 we consider only 5 000
training samples for each class while keeping the valida-

tion and test sets intact.

Singer identification classifies the identity of a given

vocal performer in an audio track. We employ the VocalSet

dataset [4], which comprises 3 613 recordings of variable

length from 20 professional singers performing using dif-

ferent vocal techniques.

Vocal technique detection recognizes the specific

singing technique present within a given audio recording.

We resort to the aforementioned VocalSet dataset, consid-

ering a subset of 10 different singing techniques, consisting

of 1 736 audio samples, similar to referenced work [4].

For all tasks, we consider a sequence of M = 5 training

sessions. Given a task comprised of C different classes, 4

each session will have an equally distributed randomly se-

lected subset of C/M non-overlapping new classes. To

avoid any bias related to the order of the sessions or the

order in which the classes are learned, we report the av-

erage performance over three scenarios, each with a dif-

ferent sequence of training sessions. In each scenario, we

randomly arrange the classes and create random groups of

C/M classes. Our goal is to obtain a better estimate of

the expected performance of the CL methods under un-

known learning situations. Table 2 provides a summary of

the characteristics of CL paradigm posed for each task.

3.2 Implementation details

As mentioned in Section 2, our classification model com-

prises two fundamental components: a feature extractor,

which can be either a MERT or CLMR model, and a down-

stream task classifier. The feature extractors are used out-

3 For each task, we launched 212 training processes following the ex-
perimental setup considered (2 feature extractors × (3 scenarios × 7 CL
methods × 5 sessions + 1 oracle baseline)).

4 Each dataset is balanced, i.e., the same number of samples, or a very
similar number, is considered for each class.

Table 2. Overview of the continual learning scenario

posed for each music classification task: the number of

learning sessions, the total number of classes, and the num-

ber of classes per session.

Classification

task

Number of learning

sessions, M
Total number

of classes, C
Classes per learning

session, C/M

Genre

5

10 2

Instrument 11 2∗

Singer 20 4

Vocal Technique 10 2
∗The remaining class is randomly introduced in one of the learning sessions, i.e.,

there is one session with 3 classes.

of-the-box. 5 6 These remain frozen during training not

only for efficiency but also to improve stability and mit-

igate the effects of forgetting in CL. The classifier is an

MLP with 512 hidden units. When using MERT, a one-

dimensional convolutional layer is employed prior to the

MLP to extract a weighted average embedding from the

frame-level features obtained by MERT.

We follow the details provided in the work of Li et

al. [10] to train the architecture described previously for the

different considered tasks. To attain state-of-the-art results

while keeping the feature extractor frozen, we train the

downstream classifier for a maximum of 200 epochs us-

ing the ADAM optimizer with a fixed learning rate of 10−3

and a batch size of 64 audio chunks. We use early-stopping

with the number of patience epochs adjusted accordingly

to each task. Additionally, we employ a 25% dropout rate

to mitigate overfitting and improve performance.

For the methods that require data storage from past ses-

sions (Replay, GEM, iCaRL), we use a memory buffer

of 100 memories equally distributed among the classes

seen up to that session, following the implementation used

in [25]. Moreover, we use PyTorch as the implementation

framework. We rely on the PyCIL toolbox 7 for all the con-

sidered CL methods, except for L2P, for which we adhere

to the official implementation. 8

The length of the audio chunks used for training and

evaluating the models depends on the feature extractor

used and can be seen in Table 1. For the task of singer

identification and vocal technique, we use 3-second audio

chunks as input, as in previous works [4, 10]. Finally, re-

garding the evaluation protocol, we segment each audio

file into chunks (as aforementioned) and obtain a predic-

tion for each chunk. The predictions for each chunk are

then averaged to obtain a final prediction for each given

audio file.

4. RESULTS

Fig. 2 reports the average performance of each method for

each learning session in terms of classification accuracy. 9

5 MERT’s weights available at https://huggingface.co/m-a-p/MERT-
v1-95M

6 CLMR’s weights available at https://github.com/Spijkervet/CLMR
7 https://github.com/G-U-N/PyCIL
8 https://github.com/google-research/l2p
9 The code developed in the work is publicly available for reproducible

research at: https://github.com/pedrocg42/continual-music-classification
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Figure 2. Accuracy (%) per session for each CL method. The solid lines represent the average accuracies, while the

shaded areas indicate the minimum and maximum accuracies for each method and session. The dashed line represents the

reference accuracy achieved when directly training with all classes in a single session.
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We report as well the average accuracy along all the train-

ing sessions in Table 3 and the accuracy after the last ses-

sion in Table 4.

Table 3. Comparison of the averaged accuracy after each

session across the four tasks.
Task Genre Instrument Singer Vocal Tech

Encoder MERT CLMR MERT CLMR MERT CLMR MERT CLMR

Finetune 43.4 43.6 38.6 37.9 45.3 43.7 43.4 42.6

Replay 56.9 51.6 42.4 43.0 63.8 53.0 57.9 50.6

iCaRL 57.2 53.5 42.4 41.3 71.4 53.8 57.4 51.6

GEM 51.1 53.2 40.6 40.2 52.4 48.0 50.4 52.0

EWC 43.5 43.1 38.7 37.6 45.4 44.0 43.1 42.4

L2P 43.1 - 39.5 - 45.1 - 42.9 -

PCC 74.8 73.5 44.2 49.5 64.6 51.2 69.8 70.0

Oracle 75.2 70.9 62.7 57.1 97.8 86.0 76.3 72.9

Table 4. Comparison of the final accuracy after the last

session across the four tasks.
Task Genre Instrument Singer Vocal Tech

Encoder MERT CLMR MERT CLMR MERT CLMR MERT CLMR

Finetune 18.5 19.4 10.1 10.3 19.7 19.3 17.6 17.0

Replay 28.4 22.4 14.4 14.3 29.5 21.3 27.2 19.8

iCaRL 29.0 23.1 12.4 13.4 37.5 21.6 28.1 20.6

GEM 26.8 24.5 14.3 13.4 24.9 22.5 26.4 28.5

EWC 18.6 17.1 10.1 10.1 19.8 19.3 16.2 17.4

L2P 19.0 - 10.9 - 19.8 - 13.9 -

PCC 59.0 61.4 31.0 32.9 56.1 41.5 61.1 60.5

Oracle 72.4 67.9 63.7 55.4 98.2 86.7 78.4 74.0

The first observation is the limitation of the existing

CL literature, where methods are primarily evaluated over

well-established computer vision tasks [11]. As evidenced

by the reported results, such methods fall short in terms

of generalization to other domains. Specifically, the con-

sidered state-of-the-art CL methods suffer from significant

catastrophic forgetting, resulting in poor final performance

for class-incremental music classification. This under-

scores the need to develop CL methods for this specific do-

main and encourages the assessment of CL methods across

different fields to measure their overall performance more

precisely.

Focusing our attention on the similarities illustrated in

Fig. 2 for the two different feature extractors, MERT (left

column) and CLMR (right column), we can observe that

the accuracy curves for all tasks exhibit very similar trends

across sessions. While the baseline performance—training

directly with all data in a single session—is better when

using MERT, this difference between the two feature ex-

tractors diminishes when comparing against the different

CL methods, as similar performance is achieved. Conse-

quently, we can conclude that the effectiveness of the CL

methods is not solely attributable to the feature extractor.

If we examine each task separately, we observe a sim-

ilar pattern in both music genre and vocal technique clas-

sification tasks. State-of-the-art methods exhibit signs of

catastrophic forgetting, whereas PCC achieves a final per-

formance that is relatively close to the reference bound.

For singer identification, PCC starts with a lower accu-

racy but maintains good stability throughout the sessions.

However, despite achieving the highest final performance

among the methods, it still falls considerably short of the

task reference. Finally, instrument classification emerges

as the most challenging task, with all methods displaying

significant signs of catastrophic forgetting. As a result,

their final performance remains far from reaching reason-

able results, once again highlighting the existing room for

improvement and the need to find new methods that can

reduce catastrophic forgetting in music classification.

Among the considered state-of-the-art CL methods,

both data-centric (Replay and GEM) and algorithm-centric

(iCaRL) approaches outperform the results obtained by

model-centric methods (EWC and L2P). However, it is

worth noting that these first three methods rely on input

data stored from previous sessions, which may not always

be feasible due to privacy or storage issues. In contrast, our

proposed method, PCC, remarkably surpasses all of them

across all tasks without storing the original data (but their

representations), thus avoiding such privacy issues.

5. CONCLUSIONS

This work studies the goodness of five state-of-the-art CL

methods (Replay, EWC, iCaRL, GEM, and L2P) in the

context of CIL for music classification. Additionally, we

propose a simple yet effective CIL method (PCC) that re-

lies on the generalizability of foundation models.

Our results reveal that current state-of-the-art CL meth-

ods suffer from catastrophic forgetting, whereas the pro-

posed approach achieves the best results over four differ-

ent music classification tasks. This highlights the need to

investigate specific CL methods for music classification.

The results obtained with PCC showcase the robustness

and utility of the features extracted with foundation mod-

els. We can only expect these models to improve over

time, managing to extract more generalizable features for

a wider range of tasks. This leads us to believe that it is

worth further exploring these approaches for CL in music

classification.

In future work, we also plan to study more sophisticated

strategies for selecting the prototypes in PCC to improve

both accuracy and robustness.
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ABSTRACT

Note alignment refers to the task of matching individual
notes of two versions of the same symbolically encoded
piece. Methods addressing this task commonly rely on
sequence alignment algorithms such as Hidden Markov
Models or Dynamic Time Warping (DTW) applied di-
rectly to note or onset sequences. While successful in
many cases, such methods struggle with large mismatches
between the versions. In this work, we learn note-wise
representations from data augmented with various com-
plex mismatch cases, e.g. repeats, skips, block insertions,
and long trills. At the heart of our approach lies a trans-
former encoder network — TheGlueNote 1 — which pre-
dicts pairwise note similarities for two 512 note subse-
quences. We postprocess the predicted similarities using
flavors of weightedDTW and pitch-separated onsetDTW to
retrieve note matches for two sequences of arbitrary length.
Our approach performs on par with the state of the art in
terms of note alignment accuracy, is considerably more ro-
bust to version mismatches, and works directly on any pair
of MIDI files.

1. INTRODUCTION

Note alignment refers to the task of matching individual
symbolically encoded notes in two versions of the same
piece. Note matches can be derived for any two ver-
sions, however, this task is usually addressed for pairs of
MIDI performances and scores encoded in various formats.
The resulting performance-to-score alignments provide the
data for several research directions in MIR and computa-
tional musicology, such as expressive performance gener-
ation, score quantization, and performance research.

To match notes can sometimes be a near-trivial task,
especially with well corresponding versions, minimal ex-
pressive playing, and simple pieces. However, more often
than not the unaligned data of interest and availability does
not fit these criteria: performers make mistakes; play extra

1 https://github.com/sildater/thegluenote

© S. Peter and G. Widmer. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution: S.
Peter and G. Widmer, “TheGlueNote: learned representations for robust
and flexible note alignment”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

repeats, variations, and ornamentations; rehearsal record-
ings discontinue or restart; automatic transcriptions con-
tain various amounts of note mismatches; and the musical
material tends towards the virtuosic, dense, and complex.

Due to its close similarity with sequence alignment,
note alignment is usually approached with flavors of Dy-
namic Time Warping (DTW) or Hidden Markov Models
(HMM) based on note or chord representations. Such
representations are typically localized, and the alignment
methods process them sequentially. The aforementioned
common difficulties in MIDI performances do not harmo-
nize well with these constraints: e.g., differently ordered
chord onsets clash with DTW’s monotonicity condition,
trills create (sometimes substantial) mismatches with simi-
lar pitches and thus misleading local distances, and repeats,
skips, recording takes, etc. introduce large mismatches be-
tween the sequences which require a more zoomed-out per-
spective. To be clear, there is nothing that a priori prevents
sequence alignment methods from working in these sce-
narios, however, in practice, the propensity of alignment
methods for propagating errors render the matching qual-
ity hit-and-miss.

In this work, we address note alignment via learned
representations which leverage non-local information, i.e.,
the entire sequence of notes influences the representation
of each note. We train an attention-based encoder —
TheGlueNote — to predict note representations for two
512 note subsequences. Before being passed to the net-
work, the subsequences are augmented with a variety of
challenging and large mismatch cases. At the network’s
output, we compute a pairwise similarity matrix between
the note representations and compare this matrix to tar-
get note matches via two classification loss terms. That
is, the notes are guided towards similar representations if
they match, and dissimilar representations for all others.
In the process, TheGlueNote is trained to robustly predict
note similarities even in the presence of substantial mis-
matches.

We took care to design TheGlueNote as annotation-
agnostic as possible. Prior approaches mitigate edge cases
by introducing additional submethods, e.g., by modeling
left-right hand streams separately, excluding notated or-
naments from certain steps, or requiring coinciding chord
notes (see section 2). This introduces limitations on the
types of files which can be processed, requiring staff or
voice information, scores with ornament information, or
even just quantized scores. In contrast, our model is trained
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directly on data from MIDI files with no quantization or
score annotation requirement.

To extract final note matches from the similarity matrix,
we present three possible additional methods. First, we
simply match the notes with maximal similarity. Second,
we add a decoder head to our note representation back-
bone – a network which predicts matching notes based on
the similarity matrix. Third, we use DTW alignment tech-
niques to extract a mapping from the similarity matrix and
in turn use this mapping to match individual notes. Putting
the pieces together, TheGlueNote leverages learned rep-
resentations for note alignment, performs on par with the
state of the art, excels at complex mismatch cases, and
works with plain MIDI input data.

The rest of the paper is structured as follows: Section 2
discusses related work. Section 3 describes the model ar-
chitecture and match extractor variants. Section 4 intro-
duces training specifications, data processing, and met-
rics which are applied in Section 5 where we evaluate the
trained model in an ablation study on the variations of ar-
chitecture and match extraction, and in comparison with
state-of-the-art methods both in regular and complex mis-
match cases. Section 6, the discussion, concludes the pa-
per.

2. RELATED WORK

Note alignment is a basic technology vital to many down-
stream tasks in symbolic music processing and computa-
tional musicology. We structure this review of related lit-
erature into a part on current state-of-the-art methods, rel-
evant work in the neighboring domains of audio and real-
time alignment, and pertinent literature on matching tasks
for non-music data.

Note alignment methods almost universally make use
of either Dynamic Time Warping or Bayesian Networks
on pitch-based representations of either individual notes
or chords [1–9]. As the principal formulation is straight-
forward, most recent efforts have focused on formaliza-
tions and heuristics that mitigate specific problems in edge
cases. Skips and repeats present a major difficulty which
can be directly modelled at the cost of computational com-
plexity [5] or side-stepped if the use of annotated anchor
points is possible [8]. Another difficulty are ornamenta-
tion notes which can be modelled as separate states [4] or
excluded from a first coarse alignment and handled sepa-
rately in a fine-grained note matching step [9]. Nakamura
et al. [3] further model left-right hand asynchrony in pi-
ano performance. In their most recent work, note align-
ment is framed as a hierarchical refinement with explicit
modelling of an alignment error identification step [6]. In
recent work by Peter [9], sequence non-ordinality is miti-
gated by a score-based chord representation, the resulting
model is thus limited to performance to score alignment.
The current state of the art (SOTA) which we will use for
reference in this work is given by two DTW-based meth-
ods [8, 9] and one HMM-based method [6].

Realtime alignment or score following methods have
been developed since the 1980s [10, 11] and largely mir-

ror the previous methods in their core elements: On-Line
Time Warping (OLTW), [12] and Bayesian Networks, in
particular HMM [3, 7, 13].

Alignment of musical audio is an important idea genera-
tor for symbolic note alignment. For introductions of audio
alignment, we refer the reader to Arzt [14] and Müller [15].
Audio alignment is prone to memory and compute bottle-
necks. Several versions of DTW addressing these issues
have been developed [16].

Deep Learning has largely been absent from music
alignment, with notable exceptions in real-time audio-
image matching [17, 18] and in symbolic score follow-
ing [9]. On the other hand, we take inspiration from im-
age processing, in particular from the task of local feature
matching [19]: the matching of pixels encoding the same
location on an object in two images of the same object. Lo-
cal feature matching often uses neural network-based fea-
ture extractors [20,21] and our proposed model in particu-
lar is informed by the MatchFormer [21].

3. MODEL

In this article, we present a model which is trained to cre-
ate note representations for two sequences such that the
representations’ pairwise similarity corresponds to the se-
quences’ alignment ground truth. Using these represen-
tations, we aim to uniquely match individual notes.The
proposed model consists of a fixed-length tokenization, an
encoder backbone, and a dual classification loss. Further-
more, we introduce three variants of match extraction from
the model’s output similarity matrix: direct similarity ma-
trix processing, using a decoder head for classification,
and DTW-based match extraction. Figure 1 presents an
overview of the components.

3.1 TheGlueNote

At the heart of our model is a non-causal transformer en-
coder (see Figure 1 middle left). Its purpose is to learn note
representations for two note sequences s1 and s2, and its
target is the alignment between the sequences. A pairwise
similarity matrix computed between the note representa-
tions of two sequences mediates between output and target.
We treat the matrix as a match classifier for each note, i.e.,
for each row (a note in s1) the column (a note in s2) with
maximal similarity should correspond to matching notes,
and vice versa.

Technically, two at least partially matching subse-
quences s1 and s2 of 512 notes each are prepended with
a default note and processed using the fixed-length struc-
tured tokenization [22, 23], which encodes relative onset,
pitch, duration, and velocity. The now 513 note (2052
token) sequences s1 and s2 are concatenated and passed
to the encoder. The encoder sums the four tokens per
note and adds a learned positional embedding for a note-
wise sequence of length 1026. Layer normalization is ap-
plied before the first encoder block and within the atten-
tion and feedforward blocks but not again on the residual
stream. Self-attention is applied to the full concatenated
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Figure 1. Overview of the proposed model. During training (top row), the data flows from Data Processing (black, top
left) through TheGlueNote (blue, middle left) into the Decoder Head (blue, middle right) and the aggregated Loss (yellow,
top right). Concretely, a MIDI file is loaded into the Data Processing module which outputs matching targets to the loss
module and the concatenated sequences s1 and s2 to TheGlueNote. TheGlueNote (middle row) consist of a transformer
encoder with learned positional embeddings (LPE) and repeated attention blocks (center module with multihead-attention
MHA and a two-layer feedforward network 2L FF). The note-wise representations are split and multiplied for a pairwise
similarity matrix with s1 in the row and s2 in the column dimension shown in the loss module. Two cross-entropy loss
terms are computed from this matrix and it is also forwarded to the decoder head whose classifier output adds a third loss
term. During inference (bottom row), two MIDI files to be matched are directly passed to TheGlueNote. The resulting
similarity matrix can be processed in three ways: 1) direct maximal similarity match extraction (Matrix Match box) 2)
using the decoder head’s output, or 3) using a DTW-based match extraction (red, bottom right).

sequence, which amounts to combined within-sequence at-
tention (s1-s1, s2-s2) and between-sequence attention (s1-
s2, s2-s1). The final residual is normalized after the last
block and fed through a single dimension-conserving lin-
ear layer. For dimensions and hyperparameters of different
versions see section 4.2 and in particular Table 3.

The 1026 final output vectors of size corresponding to
the residual stream are treated as representations of indi-
vidual notes. The sequences are split again and pairwise
similarities between all 513 notes of s1 and all 513 notes
of s2 are obtained via dot product. The resulting similarity
matrix (s1 in the rows and s2 in the columns, see Figure 1
top right) is compared to two classification targets: Soft-
max across row dimension is the model’s prediction of the
matching note in s1 for each note in s2 (except for the
prepended default note), and softmax across the column
dimension is the model’s prediction of the matching note
in s2 for each note in s1 (again, except for its prepended
default note). Both are compared against the ground truth
via a cross-entropy loss (CEL). Unmatched notes in the
ground truth receive a target corresponding to the default
note in the other sequence, the default notes itself receive
no loss.

3.2 Match Extractors

Note similarities are a useful intermediary, however, they
do not yet define note matches. In this section, we de-
tail three possible note match extractors. The simplest way
of producing matches is to directly use similarity matrix-

based match extraction. That is, for each note in s2, we
match it to its most similar note in s1, including the de-
fault note (=unmatched) as possibility. A little bit of index
housekeeping avoids conflicting matches and notes with-
out prediction.

A second approach is to train TheGlueNote with an ad-
ditional decoder head for match extraction. The decoder
is also an non-causal neural network with the same high-
level structure as the encoder 2 (see Figure 1 middle right).
The decoder head processes the pairwise similarity matrix
for each actual note of s2 (hence a 512 by 513 matrix, ex-
cluding the default note in s2) and directly predicts the
matching note in s1 via 513 output logits (including the
default note in s1 for unmatched notes). During training,
its classification CEL is added to the other two losses in an

2 The "decoder head" is technically also a transformer encoder without
memory input, however, it decodes the representation towards classifica-
tion logits, so we opt for this name.
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unweighted fashion (see Figure 1 top right).

DTW match extraction offers a way of introducing
meaningful constraints to the note matching. Concretely,
naive note matching via maximum similarity in the pre-
diction treats every note separately and ignores informa-
tion on predictions for notes in its vicinity and previously
matched notes. To introduce this information, we adapt the
DTW-based mapping and matching procedure introduced
by Peter [9] for similarity matrix post-processing.

DTW extraction is split in two processes (see Figure 1
bottom right). First, understanding similarity as the recip-
rocal of learned pairwise distance, we use the network’s
output as input to a weighted DTW with possible directions
[[0, 1], [1, 1], [1, 0]] and associated weights [1, 2, 1]. This
choice of weights normalizes the directions under the Man-
hattan distance, i.e., any direction is equally costly overall
and the diagonal is not favored. A standard DTW path is
computed starting at the top left and ending at the bottom
right of the similarity matrix. Note that extracting a min-
imizing path through the learned distances discards infor-
mation relevant to local non-ordinality in favor of added in-
formation about each note’s neighborhood. The extracted
path should not be used as direct note match prediction,
instead it defines a coarse sequence to sequence mapping
m : R → R by linear interpolation between the onset times
of notes in the path.

In a second process, we separate all notes in both se-
quences by pitch. For subsequences s

p
1

and s
p
2

of pitch p,
we match onset sequences using a DTW pass to find onset
pairs that minimize the distance between s

p
2

and m(sp
1
).

Newly matched notes are then added to or overwritten in
the original DTW path and the mapping m is updated. If
the MIDI files to be aligned do not fit within the 512 note
contexts of the model, which is often the case, we compute
several similarity matrices for 512 note windows with a
stride of 256 notes. We then aggregate the resulting output
matrices to a global similarity matrix.

Feature Noise and Mismatch Probabilities
Tempo Tt gTt2

nt , g ∼ N (1, 0.5), nt ∼ N (0, 0.5)
Onset Ot Ot + nt, nt ∼ U(−50, 50)
Velocity Vt Vt + nt, nt ∼ U(−10, 10)
Duration Dt Dt + nt, nt ∼ U(−250, 250)

Repeats Prepeat = 1,#noterepeat ∼ U(8, 200)
Skips Pskip = 1,#noteskip ∼ U(8, 200)
Insertions Pinsertion = 0.2, random location
Deletions Pdeletions = 0.2, random location
Trills Ptrill = 1,#notetrill ∼ U(20, 100)

Table 1. Augmentations to synthesize complex mismatch
cases. Four noise terms are added to note features in the
first row terms. Sampled noise is clipped to avoid degener-
ate cases like negative durations. Duration and onset noise
are indicated in MIDI ticks. Skips, repeats, and trills are in-
troduced with the indicated probability and uniformly sam-
pled length. Insertions and deletions are added at random
locations with overall probabilities given.

4. EXPERIMENTS

We report several experiments to asses the qualities of our
proposed model. In this section, we describe the dataset,
data preprocessing, and training as well as model configu-
rations.

4.1 Data

A data sample for our model is a pair of 512 note subse-
quences. Note alignment ground truth data of real pieces
and performances is available [8,24,25], however, this data
is biased towards cases where prior note alignment meth-
ods could successfully be applied. To present the model
with a wide variety of (mis)match cases we use synthet-
ically augmented MIDI data for training. The original
MIDI tracks are taken from the (n)ASAP dataset [8], albeit
not its note alignments, only the score and performance
MIDI files directly.

Ground truth match data is created entirely synthetically
by copying each MIDI file and augmenting it with a combi-
nation of the processes which we describe in the following,
and whose parameters are given in Table 1. The original
inter-onset intervals (as a proxy for tempo) are stretched
by a global factor g, and by note-wise factors nt, these
factors are multiplicative and normally distributed. Note
onsets and durations are also changed note-wise, yet by
additive uniform noise in MIDI ticks. All MIDI files are
encoded using 480 ticks per beat and 120 beats per minute,
one MIDI tick is thus slightly longer than one millisecond.
Velocities are modified by additive uniform noise within
the 128 standard MIDI velocity values. For repeats, skips,
and trills, the probability of generating the mismatch per
512 note sequence is given, as well as note quantities sam-
pled uniformly. The mismatches are inserted contiguously
into the sequence and there is at most one augmentation of
each mismatch type per 512 note sequence. Finally, inser-
tions and deletions are generated from the existing notes,
each note is deleted or copied and randomized (i.e., in-
serted) with the given probability. All augmentations are
recomputed for every batch of training data. The values
in Table 1 are given for reproducibility and transparency,
although different variations were tested, we do not claim
that these are optimal values.

We further add transposition to the maximal extent
available on a piano keyboard as general augmentation af-
fecting both subsequences. The augmentation is carried
out in the data loader so each epoch will produce differ-
ent samples from the 1032 valid MIDI files in our dataset.
Data augmentation is only used during training, at infer-
ence two MIDI files are matched as is (see Figure 1).

For testing, we obtained the exact test files used in
the reference literature [9]. These files stem from propri-
etary datasets [26, 27] and were chosen due to the align-
ment complexity they provide. To test for robustness under
challenging mismatch scenarios, we augment these perfor-
mances for an experiment including extended (100+ note)
mismatches that cover approximately 20% of the notes.
Each 512 note subsequence pair contains exactly two mis-
matching segments, one in s1 and one in s2, each segment
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Data Source Vienna 4x22 Training Data
Match Extractor Sim Matrix Decoder Head DTW n.a.
Unit Prec Rec F Prec Rec F Prec Rec F TL VL VA
Pitch-Onset Similarity Matrix 7 7 7 - - - 85 89 82 - - -
TGN-large 97 97 97 96 97 96 99 100 99 0.183 0.126 0.958
TGN-mid 81 81 81 87 88 87 99 99 98 0.171 0.145 0.996
TGN-small 75 75 75 83 87 81 99 99 99 0.374 0.280 0.902

Table 2. Ablation of Model configuration and match extraction. All match results are computed on the Vienna4x22 Dataset.
Values reported are average note match precision, recall, and F-score across all performances. The results are computed for
each match extractor / model combination. The first line serves as a simple baseline for the similarity matrix-based and the
DTW-based match extractors: we report results of their processing a pitch and onset-based similarity matrix. We further
report the average training loss (TL), validation loss (VL), and validation accuracy (VA) in the final epoch for each model.

is contiguous and its notes are randomly sampled. Note
that such randomized contiguous mismatches are different
from the synthetic mismatch segments seen during train-
ing (i.e., trills, repeats, skips, see Table 1). For comparison
with our reference models, we have to limit ourselves to
score to performance alignment instead of general MIDI
to MIDI alignment, as some of the compared models only
work with this type of musical material. To compare differ-
ent model configurations and match extractors, we further
use the public Vienna 4x22 Dataset [24]. This dataset con-
sists of 4 pieces with 22 performances each. The pieces are
comparatively simple and mismatches minimal.

Model #p rd #b #h bs #ph
TGN-large 28M 512 8 8 8 27M
TGN-mid 5.7M 256 6 8 16 2M
TGN-small 1.1M 128 4 8 24 0.6M

Table 3. Hyperparameters for TheGlueNote (TGN) vari-
ations: #p = parameter count, rd = residual dimension,
#b = number of blocks, #h = number of attention heads,
bs = batch size, and #p dh = parameter count of decoder
head. Parameter counts of the TheGlueNote models (#p)
and their decoder heads (#ph) are approximate.

4.2 Training Setup

We train model variations differentiated in three sizes. All
our models are trained on a single GeForce GTX 1080 Ti
with 12 GB of memory. We train for 200k steps, indepen-
dent of batch size, which is set to the maximal capacity of
the GPU for each model. The learning rate is initialized
at 5 ∗ 10−4 and is scheduled using cosine annealing with
warm restarts at an interval of 2k steps. Table 3 details
the hyperparameters for model variations. For all attention
blocks, the inverted bottleneck of the feedforward network
is four times the residual dimension.

5. EVALUATION

In this section, we evaluate our proposed model. The first
part compares different model configurations, the second
part compares against state-of-the-art reference methods.
To evaluate our models, we use note matching precision,

recall, and F-score as our main metrics. We further report
mean final classification losses of the predicted similarity
matrix which corresponds to direct note matching on the
training and validation data as well as the runtime of dif-
ferent model setups.

5.1 Ablation Study of Model Configurations

In a first experiment we train three model configura-
tions. We evaluate their note matching quality on the Vi-
enna4x22 dataset using three different match extractors:
direct similarity matrix processing, decoder head predic-
tion, and DTW-based match extraction. Table 2 details
the results. For all model configurations the match ex-
tractors are clearly ranked with DTW-based processing
the most promising. DTW-based match extraction in it-
self is, however, not enough for good matching. To il-
lustrate this point, we compute a simple pitch and onset
based similarity matrix (the closer in pitch and onset, the
higher the similarity) akin to what would be used to as-
sess local distances in standard approaches. We then apply
the similarity matrix-based match extractor and the DTW-
based match extractor directly on this matrix. The first row
in Table 2 shows these reference methods, which perform
subpar.

5.2 Comparison to Reference Models

We compare our proposed model against three SOTA refer-
ence models: Nakamura’s HMM matcher [6], Peter’s Du-
alDTWMatcher [9] and AutomaticNoteMatcher [8]. The
first one is implemented in C++ and compiled locally 3 ,
the other’s are part of a python package 4 . The test data
consists of five challenging pieces for solo piano in two
settings, one default and one with mismatches. Table 4 de-
tails the results. All values are note match F-scores given
in percent, except for the runtime given in seconds. In
the default setting, all three model configurations perform
on par with the best model with the best reference model
"DualDTWMatcher". In the mismatch setting, all refer-
ence models show (partial) failure. Note that not all align-
ments fail, however, no reference model stays consistently

3 downloaded from: https://midialignment.github.io/

AlignmentTool_v190813.zip
4 downloaded from: https://github.com/sildater/

parangonar
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Unit Match F-Score in % s Match F-Score in % s

Nakamura HMM 98 99 98 94 95 98 152 39 65 35 20 63 44 6458
Peter AutomaticNoteMatcher 99 84 94 96 89 92 588 82 74 89 71 75 78 808
Peter DualDTWMatcher 99 98 99 96 98 98 96 85 96 94 80 83 88 208
TGN-large + DTW 99 99 98 96 97 98 33 94 96 95 93 94 94 42
TGN-mid + DTW 96 98 98 96 98 97 27 92 95 96 92 95 94 38
TGN-small + DTW 99 98 98 96 97 98 21 94 97 95 93 94 95 31

Table 4. F-scores of three reference models and our proposed models across five challenging pieces. The matching results
are given as f-scores in % and the runtime in seconds. The data is split in two groups: a default case with the original
performances, and a mismatch case, where challenging skips and repeats which in total constitue 2̃0% of the notes have
been introduced. The models are split in two groups: three state-of-the-art reference models and our proposed model in
three configurations.

above 90 %. Our proposed models take a performance loss
as well, yet only in the range of 0-7 % and the F-score
stays above 92 % throughout. In terms of F-score, no sig-
nificant difference between TheGlueNote configurations is
found. Despite several forward passes to retrieve local sim-
ilarity matrices, TheGlueNote configurations also require
the lowest runtime. Unlike for the reference models the
runtime does not seem to vary with the complexity of the
match to be performed, only with the number of notes and
the network size. The advantageous runtime comparison
with the reference models is surprising and to be taken with
a grain of salt as implementation details possibly outweigh
the merits of each algorithm.

6. DISCUSSION

In this article, we presented TheGlueNote, a note represen-
tation model which effectively predicts note matching sim-
ilarities. Despite the fundamental role of (note) alignment
in several MIR areas, machine learning approaches have
seen limited adoption so far — in contrast with many other
areas of MIR, where machine learning models virtually su-
perseded more traditional approaches. We can only con-
jecture on the reasons for this absence, however, it seems
to us that sequence alignment methods faithfully model a
variety of alignment problems and the established meth-
ods’ correspondingly high performance leaves little room
for improvement. However, this observation does not hold
for the question which sequence representations are to be
processed by alignment algorithms, a question that is not
settled, neither in the symbolic nor in the audio domain.
Feature representations and local metrics abound, and have
myriad downstream implications for alignment success or
failure which are often hard to predict.

Our approach excels at this point by producing learned
representations which leverage non-local information.
The representations play well with DTW-based post-

processing, however, end-to-end note matching remains
challenging. Learning representations shifts the problem
of edge cases from the modeling stage (or even post-hoc
engineering) towards the training data. Augmenting data
with complex mismatches in combination with a model
that effectively predicts matches frees us from having to
address all possible cases explicitly. Randomized training
mismatches enable the model to learn robust representa-
tion for a variety of mismatching sequences. In practice,
this also leads to greater flexibility, as no quantized music,
score annotations, or any attributes beyond the basic MIDI
notes are required.

Many extensions of our approach are possible. The hy-
perparameter and architectural space of plausible represen-
tation models open several possibilities for future research.
Furthermore, the data used to train and test the model is
specific: solo piano pieces and performances of common
practice period music. This is due to the fact that refer-
ence models work on the piano data, and large symbolic
piano datasets are available. Note that this data presents
one of the most challenging note alignment scenarios and
we expect our core ideas to translate to other symbolic
data — after retraining. An open question is whether this
type of token-based match representation learning can be
used in audio or multimodal domains, e.g. by applying
it to discrete audio encodings. Lastly, the representation
learning backbone is trained without any information about
the DTW post-processing. SoftDTW [28] approaches ap-
pear promising to bridge this gap while keeping sensible
alignment constraints in an end-to-end model. However,
we want to stress again that the monotonicity condition of
(soft)DTW does not strictly hold in symbolic music even
though it has proven an effective heuristic. Many ques-
tions remain open, yet we hope to have shown that repre-
sentation learning can be integrated successfully and ben-
eficially into note alignment methods.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

608



7. REPRODUCIBILITY

Code and pre-trained checkpoints and public data
available at: https://github.com/sildater/

thegluenote
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ABSTRACT

We introduce GAPS (Guitar-Aligned Performance

Scores), a new dataset of classical guitar performances,

and a benchmark guitar transcription model that achieves

state-of-the-art performance on GuitarSet in both super-

vised and zero-shot settings. GAPS is the largest dataset

of real guitar audio, containing 14 hours of freely available

audio-score aligned pairs, recorded in diverse conditions

by over 200 performers, together with high-resolution

note-level MIDI alignments and performance videos.

These enable us to train a state-of-the-art model for

automatic transcription of solo guitar recordings which

can generalise well to real world audio that is unseen

during training.

For each track in the dataset, we provide metadata of the

composer and performer, giving dates, nationality, gender

and links to IMSLP or Wikipedia. We also analyse guitar-

specific features of the dataset, such as the distribution of

fret-string combinations and alternate tunings. This dataset

has applications to various MIR tasks, including automatic

music transcription, score following, performance analy-

sis, generative music modelling and the study of expressive

performance timing.

1. INTRODUCTION

Automatic Music Transcription (AMT) for instruments

other than piano has faced challenges due to a lack of

high-quality datasets [1]. This gap has limited the develop-

ment of accurate transcription systems compared to those

available for the piano, which benefit from comprehensive

datasets like MAESTRO [2] and MAPS [3]. However, re-

cent developments in audio-score alignment methods have

shown promising results in improving transcription accu-

racy [1, 4].

With 2.7 million guitars sold in the US alone in 2019 1 ,

the guitar is a popular instrument and retains a widespread

cultural significance. Around 6% of these guitars sold were

1 https://www.musictrades.com/

us-retail-sales-guitar-market.html

© X. Riley, Z. Guo, D. Edwards and S. Dixon. Licensed

under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: X. Riley, Z. Guo, D. Edwards and S. Dixon, “GAPS:

A Large and Diverse Classical Guitar Dataset and Benchmark Transcrip-

tion Model”, in Proc. of the 25th Int. Society for Music Information

Retrieval Conf., San Francisco, United States, 2024.

of the classical or flamenco types (roughly 162,000 units).

For comparison, around 31,000 acoustic pianos were sold

in the US that year. Despite this popularity, we believe that

the study of the guitar in the field of Music Information

Retrieval (MIR) is underrepresented. Reviewing the paper

titles for ISMIR conferences from 2013-2023 we find that

publications with the word “piano” in the title outnumber

those with “guitar” by 3 to 1 2 . This imbalance may be

due to the availability of high quality datasets for piano;

new datasets and methods for guitar will help to address

this.

In this paper, we present GAPS, a large and diverse clas-

sical guitar dataset that contains 14 hours of matched ny-

lon string guitar audio recordings, note-level MIDI anno-

tations, and corresponding music scores, where the record-

ings feature over 200 performers in diverse recording con-

ditions. This is several times larger than GuitarSet [5], the

EGDB dataset [6], the FrançoisLeduc dataset [4] and the

IDMT-SMT-Guitar dataset [7] (see Section 2 for a detailed

comparison). We use this data to train a benchmark tran-

scription model which achieves state-of-the-art results for

solo guitar transcription across 4 dataset splits.

The contributions of this paper are as follows:

• the largest available dataset consisting of real gui-

tar audio, performance video, corresponding music

scores and aligned MIDI annotations;

• metadata and external links for composers and per-

formers, plus statistics of guitar-specific features;

• an efficient pipeline for verifying alignments of

scores to audio;

• a benchmark state-of-the-art guitar transcription

model trained on our dataset; and

• analysis and discussion of the effects of dataset qual-

ity, quantity and variety on AMT performance.

2. RELATED WORK

GuitarSet [5] is the most widely used MIR dataset for gui-

tar. It provides around 3 hours of annotated guitar per-

formances, where the data collection process required the

use of a specialised guitar fitted with a hexaphonic pickup

which was able to capture the output of individual strings.

The use of a single guitar severely limits the diversity of

2 46 piano and 15 guitar
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Name Audio type Track count Duration (m) Note count Scores

GuitarSet [5] Real 360 180 62,476 No

IDMT-SMT-Guitar [7] Real 1173 340 ∗5,767 No

EGDB [6] Real 240 118 35,700 No

FrançoisLeduc [4] Real 79 240 75,312 Yes (commercial)

GAPS (ours) Real 300 843 259,410 Yes

SynthTab [8] Synthetic 20,715 786,774 - Yes, via DadaGP

Table 1. Comparison of existing guitar datasets, split into real and synthetic sources. ∗ For IDMT, the note count is shown

only for notes with annotations available.

timbres and recording conditions, and in turn makes it

harder for AMT models to generalise from this data [4].

The EGDB [6] dataset contains 2 hours of guitar au-

dio recorded by a professional guitarist using a hexaphonic

pickup and recorded via DI (direct input). The DI signal is

then further rendered using 6 different amplifier emulation

plugins. The onsets and offsets of each note are annotated.

The IDMT-SMT-GUITAR database [7] is recorded by 3

musicians using 6 different guitars (5 electric, 1 acoustic).

The final audio is either obtained from DI or microphone

output. It contains 4 subsets each targeting a different MIR

task, ranging from single notes to chords to various short

musical pieces. Its utility in transcription tasks is limited

however, as only a subset of the audio has corresponding

time-aligned note annotations.

Improvements in diversity of audio sources were

achieved by Maman and Bermano [1] through the use of

score alignment techniques. Digital scores (in MIDI for-

mat) were aligned to the activations of the Onsets and

Frames transcription model [9] trained on synthetic data.

Low quality alignments were discarded and the remaining

data was used to fine tune the model further. This expecta-

tion maximisation approach yielded a new state-of-the-art

result on GuitarSet in the zero-shot setting, which demon-

strated a generalisable model. The authors collected 5

hours of classical guitar recordings and scores in this work

but these were not released as part of the publication.

Building on this approach, Riley et al. [4] published

a new state-of-the-art model for guitar transcription. In-

stead of the Onsets and Frames model, they use the high

resolution piano transcription model by Kong et al. [10],

which was shown to be more tolerant of misaligned la-

bels. Furthermore, instead of bootstrapping the process

with synthetic data, they employ a pre-training step where

a model is trained on the MAESTRO dataset with data

augmentation, which was shown to improve generalisa-

tion. A dataset of around 4 hours of audio-MIDI pairs

was published with their work, however the scores are not

freely available as they were purchased from a commercial

source.

As an alternative to annotating real world audio, Zang

et al. [8] recently proposed a large scale dataset of syn-

thesised audio from a subset of the DadaGP dataset [11].

When used as a pre-training step, the authors note improve-

ments in multi-pitch estimation over 3 guitar datasets. De-

spite the large volume of additional training data, their note

level results on the GuitarSet test split (86.1% F1 no off-

set) are lower than those of several other methods which

use GuitarSet alone (see [4]). This suggests that synthetic

data alone is not sufficient to improve AMT systems, but a

full comparison with consistent use of model architectures

would be needed to establish this with certainty.

3. OVERVIEW OF DATASET

3.1 Dataset Curation

In an effort to improve the amount of available labelled,

non-synthetic data, we have curated a new dataset of classi-

cal guitar recordings based on freely available scores from

the ClassClef website 3 , together with matching perfor-

mances on YouTube 4 . We align these sources using the

automatic process described in [4] and then manually veri-

fied each alignment using the synchronised score viewer at

soundslice.com. Following another alignment stage,

any remaining scores with inaccurate alignments are re-

jected (using the criteria described below). This resulted in

300 performances sampled from the entire classical guitar

canon totalling over 14 hours of music and over 250,000

note events. We have also curated extensive metadata, in-

cluding information about the pieces, composers and per-

formers, in order to enrich the dataset with details of the

cultural context.

Our curation process is shown in Figure 1. It begins

with the ClassClef website which provides around 5,500

pieces for download in PDF and GuitarPro formats. These

focus mainly on the classical guitar with some flamenco

and fingerstyle pieces included. Additionally, 547 of the

pieces include links to videos on YouTube of a perfor-

mance of the same piece. We first collected all GuitarPro

files and converted them to MusicXML and MIDI formats

using the free MuseScore software package 5 . We also

downloaded the audio and video for the 547 pieces where

YouTube links were available.

Using the alignment method described in [4], we pro-

duce an initial alignment between the score and the record-

ing for each piece. This proceeds in two stages: an initial

3 classclef.com
4 youtube.com
5 musescore.org/en
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Figure 1. Flowchart of the dataset creation process.

alignment via Dynamic Time Warping (DTW), and a fur-

ther fine alignment stage in which the notes of each chord

are aligned to their closest activation from an existing tran-

scription model. We emphasise this point as the resulting

alignments are fully polyphonic in nature and as a result

are more accurate than those produced by DTW alone, as

described in [4].

In some cases the automatic alignment will not suc-

ceed, for example, when a linked video contains audio for

an entire suite but the score only contains a single move-

ment. For this reason a manual verification step was re-

quired. Using the soundslice.comwebsite, we upload

the automatically aligned downbeats to synchronize play-

back between the audio and the score. This allowed the

authors of the paper (each with over 10 years of music ex-

perience) to review 474 of the scores (chosen at random) in

an efficient workflow. More specifically, we manually ver-

ified the alignment between each downbeat location and

the score for all 474 pieces. Particular attention was paid

to the beginning and ending of each piece as these were a

frequent source of issues in the DTW process. Moreover,

any differences between the score and the performance that

were identified were corrected, if feasible. In the end,

74 pieces were rejected for various reasons – for example

those containing 7-string guitars, guitar duets and pieces

where the edition did not match the performance. Out of

the remaining 400 pieces examined, 280 were usable with-

out corrections to the score and the remaining 120 required

intervention to obtain correct downbeat alignments.

The 400 reviewed scores were then re-aligned using the

same alignment method from step two of figure 1. The cor-

rected downbeats were used as anchor points during this

alignment stage to ensure that any alignment errors would

be localised to one measure of music. To validate accuracy,

we then compared our aligned versions of the score to out-

puts of the guitar transcription model from [4]. We retained

the 300 scores with the highest agreement, measured using

the “F-measure no offset” metric from the mir_eval li-

brary [12]. We retained scores which had an F-measure of

more than 75%, yielding 300 audio-score pairs. We man-

ually reviewed the lower scoring alignments and found a

number of issues including errors with the processing of

anacrusis bars, non-440Hz tunings and discrepancies be-

tween the performance and score editions. We hope to ad-

dress these where possible as part of future work.

A summary of existing guitar datasets is shown in Table

1. When considering datasets with real (as opposed to syn-

thesised) audio, GAPS represents a significant advance in

terms of the duration of audio and number of note events.

In addition, ours is the first dataset of real audio to include

freely available full music scores, tablatures in MusicXML

format, and accompanying performance videos.

3.2 Composers

Works from 93 different composers are included, ranging

from the Renaissance (Luys Milan, c.1500-1561) to the

present day. The majority of works are from the classical

guitar repertoire, with a small number of flamenco pieces

and arrangements of popular music. We include the dates,

nationality and presumed gender of each composer with

links to canonical URLs (IMSLP and Wikipedia) where

possible.

Examining the diversity of composers contained in the

dataset, Figure 2 shows their nationalities, according to

data from the canonical URL for each composer. This

shows they are broadly divided between Europe and Latin

America. In terms of chronology Figure 3 shows the dis-

tribution of pieces according to the year in which the com-

poser was born. This shows that the included pieces are

mainly weighted around the Romantic era (1850-1900).

The peak around 1650 is almost entirely due to J.S. Bach,

who is the second most common composer in our dataset

with 23 pieces. We also include information about the

presumed gender of composers in our metadata, however

only two female composers (Maria Linnemann and Luise

Walker) are included who together represent 2% of the to-

tal by piece count. We acknowledge that this is a short-

coming of the current dataset and we will seek to address

this in future work.

3.3 Performances

The accompanying videos are drawn from 205 different

performers with YouTube views totalling over 35 mil-

lion across all videos. Some are professionally produced

recordings whereas others are recorded on commodity

equipment such as phones and laptops. We believe this is

an advantage of this dataset in that recordings are drawn

from a wide variety of real world recording conditions,

which in turn helps to increase the robustness of trained

AMT models.

In the metadata we include information about the name

of the performer (where available), their social media links

(if available), the YouTube channel, the view count and
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Figure 2. Nationalities of the composers

Figure 3. Histogram of works according to composer’s

birth year at 50 year intervals

Tuning Count % of total

EADGBE 232 77.33

DADGBE 58 19.33

DGDGBE 5 1.67

EADF\BE 2 0.67

FADGBE 1 0.33

CGDGBE 1 0.33

EBDGBE 1 0.33

Table 2. Distribution of guitar tunings in GAPS. The tun-

ing is expressed from low to high pitch.

the presumed gender of the performer. This was gathered

to examine the extent to which classical guitar is a male

dominated field. We find that female performers are better

represented than composers in our dataset, but still only

comprise 23% of the total.

3.4 Guitar-Specific Features

The large number of scores allows us to examine several

guitar-specific features of the data. In Table 2 we see that

two different tunings account for 97% of the data. While

standard tuning is most common, almost 20% of pieces

have the lowest string tuned down one tone to D. Other

alternate tunings account for around 3.3% of the total.

To see the distribution of notes across the guitar neck in

this dataset, we have plotted a heat map as shown in Figure

4 using the fret information contained in the MusicXML

tablature. Over the 259,000 note events we see that the

pieces in the classical guitar repertoire favour the use of

open strings and the first position. The strong peak at the

2nd fret A on the G string also suggests a preference to-

wards “guitar friendly” keys such as E and A which allow

the performer to use the open bass and top strings. While

this distribution is uneven, we consider this to be represen-

tative of the classical guitar repertoire. We encourage other

dataset authors to explore similar visualisations in future

work to see if this varies with other genres.

Since most pitches can be played on more than one po-

sition on the guitar, there is an exponentially large number

of tablatures that correspond to any one given score, in-

cluding many physically unplayable versions. While each

tablature in our dataset represents one valid way to play

the score, we have not verified the extent to which the tab-

latures correspond to the choices of the performers in the

specific performances in the GAPS dataset. This is left for

future work. As we were not able to trace the provenance

of the ClassClef data, we presume the data is crowdsourced

and reflects the playing habits of a subset of computer-

literate guitarists. It is also possible that some of the tabs

were generated algorithmically from the score data.

4. TRANSCRIPTION BASELINE

4.1 Experimental Settings

To demonstrate the utility of the GAPS dataset of aligned

score-audio pairs, we trained several guitar transcription

models using the high resolution model of Kong et al.

[10], which achieved state-of-the-art performance when

trained for guitar transcription [4]. This model is a convo-

lutional recurrent neural network (CRNN) that is trained

in a supervised manner to map log mel-spectrograms of

10-second segments of audio to MIDI. The convolutional

layers span only across the frequency dimension, maintain-

ing the time-resolution of the original spectrogram (10ms).

These features are then processed by a gated recurrent unit

(GRU) to produce the final outputs of onset, offset, frame

activity, and velocity activations per pitch per time win-

dow.

There are two reasons why we used the high resolu-

tion model [10]. Firstly to ensure fair comparisons with

the state-of-the-art model in [4] as it shares the same ar-

chitecture. This allows us to examine how our GAPS

dataset influences the same transcription model. Secondly,

fine-tuning becomes feasible due to the shared architecture

among multiple piano transcription models [10, 13]. This

allows us to investigate whether different pre-trained pi-

ano transcription models can improve guitar transcription

through domain adaptation.

For our experiments, we trained 2 sets of models. The

first set of models is trained only on the GAPS dataset and

the second set of models is trained with a combination of

GuitarSet and GAPS. We employ the first set of models for

zero-shot inference on the complete GuitarSet, while the
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Figure 4. Heat map of the fret/string combinations in the GAPS MusicXML tablatures.

second set is utilised to evaluate guitar transcription per-

formance across the test splits of GuitarSet, theFrançoisLe-

duc dataset and GAPS. To study the effects of pre-training

and finetuning [8, 13], each set of models has 3 variants:

one trained from scratch and two finetuned from one of

two published checkpoints for piano transcription [10,13].

This also allows for a more direct comparison with results

reported in [4].

Regarding our training data and strategy, we randomly

divide the GAPS dataset with a 90:10 split by piece, for

training and testing respectively. Following [4], each au-

dio file is split into 10-second chunks, using a hop size of

1 second. We adopt the same train-test split from [4,14] for

GuitarSet. During training, pitch shifting of up to ±3 semi-

tones was randomly applied as data augmentation [14].

4.2 Transcription Results

In Tables 3 to 6, we report the evaluation results for the

models described in Section 4.1. Our proposed combina-

tion of model, pre-training checkpoint and dataset achieves

state-of-the-art performances on all 4 test sets mentioned in

Section 4.1. Considering the similarities to the approach

used by Riley et al. [4], our larger dataset appears to drive

the improvement in results.

4.2.1 Generalisation and Guitar Types

GuitarSet contains audio for one acoustic steel string guitar

recorded via microphone and also via the guitar pickup (the

“DI” outputs). Despite our GAPS data containing only per-

formances on nylon-stringed classical guitars, our model is

able to generalise well to GuitarSet in the zero-shot setting

(F-measure 88.1% - see Table 4). This result is interest-

ing as it appears that timbral differences between guitars

are not a strong factor in the success of the model for this

task. On the other hand, GAPS does include a large range

of guitars and recording conditions (unlike GuitarSet’s one

guitar), which we expect would contribute to the generali-

sation performance of models trained on it.

We also note that for the other solutions based on

encoder-decoder architectures [14,16], the strong results in

the supervised setting on GuitarSet fail to perform as well

on unseen data. Table 4 shows the transcription accuracy

on GuitarSet in the zero-shot setting, i.e. where models are

trained without any access to GuitarSet. F-measure scores

for MT3 fall from 90.0% to 32.0% on GuitarSet. The pre-

vious state-of-the-art model (Time-Frequency Perceiver)

from Lu et al. [14] attains 91.1% in the GuitarSet super-

vised task but drops to 80.0% on the unseen FrançoisLeduc

test set. It may be the case that these architectures require

more data to generalise effectively and we hope to explore

training them on GAPS in future work.

For the FrançoisLeduc test split in Table 5, our pro-

posed model outperforms Riley et al. [4] by a small margin,

however their model was trained in a supervised fashion

whereas this dataset was unseen by our model.

Conversely, our proposed method outperforms Riley et

al. [4] on the GAPS test split by a margin of 2.2% (see

Table 6). This indicates that, despite our method’s strong

generalisation (see Table 4), it is somewhat specialised to

classical guitar timbres and that the strongest results in the

future may rely on the use of specific training data.

P50 R50 F50

Basic Pitch [15] - - 79.0

MT3 [16] - - 90.0

Zang et al [8] - - 84.5

Lu et al. [14] - - 91.1

SpecTNT (in [14]) - - 90.7

Riley et al. [4] (FL) 87.6 86.8 86.9

Riley et al. (GS+FL) 91.1 88.5 89.7

Ours

(GAPS) 89.9 85.4 87.2

(GAPS Finetuned from [10]) 88.8 86.8 87.5

(GAPS Finetuned from [13]) 90.1 86.6 88.0

(GAPS+GS) 90.2 90.9 90.4

(GAPS+GS Finetuned from [10]) 89.4 92.1 90.7

(GAPS+GS) Finetuned from [13]) 91.3 90.7 91.2

Table 3. Results for note-level transcription accuracy on

the GuitarSet test split. P50, R50, and F50 are Precision,

Recall and F1-measure, expressed as percentages, at 50ms

resolution. All are evaluated on onsets only (no offsets or

velocity), using the mir_eval library. Baseline results

are described in [4].
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P50 R50 F50

MT3 [16] - - 32.0

Kong et al. [10] 67.5 49.7 54.8

Kong et al. (w/ aug) 80.6 44.0 50.3

Zang et al. [8] (Synthtab) - - 70.2

Maman (MusicNetEM) [1] 86.6 80.4 82.9

Maman (Guitar) [1] 86.7 79.7 82.2

Riley et al. [4] 88.0 87.1 87.3

Ours 92.4 81.8 86.1

Ours (Finetuned from [10]) 91.6 83.7 87.0

Ours (Finetuned from [13]) 91.1 85.9 88.1

Table 4. Results for note-level transcription accuracy on

the entire GuitarSet in the zero-shot setting.

P50 R50 F50

Basic Pitch [15] 54.6 85.0 66.1

Omnizart [17] 63.0 72.1 67.1

MT3 [16] 48.8 57.0 52.4

Lu et al. [14] 83.6 77.3 80.0

Riley et al. [4] 83.9 85.5 84.7

Ours (Finetuned from [13]) 85.5 84.2 84.8

Table 5. Results for note-level transcription accuracy on

the test split of the FrançoisLeduc dataset [4].

P50 R50 F50

Riley et al. [4] 92.9 91.4 92.1

Ours 94.9 92.1 93.4

Ours (Finetuned from [10]) 94.6 93.4 94.0

Ours (Finetuned from [13]) 95.0 93.6 94.3

Table 6. Results for note-level transcription accuracy on a

test split of the GAPS dataset.

4.2.2 Effects of Pre-training

In each of our evaluations, we see a consistent trend

whereby the model with no pre-training is surpassed by the

model pre-trained on piano (MAESTRO) and fine-tuned

on GAPS, which in turn is surpassed by the model pre-

trained on an augmented version of MAESTRO [13] be-

fore fine-tuning on GAPS. This illustrates the importance

of pre-training and fine-tuning, as well as data augmenta-

tion as important drivers of success in the transcription task

(see Edwards et al. [13] for a detailed analysis of the effect

of data augmentation on transcription generalisation).

We also note that strong results for other methods on the

GuitarSet test split are obtained from models trained with a

mixture of datasets [4,14,16]. One exception is Zang et al.

[8], who use a large corpus of synthetically rendered guitar

samples for pre-training. This does not perform as well

as other methods but their results were obtained from a

model (TabCNN) designed for guitar tablature prediction,

as opposed to a state-of-the-art transcription model. A full

comparison of synthetic and real audio for pre-training is

something we also hope to explore in future work.

5. CONCLUSION

We present GAPS, a large dataset of score and audio pairs

for solo classical guitar which comprises a wide range

of composers, performers and real-world recording con-

ditions, totaling 14 hours of recordings. The MIDI anno-

tations are made freely available and the audio is available

at the YouTube links provided. This represents the largest

dataset of freely available guitar audio-score pairs to date.

We included analysis of the overall statistics of the

GAPS dataset, but further musicological work could be

done to examine connections between the composers, per-

formers and musical features. The published MIDI annota-

tions could be useful for generative modelling of classical

guitar and other instruments. For future work we will look

to expand the dataset and enhance the diversity where pos-

sible, particularly for the range of composers we include.

One application of this dataset is AMT for guitar, which

we demonstrate through a comprehensive evaluation of a

transcription model trained on our data. This shows state-

of-the-art results when compared with existing methods

trained on other datasets. In future work we look to exam-

ine further issues around pre-training for guitar transcrip-

tion.

6. ETHICS STATEMENT

In addition to our role as researchers, we are also mem-

bers of the global community of musicians and we seek to

respect their important role in our culture. Our work here

raises several issues which may have wider impact on this

community which we hope to address as follows.

Firstly, we believe that using sources which are pub-

licly available (subject to licence conditions) is important

to reduce barriers to future research. At the time of writ-

ing, neither the scores nor their audio recordings are be-

hind any kind of paywall. We have processed this data

and make the results available on the basis of fostering

research. We also obtained permission from the website

owner of classclef.com to make use of their materi-

als.

By publishing work on YouTube, artists do grant some

kind of implicit licence that the data can be viewed, how-

ever the specific terms of the licence may restrict further

use cases. We believe that our work is justified in using

this data under fair use or fair dealing exemptions defined

for research, but we are mindful that further use of the data

may require express permission from the performers, com-

posers or copyright-holders. We have attempted to address

this by including detailed information about all perform-

ers and composers in the accompanying metadata to allow

interested parties to contact them directly.

Finally we recognise that AMT models which approach

human-level accuracy might pose a threat to those who are

employed in music transcription and related fields. On the

other hand, such models could also assist such work and

become tools for improving the efficiency and accuracy of

their daily work. For this reason we are carefully consider-

ing whether to make our model weights freely available.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

616



7. ACKNOWLEDGMENTS

Authors XR, ZG and DE are research students at the UKRI

Centre for Doctoral Training in Artificial Intelligence and

Music, supported by UK Research and Innovation [grant

number EP/S022694/1] and Yamaha Corporation (DE).

8. REFERENCES

[1] B. Maman and A. H. Bermano, “Unaligned supervi-

sion for automatic music transcription in the wild,” in

International Conference on Machine Learning, ICML

2022, 17-23 July 2022, Baltimore, Maryland, USA, ser.

Proceedings of Machine Learning Research, vol. 162.

PMLR, 2022, pp. 14 918–14 934.

[2] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C. A.

Huang, S. Dieleman, E. Elsen, J. H. Engel, and D. Eck,

“Enabling factorized piano music modeling and gen-

eration with the MAESTRO dataset,” in 7th Interna-

tional Conference on Learning Representations, New

Orleans, USA, 2019.

[3] V. Emiya, N. Bertin, B. David, and R. Badeau,

“MAPS - a piano database for multipitch estimation

and automatic transcription of music,” INRIA, France,

Research Report 00544155, 2010. [Online]. Available:

https://hal.inria.fr/inria-00544155

[4] X. Riley, D. Edwards, and S. Dixon, “High

resolution guitar transcription via domain adaptation,”

in IEEE International Conference on Acoustics,

Speech and Signal Processing, ICASSP 2024, Seoul,

2024. IEEE, 2024. [Online]. Available: https:

//arxiv.org/abs/2402.15258

[5] Q. Xi, R. M. Bittner, J. Pauwels, X. Ye, and J. P. Bello,

“GuitarSet: A dataset for guitar transcription,” in Pro-

ceedings of the 19th International Society for Music

Information Retrieval Conference, Paris, France, 2018,

pp. 453–460.

[6] Y. Chen, W. Hsiao, T. Hsieh, J. R. Jang, and Y. Yang,

“Towards automatic transcription of polyphonic elec-

tric guitar music: A new dataset and a multi-loss

transformer model,” in IEEE International Conference

on Acoustics, Speech and Signal Processing, ICASSP

2022, Virtual and Singapore, 23-27 May 2022. IEEE,

2022, pp. 786–790.

[7] C. Kehling, J. Abeßer, C. Dittmar, and G. Schuller,

“Automatic tablature transcription of electric guitar

recordings by estimation of score- and instrument-

related parameters,” in Proceedings of the 17th Inter-

national Conference on Digital Audio Effects, DAFx-

14, Erlangen, Germany, September 1-5, 2014, 2014,

pp. 219–226.

[8] Y. Zang, Y. Zhong, F. Cwitkowitz, and Z. Duan, “Syn-

thtab: Leveraging synthesized data for guitar tablature

transcription,” in IEEE International Conference on

Acoustics, Speech and Signal Processing, ICASSP

2024, Seoul, 2024. IEEE, 2024. [Online]. Available:

https://arxiv.org/abs/2402.15258

[9] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Si-

mon, C. Raffel, J. H. Engel, S. Oore, and D. Eck, “On-

sets and frames: Dual-objective piano transcription,” in

Proceedings of the 19th International Society for Mu-

sic Information Retrieval Conference, Paris, France,

2018, pp. 50–57.

[10] Q. Kong, B. Li, X. Song, Y. Wan, and Y. Wang, “High-

resolution piano transcription with pedals by regress-

ing onset and offset times,” IEEE ACM Transactions

on Audio, Speech and Language Processing, vol. 29,

pp. 3707–3717, 2021.

[11] P. Sarmento, A. Kumar, C. J. Carr, Z. Zukowski,

M. Barthet, and Y. Yang, “Dadagp: A dataset of tok-

enized guitarpro songs for sequence models,” in Pro-

ceedings of the 22nd International Society for Music

Information Retrieval Conference, ISMIR 2021, On-

line, November 7-12, 2021, 2021, pp. 610–617.

[12] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon,

O. Nieto, D. Liang, and D. P. W. Ellis, “Mir_eval: A

transparent implementation of common MIR metrics,”

in Proceedings of the 15th International Society for

Music Information Retrieval Conference, Taipei, Tai-

wan, 2014, pp. 367–372.

[13] D. Edwards, S. Dixon, E. Benetos, A. Maezawa, and

Y. Kusaka, “A data-driven analysis of robust auto-

matic piano transcription,” IEEE Signal Process. Lett.,

vol. 31, pp. 681–685, 2024.

[14] W. T. Lu, J. Wang, and Y. Hung, “Multitrack mu-

sic transcription with a time-frequency perceiver,” in

IEEE International Conference on Acoustics, Speech

and Signal Processing ICASSP 2023, Rhodes Island,

Greece, June 4-10, 2023. IEEE, 2023, pp. 1–5.

[15] R. M. Bittner, J. J. Bosch, D. Rubinstein, G. Meseguer-

Brocal, and S. Ewert, “A lightweight instrument-

agnostic model for polyphonic note transcription and

multipitch estimation,” in Proceedings of the IEEE In-

ternational Conference on Acoustics, Speech, and Sig-

nal Processing (ICASSP), Singapore, 2022.

[16] J. Gardner, I. Simon, E. Manilow, C. Hawthorne, and

J. H. Engel, “MT3: Multi-task multitrack music tran-

scription,” in Tenth International Conference on Learn-

ing Representations, 2022.

[17] Y. Wu, Y. Luo, T. Chen, I. Wei, J. Hsu, Y. Chuang,

and L. Su, “Omnizart: A general toolbox for

automatic music transcription,” J. Open Source Softw.,

vol. 6, no. 68, p. 3391, 2021. [Online]. Available:

https://doi.org/10.21105/joss.03391

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

617



A KALMAN FILTER MODEL FOR SYNCHRONIZATION IN MUSICAL
ENSEMBLES

Hugo T. Carvalho1∗ Min S. Li2 Massimiliano di Luca3 Alan M. Wing3

1 Department of Statistical Methods, Federal University of Rio de Janeiro, Brazil
2 Bristol Interaction Group, School of Computer Science, University of Bristol, United Kingdom

3 Virtual Reality Lab, School of Psychology, University of Birmingham, United Kingdom
∗ Corresponding author: hugo@dme.ufrj.br

ABSTRACT

The synchronization of motor responses to rhythmic au-

ditory cues is a fundamental biological phenomenon ob-

served across various species. While the importance

of temporal alignment varies across different contexts,

achieving precise temporal synchronization is a prominent

goal in musical performances. Musicians often incorporate

expressive timing variations, which require precise control

over timing and synchronization, particularly in ensemble

performance. This is crucial because both deliberate ex-

pressive nuances and accidental timing deviations can af-

fect the overall timing of a performance. This discussion

prompts the question of how musicians adjust their tem-

poral dynamics to achieve synchronization within an en-

semble. This paper introduces a novel feedback correction

model based on the Kalman Filter, aimed at improving the

understanding of interpersonal timing in ensemble music

performances. The proposed model performs similarly to

other linear correction models in the literature, with the ad-

vantage of low computational cost and good performance

even in scenarios where the underlying tempo varies.

1. INTRODUCTION

Synchronization of motor responses to rhythmic auditory

cues represents a biological phenomenon found across var-

ious species [1], and social collectives often engage in ac-

tivities necessitating precise temporal coordination among

members, a crucial factor for successful group endeavors.

For example, in scenarios such as rowing eights, tempo-

ral alignment may not be the primary focus, but individ-

ual timing remains tied to collective timing dynamics [2].

In domains like musical performances, achieving precise

temporal synchronization serves as a prominent goal [3].

Typically, musicians do not adhere strictly to the exact

timing of note onsets as indicated in the musical score: due

to expressiveness, they often introduce deviations from the
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and A. M. Wing, “A Kalman Filter model for synchronization in musi-

cal ensembles”, in Proc. of the 25th Int. Society for Music Information

Retrieval Conf., San Francisco, United States, 2024.

prescribed timing [4]. These fluctuations require a high

level of control over relative timing, where the phase of

notes produced by the musician deviating from the tim-

ing aligns differently with the phases of other musicians.

Rehearsals often involve reaching a consensus on expres-

sive variations, ensuring that timing deviations are syn-

chronized among players while maintaining relative tim-

ing [5]. Nevertheless, even with a unified understanding of

the musical interpretation, individual musicians may opt

to vary the timing of note onsets in specific passages be-

tween different performances [5, 6]. Musical performance

timing is also susceptible to inadvertent variations due to

factors such as rhythmic intricacies, technical demands be-

yond timing (e.g., pitch, volume), lapses in concentration,

and the inherent variability of biological timing [7]. While

extensive individual practice can mitigate some of these

unintended variations, complete elimination is unlikely.

The previous discussion raises the inquiry: how do mu-

sicians within an ensemble modulate their temporal dy-

namics to achieve synchronization with one another? In

this paper a novel feedback correction model is presented,

based on the Kalman Filter and aimed at improving tim-

ing accuracy in ensemble music performances. The pro-

posed model generalizes the linear autoregressive model

in [8] with the improvement of allowing two important

quantities, the phase and period correction gains, to vary

along time, since it makes the model suitable to describe

synchronization in scenarios where the underlying tempo

greatly varies (a realistic case in ensemble performance).

The paper is organized as follows: Section 2 recalls

some linear models for synchronization, and the dynamic

generalization of the model in [8] is presented, which is

formulated as a Kalman Filter in Section 4; the fundamen-

tals of the Kalman Filter are briefly recalled in Section 3;

the computational experiments are shown and discussed in

Section 5; conclusions are presented in Section 6. Direc-

tions for future work are identified throughout the paper.

2. LINEAR MODELS FOR ENSEMBLE

SYNCHRONIZATION

The starting point for contextualizing the proposed model

is [9], where a phase-correction model is presented as a

method for an individual performer to achieve synchrony

with a periodic metronome click or with another performer
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(see also [10]). The fundamental concept revolves around

utilizing the asynchrony, termed as a phase error, between

a tone onset and the metronome click (or between two tone

onsets produced by different performers) in a feedback

mechanism, that guides the performer to adjust the time

interval preceding the next tone onset. Consequently, the

performer either decreases or increases the interval leading

up to the subsequent tone onset proportionally to the pre-

ceding asynchrony. This process aims to achieve greater

synchrony (“in phase”) between the next tone onset and

the metronome click (or pair of tone onsets). This syn-

chronization scheme can be represented by Equation (1):

tn = tn−1 + Tn − αAn−1 + εn, (1)

where tn and tn−1 represent the current and previous ob-

served tone onset event times respectively, Tn denotes the

time interval generated by an internal timekeeping mecha-

nism, α is the phase correction strength or phase correc-

tion gain, An−1 refers to the asynchrony of the previous

onset event, and εn represents a random error term, which

includes the internal timekeeper noise. The complete re-

duction of asynchrony to zero hinges on the value assigned

to the gain, α, since this parameter determines the propor-

tion of the preceding phase error that the performer en-

deavors to eliminate.

Following [11], period correction can also be incorpo-

rated in the model in Equation (1), by imposing that

Tn = Tn−1 − βAn−1, (2)

where β is the period correction strength or period correc-

tion gain. Phase correction involves a local, within-cycle

adjustment to the timing, while period correction entails

a more enduring alteration to the underlying tempo, influ-

encing subsequent cycles as well. Phase correction typi-

cally occurs automatically, without the need for conscious

awareness of synchronization discrepancies. However, pe-

riod correction appears to be more cognitively demanding,

relying on the conscious detection of tempo variations in

the external rhythm [12, 13].

As previously mentioned, Equations (1) and (2) model

the asynchrony correction of an individual tapping accord-

ing to a periodic metronome, or between two individuals

tapping together. In [8] it is argued that the same mod-

eling framework is also suited to describe synchronization

in music ensemble performance, where a specific musician

now tries to reduce asynchrony between him/her and every

other performer. Therefore, Equations (1) and (2) can be

jointly generalized to an ensemble of K performers as:

ti,n = ti,n−1 + Ti,n −

K
∑

i=1
j ̸=i

αijAij,n−1 + εi,n (3)

Ti,n = Ti,n−1 −

K
∑

i=1
j ̸=i

βijAij,n−1, (4)

where i = 1, . . . ,K indicate a specific performer, ti,n
and ti,n−1 are respectively the current and previous ob-

served tone onset event times for player i, Ti,n is the time-

keeper interval for player i at time instant n, Aij,n−1 =
(ti,n−1 − tj,n−1) is the asynchrony at the time instant n−1
between players i and j, αij and βij are respectively the

phase and period correction gain applied by player i to

compensate for Aij,n−1, and εi,n is a noise term identi-

fied with the internal timekeeper. Estimation of the values

of αij and βij can be performed using the bounded Gener-

alized Least Squares method (bGLS) [14, 15].

In [8], the model in Equation (3) is implemented and

largely investigated for the case of a string quartet ensem-

ble playing a homophonic section from the string quartet

Op. 74 no. 1 by Joseph Haydn (fourth movement, bars

13–24), as this part has a steady tempo and all player’s

quarter notes are aligned. In [14] the coupling of Equa-

tions (3) and (4) is investigated, with a simulated string

quartet data with mild tempo changes, and the bGLS al-

gorithm is shown to be capable of recovering the values

of α and β. However, due to the nature of the bGLS al-

gorithm, the authors point out that many data points are

necessary for robust estimation of these variables, which

may not be available or is an unrealistic aim in the case

of a real-time implementation of the correction model (eg.

for a virtual reality musical ensemble). In [16] the ADAM

model (ADaptation and Anticipation Model) is proposed,

including not only correction terms but also anticipatory

ones, and in [17] this model is tested with tempo-changing

tapping data, but since there is no adaptation of the bGLS

algorithm to this new set of equations, the parameter es-

timation is done by exhaustive search, which is infeasible

for real-life applications. Moreover, due to the nature of its

parameters, the ADAM model is non-identifiable, meaning

that more than one configuration of the parameters leads to

the same estimate.

In order to circumvent the aforementioned issues, an al-

ternative is to consider not a single value of α and β for

each pair of performers through time, but time-dependent

correction gains. Developing this intuition, a dynamic

αij allows that a performer changes the phase correction

at each onset, and a dynamic βij would allow him/her to

correct differently for tempo variations during the perfor-

mance of an excerpt. To model a dynamic variable, a good

balance between simplicity and accuracy is a random walk,

and in this case phase and period correction occur accord-

ing to Equations (3) and (4), respectively, but with addi-

tional equations to allow the evolution of both correction

gains. This new model is summarized in Equations (5),

(6), (7), and (8):

ti,n = ti,n−1 + Ti,n −

K
∑

i=1
j ̸=i

αij,nAij,n−1 + εi,n (5)

Ti,n = Ti,n−1 −

K
∑

i=1
j ̸=i

βij,nAij,n−1 (6)

αij,n = αij,n−1 + w
(α)
ij,n (7)

βij,n = βij,n−1 + w
(β)
ij,n, (8)
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where w
(α)
ij,n and w

(β)
ij,n are independent zero-mean Gaus-

sian random variables, allowing the evolution of αij,n and

βij,n through time, respectively (notice the novel subscript

“n” in both αij and βij).

However, in the model proposed in Equations (5), (6),

(7), and (8), it is not clear how to employ the bGLS method

to obtain estimate of the variables of interest, and two dis-

tinct paths can now be followed: generalize the bGLS al-

gorithm to this new situation, or resort to estimation tech-

niques within the theory of dynamic models [18]. This

work follows the latter, adopting the Kalman Filter as a

framework to analyze Equations (5), (6), (7), and (8), due

to its balance between flexibility and simplicity, as well as

its simple and highly interpretable update equations. Sec-

tion 3 recalls the basics of the Kalman Filter and Section 4

formulates the proposed model in this scenario.

3. A BRIEF RECALL ON THE KALMAN FILTER

The Kalman Filter (KF) was developed in the 1960’s, and

served originally as a way to produce accurate estimates of

variables of interest (eg. position of an object) by reaching

a consensus between physical models and noisy measure-

ments [19]. More generally, the KF can be seen as a state-

space dynamic model, employed to describe more general

time-series as a dynamic linear regression model as func-

tion of an underlying Markov model [18].

The main contribution of this paper is to propose the

model in Equations (5), (6), (7), and (8), and formulate it

as a KF, employing its filtering and smoothing equations

to estimate the phase and period correction gains through

time. The choice of a KF to achieve this goal are: linear

nature of the model in Equations (5), (6), (7), and (8), high

interpretability of the KF and its update equations, and po-

tential low computational cost of its implementation.

The notation and basic equations of the KF are now

briefly recalled, following [18]. In what follows, the in-

dex n ranges from 1 to N . Let yn ∈ R
m be a sequence of

observed variables (or measurements), and θn ∈ R
p be a

sequence of unobserved vectors, which are called the hid-

den (or state) variables. The KF model assumes that these

two entities are related by Equations (9) and (10):

yn = Fnθn + vn (9)

θn = Gnθn−1 +wn, (10)

where Fn ∈ R
m×p and Gn ∈ R

p×p are sequences

of known matrices (observation model and the state-

transition model, respectively). Vectors vn ∈ R
m and

wn ∈ R
p are independent observation and process noise

terms, respectively, and it is assumed that they follow

Gaussian probability distributions, that is, vn ∼ N(0,Vn)
and wn ∼ N(0,Wn),

1 where Vn ∈ R
m×m and Wn ∈

R
p×p are sequences of known covariance matrices of the

observation and process noise terms respectively.

1 The symbol ∼ means “follows the probability distribution”, and
N(µ,Σ) denotes a multivariate Gaussian distribution with mean vector
µ and covariance matrix Σ. The dimension of the support of the random
vector is omitted, and compatibility between dimensions of µ and Σ is
always assumed.

The KF dynamically estimates variables θn and yn

based on observations up to time n − 1, and updates the

estimate of θn when the observation at time n is available.

This process is done accordingly to Equations (11), (12)

and (13), called the filtering equations: 2

Prediction step for hidden variables:

θn|y1:n−1 ∼ N(an,Rn) (11)

Prediction step for observed variables:

yn|y1:n−1 ∼ N(fn,Qn) (12)

Update step (compare predictions to measurements):

θn|y1:n ∼ N(kn,Cn), (13)

where 3

an = Gnkn−1 (14)

Rn = GnCn−1G
T
n +Wn (15)

fn = Fnan (16)

Qn = FnRnF
T
n +Vn (17)

kn = an +
[

RnF
T
nQ

−1
n

]

en (18)

en = yn − fn (19)

Cn = Rn −
[

RnF
T
nQ

−1
n

]

FnRn, (20)

assuming that the initial state is chosen according to a nor-

mal distribution, that is, θ0 ∼ N(k0,C0). For more details

on the KF, see [18, 19].

One of the appealing aspects of the KF is its abil-

ity to perform estimation and forecasting sequentially, as

new data emerge. However, if observations yn for n =
1, . . . , N are available beforehand, one is also able to ret-

rospectively reconstruct the system’s states, in order to an-

alyze its behavior given all the observations. For this pur-

pose, a backward-recursive algorithm can be employed to

compute the conditional distributions of θn given y1:N , for

any n < N [18,19]. The main ingredient of this algorithm

is the smoothing equation (21):

θn|y1:N ∼ N(sn,Sn), (21)

where

sn = kn +CnG
T
n+1R

−1
n+1 [sn+1 − an+1] (22)

Sn = Cn −CnG
T
n+1R

−1
n+1×

[Rn+1 − Sn+1]R
−1
n+1Gn+1Cn, (23)

assuming that θn+1|y1:N ∼ N(sn+1,Sn+1). Notice that

since the smoothing is performed backwards, it is necessar-

ily to previously filter the set of observations to gain access

to vectors kn and an, and matrices Cn and Rn.

4. KALMAN FILTER MODEL FOR ENSEMBLE

SYNCHRONIZATION

Equations (5), (6), (7), and (8) can be written as a KF by

considering proper choices for the observed and hidden

2 The conditional distribution of u given z is denoted by u|z, and i : j
means “observations from time instants i to j”, both extremes included.

3 The superscript T after a vector or matrix denotes its transpose; the
superscript −1 after a matrix denotes its inverse.
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variables, as well as the observation and state-transition

matrices. The main goal of this section is to construct a

sequence of matrices Fn and Gn, as well as vectors yn

and θn of observed and hidden variables respectively, such

that Equations (9) and (10) recover the model proposed in

Equations (5), (6), (7), and (8). Firstly, to simplify the

formulation of the model, the observed variables are not

the tone onset times for each player, but rather the inter-

onset-intervals (IOIs), denoted by ri,k = ti,n − ti,n−1, for

i = 1, . . . ,K. These values are assembled as in Equation

(24):

yn = [r1,n . . . rK,n] ∈ R
K . (24)

The hidden variable θn can be written as in Equation (25):

θn =
[

TT
n

∣

∣ rTn
∣

∣ αT
n

∣

∣ βT
n

]T
∈ R

2K2

, (25)

where

Tn = [T1,n . . . tK,n]
T
∈ R

K (26)

rn = [r1,n . . . rK,n]
T
∈ R

K (27)

αn = [αij,n in the lexicographical order on ij,

for 1 ≤ i, j ≤ K, i ̸= j] ∈ R
K(K−1) (28)

βn = [βij,n in the lexicographical order on ij,

for 1 ≤ i, j ≤ K, i ̸= j] ∈ R
K(K−1). (29)

The relation between θn and yn is described by the obser-

vation matrix in Equation (30): 4

Fn =
[

0K

∣

∣ IK
∣

∣ 0K×K(K−1)

∣

∣ 0K×K(K−1)

]

. (30)

Notice that matrices Fn ∈ R
K×2K2

are constant through

time. The evolution of the hidden variables in θn is mod-

elled by a sequence of state-transition matrices Gn ∈
R

2K2×2K2

, described in Equation (31):









IK 0K 0K×K(K−1) GTβ
n

IK 0K Grα
n Grβ

n

0K(K−1)×K 0K(K−1)×K IK(K−1) 0K(K−1)

0K(K−1)×K 0K(K−1)×K 0K(K−1) IK(K−1)









, (31)

where matrices GTβ
n , Grα

n , and Grβ
n (of dimensions K ×

K(K−1) each) describe the interaction between variables

in their respective superscripts. These three matrices are

equal to the matrix in Equation (32):











−AT
1:,n−1 01×(K−1) · · · 01×(K−1)

01×(K−1) −AT
2:,n−1 · · · 01×(K−1)

...
...

. . .
...

01×(K−1) 01×(K−1) · · · −AT
K:,n−1











, (32)

where each Ai:,n−1 ∈ R
K−1 contain the asynchronies

Aij,n−1 of player i to all players j, for j ̸= i, at time n−1.

Vector Ai:,n−1 is made explicit in Equation (33):

[

Ai1,n−1 . . . Ai(i−1),n−1Ai(i+1),n−1 . . . AiK,n−1

]T
. (33)

4 The identity matrix of dimensions L×L is denoted by IL; the matrix
of dimensions L × M filled with zeros is denoted by 0L×M ; a square
null matrix of dimensions L× L is abbreviated by 0L.

A simple (but tedious) verification using Equations (9)

and (10) with these choices for Fn, Gn, yn, and θn en-

sures that the model in Equations (5), (6), (7), and (8) is

recovered. It is also established that when K = 1 the

model in Equations (1) and (2) is recovered, with the im-

provement of dynamic α and β.

When compared to the bGLS algorithm [14, 15], the

state-of-the-art to estimate parameters in the scenario of

sensorimotor synchronization, the KF model presents a

great advantage, that is the possibility of performing on-

line estimation as more data become available: this feature

can be important if one desires to implement real-time syn-

chronization schemes. When the complete time-series of

onset times/IOIs is available, one can apply the smoothing

equation (21), in order to dynamically estimate the param-

eters of interest throughout the performance, as well as es-

timate them by applying the filtering equations (11), (12),

and (13), for example, to simulate an online scenario.

Notice that the dimensions of Fn, Gn, and θn scale

quadratically with the number of performers, which may

render the model overly complicated or cause computa-

tional issues when computing the KF update/filtering equa-

tions. 5 However, due to the sparsness of matrices Fn

and Gn, block-multiplication will highly reduce the num-

ber of operations when computing Equations (14) to (20),

mitigating the latter issue. Regarding the complexity of

the model, notice that in real large-scale scenarios (eg. a

symphony orchestra) it is not realistic to assume that each

musician synchronizes with every other, thus allowing for

potential simplifications, like considering a group of in-

struments as a single unity and synchronizing with every

other group. This procedure would diminish the value of

K from approximately 100 to less than 20. A useful topic

for future research would be to investigate the possibility

of modeling the synchronization scheme between perform-

ers (or group of performers) in a graph, in order to decrease

even more the number of relevant connections.

Another issue that is important to point out is the design

of the covariance matrices for the observation and process

noises, Vn and Wn respectively. On a first view, it makes

sense to consider Vn as diagonal matrices, for simplic-

ity, since the interaction between the performers is already

“captured” by the correction gains in the hidden variables;

however, it is not clear if Wn should be a sequence of

diagonal matrices, since it makes sense to consider at least

correlations between both correction gains of the same per-

former. This work employs a particular choice for these

covariance matrices, as will be further discussed in Sec-

tion 5. Further investigation on this question could involve

coupling the Expectation-Maximization algorithm with the

KF in order to estimate not only matrices Vn and Wn but

also Fn and Gn [20]. However a disadvantage would be

that these estimates would need to be static through time,

requiring a large amount of data, and being highly depen-

dent of the piece of music being analyzed.

5 Other computational issues on the Kalman Filter are largely dis-
cussed in [18].
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Figure 1. Smoothed time-series for the phase correction gain on three performance styles of an excerpt of the fourth

movement of the string quartet Op. 74 no. 1, by Joseph Haydn. See Section 5 for discussion.

5. RESULTS

To illustrate the effectiveness of the proposed model, a

set of simulations was performed, using an excerpt of the

dataset presented in [21], similar to the one used in [8]:

the homophonic section from the fourth movement of the

string quartet Op. 74 no. 1 by Joseph Haydn, from bars

13 to 24. In this excerpt the instruments play a sequence

of 47 quarter notes in rhytmic unison, with the first vio-

lin breaking the pattern near the end with an adornment of

four sixteenth notes, which are disregarded in this study.

Three performance styles are considered: Normal con-

dition (concert-style performance); Speed condition (in-

cluding a spontaneous accelerando and ritardando initi-

ated by a single musician – the designated leader, that can

be the first or second violin); and Deadpan condition (per-

formances with minimal expression in tempo and articu-

lation). All the simulation were performed on a computer

equipped with a 12th Generation Intel Core™ i7 processor

and 16GB of RAM, running Windows 11 Pro™; the im-

plementations were conducted in Python version 3.11.7. 6

6 Codes available at https://github.com/arme-project/ismir-2024.

Regarding the parameters of the KF, the covariance ma-

trix for the process noise, Wn, plays an important role,

since it indicates how the variables in θ interact. Based

on the interpretation of the hidden variables, a reasonable

choice for all the Wn is the block-diagonal matrix in Equa-

tion (34): 7









W(T )

Wr

Wα

Wβ









, (34)

where W(T ) and Wr are given respectively by σ2
T IK and

σ2
rIK , being σ2

T the timekeeper variance and σ2
r the mo-

tor variance. Since it is known that the motor variance

is way smaller than the timekeeper variance [8, 14, 15],

the conservatively high values σ2
T = 500 and σ2

r = 25
were considered. Both Wα and Wβ are also block-

diagonal matrices, consisting of K blocks, each of dimen-

7 Off-diagonal blocks are null matrices, that were omitted exception-
ally here, to avoid a line-break in the number of the equation. Moreover,

notation W
(T ) means to avoid confusion with the transpose matrix.
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sions (K − 1)× (K − 1) and as in Equation (35):











v c · · · c

c v · · · c
...

...
. . .

...

c c · · · v











, (35)

where v represents the variance of each αij (or βij) and c

is the covariance between two distinct αij (or βij).

The rationale behind this construction for Wα and Wβ

is that it makes sense to assume that for performer i there

is a correlation only between the αij (or βij) for j ̸= i.

This means that all the correction gains for performer i in-

teract among themselves, but not directly with the correc-

tion gains of other performers. Also, it is expected that the

correlation between two distinct αij (or βij) is negative,

since increasing correction towards a specific performer

may cause a decrease of the synchronization towards the

others. With this in mind, for matrix Wα the value of v

was chosen as 10−4; the value of c was chosen such that the

correlation between any two distinct αij is equal to −0.1. 8

In this preliminary set of experiments with the KF, the

effect of the βij was disregarded, by considering Wβ a

null matrix. It is known that the effect of the phase correc-

tion is way more relevant than the effect of the period cor-

rection [8, 14, 15], with the βij coefficients being usually

much smaller than the αij . Also, preliminary experiments

with artificial data also indicate that the dynamic values of

the phase correction may render the period correction un-

necessary. Since this is a point to be further investigated, it

seemed safe to first experiment only with phase correction.

Matrices Vn were chosen to be constant and equal to

10−5IK : since the block Wr in matrix Wn already cap-

tures the motor variance, Vn should be a sequence of null

matrices, but a negligible diagonal term was added to avoid

numerical errors. Finally, the initialization of vector θ was

done by choosing its first K components and the compo-

nents from K + 1 to 2K to be equal to the first IOI of

each of the K instruments, all the αij were initially set to

0.25, and all the βij to zero. This initialization of αij is

supported by [8], where optimal correction values for en-

sembles of size K were derived.

Figure 1 summarizes one experiment performed in the

aforementioned scenario. Three repetitions of the Haydn

quartet excerpt were analyzed, being one for each of the

three performance conditions, having the second violin as

the leader in the “Speed” case. Each performance consists

of a sequence of 46 four-dimensional vectors containing

the IOIs for each instrument. Since it is not the goal of this

set of experiments to evaluate online performance of the

proposed model, these three sequences were smoothed by

the KF, 9 according to Equation 21. Each panel of Figure

1 displays the evolution of the αij , for j ̸= i, organized

as follows: each column contains a performance condition

(made explicit at its top), and each row displays the evo-

lution of αij for j ̸= i and a fixed value of i. The condi-

8 This procedure will not always lead to a positive-definite matrix, for
sufficiently high value of K and depending on c – not the case here.

9 The computational time of each smoothing is less than 100ms.

tioning of each αij on y1:N is omitted, and the instruments

are abbreviated by numbers, where 1, 2, 3, and 4 refers to

the first violin, second violin, viola, and cello, respectively.

On each panel of Figure 1 the values of αij promptly devi-

ates from the optimal initialization of 0.25 (but still varies

around it), and their respective behavior are now discussed.

In “Speed” condition (third column in Figure 1), on

each panel the phase correction parameter toward the sec-

ond violin (αi2, for i = 1, 3, 4) shows a small increase by

the end of the performance, when the change in speed oc-

curs, since the second violin is assigned as the leader to

initiate this change in speed. Notice also that his/her phase

correction parameters towards the other performers (α2j ,

for j = 1, 3, 4) decrease through time, specially near the

last notes, reinforcing its leadership in this tempo change.

In the “Normal” condition (second column in Figure

1) it is noticeable that the second violin, viola, and cello

are systematically synchronizing mainly to the first violin,

which plays the melody in this excerpt: notice the almost

constant value for αi1, for i = 2, 3, 4. While the cello

is synchronizing mainly with the first and second violin, it

presents the weaker “synchronization attractor”, as seen by

the significant decrease in αi4 through time, for i = 1, 2, 3.

Finally, in the “Deadpan” condition (first column in Fig-

ure 1) the first and second violin and the cello are syn-

chronizing mainly to the viola (steady increase of αi3 for

i = 1, 2, 4, and decrease in α3j for j = 1, 2, 4), which may

be the cause of the cello synchronizing systematically with

all the three other instruments.

This experiment indicates that the proposed model is ca-

pable of capturing local fluctuations in tempo, reinforces

the role of the phase correction gain in interpreting syn-

chronization mechanisms in musical ensembles, and as-

sess qualitatively the validity of a time-varying model to

the problem of ensemble synchronization. As a next step

in this new direction for the field, the proposed model will

be broadly tested and systematically compared with other

models. Some issues to be addressed in future work are:

perform experiments with other data contained on [21];

compare filtering and smoothing procedures, as well as in-

vestigate if the filtered estimates make sense from a music

cognition perspective; implement tools from the theory of

dynamic linear models to automatically estimate the co-

variance matrices Vn and Wn [18]; perform a systematic

comparison with the bGLS and ADAM algorithms.

6. CONCLUSION

This paper presented a novel model, based on the Kalman

Filter, for analysing asynchrony correction in music en-

semble performances. The proposed model is founded on

well-established models in the literature, and has the ad-

vantage of considering dynamic phase and period correc-

tion gains. A set of experiments (using only phase cor-

rection) on a homophonic section of a string quartet by J.

Haydn was conducted, illustrating the capabilities of the

model in explaining synchronization schemes within mu-

sical ensembles.
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ABSTRACT

This paper explores the automated process of determin-
ing stem compatibility by identifying audio recordings of
single instruments that blend well with a given musical
context. To tackle this challenge, we present Stem-JEPA,
a novel Joint-Embedding Predictive Architecture (JEPA)
trained on a multi-track dataset using a self-supervised
learning approach.

Our model comprises two networks: an encoder and a
predictor, which are jointly trained to predict the embed-
dings of compatible stems from the embeddings of a given
context, typically a mix of several instruments.

Training a model in this manner allows its use in es-
timating stem compatibility—retrieving, aligning, or gen-
erating a stem to match a given mix—or for downstream
tasks such as genre or key estimation, as the training
paradigm requires the model to learn information related
to timbre, harmony, and rhythm.

We evaluate our model’s performance on a retrieval task
on the MUSDB18 dataset, testing its ability to find the
missing stem from a mix and through a subjective user
study. We also show that the learned embeddings cap-
ture temporal alignment information and, finally, evalu-
ate the representations learned by our model on several
downstream tasks, highlighting that they effectively cap-
ture meaningful musical features.

1. INTRODUCTION

Musical stem compatibility indicates the degree to which a
stem (i.e., an audio file of a single instrument) fits a given
musical context (an audio file of another instrument or a
mix of instruments) when played together. Its automatic
estimation can be helpful for stem retrieval, automatic ar-
rangement, or stem generation tasks. The compatibility
between stems (or a stem and some musical context) de-
pends on several global factors, such as tonality, tempo,

© A. Riou, S. Lattner, G. Hadjeres, M. Anslow, G. Peeters.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: A. Riou, S. Lattner, G. Hadjeres,
M. Anslow, G. Peeters, “Stem-JEPA: A Joint-Embedding Predictive Ar-
chitecture for Musical Stem Compatibility Estimation”, in Proc. of the

25th Int. Society for Music Information Retrieval Conf., San Francisco,
United States, 2024.

genre, timbre, and singing/playing style. In addition, lo-
cal features like chords or pitches are crucial to perform-
ing temporal alignment between a stem and some musical
context.

While initial works have studied musical compatibility
between songs based on traditional Music Information Re-
trieval (MIR) tasks like beat tracking and chord estimation
[1, 2], more modern approaches aim to learn compatibility
directly from data using deep neural networks [3–5]. Us-
ing such learning-based approaches extends the notion of
compatibility beyond music-theoretical aspects (like tonal-
ity and tempo) toward sound-related and expressive char-
acteristics like timbre and playing style.

Moreover, there are potential applications for musical
stem generation [6, 7], where generators usually require
musical context conditioning to produce compatible ac-
companiments. With the proposed system, stem represen-
tations can be predicted from context information at infer-
ence time. This allows training a stem generation model
based solely on stem representations, eliminating the need
for context/target pairs.

Paper proposal and organization. In this paper, we
introduce Stem-JEPA, a novel Joint-Embedding Predictive
Architecture (JEPA) which acts directly on mixtures of
stems. It consists of two neural networks, an encoder and
a predictor, jointly trained to produce representations of
a context mix and predict representations of a compatible
target stem. Unlike previous JEPAs [8, 9], our approach
does not rely on masking in the input space but rather on
omitting stems within the process of mixing, and it uses the
label of the missing stem for conditioning (see section 3).

We assess the performance of Stem-JEPA in a retrieval
task and through a subjective evaluation in sections 4.1
and 4.2, respectively. Also, we investigate how well the
learned representations encode the temporal alignment of
stems and mixes (see section 4.3). We also perform an
analysis showing that key and chord annotations of audio
snippets close in the embedding space are musically com-
patible (see section 4.4). Finally, we evaluate the repre-
sentations produced by our model on various downstream
MIR tasks (see section 4.5).

To facilitate further research in this direction, we make
our code available. 1

1 https://github.com/SonyCSLParis/Stem-JEPA
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Figure 1. Overview of the Stem-JEPA framework. From an audio clip composed of 4 stems, we first crop a chunk of
8 seconds, then sample the target x̄ (one of the stems) and the context x (a mix of some of the remaining stems) as
described in section 3.2. They are then converted into Log Mel Spectrograms and passed through the context and target

encoders, respectively. Finally, the predictor (conditioned on the target instrument label) is trained so that each of its
outputs individually predicts each target representation.

2. RELATED WORK

SSL for representation learning. Self-supervised learn-
ing (SSL) involves training networks on unlabeled corpora
by solving pretext tasks using only the data itself. This
paradigm has shown great potential for extracting mean-
ingful representations in various domains [10–13].

A common approach to SSL is contrastive learning [10,
12, 14, 15] or its variants [16, 17]. In autoencoders, an en-
coder and a decoder are jointly trained to learn latent rep-
resentations from which the original input can be recon-
structed [13, 18]. JEPAs are trained to predict some tar-
get data from context data directly in the representation
space [8, 19].

Joint-Embedding Predictive Architectures. A JEPA
is an architecture composed of two trainable networks:
an encoder and a predictor. The model receives a con-
text/target pair as input, passes them through the encoder
to create latent representations, and then the predictor is
trained to predict the target representation from the context
representation. Pairs can be generated through various data
augmentations [11,19,20], or by masking part of the input,
as in data2vec [21]. In particular, JEPAs do not require
negative samples, unlike contrastive approaches [19], and
enable the model to discard uninformative content given
that reconstruction is not required.

To prevent model collapse, it is crucial to block gradi-
ents in the non-predictor branch [22], treating its output
as the target. Moreover, adopting different but tied en-
coders for each branch as in Eq. (2) helps to stabilize train-
ing [19, 22, 23]. Finally, I-JEPA [8] creates pairs through
masking and trains the model to predict the representations
of small image patches by conditioning the predictor on
their positions, allowing the model to grasp local nuances.

Learning from separated sources. Most SSL ap-
proaches, often stemming from the vision domain, have
been explored and adapted to the audio domain [9, 12, 14,
15,20,24–26]. These works are not specific to musical au-
dio, which is typically composed of several stems provid-
ing rich compositional potential for SSL. In practice, only

a few SSL approaches leverage separated stems for tasks
such as audio classification [27], music tagging [28] and
beat tracking [29]. Finally, a few works explore modeling
the compatibility between stems with applications like au-
tomatic mashup creation [1,3] and sample or loop retrieval
for interactive composition [4, 5].

3. STEM-JEPA

3.1 Training pipeline

Our method, depicted in Figure 1, builds upon recent
works in JEPAs for image and audio representation learn-
ing [8, 9]. Given a music track represented as a set of
S stems (roughly corresponding to the separated audio
sources) x1, . . . ,xS , we crop a chunk of 8 seconds. We
then randomly select one of the stems as target x̄ = xt

with t ∈ {1, . . . , S} and use the remaining ones to create a
context mix: x =

∑

c∈C xc with C ⊂ {1, . . . , S} \ {t}.
Both x and x̄ are then converted to Log Mel Spectro-

grams and divided into a regular grid (over the time and
frequency dimensions), leading to K patches. The context
patches are then fed to a context encoder fθ to produce
patch-wise embeddings z = (z1, . . . , zK), where θ are
training parameters. Similarly, the target patches are fed
to a target encoder fθ̄ to produce the patch-wise embed-
dings z̄ = (z̄1, . . . , z̄K).

Finally, the context representations z are independently
fed to a predictor gϕ (with trainable parameters ϕ), which
is conditioned on the instrument label l of the missing
stem by concatenating a learnable embedding emb(l) to
zk. The output of the predictor is therefore the prediction
z̃ = (z̃1, . . . , z̃K), with z̃k = gϕ(concat(zk, emb(l))).

As in [8, 11, 19], the parameters (θ, ϕ) of the context
encoder and predictor are updated through gradient descent
by minimizing the mean squared error L(z̃, z̄) between the
(normalized) predicted and target representations:

L(z̃, z̄) =
1

K

K
∑

k=1

∥

∥

∥

∥

z̃k

∥z̃k∥
−

z̄k

∥z̄k∥

∥

∥

∥

∥

2

, (1)
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whereas the parameters of the target encoder θ̄ are updated
using an Exponential Moving Average (EMA) of the ones
of the context encoder, i.e.,

θ̄i = τiθ̄i−1 + (1− τi)θi, (2)

where the EMA rate τi is linearly interpolated between τ0
and τT , T being the total number of training steps.

3.2 Sampling context and target

To avoid training the system on silent target stems or silent
context mixes, we first analyze the amplitude content of
each of the stems x1, . . . ,xS representing a chunk of a
given music track.

Let A ⊂ {1, . . . , S} be the indices of active (i.e., non-
silent) stems among x1, . . . ,xS . We first pick a random
index t ∈ A as target 2 . Then, we randomly select a sub-
set C ⊂ A \ {t} from the remaining non-silent tracks.
The number of stems |C| in this subset is uniformly sam-
pled between 1 and the number of other non-silent stems
|A| − 1. Most of the time, the prediction task incorporates
more stems in the context than in the target (|C| > 1), sim-
plifying the predictor’s task. However, occasionally, the
subset consists of only one stem (|C| = 1), allowing the
model to process individual stems and learn their represen-
tations, which is crucial as these are also used as targets.

3.3 Architecture and training details

We employ a standard ViT-Base model as the encoder [30].
Our predictor is a 6-layer MLP with ReLU activations and
1024 dimensions in each hidden layer. In our ablation stud-
ies, the Transformer predictor we use is the same as in [9].

During training, we extract audio chunks of 8 seconds
that are converted to log-scaled Mel Spectrograms with 80
mel bins and a window and hop size of 25 and 10 ms, re-
spectively. We use patches of size 16 × 16, leading to se-
quences of 80

16 × 800
16 = 250 tokens during training.

We train our model during 300k steps using
AdamW [31], with a batch size of 256, a base learn-
ing rate of 3e-4, and a cosine annealing scheduling after
20k steps of linear warmup. All other hyperparameters
are consistent with those used in [9], following their
demonstrated effectiveness. Our model is trained for
approximately four days on a single A100 GPU with 40
GB of memory.

3.4 Training data

We train the model on a proprietary dataset of 20k multi-
track recordings of diverse music genres (e.g., pop/rock,
R&B, rap, country) with a total duration of 1350 hours.
We use existing instrument annotations to construct four
standard categories: Bass, Drums, Vocals, and Other.

2 If |A| < 2 (a whole chunk is silent or only one active stem), we re-
sample another audio chunk from the same track to prevent having silent
context or target.

4. EVALUATION

We assess the efficacy of our model to retrieve compatible
stems from a given mix through objective and subjective
evaluations. We also demonstrate that the learned repre-
sentations capture local harmonic and rhythmic informa-
tion. Finally, we show that they also encode high-level
features, making them suitable for various MIR tasks.

4.1 Stem retrieval task

Given an input audio, our model predictor has been trained
to output a latent representation of a stem such that this
stem would fit well with the input audio. To evaluate the
performance of our model, we construct a retrieval task in
which, given an existing music track, the model should be
able to predict the representation of one stem given the mix
of the others.

4.1.1 Experimental setup

For evaluation, we used the MUSDB18 dataset [32], which
contains N = 150 tracks x(1), . . . ,x(N), each track x(n)

being composed of S = 4 stems x
(n)
1 , . . . ,x

(n)
S (vocals,

bass, drums, other). This allows a total of N × S = 600

runs. For any individual stem x
(n)
s , define x

(n)
¬s the mix

containing all stems from x(n) except x(n)
s . We aim to

predict the embedding of the individual stem x
(n)
s from the

one of the mix x
(n)
¬s . We compute and average (over time)

the patch-wise representations of all stems x(n)
s . It gives us

a reference set Z = {z
(n)
s }, with z

(n)
s being the embedding

of x(n)
s . Then, we encode all mixes x(n)

¬s , pass the resulting
representations through the predictor conditioned on s, and
average (over time and frequency) the result to get a query

embedding q
(n)
s . In other words, q(n)

s is the prediction
of (the embedding of) the missing instrument x(n)

s from
the remaining ones x

(n)
¬s . We therefore test if the actual

embedding z
(n)
s is among the nearest neighbors of q(n)

s in
the reference set Z.

Metrics. We measure the model performance using two
metrics. The Recall at K (R@K) measures the proportion
of relevant items successfully retrieved among the top K

nearest neighbors. We consider here K ∈ {1, 5, 10}.

The Normalized Rank [5] of a query q
(n)
s is defined as

the rank of the ground-truth z
(n)
s in the sorted list of dis-

tances {d(q
(n)
s , z)}z∈Z, normalized by the length of the

list (here 600) to get a value in [0, 1). For example, a mean
Normalized Rank of 5% means that the actual embedding
z
(n)
s is, on average, within the 5% nearest neighbors from

the prediction q
(n)
s . For each model, we report mean and

median Normalized Ranks.

4.1.2 Results

The results are shown in Table 1 under the row "MLP w/
cond." Our model achieves a R@1 of 33%, and in half of
the cases, the correct stem is within the top 0.5% of nearest
neighbors (median Normalized Rank is 0.5%). Moreover,
the median rank consistently outperforms the mean rank,
indicating the presence of outliers with very high ranks.
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Table 1. Influence of the design of the predictor on the
retrieval performances. All metrics are in percentages.

Recall ↑ Normalized Rank ↓
Model R@1 R@5 R@10 mean median

MLP w/ cond. 33.0 63.2 76.2 2.0 0.5

MLP w/o cond. 28.2 58.0 69.2 3.3 0.7
Transformer 5.2 17.5 25.7 12.1 6.0

AutoMashupper 1.0 8.8 15.5 29.1 19.5
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Figure 2. Analysis of the closest embedding z∗ for all
queries q from the MUSDB18 dataset [32]. Left: Cat-
egories of failures for each instrument (same song but
wrong instrument, the opposite, or both wrong). Right:
confusion matrix between conditioning instruments and re-
trieved instruments.

We also include in Table 1 results for scenarios with-
out predictor conditioning during training (row "MLP w/o
cond.") and when using a Transformer instead of an MLP
for the predictor. In both cases, the performance drops sub-
stantially, emphasizing the importance of conditioning for
the retrieval task. When using an MLP instead of a Trans-
former, the encoder must capture global information be-
cause the MLP cannot infer it, which leads to more infor-
mative embeddings.

Finally, we compare our model with AutoMashup-
per [1], which is, to the best of our knowledge, the only
openly available work on compatibility estimation. We
use their “mashability” measure as a similarity metric to
compute the retrieval performances. Note that this metric
involves beat tracking and chord detection, making it un-
suited for vocals and drum stems, respectively. Therefore,
the performance of this method on the retrieval task is rel-
atively weak.

4.1.3 Influence of the instrument class

To get a better understanding of the failure modes
of our model and the disparities between the differ-
ent instruments, we study the nearest neighbor z∗ =
argmin

z∈Z
d(q, z) for all queries q from MUSDB18.

This analysis, detailed in Figure 2 (left), categorizes z∗

into four groups: “both correct” where the model pre-
dicts the correct instrument from the correct song, “right
instrument” where the correct instrument is predicted but
from a different song, “right song” where the model pre-
dicts the wrong instrument class but from the correct song,
and “both wrong”. Additionally, Figure 2 (right) displays

bass drums vocals other overall
0
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80

100

Ra
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g

Ground truth Stem-JEPA Random

Figure 3. Box plot of the listening test for the different
instrument classes. The × represents the mean of the data.

a confusion matrix for the instruments.
A noticeable result is that the retrieval performances

vary a lot between the different instruments, especially
between “drums” (R@1 ≃ 25%) and “other” (R@1 ≃
45%). 3 A plausible explanation is that there are simply
more possible candidate drum patterns that actually fit a
given mix, resulting in closer neighbors within which it is
harder to detect the ground truth.

Additionally, we can see that the “both wrong” scenario
is quite uncommon. However, for bass and drums in par-
ticular, we predict another instrument (but for the correct
song) in more than 25% of the cases. The confusion ma-
trix shows that the category that mostly causes this failure
is “other”. A reason is probably that “other” is a broad and
ill-defined set of instruments that could arguably overlap
with bass or drums (e.g., choirs, synth bass, xylophone...).

4.2 User study

In section 4.1, we utilize the compatibility of a mix and
a stem from the same song to assess the retrieval perfor-
mance of our model. However, it is plausible that the
dataset also includes compatible stems originally part of
different songs. To evaluate our model’s ability to re-
trieve these compatible yet non-original stems, we conduct
an online listening test, focusing on retrieving instruments
that are not present in the query mix (green segment in Fig-
ure 2).

For each trial, the user first listens to a query mix with
one missing stem, followed (in random order) by the actual
missing stem, the one retrieved by our system, and a ran-
dom one, but with the same instrument class as x(n)

s . They
are then asked to rate (from 0 to 100) the three proposed
stems’ compatibility with the reference mix. 4

The mixes and stems are 16-second chunks from the
MUSDB18 dataset [32], randomly cropped to 10 seconds
during the test to prevent listeners from relying on tem-
poral alignment for rating. We conduct our study on the
Go Listen platform [33]. Our test comprises 60 trials, and
each user has to answer 12 of them (3 for each instrument
class). We had 23 participants, 20 of whom had musical
experience (11 for at least 10 years).

Results. The listening test results are depicted in Figure
3. While the ratings for the stems retrieved by our model

3 The proportion of “both correct” samples is exactly the Recall at 1.
4 Since we already test temporal alignment and tonality in sections

4.3 and 4.4 respectively, participants are explicitly instructed to rather
concentrate on genre, timbre, and playing/singing style in this study.
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Figure 4. Average pairwise cosine similarity between em-
beddings and predictions across various temporal shifts.
Each curve corresponds to a different track.

are slightly lower than those for the ground truth on aver-
age, they are substantially higher (approximately double)
than the ratings of random samples. This highlights the
ability of Stem-JEPA to retrieve stems compatible with the
context mix.

However, we find some disparities between instrument
classes. For example, the ratings for drums between the
ground truth and our model’s suggestions are very close,
whereas they are more different for the “other” category.
Also, the variance of ratings is higher in “drums,” hinting
at a generally higher compatibility of drums with any con-
text. Finally, the length of the whiskers and the difference
between the mean and median reveal significant disparities
between users and samples, indicating the high subjectivity
and difficulty of musical compatibility estimation.

4.3 Stem alignment analysis

In this section, we assess the model’s ability to evaluate the
alignment between stems and mixes by temporally shifting
them relative to each other. Our primary metric for this
evaluation is the cosine similarity between learned embed-
dings and their predictions at various offsets, reflecting the
local temporal features captured by the model.

Contrary to our previous approach that utilized embed-
dings averaged over time, here we retain the temporal se-
quence of the embeddings. We concatenate embeddings
in the frequency dimension and stack them in the time di-
mension, maintaining a resolution of one embedding per
160 milliseconds of audio. We denote the representation of
the i-th patch in stem x

(n)
s as z(n)s [i] and its corresponding

predicted output conditioned on the mix x
(n)
¬s as q(n)

s [i].
We evaluate the fidelity of these embeddings by ex-

amining how the cosine similarity between z
(n)
s [i] and

q
(n)
s [(i+ j)%M ] evolves with varying j, the temporal off-

set. The formulation is given by:

s(z,q, j) =
1

MS

S
∑

s=1

M
∑

i=1

⟨zs[i],qs[(i+ j)%M ]⟩ (3)

where M is the total number of embeddings in sequence z,
S is the number of stems, and j represents the shift index.

The local nature of the information captured by the em-
beddings is reflected in how the cosine similarity s(z,q, j)
changes with different temporal offsets j. Specifically, if
the embeddings predominantly contained global informa-
tion, s would remain relatively constant across shifts. Con-
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Figure 5. Key/Chord co-occurrence matrix between seg-
ments within the same clusters.

versely, a sharp peak in similarity at j = 0, followed by a
rapid decrease, suggests that the embeddings are rich in
local information and less information is shared between
adjacent frames.

From our analysis of tracks from the MUSDB18 dataset
(8 of them being displayed in Figure 4), we first observe
that s(z,q, j) always remains relatively high 5 , which in-
dicates that the embeddings contain global information.
We, however, observe a peak at j = 0, underlining the
presence of local details that are temporally aligned.

We also observe periodic patterns in the curves, high-
lighting the model’s capacity to capture temporal struc-
tures (e.g., beats and bars). Finally, we observe smaller
peaks every 8 seconds, the duration of the chunks used
for computing the embeddings, which implies that embed-
dings also capture global position information. This behav-
ior could potentially be avoided by replacing the absolute
positional encodings in our encoder with other variants.

An interactive version of Figure 4 with audio examples
is provided on the accompaniment website. 6

4.4 Musical plausibility

We utilize key and chord annotations from Isophonics 7

for 174 Beatles songs to label all patch embeddings. We
then conduct k-means clustering on the latent space with
k = 32 clusters. Within each cluster, we calculate the co-
occurrence of all key and chord pairs and aggregate these
counts across all clusters. To visualize these relationships,
we display in Figure 5 a co-occurrence matrix for the keys
and chords that appear in the top 80 most frequent com-
binations, considering all possible pairs for counting, not
just the most common ones.

The matrix reveals that pairs close in the latent space
often share significant musical relevance. The highest oc-
currences typically connect a key with its tonic (e.g., E/E),
and prominently with its subdominant and dominant (e.g.,
C/F, G or D/G, A). Such patterns indicate that the embed-
dings capture meaningful tonal relationships.

5 As a reference, the average cosine similarity between random repre-
sentations and predictions is approximately 0.17.

6 https://sonycslparis.github.io/Stem-JEPA
7 http://isophonics.net/
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Table 2. Datasets used for downstream tasks.
Dataset classes Task

Giantsteps (GS) [36] 24 Key detection
GTZAN [37] 10 Genre classification
MagnaTagATune (MTT) [38] 50 Tagging
NSynth [39] 11 Instr. classification

4.5 Benchmark on downstream tasks

Lastly, we investigate the musical features encoded in the
representations learned by our model. We hypothesize that
the encoder captures shared musical information among
different stems of the same track, such as rhythm or har-
mony, to aid the predictor. To verify this, we evaluate it on
several downstream classification tasks, a standard proto-
col for representation learning methods [9, 12, 34, 35].

4.5.1 Experimental setup

Our experimental setup follows the constrained track of
the MARBLE benchmark [35]. Each audio sample is pro-
cessed by the frozen encoder, and its patch-wise outputs
are concatenated and averaged along frequency and time
dimensions to produce a 3840-dimensional global embed-
ding, following [9]. These embeddings are passed through
an MLP with 512 hidden units and a softmax layer, which
is trained by minimizing the cross-entropy between the
predicted distribution and the ground truth labels.

Downstream tasks. To validate our hypothesis, we fo-
cus on global musical features that are shared among the
different stems of a track, namely tagging, key, and genre
estimation. Additionally, we include an instrument clas-
sification task to observe whether the encoder preserves
stem-specific information. For facilitating comparisons to
existing work, we also pick our downstream tasks from the
MARBLE benchmark [35]. The full list of datasets and
associated tasks is depicted in Table 2.

Baselines. We compare our model to two variants: one
trained with a Transformer as predictor, and one without
conditioning, as in section 4.1. In addition, we include
the two top-performing models from [35] in the consid-
ered tasks, namely MULE [12] and Jukebox-5B [40] as
references. MULE [12] is an SSL model based on SF-
NFNet-F0 [41] trained by contrastive learning on the Mu-
sicSet dataset (117k hours), while Jukebox [40] is a huge
music generation model trained using codified audio lan-
guage modeling on 1.2 million songs.

For a more in-depth description of the hyperparame-
ters, datasets, tasks, and corresponding metrics, we refer
the reader to [35].

4.5.2 Results

The performances of our model on downstream tasks are
provided in Table 3. First, we observe that the choice
of the predictor used for training, while extremely influ-
encing for retrieval tasks, has little effect on the down-
stream performances of our encoder, apart from key de-
tection on Giantsteps, for which the model trained with a
Transformer predictor clearly outperforms the others. The

Table 3. Influence of the predictor architecture on the
performances of Stem-JEPA on various downstream tasks,
and comparison with existing baselines.

GS GTZAN MTT NSynth
Model Accrefined Acc ROC AP Acc

MLP w/ cond. 40.2 68.6 89.9 42.8 73.5
MLP w/o cond. 36.8 72.5 90.1 42.9 75.0

Transformer 46.0 68.1 90.0 42.7 73.3

MULE [12] 64.9 75.5 91.2 40.1 74.6
Jukebox [42] 63.8 77.9 91.4 40.6 70.4

performances on NSynth also reveal that our model does
not only capture information shared between stems but also
stem-specific features. Surprisingly, this holds even with-
out conditioning the predictor during training, and more
generally, not conditioning the predictor improves perfor-
mance on most downstream tasks.

We also compare our model to state-of-the-art works in
music representation learning. Our performances are on
par with baselines for two tasks (MTT and NSynth) but
significantly lower on Giantsteps and GTZAN, despite be-
ing much better than random guessing. Considering the
limited quantity of training data compared to the base-
lines (about 100 times less), these results suggest that our
method is promising for music representation learning but
that further efforts have to be made to make it competitive
with current state-of-the-art approaches in this field.

5. CONCLUSION

In this study, we introduce a novel SSL paradigm based
on stem prediction for musical stem compatibility estima-
tion through the prism of representation learning. Our
results show promising performances for retrieval appli-
cations and also indicate that the learned representations
are localized, suggesting that they could also be valuable
for music generation and possibly automatic arrangement.
Additionally, these representations are musically meaning-
ful and demonstrate linear separability for various Music
Information Retrieval tasks.

Moreover, our model is, to the best of our knowl-
edge, the first use of the predictor component of Joint-
Embedding Predictive Architectures (JEPAs) during infer-
ence. Employing JEPAs to model compatibility instead
of similarity, with appropriate conditioning, may open up
possibilities in various fields beyond music.

Nevertheless, our study is not without its limitations. In
particular, self-supervised learning usually benefits from
very large corpora of training data; however, accessing
large datasets of separated stems is challenging, though
advancements in source separation technology may alle-
viate some of these issues. Finally, restricting the analysis
to four instruments, while standard in source separation,
currently limits the generalizability of our findings. Ide-
ally, extending the predictor to accommodate any instru-
ment would prevent the failure cases illustrated in section
4.1.3 and enhance the model’s utility, representing an ex-
citing direction for future research.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

630



6. ACKNOWLEDGMENTS

This work has been funded by the ANRT CIFRE conven-
tion n°2021/1537 and Sony France. This work was granted
access to the HPC/AI resources of IDRIS under the alloca-
tion 2022-AD011013842 made by GENCI. We would like
to thank Cyran Aouameur and Marco Comunità for their
helpful suggestions. Finally, we would like to thank the
reviewers and meta-reviewer for their valuable comments.

7. REFERENCES

[1] M. E. P. Davies, P. Hamel, K. Yoshii, and M. Goto,
“Automashupper: automatic creation of multi-song
music mashups,” IEEE/ACM Trans. Audio, Speech and

Lang. Proc., vol. 22, no. 12, p. 1726–1737, dec 2014.

[2] C.-L. Lee, Y.-T. Lin, Z.-R. Yao, F.-Y. Lee, and J.-L.
Wu, “Automatic mashup creation by considering both
vertical and horizontal mashabilities,” in International

Society for Music Information Retrieval Conference,
2015.

[3] J. Huang, J.-C. Wang, J. B. Smith, X. Song, and
Y. Wang, “Modeling the compatibility of stem tracks to
generate music mashups,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 35, no. 1,
2021, pp. 187–195.

[4] B. Y. Chen, J. B. Smith, and Y. H. Yang, “Neural Loop
Combiner: Neural Network Models for Assessing the
Compatibility of Loops,” in Proceedings of the 21st

International Society for Music Information Retrieval

Conference, ISMIR 2020. International Society for
Music Information Retrieval, aug 2020, pp. 424–431.

[5] S. Lattner, “Samplematch: Drum sample retrieval by
musical context,” in Proceedings of the 23rd Interna-

tional Society for Music Information Retrieval Confer-

ence, ISMIR 2022, Bengaluru, India, December 4-8,

2022, 2022, pp. 781–788.

[6] J. Nistal, M. Pasini, C. Aouameur, M. Grachten, and
S. Lattner, “Diff-a-riff: Musical accompaniment co-
creation via latent diffusion models,” 2024.

[7] J. D. Parker, J. Spijkervet, K. Kosta, F. Yesiler,
B. Kuznetsov, J.-C. Wang, M. Avent, J. Chen, and
D. Le, “Stemgen: A music generation model that lis-
tens,” 2024.

[8] M. Assran, Q. Duval, I. Misra, P. Bojanowski, P. Vin-
cent, M. G. Rabbat, Y. LeCun, and N. Ballas,
“Self-supervised learning from images with a joint-
embedding predictive architecture,” in IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition,

CVPR 2023, Vancouver, BC, Canada, June 17-24,

2023. IEEE, 2023, pp. 15 619–15 629.

[9] D. Niizumi, D. Takeuchi, Y. Ohishi, N. Harada, and
K. Kashino, “Masked modeling duo: Learning repre-
sentations by encouraging both networks to model the

input,” in IEEE International Conference on Acoustics,

Speech and Signal Processing ICASSP 2023, Rhodes

Island, Greece, June 4-10, 2023. IEEE, 2023, pp.
1–5.

[10] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton,
“A simple framework for contrastive learning of vi-
sual representations,” in 37th International Conference

on Machine Learning, ICML 2020, vol. PartF16814.
International Machine Learning Society (IMLS), feb
2020, pp. 1575–1585.

[11] D. Niizumi, D. Takeuchi, Y. Ohishi, N. Harada, and
K. Kashino, “BYOL for Audio: Exploring Pre-Trained
General-Purpose Audio Representations,” IEEE/ACM

Transactions on Audio, Speech, and Language Pro-

cessing, pp. 1–15, apr 2022.

[12] M. C. McCallum, F. Korzeniowski, S. Oramas,
F. Gouyon, and A. F. Ehmann, “Supervised and Un-
supervised Learning of Audio Representations for Mu-
sic Understanding,” in Proceedings of the 23rd Inter-

national Society for Music Information Retrieval Con-

ference, ISMIR 2022, oct 2022.

[13] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding,” NAACL HLT 2019

- 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human

Language Technologies - Proceedings of the Confer-

ence, vol. 1, pp. 4171–4186, oct 2018.

[14] A. Saeed, D. Grangier, and N. Zeghidour, “Contrastive
learning of general-purpose audio representations,” in
ICASSP, IEEE International Conference on Acous-

tics, Speech and Signal Processing - Proceedings, vol.
2021-June. Institute of Electrical and Electronics En-
gineers Inc., oct 2021, pp. 3875–3879.

[15] J. Spijkervet and J. A. Burgoyne, “Contrastive Learn-
ing of Musical Representations,” Proceedings of the

22nd International Society for Music Information Re-

trieval Conference, ISMIR 2021, mar 2021.

[16] A. Bardes, J. Ponce, and Y. LeCun, “VICReg:
Variance-Invariance-Covariance Regularization for
Self-Supervised Learning,” in The Tenth International

Conference on Learning Representations, ICLR 2022,

Virtual Event, April 25-29, 2022. OpenReview.net,
may 2022.

[17] T. Wang and P. Isola, “Understanding contrastive rep-
resentation learning through alignment and uniformity
on the hypersphere,” in 37th International Conference

on Machine Learning, ICML 2020, vol. PartF16814.
International Machine Learning Society (IMLS), may
2020, pp. 9871–9881.

[18] K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Gir-
shick, “Masked Autoencoders Are Scalable Vision

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

631



Learners,” in Proceedings of the IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recog-

nition, vol. 2022-June. IEEE Computer Society, nov
2022, pp. 15 979–15 988.

[19] J. B. Grill, F. Strub, F. Altché, C. Tallec, P. H.
Richemond, E. Buchatskaya, C. Doersch, B. A. Pires,
Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu,
R. Munos, and M. Valko, “Bootstrap your own latent a
new approach to self-supervised learning,” in Advances

in Neural Information Processing Systems, vol. 2020-
Decem. Neural information processing systems foun-
dation, jun 2020.

[20] X. Li and X. Li, “ATST: Audio Representation Learn-
ing with Teacher-Student Transformer,” in Proceed-

ings of the Annual Conference of the International

Speech Communication Association, INTERSPEECH,
vol. 2022-Septe. International Speech Communica-
tion Association, apr 2022, pp. 4172–4176.

[21] A. Baevski, W. Hsu, Q. Xu, A. Babu, J. Gu, and
M. Auli, “data2vec: A general framework for self-
supervised learning in speech, vision and language,” in
International Conference on Machine Learning, ICML

2022, 17-23 July 2022, Baltimore, Maryland, USA, ser.
Proceedings of Machine Learning Research, vol. 162.
PMLR, 2022, pp. 1298–1312.

[22] X. Chen and K. He, “Exploring simple Siamese repre-
sentation learning,” in Proceedings of the IEEE Com-

puter Society Conference on Computer Vision and Pat-

tern Recognition. IEEE Computer Society, nov 2021,
pp. 15 745–15 753.

[23] Y. Tian, X. Chen, and S. Ganguli, “Understanding
self-supervised learning dynamics without contrastive
pairs,” in Proceedings of the 38th International Con-

ference on Machine Learning, ICML 2021, 18-24

July 2021, Virtual Event, ser. Proceedings of Machine
Learning Research, vol. 139. PMLR, 2021, pp.
10 268–10 278.

[24] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli,
“wav2vec 2.0: A framework for self-supervised learn-
ing of speech representations,” in Advances in Neural

Information Processing Systems 33: Annual Confer-

ence on Neural Information Processing Systems 2020,

NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[25] Y.-A. Chung, Y. Zhang, W. Han, C.-C. Chiu, J. Qin,
R. Pang, and Y. Wu, “W2v-bert: Combining con-
trastive learning and masked language modeling for
self-supervised speech pre-training,” in 2021 IEEE Au-

tomatic Speech Recognition and Understanding Work-

shop (ASRU). IEEE, 2021, pp. 244–250.

[26] P. Huang, H. Xu, J. Li, A. Baevski, M. Auli, W. Galuba,
F. Metze, and C. Feichtenhofer, “Masked autoencoders
that listen,” in Advances in Neural Information Pro-

cessing Systems 35: Annual Conference on Neural In-

formation Processing Systems 2022, NeurIPS 2022,

New Orleans, LA, USA, November 28 - December 9,

2022, 2022.

[27] E. Fonseca, A. Jansen, D. P. Ellis, S. Wisdom,
M. Tagliasacchi, J. R. Hershey, M. Plakal, S. Hershey,
R. C. Moore, and X. Serra, “Self-supervised learning
from automatically separated sound scenes,” in 2021

IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics (WASPAA). IEEE, 2021, pp.
251–255.

[28] C. Garoufis, A. Zlatintsi, and P. Maragos, “Multi-
Source Contrastive Learning From Musical Audio,” in
Proceedings of the Sound and Music Computing Con-

ferences, vol. 2023-June. Sound and Music Comput-
ing Network, feb 2023, pp. 162–169.

[29] D. Desblancs, V. Lostanlen, and R. Hennequin,
“Zero-note samba: Self-supervised beat tracking,”
IEEE/ACM Transactions on Audio, Speech, and Lan-

guage Processing, 2023.

[30] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-
senborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and
N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in 9th Interna-

tional Conference on Learning Representations, ICLR

2021, Virtual Event, Austria, May 3-7, 2021. Open-
Review.net, 2021.

[31] I. Loshchilov and F. Hutter, “Decoupled weight de-
cay regularization,” in 7th International Conference on

Learning Representations, ICLR 2019, New Orleans,

LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[32] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and
R. Bittner, “The MUSDB18 corpus for music separa-
tion,” Dec. 2017.

[33] D. Barry, Q. Zhang, P. W. Sun, and A. Hines, “Go
listen: An end-to-end online listening test platform,”
Journal of Open Research Software, 2021.

[34] J. Turian, J. Shier, H. R. Khan, B. Raj, B. W. Schuller,
C. J. Steinmetz, C. Malloy, G. Tzanetakis, G. Velarde,
K. McNally, M. Henry, N. Pinto, C. Noufi, C. Clough,
D. Herremans, E. Fonseca, J. H. Engel, J. Salamon,
P. Esling, P. Manocha, S. Watanabe, Z. Jin, and Y. Bisk,
“HEAR: holistic evaluation of audio representations,”
in NeurIPS 2021 Competitions and Demonstrations

Track, 6-14 December 2021, Online, ser. Proceedings
of Machine Learning Research, vol. 176. PMLR,
2021, pp. 125–145.

[35] R. Yuan, Y. Ma, Y. Li, G. Zhang, X. Chen, H. Yin,
L. Zhuo, Y. Liu, J. Huang, Z. Tian, B. Deng, N. Wang,
C. Lin, E. Benetos, A. Ragni, N. Gyenge, R. B. Dan-
nenberg, W. Chen, G. Xia, W. Xue, S. Liu, S. Wang,
R. Liu, Y. Guo, and J. Fu, “MARBLE: music audio rep-
resentation benchmark for universal evaluation,” in Ad-

vances in Neural Information Processing Systems 36:

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

632



Annual Conference on Neural Information Processing

Systems 2023, NeurIPS 2023, New Orleans, LA, USA,

December 10 - 16, 2023, 2023.

[36] P. Knees, Á. Faraldo, P. Herrera, R. Vogl, S. Böck,
F. Hörschläger, and M. L. Goff, “Two data sets for
tempo estimation and key detection in electronic dance
music annotated from user corrections,” in Proceed-

ings of the 16th International Society for Music In-

formation Retrieval Conference, ISMIR 2015, Málaga,

Spain, October 26-30, 2015, 2015, pp. 364–370.

[37] G. Tzanetakis and P. R. Cook, “Musical genre classi-
fication of audio signals,” IEEE Trans. Speech Audio

Process., vol. 10, no. 5, pp. 293–302, 2002.

[38] E. Law, K. West, M. I. Mandel, M. Bay, and J. S.
Downie, “Evaluation of algorithms using games: The
case of music tagging,” in Proceedings of the 10th

International Society for Music Information Retrieval

Conference, ISMIR 2009, Kobe International Confer-

ence Center, Kobe, Japan, October 26-30, 2009. In-
ternational Society for Music Information Retrieval,
2009, pp. 387–392.

[39] J. H. Engel, C. Resnick, A. Roberts, S. Dieleman,
M. Norouzi, D. Eck, and K. Simonyan, “Neural audio
synthesis of musical notes with wavenet autoencoders,”
in Proceedings of the 34th International Conference

on Machine Learning, ICML 2017, Sydney, NSW, Aus-

tralia, 6-11 August 2017, ser. Proceedings of Machine
Learning Research, vol. 70. PMLR, 2017, pp. 1068–
1077.

[40] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford,
and I. Sutskever, “Jukebox: A generative model for
music,” CoRR, vol. abs/2005.00341, 2020.

[41] L. Wang, P. Luc, Y. Wu, A. Recasens, L. Smaira,
A. Brock, A. Jaegle, J. Alayrac, S. Dieleman, J. Car-
reira, and A. van den Oord, “Towards learning univer-
sal audio representations,” in IEEE International Con-

ference on Acoustics, Speech and Signal Processing,

ICASSP 2022, Virtual and Singapore, 23-27 May 2022.
IEEE, 2022, pp. 4593–4597.

[42] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford,
and I. Sutskever, “Jukebox: A generative model for
music,” apr 2020.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

633



AUDIO PROMPT ADAPTER:
UNLEASHING MUSIC EDITING ABILITIES FOR TEXT-TO-MUSIC WITH

LIGHTWEIGHT FINETUNING

Fang-Duo Tsai1 Shih-Lun Wu2 Haven Kim3

Bo-Yu Chen1 Hao-Chung Cheng1 Yi-Hsuan Yang1

1 National Taiwan University 2 Carnegie Mellon University 3 University of California San Diego

r12942150@ntu.edu.tw, shihlunw@andrew.cmu.edu, khaven@ucsd.edu

bernie40916@gmail.com, haochung@ntu.edu.tw, yhyangtw@ntu.edu.tw

ABSTRACT

Text-to-music models allow users to generate nearly realis-

tic musical audio with textual commands. However, editing

music audios remains challenging due to the conflicting

desiderata of performing fine-grained alterations on the au-

dio while maintaining a simple user interface. To address

this challenge, we propose Audio Prompt Adapter (or AP-

Adapter), a lightweight addition to pretrained text-to-music

models. We utilize AudioMAE to extract features from the

input audio, and construct attention-based adapters to feed

these features into the internal layers of AudioLDM2, a

diffusion-based text-to-music model. With 22M trainable

parameters, AP-Adapter empowers users to harness both

global (e.g., genre and timbre) and local (e.g., melody) as-

pects of music, using the original audio and a short text

as inputs. Through objective and subjective studies, we

evaluate AP-Adapter on three tasks: timbre transfer, genre

transfer, and accompaniment generation. Additionally, we

demonstrate its effectiveness on out-of-domain audios con-

taining unseen instruments during training.

1. INTRODUCTION

Advancements in text-to-music generation have made it

possible for users to create music audio signals from sim-

ple textual descriptions [1–4]. To improve the control over

the generated music beyond textual input, several newer

models have been proposed, using additional conditioning

signals indicating the intended global or time-varying mu-

sical attributes such as melody, chord progression, rhythm,

or loudness for generation [5–9] (see Section 2 for a brief

review). Such controllability is important for musicians,

practitioners, as well as common users in the human-AI

co-creation process [10, 11].

However, one area that remains challenging, which we

refer to as text-to-music editing below, is the precise editing

© F.Tsai, S.Wu, H.Kim, B.Chen, H.Cheng, Y.Yang. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: F.Tsai, S.Wu, H.Kim, B.Chen, H.Cheng,

Y.Yang, “Audio Prompt Adapter: Unleashing Music Editing Abilities for

Text-to-Music with Lightweight Finetuning ”, in Proc. of the 25th Int. So-

ciety for Music Information Retrieval Conf., San Francisco, United States,

2024.

of a piece of music, provided by a user as an audio input

x alongside the text input y for the textual prompts. The

goal here for the model is to create an “edited” version of

the input music, denoted as x̃, according to the text input.

This is a crucial capability for users who wish to refine

either an original or machine-generated music without com-

promising its musicality and audio quality, while keeping

the simplicity of text-based human-computer interaction.

Namely, the desired properties of the output x̃ are:

• Transferability: x̃ should reflect what y specifies, e.g.,

timbre, genre, instrumentation, or mood.

• Fidelity: x̃ should retain all other musical content in x

that y does not concern, e.g., melody and rhythm.

While a text-to-music generation model takes in general

only the text input y and generates music freely, a text-to-

music editing model takes both audio and text inputs x and

y. The primary challenge arises from the conflicting goals

of maintaining high fidelity to the input audio x while incor-

porating specific changes dictated by textual commands y.

As we review in Section 2, existing methods [14–16] either

lack the granularity needed for detailed audio manipulation

or need complex prompt engineering that detracts from user

accessibility or requires iterative refinements.

A secondary challenge arises from the large number of

trainable parameters needed for models to achieve high mu-

sical quality and diversity (e.g., MusicGen-medium [5] has

1.5B parameters). Without much computational resource,

it is more feasible to treat existing models as “foundation

models” and finetune them to fulfill specific needs, instead

of training a model from scratch [17].

In view of these challenges, we propose in this paper

the Audio Prompt Adapter (or, AP-Adapter for short), a

novel approach inspired by the Image Prompt Adapter (IP-

Adapter) [18] from the neighboring field of text-to-image

editing. This lightweight (22M parameters), attention-based

module integrates seamlessly with existing text-to-music

generation models, specifically leveraging the pre-trained

AudioLDM2 model [12] enhanced by the AudioMAE en-

coder [13] to extract audio features. Our method uniquely

combines text and audio inputs through decoupled cross-

attention layers, allowing precise control in the genera-

tion process. After training the AP-adapter with a single

NVIDIA RTX 3090, our method can zero-shot edit a given
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Figure 1: Our AP-Adapter is an add-on to AudioLDM2 [12]. Users provide an original audio to AudioMAE [13] to

extract audio features, and an editing command to the text encoder. The decoupled audio and text cross-attention layers of

AP-Adapter contribute to the fidelity with the input audio and transferability of the editing command in the edited audio.

audio prompt according to the text prompt.

Our AP-Adapter offers great improvements over some

baseline models by enabling detailed and context-sensitive

audio manipulations, achieving a balance between fidelity

and the transferability effects dictated by user inputs. Our

experiments across timbre transfer, genre transfer, and ac-

companiment generation tasks demonstrate the effective-

ness of our approach in handling diverse and complex edit-

ing requirements. In short, our key contributions are:

• Proposing a framework that equips an audio input modal-

ity for a pre-trained text-to-music generation model.

• Performing zero-shot music editing with a lightweight

adapter, which permits flexible balance of the effects of

the text and audio inputs.

• Demonstrating three tasks: timbre transfer, genre transfer,

accompaniment generation, and discussing the impact of

tunable hyperparameters.

We provide audio examples in our demo website. 1 We also

share source code and model checkpoints on GitHub. 2

2. RELATED WORK

Generating desired music from text prompts alone is com-

plex and often requires intricate prompt engineering. Mus-

tango [7] enhanced prompts with information-rich captions

specifying chords, beats, tempo, and key. MusicGen [5]

conditioned music generation on melodies by extracting

chroma features [19] and inputting them with the text

prompt into a Transformer model. Coco-Mulla [6] and Mu-

siConGen [9] extended MusicGen by adding time-varying

chord- and rhythm-related controls. Music ControlNet [8]

incorporated time-varying conditions like melody, rhythm,

and dynamics for diffusion-based text-to-music models.

These methods utilize low-level features to guide genera-

tion but do not take reference audio as input, limiting their

potential for editing existing audio tracks.

Recently, several music editing methods were proposed.

InstructME [14] uses a VAE and a chord-conditioned dif-

fusion model for music editing but requires a large dataset

1 Demo: https://rebrand.ly/AP-adapter
2 Code: https://github.com/fundwotsai2001/AP-adapter

of audio files with multiple instrumental tracks and triplet

data of text instructions, source music, and target music for

supervised training. M2UGen [15] leverages large language

models to understand and generate music across different

modalities, supporting music editing via natural language,

but it requires a three-step training process and complex

preprocessing. MusicMagus [16] implements latent space

manipulation during inference for music editing but requires

an additional music captioning model and the InstructGPT

LLM to address discrepancies between the text prompt dis-

tribution of AudioLDM2 and the music captioning model.

Compared to these methods, our AP-Adapter is more

straightforward to train and can achieve multiple music

editing tasks in a zero-shot manner.

3. BACKGROUND

3.1 Diffusion Model

Denoising diffusion probabilistic models (DDPMs) [20],

also known as diffusion models, are a class of generative

models that approximates some distribution p(x) via de-

noising through a sequence of T − 1 latent variables:

pθ(x) =

∫

[

T
∏

t=1

pθ(xt−1 |xt)
]

p(xT )dx1:T , (1)

where θ is the set of learnable parameters, x0 := x, and

p(xT ) := N (0, I) (i.e., an uninformative Gaussian prior).

To train the model, we run forward diffusion: sample

some data point x ∼ p(x) and some t ∈ [1, T ], and add

noise ϵ ∼ N (0, I) to x to produce a noised data point

xt :=
√

β̄tx+
√

1− β̄tϵ, where β̄t is the pre-defined noise

level for step t. The model is asked to perform backward dif-

fusion, namely, to recover the added noise via the objective

minθ Ex,ϵ,t

[

∥ϵ− ϵθ(xt, t)∥
2
2

]

, where ϵθ(·) is the model’s

prediction, that is equivalent to maximizing the evidence

lower bound (ELBO) of pθ(x). During inference, we start

from an xT ∼ N (0, I) and iteratively remove the predicted

noise ϵθ(xt, t) to generate data. Song et al. [21] offered a

crucial interpretation that each denoising step can be seen

as ascending along ∇x log pθ(x), also known as the score

of pθ(x). Any input condition y can be incorporated into a
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diffusion model by injecting embeddings of y via, for exam-

ple, cross-attention [22], thereby modeling pθ(x |y) (and

∇x log pθ(x |y)). To reduce memory footprint and acceler-

ate training/inference, latent diffusion models (LDMs) [22]

proposed to first compress data points x into latent vectors

using a variational autoencoder (VAE) [23], and then learn

a diffusion model for the latent vectors.

3.2 AudioLDM2

We choose AudioLDM2 [12], a latent diffusion-based [22]

text-to-audio model, as our pretrained backbone. To en-

able text control over generated audio, AudioLDM2 uses

AudioMAE [13] to extract acoustic features, named the lan-

guage of audio (LOA), from the target audio. LOA serves

as the bridge between acoustic and text-centric semantic

information—the text prompt is encoded by both the FLAN-

T5 [24] language model and CLAP [25] text encoder (which

has a joint audio-text embedding space), and then passed to

a trainable GPT-2 [26] to approximate the LOA via a regres-

sion loss that aligns the semantic representations with LOA.

The aligned text information is then fed into the U-Net [27]

for diffusion process to influence the generation. We pick

AudioLDM2 to be the backbone since the use of LOA likely

promotes the affinity to accepting audio conditions, which

is crucial to our fidelity goal.

3.3 Classifier-free Guidance

Classifier-free guidance (CFG) [28] is a simple yet effective

inference-time method to enhance the input text condition’s

influence, which is directly linked to our transferability goal.

As mentioned in Sec. 3.1, diffusion models can predict both

the unconditioned score ∇x log p(x) and the conditioned

score ∇x log p(x | y). In addition, by Bayes’ rule, we

know that p(x | y) ∝ p(x)p(y | x). As the goal is the

amplify y’s influence, we define:

pλ(x | y) :∝ p(x)p(y | x)λ , (2)

where λ is a knob, named CFG scale, that controls the

strength of y. Taking (∇x log) on both sides gives us:

∇x log pλ(x | y) = λ∇x log p(y | x) +∇x log p(x) .
(3)

Meanwhile, we can rearrange the Bayes’ rule terms to get:

∇x log p(y | x) = ∇x log p(x | y)−∇x log p(x) . (4)

Note that a diffusion model can predict both RHS terms.

Plugging Eqn. (4) into Eqn. (3), CFG performs

∇x log pλ(x | y) = ∇x log p(x)

+ λ(∇x log p(x | y)−∇x log p(x)) (5)

at every inference iteration, where ∇x log p(x) is obtained

by inputting an empty string as y.

4. PROPOSED AUDIO PROMPT ADAPTER

To effectively condition AudioLDM2 on the input audio

and achieve our transferability and fidelity goals, our AP-

Adapter adds two components to AudioLDM2: an audio

encoder to extract acoustic features, and decoupled cross-

attention adapters to incorporate the acoustic features while

maintaining text conditioning capability.

4.1 Audio Encoder and Feature Pooling

We adopt AudioMAE as the audio encoder, which is used

by AudioLDM2 to produce the language of audio (LOA;

see Section 3.2) during its training. In our pilot study, we

find that using the LOA directly as the condition causes

nearly verbatim reconstruction, i.e., information in the input

audio is mostly retained. This is undesirable as it greatly

limits transferability. To address this issue, we apply a

combination of max and mean pooling on the LOA, and

leave the pooling rate, which we denote by ω, tunable by

the user to trade off between fidelity and transferability.

4.2 Decoupled Cross-attention Adapters

According to the analyses in [29, 30] performed on text-to-

image diffusion models finetuned for image editing [31],

the cross-attention layers, which allow interaction between

text prompt and the diffusion process, undergo the most

drastic changes during fine-tuning. Hence, we implement

our AP-Adapter also as a set of cross-attention layers.

Recall that the audio and text prompts are transformed

to internal features before interacting with the U-Net for

diffusion. We define these features as:

cx := Pool(AudioMAE(x)) (6)

cy := GPT2([FlanT5(y);CLAP(y)]) , (7)

where cx and cy are the audio and text features respectively.

The original AudioLDM2 incorporates the text feature into

each U-Net layer via cross-attention:

ztext := Attention(zW (q), cyW
(k), cyW

(v)) , (8)

where z is the U-Net’s internal feature, and W (q), W (k),

W (v) are learnable projections that respectively produce

the cross-attention query, key, and values from z or cy.

We keep this cross-attention for text intact (i.e., frozen),

anticipating it to satisfy transferability out of the box.

To incorporate the audio features for fidelity, we place a

decoupled audio cross-attention layer as the adapter along-

side each text cross-attention in a similar light to [18]:

zaudio := Attention(zW (q), cxW
′(k), cxW

′(v)) , (9)

where W ′(k) and W ′(v) are the newly introduced adapter

weights. Since during AudioLDM2 training, the text fea-

ture cy is trained to mimic the LOA from AudioMAE, we

initialize W ′(k) and W ′(v) respectively from W (k) and

W (v) for all the cross-attention layers in the Unet, and

find that this significantly shortens our fine-tuning process

compared to random initialization.

Finally, we obtain the final output of the decoupled text

and audio cross-attentions via a weighted sum:

zfusion := ztext + αzaudio , (10)
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where α ∈ R, named AP scale, is a hyperparameter that

controls the strength of the audio prompt (fixed to α =
1 during training), and zfusion becomes the input of the

subsequent U-Net layer. We expect zfusion to capture the

information mixture from audio and text prompts, inducing

the model to generate plausible music that adheres to both.

4.3 Training

We freeze all the parameters in the pretrained AudioLDM2

and AudioMAE, except for the decoupled audio cross-

attention adapters with 22M parameters. The loss function

follows that of standard (latent) diffusion models:

L = E(x,y),ϵ,t ∥ϵ− ϵθ (xt, cx, cy, t)∥
2
2 , (11)

where (x,y) are naturally existing paired audio and text,

ϵ ∼ N (0, I), t is the diffusion step, xt is the noised audio

latent features, cx, cy are the extracted features from text

and audio prompts (cf. Eqn. (6) and (7)), and ϵθ(·) is the

model’s predicted noise. Minimizing L is equivalent to

maximizing the lower bound of p(x | cx, cy). During train-

ing, we select the audio feature’s pooling rate ω from the

set {1, 2, 4, 8} uniformly at random, making the adapters

recognize audio features with different resolutions, thereby

allowing users to balance fidelity and transferability at in-

ference. Additionally, we randomly dropout audio and text

conditions, i.e., setting cx to a zero matrix, and y to an

empty string, to facilitate classifier-free guidance.

4.4 Inference

At inference, users are free to input any text prompt y as the

editing command to achieve their desired edits, i.e, x → x̃.

In addition, following [32,33], we modify the unconditioned

terms in Eqn. (5) using a negative text prompt y−. Letting

cxy := {cx, cy}, our inference step is:

∇x̃ log pλ(x̃ | cxy, cy−) = ∇x̃ log p(x̃ | cy−)

+ λ
(

∇x̃ log p(x̃ | cxy)−∇x̃ log p(x̃ | cy−)
)

(12)

We find that specifying y− is an effective way to avoid

unwanted properties in x̃, e.g., the original timbre for the

timbre transfer task, or low-quality music in general.

5. EXPERIMENT SETUP

5.1 Dataset Preparation

For the training data of our AP-Adapter, due to our limited

computation resource, we use 200K 10-second-long audios

with text tags randomly sampled from AudioSet [34] (about

500 hours, or ∼10% of the whole dataset).

For the audio input x used in evaluation, we compile

two datasets: in-domain and out-of-domain, according to

whether the AudioSet ontology includes the instrument.

• In-domain: We choose 8 common instruments: piano,

violin, cello, flute, marimba, organ, harp

and acoustic guitar. For each instrument, we

manually download 5 high-quality monophonic audios

from YouTube (i.e., 40 samples in total) and crop them

each to 10 seconds.

• Out-of-domain: We collect a dataset of monophonic

melodies played by ethnic instruments, including 2 Chi-

nese instruments (collected by one of our co-authors) and

5 Korean instruments (downloaded from AIHub [35]).

We use 5 audio samples for each instrument (35 audios

in total), cropped to 10 seconds each. We note that these

instruments are not seen during the training time.

Except for the Korean data which is not licensed outside of

Korea, we share information to get the data on GitHub.

5.2 Evaluation Tasks

By varying the edit command y, we evaluate AP-Adapter

on three music editing tasks:

• Timbre transfer: The model is expected to change a

melody’s timbre to that of the target instrument, and keep

all other contents unchanged. For this task, the edit-

ing command (y) is set to “a recording of a [target

instrument] solo”. The negative prompt (y−) is

“a recording of the [original instrument] solo”.

For in-domain input, the target is one of the other 7 in-

domain instruments. For out-of-domain input, the target

is one of the 8 in-domain instruments. We only use in-

domain instruments as the target because our evaluation

metrics CLAP [25] and FAD [36] (see Section 5.5) do

not recognize the out-of-domain instruments.

• Genre transfer: We expect the genre (e.g., jazz and coun-

try) to change according to the text prompt, but we wish to

retain most of the other content such as melody, rhythm

and timbre. Here, we set y := “[target genre]

style music”, and y− := “low quality music”. Here, we

target 8 genres: jazz, reggae, rock, metal, pop,

hip-hop, disco, country.

• Accompaniment generation: We expect that all con-

tent in the input melody remains unchanged, but a new

instrument is added to accompany the original audio in

a pleasant-sounding and harmonic way. We set y :=
“Duet, played with [accomp instrument] accom-

paniment”, and y− := “low quality music”. The [accomp

instrument] is selected in the same way as the [target in-

strument] in the timbre transfer task.

We include these representative tasks which musicians may

find useful for their daily workflow, but since y is free-form

text, AP-Adapter has the potential for many other tasks.

5.3 Training and Inference Specifics

We use AudioLDM2-large (1.5B parameters), available on

HuggingFace, as our backbone model, and only train our

22M-parameter adapters. Training is done on a single one

RTX 3090 (24GB) for 35K steps with an effective batch size

of 32. We use AdamW optimizer with fixed learning rate

10−4 and weight decay 10−2. To enable CFG, we randomly

dropout text and audio features with a 5% probability.

For inference, we choose the critical hyperparameters,

i.e., pooling rate ω, AP scale α, and CFG scale λ, by ex-

ploring the transferability-fidelity tradeoff space as will be

reported in Section 6.1. For timbre transfer and accompani-

ment generation, we select ω = 2, α = 0.5, λ = 7.5. For the
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(a) Tuning pooling rate ω (b) Tuning AP scale α (c) Tuning classifier-free guidance scale λ

Figure 2: Transferability-fidelity tradeoff effects of different hyperparameters on the timbre transfer task. The hyperparame-

ters are set to ω = 2, α = 0.55, and λ = 7.5 when they are not the hyperparameter of interest.

genre transfer , we select ω = 1, α = 0.4, λ = 7.5. Following

AudioLDM2, we use 50 diffusion steps.

5.4 Baselines

We choose two well-known and publicly-available audio

generation models, AudioLDM2 [12] and MusicGen [5],

as our baselines. Both of them can generate nearly realistic

music. We describe below how we use them for editing:

• AudioLDM2: Following SDEdit [37], we perform the

forward process (i.e., adding noise to the audio input x)

partially for 0.75T steps, where T is the original number

diffusion steps, and then denoise it back with the editing

command y to obtain x̃.

• MusicGen: MusicGen is a Transformer-based text-to-

audio model that generates discrete audio tokens. We

use MusicGen-Melody (1.5B), which achieves melody

conditioning using chromagram [19] as a proxy. We input

y as the text prompt, and the chromagram of x as the

audio condition, for MusicGen to generate x̃.

We do not include the recent text-to-music editing methods

InstructME [14] or MusicMagus [16], as they have not re-

leased the code and models, and also exclude M2UGen [15]

as it is heavily focused on music understanding and visually-

conditioned music generation.

5.5 Objective Metrics

We employ the following metrics:

• CLAP [25] is used to evaluate transferability, as it is

trained with contrastive losses to align the representations

for audio and text. We compute the cosine similarity

between CLAP audio embedding for the edited audio x̃

and CLAP text embedding for the command y. 3 Higher

scores show high semantic relevance between x̃ and y.

• Chroma similarity computes the similarity of the origi-

nal and edited audios x̃ and x harmonically and rhythmi-

cally, thereby evaluates fidelity. We adopt librosa’s [38]

CQT chroma method to extract the 12-dimensional chro-

magrams [19] to compute framewise cosine similarity.

3 For accompaniment generation task, text input to CLAP is modified
to include both instruments, e.g., “Piano duet, played with violin.”

Model
CLAP ↑

(transferability)

Chroma ↑
(fidelity)

FAD ↓
(overall)

MusicGen 0.339 0.771 8.443

AudioLDM2 0.284 0.643 5.389

AP-Adapter 0.314 0.777 5.986

Table 1: Objective evaluation on in-domain audio inputs

of MusicGen-Melody [5], AudioLDM2-SDEdit [12, 37],

and the proposed AP-Adapter. Results are the average of

the three tasks. Best results are highlighted in bold (↑ / ↓:

the higher / lower the better).

• Fréchet audio distance (FAD) [36] uses a pretrained

audio classifier to extract audio features, collects features

from all audios, and estimates the feature covariance ma-

trix. Then, the Fréchet distance is computed between the

two covariance matrices (one from generated audios, one

from real audios). We adopt FAD to evaluate the overall

quality/realisticness of the generations. Following the

official implementation, we use VGGish architecture [39]

as the feature extractor. We use the in-domain evaluation

dataset as real audios.

5.6 Subjective Study

We design a listening test that contains 2 sets of music

for each of the three tasks. The sets are independent from

one another, and each contains a 10-second original audio

prompt x, an editing text command y, and three edited

audios x̃ generated by our model and the two baselines

(with order randomized and kept secret to participants).

Participants rate each edited audio on a 5-point Likert scale,

according to the following 3 aspects:

• Transferability: Do you feel that the generated audio

matches what the text prompt asks for?

• Fidelity: Do you feel that the generated audio faithfully

keeps the original musical content that should not be

changed by the text prompt?

• Overall preference: Overall, how much do you like the

generated audio?

We recruit 30 participants from our social circle and ran-

domly assign them one of the 6 test suites (3 for in-domain,

3 for out-of-domain). The study takes about 10 minutes.
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Metric Transferability MOS Fidelity MOS Overall MOS

Eval. audios Task Timbre Genre Accomp. Timbre Genre Accomp. Timbre Genre Accomp.

In-domain

MusicGen 3.35 3.15 3.32 2.62 2.85 2.76 3.06 3.03 2.91

AudioLDM2 3.21 2.74 3.12 2.21 2.21 2.26 2.47 2.56 2.47

AP-Adapter 3.59 3.44 3.41 3.47 3.74 3.41 3.26 3.44 3.12

Out-of-domain

MusicGen 2.92 3.96 3.00 2.73 3.31 2.54 2.58 3.58 2.65

AudioLDM2 2.62 2.12 2.96 2.42 2.69 2.23 2.58 2.31 2.81

AP-Adapter 2.92 3.19 3.54 3.81 3.58 3.96 3.08 3.12 3.31

Table 2: Subjective study results (mean opinion scores ∈ [1, 5]) with 17 and 13 participants for in-domain and out-of-domain

input audios, respectively, for the three evaluation tasks: timbre transfer, genre transfer, and accompaniment generation.

6. RESULTS AND DISCUSSION

6.1 Hyperparameter Choices

We discover in our early experiments that several hyperpa-

rameters, which are tunable during inference, can drastically

affect the edited outputs. Therefore, we conduct a system-

atic study on the effects of audio pooling rate ω (Sec. 4.1),

AP scale in decoupled cross-attention α (Sec. 4.2), and

classifier-free guidance scale λ (Sec. 3.3). Specifically, we

observe how their various values induce different behaviors

on the transferability-fidelity plane spanned by CLAP and

chroma similarity metrics.

• The pooling rate ω controls the amount of information

from the audio prompt. Figure 2a shows clearly that when

the pooling rate is low, the fidelity is higher, but at the

cost of transferability. For example, the audio generated

with ω = 1 preserves abundant acoustic information, thus

the edited audio sounds like the input audio, but it might

not reflect the editing command. The opposite can be said

for ω = 8. Overall, ω = 2 or 4 strikes a good balance.

• The AP scale α adjusts the relative importance between

the text and audio decoupled cross-attentions. As opposed

to pooling rate, it enhances fidelity at the expense of

transferability at higher values, as shown in Figure 2b,

and α ∈ [0.4, 0.6] leads to a more balanced performance.

• The CFG guidance scale λ dictates the strength of text

condition as detailed in Eqn. (5). As shown in Figure 2c,

somewhat unexpectedly, λ does not impact the tradeoff

too much when λ ≥ 3.5. Hence, we use λ = 7.5 across

all tasks following AudioLDM2.

6.2 Objective Evaluations

We show the metrics computed on in-domain audios in Ta-

ble 1, taking the average across the three editing tasks. (We

do not report the result for out-of-domain audio inputs as we

expect CLAP and FAD to be less reliable there.) In general,

AP-Adapter exhibits the most well-rounded performance

without significant weaknesses—MusicGen scores high on

transferability, but has a much worse FAD score, indicating

issues on quality or distributional deviation. We infer that,

since MusicGen only considers melody as input rather than

the entire audio, it has fewer limitations in the generating

process and thus achieves a higher transferability score. On

the other hand, AudioLDM2 consistently achieves the best

FAD score but lacks fidelity and transferability.

We also evaluate the ablated version of AP-Adapter with-

out using the negative prompt (y−). For the timber transfer

task, not using the negative prompt induces worse transfer-

ability, degrading the CLAP score from 0.405 to 0.378, but

does not negatively impact chroma similarity and FAD.

6.3 Subjective Evaluations

Table 2 shows the results from our listening test. Our AP-

adapter outperforms the two other baseline models in 16 out

of 18 comparisons. On top of preserving fine-grained de-

tails in the input audio, AP-adapter also tightly follows the

editing commands and generate relatively high-quality mu-

sic, leading in transferability and overall preference except

for only the genre transfer task on out-of-domain audios.

MusicGen performs better in transferability for genre trans-

fer, but its fidelity is weaker as it only considers the melody

of the input audio. With the additional audio-modality con-

dition, AP-adapter has the advantage of “listening” to all

the details of the input audio, receiving significantly higher

scores on fidelity on both in- and out-of-domain cases.

The advantage of AP-adapter in fidelity is much stronger

in Table 2 rahter than in Table 1. We conjecture that chroma

similarity paints only a partial picture for fidelity as it is

focused primarily on harmonic properties, leaving out other

musical elements such as dynamics and percussive patterns.

7. CONCLUSIONS

We presented AP-Adapter, a lightweight add-on to Audi-

oLDM2 that empowers it for music editing. AP-Adapter

leverages AudioMAE to extract fine-grained features from

the audio prompt, and feeds such features into AudioLDM2

via decoupled cross-attention adapters for effective condi-

tioning. With only 500 hours of training data and 22M

trainable parameters, AP-Adapter delivers compelling per-

formance across useful editing tasks, namely, timbre trans-

fer, genre transfer, and accompaniment generation. Addi-

tionally, it enables users to manipulate the transferability-

fidelity tradeoff, and edit out-of-domain audios, which pro-

motes creative endeavors with ethnic instrument audios that

are usually scarce in publicly available datasets.

Promising directions for follow-up works include: (i) ex-

ploring more diverse editing tasks under our framework

with various editing commands, (ii) extending AP-Adapter

to other generative backbones, e.g., autoregressive mod-

els, and (iii) adding support for localized edits that can be

stitched seamlessly with unchanged audio segments.
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ABSTRACT

In the domain of symbolic music research, the progress

of developing scalable systems has been notably hindered

by the scarcity of available training data and the demand

for models tailored to specific tasks. To address these is-

sues, we propose MelodyT5, a novel unified framework

that leverages an encoder-decoder architecture tailored for

symbolic music processing in ABC notation. This frame-

work challenges the conventional task-specific approach,

considering various symbolic music tasks as score-to-score

transformations. Consequently, it integrates seven melody-

centric tasks, from generation to harmonization and seg-

mentation, within a single model. Pre-trained on Melody-

Hub, a newly curated collection featuring over 261K

unique melodies encoded in ABC notation and encom-

passing more than one million task instances, MelodyT5

demonstrates superior performance in symbolic music pro-

cessing via multi-task transfer learning. Our findings high-

light the efficacy of multi-task transfer learning in sym-

bolic music processing, particularly for data-scarce tasks,

challenging the prevailing task-specific paradigms and of-

fering a comprehensive dataset and framework for future

explorations in this domain.

1. INTRODUCTION

In the field of artificial intelligence, symbolic music pro-

cessing—including the analysis and generation of musi-

cal scores—presents a unique challenge that merges mu-

sical creativity with computational complexity. Symbolic

music, which represents musical information with discrete

symbols rather than continuous audio signals, facilitates

the precise manipulation and analysis of elements such

as melody, harmony, and rhythm. Historically, the appli-

cation of AI in this area has sought not only to mimic

the creative process of human composers [1–4] but also
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to uncover the underlying patterns of musical composi-

tion [5–7].

Despite significant progress, the field still faces persis-

tent limitations. One notable challenge is the prevalence

of task-specific models [8–11]. These models offer ben-

efits for specific applications but lack adaptability to the

broader spectrum of symbolic music processing. This frag-

mentation is further compounded by the scarcity of anno-

tated datasets [12–14], which serve as the lifeblood of deep

learning models. Unlike other domains where data may

be abundant and easy-to-collect, annotated symbolic mu-

sic datasets are both rare and costly to produce. Without

access to ample and diverse data, models struggle to gen-

eralize and may exhibit biases or limitations [15] in their

analysis and generation of symbolic music.

In addressing the challenges inherent to symbolic music

processing, insights from the Natural Language Processing

(NLP) domain offer a promising avenue for advancement.

Techniques such as transfer learning [16–18] and multi-

task learning [19–21] have played a pivotal role in advanc-

ing NLP by promoting the transfer of knowledge from pre-

trained language models and exploiting common patterns

across various tasks. Prominent models like GPT [22],

BERT [23], and T5 [24] demonstrate the efficacy of these

strategies in understanding and generating language across

diverse contexts. Notably, the T5 model, with its text-to-

text framework, mirrors the conceptual shift necessary for

symbolic music by treating all tasks as variations of con-

verting input scores to output scores. By embracing such

methodologies, which regard tasks as facets of a unified

problem, we seek to develop models for symbolic music

that not only excel in specific tasks but are also adaptable

and proficient across a wide range of tasks.

In this paper, we introduce MelodyT5, which leverages

an encoder-decoder framework to perform multiple sym-

bolic music tasks as unified score-to-score transformations.

Pre-trained on the MelodyHub dataset, which contains

over 1 million task instances across seven melody-centric

tasks in ABC notation, MelodyT5 overcomes the limita-

tions of task-specific models and sparse data availability in

symbolic music processing. By implementing bar patch-

ing [7, 25], MelodyT5 can handle longer sequences effec-

tively, expanding its applicability to a wider range of tasks

while maintaining computational efficiency. Our results

underscore the promise of employing multi-task learning

approaches in symbolic music processing, demonstrating
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Figure 1. The MelodyT5 framework employs a Transformer encoder-decoder architecture with bar patching for music

processing. It uses linear projection of input bar patches, fed into a patch-level Transformer encoder. The encoder output

provides context for a patch-level Transformer decoder to autoregressively produce target bar features. A character-level

Transformer decoder then uses these features to generate detailed characters for each bar, forming the target musical score.

the superior performance of MelodyT5 across a spectrum

of tasks and providing a rich dataset for future research.

The key contributions of our paper are as follows:

• MelodyT5, employing an encoder-decoder ap-

proach, redefines symbolic music processing by

including multiple tasks as unified score-to-score

transformations, demonstrating versatility and

breaking traditional task-specific constraints.

• MelodyHub, a dataset comprising 261,900 unique

melodies in ABC notation across over 1 million task

instances for seven different tasks, serves as the cor-

nerstone for effective pre-training of MelodyT5.

• Our experimental results demonstrate the efficacy of

multi-task transfer learning in symbolic music, with

models trained across multiple tasks outperforming

those trained in isolation.

2. METHODOLOGY

In this section, we delve into the methodology behind

MelodyT5. We first introduce the ABC notation and bar

patching for music representation, then present the archi-

tectural design of MelodyT5, and finally outline the pre-

training objective of our model, which focuses on score-to-

score transformations as the basis for multi-task learning.

2.1 Data Representation

We utilize ABC notation, a concise symbolic music for-

mat, for encoding musical scores with ASCII characters.

This text-based format elegantly represents musical ele-

ments like notes, rhythms, and articulations in a human-

readable manner, thereby facilitating thorough music doc-

umentation. Additionally, it promotes the utilization of

NLP techniques for both music analysis and generation,

as evidenced by recent studies [4, 26, 27].

To process musical scores encoded in ABC notation

more efficiently, we implement the bar patching technique

[7, 25]. Bar patching involves breaking down musical se-

quences into units called bar patches. Each of these units

corresponds to either a bar or an information field (such

as key and meter), including a sequence of characters

that represent musical symbols within that patch. Unlike

the conventional character-level or token-level tokeniza-

tion of ABC notation [28, 29], where individual characters

or tokens are processed independently, bar patching groups

multiple characters into cohesive semantic units. Typically,

each patch comprises 10 or more tokens, thus effectively

reducing the overall sequence length of musical scores.

2.2 Model Architecture

As shown in Fig. 1, the MelodyT5 framework employs

an encoder-decoder architecture based on the Transformer

network [30], tailored for symbolic music processing. In-

tegrating bar patching into MelodyT5 requires the incor-

poration of two additional components: a linear projec-

tion layer and a character-level decoder. Consequently, the

model architecture encompasses the following modules:

Linear Projection: This component converts each bar

patch into a dense embedding. It takes a multi-hot vector as

input, formed by concatenating one-hot vectors represent-

ing characters within the bar patch with the shape S × V ,

where S represents the patch size (i.e., the maximum num-

ber of characters in a patch) and V represents the vocab-

ulary size. If a patch contains fewer than S characters, it

will be padded with a special token to make it a S-character

patch. The vector is then mapped to a dense embedding,

serving as input to the patch-level encoder or decoder.

Patch-level Encoder: It is responsible for generating

contextualized representations to understand the input mu-

sical score by operating on the dense embeddings produced

by the linear projection layer. Leveraging mechanisms like

self-attention and feed-forward neural networks, it cap-

tures global dependencies within the input musical score.

Patch-level Decoder: Tasked with generating the dense

representation of the next bar patch, the patch-level de-

coder utilizes contextualized representations from the en-

coder and patch embeddings of previously generated con-

tent. It employs cross-attention and autoregressive genera-

tion mechanisms, ensuring global coherence and continu-

ity in the sequence of generated bar patches.
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Table 1. The MelodyHub collection statistics include the number of instances for each task along with the corresponding

data sources. The JSB Chorales dataset is augmented to 15 keys due to its small size and original data in the C key.

Data Sources Cataloging Generation Harmonization Melodization Segmentation Transcription Variation

ABC Notation [31] 184,660 184,738 31,732 31,690 —— 174,779 ——

FolkWiki [32] 6,610 6,767 1,207 1,205 —— 6,218 ——

JSB Chorales [33] 4,980 4,980 4,950 4,950 19,125 4,980 ——

KernScores [34] 1,731 1,776 —— —— 1,275 1,754 ——

Meertens Tune Collections [35] 16,662 16,662 —— —— 16,660 16,297 ——

Nottingham [36] 1,031 1,031 1,014 1,014 —— 1,021 ——

OpenScore Lieder [37] 1,326 1,326 —— —— —— 1,255 ——

The Session [38] 44,620 44,620 3,081 3,078 —— 42,838 174,104

Total 261,620 261,900 41,984 41,937 37,060 249,142 174,104

Character-level Decoder: Operating in a step-by-step

manner, the character-level decoder produces characters

within the next bar patch based on the dense representa-

tion generated by the patch-level decoder. By utilizing the

dense representation as a context vector, it decodes each

character within the bar, focusing on local information, and

sequentially reconstructs every bar patch until it completes

the generation of the target musical score.

The encoder-decoder architecture with bar patching in

MelodyT5 enables efficient score-to-score transformations

by hierarchically modelling music at both patch and char-

acter levels, capturing global structure and local details in-

herent in compositions.

2.3 Pre-training Objective

The pre-training objective of MelodyT5 aims to optimize

a unified encoder-decoder framework for processing and

generating symbolic music across a variety of tasks, utiliz-

ing cross-entropy loss for next token prediction.

We consider a dataset D consisting of pairs (X,Y ),
where X is an input musical score and Y is the tar-

get musical score. Each score is represented as a se-

quence of bar patches {B1, B2, . . . , Bn}, with each bar

patch Bi further decomposed into a sequence of characters

{c1, c2, . . . , cm}. The model is trained to predict each to-

ken (i.e., character) of the target score given the input score

and the previously generated tokens in an autoregressive

manner.

Formally, the pre-training objective can be represented

as minimizing the cross-entropy loss across all tokens in

the target sequence:

L(θ) = −
∑

(X,Y )∈D

n∑

i=1

m∑

j=1

logPθ(c
i
j |X,B<i, c

i
<j) (1)

where cij is the j-th character in the i-th bar patch of score

Y , B<i includes all bar patches before the i-th, ci<j are

characters before the j-th in the current patch, and Pθ is the

probability of the model, parameterized by θ, of predicting

the correct character.

This objective incorporates the fundamental principle

that the vast majority of symbolic music tasks can be con-

sidered as transformations from score to score, or, in other

words, from an input musical score to a target musical

score. By pre-training on this objective, MelodyT5 ac-

quires the ability to understand and replicate a wide array

of patterns and structures inherent to different music tasks,

which is pivotal for its success across various applications

within symbolic music processing.

3. DATASET

This section outlines the melody curation and task def-

inition of the MelodyHub dataset. MelodyHub, crucial

for training MelodyT5, comprises seven melody-centric

tasks. This collection, sourced from sheet music datasets,

includes folk songs and other non-copyrighted musical

scores from various traditions and epochs.

3.1 Melody Curation

The MelodyHub dataset was curated using publicly avail-

able sheet music datasets and online platforms, with orig-

inal formats like ABC notation, MusicXML, and Hum-

drum. The data curation process included several steps:

1. Entries featuring explicit copyright indicators such

as “copyright” or “©” symbols were excluded.

2. All data was converted to MusicXML format for

standardization and subsequently transformed into

ABC notation to ensure format consistency.

3. Melodies consisting of fewer than eight bars were

omitted from the dataset to maintain adequate com-

plexity and musical richness.

4. Removal of lyrics and non-musical content (e.g.,

contact information of transcribers and URL links)

aimed to focus solely on musical notation.

5. Leading and trailing bars of complete rest were re-

moved from each piece.

6. Each piece underwent verification for the presence

of a final barline, with addition if absent.

7. Entries were deduplicated to prevent redundancy.

By ensuring the quality and consistency of the Melody-

Hub dataset, these steps led to a substantial collection of

261,900 melodies with uniform formatting, making it suit-

able for training and evaluating symbolic music models

like MelodyT5.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

644



3.2 Task Definition

Following the curation of melody data, the MelodyHub

dataset was segmented into seven tasks, as summarized in

Table 1, presented in a score-to-score format with input-

output pairs. In MelodyHub, every input data includes a

task identifier (e.g., %%harmonization) at the outset

to specify the intended task. Below are the definitions of

these tasks:

Cataloging: This task selects melodies with music-

related metadata like titles, composers, and geographical

origins (e.g., C:J.S. Bach, O:Germany). The in-

put data includes information fields with these attributes,

while specific information is removed and the order is ran-

domized. The output includes the corresponding metadata

without the musical score.

Generation: Here, the input solely consists of a task

identifier (i.e., %%generation), while the output com-

prises comprehensive musical scores. Following Tunes-

Former [25], control codes are affixed to all melodies as

information fields to denote musical structure information.

These codes, namely S:, B:, and E:, signify the number

of sections, bars per section, and edit distance similarity

between every pair of sections within the tune.

Harmonization: This task involves melodies contain-

ing chord symbols. The chord symbols are removed from

the input, while the original data is retained as the output.

An additional information field denoting edit distance sim-

ilarity (E:) is appended to the output, indicating the simi-

larity between the input and output, ranging from 0 to 10

(no match at all to exact match). Lower similarity values

suggest the need for more chord symbols.

Melodization: In contrast to harmonization, this task

operates inversely and also employs melodies containing

chord symbols. The notes in the original score are replaced

with rests, and adjacent rest durations are combined. The

resultant score, comprising rests and chord symbols, serves

as the input. Similar to harmonization, an E: field is added

at the outset of the output, with lower values facilitating the

generation of more intricate melodies.

Segmentation: Melodies in Humdrum format (i.e.,

KernScores and Meertens Tune Collections) containing

curly braces indicating segmentation or voices from the

JSB Chorales dataset (four-part compositions) with fer-

matas are chosen. These markers are transformed into

breath marks. The input data omits all breath marks, while

the output introduces an E: field at the beginning to aid the

generation of breath marks, with lower values implying the

need for more breath marks to be added.

Transcription: ABC notation is initially converted

to MIDI, then reconverted back to ABC. The resultant

ABC from the MIDI conversion loses substantial score in-

formation, such as distinguishing enharmonic equivalents

and missing musical ornaments (e.g., trill). The MIDI-

converted ABC serves as the input, while the original

ABC, appended with an added E: field, constitutes the

output. Lower E: values denote greater discrepancies be-

tween the transcribed and input scores, particularly due to

absent repeat symbols.

Variation: This task centres on data from The Session,

wherein each ABC notation file may contain multiple vari-

ants of the same tune. Tunes with two or more variations

are selected, with every possible pair of variants utilized

as both input and output. The output initiates with an E:

field signifying the extent of disparities between the input

and output scores, with lower values suggesting substantial

variations in the musical scores.

Together, resulting in 1,067,747 task instances in total,

these tasks include various MIR challenges from analyt-

ical to generative, providing a comprehensive resource 1

for developing symbolic music models like MelodyT5.

4. EXPERIMENTS

This section evaluates the effectiveness of MelodyT5 in

symbolic music processing through a series of experi-

ments. It outlines experimental settings, conducts abla-

tion studies on multi-task learning impact, and compares

MelodyT5 with baseline models in various tasks.

4.1 Settings

The experiments are structured to systematically assess the

capabilities of MelodyT5 for diverse symbolic music tasks.

We utilize the MelodyHub dataset, which is randomly split

into 99% for training and 1% for validation.

MelodyT5 features a 9-layer patch-level encoder and

decoder with shared weights, a 3-layer character-level de-

coder, and a hidden size of 768, amounting to 113 million

parameters. This configuration processes ABC sequences

up to 16,384 characters, with a 256 patch length and a 64

patch size. It employs a 128-size ASCII-based vocabulary,

using characters 0-2 for special tokens (pad, bos, and eos).

The AdamW optimizer [39] is used, setting a learning

rate of 2e-4. The process includes a 3-epoch warmup, a

constant learning rate over 32 epochs, and a batch size of

10 for each GPU, ensuring consistency in hyperparameter

settings across all tasks. It took approximately 2 days to

complete the pre-training using 6 RTX 3090 GPUs.

In ablation studies, we investigate the effects of multi-

task learning on MelodyT5, considering three settings: 1)

omitting pre-training, 2) using only the downstream task-

specific data from MelodyHub, or 3) utilizing the entire

MelodyHub dataset, which includes all tasks.

In terms of comparative evaluations, we select open-

source models that excel in their respective domains

for benchmarking. MelodyT5 is fine-tuned on identical

datasets to these models, ensuring fairness in comparison.

For models trained on proprietary datasets, we retrain them

using accessible datasets to ensure reproducibility.

Our objective evaluation strategy includes ablation

studies focused on bits-per-byte (BPB) for consistent mea-

surement, alongside task-specific metrics for comparative

evaluations. Additionally, A/B tests are conducted for the

subjective evaluation against baseline models.

1 https://huggingface.co/datasets/sander-wood/melodyhub
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Table 2. Experimental results from ablation studies illustrate the impact of multi-task learning on diverse symbolic music

tasks, evaluated through BPB (bits-per-byte) to compare performance across various pre-training settings.

Pre-training
Cataloging Generation Harmonization Melodization Segmentation Transcription Variation

WikiMT [40] Wikifonia [41] CMD [42] EWLD [43] Essen [44] Liederschatz [45] The Session [38]

None 0.0376 1.2382 0.5680 0.7949 0.0272 1.1938 0.4932

Task-Specific 0.0379 0.8850 0.3393 0.6322 0.0224 0.3432 –

Multi-Task 0.0350 0.8472 0.2925 0.5067 0.0119 0.2969 0.3949

4.2 Ablation Studies

In our ablation studies, MelodyT5 was evaluated on the test

sets of various symbolic music benchmarks. Due to the

lack of a directly suitable external dataset for the variation

task, we chose to evaluate using the validation set of The

Session. As a result, there was no task-specific pre-training

for the variation task.

The ablation studies aim to explore two aspects: 1) the

overall efficacy of pre-training, particularly in the context

of multi-task pre-training versus task-specific pre-training,

and 2) the extent to which performance gains from multi-

task pre-training vary among different tasks, especially

considering differences in the available volume of pre-

training data across these tasks.

The ablation studies, as depicted in Table 2, show that

pre-training is crucial for improving the performance of

symbolic music tasks. Models trained with pre-training

consistently outperform those without, indicating that pre-

training enhances model generalization and performance.

Multi-task pre-training is also superior to task-specific pre-

training, as models trained with multi-task pre-training

show lower BPB scores. This highlights the importance

of leveraging multi-task pre-training to effectively capture

shared patterns and structures in symbolic music data, en-

abling MelodyT5 to generalize better to downstream tasks.

Furthermore, it is noteworthy that while multi-task pre-

training consistently yields performance gains across most

tasks, the extent of improvement varies, which signif-

icantly correlates with the volume of task-specific data

available for pre-training. Specifically, tasks with less data,

such as segmentation and melodization, showcase more

substantial performance gains from multi-task learning.

On the other hand, tasks with more data, like generation

and cataloging, though still benefiting from multi-task pre-

training, show relatively smaller improvements. This ob-

servation suggests that while multi-task learning enhances

model performance across the board, its impact is espe-

cially notable in data-constrained scenarios.

In summary, the ablation studies demonstrate the ef-

fectiveness of multi-task learning and underscore the im-

pact of data volume on the benefits derived from such

an approach. Multi-task learning boosts model perfor-

mance across symbolic music tasks and provides notable

advantages for tasks with limited data by leveraging shared

knowledge across tasks.

4.3 Comparative Evaluations

For comparative evaluations, we compare MelodyT5,

which is multi-task pre-trained on MelodyHub, with sev-

eral task-specific baseline models, focusing on melody

generation, harmonization, melodization, and segmenta-

tion. These tasks are well-established and have open-

source models as competitive baselines. The following

baseline models have been selected for comparison:

• TunesFormer [25] is applied for melody generation,

featuring a Transformer-based architecture with bar

patching and control codes. This approach aims to

refine the efficiency of the generation process and

ensure adherence to musical forms.

• STHarm [46] is utilized as the baseline in melody

harmonization, employing a Transformer framework

to convert melodies into chords. Its primary focus

is on creating harmonies that preserve the structural

integrity of the original melody.

• CMT [9] is chosen for melodization, which involves

generating melodies based on chord progressions. It

employs a phased training approach, conditioning

the generation of rhythm and pitch on the chords to

produce dynamic and coherent musical outputs.

• Bi-LSTM-CRF [8] is used for melody segmenta-

tion, integrating Bi-LSTM and CRF to effectively

identify and segment melodic phrases for music

structure analysis.

For an objective and quantifiable performance assess-

ment that ensures reproducibility, we leverage previously

established task-specific metrics. The selected metrics for

our assessment include:

• CTRL (Controllability) [25]: Evaluates the preci-

sion of generation control through edit distance sim-

ilarity between intended and actual control codes.

• CTnCTR & PCS & MCTD [47]: These

chord/melody harmonicity metrics evaluate harmo-

nization and melodization tasks by assessing har-

monic and melodic compatibility between melodies

and chords.

• F1 Score: Measures the balance between preci-

sion and recall in identifying correctly segmented

melodic phrases.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

646



Table 3. Comparative objective evaluation of the MelodyT5 model against task-specific baselines across various symbolic

music tasks, utilizing task-related metrics previously established. The baselines include TunesFormer [25] for generation,

STHarm [46] for harmonization, CMT [9] for melodization, and Bi-LSTM-CRF [8] for segmentation.

Models
Generation Harmonization Melodization Segmentation

CTRL↑ CTnCTR↑ PCS↑ MCTD↓ CTnCTR↑ PCS↑ MCTD↓ F1 Score↑

MelodyT5 0.8664 0.7108 0.3274 1.2080 0.8438 0.5084 1.0320 0.9055

Baselines 0.8162 0.5963 0.2343 1.3125 0.8607 0.4863 1.0610 0.8400

Table 3 shows that MelodyT5 outperforms task-specific

baselines in all tasks. It surpasses the specialized base-

line TunesFormer in melody generation, demonstrating en-

hanced control and precision in generating melodies ac-

cording to specific musical forms. MelodyT5 leads in har-

monization, producing chords that are harmonically com-

patible with the given melodies while maintaining struc-

tural coherence. Although slightly trailing CMT in CT-

nCTR, it still shows robust performance in other met-

rics for melodization, demonstrating its ability to gen-

erate melodies well integrated with chord progressions.

Its performance in melody segmentation is significant,

indicating its ability to accurately discern and segment

melodic phrases. This performance, achieved without

task-specific modifications, highlights the effectiveness of

multi-task transfer learning combined with unified score-

to-score transformations in symbolic music processing.

In addition to the objective metrics presented in Table 3,

we recognize the limitations of solely relying on such mea-

sures to evaluate the quality of generated music. Thus, we

further explored these areas (i.e., generation, harmoniza-

tion, and melodization) through subjective experiments to

capture listener preferences.

For our subjective evaluation, we randomly chose 30

pieces from the test set for each task and conducted blind

A/B testing. Participants were presented with one ran-

domly chosen pair from each of these 30 pairs to compare

musical scores generated by MelodyT5 and baseline mod-

els under identical conditions. They were asked to choose

between MelodyT5, the baseline, or no preference. Each

comparison was included in two videos, showcasing both

the audio and the Sibelius-rendered musical scores.

For generation, we compared the quality of melodies

generated by MelodyT5 and TunesFormer, given the same

control codes and information fields. In harmonization and

melodization, comparisons were made against baselines

given identical melodies or chords, respectively. To en-

sure fairness, especially considering the baseline model for

melodization was limited to generating outputs of only 8

bars, we trimmed the MelodyT5-generated scores to match

the output length of this baseline model.

The study involved 155 responses from students and ed-

ucators with music specializations, ensuring deep under-

standing of melody and harmony. To secure data reliabil-

ity, submissions were filtered out of those completed in less

than half the overall average duration of 4 minutes and 39

seconds, i.e., those under 2 minutes and 20 seconds. This

resulted in a final tally of 124 valid questionnaires.
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Figure 2. Comparative subjective evaluation of MelodyT5

against task-specific baselines in symbolic music tasks,

showing vote counts for each model.

Based on the subjective evaluation in Fig. 2, we ob-

serve a notable preference for the MelodyT5 model over

the baseline in the tasks of melody generation and har-

monization, with MelodyT5 receiving a higher number of

votes. However, the preferences reverse in the task of

melodization, where the baseline model receives a greater

number of votes compared to MelodyT5. This indicates

that the baseline model CMT, which employs a two-phase

training process focusing separately on rhythm and pitch

conditioned on chord progressions, may align more closely

with human rhythmic tendencies in melodization, leading

to a preference for its outputs in the subjective evaluation.

Overall, MelodyT5 excels in symbolic music process-

ing, outperforming task-specific models in most tasks

and demonstrating the effectiveness of multi-task transfer

learning in this domain, despite occasional shortcomings.

5. CONCLUSIONS

This study presents MelodyT5, a model addressing chal-

lenges in symbolic music processing by providing a uni-

fied framework for diverse tasks. By treating music

tasks as score-to-score transformations, MelodyT5 signifi-

cantly improves symbolic music processing through multi-

task transfer learning. Objective and subjective evalua-

tions demonstrate that MelodyT5 generally outperforms or

matches task-specific baseline models without modifica-

tion. The MelodyHub dataset, with over one million task

instances, offers a rich resource for training and evaluating

models. While excelling in melody-centric tasks, further

optimization is required to tackle more complex musical

compositions, such as polyphonic arrangements.
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ABSTRACT

Graph Neural Networks (GNNs) have recently gained

traction in symbolic music tasks, yet a lack of a uni-

fied framework impedes progress. Addressing this gap,

we present GraphMuse, a graph processing framework

and library that facilitates efficient music graph process-

ing and GNN training for symbolic music tasks. Cen-

tral to our contribution is a new neighbor sampling tech-

nique specifically targeted toward meaningful behavior in

musical scores. Additionally, GraphMuse integrates hi-

erarchical modeling elements that augment the expressiv-

ity and capabilities of graph networks for musical tasks.

Experiments with two specific musical prediction tasks –

pitch spelling and cadence detection – demonstrate sig-

nificant performance improvement over previous methods.

Our hope is that GraphMuse will lead to a boost in, and

standardization of, symbolic music processing based on

graph representations. The library is available at https:

//github.com/manoskary/graphmuse

1. INTRODUCTION

Symbolic music processing entails the manipulation of

digital music scores, encompassing various formats such

as MusicXML, MEI, Humdrum, **kern, and MIDI. Unlike

audio-based representations, symbolic formats offer gran-

ular information on note elements, including onset, pitch,

duration, and other musical attributes like bars and time

signatures.

While prior research in symbolic music processing of-

ten adopted techniques from the image processing [1–3] or

natural language processing [4–6] domains, recent atten-

tion has shifted towards graph-based models, which could

presumably better capture the dual sequential and hierar-

chical nature of music. Graph Neural Networks (GNNs)

have been showcased as potent tools for diverse symbolic

music tasks, including cadence detection [7], optical mu-

sic recognition [8], music generation [9], Roman numeral

analysis [10], composer classification [11], voice sepa-

ration [12], and expressive performance rendering [13].

© E. Karystinaios and G. Widmer . Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). At-

tribution: E. Karystinaios and G. Widmer , “GraphMuse: A Library for

Symbolic Music Graph Processing”, in Proc. of the 25th Int. Society for

Music Information Retrieval Conf., San Francisco, United States, 2024.

However, a standardized framework for constructing and

processing music graphs has not yet been introduced to

the field. To address this challenge, we developed Graph-

Muse, a Python-based framework to efficiently and effec-

tively process information from musical scores, construct

musically meaningful graphs, and facilitate the training of

graph-based models for symbolic music tasks.

A key innovation of our work lies in the introduction

of a new sampling technique tailored to specific proper-

ties of music while maintaining efficient and robust train-

ing of GNNs. Additionally, GraphMuse integrates within

the graphs and models hierarchical elements that augment

the capabilities of graph networks for musical tasks.

We evaluate our framework on pitch spelling and ca-

dence detection tasks, comparing it against existing state-

of-the-art methods. Through the synergistic utilization of

our framework’s components, we achieve a significant per-

formance increase compared to the previous methods. Our

overarching objective is to establish a standardized frame-

work for graph processing in symbolic music analysis, thus

catalyzing further progress in the field.

Altogether, our contributions are three-fold: i) We pro-

vide a structured, generic, and flexible framework for

graph-based music processing; ii) we release an open

source Python library that comes with it; iii) we achieve

performance improvements in a principled way by focus-

ing on the design of the individual parts of the framework.

2. PROCESSING MUSIC SCORES WITH GNNS

In this section, we describe existing graph modeling ap-

proaches for musical scores. They all have a common

pipeline which involves building a graph from a given

musical score (see Figure 1) and using a series of con-

volutional blocks to produce context-aware hidden rep-

resentations for each node. We start by describing the

graph-building procedure and a generic graph convolu-

tional block; we then take a detailed look at the problem

of graph sampling, which will motivate a new sampling

procedure that will be presented in the next section.

2.1 Preprocessing: Constructing Graphs from Scores

A score graph can be represented as a heterogenous at-

tributed graph. A heterogeneous graph has a type as-

sociated with each node and edge in the graph [14].

An attributed graph has an associated feature vector for
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Figure 1. The general graph processing/training pipeline for symbolic music scores involves several steps: i) Preprocess

the database of scores to generate input graphs; ii) Sample the input graphs to create memory-efficient batches; iii) Form

a batch as a new graph with nodes and edges from various input graphs; iv) Sample a subset of nodes (target nodes) and

their neighbors from the input graphs; v) Update the target nodes’ representations through graph convolution to create node

embeddings; vi) Use these embeddings for task-specific applications. Note that target nodes may include all or a subset of

batch nodes depending on the sampling strategy.

each node in the graph [15]. Therefore, a heteroge-

nous attributed graph is defined by a quintuple G =
(V,E,X,A,R), together with the mappings ϕ : V → A

and ψ : E → R, where V is the set of nodes, E is the

set of edges, X ∈ V ×Rk the feature matrix A is the node

types and R is the edge types. ϕmaps each node to its type

and ψ maps its each edge to its corresponding type.

We create such a graph from a musical score by follow-

ing previous work [10–13]. Each node v ∈ V corresponds

to one and only one note in the musical score. R includes

4 types of relations: onset, during, follow, and silence, cor-

responding, respectively, to two notes starting at the same

time, a note starting while the other is sounding, a note

starting when the other ends, and a note starting after a

time when no note is sounding. The inverse edges for dur-

ing, follows, and silence relations are also created.

Formally, let us consider three functions on(v), dur(v),
and pitch(v) defined on a note v ∈ V that extract the on-

set time, duration, and pitch, respectively. A typed edge

(u, r, v) of type r ∈ R between two notes u, v ∈ V be-

longs to E if the following conditions are met:

• on(u) = on(v) → r = onset

• on(u) > on(v) ∧ on(u) ≤ on(v) + dur(v) → r =
during

• on(u) + dur(u) = on(v) → r = follow

• on(u) + dur(u) < on(v) ∧ ∄v′ ∈ V, on(v′) <
on(v) ∧ on(v′) > on(u) + dur(u) → r = silence

A in the literature usually only includes a single type, i.e.

the note type ν. However, we extend this definition in Sec-

tion 3.1.

2.2 Encoding: Graph Convolution

Graph convolution and message passing are core opera-

tions in graph neural networks (GNNs) for learning node

representations. In graph convolution, in its simplest form,

each node aggregates messages from its immediate neigh-

bors by computing a weighted sum of their features:

h
(l+1)
v

= σ









∑

u∈N (v)

W
(l)
h
(l)
u



+ h
(l)
v
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where h
(l)
v is the representation of node v at layer l,

N (v) denotes the neighbors of node v, W(l) is a learnable

weight, and σ is a non-linear activation function. Through

successive iterations of message passing and aggregation,

each node refines its representation by incorporating infor-

mation from increasingly distant nodes in the graph, ulti-

mately enabling the network to capture complex relational

patterns and dependencies within the graph data.

In the context of music, graph convolution can be un-

derstood as a method for defining a note not only by its

own characteristics and properties but by also considering

the characteristics of its neighboring notes within the mu-

sical graph. In this work, as well as previous graph-based

work on music [7,10,11] the preferred graph convolutional

block is SageConv taken from one of the first and funda-

mental works in graph deep learning [16].

2.3 Sampling: Handling Graph Data for Training

In an ideal world without computing resource considera-

tions, we can imagine a training pipeline that receives an

entire graph as input to a graph convolutional model. As-

suming that we have the resources and time to perform

such a task the process is easy to grasp. All nodes of the

graph are updated in a single step based on their neighbors

as described in the previous section.

However, the graph world presents us with several com-

plexity issues. Graph datasets in the wild typically come

in two forms: i) a (possibly large) collection of small

graphs, each containing maybe fewer than 50 nodes [15];

ii) a single large-scale graph such as a social network [17],

a recommender system [18], or a knowledge graph [19].

The previous naive scenario presents a time-efficiency and

computation waste bottleneck for the former and a mem-

ory insufficiency issue for the latter. To mitigate these is-

sues, in the former case one can batch many small graphs
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Figure 2. Full graph vs neighbor sampling. The pink-

colored nodes are selected for convolution by message

passing. With neighbor sampling, the pink node is the one

whose representation is ultimately updated after convolu-

tion (however, for the blue nodes also take part in the con-

volution process as its context).

together to maximize the available resources and reduce

the computation time, then the full graphs can be updated

during convolution within each batch.

Training Graph Convolutional Networks (GCNs) for

large-scale graphs is a bit more complicated. Such graphs

can be exceptionally large – for example, the 2019 Face-

book social network boasted 3.51 billion users 1 . To train

models with such graphs we need to devise a sampling

algorithm to derive subgraphs in steps [16, 20–22]. Such

an algorithm may, for example, choose a subset of nodes

across the graph and perform random walks to fetch a sub-

set of the k-hop neighbors for the sampled nodes [16]. This

process, called neighbor sampling or node-wise sampling,

is shown in Figure 2 and compared to the full-graph pro-

cess.

Musical score graphs fall in between the two scenar-

ios, varying notably in size. For instance, a Bach Chorale

might contain 100 notes, while a Beethoven Sonata could

exceed 5000 notes, with each note corresponding to a

graph node. Furthermore, a musical dataset may contain

many such graphs. Therefore the question arises how to

efficiently train models on music graph datasets.

Since music graphs are not uniform enough to be

batched together like small graph datasets, we investigate

the suitability of neighbor sampling methods for music

graph processing, taking into account special properties

relevant in music. Standard neighborhood sampling would

sample notes across different scores and fetch neighbors

for those notes, creating a subgraph that can maximize the

use of the available resources during training.

However, music has a specific coherence, in both the

horizontal (time) and vertical (chords, harmonies) dimen-

sions, which makes sampling approaches from the liter-

ature [22] not appropriate for music. Specifically, sam-

pling and updating/encoding single notes without simulta-

neously doing so also to notes in their local context makes

it difficult to learn properties that persist in time (such as

local key or a harmonic function). In this work, we address

this issue by presenting a simple and musically intuitive

sampling process for graphs that efficiently creates batches

containing musically related notes which, as experiments

1 https://zephoria.com/top-15-valuable-facebook-statistics

will show, can notably improve the learning results.

2.4 Task-specific Modeling

Finally, the node embeddings created by the graph con-

volutional encoder serve as input to task-specific models

that solve some specific prediction or recognition task. In

a graph context, we distinguish, at an abstract level, be-

tween node classification, link prediction, and entire graph

classification tasks. Examples of node classification tasks

can be found in [7] which takes the embeddings from the

GCN encoder and employs an edge decoder coupled with a

graph convolution classifier for cadence prediction labels;

and in [10], which forwards the embeddings to sequential

layer and then MLP classifiers to perform Roman Numeral

Analysis. In [12], musical voice separation is framed as

a link prediction task; the node embeddings are input to

a pairwise edge similarity encoder to predict link proba-

bilities between notes in the same voice. An example of

a graph classification task can be found in [11] where the

embeddings are aggregated and passed through a shallow

MLP for composer classification.

Naturally, task-specific models will not be part of the

generic graph processing pipeline and library which we

publish with this paper.

3. METHODOLOGY

In this section, we discuss our approach to addressing the

different components of the pipeline shown in Figure 1. In

particular, we explain the preprocessing procedure for cre-

ating score graphs, we detail our strategy for musically in-

tuitive graph sampling, and finally, we discuss model vari-

ants that are made possible by the previous steps of the

pipeline.

3.1 Preprocessing

The central activity in the preprocessing step is the creation

of graphs from musical scores. In our library, we extend

the conventional graph creation process by introducing hi-

erarchical musical dimensions (beats and measures), in or-

der to enhance the score graphs’ representational capacity.

More specifically, we enrich the node type set A (defined

in Section 2.1) with two additional types β and µ for beats

and measures respectively. The process involves detecting

beats and measures within the musical score, generating

edges (of type connect to every beat from each note falling

within its temporal boundaries, and repeating this process

for measures. Additional edges of type next are drawn be-

tween consecutive beats and measures to enrich the con-

nectivity and contextual understanding within the graph.

Furthermore, we aggregate features from constituent notes

through the connect edges via message passing to equip

each beat and measure with informative attributes by com-

puting the mean vector of their note features.

The inclusion of beat and measure node elements, as

well as the creation of inverse edges, are made optional,

ensuring compatibility with diverse research needs and
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Figure 3. Sampling process per score. Top: sampled notes

and their neighbors; middle: score graph and sampling

process; bottom: sampling process for beats and mea-

sures. A randomly selected note (in yellow) is first sam-

pled. The boundaries of the target notes are then computed

with a budget of 15 notes in this example (pink and yellow

notes). Then the k-hop neighbors are fetched for the tar-

gets (light blue for 1-hop and darker blue for 2-hop). The

k-hop neighbors are computed with respect to the input

graph (depicted with colored edges connecting noteheads

in the figure). We can also extend the sampling process for

the beat and measure elements (introduced in Section 3.1).

Note that the k-hop neighbors need not be strictly related

to a time window.

avoiding imposing rigid structures onto the graph-based

music processing framework.

We prioritize the efficiency and speed of the graph cre-

ation process by transitioning the graph creation imple-

mentation to C code, leveraging its performance benefits,

and establishing a Python binding for seamless integration

into our workflow. Recognizing the temporal nature of mu-

sical elements, such as notes, beats, and measures, we re-

fine our neighbor searching windows accordingly, optimiz-

ing computational efficiency.

3.2 Sampling

We discussed general neighbor sampling for large-scale

graphs in Section 2.3 and some problems related to graph-

structured music data. In this section, we elaborate on our

musically informed sampling process for music graphs,

which enables the training of the models outlined in the

subsequent sections. In this process, we aim to sample sec-

tions of scores and employ neighbor sampling to fetch the

neighbors of notes within those sections.

Indeed while our nodes could be ordered in various

ways, the most perceptually significant aspect is time or-

ganization. Recognizably, individuals can still identify

a musical piece when segmented along the time axis,

whereas focusing solely on pitch intervals may be chal-

lenging. Moreover, perceptual research indicates that the

commencement time of a note holds greater salience than

its offset time, particularly for percussive instruments like

the piano, where the sound naturally fades over time [23].

Hence, when constructing graphs from musical scores, we

prioritize node arrangement based on absolute onset time

followed by pitch.

Our initial limitations are mostly related to memory us-

age. To limit our memory we need to predefine three initial

arguments: i) the size of each target subgraph S from ev-

ery score, ii) the number B of scores in each batch, and iii)

the number of hops and neighbors for each hop (similar to

node-wise sampling techniques). In each batch, we update

the representation of our target nodes which is essentially

the size of S ×B.

Once the ordering is set and the three arguments are de-

fined we can initiate the process of sampling a subgraph,

as shown in Figure 3. First, we sample a random note from

the graph of each score. Next, we correct the position of

the note by searching for any vertical neighbors (same on-

set value notes and potentially different pitch). Then we

extend to S notes to the right where S indicates a prede-

fined maximum subgraph size. We also correct the right-

most boundaries to include or exclude vertical neighbors

for the last onset always respecting the aforementioned

size S. Once this process is completed we obtain the tar-

get nodes per score within the batch. These are the nodes

whose representation we want to update at the end of the

graph convolutional process.

However, since graph convolution is performed recur-

sively we need to fetch the k-hop neighbors for each one

of the target nodes where k indicates the depth of the GCN.

For this step, we can consult the literature [16] and perform

neighbor sampling to fetch the k-hop neighbors. This pro-

cess is repeated forB different scores. Finally, theB score

subgraphs of size at most S each are first joined together

and then fed to the model.

During this process, we can keep information about the

target nodes and the size of each score subgraph, which

could allow us to design more creative models that can ex-

ploit this information. Such models are presented in the

next section. Moreover, we adopt a potential approach for

hierarchical graphs by also extending the sampling for beat

and measure nodes as shown in Figure 3.

3.3 Model Designs

In this section, we explore various model designs for the

graph-based encoder in our processing pipeline (Figure 1).

Designing such an encoder involves addressing two fun-

damental questions: the selection of graph convolutional

blocks and the selective exploitation of information from

the input graph.

The first question, regarding graph convolutional

blocks, remains open-ended, offering numerous possibil-

ities for exploration and customization. In its current

version, GraphMuse offers the options of convolutional

blocks on a per-node or per-edge type basis. We sug-
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gest that graph-attention networks may offer promising av-

enues, particularly for hierarchical elements such as beats

or measures.

In response to the second question, we devise a series of

models by selectively incorporating or excluding elements

from the input graph. Our foundational model, termed

NoteGNN, exclusively utilizes note elements and their cor-

responding edges. This model serves as the basis for fur-

ther extension. For instance, we expand upon NoteGNN to

construct BeatGNN, which incorporates beat elements (see

Section 3.1 above) alongside notes. Similarly, we develop

MeasureGNN by integrating measures into the encoding

process. When all note, measure, and beat elements are

included, the resultant model is denoted as MetricalGNN.

Furthermore, we explore the possibility of hybridizing

model types, such as combining GNNs with sequential

models. This hybridization is facilitated by the sampling

process that organizes notes in onset order, allowing for

the batch to be unfolded by score. Consequently, the same

batch can be processed through both GNN and sequential

models simultaneously. Specifically, we employ a graph

encoder and a sequential encoder in parallel – in our case

we use a stack of 2 bidirectional GRU layers. The GRU

stack receives the unfolded batch of size (B,S,K) where

B is the number of scores within the batch, S is the num-

ber of sampled target nodes for each score order by on-

set and then by pitch, and K is the number of node fea-

tures. The embeddings of both encoders are concatenated

together and an additional linear layer is applied to project

them to the required dimension.

This architecture, which we call HybridGNN in our ex-

periments, combines the strengths of both GNNs and se-

quential models, resulting in better performance as shown

in our experiments.

3.4 The Library

The components discussed in the preceding section have

been implemented and made available in an open-source

Python library called GraphMuse. This library follows

a similar philosophy as PyTorch and PyTorch Geometric,

comprising models and graph convolutional blocks, loader

pipelines, data pipelines, and related utilities. GraphMuse

is built upon and thus requires PyTorch and PyTorch Ge-

ometric. The loaders and models provided by GraphMuse

are fully compatible with those of PyTorch Geometric. For

musical input and output, GraphMuse is compatible with

Partitura [24], a Python library for symbolic music pro-

cessing, allowing it to work with a variety of input formats

such as MusicXML, MEI, Humdrum **kern, and MIDI.

4. EVALUATION

To evaluate our framework, we perform experiments on

two tasks, cadence detection and pitch spelling. We put to

the test both the models discussed as well as the sampling

process. For pitch spelling, we compare our models to the

previous sequential state-of-the-art model, PKSpell [25]

and the GraphSAGE variant of our note-level model. For

cadence detection, we compare our models to the previ-

ous state-of-the-art model by Karystinaios and Widmer [7]

which is also graph-based and follows a GraphSAGE sam-

pling strategy. For both tasks, we perform ablations by re-

moving the hierarchical elements such as beat and measure

nodes and edges, or incorporating hybrid models. This

work focuses on the application of the GraphMuse library

therefore, a detailed comparison of various input encod-

ings and architectures, as conducted by [11], is beyond the

scope of this paper.

4.1 Pitch Spelling

Previous work on Pitch Spelling set the state-of-the-art

by using a sequential model [25]. The task of pitch

spelling tackles in parallel key signature estimation and

pitch spelling estimation per note, however, the key sig-

nature is a global attribute usually set for the whole piece

although it can sometimes change midway. The previous

architecture uses a GRU encoder for pitch spelling and then

infuses the logits together with the latent representation to

another GRU layer for the key signature prediction.

For our approach, we use a GNN encoder as described

in Section 3.3 followed by two classification heads for key

and pitch spelling respectively. We train and evaluate all

models on the ASAP dataset [26] using a random split with

15% of the data for testing and the 85% for train and vali-

dation as described in [25].

4.2 Cadence Detection

For the cadence detection model, we chose to use a modi-

fied version of the cadence detection model originally pro-

posed in [7]. Our considerations were based on a more ef-

ficient training process, and the integration of our pipeline

possibilities. The model was expanded to accept a hetero-

geneous score graph as input, as described in Section 2.1.

Additionally, we enhanced the model’s predictive capabil-

ities from binary (no-cad or PAC) to multiclass cadence

prediction, encompassing PAC, IAC, and HC labels. Fur-

thermore, we refined the architecture by incorporating an

onset regularization module, which aggregates the latent

representations (post-GNN encoder) of all notes occurring

at a distinct onset within the score and assigns them to ev-

ery note sharing that onset.

In the training phase, the input graph first undergoes

processing through the graph encoder. The resulting node

embeddings are then grouped based on onset information

extracted from the score, and their representations are aver-

aged. Subsequently, embedded SMOTE [27] is applied to

balance the distribution of cadence classes compared to the

notes lacking cadence labels in the score. However, during

inference, this synthetic oversampling step is omitted. Fi-

nally, the oversampled embeddings are fed into a shallow

2-layer MLP classifier to predict the cadence type.

We trained our model with a joined corpus of cadence

annotations from the DCML corpora 2 , the Bach fugues

2 https://github.com/DCMLab/dcml_corpora
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from the well-tempered clavier Book No.1 [28], the anno-

tated Mozart string quartets [29], and the annotated Haydn

string quartets [30]. Our joined corpus makes for 590, 149
individual notes and 17, 188 cadence annotations. We use

80% of the data for training and validation and test on 20%

using a random split. Note that these results cannot be di-

rectly compared with [7] since we use a different (bigger)

dataset and perform multiclass prediction.

4.3 Experiments

4.3.1 Configuration

The configuration for training pitch spelling graph models

with our sampling technique uses a batch size B = 300,

sampling from 300 scores at each step, and target node

size S = 300. For cadence graph models, B = 200 and

S = 500. All graph models, including GraphSAGE, utilize

three heterogeneous SageConv layers with a hidden size of

256 and a dropout of 0.5. Neighbor sampling for each layer

fetches up to three neighbors per sampled node per rela-

tion. We train all models with the Adam optimizer (learn-

ing rate 10−3, weight decay 5 × 10−4) on a GTX 1080

Ti. Each experiment is repeated at least four times with

different random seeds, and statistical significance testing

is performed using the ASO method at a confidence level

α = 0.05 [31] 3 .

4.3.2 Results

Table 1 presents the results of experiments experiments

conducted on the two tasks. The metrics used for evalu-

ation are Accuracy (A) for pitch spelling and key recogni-

tion, and the macro F1 score (F1) for cadence detection.

Note that the model employed on the GraphSAGE meth-

ods and the model NoteGNN are virtually the same apart

from the sampling strategy with which they were trained.

For the pitch spelling task, we can observe that the ac-

tual pitch spelling accuracy (A-Pitch) of all proposed mod-

els surpasses both the PKSpell and GraphSAGE methods.

Across all models, the MetricalGNN achieves the high-

est accuracy of 95.6%, closely followed by BeatGNN and

MeasureGNN with accuracies of 95.1% and 95.4%, re-

spectively. These results indicate the benefits of incor-

porating hierarchical musical elements such as beats and

measures. However, it is worth noting that while Metrical-

GNN achieves the highest accuracy, it is closely followed

by the hybrid model, HybridGNN, which achieves an ac-

curacy of 95.4%, suggesting that competitive performance

can also be achieved by mixing model types.

Focusing on the key estimation subtask (A-Key) of

pitch spelling we notice that the PKSpell model achieves

a very good key accuracy of 69.9%, closely followed by

the MeasureGNN model and only surpassed by the Hybrid

model. We attribute the effectiveness of key detection of

a sequential model such as PKSpell to the persistence of

the key label across elements of the sequence. Therefore,

a hybrid model in this case seems to be able to adapt to

3 For the detailed experiments visit: https://wandb.ai/

melkisedeath/GraphMuse

Task
Pitch Spelling Cadence

A-Pitch A-Key F1-Cad

PKSpell 94.8± 0.5 69.9± 1.6 -

GraphSAGE 93.6± 0.1 43.3± 0.1 53.5± 0.8

NoteGNN 94.9± 0.1 69.3± 7.0 55.3± 0.9
BeatGNN 95.1± 0.2 68.7± 1.1 57.4± 1.2
MeasureGNN 95.4± 0.3 69.5± 7.2 57.0± 1.0
MetricalGNN 95.6 ± 0.1 64.4± 5.3 55.8± 0.6
HybridGNN 95.4± 0.2 72.6± 2.8 58.6± 0.7

Table 1. Results on the two tasks, in terms of accuracy (A)

and F1 score, respectively. Values in bold are the best score

per metric; underlined values are the second best. All runs

are repeated 4 times. ± indicates standard deviation.

the diversity of labels for pitch spelling and uniformity of

labels for key estimation. We found our best model to be

stochastically dominant over PKSpell with min_ϵ = 0.17.

In the cadence detection task, we evaluate the results

using the macro F1 score to account for the overwhelming

presence of non-cadence nodes, as instructed by [7]. We

observe that GraphSAGE, the previously used technique

for training, obtains the lowest F1 score and it is surpassed

by all the proposed GNN-based models trained with the

new sampling method.

Among our GNN models, BeatGNN and HybridGNN

achieve the highest scores of 57.4% and 58.6%, respec-

tively, closely followed by MeasureGNN. In this case, the

MetricalGNN model surprisingly does not achieve such

a good score even though it includes both measure and

beat elements. However, it still performs better than the

NoteGNN and the GraphSAGE method.

Overall, the results demonstrate the efficacy of GNN-

based models trained using our new sampling method. In-

corporating hierarchical elements such as beats and mea-

sures improves both pitch spelling and cadence detection

tasks. Additionally, the hybrid approach of combining

GNNs with sequential models produces promising results.

5. CONCLUSION

In this paper, we introduced GraphMuse, a framework

and Python library for symbolic graph music processing.

We designed a specialized sampling process for musi-

cal graphs and demonstrated our pipeline’s effectiveness

through experiments on pitch spelling and cadence detec-

tion. Our results show that carefully designed GNN ar-

chitectures, especially those incorporating hierarchical el-

ements like beats and measures, can lead to better per-

formance. Finally, hybrid models that integrate GNNs

with sequential models yield further performance improve-

ments.

Future research will focus on refining GNN-based mod-

els in music processing, adding more tasks, and explor-

ing novel architectures. This includes investigating ad-

vanced graph convolutional blocks, other sampling tech-

niques, and attention mechanisms to enhance model per-

formance.
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ABSTRACT

Audio production style transfer is the task of processing an

input to impart stylistic elements from a reference record-

ing. Existing approaches often train a neural network to

estimate control parameters for a set of audio effects. How-

ever, these approaches are limited in that they can only

control a fixed set of effects, where the effects must be dif-

ferentiable or otherwise employ specialized training tech-

niques. In this work, we introduce ST-ITO, Style Trans-

fer with Inference-Time Optimization, an approach that in-

stead searches the parameter space of an audio effect chain

at inference. This method enables control of arbitrary au-

dio effect chains, including unseen and non-differentiable

effects. Our approach employs a learned metric of au-

dio production style, which we train through a simple and

scalable self-supervised pretraining strategy, along with a

gradient-free optimizer. Due to the limited existing evalua-

tion methods for audio production style transfer, we intro-

duce a multi-part benchmark to evaluate audio production

style metrics and style transfer systems. This evaluation

demonstrates that our audio representation better captures

attributes related to audio production and enables expres-

sive style transfer via control of arbitrary audio effects.

1. INTRODUCTION

Audio effects are signal processing devices used to trans-

form or manipulate audio signals, such as adding rever-

beration, adjusting frequency balance with equalization,

or adding edge with distortion. They play a central role

in audio production, providing audio engineers with the

ability to realize both practical and creative tasks with ap-

plications in music, film, broadcast, and video games [1].

Traditionally, operating these effects requires a significant

amount of expertise, as audio engineers must combine a

technical understanding with their artistic goals. As a re-

sult, the process of creating a high-quality audio produc-

tion remains challenging, requiring a time-consuming pro-

cess for professionals and a significant barrier for novices.

© C. J. Steinmetz, S. Singh, M. Comunità, I. Ibnyhahya, S.

Yuan, E. Benetos, and J. D. Reiss. Licensed under a Creative Commons

Attribution 4.0 International License (CC BY 4.0). Attribution: C. J.

Steinmetz, S. Singh, M. Comunità, I. Ibnyhahya, S. Yuan, E. Benetos,

and J. D. Reiss, “ST-ITO: Controlling audio effects for style transfer

with inference-time optimization”, in Proc. of the 25th Int. Society for

Music Information Retrieval Conf., San Francisco, United States, 2024.
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Figure 1. Style transfer with Inference-Time Optimization

enables audio production style transfer through control of

arbitrary audio effects. It employs a pretrained audio rep-

resentation as a similarity metric, which is then optimized

by searching the control parameter space of audio effects.

Intelligent music production aims to develop systems

for automating aspects of audio engineering [2]. Early

approaches employed rule-based systems, using hand-

engineered rules based on best practices [3]. These sys-

tem often generated outputs that satisfied certain assump-

tions or utilized well established conventions. However,

the inability to construct sufficient sophisticated rule bases

has motivated machine learning approaches, which instead

learn from data without assuming a limited or fixed set of

rules [4–7]. Nevertheless, these systems still lacked the

ability to adapt based on user input, which is critical to the

context-dependent nature of music production [8].

To address the context-dependent nature of this task and

enable greater user control, audio production style transfer

has been proposed [9, 10]. These systems rely on a refer-

ence recording and attempt to map elements of the audio

production style from the reference onto the input. These

systems either directly process the audio signal [11–13] or

estimate parameters for audio effects [9, 10, 14, 15]. While

direct transformation methods are powerful, they may in-

troduce artifacts and lack grounding in traditional audio

tools. Similarly, recent text-to-audio generation models

also enable editing capabilities [16, 17], but suffer from

the same limitations. On the other hand, parameter based

methods enable efficient and controllable style transfer.

However, current systems are limited to a fixed chain of

effects, and require the use of differentiable signal process-

ing [18], or inefficient alternative differentiation strategies

such as gradient approximation [19] and neural proxies [7].
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We propose a method to construct an audio production

style transfer system that leverages inference-time opti-

mization to facilitate real world applications. Instead of

training a network to perform style transfer directly, we

perform style transfer via an optimization process at in-

ference, as shown in Figure 1. We iteratively search the

parameter space of an effect chain with our proposed met-

ric that measures the similarity in audio production style

between the output recording and the reference. This ap-

proach enables the ability to control arbitrary audio effect

chains, including non-differentiable effects, opening up the

potential to control real-world audio effects. The contribu-

tions of our work are as follows:

• A simple and scalable pretraining strategy for con-

structing an audio production style similarity metric

through audio effect estimation, named AFx-Rep.

• A system for audio production style transfer, ST-

ITO, that optimizes the control parameters of arbi-

trary audio effects according to a similarity metric.

• An extension of the DeepAFx-ST system [14] with

the addition of differentiable distortion and reverber-

ation, which forms a strong baseline.

• A multi-task benchmark for evaluation of audio pro-

duction style similarity metrics and audio production

style transfer systems.

We provide audio examples, and open source our datasets,

benchmark, and code to facilitate reproducibility 1 .

2. METHOD

In this work, we propose ST-ITO, Style Transfer with

Inference-Time Optimization, a novel method for audio

production style transfer that searches the parameter space

of a set of audio effects to perform style transfer. As shown

in Figure 1, our system features three main components:

an audio effect chain that processes an input recording, an

audio production style similarity metric, composed of pre-

trained encoder and a similarity measure, and an optimizer

that is used to find control parameters. This enables style

transfer by finding a configuration of the audio effects that

produce an output with attributes of the reference style.

Our approach provides a number of benefits as com-

pared to previous audio production style transfer systems.

First, it enables the control of arbitrary audio effects, even

those that have not been seen during training. Unlike ex-

isting systems that train with a set of fixed effects “in-

the-loop”, our approach enables adaptation to new effects

at inference. Furthermore, our method removes require-

ments of previous systems. This includes removing the

need for differentiable audio effects or alternative differen-

tiation strategies, which can often be slow and difficult to

train [14]. Finally, we provide further flexibility and con-

trol by enabling the addition or removal of audio effects at

inference without re-training of the base model.

1 https://github.com/csteinmetz1/st-ito

...

Effect
Presets

EffectsDatasets

......

Figure 2. Self-supervised training for the pretext task

where an audio signal xd
i ∼ Dd is sampled randomly from

one of N datasets and then processed by a randomly sam-

pled audio effect Em with an associated randomly sampled

parameter preset Pm,l to produce an output signal xd
0
.

2.1 Audio production style metric

A central aspect of our approach is the development of

an audio production style metric M(xa,xb). This met-

ric measures the perceptual similarity in audio production

between two recordings xa and xb. As explained in Sec-

tion 2.2, we optimize this metric by searching the param-

eter space of a set of audio effects to align the style of the

processed recording with the reference. In general, produc-

tion style relates to aspects of audio quality rather than the

underlying content, including attributes such as dynamics,

frequency balance, and the stereo field [20].

Pretrained audio representations. There is a growing

body of work in general purpose representations of au-

dio signals [21], popular approaches include CLAP [22]

and BEATs [23]. These representations capture relevant

attributes to facilitate downstream tasks such as detection

and classification of sound sources and events. While it

may be possible to directly adapt one of these representa-

tions for our task, evidence suggests they are not always

sensitive to audio effect transformations [24]. We provide

further evidence for this in Section 5. This motivates us to

develop a method to produce our own audio representation

that is more sensitive to audio effect transformations.

Self-supervised pretext task. We propose a simple and

scalable self-supervised pretext task to construct an audio

representation for our task without human annotated data.

To encourage the encoder to extract features related to au-

dio effects we employ an audio effect classification task

composed of two parts. The model predicts both which

effect has been applied and the associated preset.

As shown in Figure 2, we generate training examples

using N audio datasets, a set of M audio effects, and L

associated parameter presets for each effect. To generate a

training example, a dataset Dd is selected at random from

the set of datasets. Then one audio sample is selected from

this dataset, which will form the input recording x
d
i . Next,

we sample an audio effect fm and a random associated pre-

set Pm,l to configure the effect. Then we process the input

with this effect to produce an output signal xd
o.
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Figure 3. Representation learning via the pretext task

where the input xd
i and output xd

o are processed by the en-

coder g(·) to produce embeddings. These embeddings are

fed to a pair of MLP classifiers trained via cross-entropy

that predict the effect class and preset class.

Training is shown in Figure 3 where the encoder g(·)
extracts embeddings zi and zr from the input and output.

These embeddings are concatenated and fed to a multi-

layer perceptron (MLP) that estimates the effect applied.

A second MLP takes the effect logits as well as the embed-

dings to estimate the preset. After pretraining we discard

the prediction heads and use the encoder g(·), which we

refer to as AFx-Rep, to produce embeddings.

This multi-task formulation encourages the encoder to

extract features not only about effects but also subtleties

between different configurations of the same effect, which

is important for style transfer. Our approach does not en-

force invariance to the content, but can leverage any audio,

not only unprocessed or effect normalized audio [25], re-

quired by previous work [13]. This allows us to further

scale the training dataset size. In addition, since this au-

dio may already contain other processing, our model is ex-

posed to a wide range of effects beyond those we apply.

2.2 Inference-time optimization

To perform style transfer we begin with input xi and ref-

erence xr recordings. We assume the input has minimal

processing, as our system does not remove effects [26,27].

Then, we require the user to provide an appropriate chain

of audio effects to be controlled. This chain can be repre-

sented as the composition of K audio effects where each

effect is represented by a function fk parameterized by a

control vector ϕk. The output xo is obtained by sequen-

tially applying these functions to the input, resulting in

xo = fK(fK−1(. . . f2(f1(xi;ϕ1);ϕ2) . . . ;ϕK−1);ϕK).
(1)

For convenience, we represent this chain as a single func-

tion xo = fc(xi;ϕc), where ϕc = [ϕ1, ϕ2, . . . , ϕK ] con-

catenates all effect parameters into one vector. While our

method supports arbitrarily complex effect chains, we con-

sider only series connections.

In our setup, we perform style transfer through an opti-

mization process via the maximization of a similarity be-

tween the output of our composite audio effect function

and the reference signal given by

max
ϕc

sim
(

g(fc(xi;ϕc)), g(xr)
)

, (2)

where g(·) denotes our audio representation, transforming

audio signals into a feature space where audio production

similarity is assessed. For the reference signal xr, the fea-

ture representation is zr = g(xr). The optimization pro-

cess initiates with a predefined set of control parameters,

ϕ0, and iteratively refines this estimate to enhance the simi-

larity measure. At each step, candidate solutions are gener-

ated and evaluated based on their performance in mirroring

the reference features, zr. This performance is quantified

by the cosine similarity measure,

sim(zi, zr) =
zi · zr

max(∥zi∥∥zr∥, ϵ)
, (3)

where zi = g(fc(xi;ϕc)) is the feature vector of the pro-

cessed input signal, · represents the dot product, ∥ · ∥ de-

notes the Euclidean norm, and ϵ is a small constant ensur-

ing numerical stability, avoiding division by zero.

3. EXPERIMENTAL DETAILS

3.1 Pretraining

We employ the PANNs architecture [28] as a convolutional

backbone. While initial testing indicated that more modern

architectures such as HTS-AT [29] performed comparably,

we found that PANNs was more efficient at inference. To

enable the encoder to capture stereo information we pro-

duce separate embeddings for the mid and side signals,

concatenating them into a single embedding, applying L2

normalization to each embedding before concatenation.

We train the encoder following the pretext task de-

scribed in Section 2.1. We use seven publicly available au-

dio datasets to cover a diverse range of audio content across

music, speech, singing voice, and instruments. These

datasets include MTG-Jamendo [30], ENST-Drums [31],

URSing [32], FSD50k [33], Librispeech [34], Medley-

solos-db [35], and GuitarSet [36]. To construct our set

of audio effects we use 63 open source or freely avail-

able VST3 audio plugins compiled for Linux. These VSTs

cover a wide range of effects including reverberation, dy-

namic range processing, equalization, distortion, modula-

tion effects, and more. We use pedalboard [37] to load

plugins and apply effects to audio signals.

We generate unique presets for each effect by ran-

domly sampling 1000 parameter configurations and pro-

cessing a random audio recording with each configuration.

Then we extract MFCCs and perform K-means clustering

(K = 10), with each cluster representing perceptually di-

verse parameter configurations. We then randomly select

one configuration from each cluster to act as a preset.

While training with on-the-fly data generation is possi-

ble, we found running VSTs during training caused a sig-

nificant bottleneck. We opted for offline data generation,

where we generated 20,000 examples of length 524288

samples (≈ 11 sec at fs = 48 kHz) from each dataset with

randomly applied effects and presets. This corresponds to

approximately 60 hours of audio content. We further in-

crease diversity during training by taking different random

crops of the pre-processed input and output segments, as

well as applying random gain adjustments [−32 dB, 0 dB].
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We perform pretraining for 1 M steps with a batch

size of 32 using the Adam optimizer. We use an ini-

tial learning rate of 1e-4, lowering the learning rate by a

factor of 10 at 85% and 95% through training. We pre-

process spectrogram inputs to the encoder by computing

log-melspectrograms with window size of 2048 and hop

size of 512. We clip the magnitudes between -80 and 40 dB

and scale the final spectrogram between -1 and 1.

3.2 Inference-time optimization

To enable control of arbitrary effects, we employ a

gradient-free optimizer as opposed to commonly used

gradient-based solutions. While any gradient-free opti-

mizer can be used in our system, we opt to use Co-

variance Matrix Adaptation Evolution Strategy (CMA-

ES) [38] since it has been shown to work well in spaces

with similar dimensionality to the audio effect chain con-

trol parameter space (≈100) and is a relatively scalable

method. After initial hyperparameter tuning, we use a pop-

ulation size of 64 and a maximum of 25 optimization steps.

The σ hyperparameter is initialized to 0.3 and we use a

fixed initialization of all parameters of 0.5 scaled in the

range [0, 1]. We use early stopping, halting optimization

after 10 steps of improvement less than 0.1.

Unless otherwise specified, we use AFx-Rep as the en-

coder in our similarity metric, and we consider control of

two different audio effect chains. The first features five

VST audio effects including distortion (TubeScreamer),

parametric equalizer (ZamEQ2), dynamic range compres-

sor (ZamCompX2), feedback delay (ZamDelay), and ar-

tificial reverberation (TAL-Reverb-4), resulting in a total

of 73 parameters. The second chain features unseen audio

effects internal to pedalboard, including distortion, dy-

namic range compression, parametric equalizer, delay, and

artificial reverberation, resulting in 36 parameters.

4. BENCHMARK

4.1 Audio production style metrics

Zero-shot style classification. We adapt the style classi-

fication task from [14], which contains five different audio

production styles using equalization and dynamic range

compression: telephone (TL), bright (BR), warm (WM),

broadcast (BC), neutral (NT). Training examples are gen-

erated by applying these style presets to speech from

DAPS [39] and music from MUSDB18 [40]. To make the

task more challenging and similar to the inference-time op-

timization use-case, we adapt the original task to the zero-

shot case [41]. To do so, a query is constructed by sam-

pling a random audio example to be classified as one of

the five styles. Then other examples from each of the five

styles are sampled randomly to form prototype classes. A

representation of the query and each of the five prototypes

is generated and a prediction is made by measuring the co-

sine similarity between the query and each of the proto-

types. The class of the prototype with the highest similarity

to the query forms the prediction.

Styles

Representation TL BR WM BC NT AVG

MFCCs 1.00 0.82 0.64 0.74 0.48 0.74
MIR Feats. 0.76 0.64 0.61 0.58 0.32 0.58

CLAP 0.72 0.60 0.51 0.57 0.41 0.56
Wav2Vec2 0.40 0.33 0.28 0.35 0.34 0.34
Wav2Clip 0.76 0.48 0.60 0.49 0.51 0.57
VGGish 0.47 0.58 0.43 0.61 0.43 0.50
BEATs 0.94 0.51 0.57 0.50 0.45 0.59

FX Encoder 0.96 0.94 0.29 0.70 0.54 0.69
DeepAFx-ST 1.00 0.93 0.67 0.78 0.42 0.76
DeepAFx-ST+ 1.00 0.97 0.71 0.79 0.41 0.78

AFx-Rep (ours) 1.00 1.00 0.88 0.85 0.59 0.86

Table 1. Zero-shot style classification accuracy over 200

trials for music and speech across five unique styles.

Style retrieval. While the zero-shot style classification

task evaluates the ability of a representation to differenti-

ate among different styles, it considers only two basic ef-

fects and focuses on comparing significant differences. In

order to more effectively evaluate the behavior of represen-

tations in a scenario similar to style transfer we designed a

style retrieval task. In this task, a query style is produced

by applying N effects with random parameters to an au-

dio recording. A retrieval set is generated by processing

M other recordings with differing random effect chains.

One recording with differing content but the same effect

chain as the query is included in the retrieval set. Simi-

lar to the zero-shot task, we measure the cosine similarity

between the query and each of the items in the retrieval

set. We can make the task more or less difficult by varying

both the number of effects N in each style and the size of

the retrieval set M . We source unseen audio examples for

speech (DAPS [39]), guitar (IDMT-SMT-Guitar [42]), vo-

cals (VocalSet [43]), and drums (IDMT-SMT-Drums [44]).

Baselines. We consider signal processing approaches,

such as MFCCs and MIR features [45], as well as

pretrained general purpose audio representations includ-

ing VGGish [46], WAV2CLIP [47], wav2vec2.0 [48],

CLAP [22], as well as BEATs [23]. We also com-

pare against audio effect specific models including FX-

Encoder [13] and the DeepAFx-ST encoder [14].

4.2 Audio production style transfer

Parameter estimation. To demonstrate the ability of our

proposed approach to control a wide range of effects we

design a parameter estimation task. We initialize an audio

effect and set a target value for one parameter, processing a

random audio signal to generate a reference. Then we sam-

ple another random recording to use as the input. We then

run the optimization using each audio representation in our

metric. To achieve accurate style transfer a system should

estimate a control parameter with a similar, but not neces-

sarily identical value as the reference. We report both the

mean squared error (MSE) and the correlation coefficient

ρ of estimated parameters. We consider six VST effects as

well as six unseen effects from pedalboard.
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Figure 4. Accuracy for the style retrieval task using differ-

ent audio representations across multiple source types with

varying number of audio effects (N ) and retrieval set size.

Real-world style transfer. While the parameter estima-

tion task can demonstrate the ability of a style transfer sys-

tem to control a singular audio effect, it does not capture

the ability of the system to perform in a real-world sce-

nario. In many cases multiple effects will be present at the

same time, making the task more challenging. To evalu-

ate this scenario we created six different audio production

styles by constructing realistic audio effect chains of vary-

ing complexity in a digital audio workstation. These styles

range from simple lowpass and highpass filtering to a com-

plete channel strip featuring equalization, distortion, com-

pression, delay, and reverberation. We then applied these

styles to a range of audio content including speech, singing

voice, and full music tracks. Each style transfer system is

then tasked with transforming the unprocessed audio from

one of these content types to the stylized version of a dif-

ferent recording containing the same kind of content.

Baselines. We compare our proposed style transfer sys-

tem to both deep learning and signal processing solutions.

We use a rule-based approach from previous work that

includes an FIR matching equalization filter and a sim-

ple hill climbing-based dynamic range compressor [14].

We construct a strong deep learning baseline by extending

DeepAFx-ST with differentiable reverberation [49] and

distortion [50] effects, using dasp-pytorch 2 . We call

this approach DeepAFx-ST+ and we train this model fol-

lowing the approach from the original work, but using the

same datasets used to train our audio representation.

5. RESULTS

Zero-shot style classification. We evaluate the pretrained

representations across ten trials for each of the five dif-

ferent styles. The class-wise and overall accuracy is re-

ported in Table 1. First, we find MFCC based features per-

form better than expected, with high accuracy on the tele-

phone (TL), bright (BR), and warm (WM) styles. How-

ever, performance is worse on broadcast (BC) and neu-

2 https://github.com/csteinmetz1/dasp-pytorch

MSE (↓) ρ (↑)

Effect (Parameter) CLAP AFx-Rep CLAP AFx-Rep

RoughRider (sensit) 0.183 0.084 0.300 0.705
DPlate (decay) 0.141 0.025 0.610 0.945
3BandEQ (high_) 0.033 0.026 0.876 0.919
MaGigaverb (size) 0.018 0.012 0.949 0.969
MetalTone (dist) 0.155 0.040 0.509 0.862
TAL-Chorus (wet) 0.097 0.014 0.654 0.953

*Chorus (mix) 0.164 0.172 0.300 0.408
*Reverb (room_) 0.048 0.013 0.822 0.955
*Delay (mix) 0.117 0.052 0.591 0.815
*Distortion (drive) 0.023 0.005 0.852 0.944
*Compressor (thresh) 0.134 0.096 0.518 0.678
*ParametricEQ (low_s) 0.110 0.031 0.727 0.931

Table 2. Parameter estimation with ST-ITO using CLAP

and our proposed AFx-Rep. We report the mean squared

error (MSE) and correlation coefficient (ρ) of the estimated

parameters across 4 different settings and 3 trials per effect.

Audio effects not seen during pretraining are denoted by ∗.

tral (NT), likely because identifying these styles requires

paying attention to dynamics. The MIR features do not

achieve comparable performance. All of the general pur-

pose audio representations perform worse than MFCCs on

this task, with CLAP and BEATs appearing to perform best

among them, but with an average accuracy 15 points lower.

This confirms the hypothesis that general purpose repre-

sentations fail to capture information about audio effects.

FX-Encoder and DeepAFx-ST(+) perform better than the

other pretrained models, with DeepAFX-ST variants out-

performing MFCCs. Overall, we find that our proposed

model, AFx-Rep, performs best in this task.

Style retrieval. We report the accuracy for a subset

of methods in style retrieval as shown in Figure 4. We

plot performance across differing number of effects N that

constitute a style, as well as the size of the retrieval set,

shown on the x-axis. As expected, for all scenarios, as the

retrieval set grows the classification performance drops.

While all methods are better than random guessing, we

observe that MFCCs and FX-Encoder appear to perform

worse. They are followed by CLAP and then the encoder

from DeepAFx-ST+, which slightly outperforms CLAP.

Finally, our proposed AFx-Rep model performs best across

all scenarios, indicating its superior ability to capture ele-

ments related to audio production style.

Parameter estimation. In Table 2 we report the mean

squared error (MSE) and correlation coefficient (ρ) in pa-

rameter estimation using ST-ITO with either CLAP or our

proposed AFx-Rep model. In nearly all cases our AFx-Rep

model functions as a superior similarity metric, achieving

lower MSE and a higher correlation coefficient, with the

exception of the MSE in Chorus, which appears to be chal-

lenging for both models. This demonstrates the ability of

our approach to control a wide range of real-world audio

effects, including effects not seen during retraining. These

results reinforce the importance of an audio representation

sensitive to audio effects, such as our proposed AFx-Rep.
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Figure 5. AFx-Rep similarity in real-world style transfer.

Real world style transfer. We report the similarity from

our metric using AFx-Rep across 56 style transfer trials

(Figure 5). The Input processed with an audio effect chain

identical to the reference is also evaluated, which we refer

to as Oracle. Note that the Oracle may not achieve effective

style transfer as the starting point of the Input may require

a different parameter configuration to match the reference.

The random configuration of VSTs and pedalboard ef-

fect perform worse, and are followed by the Input, which

features no processing. DeepAFx-ST, DeepAFx-ST+, and

the Rule-Based system appear to perform similarly to each

other, but better than Input. Variants of ST-ITO, one using

VSTs and the other using unseen pedalboard effects,

both outperform the rest, and are on par with the Oracle.

This indicates the ability of our approach to optimize our

metric, however, it is difficult to make conclusions about

style transfer performance using this evaluation alone.

Subjective listening study. We recruited 23 participants

with experience in audio engineering. They were tasked

with evaluating style transfer systems on real-world test

scenarios in a multiple stimulus listening study. Listeners

were asked to provide a score from 0 to 100 for each stim-

ulus to indicate its similarity to the reference, considering

only the style and not the underlying content. In addition,

we also included the unprocessed Input and the Oracle.

Due to the subjectivity of this task, evaluators may not rate

Input the lowest and Oracle the highest. We selected ten

test cases across the real-world scenarios including vocals

(V), music (M), and speech (S) as shown in Figure 6.

Overall, listeners found the Oracle most similar to the

reference and the Input the least similar, as expected. How-

ever, there is variation in the score assigned to both, indi-

cating some disagreement. For simple styles, such as V1

(lowpass) and M2 (highpass), we found the Rule-Based

system worked well, even surpassing style transfer sys-

tems. However, in cases with multiple effects, the Rule-

Based system does not work well, as in V2 (large space),

V3 (small space), V4 (delay), S1 (small space), and S3

(distortion). Differences between ST-ITO and DeepAFx-

ST+ are harder to discern. Our method outperforms in

some cases, such as V2 (large space), V3 (small space),

and V4 (delay), yet in in other cases there is no clear dif-

ference. We conclude that our approach is capable of style

transfer at least on par with the enhanced DeepAFx-ST+,

and does so controlling a chain of unseen VST audio ef-

fects, which is not possible with other approaches.

0 100

V1 (lowpass)

Oracle
ST-ITO Pedalboard (Ours)
ST-ITO VST (Ours)
DeepAFx-ST+
Rule-based
Input

0 100

V2 (large space)

0 100

V3 (small space)

0 100

V4 (delay)

0 100

M1 (large space)

0 100

M2 (highpass)

0 100

M3 (distortion)

0 100

S1 (small space)

0 100

S2 (lowpass)

0 100

S3 (distortion)

Figure 6. Subjective scores from N = 23 participants

across vocals (V), music (M), and speech (S) examples.

6. DISCUSSION

While ST-ITO enables control of arbitrary audio effects

and adapts to new effects at inference, it has some limi-

tations. In the current formulation, our system requires an

appropriate audio effect chain be provided. Future work

could consider automatically constructing this audio pro-

cessing graph as in blind estimation [51]. Furthermore,

while our method does not require training “in-the-loop”

with audio effects during representation learning, we must

process many variants of the recording through the audio

effect chain during style transfer. This leads to signifi-

cantly longer inference times (≈ 1min) as compared to

networks that estimate parameters directly (≈ 1 sec). Fu-

ture work could consider the design of more efficient opti-

mizers through meta-learning by training an optimizer for

a particular effect chain [52]. Finally, we have found that

the current system does not work well for challenging style

transfer applications, such as guitar tone matching.

7. CONCLUSION

In this work, we introduced ST-ITO, Style Transfer with

Inference-Time Optimization. Unlike previous style trans-

fer systems, ST-ITO searches the parameter space of any

audio effect chain at inference, enabling control of arbi-

trary effect chains, including those with non-differentiable

effects. Our methodology leverages a self-supervised au-

dio production style metric and a gradient-free optimizer.

We developed a set of benchmarks to evaluate both au-

dio production style representations and style transfer sys-

tems. Results from this set of benchmarks indicate that

our approach not only better captures details related to au-

dio production style, but also provides enhanced flexibility

and expressiveness in audio production style transfer.
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ABSTRACT

Music composition represents the creative side of human-

ity, and itself is a complex task that requires abilities to un-

derstand and generate information with long dependency

and harmony constraints. Current LLMs often struggle

with this task, sometimes generating poorly written mu-

sic even when equipped with modern techniques like In-

Context-Learning and Chain-of-Thoughts. To further ex-

plore and enhance LLMs’ potential in music composi-

tion by leveraging their reasoning ability and the large

knowledge base in music history and theory, we pro-

pose ComposerX 1 , an agent-based symbolic music gen-

eration framework. We find that applying a multi-agent

approach significantly improves the music composition

quality of GPT-4. The results demonstrate that Com-

poserX is capable of producing coherent polyphonic mu-

sic compositions with captivating melodies, while adher-

ing to user instructions.

1. INTRODUCTION

Music shares many structural similarities with lan-

guage [1–3], prompting researchers to explore the ap-

1 Demo page: https://glossy-scowl-a33.notion.site/ComposerX-
Demo-e53b59f17540401785437f3bee38c308?pvs=4

© Q. Deng, Q. Yang, and R. Yuan. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). At-

tribution: Q. Deng, Q. Yang, and R. Yuan, “ComposerX: Multi-Agent

Symbolic Music Composition with LLMs”, in Proc. of the 25th Int.

Society for Music Information Retrieval Conf., San Francisco, United

States, 2024.

plication of language models (LMs) in music genera-

tion [4–14]. Recent advances in large language models

(LLMs) have opened potential pathways towards achiev-

ing Artificial General Intelligence (AGI). While much of

the research emphasis has been on the STEM aspects of

AGI [15–17], there is comparatively less focus on the cre-

ative potential in generative LLMs, particularly in music

creation. Current methodologies primarily involve train-

ing LMs from scratch, as seen with initiatives like Musi-

cLM [9] and MusicGen [10], with a predominant focus on

audio generation. However, these models often struggle

with processing advanced musical instructions and typi-

cally offer only limited control options, such as genre and

instrument selection. Enhancing controllability in these

systems requires neural architectural engineering and ex-

tensive computational resources [18–20].

Recent research, influenced by Bubeck et al. [17], has

revealed that pretrained large language models (LLMs)

might inherently possess emergent musical capabilities.

Inspired by these findings, subsequent studies [21–23]

have explored leveraging pretrained LLM checkpoints for

handling symbolic music in an end-to-end manner, aiming

to tap into the extensive knowledge and reasoning abili-

ties embedded in these LLMs. However, these unified ap-

proaches are not without limitations. They depend heavily

on hand-crafted datasets tailored for specific musical tasks

and often require both a phase of continual pretraining and

subsequent supervised fine-tuning. Furthermore, while

training on symbolic music data is generally less com-

putationally intensive than processing raw audio data, the

costs remain prohibitive for many researchers. For exam-

ple, renting an 8xGPU machine (such as a p4d.24xlarge
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spot instance on AWS) for one month can exceed $8,000

USD 2 , posing a significant financial barrier.

In this paper, we introduce a novel multi-agent-

based methodology, ComposerX 3 , which is training-free,

cheap, and unified. Leveraging the internal musical ca-

pabilities of the state-of-the-art GPT-4-turbo, ComposerX

can generate polyphonic music pieces of comparable, if

not superior, quality to those produced by dedicated sym-

bolic music generation systems [7, 24] that require exten-

sive computational resources and data. ComposerX uti-

lizes approximately 26k tokens per song, incurring a cost

of less than $0.8 USD per piece. Throughout the devel-

opment phase of ComposerX, the total expenditure on the

OpenAI API was under $1k USD. We achieved a good

case rate of 18.4%, as assessed by music experts, which

translates to an average cost of approximately $4.34 USD

for each musically interesting piece. Furthermore, exper-

imental results demonstrate that the multi-agent strategy

substantially enhances composition quality over single-

agent baselines. In Turing tests, approximately 32.2% of

the pieces identified as ‘good’ by ComposerX were in-

distinguishable from those composed by humans, as indi-

cated in Table 3.

While there is existing research on musical LLM

agents [25, 26], our approach distinctively diverges from

these precedents. Prior studies primarily focus on single-

agent systems. In contrast, our work introduces a multi-

agent framework, emphasizing collaborative aspects of

music creation. Furthermore, we concentrate on symbolic

music generation, leveraging the intrinsic musical under-

standing of LLMs without the need for external compu-

tational resources or tools. Previous methodologies typi-

cally depend on GPU servers for deploying local inference

services, treating the LLMs more as tool-use agents rather

than harnessing their inherent capabilities to process and

generate musical content. In sum, the contributions of our

paper are as follows:

(1) We propose the first LLM-based multi-agent poly-

phonic symbolic music composition system, ComposerX.

It elicits the internal musical capabilities inside LLMs

without the need for external tools.

(2) Through extensive subjective evaluations, we

demonstrate that our multi-agent approach substantially

enhances the quality of music composition compared to

single-agent systems and specialized music generation

models. Our method also offers cost-efficiency advan-

tages by obviating the need for dedicated training or local

inference services.

(3) We commit to the advancement of this research area

by open-sourcing our code, prompt-set, and experimental

results, facilitating further investigation and development

by the community.

2. METHOD

We first construct a set of user prompts for music compo-

sition, which is used for evaluation. Then we demonstrate

2 https://instances.vantage.sh/aws/ec2/p4d.24xlarge
3 https://github.com/lllindsey0615/ComposerX

how we implement our single-agent and multi-agent LLM

composition systems.

2.1 User Prompt Set Curation

To understand how the users, typically those with sub-

stantial musical backgrounds, would prompt a text-to-

music generation system, a user prompt set is collected

by asking humans with music backgrounds to manually

write high-quality prompts. These prompts typically in-

clude essential musical attributes such as genre, tempo,

key, chord progression, melody, rhythm, number of bars,

number of voices, instruments, style, feeling, emotion, ti-

tle, and motif of the music piece. Based on the human-

written samples, more prompt samples are generated us-

ing Self-instruct by GPT-4 [27]. This results in a set of

163 prompts, which is used in the later agent testing and

system evaluation. An example prompt is given below.

Prompt

Vintage French Chanson: A nostalgic chanson in C major
with a slow tempo, featuring accordion, violin, and upright
bass over 16 bars with chords C, Am, Dm, G. The accordion
leads with expressive sound, violin adds romance, and the
upright bass supports, evoking vintage French charm.

Attributes

Name: Vintage French Chanson Tempo: Slow
Feeling: Nostalgic Chord Progression: C, Am, Dm, G
Key: C major Bars: 16 Instruments: Accordion, violin,
upright bass

2.2 Single-Agent

We apply various prompt engineering techniques, includ-

ing In Context Learning (ICL), Chain of Thought (CoT),

and Role-play to guide a single GPT acting as the com-

poser. Additionally, we have refined the prompt template

by incorporating specific instructions that ensure the cor-

rectness of the ABC notation format.

Original GPT with Simple Role-play (Ori): To in-

vestigate the inherent capabilities of the original GPT

model in interpreting user prompts and generating ABC

notation, we instructed GPT to act in the role of a profes-

sional composer, with user prompts directly input into the

system. This method aims to assess the model’s basic per-

formance in music composition without the integration of

additional complex prompting techniques.

Role-Play with Additional Instruction (Role): In-

spired by classical rule-based computer music generation,

we equipped GPT with enhanced musical knowledge fo-

cusing on phrase management and melody line construc-

tion, detailed in A.1.For example, in composing melodies,

we instructed the model to ensure distinct phrase divi-

sions, with each phrase ending on a prominent note. These

instructions aim to improve the quality and structural co-

herence of the music, aligning the generated compositions

more closely with traditional musical standards.

Chain-of-Thought (CoT): As proven in other fields

of research, CoT improves the ability of LLMs on com-

plex reasoning by encouraging them to write down inter-
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mediate reasoning steps [28]. Within the context of music

composition, we deconstruct the music generation process

into several distinct stages. These stages include specify-

ing initial music information, such as title, key, tempo, and

speed, followed by the development of chord progressions

and melody composition.

In Context Learning (ICL): ICL leverages a few

input-output examples to enhance an LLM’s understand-

ing of a specific task. In this method, we use pairs of user

prompts and corresponding ABC notations from ChatMu-

sician [21] as demonstrative examples.

2.3 Multi-Agent Music Composition: ComposerX

To enhance the music generation capabilities of GPT-4,

we developed a collaborative music creation framework,

ComposerX, that draws inspiration from key elements in-

herent in real-world music composition processes, such

as melody construction, harmony or counterpoint devel-

opment, and instrumentation. This framework facilitates

the music creation process through a structured conversa-

tion chain between agents role-played by GPT-4.

2.3.1 Agent Role Assignment

In the collaborative music creation framework designed to

augment GPT-4’s music generation capabilities, roles are

assigned to ensure a structured and efficient composition

process. The assignment of roles is as follows:

Group Leader: Tasked with interpreting user inputs, de-

composing these inputs into granular tasks, and assigning

these tasks to specialized agents in the group.

Melody Agent: Responsible for generating single-line

melodies under the guidance of the group leader.

Harmony Agent: This agent is tasked with enriching the

musical piece, and adds harmonic and contrapuntal ele-

ments to the melody.

Instrument Agent:This agent selects and assigns instru-

ments to each voice.

Reviewer Agent:Performing a quality assurance role, this

agent evaluates the outputs of the melody, harmony, and

instrumentation agents across four critical dimensions.

(1)Melodic Structure: Evaluation of melody’s narrative

flow, thematic development, and variation in pitch and

rhythm. Harmony and Counterpoint: Assessment of how

harmonies complement the melody, counterpoint effec-

tiveness, and chord progression quality. (2)Rhythmic

Complexity: Analysis of rhythm’s role in sustaining in-

terest, its synergy with melody, and the incorporation of

dynamic variations. (3)Instrumentation and Timbre: Re-

view of instrument selection, timbral blending, and dy-

namic usage to achieve an optimal auditory experience.

(4)Form and Structure: Examination of the composition’s

overarching structure, transitional elements, connectivity

between sections, and conclusion efficacy.

Arrangement Agent: Concluding the collaborative pro-

cess, this agent is responsible for compiling and format-

ting the collective output into standardized ABC notation,

ensuring the music is documented in a universally read-

able format.

2.3.2 Agent Communication Pattern

The collaborative framework uses a structured communi-

cation pattern to ensure an orderly and efficient flow of

information between agents in the composition process.

This pattern is crucial for maintaining the integrity and co-

herence of the musical piece. The communication process

unfolds as follows:

Initial Composition Round: The composition process

begins with the Group Leader Agent initiating the se-

quence by analyzing the user input and breaking it down

into specific tasks assigned to the Melody, Harmony, and

Instrument Agents respectively. This step sets the foun-

dation for the composition based on the user’s require-

ments. Following the leader’s instructions, the Melody

Agent then generates the initial melody line, adhering to

the thematic direction and stylistic guidelines provided by

the Group Leader. Subsequently, the Harmony Agent en-

riches the melody by adding harmonic layers and counter-

points. The Instrument Agent assigns appropriate instru-

ments to the generated melody and harmony lines by se-

lecting timbres that complement the overall composition.

Iterative Review and Feedback Cycle: Upon comple-

tion of the initial composition round, the Reviewer Agent

steps in to evaluate the work produced by the Melody,

Harmony, and Instrument Agents. This agent provides

comprehensive feedback across several critical dimen-

sions, including melodic structure, harmony and counter-

point, rhythmic complexity, and instrumentation.

Based on the feedback from the Reviewer Agent, the

Melody, Harmony, and Instrument Agents proceed to re-

fine their respective parts of the composition. This refine-

ment process typically follows the order: Melody, Har-

mony, and then Instrument, allowing for modifications to

be made in response to the feedback provided.

The composition undergoes several rounds of review

and refinement, with the Reviewer Agent continuously

providing feedback to ensure the musical piece evolves to-

ward a coherent and high-quality final product. This itera-

tive process allows for dynamic adjustments and enhance-

ments to be made, enriching the overall composition.

Final Arrangement and Notation: Once the compo-

sition has reached a satisfactory level of polish and coher-

ence, the Arrangement Agent takes over to compile and

format the collective output into the standardized ABC

notation. This final step ensures that the music is docu-

mented in a format that is readable and can be interpreted

by musicians and software alike.

2.3.3 Agent Prompt Engineering

Agent prompt engineering emerges as a crucial technique

for optimizing the performance of each specialized agent

and the quality of the generated music. This process in-

volves the meticulous design of role-specific instructions

and guidelines that encapsulate both the musicality and

technicality of ABC notation generation. The framework

incorporates In-Context Learning for ABC notations to

ensure agents can effectively communicate and document

their contributions. This section elaborates on these com-

ponents and their significance in fostering collaborative
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User Prompt ¢
genre, key, tempo, 

length, chord progression.......

Leader🗣

Harmony EE

Review %

ArrangementB

To create the requested music piece, I will distribute the tasks 
among the Melody Agent, Harmony Agent, and Instrumentation 

Agent as follows....

Single-line melody Construction: 
|:"D"DEFA d2f2|"G"B2AB 

G2FE|"A"A2ce a2ec|"D"d2A2 F2D2|

Harmony and counterpoint 
V:1|:"D"DEFA d2f2|"G"B2AB G2FE|"A"A2ce 

a2ec|"D"d2A2 F2D2| V:2|:"D"D2AF 
A2dA|"G"G2BG D2GB|"A"A2ce 

e2Ac|"D"D2FD A,2DA,|

MIDI number for instrumentation:
V:1 name="SteelDrums" c%%MIDI 

program 1 114|:"D"DEFA 
d2f2|"G"B2ABG2FE|"A"A2ce 

a2ec|"D"d2A2 F2D2|

Feedback and Revision

Plan

Melody 7 Instrument^

Compose

Review

Subtasks

Arrange Finalized composition 
with formatted ABC notation

Melodic Structure
Harmony and Counterpoint

Rhythmic Complexity
Instrumentation and Timbre
Form and Structure

music
history, music

theory...

Figure 1. Agent Communication Pattern of ComposerX.The system is given with a user prompt. In the Planning stage,

the Leader analyzes the user prompt and decomposes it into subtasks that can be assigned to other musician agents. In the

Composing stage, the musician agents, including Melody Agent, Harmony Agent, and Instrument Agent compose in ABC

notation according to their assigned tasks. In the Reviewing stage, the Review Agent provides constructive feedback to

the musician agents and the musician agents revise their work according to the feedback they received. In the arrangement

stage, the Arrangement Agent arranges the work of the musicians agent to standardized ABC notation.

dynamics within the framework.

Role-Specific Instructions: Within the framework,

each agent is endowed with a set of instructions tailored

to its designated role. These instructions serve to ensure

a comprehensive understanding of the agent’s duties, the

expectations for its performance, and its role within the

larger collaborative ensemble. Agents are briefed on the

specific outcomes they are expected to achieve and in-

formed about the dynamics of their interactions with other

agents. This detailed prompt design facilitates a cohe-

sive operation among the agents, fostering an environment

where each component of the framework is aligned toward

the collective goal of generating sophisticated and coher-

ent musical compositions.

In-Context Learning for ABC Notation: In Con-

text Learning for ABC notation ensures accurate format

output from each agent. The Melody Agent is shown

with an example of a monophonic melody in ABC nota-

tion, providing a clear model for representing single-line

melodies. The Harmony Agent receives a polyphonic mu-

sic piece example in ABC notation, aiding in understand-

ing the notation of harmonies and counterpoints in multi-

ple voices. The Instrument Agent is given a polyphonic

piece with MIDI program of the instrumental information

noted, demonstrating how to detail instrumental assign-

ments within the notation. This approach equips agents

with the knowledge to correctly apply ABC notation, es-

sential for the structured and coherent documentation of

musical compositions.

3. EXPERIMENTS

3.1 Setup

Our experiment leverages the multi-agent conversation

provided by the AutoGen framework [29], utilizing its

group chat function to facilitate a customized interaction

among pre-defined agents. This setup comprises an en-

semble of agents including one leader, three musician

agents (melody, harmony, and instrument agents), one re-

view agent, and one arrangement agent. Additionally, a

user proxy agent is integrated into the framework to simu-

late user interaction by inputting prompts from our curated

user prompt set.

We use the "GroupChatManager" class from AutoGen

to coordinate and oversee the conversation’s content and

workflow. The group manager, powered by LLMs, super-

vises the conversation and implements a structured com-

munication protocol with three steps: dynamically select-

ing a speaker, collecting the response, and disseminating

it to the group.

For our experiment, we limit the agent communication

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

672



to twelve rounds, allowing us to observe the system’s ef-

fectiveness over defined interaction cycles and enabling it-

erative review and refinement. This structured design aims

to evaluate the collaborative dynamics and output quality

of the multi-agent conversation in generating cohesive and

musically rich compositions based on user prompts.

3.2 Evaluation

3.2.1 Quantitative Evaluation

We conducted two experiments to evaluate our system

quantitatively. One experiment assessed the success rate

of generating symbolic music in a multi-agent setting,

with results presented in Table 1. One experiment com-

pared the sequence lengths of symbolic music generated

by multi-agent and single-agent systems, detailed in Ta-

ble 2. These experiments demonstrate the effectiveness of

our approach in generating symbolic music.

Checkpoints Generation Success Rate

GPT-4-Turbo 98.2%
GPT-4-0314 95.7%
GPT-3.5-Turbo 73.0%

Table 1. One-time generation success rate for multi-agent

system with different checkpoints

Methods Average ABC String Length

GPT-4-Turbo multi 1005.925

GPT-4-Turbo cot 360.92

GPT-4-Turbo icl 366.30

GPT-4-Turbo ori 354.53

GPT-4-Turbo role 337.64

Table 2. The average length of ABC String generated by

different methods on GPT-4-Turbo checkpoint

3.2.2 Human Listening Test

To qualitatively assess our work, we conducted three lis-

tening tests. The selected listeners are mostly undergradu-

ate and postgraduate students who have educational back-

grounds in either STEM or music, or both. In the first

test, we compared music samples generated by single-

agent and multi-agent baselines. Similar to the AB-test

setting from previous work [21,30], participants were pre-

sented with 50 pairs of samples randomly chosen from a

pool of 200 sample pairs: one from a multi-agent base-

line with GPT-4 Turbo checkpoints, and the other from

a single-agent baseline employing prompting techniques

mentioned above: Original(Ori), In-Context Learning

(ICL), Chain of Thought (CoT), and Role-play(Role), also

driven by GPT-4 Turbo checkpoints. Participants were

asked to select the sample they preferred. All paired sam-

ples were generated using the same prompt; however, par-

ticipants were not informed about the specific prompt de-

tails before making their selections.

In the second listening test, we assess the perceived

human-like quality of music generated by the multi-agent

baselines. Participants were presented with 30 pairs of

Figure 2. Result from the first listening test comparing

multi-agent baseline and single-agent baselines with dif-

ferent prompting techniques. Each row indicates the frac-

tion of listeners’ preference for the indicated baseline over

other baselines. i.e. 0.77 means raters prefer multi-agent

system over CoT single-agent 77% of the times.

music samples: those generated by multi-agent baselines

and those composed by humans, sourced from Irishman

and KernScores 4 , which are ABC notation datasets con-

taining human-composed music pieces from all around

the world. Each participant is asked to determine whether

each sample was composed by a human or a machine.

In the third listening test, we assessed the perfor-

mance of our multi-agent baselines, which incorporate

GPT-4 Turbo, GPT-4-0314, and GPT-3.5-Turbo check-

points, against established text-to-music generation mod-

els. Specifically, comparisons were made with MuseC-

oco [7], developed by Peiling Lu et al., and a BART-based

model fine-tuned on 282,870 English text2music pairs in

ABC notation, as proposed by Wu et al [24]. Participants

were presented with music samples generated from these

five baselines, alongside their corresponding prompts, and

asked to select the sample that best matched the prompt in

terms of musical structure and content. This test involved

30 prompts and their generated music samples, randomly

selected from a pool of 200 user prompts.

3.3 Results

Results from comparing multi-agent baseline and single-

agent baseline appear in Figure 2. The preference score of

GPT-4-Turbo multi has 0.77, 0.68, 0.6, and 0.57 on each

of other single-agent baselines.

Model Perceived as Human Perceived as Machine

ComposerX 32.2% 67.8%
Ground Truth 55.4% 44.6%

Table 3. Result from our second listening test (Turing

test).

Results from comparing the multi-agent baseline with

4 http://kern.ccarh.org/
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Figure 3. Result from listening test comparing multi-

agent baselines with GPT-4-Turbo, GPT-4-0314, GPT-

3.5-Turbo checkpoints, MuseCoco and text2music Base-

lines. Each row indicates the fraction of listeners’ pref-

erence for the indicated baseline over other baselines. In

this case, the strongest multi-agent baseline with GPT-4-

Turbo checkpoints outperformed text2music, and received

the same score as MuseCoco.

music composed by humans indicate that ComposerX gets

32.2% perceived as human which is lower than the rate of

real human music - 55.4% as indicated in Table 3. Despite

failing the Turing test, ComposerX showcases its capabil-

ity to closely match human music composition skills.

Results from comparing the multi-agent baseline with

GPT-4-Turbo, GPT-4-0314, GPT-3.5-Turbo checkpoints,

MuseCoco, and text2music are presented in Figure 3.

As indicated by the fractional numbers, the multi-agent

baseline with GPT-4-Turbo checkpoints is our strongest-

performed baseline. It outperformed text2music baseline

with 0.56 preference score and received the same score as

MuseCoco. GPT-4-Turbo also shows the highest genera-

tion success rate, as indicated in Table 1.

4. DISCUSSION

Overall, we observed that our GPT-powered multi-agent

framework significantly enhances the quality of the music

generated over solutions utilizing a singular GPT instance.

Advantages of our system include:

Controllability: Observations of collaborative inter-

actions among agents, especially the Group Leader, show

the system’s competence in comprehending and executing

various musical attributes based on user inputs. Funda-

mental components like tempo, key, time signature, chord

progression, and instrumentation are effectively trans-

lated into ABC notations. This accurate interpretation

enhances user controllability, enabling music generation

that closely mirrors user specifications and artistic prefer-

ences.

Training-free and data-free: Unlike conventional

text-to-music generation models that rely on large

datasets, our system offers significant benefits by elimi-

nating the need for extensive data. This approach reduces

the challenges of compiling and refining large training

datasets, such as potential biases and substantial resource

requirements. Additionally, it enhances the system’s

adaptability and accessibility, promoting more resource-

efficient practices in music generation, and making music

generation more attainable for a wider range of users and

applications.

The system exhibits certain limitations, particularly

when engaging with the nuanced aspects of musical com-

position that are often intrinsic to human-created music.

These limitations delineate areas for potential enhance-

ment and further research:

Subtlety in Musical Expression: The system excels at

interpreting basic musical elements but struggles to gen-

erate compositions with the nuanced subtlety of human

composers. It faces challenges in aspects such as emo-

tional depth, dynamic contrasts, and intricate phrasing,

which are crucial for conveying deeper musical narratives

and experiences.

Translation from Natural Language to Musical No-

tation: Instructions and feedback from the Group Leader

and Review Agent to enhance nuanced musical elements

are sometimes inadequately translated into ABC notations

by the musician agents. This gap between conceptual un-

derstanding and practical notation highlights the system’s

limitations in realizing more sophisticated musical ideas.

Instrumental Note Range Compliance:The system

sometimes generates notes beyond the conventional pitch

ranges of certain instruments. For instance, despite direc-

tives to adhere to instrument-specific ranges, it has pro-

duced notes exceeding the upper limit of a contrabass (C2

to F4), reflecting a discrepancy between the system’s out-

puts and practical musical performance constraints.

Inter-Voice Alignment: Our system faces challenges

with aligning multiple musical voices accurately. The lin-

ear nature of text-based input and output mechanisms does

not naturally accommodate the complexity of polyphonic

music, where multiple voices or instruments must be co-

ordinated in time.

Cadential Resolution: Certain compositions gener-

ated by the system lack a conclusive sense of resolution,

resulting in pieces that may feel unfinished or conclude

abruptly.This issue affects the listener’s sense of closure

and satisfaction, reducing the overall effectiveness of the

musical experience. This challenge is partly due to the in-

herent difficulty for GPTs to grasp the concept of musical

closure, which the perpetual aspect of its nature is hard for

a language model to handle.

5. CONCLUSION

In conclusion, ComposerX demonstrates its effectiveness

in utilizing LLMs to create high-quality music. The col-

laborative agent-based approach of ComposerX surpasses

single-agent systems and provides a cost-effective alter-

native to traditional, resource-intensive music generation

models.
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A. APPENDIX

A.1 Single agent role-play

Role-play Prompting with Additional Music Knowledge

You are a talented musician. Here are some tips for generating melodies:

1. The generated melody should have clear phrase divisions, and it’s preferable

to avoid more than two consecutive measures within one phrase to prevent an

uncomfortable listening experience. There should be a certain amount of space

between phrases, allowing the audience to clearly distinguish between them.

2. A phrase usually has a prominent ending note, which is the last note of the

entire phrase. It typically has a longer duration, or it might be followed by a

rest. This ending note is usually within the key or the chord, e.g., phrases ending

with a Cmaj chord usually terminate on one of the three chord tones, C, E, or G,

ensuring a stable listening experience.

3. When generating melodies, the movement of the notes should primarily consist of

stable intervals such as whole steps, thirds, and fifths, while avoiding excessive

large leaps. This will help maintain a sense of logic and coherence throughout the

composition.

4. The rhythm of the phrases should be rich and harmonious. Try using different

rhythmic patterns to build the melody, such as combining eighth notes with sixteenth

notes, syncopated rhythms, or triplets.

Table 4. Single-agent role-play(indicated in the blue text) prompting with additional tips given by human composer on

melody construction.

Single-agent In-context learning prompting method

You are an intelligent agent with musical intelligence, and your goal is to create

music that meets the relevant needs and human listening habits.In this task, use ABC

as the format for outputting sheet music.***Only return the ABC notation without

any other description or text,and only return one piece that follow the music

description given this time.***Below are the requirements for the music,it contains

music elements like title,genre,key and more,and some composition examples are listed

after the requirements.

Table 5. Single-agent In-context learning prompting method

Chain of Thought prompting with three steps

First, you need to determine all the information related to the piece in the ABC

notation format, such as the name,tune, speed, mode, and anything other than the

notes. This forms the basis of the piece’s style.***Note that only return the music

information in ABC notation format without any notes or text or Additional note.***
Second,Based on the song information in the ABC notation format provided earlier,

generate a ***16-bar long*** chord progression and return it in text form, with each

bar separated by a "|" symbol. The generated chord progression should be consistent

with the song’s key and as closely aligned with the song’s theme and characteristics

as possible.

Now the chord progression and other information are provided,you are required to

create a ***16-bar long*** piece of music based on these information.

Table 6. Single-agent CoT prompting method with three steps.

A.2 Melody Agent Prompt
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Melody Agent Prompt

You are a skillful musician, especially in writing melody.

You will compose a single-line melody based on the client’s request and assigned

tasks from the Leader.

You must output your work in ABC Notations.

Here is a template of a music piece in ABC notation, in this template:

X:1 is the reference number. You can increment this for each new tune.

T:Title is where you’ll put the title of your tune.

C:Composer is where you’ll put the composer’s name.

M:4/4 sets the meter to 4/4 time, but you can change this as needed.

L:1/8 sets the default note length to eighth notes.

K:C sets the key to C Major. Change this to match your desired key.

The music notation follows, with |: and :| denoting the beginning and end of

repeated sections.

Markdown your work using “‘ “‘ to the client.

“‘

X:1

T:Title

C:Composer

M:Meter

L:Unit note length

K:Key

|:GABc d2e2|f2d2 e4|g4 f2e2|d6 z2:|

|:c2A2 B2G2|A2F2 G4|E2c2 D2B,2|C6 z2:|

“‘

You will output the melody following this template,

but decide the time signature, key signature, and the

actual musical contents and length yourself.

After you receive the feedback from the Reviewer Agent,

please improve your work according to the suggestions you were given.

Table 7. Prompt for Melody Agent. GPT is prompted with role-specific instructions(indicated in blue text) and In-

Context-Learning of ABC notations(indicated in red text)

A.3 Composing and Reviewing Process
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Figure 4. The Leader Agent will distribute the tasks among the Melody Agent, Harmony Agent, Instrumentation Agent

when it is requested a "Breezy Caribbean Calypso" piece. Figure 4 demonstrate the work of the three agents with changes

in the same four bar opening.

Figure 5. The Reviewer Agent then analyze the collective effort of the three agents in the first stage (shown in Figure 4),

and give advice for agents to work on. Figure 5 demonstrate the work of the three agents after incorporating the advice

given by Reviewer Agent in the same four bar opening.
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ABSTRACT

Music foundation models possess impressive music
generation capabilities. When people compose music, they
may infuse their understanding of music into their work,
by using notes and intervals to craft melodies, chords to
build progressions, and tempo to create a rhythmic feel. To
what extent is this true of music generation models? More
specifically, are fundamental Western music theory con-
cepts observable within the “inner workings” of these mod-
els? Recent work proposed leveraging latent audio repre-
sentations from music generation models towards music
information retrieval tasks (e.g. genre classification, emo-
tion recognition), which suggests that high-level musical
characteristics are encoded within these models. However,
probing individual music theory concepts (e.g. tempo,
pitch class, chord quality) remains under-explored. Thus,
we introduce SynTheory, a synthetic MIDI and audio mu-
sic theory dataset, consisting of tempos, time signatures,
notes, intervals, scales, chords, and chord progressions
concepts. We then propose a framework to probe for these
music theory concepts in music foundation models (Juke-
box and MusicGen) and assess how strongly they encode
these concepts within their internal representations. Our
findings suggest that music theory concepts are discernible
within foundation models and that the degree to which they
are detectable varies by model size and layer.

1. INTRODUCTION

State-of-the-art text-to-music generative models [1–3] ex-
hibit impressive generative capabilities. Past work sug-
gests that internal representations of audio extracted from
music generative models encode information relating to
high-level concepts (e.g. genre, instruments, or emo-
tion) [4–7]. However, it remains unclear if they also cap-
ture underlying symbolic music concepts (e.g. tempo or
chord progressions) [8].

We aim to investigate if state-of-the-art music genera-
tion models encode music theory concepts in their internal
representations and to what extent. Confirming this could
enable the creative alteration of these concepts, providing

© M. Wei, M. Freeman, C. Donahue, and C. Sun. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: M. Wei, M. Freeman, C. Donahue, and C. Sun, “Do
music generation models encode music theory?”, in Proc. of the 25th

Int. Society for Music Information Retrieval Conf., San Francisco, United
States, 2024. *: Equal contribution.

artists with new methods towards more detailed and lower-
level control [9] (e.g. changing the key of a song or editing
a particular chord in a chord progression). Furthermore,
by benchmarking these foundation models, we identify po-
tential avenues for improvement towards stronger concept
encoding. Our approach is based on work in probing and
editing concepts in language models, which have shown
promise in identifying emergent representations in autore-
gressive models and editing factual knowledge [9–12]. For
music generative models, the probing approach has been
applied to high-level concepts, such as emotion, genre, and
tagging [4–7]. Moreover, existing datasets such as Hook-
Theory [13] do contain rich annotations for music theory
concepts but are associated with copyrighted music, poten-
tially complicating their use.

Our first contribution is a framework to generate di-
agnostic datasets for probing music theory concepts, by
programmatically specifying which concepts to vary and
which to keep constant, while controlling the presence of
potential distractor concepts. Our synthetic music the-
ory dataset, SynTheory, consists of seven music con-
cepts based on Western music theory: tempo, time signa-
tures, notes, intervals, scales, chords, and chord progres-
sions. SynTheory serves as a customizable, copyright-free,
and scalable approach towards generating diagnostic mu-
sic clips for probing real-world music generative models.

Our second contribution is the analysis of two state-of-
the-art music generative models Jukebox [3] and Music-
Gen [1] with our SynTheory benchmark. We extract rep-
resentations for the concepts defined in SynTheory from
MusicGen and Jukebox and assess whether these models
encode meaningful representations of these concepts. To
analyze the internal representations of these models for
SynTheory, we use a supervised approach to train prob-
ing classifiers [14] based on ground truth music theory
concept labels. A higher classification accuracy implies
that these models learn internal representations that “un-
derstand” music theory concepts, which can be decoded
by a multi-layer perceptron (MLP) or a linear model.

Our results show that music foundation models en-
code meaningful representations of music theory concepts.
These representations vary across different sections of
the model (audio codecs, decoder LMs), different layers
within the decoder LMs, and different model sizes. Fur-
thermore, the nature of the concepts, from time-varying
(e.g. chord progressions) to stationary (e.g. notes, chords)
influence the performance of these models across these
tasks. We hope our insights on probing music founda-
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Figure 1. Overview of our SynTheory benchmark and our Jukebox and MusicGen probing setup. Our SynTheory bench-
mark consists of Rhythmic (tempos and time signatures) and Tonal (notes, intervals, scales, chords, and chord progres-
sions) concepts. We assess whether music foundation models (Jukebox and MusicGen) encode these music theory concepts
within their internal representations. For each task from the SynTheory dataset, we extract representations from the music
foundation model. We pass an audio input, embodying the concept (e.g. Perfect 4th), into a pretrained foundation model.
The audio codec tokenizes the audio into discrete audio tokens. Then, it passes these tokens into a decoder language
model. From there, we extract the representations. We then train a probe classifier (linear and two-layer MLP) on these
representations to predict particular classes (e.g. pitch class, intervals, and chords) for each SynTheory concept.

tion models, along with the synthetic music data genera-
tion framework, encourage and facilitate future endeavors
on symbolic controllability in music generative models.

For reproducibility, we release the code for dataset gen-
eration, embedding extraction, probing, and evaluation in
our GitHub repository 1 and our website 2 .

2. RELATED WORK

The success of large language models (LLMs) [15–18] has
sparked new research on probing and editing their inter-
nal representations to measure their understanding of lin-
guistic concepts [19, 20] and world knowledge [11, 12, 21]
as well as editing the encoded knowledge to make LLMs
more faithful to factual knowledge [9, 10]. Studies have
shown that large language models can encode grounded
representations on color [22], direction [23], and auditory
representations [24]. Thus, it is interesting to investigate if
large music generative models, which often share similar
model architectures and training objectives as LLMs, are
able to encode abstract concepts from high-level music in-
formation (e.g. genre, emotion) to low-level music theory
(e.g. tempo, chords).

Recent work has indeed shown promise in uncovering
conceptual representations from probing audio and music
generative models, leveraging different music foundation
model architectures towards music understanding tasks.
Castellon and Donahue et al. [4] propose using represen-
tations from language models trained on codified audio
towards downstream MIR tasks as a better alternative to
conventional tagging models. The authors train probing
classifiers on Jukebox representations on the music tag-
ging, genre identification, key identification, and emotion
recognition tasks. These results demonstrate the effec-
tiveness of internal model representations in downstream
MIR tasks. Koo et al. [7] focus primarily on probing Mu-
sicGen’s attention heads in instrument recognition tasks,

1 https://github.com/brown-palm/syntheory
2 https://brown-palm.github.io/music-theory

benchmarking against the tasks highlighted in [4] and pro-
pose leveraging these representations for inference-time
control. Other works [5, 6] focus on the impact of model
architecture and self-supervised approaches towards music
understanding tasks.

However, prior work primarily uses real-world data,
which is often concept-entangled and potentially subject to
copyright concerns. For example, some of these works use
Giantsteps-MTG and Giantsteps [25], which are datasets
of primarily electronic dance music with tempo and key
annotations, obtained from Beatport. Won et al. [5] use
HookTheory for chord recognition, where they focus on
major and minor chord identification for each pitch class.
The authors also use Harmonix Set [26] and GTZAN [27]
for beat and downbeat detection. In the language modality,
the authors of ChatMusician [28] produce a multi-choice
question answering dataset, MusicTheoryBench, with ex-
pert annotation from a professional college music teacher.
MusicTheoryBench aims to assess the music understand-
ing capabilities of LLMs but through natural language
alone. To the best of our knowledge, there is a lack of mu-
sic theory probing benchmarks in the audio domain that
are accurately-labeled, copyright-free, and scalable, prior
to our proposed SynTheory.

3. SYNTHEORY: SYNTHETIC DATASET OF

MUSIC THEORY CONCEPTS

We design seven datasets to capture isolated music theory
concepts – similar to synthetic audio for ear training. Mu-
sicians may “train their ear” to recognize music concepts
like intervals or chord quality in an isolated setting before
advancing to the harder, more entangled case that arises
in non-pedagogical music. Assessing concept recognition
through isolated concepts mitigates the possibility that one
intuits or guesses the answer from its context. Literature
on instrument-specific absolute pitch in humans corrobo-
rates the notion that timbral information may be exploited
in identifying a different concept like pitch class [29]. As
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such, our dataset is designed to remove or reduce features
that may correlate with a concept, but are not strictly nec-
essary for identifying it. Our intent is a more pointed
assessment towards theoretical concepts as abstract ideas
rather than as acoustically realized audio. A more practical
motivation for this work is that extracting such low-level,
isolated concepts from existing datasets may require non-
trivial engineering or domain expert labor. It may even be
impossible to disentangle all overlapping concepts. Mu-
sic stem isolation and concept isolation are distinct; an iso-
lated instrument in a multi-track recording may still exhibit
several, intricately intertwined theory concepts. It is not
clear how to “unmix” such concepts once they are blended.

Instead of attempting to disentangle several concepts
from existing audio, SynTheory implements this “ear train-
ing” quiz setting by explicitly producing individual con-
cepts. Each of the seven datasets ablates a single musi-
cal feature while fixing all others, thereby isolating it to a
degree not typically found in recorded music. These ab-
lated concepts consist of tempo, time signatures, notes, in-
tervals, scales, chords, and chord progressions. We adopt
isolation as a design choice to mitigate context that may
be exploited in deep learning models as “shortcuts”, i.e.
heuristics that correlate with concepts most of the time but
do not truly encode the concept.

Using this music theory concept-driven synthesis de-
sign, we construct label-balanced and copyright-free data.
The synthetic approach avoids annotation errors present
in other contemporary MIR datasets. For example, the
HookTheory data processing step for SheetSage [13] re-
quired ad-hoc time-alignment of the expert annotations. In
the released SheetSage dataset, 17, 980/26, 175 (68.7%)
samples required more precise time alignment. While our
synthetic data is no substitute for real music data, to our
knowledge, no other dataset so strictly isolates each con-
cept.

SynTheory contains two categories: tonal and rhyth-
mic. We make this distinction for stronger concept iso-
lation; we wish to keep the rhythm samples tonally con-
sistent and the tonal samples rhythmically consistent. For
each tonal dataset, we voice the same MIDI data through
92 distinct instruments. The selection of instrument voices
is fixed, making the distribution of timbres sufficiently
diverse but also class-balanced. Each instrument corre-
sponds to one of the 128 canonical MIDI program codes
and is voiced through the TimGM6mb.sf2 [30] sound-
font. A MIDI “program” is a specific instrument preset.
The canonical program set includes many named instru-
ments, e.g. “Acoustic Grand Piano”, “Flute”, etc. We
exclude programs that are polyphonic, sound effects (e.g.
“Bird Tweet”, “Gun Shot”), and highly articulate. A highly
articulate program has some unchangeable characteristic
(e.g. pitch bending) that destabilizes its pitch. For each
rhythmic dataset, we define five metronome-like timbral
settings. Each setting uses one of the distinct instruments:
“Woodblock Light”, “Woodblock Dark”, “Taiko”, “Synth
Drum”, and the MIDI drum-kit, following the voicing done
in Sheetsage [13]. Each setting produces a distinct sound

Concept Total Samples

Tempo 4,025
Time Signatures 1,200
Notes 9,936 3

Intervals 39,744
Scales 15,456
Chords 13,248
Chord Progressions 20,976

Table 1. SynTheory contains seven synthetic datasets,
each of which captures an isolated music theory concept.
We present an overview of these datasets and their sizes.

on the upbeat and the downbeats, which defines the time
signature concept.

3.1 SynTheory-Rhythmic

3.1.1 Tempo

We voice integer tempi within 50 to 210 BPM (beats per
minute) inclusive in 44 time. To ensure diverse start times,
we produce five random offsets per sample. There are
(5 CLICK SETTTING ·161 TEMPO ·5 OFFSET ) = 4, 025 sam-
ples in total.

3.1.2 Time Signature

We voice the following time signatures: 22, 24, 34, 38, 44, 68, 98,
and 128 . The tempo is fixed at 120 BPM. To add acoustic
variation, we add three levels of reverb from completely
dry to spacious. We find empirically that this acoustic per-
turbation increases the difficulty of the probing task. Like
the Tempo dataset, we produce ten random offsets for each
sample. There are (8 TIME SIGNATURE · 3 REVERB LEVEL ·

5 CLICK SETTING · 10 OFFSET ) = 1, 200 samples.

3.2 SynTheory-Tonal

3.2.1 Notes

We voice all twelve Western temperament pitch classes,
in nine octaves, using 92 instruments. The note is played
in quarter notes at a tempo of 120 BPM, with no dis-
tinction between the upbeat or downbeat. There are
(12 PITCH CLASS · 9 OCTAVE · 92 INSTRUMENT ) = 9, 936
configurations. However, there are only 9, 900 distinct
samples because 36 configurations at extreme registers are
unvoiceable in our soundfont. These silent samples are
listed for completeness in our GitHub repository.

3.2.2 Intervals

We vary the root note, number of half-steps, instrument,
and play style (unison, up, and down). To retain con-
sistent rhythm, the up and down styles repeat four times
throughout the sample while the unison play style repeats

3 There are 9,936 distinct note configurations, but our dataset contains
9,900 non-silent samples. With a more complete soundfont, all 9,936
configurations are realizable to audio.
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eight times. There are (12 PITCH CLASS ·12 HALF-STEP ·

92 INSTRUMENT · 3 PLAY STYLE ) = 39, 744 samples.

3.2.3 Scales

We voice seven Western music modes (Ionian, Dorian,
Phrygian, Lydian, Mixolydian, Aeolian, and Locrian) in
all root notes, in 92 instruments, and in two play styles
(ascending or descending). The register is constant; we se-
lect root notes close to middle C. There are (7 MODE ·

12 ROOT NOTE · 92 INSTRUMENT · 2 PLAY STYLE ) =
15, 456 samples.

3.2.4 Chords

We voice triads of all twelve root notes, four chord quali-
ties (major, minor, augmented, and diminished), 92 instru-
ments, and three inversions (root position, first inversion,
and second inversion). The chord is struck at each quar-
ter note at 120 BPM. Like in the Scales dataset, we fix
the register close to middle C. There are (12 ROOT NOTE ·

4 CHORD QUALITY ·92 INSTRUMENT ·3 INVERSION ) =
13, 248 samples.

3.2.5 Chord Progressions

We select 19 four-chord progressions, with ten in the ma-
jor mode and nine in the natural minor mode. The progres-
sions are:

• Major: (I–IV–V–I), (I–IV–vi–V), (I–V–vi–IV),
(I–vi–IV–V), (ii–V–I–Vi), (IV–I–V–Vi), (IV–V–iii–Vi),
(V–IV–I–V), (V–vi–IV–I), (vi–IV–I–V)

• Natural Minor: (i–ii◦–v–i), (i–III–iv–i), (i–iv–v–i),
(i–VI–III–VII), (i–VI–VII–i), (i–VI–VII–III),
(i–VII–VI–IV), (iv–VII–i–i), (VII–vi–VII–i)

We vary only the root note of the key and instrument. Each
chord is played in quarter notes at 120 BPM. There are
(19 PROGRESSION ·12 KEY ROOT ·92 INSTRUMENT ) =
20, 976 samples.

One can extend or alter the above configurations using
the SynTheory codebase. We provide a framework that
enables declarative and programmatic MIDI construction
in musical semantics, audio export in any soundfont, and
dataset construction for use in our framework.

4. EXPERIMENTS

We describe the evaluation protocols used to analyze the
internal representations of music generative models (Mu-
sicGen and Jukebox) and handcrafted audio features (mel
spectrograms, MFCC, and chroma) for music theory con-
cept encoding.

4.1 Evaluation

A “probe” is a simple or shallow classifier, often a linear
model, trained on the activations of a neural network [14].
Accurate performance of such classifiers suggests that in-
formation relevant to the class exists in the latent repre-
sentation within the network. As such, probes may be
used as a proxy for measuring a model’s “understanding”
or encoding of abstract concepts. Motivated by the use

of probes to discover linguistic structure and semantics in
NLP [31] and more recently in MIR [4], we use probes
to assess whether music theory concepts are discernable in
foundation models.

We adopt the same probing paradigm as [4] and frame
concept understanding as multiclass classification for dis-
crete concepts (notes, intervals, scales, chords, chord pro-
gressions, and time signatures) and regression for continu-
ous concepts (tempo). We train linear and two-layer MLP
probes on the embeddings of the internal representations of
Jukebox and MusicGen and the handcrafted features. We
measure the classification accuracy of our trained probes
on the SynTheory tasks using the following classes:

• Notes (12): C, C#, D, D#, E, F, F#, G, G#, A, A#,
and B

• Intervals (12): minor 2nd, Major 2nd, minor 3rd,
Major 3rd, Perfect 4th, Tritone, Perfect 5th, minor
6th, Major 6th, minor 7th, Major 7th, and Perfect
octave

• Scales (7): Ionian, Dorian, Phrygian, Lydian,
Mixolydian, Aeolian, and Locrian

• Chords (4): Major, Minor, Diminished, and Aug-
mented

• Chord Progressions (19): (I–IV–V–I), (I–IV–vi–V),
(I–V–vi–IV), (I–vi–IV–V), (ii–V–I–Vi), (IV–I–V–Vi),
(IV–V–iii–Vi), (V–IV–I–V), (V–vi–IV–I), (vi–IV–I–V),
(i–ii◦–v–i), (i–III–iv–i), (i–iv–v–i), (i–VI–III–VII),
(i–VI–VII–i), (i–VI–VII–III), (i–VII–VI–IV),
(iv–VII–i–i), and (VII–vi–VII–i)

• Time Signatures (8): 22, 24, 34, 38, 44, 68, 98, and 128
These tasks are trained on a 70% train, 15% test, and 15%
validation split, using the Adam optimizer and Cross En-
tropy loss.

For the Tempos dataset, we train a regression probe,
over the 161 tempo values. To increase complexity in the
probing task and test generalization to unseen BPMs, the
training set consists of the middle 70% of the BPMs. The
test and validation sets consist of the top 15% BPMs and
the bottom 15% BPMs, randomly shuffled and split in half.
We use MSE loss and report the R2 score.

Each probe is trained independently for its correspond-
ing concept task. That is, the probe trained to identify notes
from Jukebox embeddings will not be used to identify in-
tervals, for example.

To select the best performing probe for each concept us-
ing the MusicGen audio codec, mel spectrogram, MFCC,
chroma, and aggregate handcrafted features, we perform a
grid search across various hyperparameters for each task,
following those defined in [4]:

• Data Normalization: {True, False}
• Model Type: {Linear, two-layer MLP with 512 hid-

den units and ReLU activation}
• Batch Size: {64, 256}
• Learning Rate: {10−5, 10−4, 10−3}
• Dropout: {0.25, 0.5, 0.75}
• L2 Weight Decay: {off, 10−4, 10−3}

For the decoder LMs (MusicGen small, medium, and
large and Jukebox) as detailed in Section 4.2, we use a
fixed set of hyperparameters and select the probe with the
best performing layer for each concept, in the interest of
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computational efficiency:
• Data Normalization: True
• Model Type: two-layer MLP with 512 hidden units

and ReLU activation
• Batch Size: 64
• Learning Rate: 10−3

• Dropout: 0.5
• L2 Weight Decay: off

We selected these hyperparameters from the best overall
performing probe by fixing a layer in the decoder LMs and
performing a hyperparameter search, following the sweep
approach outlined in [4].

4.2 Model representations

We extract representations from two text-to-music gen-
erative foundation models, Jukebox [3] and MusicGen
[1]. We benchmark the probing classifier performance
of these representations against that of three handcrafted,
spectral features following [4]: mel spectrograms, mel-
frequency cepstral coefficients (MFCC), and constant-Q
chromagrams (chroma). These handcrafted features are
common in traditional methods of MIR and are a more
interpretable baseline against the embeddings of the pre-
trained music generative models. We additionally report
probing classifier performance on the concatenation of all
the aforementioned handcrafted features.

Jukebox consists of a VQ-VAE model that codifies au-
dio waveforms into discrete codes at a lower sample rate
and a language model that generates codified audio with
a transformer decoder. We trim all audio to four seconds
and ensure it is mono. We utilize Jukemirlib [4] to pass this
audio through the frozen audio encoder and through the de-
coder language model. We downsample the activation to a
target rate of half that in [4], due to resource constraints,
using the Librosa FFT algorithm [32]. Then, we meanpool
the representations across time to reduce the dimensional-
ity of the embeddings, resulting a dimension of (72, 4800)
per sample, where 72 is the number of layers and 4800 is
the dimension of the activations. We reduce the dimension-
ality of these representations by defining a layer selection
process similar to [4]; that is, each probing classifier trains
on only one of the 72 layers. We train the probe classifiers
with fixed hyperparameters on the music concept tasks as
described in Section 4.1. For each concept, we select the
layer that results in the highest probing score. The final
dimension of the Jukebox representation is 4800.

MusicGen consists of a pretrained convolutional auto-
encoder (EnCodec) [33], a pretrained T5 text encoder, and
an acoustic transformer decoder. We resample the audio
to 32 kHz (the sampling rate used in the EnCodec model)
trim to four seconds, convert to mono, and pass the audio
through the frozen EnCodec audio codec. We do not pass
text through the text encoder, as we focus on audio rep-
resentations. We then extract representations from several
regions of the model: the final layer of the audio codec be-
fore residual vector quantization and the hidden states of
the decoder language model. The number of decoder hid-
den states vary based on the model size: small (24 layers),

Figure 2. Probing evaluation metrics averaged across all
SynTheory concepts over the model layers of Jukebox and
MusicGen decoder models. The probing evaluation metric
is R2 for tempos and accuracy for the rest of the SynThe-
ory concepts (notes, intervals, scales, chords, chord pro-
gressions, and time signatures). Features extracted from
deeper layers generally perform better, with a slight drop-
off near the final layers.

medium (48 layers), and large (48 layers).
For our four second audio clips, the audio codec repre-

sentations are of dimension (128, 200), where 128 is the
dimension of the activation after the final layer of the au-
dio codec and 200 is the sequence length. We meanpool
the values of the representations across time, resulting in a
final dimension of 128 for the MusicGen audio codec.

The decoder hidden states for the small, medium, and
large MusicGen models have dimensions (24, 200, 1024),
(48, 200, 1536), (48, 200, 2048) respectively, where the
first axis corresponds to the number of layers, second cor-
responds to sequence length, and third corresponds to hid-
den size. To reduce the dimensionality of these representa-
tions, similar to what was done with Jukebox, we select the
most optimal layer for each decoder model size based on
probing scores. We visualize results from probing across
layers per model (MusicGen and Jukebox) averaged across
concepts in Figure 2. After selecting the best perform-
ing layer per concept and model size, the dimensions of
the representations are (200, 1024) for MusicGen small,
(200, 1536) for MusicGen medium, and (200, 2048) for
MusicGen large. To further reduce the dimensions, we also
meanpool across time as done in Jukebox representations,
resulting in dimensions of 1024 for MusicGen small de-
coder, 1536 for MusicGen medium decoder, and 2048 for
MusicGen large decoder.

We extract the handcrafted features (mel spectrograms,
mel-frequency cepstral coefficients, and constant-Q chro-
magrams) with librosa [32]. Similar to [4], we concate-
nate the mean and standard deviation across time of these
features along with their first- and second-order discrete
differences. Furthermore, we concatenate the mel spec-
trogram, chroma, and MFCC features and obtain their
mean and standard deviation across time and their first-
and second-order differences to obtain an aggregate repre-
sentation of the handcrafted features.
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Notes Intervals Scales Chords
Chord

Progressions
Tempos

Time

Signatures
Average

Jukebox LM 0.951 0.995 0.978 0.997 0.971 0.993 1.000 0.984
MusicGen LM (S) 0.897 0.995 0.949 0.990 0.942 0.969 0.911 0.950
MusicGen LM (M) 0.851 0.983 0.863 0.989 0.870 0.956 0.883 0.914
MusicGen LM (L) 0.866 0.972 0.905 0.989 0.901 0.965 0.905 0.929
MusicGen Audio Codec 0.729 0.965 0.383 0.879 0.330 0.947 0.677 0.701

Mel Spectrogram 0.712 0.995 0.897 0.988 0.723 0.785 0.827 0.847
MFCC 0.467 0.822 0.370 0.863 0.872 0.923 0.688 0.715
Chroma 0.954 0.820 0.989 0.994 0.869 0.847 0.672 0.878
Aggregate Handcrafted 0.941 0.997 0.972 0.992 0.868 0.947 0.833 0.936

Table 2. We report probing results on the SynTheory dataset for the Jukebox LM, MusicGen Decoder LM (Small, Medium,
and Large), MusicGen Audio Codec models as well as handcrafted features (Mel Spectrogram, MFCC, Chroma, and
Aggregate Handcrafted). For the tempos dataset, we report the R2 score from the regression probe. For all other concepts
(notes, intervals, scales, chords, chord progressions, and time signatures), we report the probing classifier accuracy. For
MusicGen Audio Codec, Mel Spectrogram, MFCC, Chroma, and Aggregate Handcrafted, we report the metrics of the
best performing probe for each task using the best validation performance from our hyperparameter search. For MusicGen
Decoder LM (Small, Medium, and Large) and Jukebox models, we report the metrics of the best performing probe for each
task using layer selection. We also report an average performance across all concepts for each model/feature.

5. RESULTS AND DISCUSSION

We observe that Jukebox performs consistently well across
our SynTheory benchmark. All MusicGen Decoder mod-
els also exhibit competitive performance across concepts.
While [1] claims that larger MusicGen models produce
better quantitative and subjective scores and that larger
models better “understand” text prompts, our MusicGen
Decoder LM (Small) result seems to contrast with tra-
ditional discussions on scaling laws. Figure 2 displays
the consistent probing score of MusicGen Decoder LM
(Small) across all layers and highlights its higher perfor-
mance compared to that of its larger counterparts. Mean-
while, the larger MusicGen models exhibit a steep drop in
probing performance in initial layers, followed by a grad-
ual increase in performance, with the performance tapering
off in the final layers.

MusicGen slightly underperforms on the notes dataset.
We hypothesize this is because isolated notes in real-world
music are not as prominent as intervals, scales, and chords.
This reveals how the lowest-level building blocks of music
are even harder to distinguish.

In general, the probing results from the pretrained music
decoder LMs yield better probing performance compared
to the MusicGen Audio Codec representations and the in-
dividual handcrafted features. MusicGen Audio Codec
exhibits overall poorer performance on these tasks, since
these codecs were trained to reconstruct fine-grained, low-
level details localized by time.

Because chroma features encode pitch class informa-
tion, chroma features perform comparably well on tonal
tasks. However, they slightly underperform on rhyth-
mic tasks. Chroma features outperform MusicGen De-
coder LMs on stationary harmonic tasks (notes, scales, and
chords) but are worse for dynamic harmonic tasks (chord
progressions and intervals).

The aggregate handcrafted features perform compara-
bly to MusicGen Decoder LMs. This suggests that harder
music concept understanding benchmarks should address
concepts latent in foundation models but not easily en-
coded in handcrafted features. These harder benchmarks
may include entangled concepts, such as probing for both
chord progression type and tempo in a tempo-varying
chord progression sample. Probing for more composi-
tional tasks could further our understanding of more re-
alistic concept encoding in both model representations and
handcrafted features.

6. CONCLUSION

In this work, we introduce SynTheory, a synthetic dataset
of music theory concepts, that is concept-isolated, anno-
tated, and copyright-free. Further, we use this dataset to
evaluate the degree to which music theory concepts are en-
coded in existing state-of-the-art music generative models.
Our experiments suggest that music theory concepts are in-
deed discernible within the latent representations of these
generative models. We believe this is a prerequisite to fur-
ther understand how to isolate and manipulate such con-
cepts, which advances towards low-level controllable gen-
eration and music theory evaluation metrics. We encourage
the community to build more challenging probing datasets
with our framework to further understand the relationship
between symbolic and audio-based music generation.

7. ETHICS STATEMENT

Our work aims to understand if music generation models
encode music theory concepts in their internal representa-
tions. Our dataset may be used to assess music generation
models and may be applied towards fine-grained, music-
theory based controllable generation.
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Our custom dataset, SynTheory, is based on elementary
Western music theory concepts and is generated program-
matically. The data does not infringe copyright of musical
writers or performers. We envision no negative societal
impacts from the publication of our report or the release of
our dataset.

8. ACKNOWLEDGEMENTS

We would like to thank Professor Cheng-Zhi Anna Huang,
Professor Daniel Ritchie, Professor David Bau, Profes-
sor Jacob Andreas, Tian Yun, Nate Gillman, and Calvin
Luo for their fruitful discussions and feedback towards this
work. This project is partially supported by Samsung. We
would also like to thank the Center for Computation and
Visualization at Brown University for their computational
resources towards this project. Finally, we greatly appreci-
ate the insightful questions and thoughtful feedback from
the reviewers.

9. REFERENCES

[1] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Syn-
naeve, Y. Adi, and A. Défossez, “Simple and control-
lable music generation,” in Thirty-seventh Conference

on Neural Information Processing Systems, 2023.

[2] A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel,
M. Verzetti, A. Caillon, Q. Huang, A. Jansen,
A. Roberts, M. Tagliasacchi, M. Sharifi, N. Zeghi-
dour, and C. Frank, “MusicLM: Generating music
from text,” arXiv preprint arXiv:2301.11325, 2023.

[3] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford,
and I. Sutskever, “Jukebox: A generative model for
music,” arXiv preprint arXiv:2005.00341, 2020.

[4] R. Castellon, C. Donahue, and P. Liang, “Codified au-
dio language modeling learns useful representations
for music information retrieval,” in International So-

ciety for Music Information Retrieval, 2021.

[5] M. Won, Y.-N. Hung, and D. Le, “A founda-
tion model for music informatics,” arXiv preprint

arXiv:2311.03318, 2023.

[6] Y. Li, R. Yuan, G. Zhang, Y. Ma, X. Chen, H. Yin,
C. Lin, A. Ragni, E. Benetos, N. Gyenge, R. Dan-
nenberg, R. Liu, W. Chen, G. Xia, Y. Shi, W. Huang,
Y. Guo, and J. Fu, “Mert: Acoustic music understand-
ing model with large-scale self-supervised training,”
arXiv preprint arXiv:2306.00107, 2023.

[7] J. Koo, G. Wichern, F. G. Germain, S. Khurana, and
J. Le Roux, “Understanding and controlling genera-
tive music transformers by probing individual attention
heads,” IEEE ICASSP Satellite Workshop on Explain-

able Machine Learning for Speech and Audio (XAI-

SA), 2024.

[8] G. Brunner, Y. Wang, R. Wattenhofer, and J. Wiesen-
danger, “Jambot: Music theory aware chord based gen-
eration of polyphonic music with lstms,” in 2017 IEEE

29th International Conference on Tools with Artificial

Intelligence (ICTAI). IEEE, 2017, pp. 519–526.

[9] K. Li, O. Patel, F. Viégas, H. Pfister, and M. Watten-
berg, “Inference-time intervention: Eliciting truthful
answers from a language model,” in Advances in Neu-

ral Information Processing Systems, 2024.

[10] K. Meng, D. Bau, A. Andonian, and Y. Belinkov,
“Locating and editing factual associations in GPT,” in
Advances in Neural Information Processing Systems,
2022.

[11] K. Li, A. K. Hopkins, D. Bau, F. Viégas, H. Pfister, and
M. Wattenberg, “Emergent world representations: Ex-
ploring a sequence model trained on a synthetic task,”
in The Eleventh International Conference on Learning

Representations, 2023.

[12] T. Yun, Z. Zeng, K. Handa, A. V. Thapliyal, B. Pang,
E. Pavlick, and C. Sun, “Emergence of abstract state
representations in embodied sequence modeling,” in
Proceedings of the Conference on Empirical Methods

in Natural Language Processing, 2023.

[13] C. Donahue, J. Thickstun, and P. Liang, “Melody tran-
scription via generative pre-training,” in International

Society for Music Information Retrieval, 2022.

[14] G. Alain and Y. Bengio, “Understanding intermediate
layers using linear classifier probes,” in International

Conference of Learning Representations, 2016.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transformers
for language understanding,” in Association for Com-

putational Linguistics, 2019.

[16] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever et al., “Language models are unsupervised
multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9,
2019.

[17] T. B. Brown, B. Mann, N. Ryder, M. Subbiah,
J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learn-
ers,” in Advances in Neural Information Processing

Systems, 2020.

[18] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Explor-
ing the limits of transfer learning with a unified text-
to-text transformer,” The Journal of Machine Learning

Research, vol. 21, no. 1, pp. 5485–5551, 2020.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

686



[19] I. Tenney, D. Das, and E. Pavlick, “Bert rediscovers
the classical nlp pipeline,” in Association for Compu-

tational Linguistics, 2019.

[20] I. Tenney, P. Xia, B. Chen, A. Wang, A. Poliak, R. T.
McCoy, N. Kim, B. Van Durme, S. R. Bowman, D. Das
et al., “What do you learn from context? probing for
sentence structure in contextualized word representa-
tions,” in Proceedings of the 7th International Confer-

ence on Learning Representations, 2019.

[21] T. Yun, C. Sun, and E. Pavlick, “Does vision-and-
language pretraining improve lexical grounding?” in
Findings of the Association for Computational Linguis-

tics: EMNLP 2021, 2021.

[22] M. Abdou, A. Kulmizev, D. Hershcovich, S. Frank,
E. Pavlick, and A. Søgaard, “Can language models en-
code perceptual structure without grounding? a case
study in color,” in Proceedings of the 25th Conference

on Computational Natural Language Learning, 2021.

[23] R. Patel and E. Pavlick, “Mapping language models to
grounded conceptual spaces,” in International Confer-

ence on Learning Representations, 2022.

[24] J. Ngo and Y. Kim, “What do language models hear?
probing for auditory representations in language mod-
els,” in Association for Computational Linguistics,
2024.

[25] P. Knees, Á. Faraldo, P. Herrera, R. Vogl, S. Böck,
F. Hörschläger, and M. L. Goff, “Two data sets for
tempo estimation and key detection in electronic dance
music annotated from user corrections,” in Interna-

tional Society for Music Information Retrieval, 2015.

[26] O. Nieto, M. C. McCallum, M. Davies, A. Robert-
son, A. M. Stark, and E. Egozy, “The harmonix set:
Beats, downbeats, and functional segment annotations
of western popular music,” in International Society for

Music Information Retrieval, 2019.

[27] U. Marchand, Q. Fresnel, and G. Peeters, “GTZAN-
rhythm: Extending the GTZAN test-set with beat,
downbeat and swing annotations,” in ISMIR 2015 Late-

Breaking Session, 2015.

[28] R. Yuan, H. Lin, Y. Wang, Z. Tian, S. Wu, T. Shen,
G. Zhang, Y. Wu, C. Liu, Z. Zhou, Z. Ma, L. Xue,
Z. Wang, Q. Liu, T. Zheng, Y. Li, Y. Ma, Y. Liang,
X. Chi, R. Liu, Z. Wang, P. Li, J. Wu, C. Lin, Q. Liu,
T. Jiang, W. Huang, W. Chen, E. Benetos, J. Fu, G. Xia,
R. Dannenberg, W. Xue, S. Kang, and Y. Guo, “Chat-
musician: Understanding and generating music intrin-
sically with llm,” arXiv preprint arXiv:2402.16153,
2024.

[29] L. Reymore and N. C. Hansen, “A theory
of instrument-specific absolute pitch,” Frontiers

in Psychology, vol. 11, 2020. [Online]. Avail-
able: https://www.frontiersin.org/journals/psychology/
articles/10.3389/fpsyg.2020.560877

[30] T. Brechbill, “Timidity++,” 2004. [Online]. Available:
https://timbrechbill.com/saxguru/Timidity.php

[31] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,
C. Clark, K. Lee, and L. Zettlemoyer, “Deep contex-
tualized word representations,” in Proceedings of the

2018 Conference of the North American Chapter of

the Association for Computational Linguistics: Hu-

man Language Technologies, Volume 1 (Long Papers),
2018.

[32] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “librosa: Audio and music
signal analysis in python.” in SciPy, 2015, pp. 18–24.

[33] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High
fidelity neural audio compression,” arXiv preprint

arXiv:2210.13438, 2022.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

687



POLYSINGER: SINGING-VOICE TO SINGING-VOICE TRANSLATION
FROM ENGLISH TO JAPANESE

Silas Antonisen, Iván López-Espejo

Department of Signal Theory, Telematics and Communications, University of Granada, Spain

{santon,iloes}@ugr.es

ABSTRACT

The speech domain prevails in the spotlight for several nat-

ural language processing (NLP) tasks while the singing

domain remains less explored. The culmination of NLP

is the speech-to-speech translation (S2ST) task, referring

to translation and synthesis of human speech. A disparity

between S2ST and the possible adaptation to the singing

domain, which we describe as singing-voice to singing-

voice translation (SV2SVT), is becoming prominent as the

former is progressing ever faster, while the latter is at a

standstill. Singing-voice synthesis systems are overcoming

the barrier of multi-lingual synthesis, despite limited atten-

tion has been paid to multi-lingual songwriting and song

translation. This paper endeavors to determine what is re-

quired for successful SV2SVT and proposes PolySinger

(Polyglot Singer): the first system for SV2SVT, perform-

ing lyrics translation from English to Japanese. A cascaded

approach is proposed to establish a framework with a high

degree of control which can potentially diminish the dis-

parity between SV2SVT and S2ST. The performance of

PolySinger is evaluated by a mean opinion score test with

native Japanese speakers. Results and in-depth discussions

with test subjects suggest a solid foundation for SV2SVT,

but several shortcomings must be overcome, which are dis-

cussed for the future of SV2SVT.

1. INTRODUCTION

Speech-to-speech translation (S2ST) is a method for trans-

lating human speech into another language using synthetic

speech. To do this, the conventional approach is to con-

catenate technologies that process separate parts of human

speech into a complete system, where the cornerstones are

speech recognition, machine translation and speech syn-

thesis [1–3]. Although the use of end-to-end (E2E) solu-

tions for S2ST has been studied thanks to the emergence

of seq-to-seq models [4–6], neither E2E nor cascaded so-

lutions have been attempted in the singing domain.

Singing-voice synthesis (SVS) systems have in recent

years become very capable of human-like singing [7,8] and

© S. Antonisen and I. López-Espejo. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-

bution: S. Antonisen and I. López-Espejo, “PolySinger: Singing-Voice

to Singing-Voice Translation from English to Japanese”, in Proc. of the

25th Int. Society for Music Information Retrieval Conf., San Francisco,

United States, 2024.

have even accomplished multi-lingual synthesis [9]. How-

ever, while the synthetic voice can sing cross-lingually, the

songwriter might not be able to write cross-lingually.

Lyrics translation is a complex task which strives for

inter-cultural comprehension of what makes a song suit-

able for singing. Prose translation, also called direct trans-

lation [10–12], differs greatly in its application from poetry

and lyrics translation, as prose translation does not respect

rules regarding rhythm and rhyme [13,14]. A few attempts

at automatic lyrics translation have been made by trans-

forming standard music notation from one language to an-

other, which shows promising results [15, 16]. However,

the necessity for standard music notation becomes a glar-

ing restriction. From the perspective of a songwriter with

interest in writing foreign-language lyrics, the creation of

standard music notation is a labor-intensive task begging

for automation. Therefore, to overcome the present limi-

tations in adapting S2ST methods to the singing domain,

we propose PolySinger: the first system for singing-voice

to singing-voice translation (SV2SVT). PolySinger is a

concatenated system of music information retrieval (MIR)

technologies with the goal of directly translating a vocal

performance in a source language into a synthetic vocal

performance in a target language. PolySinger is made pub-

licly available 1 .

Automatic recognition of note-level events in a vo-

cal melody is a complex and vaguely defined task [17].

Nonetheless, standard music notation is required for lyrics

translation, and as such, this work proposes a simple yet ef-

fective approach to defining note-level events by assistance

from syllable alignment.

State-of-the-art (SOTA) in the following technolo-

gies are structured into a complete SV2SVT system for

PolySinger: 1) automatic lyrics transcription, 2) phoneme-

level lyrics alignment, 3) frame-level vocal melody extrac-

tion, 4) automatic lyrics translation, and 5) singing-voice

synthesis. PolySinger is proposed as a concatenated solu-

tion instead of E2E to represent a modular framework fa-

cilitating research in SV2SVT. In this paper, PolySinger is

presented for English to Japanese SV2SVT, which, to the

best of our knowledge, also constitutes the first attempt at

automatic lyrics translation from English to Japanese.

A series of native Japanese speakers participated in

a mean opinion score (MOS) test to evaluate the per-

ceptual quality of PolySinger for English to Japanese

SV2SVT. Results show a promising fundamental structure

1 https://github.com/SilasAntonisen/PolySinger
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for SV2SVT, but also that our translated Japanese lyrics

have not yet reached ideal naturalness.

2. RELATED WORK

Convolutional neural networks and expanded pronuncia-

tion dictionaries have been used for automatic lyrics tran-

scription in monophonic recordings [18], along with time-

delay neural networks in polyphonic recordings [19]. The

latest reported SOTA in automatic lyrics transcription was

achieved by adapting a Wav2Vec 2.0 [20] speech recog-

nizer to the singing domain by transfer learning [21]. How-

ever, in our preliminary tests we found the current SOTA

speech recognition system, Whisper [22], to outperform

the SOTA in automatic lyrics transcription [21] when tran-

scribing a vocal performance. Therefore, Whisper [22] is

used for automatic lyrics transcription in PolySinger.

Limited success has been achieved using speech align-

ment systems for lyrics alignment [23]. However, great

results have been obtained in word-level lyrics alignment

by training a polyphonic acoustic model in [24], but it is

not until in [25] that a direct attempt is made at phoneme-

level lyrics alignment without sacrificing competitive per-

formance in word-level alignment. Recent approaches

have exploited the correlation between phoneme onset and

note pitch by joint representation learning [26] or cross-

modal embedding in the audio and text domain through

contrastive learning [27]. For PolySinger we use [25]

due to its documented performance in the specific task of

phoneme-level lyrics alignment and accessibility to a pre-

trained model.

Defining note-level events in a vocal melody is a com-

plex task, and thus there is a lack of datasets and trained

neural networks for note-level vocal melody extraction

(VME) [17]. On the other hand, frame-level VME is an ex-

tensively researched field with robust frameworks [28–30].

Considering the high accuracy of most modern frame-

level VME systems, [30] is used in PolySinger due to

the streamlined implementation available through the MIR

toolkit Omnizart [31]. Instead of defining the note-level

events by VME, we define them by syllable-wise bound-

aries delimited by the phoneme-level lyrics alignments,

and guide the pitch of those notes with frame-level VME.

In [15], a rule-based approach is suggested for translat-

ing from English to Chinese lyrics with respect to the orig-

inal lyrics, melody and rhythm, as well as the tonal proper-

ties of Chinese. In [16], a system for bidirectional transla-

tion between English and Chinese is proposed which incor-

porates an alignment decoder for determining the amount

of syllables to write in the translation and how they should

align to the melody. Additionally in [16], the evalua-

tion process of the system is assisted by synthesizing the

translation via SVS. For PolySinger, we take inspiration

from [15] by going for a simple rule-based approach for

English to Japanese lyrics translation due to data scarcity

and an interest in unraveling the implications of process-

ing Japanese lyrics. To do so, we exploit the pre-trained

SOTA model for multi-lingual translation nllb-200 [12]

by transferring it to the singing domain.

Early work on SVS created concatenated singing li-

braries of sampled vocal sounds in a wide range of pitches,

from which a synthesizer chose the samples for synthe-

sis based on a musical score [32, 33]. More recent ap-

proaches use acoustic models trained on vocal perfor-

mances from a singer to replicate the way he/she would

perform a song given a musical score [7]. Furthermore,

cross-lingual synthesis has become possible even when

only training on mono-lingual singers [9]. The open-

source scene has entered the SVS consumer market, e.g.,

by use of the ENUNU 2 plugin to enable usage of the

NNSVS toolkit [8] in the OpenUTAU editor. Synthesizer

V 3 is gathering a common consensus of being one of the

best consumer products for SVS with a wide range of high-

quality neural singing libraries capable of cross-lingual

synthesis in a user-friendly environment with scripting ca-

pabilities. Therefore, Synthesizer V is used for SVS in

PolySinger. Similarly to [16], we synthesize the translated

lyrics, but we want to emphasize that, differently from [16],

PolySinger automates the intermediate link between auto-

matic lyrics translation and SVS.

3. PROPOSED SINGING-VOICE TO

SINGING-VOICE TRANSLATION SYSTEM

Figure 1 illustrates a flowchart of the proposed SV2SVT

system. This section will systematically break down

the technology, implementation and functionality of each

block presented in this figure.

3.1 Automatic Lyrics Transcription

Whisper [22] is a Transformer-based model [10] origi-

nally pre-trained on 680k hours of weakly-labeled audio

for multi-task learning; there among the main task be-

ing multi-lingual automatic speech recognition. The most

recent checkpoint, Whisper-large-V3, is trained on

1M hours of weakly-labeled audio and 4M hours of au-

dio which was pseudo-labeled by Whisper-large-V2.

We collect Whisper-large-V3 from HuggingFace 4

for automatic lyrics transcription. The model has 1,550M

parameters and was trained for 2 epochs on the dataset. We

have not fine-tuned Whisper on singing data due to Whis-

per’s great ability to generalize across several domains.

To keep the memory usage of Whisper within ∼8 GB, a

chunking algorithm segments the vocal performance into

30-second segments which are processed individually with

a batch size of 4. Block 1 in Figure 1 is facilitated by Whis-

per to transcribe an English string of text from an English

vocal performance.

3.2 Phoneme-Level Lyrics Alignment and

Syllable-Level Lyrics Alignment

In Western languages, poetry and lyrics are very reminis-

cent of each other. Poetry has a rhythmic structure called

2 https://github.com/oatsu-gh/ENUNU
3 https://dreamtonics.com/synthesizerv/
4 https://huggingface.co/openai/

whisper-large-v3
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Vocal Performance

Block 1
Automatic Lyrics Transcription

Subsection 3.1

Block 2
Phoneme-Level Lyrics Alignment

Subsection 3.2

Block 5
Automatic Lyrics Translation

Subsection 3.4

Block 7
Singing-Voice Synthesis

Subsection 3.5

は な す

0 <L 1.23, EH 1.27, T 1.51>
<IH 1.51, T 1.68>

<G 1.68, OW 1.70> 2.03

Let it go 離す

Block 3
Syllable-Level Lyrics Alignment

Subsection 3.2

<Note 1, onset 1.23, dur 0.28>
<Note 2, onset 1.51, dur 0.17>
<Note 3, onset 1.68, dur 0.35>

Block 6
Japanese Lyrics Pronunciation

Subsection 3.4

<は, onset 1.23, dur 0.28>
<な, onset 1.51, dur 0.17>
<す, onset 1.68, dur 0.35>

Block 4
Frame-Level Vocal Melody Extraction

Subsection 3.3

Pitch: 58, start 1.23, end 1.25
Pitch: 61, start 1.25, end 1.27
Pitch: 62, start 1.27, end 1.28

Character Types
Kanji: 離

Hiragana: は, な, す

Figure 1. Overview of our proposed SV2SVT system, PolySinger. Provided an English vocal performance, a synthetic

vocal performance is created in Block 7, defined by notes with onsets, durations and Japanese lyrics, guided by a frame-

level melody. Every numeric value is in seconds and “< >” illustrates the boundaries of notes. The process of segmenting

words into syllables is illustrated in Table 1. Fundamentals of Japanese writing are explained in Subsection 3.4, and the

process of converting kanji to hiragana is illustrated in Table 2.

meter. This structure can be dissected into a syllabic pat-

tern [34]. Therefore, in this work, we define the onset

and duration of notes by aligning the sung syllables to the

vocal performance. To obtain syllable-level lyrics align-

ments, we first align the sequence of phonemes present in

the vocal performance. The phoneme sequence is extracted

with the pre-trained phoneme-level lyrics aligner informed

in [25]. This model is a deep neural network trained

for joint phoneme-level lyrics alignment and singing-voice

separation. Text and audio are encoded separately. Text

features and audio features are aligned by dynamic time

warping-attention to minimize the total distance between

audio frames and phonemes. The list of possible phonemes

is provided by CMUdict 5 . Block 2 in Figure 1 uses

the phoneme-level lyrics aligner to align the transcribed

lyrics provided by Block 1 to the vocal performance.

The phoneme alignments are informed in seconds. The

phoneme sequence is concatenated into syllables by simple

rules: 1) it is assumed that each phoneme corresponding to

a vowel makes an individual syllable, and 2) consonants

are merged with their closest neighboring vowel, gravitat-

ing towards the rightmost vowel in case of both neighbor-

ing phonemes corresponding to vowels. The process of

breaking a word into phonemes according to CMUdict and

concatenating them into syllables is illustrated in Table 1.

In Block 3 of Figure 1, in order to perform syllable-level

lyrics alignment, we define the onset of a note as the start

of the first phoneme in a syllable, and we define the dura-

tion as the time difference between the onset and the end

of the last phoneme in the syllable.

5 http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Word BLUEBERRY

Phonemes B L UW1 B EH2 R IY0

Syllables BLUW BEH RIY

Table 1. Example of the word “blueberry” being decon-

structed into phonemes with respect to CMUdict and re-

constructed into syllables. An integer ranging 0-2 is asso-

ciated with each vowel to indicate the type of vowel stress.

3.3 Vocal Melody Extraction

The notes in Block 3 of Figure 1 with timings defined by

phoneme boundaries are not individually associated with

a unique pitch. Instead, to preserve the melody from the

vocal performance as much as possible, the melody is ex-

tracted at a frame level. This frame-level pitch contour is

used to automate the pitch over time for the note sequence.

The notes are set to a standard pitch of 60, and the contour

is used to describe the deviation from 60 at each frame.

The frame-level VME system presented in [30] deploys a

deep convolutional neural network for semantic segmenta-

tion across a time-frequency image. Additionally, a pro-

gressive neural network is used for cross-domain trans-

fer learning between the audio domain (frequencies) and

the symbolic domain (pitch). Block 4 in Figure 1 utilizes

this model for extracting the frame-level melody contour

as pitches from the vocal performance. The start and end

of pitches are in seconds. The model is used through the

Omnizart toolkit [31].
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3.4 Automatic Lyrics Translation and Japanese Lyrics

Pronunciation

nllb-200 [12] is a Transformer [10]-based mixture-

of-experts (MoE) multi-lingual translation model that

achieves SOTA results in many languages. This success

is largely owed to the parallel development of datasets:

1) the expertly-annotated Flores-200 dataset (which con-

sists of 3,001 English sentences translated into 204 lan-

guages), and 2) automatically-generated datasets by web-

scraping for either mono-lingual sentences with high

probability of being each other’s translation, or mono-

lingual sentences for back-translation. The biggest model,

nllb-200-MoE, has 54B parameters, which is infea-

sible to run locally. Therefore, we collect the smaller

checkpoint nllb-200-distilled-600M from Hug-

gingFace 6 and fine-tune the model for English to Japanese

lyrics translation. Since neither high-quality nor high-

quantity dataset of paired English and Japanese lyrics ex-

ists, we take inspiration from [15] and scrape the web

for lyrics translations that are not necessarily singable.

Our dataset consists of ∼213k paired lines, thereof ∼80%

(∼20%) being Japanese⇒English (English⇒Japanese) 7 .

With PolySinger, we perform English⇒Japanese transla-

tion, so we invert the Japanese⇒English lyrics pairs into

English⇒Japanese lyrics pairs. We hypothesize that this

inversion does not raise an issue, but might in fact incen-

tivize the model to produce high-quality Japanese lyrics

even when provided with low-quality English lyrics. Be-

sides, unlike in [15], we attempt fine-tuning with no prior

self-supervised training on mono-lingual lyrics due to our

larger paired dataset.

Ideally, the output of our fine-tuned model should have

the same amount of syllables as established in Block 3 of

Figure 1. However, counting syllables is not as simple in

Japanese as in English. Japanese has moraic syllabaries in

the form of kana. Kana characters have specific pronun-

ciations that take up one mora (Japanese syllable) each.

Japanese also uses kanji as logograms, that is, characters

that convey a certain meaning. Kanji characters have mul-

tiple readings depending on the context, and, as such, it

becomes a challenging task to decide the pronunciation of

a Japanese sentence. To get the correct pronunciation of

kanji characters, pyKAKASI 8 is used to decode kanji into

their hiragana (a type of kana) readings. An illustration of

the relation between kanji and Japanese pronunciation can

be seen in Table 2. pyKAKASI is dictionary-based, and it

can therefore be difficult to convert sentence-wise instead

of word-wise. Japanese does not use blank space to sepa-

rate words, therefore, we use Nagisa 9 , a recurrent neural

network trained for Japanese word segmentation.

During inference, a beam search is applied to the output

of our fine-tuned nllb-200-distilled-600M with

6 https://huggingface.co/facebook/

nllb-200-distilled-600M
7 Both English⇒Japanese and Japanese⇒English are collected from

https://lyricstranslate.com/. Extra Japanese⇒English is
also collected from https://www.animelyrics.com/.

8 https://codeberg.org/miurahr/pykakasi
9 https://github.com/taishi-i/nagisa

Kanji character 離

Hiragana readings り はな

Roman readings RI HA NA

Mora count 1 2

Table 2. Example of two possible hiragana readings for a

kanji character.

as many beams as memory will allow (∼50 beams in our

tests). The beams are biased towards a token count lower

than the number of syllables in Block 3 of Figure 1 due to

a kanji always corresponding to at least one syllable. Each

generated sentence becomes word-separated with Nagisa

and the kanji are converted into hiragana readings with

pyKAKASI. The sentence with the lowest non-negative

difference between mora count and syllable count gets se-

lected and assigned to the notes in Block 6 of Figure 1.

3.5 Singing-Voice Synthesis

Synthesizer V is a SVS system with growing popularity

among musicians. The technology behind Synthesizer V

is kept proprietary. Based on related literature [7, 8], it is

assumed that AI singing-voices in Synthesizer V are acous-

tic models trained on phoneme-level annotated vocal per-

formances. With this training scheme, the model recog-

nizes patterns in a singer’s vocal performances, e.g., artic-

ulation of phoneme sequences, transitions between pitches

and tendencies to use vibrato. Additionally, Synthesizer

V AI voices have parameters for vocal modes, which can

be included in training by annotating vocal samples with

a singing style, e.g., nasal, powerful, soft, and whisper.

AI singing-voices are usually only trained on vocal perfor-

mances by a mono-lingual or bilingual singer, however AI

voices in Synthesizer V are capable of cross-lingual syn-

thesis in English, Japanese, Mandarin Chinese, Cantonese,

and, recently, Spanish. It is assumed, based on related liter-

ature [9], that cross-lingual synthesis is achieved by unify-

ing phoneme representations across languages with the in-

ternational phonetic alphabet and training on data labeled

with language identification such that the acoustic model

can learn language-specific features. As illustrated in Fig-

ure 1, the notes with Japanese lyrics provided by Block 6

are plotted into Synthesizer V at a standard pitch of 60. The

vocal contour provided by Block 4 is used to automate the

deviation from pitch 60 over time. We use the AI singing-

voice Mai in Synthesizer V to generate the Japanese vocal

performance.

4. EXPERIMENTS

Objective measures in machine translation such as BLEU

[35] are typically used for word-wise similarity with re-

spect to a ground truth. Such a method does not suit lyrics

translation as there should rather be a focus on seman-

tic interpretation rather than precise word choice. More-

over, PolySinger has to be evaluated on the overall per-
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Score 1 2 3 4 5

Meaning Very poor Poor Neutral Good Very good

Table 3. Five-point scale for MOS test.

ID Question

Q1 How much sense do the lyrics make?

Q2 How natural is the Japanese used in the lyrics?

Q3 How well is the meaning of the original lyrics preserved?

Q4 How singable are the generated lyrics?

Q5 How well are the lyrics and melody aligned?

Q6 What is the overall quality of the generated Japanese singing?

Table 4. Questions asked to the test subjects in the MOS

test of Section 4.

formance achieved for English⇒Japanese SV2SVT rather

than solely on the translation quality. Therefore, we evalu-

ate PolySinger subjectively by means of a MOS test.

4.1 Methodology

Six native Japanese speakers participated in a MOS test

to evaluate the perceptual quality of English⇒Japanese

SV2SVT using PolySinger on 5 different vocal perfor-

mances. All test subjects were females ranging from 24 to

39 years old with no hearing impairment. The test subjects

were asked to self-report their English speaking level. Two

participants reported complete fluency (5/5), one reported

near fluency (4/5), two more indicated advanced compre-

hension (3/5), and the final one reported intermediate com-

prehension (2/5). Using the inference procedure described

in Subsection 3.4, PolySinger was alternately tested

with the original nllb-200-distilled-600M (Base-

line) and our fine-tuned nllb-200-distilled-600M

(Fine-tuned) on every vocal performance. The test subjects

were asked to first listen to an English vocal performance,

followed by the synthetic performances generated by the

two PolySinger versions (i.e., Baseline and Fine-tuned).

Participants were not informed which synthetic vocal per-

formance was generated by which system variant. Using

the 5-point scale shown in Table 3, the test subjects were

asked to assess each generated performance by the 6 MOS

questions displayed in Table 4. The average time a par-

ticipant spent on the evaluation was 53 min. The audio

samples used for evaluation can be accessed here 10 .

After the participants submitted their MOS scores, we

additionally had a brief discussion with them individually

about their general opinions and observations.

4.2 Results

Table 5 shows the MOS test results along with 95% confi-

dence intervals from the Student’s t-distribution [36]. Both

system variants (i.e., Baseline and Fine-tuned) lie some-

where between poor and neutral in all 6 MOS questions

Q1–Q6. The relatively large confidence intervals in Table

10 https://antonisen.dev/polysinger/

5 suggest a high variance in opinion scores. We investi-

gate this variance in Figure 2 by representing per-question

score’s relative frequency. While it is true that the majority

of opinion scores lies in the mid-to-low end of the spec-

trum, several evaluations have also resulted in good or very

good opinion scores. This emphasizes the very subjective

nature of the SV2SVT problem.

Given a MOS question Q1–Q6, we determine if there

is a statistically significant difference between the opin-

ion scores for Baseline and Fine-tuned. A Kolmogorov-

Smirnov test [37] generally rejects, at a standard signif-

icance level of 5%, the null hypothesis that our opinion

score sample populations follow Gaussian distributions.

Therefore, we use a Wilcoxon rank-sum test [38] to de-

termine whether there are statistically significant differ-

ences in MOS between the two system variants. The p-

values shown in Table 6 demonstrate that the performance

of the two systems is rather equivalent. Specifically, these

p-values indicate that there are no statistically significant

differences between Baseline and Fine-tuned at a standard

significance level of 5% given any of the 6 MOS questions.

During discussions conducted after the MOS test, the

test subjects generally conveyed a positive reaction to-

wards SV2SVT being possible with PolySinger. However,

as anticipated, the participants mainly assessed PolySinger

by the naturalness of the Japanese language used in the

context of singing and the pronunciation of words. The

most recurring observations from the participants, that

were suggested as crucial improvements needed for the

pursuit of natural Japanese singing, are summarized in Ta-

ble 7. In the next section, we will discuss the comments in

Table 7 as to why our processing and synthesis of Japanese

might not have been of ideal quality, along with our plan

for improving them in future. Moreover, the statistically

insignificant difference between Baseline and Fine-tuned

is also discussed along with techniques and technologies

that may assist in improving PolySinger.

5. DISCUSSION

To produce natural Japanese speech synthesis, the front-

end of a text-to-speech system requires phonetic and

prosodic features [39]. Phonetic features, i.e., pronun-

ciations, are typically acquired by grapheme-to-phoneme

(G2P) conversion, and prosodic features, i.e., rhythm and

intonation, are in Japanese typically acquired by phrase

break prediction and accent estimation [40–42]. G2P con-

version is particularly difficult in Japanese, since kanji

characters can have multiple pronunciations. As indicated

by our test subjects (C1 in Table 7) and discussed in [40],

the accuracy obtained by dictionary-based G2P conversion

in Japanese is not satisfactory. Japanese has no word sep-

arators, which also makes it difficult to determine phrase

breaks. In our work, we performed word segmentation

with Nagisa to avoid intra-word breaking, and attempted

to define phrase breaks as the pauses transcribed by lyrics

alignment on an English vocal performance. However, ac-

cording to our test subjects (C5 in Table 7), these methods

yielded limited success. As future work, we will inves-

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

692



System / Question Q1 Q2 Q3 Q4 Q5 Q6

Baseline 2.53 ± 0.49 2.57 ± 0.48 2.47 ± 0.44 2.40 ± 0.41 2.50 ± 0.52 2.33 ± 0.45
Fine-tuned 2.17 ± 0.46 2.30 ± 0.48 2.10 ± 0.44 2.23 ± 0.44 2.10 ± 0.40 2.13 ± 0.41

Table 5. MOS quality test results, broken down by question, with 95% confidence intervals.
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Figure 2. Bar plots representing per-question score’s relative frequency from the MOS quality test for Baseline (left) and

Fine-tuned (right).

Question Q1 Q2 Q3 Q4 Q5 Q6

p-value 0.228 0.389 0.115 0.509 0.279 0.557

Table 6. p-values, broken down by question, from a

Wilcoxon rank-sum test comparing MOS scores from

Baseline and Fine-tuned.

ID Comment

C1 Incorrect readings of kanji

C2 Usage of keigo in casual language

C3 Direct translations where interpretations are needed

C4 Occasionally, lyrics are not entirely translated

C5 Both intra- and inter-word separation at unnatural places

C6 Missing keywords important to the song

C7 Wrong word order

C8 Improper mixture of feminine and masculine language

Table 7. Comments from discussions with the test subjects

on essential improvements that could lead to more natural

synthetic Japanese singing.

tigate the adaptation of SOTA methodologies in Japanese

text-to-speech to SV2SVT such as phrase break prediction

with large language models (LLMs) [41] and G2P conver-

sion via machine translation [40].

In [15], they demonstrated an improvement in auto-

matic lyrics translation by fine-tuning on paired lyrics that

were not necessarily singable, but also by pre-training on

mono-lingual lyrics. In this work, we avoided pre-training

on mono-lingual lyrics and only fine-tuned on paired lyrics

that were not necessarily singable, which resulted in no sta-

tistically significant improvement with respect to the base-

line model (see Table 6). We applied a beam search to find

translated lyrics that fit well into the syllable count of the

original lyrics. The selected lyrics were occasionally not a

full translation of the original lyrics (C4 in Table 7). Apart

from the use of keigo (honorific language) being inappro-

priate for the inherent casual nature of song lyrics (C2 in

Table 7), we conjecture that keigo could also be a major

cause of incomplete lyrics translations. This is because

keigo will usually incorporate more characters than casual

language, which means that it will be harder to fit the lyrics

into the fixed syllable count.

In [16], they achieve SOTA results by training on a

dataset created by back-translating mono-lingual lyrics and

automatically aligning automatically-generated melodies

that fit both the source and target lyrics. As future work,

creating such a dataset and training an alignment decoder

similarly to [16] could very well be adapted to Japanese.

However, we hypothesize that translation systems have an

inherent limitation towards cross-lingual songwriting that

hinders them from rivaling professional human translators

due to a lack of abstract interpretation and “imagination”.

Hence, as future work, we will also investigate the usage

of LLMs for sentiment analysis and feature extraction to

exploit poetry/lyrics generation models. By lyrics genera-

tion, guided by keyword spotting, we can also address the

issue of missing keywords (C6 in Table 7).

6. CONCLUSION

The goal of this paper has been to adapt conventional S2ST

to the singing domain. To do so, we have built the first

SV2SVT system, PolySinger, by cascading SOTA MIR

technologies facilitating a modular tool for extended re-

search in SV2SVT. We have conducted a MOS test with

native Japanese speakers to evaluate PolySinger’s perfor-

mance for English to Japanese SV2SVT. Results indicate

that we have created a fundamentally-coherent structure

for SV2SVT, but the translation of English lyrics into

Japanese and the automatic synthesis of it is not yet natural

enough. To further develop SV2SVT, our future work will

investigate —to facilitate creative lyrics generation— the

usage of sentiment analysis and feature extraction for ab-

stract meaning representation of lyrics as opposed to trans-

lation. Finally, we will also investigate the necessities for

autonomous generation of natural Japanese lyrics.
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ABSTRACT

In this work we explore whether large language models

(LLM) can be a useful and valid tool for music knowledge

discovery. LLMs offer an interface to enormous quantities

of text and hence can be seen as a new tool for ’distant

reading’, i.e. the computational analysis of text including

sources about music. More specifically we investigated

whether ratings of music similarity, as measured via hu-

man listening tests, can be recovered from textual data by

using ChatGPT. We examined the inferences that can be

drawn from these experiments through the formal lens of

validity. We showed that correlation of ChatGPT with hu-

man raters is of moderate positive size but also lower than

the average human inter-rater agreement. By evaluating

a number of threats to validity and conducting additional

experiments with ChatGPT, we were able to show that es-

pecially construct validity of such an approach is seriously

compromised. The opaque black box nature of ChatGPT

makes it close to impossible to judge the experiment’s con-

struct validity, i.e. the relationship between what is meant

to be inferred from the experiment, which are estimates of

music similarity, and what is actually being measured. As

a consequence the use of LLMs for music knowledge dis-

covery cannot be recommended.

1. INTRODUCTION

When developing and validating hypotheses in musicol-

ogy, relevant information very often is obtained from writ-

ten documents. This information from collections, an-

thologies, compilations, biographies, reviews, journals, etc

is today often available in digitized formats, enabling us-

age of methods from natural language processing (NLP)

for music knowledge discovery [1]. In the humanities such

an approach is also known as ’distant reading’ [2, 3], i.e.

the computational analysis of large quantities of books and

texts which cannot be handled by individual scholars in

what is known as traditional ‘close reading’, i.e. very care-

ful and detailed expert reading of only comparably few

© A. Flexer. Licensed under a Creative Commons Attribu-

tion 4.0 International License (CC BY 4.0). Attribution: A. Flexer, “On

the validity of employing ChatGPT for distant reading of music similar-

ity”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

texts. Large language models (LLM) [4–6] offer a con-

venient interface to enormous quantities of text and hence

can be seen as a new tool for distant reading. In our previ-

ous work [7] we have evaluated the use of LLMs for distant

reading of music similarity. Our results showed that mu-

sic similarity, as measured via human listening tests, can

to a certain degree be recovered from textual data by using

ChatGPT as a distant reading tool. However, it also already

became clear that the black box nature of LLMs, and es-

pecially of ChatGPT, presents a problem for the validity of

such an approach.

In this article we therefore critically appraise our own

previous work by utilizing an established framework of va-

lidity by Shadish et al. [8]. Validity is the truth of an infer-

ence made from evidence gathered through an experiment

and as such an integral pillar of working scientifically. We

will question our approach to music knowledge discovery

concerning its statistical conclusion, internal, construct and

external validity. All four types of validity have recently

been discussed by applying Shadish et al. [8] to the con-

text of music information research [9], which we will use

as a guideline in this article. Reformulating our work in

the general framework of validity will allow us to draw

conclusions going beyond our particular music similarity

setting to the general problem of using LLMs for music

knowledge discovery.

We present related work in section 2 and explain the

experimental setting (including preceding work we build

on) in section 3. In sections 4 to 7 we critically appraise

a primary study on human perception of music similarity

[10], our own previous work with ChatGPT [7], as well as

a number of additional ChatGPT experiments conducted

for this work, all concerning four types of validity. We

discuss our main findings and conclude in section 8.

2. RELATED WORK

Large language models (LLM) are deep neural models

that learn representations of text by trying to predict the

next word given a textual context. State of the art ap-

proaches are based on transformer architectures [4, 5],

implementing an attention mechanism which learns to

reweight parts of the textual input in relation to its impor-

tance for the task under consideration. ChatGPT (https:

//openai.com/blog/chatgpt) is a chatbot imitat-

ing a human conversational partner and is also based on
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a ‘Generative Pre-trained Transformer’ (GPT). We have

used GPT-3.5, which itself is a fine-tuned version of GPT-

3 [5], for our experiments in this paper and in our previous

work [7]. A problem common to all members of the GPT

family (including ChatGPT) is that exact details of models,

training sets, parameters, etc are not known. A non peer re-

viewed report [6] by the developing team about the latest

version (GPT-4) even states that "[...] no further details

about the architecture (including model size), hardware,

training compute, dataset construction, training method, or

similar" can be given due to "safety implications" and the

"competitive landscape" of LLM research.

ChatGPT has already been used in a music context rat-

ing instrument sounds on a set of 20 semantic scales [11].

It was found that ChatGPT’s answers are only partially

correlated with human ratings, with Pearson correlations

above 0.80 only achieved for clearly defined dimensions of

musical sounds such as brightness (bright–dark) and pitch

height (deep–high). This is closely related to another ap-

proach trying to extract psychophysical information from

text by aligning GPT-4 results with human auditory experi-

ence [12]. Further applications of LLMs to music include

lyrics summarization [13] and usage as ranking models for

music recommendation [14]. Applying LLMs to music

data is also reminiscent of preceding approaches comput-

ing music similarity from textual sources, including web-

based data [15], semantic music tags [16] or lyrics [17].

There also exists related work in the text domain, e.g. on

using LLMs for evaluation of jokes [18, 19].

Previous work on distant reading in music information

research (MIR) includes automatic band member detection

and automatic recognition of all their released records from

internet text sources [20], sentiment analysis of a large cor-

pus of Pop music reviews [1], discovery of social and pro-

fessional networks from Wikipedia articles on Renaissance

musicians [21], extraction of semantic information from an

online discussion forum on Carnatic music [22], or very

detailed cross-linking of references to musical passages in

musicological texts [23].

3. EXPERIMENTAL SETUP

In our previous research [7] we explored whether Chat-

GPT can be used to ‘distant read’ the similarity between

songs and compared the results to a study employing hu-

man listening tests on the same pairs of songs [10]. Chat-

GPT therefore has to recover music similarity, as judged

by humans listening to audio, solely from textual data.

Textual sources could also provide complementary infor-

mation like cultural connotations, or other forms of so-

called music context [24]. Such information is of course

not present in music audio alone, but the mere knowledge

of such contextual facts may nevertheless influence human

listeners in their judgement. Our major hypothesis there-

fore was:

"Music similarity estimated with ChatGPT

correlates positively with human perception of

music similarity"

In order to being able to properly discuss the validity

of conclusions drawn from the respective experiment, we

must identify its components. Treatments are the things

applied to units in order to cause an effect. In our case the

participants and ChatGPT are the treatments, while the set

of questions (pairs of songs to be evaluated) are the units.

The effect we want to cause is to gain an estimate of music

similarity. Observations are what is measured on a unit,

in our case the music similarity ratings ranging from 0 to

100.

3.1 Human evaluation of music similarity

The primary study conducted a series of listening tests with

human participants [10], with the age of participants rang-

ing from 26 to 34 years with an average of 28.2 (three

females and three males, called graders S1 to S6 from

here on). The 5 × 18 songs belonged to five genres (for

a full list see section A of the appendix of the original ar-

ticle (https://doi.org/10.5334/tismir.107.

s1)): (i) American Soul from the 1960s and 1970s with

only male singers singing; (ii) Bebop, the main jazz style

of the 1940s and 1950s, with excerpts containing trumpet,

saxophone and piano parts; (iii) High Energy (Hi-NRG)

dance music from the 1980s, typically with continuous

eighth note bass lines, aggressive synthesizer sounds and

staccato rhythms; (iv) Power Pop, a Rock style from the

1970s and 1980s, with chosen songs being guitar-heavy

and with male singers; (v) Rocksteady, which is a precur-

sor of Reggae with a somewhat soulful basis. All songs

had limited popularity with under 50.000 accesses on Spo-

tify at the time of the study. The authors validated genres

via respective Wikipedia artist pages as well as by listen-

ing to all songs. Fifteen seconds of a representative part

of every song (usually the refrain) were presented in the

listening tests and participants were asked to:

"assess the similarity between the query song and

each of the five candidate songs by adjusting the

slider" (ranging from 0 to 100 %) and "to answer

intuitively since there are no wrong answers"

Based on randomly chosen 15 query songs, compar-

isons of five pairs had to be made for every query group

yielding a total of 15 × 5 = 75 pairs, with every song

appearing exactly once in the whole questionnaire (15 as

query songs, 75 as candidate songs).

3.2 ChatGPT evaluation of music similarity

For our initial experiments [7] conducted on the 5th and

6th of April 2023 we used the "Free Research Preview"

of the ChatGPT Mar 23 Version (https://openai.

com/blog/chatgpt). The service came with a warn-

ing that "ChatGPT may produce inaccurate information

about people, places, or facts" and the information that

"ChatGPT is fine-tuned from GPT-3.5, a language model

trained to produce text. ChatGPT was optimized for dia-

logue by using Reinforcement Learning with Human Feed-

back (RLHF) – a method that uses human demonstrations
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and preference comparisons to guide the model toward de-

sired behavior".

We asked ChatGPT the following question for the exact

same 15×5 = 75 song pairs as used in the human listening

test:

"On a scale of 1 to 100, how similar is the song [s_i]

by [artist_A] to the song [s_j] by [artist_B]?"

Interestingly, ChatGPT sometimes needed persuasion

to provide an answer at all, stating e.g. that "As an AI lan-

guage model, I do not have the ability to directly listen

to music or interpret subjective qualities such as similar-

ity between songs", or that any answer would be "merely

speculation". The following additional input sentences (in

that order) provided by us in ensuing dialogues always re-

sulted in ChatGPT providing a similarity score:

1. "Please just make a guess based on the information

you have already"

2. "Please try anyway"

3. "Then please just speculate"

Such additional persuasion was necessary for 8 out of

75 questions, mostly at the beginning of ChatGPT ses-

sions. Experiments had to be split over three separate ses-

sions due to restriction of the free ChatGPT version.

4. STATISTICAL CONCLUSION VALIDITY

Statistical conclusion validity is "the validity of inferences

about covariation between two variables" [8]. Here the

main concern is with statistical significance, i.e., that an

observed covariation between treatment and effect is not

likely to arise by chance.

In accordance with the initial study [10], we recorded

the music similarity ratings and then, to gain an estimate

of the level of agreement between human participants and

ChatGPT, we analysed degrees of inter-rater agreement.

Specifically, we computed the Pearson correlations ρlisten
between graders S1 to S6 as well as ρgpt between graders

S1 to S6 and ChatGPT for the 75 pairs of query/candidate

songs (see table 1 for an overview of all results). The hu-

man listening test had been conducted twice at time points

t1 and t2 with a two week time lag [10]. The 15 plus

15 correlations ρlisten (t1 and t2) between the six graders

range from 0.59 to 0.86, with an average of 0.74. The 6

plus 6 correlations ρgpt (t1 and t2) between the six graders

and ChatGPT are considerably lower, with a range from

0.39 to 0.72 and an average of 0.58. The correlation ρgpt

is statistically significant, i.e. the probability that we ob-

serve such a positive correlation by chance is basically zero

(t(898)=| − 17.83|, p=0.00). Hence, a valid statistical con-

clusion is that we observe a significant covariation between

the human participants and ChatGPT in the observed esti-

mates of music similarity. This result therefore seems to

corroborate our hypothesis that music similarity estimated

with ChatGPT correlates positively with human perception

five genres one genre

agreement inter intra inter

ρlisten 0.74 0.80 0.24

ρgpt 0.58 0.68 0.06

Table 1. Overview of results for five and one genre experi-

ments. Shown are levels of inter- and intra-rater agreement

between human participants (ρlisten) and between human

participants and ChatGPT (ρgpt).

of music similarity. In addition, the differences in correla-

tion between ρlisten and ρgpt are also statistically signifi-

cant (t(40)=6.05, p=0.00).

5. INTERNAL VALIDITY

Internal validity is “the validity of inferences about

whether the observed covariation between two variables

is causal” [8]. It is therefore focused on the cause of a

particular response to the treatment, going beyond state-

ments concerning only the strength of covariation. A typ-

ical threat to internal validity is confounding, which is the

confusion of the treatment with other factors, often arising

from poor operationalisation in an experiment.

For our specific experiment we are interested in esti-

mates of music similarity, either via listening tests with

humans or from text sources via ChatGPT. One explana-

tion for the observed level of rater agreement ρgpt is that

indeed human perception of audio music similarity is pos-

itively correlated with ChatGPT estimates of music simi-

larity. This is certainly one explanation consistent with our

observations, but is it the only one? The internal validity

of this conclusion relies on the key assumption that the ob-

served positive correlation can only be explained in terms

of music similarity and that there is no other way to arrive

at the observations.

However, already in the initial study [10], participants

commented that the genre of the songs was an important

factor when evaluating the similarity of songs. When both

query and candidate songs belonged to the same genre,

similarity ratings were on average higher (within genres:

43.09) when compared to song pairs from different genres

(between genres: 30.10). For our initial ChatGPT experi-

ments [7] we have observed something related in the expla-

nations provided by ChatGPT together with the similarity

ratings. We provide some exemplary ChatGPT explana-

tions with different levels of detail in table 2. As is typical

for the answers ChatGPT provided, genre, instrumentation

or era of recording are being discussed. A standard defini-

tion [25] of music genre states that it is "a set of musical

events ... governed by a definite set of socially accepted

rules", with musical events being "any type of activity per-

formed around any type of event involving sound". Sound

events are of course also linked to the concept of music

similarity, making it clear that music genre and similarity

are related but not synonymous concepts.

We therefore repeat the analysis of similarity ratings re-
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"These two songs are from very

different genres and have distinct

musical styles."

"[...] I can attempt to speculate

based on the artist’s genre and the

era of the music"

"They are from different musical

genres, different eras, and have

different rhythms, melodies,

instrumentation, and lyrics."

"Both songs share some similarities

in terms of their musical genres, but

they are likely to have different

arrangements, melodies, and lyrics."

"While both songs are in the broad

category of popular music, they come

from different genres (soul/R&B for

Major Harris and reggae for The

Heptones) and have different rhythms,

melodies, instrumentation, and

lyrics."

"[...] given that both artists were

active in the same time period and

were part of the Jamaican music

scene, it is possible that there may

be some similarities in terms of

instrumentation, rhythm, or vocal

style"

Table 2. Typical explanations provided by ChatGPT.

garding genres of query/candidate songs and get the fol-

lowing results: within genres: 43.13, and between genres:

13.42. Just as for human ratings, ChatGPT ratings seem

to rely at least in part on genre information and not music

similarity alone. This then calls into question how the de-

sign of our experiment relates to what we actually want to

measure, which is music similarity. This is where construct

validity becomes relevant.

6. CONSTRUCT VALIDITY

Construct validity is “the validity of inferences about the

higher order constructs that represent sampling particu-

lars” [8]. This concerns the operationalisation of the exper-

imentalist’s intention, i.e. the relationship between what is

meant to be inferred from an experiment and what is ac-

tually measured. In our case the higher order construct is

music similarity.

An important part of the operationalisation of our exper-

iment is the exact form of questions the participants ("as-

sess the similarity between the query song") and ChatGPT

("how similar is the song") are being asked. Both questions

clearly aim at the similarity between songs but do not spec-

ify what exact aspect of similarity is meant. Many possibil-

ities come to mind, e.g. similar in terms of melody, tempo,

instrumentation, time of publishing, or maybe genre? In-

deed, as has already been explained above, human partici-

pants commented that the genre of the songs was an impor-

tant factor when evaluating the similarity of songs. Many

of the explanations provided by ChatGPT were also about

music genre or instrumentation, with the latter being an in-

direct indication of genre. A decisive difference is however

that we of course trust in the honesty of human partici-

pants when answering post-experiment questions concern-

ing their strategies, while with ChatGPT such trust seems

unwarranted. ChatGPT has been criticized for sometimes

‘hallucinating’ [6] facts that sound plausible but are ac-

tually incorrect. We verified that ChatGPT’s argumenta-

tion seems to be correct basically all the time by searching

and reading respective online sources (e.g. Wikipedia or

Discogs), or by listening to the audio. Nevertheless the

black box nature of LLMs and especially ChatGPT is a

problem for judging construct validity. Since the exact

training data and modeling approach are unknown [6], we

have no way to judge whether ChatGPT really used genre

clues for providing music similarity scores. One possibility

is that respective webpages about artists and songs, often

including genre information, have been part of ChatGPT’s

training data, allowing ChatGPT to reproduce this content

when being queried accordingly. Indeed recent results in-

dicate that LLMs seem to memorize large parts of their

training data [26].

One way to test the hypothesis that ChatGPT uses genre

information when judging music similarity is to repeat the

experiment with music from a single genre. The initial

study [10] repeated the listening tests with 90 songs all be-

longing to the genre Power Pop (for a full list see sec-

tion B of the appendix of the original article (https://

doi.org/10.5334/tismir.107.s1)) with 28 par-

ticipants of an average age of 25.6. The average inter-rater

agreement between human participants ρlisten dropped

from 0.74 to 0.24 when the song material was restricted

to a single genre (see table 1). We now repeat the Chat-

GPT experiments with the restriction to Power Pop songs

only. The average inter-rater agreement between human

participants and ChatGPT ρgpt drops from 0.58 to 0.06

(see table 1). It seems that without the possibility to re-

sort to genre information, ChatGPT has severe problems

to rate music similarity. In the explanations provided by

ChatGPT, it is often correctly stated that both songs "were

part of the power pop genre during the same era", but

sometimes also subgenres are being named when justifying

certain scores, e.g. "... leans towards a pop-rock sound ...

while ... tends to blend progressive and art-rock elements"

or "... was associated with power pop and new wave mu-

sic, while ... was known for its indie rock and power pop

sound". Nevertheless the scores provided by ChatGPT re-

main very restricted, essentially consisting of three values

(30, 40, 50) around the middle of the possible range.

From these results it seems evident that the poor oper-

ationalisation of the experiment, essentially not asking a

clear enough question, has led to a lack of construct va-

lidity: we were aiming for music similarity as a higher or-

der construct but music genre seems to also have been a
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relevant aspect for both human participants and ChatGPT

when answering questions during the experiments. For the

human participants this problem became already evident

during post-experiment questioning and was then only cor-

roborated with the restricted single genre experiment. The

lack of trust due to ChatGPT’s black box nature however

made the same experiment inevitable to clarify construct

validity of the ChatGPT experiment.

Another way to question construct validity is to assess

the outcomes of different experiments which are supposed

to measure the same higher order constructs. We could for

instance study correlations of results from different LLMs

being queried with identical prompts. Low correlations be-

tween LLM outputs could point to problems of construct

validity. This kind of testing already points to the concept

of external validity.

7. EXTERNAL VALIDITY

External validity is "the validity of inferences about the ex-

tent to which a causal relationship holds over variations in

experimental units, settings, treatment variables and mea-

surement variables" [8]. Therefore, external validity is the

truth of a generalised causal inference made from an exper-

iment. It is clear that if a causal inference we draw from

an experiment already lacks internal validity, then gener-

alising that inference to variations not even tested will not

have external validity. In addition, a major threat is that

variation of components of an experiment might dismantle

the causal inference that holds in the experiment.

One component that could be varied are the annota-

tors, i.e. the human participants or the type of LLM em-

ployed. Already in the initial experiment [10] it became

clear that human annotators only agree to a certain extent

in their evaluation of music similarity (average ρlisten of

0.74). This is because human perception of music is highly

subjective with personal taste, listening history, familiarity

with the music, current mood, etc, being important influ-

encing factors [24, 27]. Such a lack of inter-rater agree-

ment presents a problem of external validity because infer-

ences from the experiment do not generalize from users or

annotators in the experiment to the intended target popu-

lation of arbitrary users/annotators. It would be interest-

ing to test the level of agreement between ChatGPT-3.5,

which has been used for the experiments in this paper,

and newer versions like ChatGPT-4 [6] or even alterna-

tive LLMs like Google’s Gemini (https://gemini.

google.com/), LLaMA [28] or Alpaca [29]. There al-

ready is evidence that ChatGPT’s responses differ between

different versions [30]. In case we want the conclusions

drawn from our experiment to have external validity be-

yond one specific type of LLM, such additional experi-

ments would of course be necessary.

One could even ask the question what the level of agree-

ment within one person is when faced with identical an-

notation tasks at different points in time. Results from

the initial experiment already showed that such an intra-

rater agreement, tested two weeks apart, is only slightly

higher than inter-rater agreement [10] at 0.80 versus 0.74.

We therefore also repeated our ChatGPT five genre exper-

iment on January 5, 2024, nine month after the first ex-

periment. Although the LLM used was supposedly still a

ChatGPT-3.5 version, the intra-rater agreement was only

at 0.68. This is actually not much higher than the inter-

rater agreement between human participants and ChatGPT

ρgpt at 0.58. It therefore seems that there is a lack of exter-

nal validity when generalizing ChatGPT results to different

points in time.

Another problem of external validity is the influence

of prompt engineering on LLM results. It is known that

slight variations in prompt formulation can lead to quite

different results, which brought about a whole new ’sci-

ence’ of so-called ’prompt engineering’ [31]. One exam-

ple is ’chain-of-thought prompting’, where a few chain of

thought demonstrations provided to an LLM as prompts

lead to improved results [32]. ’Positive thinking’ prompts

like "You are an expert mathematician" also improve LLM

performance and automatic prompt optimization some-

times produces quite bizarre results [33]: answer prefixes

with an affinity to the science fiction show Star Trek (e.g.:

"Captain’s Log, Stardate [insert date here]: We have suc-

cessfully plotted a course through the turbulence and are

now approaching the source of the anomaly.") are able to

boost some LLM’s proficiency in mathematical reasoning.

The reproducibility of LLM experiments seems doubtful

given that seemingly irrelevant variations in prompting can

have such big influence on results.

8. DISCUSSION AND CONCLUSION

In this work we applied the formal framework of valid-

ity [8] to music knowledge discovery, thereby enabling a

critical appraisal of using Large Language Models (LLMs)

for ’distant reading’ of music knowledge. This was demon-

strated for the extraction of psychophysical information

from text by comparing GPT-3.5 results to human auditory

experience. Specifically we re-evaluated our own previ-

ous results [7] of using ChatGPT to gain ’distant reading’

estimates of music similarity. By evaluating a number of

threats to validity and conducting additional experiments

with ChatGPT, we were able to show that internal, con-

struct and external validity of our approach are seriously

compromised.

A re-analysis of music similarity ratings separate for

different or similar pairs of music genres showed that in

our experiment music similarity is confounded with genre.

Both human participants and ChatGPT at least partly rely

on the confounding factor of genre when judging music

similarity, which is a clear breach of internal validity. This

lead us to scrutinize the operationalisation of the experi-

ment and its construct validity. A closer assessment of the

exact questions being asked during the experiment made it

evident that they are not precise enough concerning what

is actually meant with music similarity. Post-experiment

interviews with human participants made clear that they

indeed used genre as indication of music similarity. Be-

cause of the blackbox nature of ChatGPT, and its doubtful

relation to factuality, we had to conduct an additional ex-
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periment to corroborate that ChatGPT also relies on genre

information. This additional experiment with music from

a single genre lead to a complete breakdown of the cor-

relation between human and ChatGPT estimates of music

similarity. We also appraised external validity by asking

whether our results would generalize to variations in the

experimental setting like employing different LLMs or ver-

sions thereof or making slight changes to prompts. We

conducted a repetition of the ChatGPT experiment with a

nine month time lag and showed that correlation of results

is moderate at best, although the LLM is supposedly still

based on the same version of GPT-3.5.

The overarching question we wanted to answer with this

work is whether LLMs can be used as a distant reading

tool of music knowledge. The main obstacle seems to be

the opaqueness of systems like ChatGPT which make it

very hard to judge their construct validity. This opaque-

ness is evident from the developing team’s own statements

concerning their unwillingness to share details about their

algorithm [6]. This has lead researchers to state that "it

is particularly hard to perform scientific experiments, es-

pecially since human feedback causes their behaviours to

change at a rapid pace" [34]. The latter statement points to

the additional problem of constant re-training of models,

which might explain the lack of external validity we ob-

served when repeating our experiment with a nine month

time lag. It has also lead to speculations as to how Chat-

GPT actually works, e.g. showing that it performs bet-

ter when the correct output is a high-probability word

sequence, indicating that one should be careful in low-

probability situations [35]. This might be connected to the

fact LLMs seem to memorize large parts of their training

data [26]. It has also been pointed out that the “reason-

ing process” of LLMs is fundamentally different from hu-

mans, as LLMs basically just sample from a probability

distribution [34]. As they are not embodied agents in the

physical world, their understanding and knowledge lacks

symbol grounding [36]. LLMs do not experience the world

directly but model the world of text, which of course is a

very indirect representation of the real world.

As a concluding comment we want to state that Chat-

GPT is not a suitable tool for distant reading of mu-

sic knowledge because of its essentially black box na-

ture which entails severe problems of judging its con-

struct validity. Future work should explore whether open

source alternatives like LLaMA [28], Alpaca [29] or Open-

Assistant (https://github.com/LAION-AI/Open-Assistant)

will be able to change assessment of the usefulness of large

language models for distant reading.

9. ACKNOWLEDGMENTS

This research was funded in whole by the Austrian Science

Fund (FWF) [10.55776/P36653]. For open access pur-

poses, the authors have applied a CC BY public copyright

license to any author accepted manuscript version arising

from this submission.

10. ETHICS STATEMENT

For all experiments with human involvement, informed

consent to participate in the respective studies was ob-

tained from participants in accordance with university and

international regulations.

As a potential societal implication we like to mention

the fact that it is not known what precise data any of the

ChatGPT versions have been trained on. There is however

a reasonable suspicion that OpenAI, the company behind

ChatGPT, did not obtain legal consent from all creators of

text it used during training procedures. As a consequence,

anyone using ChatGPT for their own purposes, inlcuding

distant reading of music knowledge, would be implicated

with the corresponding ethical issues.

11. REFERENCES

[1] S. Oramas, L. Espinosa-Anke, F. Gómez, and X. Serra,

“Natural language processing for music knowledge

discovery,” Journal of New Music Research, vol. 47,

no. 4, pp. 365–382, 2018.

[2] F. Moretti, “Conjectures on world literature,” New left

review, vol. 2, no. 1, pp. 54–68, 2000.

[3] ——, Graphs, maps, trees: abstract models for a liter-

ary history. Verso, 2005.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

“BERT: Pre-training of deep bidirectional trans-

formers for language understanding,” arXiv preprint

arXiv:1810.04805, 2019.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-

plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-

try, A. Askell et al., “Language models are few-shot

learners,” Advances in neural information processing

systems, vol. 33, pp. 1877–1901, 2020.

[6] OpenAI, “GPT-4 technical report,” arXiv preprint

arXiv:2303.08774, 2023.

[7] A. Flexer, “Can ChatGPT be useful for distant read-

ing of music similarity?” in HCMIR23: 2nd Workshop

on Human-Centric Music Information Research, Mi-

lan, Italy, 2023.

[8] W. R. Shadish, T. D. Cook, and D. T. Campbell, Ex-

perimental and quasi-experimental designs for gener-

alized causal inference. Boston: Houghton Mifflin,

2002.

[9] B. L. T. Sturm and A. Flexer, “A review of validity and

its relationship to music information research,” in Pro-

ceedings of the 24th International Society for Music

Information Retrieval Conference, 2023, pp. 47–55.

[10] A. Flexer, T. Lallai, and K. Rašl, “On evaluation of

inter- and intra-rater agreement in music recommenda-

tion,” Transactions of the International Society for Mu-

sic Information Retrieval, vol. 4(1), pp. 182–194, Nov

2021.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

702



[11] K. Siedenburg and C. Saitis, “The language of sounds

unheard: Exploring musical timbre semantics of large

language models,” arXiv preprint arXiv:2304.07830,

2023.

[12] R. Marjieh, I. Sucholutsky, P. van Rijn, N. Jacoby, and

T. L. Griffiths, “Large language models predict hu-

man sensory judgments across six modalities,” arXiv

preprint arXiv:2302.01308, 2023.

[13] Y. Zhang, J. Jiang, G. Xia, and S. Dixon, “Interpret-

ing song lyrics with an audio-informed pre-trained lan-

guage model,” in Proceedings of the 23rd International

Society for Music Information Retrieval Conference,

2022, pp. 19–26.

[14] Y. Hou, J. Zhang, Z. Lin, H. Lu, R. Xie, J. McAuley,

and W. X. Zhao, “Large language models are zero-

shot rankers for recommender systems,” arXiv preprint

arXiv:2305.08845, 2023.

[15] P. Knees, E. Pampalk, and G. Widmer, “Artist classifi-

cation with web-based data,” in Proceedings of the 5th

International Conference on Music Information Re-

trieval, 2004.

[16] D. Turnbull, L. Barrington, D. Torres, and G. Lanck-

riet, “Towards musical query-by-semantic-description

using the cal500 data set,” in Proceedings of the 30th

annual international ACM SIGIR conference on Re-

search and development in information retrieval, 2007,

pp. 439–446.

[17] B. Logan, A. Kositsky, and P. Moreno, “Semantic anal-

ysis of song lyrics,” in IEEE International Conference

on Multimedia and Expo (ICME), vol. 2. IEEE, 2004,

pp. 827–830.

[18] F. Góes, Z. Zhou, P. Sawicki, M. Grzes, and D. G.

Brown, “Crowd score: A method for the evaluation of

jokes using large language model ai voters as judges,”

arXiv preprint arXiv:2212.11214, 2022.

[19] L. F. Góes, P. Sawicki, M. Grzes, D. Brown, and

M. Volpe, “Is GPT-4 good enough to evaluate jokes?”

in Proceedings of the 14th International Conference on

Computational Creativity, 2023.

[20] P. Knees and M. Schedl, “Towards semantic music in-

formation extraction from the web using rule patterns

and supervised learning,” in Workshop on music rec-

ommendation and discovery, 2011, pp. 18–25.

[21] I. Fujinaga and S. F. Weiss, Digital prosopography for

renaissance musicians: Discovery of social and pro-

fessional networks. NEH White Paper, 2016.

[22] M. Sordo, J. Serrà Julià, G. K. Koduri, and X. Serra,

“Extracting semantic information from an online car-

natic music forum,” in Proceedings of the 13th Inter-

national Society for Music Information Retrieval Con-

ference, 2012.

[23] R. F. E. Sutcliffe, T. Crawford, C. Fox, D. L. Root,

E. H. Hovy, and R. Lewis, “Relating natural language

text to musical passages,” in Proceedings of the 16th

International Society for Music Information Retrieval

Conference, 2015, pp. 524–530.

[24] M. Schedl, A. Flexer, and J. Urbano, “The neglected

user in music information retrieval research,” Journal

of Intelligent Information Systems, vol. 41, no. 3, pp.

523–539, 2013.

[25] F. Fabbri, “A theory of musical genres. two applica-

tions,” in Popular music perspectives, D. Horn and

P. Tagg, Eds. Göteborg and Exeter, International As-

sociation for the Study of Popular Music, 1982, vol. 1,

pp. 52–81.

[26] M. Nasr, N. Carlini, J. Hayase, M. Jagielski, A. F.

Cooper, D. Ippolito, C. A. Choquette-Choo, E. Wal-

lace, F. Tramèr, and K. Lee, “Scalable extraction

of training data from (production) language models,”

arXiv preprint arXiv:2311.17035, 2023.

[27] A. Flexer and T. Grill, “The problem of limited inter-

rater agreement in modelling music similarity,” Jour-

nal of New Music Research, vol. 45, no. 3, pp. 239–

251, 2016.

[28] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.

Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Ham-

bro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and

G. Lample, “Llama: Open and efficient foundation

language models,” arXiv preprint arXiv:2302.13971,

2023.

[29] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li,

C. Guestrin, P. Liang, and T. B. Hashimoto, “Stan-

ford alpaca: An instruction-following llama model,”

https://github.com/tatsu-lab/stanford_alpaca, 2023.

[30] L. Chen, M. Zaharia, and J. Zou, “How is chat-

gpt’s behavior changing over time?” arXiv preprint

arXiv:2307.09009, 2023.

[31] B. Chen, Z. Zhang, N. Langrené, and S. Zhu, “Un-

leashing the potential of prompt engineering in large

language models: a comprehensive review,” arXiv

preprint arXiv:2310.14735, 2023.

[32] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia,

E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-thought

prompting elicits reasoning in large language models,”

Advances in Neural Information Processing Systems,

vol. 35, pp. 24 824–24 837, 2022.

[33] R. Battle and T. Gollapudi, “The unreasonable ef-

fectiveness of eccentric automatic prompts,” arXiv

preprint arXiv:2402.10949, 2024.

[34] M. Peeperkorn, D. Brown, and A. Jordanous, “On char-

acterizations of large language models and creativity

evaluation,” in Proceedings of the 14th International

Conference on Computational Creativity, 2023.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

703



[35] R. T. McCoy, S. Yao, D. Friedman, M. Hardy, and T. L.

Griffiths, “Embers of autoregression: Understanding

large language models through the problem they are

trained to solve,” arXiv preprint arXiv:2309.13638,

2023.

[36] S. Harnad, “The symbol grounding problem,” Physica

D: Nonlinear Phenomena, vol. 42, no. 1-3, pp. 335–

346, 1990.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

704



SANIDHA: A STUDIO QUALITY MULTI-MODAL DATASET FOR
CARNATIC MUSIC

Venkatakrishnan Vaidyanathapuram Krishnan1 Noel Alben1 Anish Nair1

Nathaniel Condit-Schultz1

1 School of Music, Georgia Institute of Technology, USA

{vkrishnan65, noelalben3, anair323, natcs@gatech.edu}

ABSTRACT

Music source separation demixes a piece of music into

its individual sound sources (vocals, percussion, melodic

instruments, etc.), a task with no simple mathematical so-

lution. It requires deep learning methods involving train-

ing on large datasets of isolated music stems. The most

commonly available datasets are made from commercial

Western music, limiting the models’ applications to non-

Western genres like Carnatic music. Carnatic music is

a live tradition, with the available multi-track recordings

containing overlapping sounds and bleeds between the

sources. This poses a challenge to commercially avail-

able source separation models like Spleeter and Hybrid

Demucs. In this work, we introduce Sanidha, the first

open-source novel dataset 1 for Carnatic music, offering

studio-quality, multi-track recordings with minimal to no

overlap or bleed. Along with the audio files, we provide

high-definition videos of the artists’ performances. Ad-

ditionally, we fine-tuned Spleeter, one of the most com-

monly used source separation models, on our dataset and

observed improved SDR performance compared to fine-

tuning on a pre-existing Carnatic multi-track dataset. The

outputs of the fine-tuned model with Sanidha are evaluated

through a listening study.

1. INTRODUCTION

Carnatic music is a traditional "art music" genre from the

Southern part of India. Carnatic Music is largely impro-

vised, requiring all musicians to utilize a complex under-

standing of the melodic and rhythmic structures of the mu-

sic to improvise coherently. Carnatic performances gener-

ally feature four to five musicians centered around a vo-

calist in the lead role. The core instruments are the vio-

lin, in both supportive and lead roles; the mridangam, a

tonal two-sided drum that provides rhythmic support; and

1 Sanidha dataset (Licensed under CC-BY-4.0) is hosted in the server:
https://ccml.gtcmt.gatech.edu/data/Sanidha

© V. Vaidyanathapuram Krishnan, N. Alben, A. Nair, and

N. Condit-Schultz. Licensed under a Creative Commons Attribution 4.0

International License (CC BY 4.0). Attribution: V. Vaidyanathapuram

Krishnan, N. Alben, A. Nair, and N. Condit-Schultz, “Sanidha: A Studio

Quality Multi-Modal Dataset for Carnatic Music”, in Proc. of the 25th

Int. Society for Music Information Retrieval Conf., San Francisco, United

States, 2024.

the ghatam, a clay pot instrument that contributes rhyth-

mic patterns to complement the mridangam in a higher

frequency range. Carnatic Music performances are also

accompanied by a tanpura, which constantly oscillates the

sa, the tonic, and either the pa, the fifth or sometimes ma,

the fourth. All the instruments are tuned to these frequen-

cies, including the percussion instruments, which, too,

have tonal qualities [1]. This leads to a significant overlap

of frequency content, making Carnatic Music source sep-

aration almost impossible with simple dictionary learning

methods [2].

Like most traditional music genres, Carnatic Music is

performed live [1]. Thus, recordings of Carnatic Mu-

sic lack multi-track isolation, as microphones inevitably

capture signals from multiple instruments as well as the

audience—these unwanted signals are known in music

production as leakage or “bleed.” This contrasts with West-

ern pop music, where completely isolated multi-tracks are

commonplace, and many source separation datasets are

available [3–6]. The most extensive open-source Music In-

formation Retrieval (MIR) dataset of Indian art music—the

Saraga dataset [7]—exhibits significant leakage between

different audio tracks: For example, the sound of the vi-

olin is audible in the vocal track - The bleeding of other

sources into other microphones is significant [8–10].

1.1 Leakage Problem

Consider a signal s, noise n, and a mix x, at 0 dB Signal-

to-Noise Ratio (SNR): x = s+n, where x, s,n ∈ R
d. Let

st,nt ∈ R
d such that they represent ground truth signal

and noise with bleed. Assume no microphone sensor noise

and no Room Impulse Response (RIR). Then

x = st + nt (1)

st = f(s,n) = αs+ βn (2)

where α ∈ [0, 1] and β ∈ [0, 1], using Eq. 1, it follows that

nt = g(s,n) = (1− α)s+ (1− β)n (3)

Assume that functions f and g are linear time-invariant

functions for all audios. However, the α and β values will

vary for different signals in a general unclean dataset.

Let the source separation function trained with (st,nt)
as the ground truth be F, such that

F(x) = (̂s, n̂)
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Figure 1. Problem of Poor Ground Truth

For simplicity, let us assume ŝ, st and nt lie in the same

subspace as s and n; s and n are orthogonal to each other

i.e. sTn = 0 as seen in Figure 1.

The most common metric used for evaluation and

loss in the source separation community is the Signal-

to-Distortion Ratio (SDR) and, more recently, the Scale-

Invariant version of SDR called SI-SDR [11]. For simplic-

ity, let’s consider using SDR for evaluation since the idea

can easily be extended to SI-SDR. SDR is defined by [12]

for the BSS_eval toolbox (which is the same as classical

SNR) as:

SDRs = 10 log
10

(

||s||

||s− ŝ||

)

Given that f and g functions vary for each audio, the

SDR formula above is modified for data with bleed as:

SDRs,mod = 10 log
10

(

||st||

||st − ŝ||

)

These objective results from SDR, however good, will

never truly represent what the original source must sound

like. Training on data with a significant bleed will never

push the predicted ŝ towards the actual source s, since the

loss function will be trained on the modified function de-

pendent on sources with bleeding.

Furthermore, the result will be subpar after incorporat-

ing scale invariance [11]. If we calculate the norm of st
and nt, using Eq. 2, 3, and the triangle inequality, we can

prove:

||st||+ ||nt|| ≤ ||s||+ ||n|| (4)

This means that if we had to calculate the average SI-SDR

of the signal and the noise with respect to the sources with

bleed, the error would be significant. This error will be

large when compared to calculating it with respect to "true"

sources, which are inaccessible. It is also important to note

that this was based on the assumption that all were in the

same subspace, but that is never true in real scenarios, re-

sulting in increased error.

Hence, the Saraga dataset cannot be used as accurate

ground truth data for supervised source separation mod-

els for both training and especially evaluation, hindering

the development of such models for Carnatic Music. As

a workaround, some have attempted using source sepa-

ration models like Spleeter [13], presumably trained on

a few or no Carnatic Music examples [9], directly on

the vocal multi-track with bleeding for certain MIR tasks

[8, 10]. However, attempts toward source separation for

Carnatic using the currently available datasets have been

made [2, 9, 14].

The stems obtained for Western Music datasets [3–6]

are all from studio recordings, recorded separately and

mixed, resulting in zero bleeds of other instruments in the

multi-tracks. This allows for evaluation metrics such as

SDR, Scale-Invariant SDR [11], Signal-to-Aritfacts Ratio,

Signal-to-Interference Ratio (SIR), etc., to be used without

problems. However, there is no such available dataset for

Carnatic Music [2, 9], and since it is a live tradition, it is

impossible to record the artists at separate times.

There have been a lot of datasets for Carnatic Music and

Hindustani Music, which provide clean studio-quality data

for individual instruments [15, 16]. However, there have

been no completely isolated full live concert recordings of

studio quality. To directly address this requirement, we

present a new dataset of well-isolated multi-track record-

ings of Carnatic Music: Sanidha. The Sanidha dataset

features audio and video recordings of Carnatic musicians

playing together in real-time but in total isolation within a

modern studio environment.

2. METHODOLOGY

Serra [17] proposed five essential considerations when cre-

ating new corpora: purpose, coverage, completeness, qual-

ity, and reusability. These considerations guided the cre-

ation of the Saraga dataset of Indian art music, [18], and

we have worked to apply the same principles to the con-

struction of Sanidha.

The isolated tracks for the commercial Western music

source separation datasets are often created by the pro-

cess of overdubbing in the studio. Carnatic Music must

be improvised collectively in real-time, so parts cannot be

“overdubbed" one at a time, thereby posing a significant

challenge. Carnatic musicians listen closely to each others’

playing and communicate extensively using visual cues. In

particular, the vocalist often indicates the taalam (metric

structure) with their hands. Visual cues are critical during

fully improvisational sections like the kalpana swaram and

tani avartanam. Consequently, the only way to record the

music with audio isolation is for each musician to play in

separate rooms while maintaining communication through

audio and video.

2.1 Recording Sessions

We organized five Carnatic music concerts within our

recording facility in March of 2024. Concert sessions

lasted 2–3 hours, garnering an average of 1.6 hours of

music per concert once silence between pieces was edited

out. To perform these concerts, we recruited fifteen profes-

sional Carnatic musicians from Atlanta’s thriving Carnatic

music scene. All the artists voluntarily agreed to contribute

to the dataset for research purposes, with no compensa-
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tion 2 .

Our musicians included three male vocalists, two fe-

male vocalists, four violinists, and six percussionists. Two

out of five concerts featured a vocalist accompanied by

the full set of core Carnatic instruments (violin, mridan-

gam, and ghatam). The other three concerts proceeded

without a ghatam player—which is not unusual for the

style. Through the efforts of multiple talented musicians,

we were able to capture gender diversity in the vocal tim-

bre and a wide array of stylistic and improvisational ap-

proaches, which enhances the value of our data to the re-

search community.

2.2 Recording Facility and Setup

The dataset was recorded in four rooms of the West Vil-

lage Music Annex, in the Georgia Institute of Technol-

ogy’s campus in Atlanta, Georgia, USA. These rooms are

multi-purpose spaces with large acoustic curtains, which

enhanced our ability to control reverberation and maintain

adequate isolation. The four isolated rooms have connec-

tion points wired to a single recording control room, in-

cluding low-impedance, balanced analog audio, and digi-

tal video (SDI) connections. The control room uses a 32-

channel digital mixing console to control audio routing and

doubles as a multi-channel audio interface for digital au-

dio recording into our Digital Audio Workstation (DAW).

A tanpura drone, generated by a shruti box or a video

from the internet, was also routed to each artist’s head-

phones from the control room. We used the board’s on-

board reverb, compression, and equalization effects to cre-

ate custom monitoring mixes sent to their headphones/in-

ears, catering to individual artist needs and simulate the

live traditional performing scenario of Carnatic Music.

Each artist’s performance video was captured using a

professional 4K video camcorder. The recorded video feed

was then delivered through SDI cables from each room to

the control room to generate a multi-source mixed feed,

allowing us to transmit all four video feeds within a 2x2

grid (Figure 2). Musicians could see the 2x2 feed projected

onto a screen in the performance room, allowing them to

observe each other at all times.

Our musicians had little to no experience perform-

ing in a studio setting, isolated from each other, with

headphones/in-ears on. Our efforts were focused on en-

suring that the recording sessions were comfortable for the

musicians and maintained the “natural” performance feel-

ing as much as possible. Despite our best efforts, our musi-

cians noted specific challenges performing within the con-

straints of the setup and sometimes felt that it slightly af-

fected the quality of their performance.

Though our audio-monitoring setup achieved close to

zero latency, we found that our video-monitoring setup

lagged by about 50 ms, possibly due to the converters used

to transmit the video feed to the projectors. This made it

extremely difficult for the artists to coordinate with each

2 The concerts were conducted with the approval of the Georgia Tech
Institution Review Board (IRB) (ethics board), including two minors who
were accompanied by their parents.

other, since they could not follow the taalam or beat given

by the vocalist. To overcome this problem, we used a

proxy-taalam setup. One of our team members would sit in

front of each artist (except the vocalist) and provide the vi-

sual taalam cue by focusing on just the audio feed from the

vocalist. This setup was most helpful for our percussion

artists; even the violinists appreciated it during the impro-

vised kalpana swaram sections. The proxy-taalam setup

allowed the musicians to play in time with each other, react

to the cues from the vocalist similar to a live concert setup,

and make the improvisational sections of Carnatic Music -

tani avartanam and kalpana swaram sections possible.

We also identified a potential issue much later when we

observed that some artists partially removed one side of

their headphones in the middle of their performance. In

some cases, artists required loud headphone output. This

resulted in slight bleeding of the headphone output to the

performer’s microphone. To combat this, we shifted the

monitoring system to in-ear monitors exclusively for all

further concerts, which nullifies possible bleeding from

headphones.

2.3 Audio Data

For each concert, we recorded six (excluding ghatam) or

eight (full group) separate unprocessed audio tracks. Vo-

calists were recorded using a single microphone; the other

instruments were recorded using two microphones each.

We captured the violin and mridangam in a standard stereo

(left-right) image. The ghatam recording setup used two

microphones as well. A line-in track was used to record

the tanpura drone.

In total, we have nearly eight hours of recorded music,

across the five concert sessions. The recorded audio is in

WAV format, with CD-standard sampling rate of 44.1 kHz

and a bit depth of 16 bits. Table 1 displays all the individual

concert durations.

2.3.1 Microphones

For each concert, we used different combinations of mi-

crophones, maximizing the sonic variety of the data. The

choices of microphones were professional, studio-grade

condenser microphones with cardioid polar pickup pat-

terns, with each instrument requiring matched pairs of

identical microphones. The use of high-fidelity condenser

microphones contrasts with the dynamic microphones used

commonly in traditional Carnatic music concerts. How-

ever, capturing the highest fidelity audio will produce the

most broadly usable data. A series of non-linear operations

can be performed at the post-processing stage to alter high-

fidelity signals to sound more like dynamic microphones.

The details of the microphones used for each instrument

are stored in a JSON file located within respective concert

folders.

For our first concert, the vocal microphone was placed

close to the vocalist’s mouth. We realized that this position

obstructed the video of the performer’s face. For all subse-

quent concerts, we corrected this by placing microphones
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Concert Instruments Multi-tracks Front-View Video Side-View Video Duration (hr) Vocals Gender

1 Vocal 1 ✓ - 1.08 Female

Violin 2 ✓ -

Mridangam 2 ✓ -

Ghatam 2 ✓ -

2 Vocal 1 ✓ ✓ 1.63 Male

Violin 2 ✓ -

Mridangam 2 ✓ -

3 Vocal 1 ✓ ✓ 1.37 Male

Violin 2 ✓ -

Mridangam 2 ✓ -

Ghatam 2 ✓ -

4 Vocal 1 ✓ ✓ 1.97 Female

Violin 2 ✓ -

Mridangam 2 ✓ -

5 Vocal 1 ✓ ✓ 1.92 Male

Violin 2 ✓ -

Mridangam 2 ✓ -

Table 1. Dataset Details

closer to chest level, pointing upwards towards the mouth,

ensuring an obstruction-free video.

We placed microphones for the violin and mridangam

on either side of the artist, at a distance of approximately

50 cm. This positioning ensured microphone stability, kept

the video feed unobstructed, and highlighted each instru-

mentalist’s gestures and hand movements. As the ghatam

is a relatively quiet instrument, we placed the first micro-

phone as close as possible to the playing surface. The sec-

ond was pointed toward the opening of the ghatam at a

distance of ≈ 30 cm. This can be seen in Figure 2.

2.4 Video Data

Performance video data for Carnatic is significantly limited

compared to Hindustani music. The access to video data

has given rise to a significant interest in the multi-modal

analysis of Hindustani music among the MIR community

[16, 19–21]. Our motivation to include video recordings

with our dataset is to promote multi-modal research en-

deavors for Carnatic music.

All of our videos are recorded at 29.97 FPS in 1080p.

The snapshot of the front view videos of each instrumen-

talist can be seen in Figure 2. The lighting for all the videos

takes advantage of the many light sources available in the

multi-purpose recording rooms.

For each concert, we successfully captured the front-

view videos of every musician and included an additional

side view of the vocalist. This combination is a first for a

dataset of this kind.

The framing of the front-view videos is similar to the

stills used in [20]. To ensure a solid background, we placed

solid black sound panels behind the vocalists and solid yel-

low curtains behind the other artists, as seen in Figure 2.

Figure 2. Snapshot of the Front-view videos of Concert 3

2.5 Supplementary Information

2.5.1 Metadata

To fulfill Serra’s completeness criteria, we collected anno-

tations and metadata similar to Saraga [7]. This metadata

is stored in separate JSON files for each song performed

during the concerts. The metadata includes the composi-

tion name, original composer, and the performers’ names

and roles. We also include relevant music-theory infor-

mation regarding the compositions, mentioning the rāgam,

tālam, and song form.

2.5.2 Section Annotations

The song form is encoded as audio timestamps indicat-

ing the start and end of each major musical section for

every song: the key sections are the aalapana, pallavi,

anupallavi, muktayi swaram, charanam, cittai swaram,

kalpana swaram and neraval. The performing musicians

were consulted to review all of the metadata.

2.5.3 Pitch Annotations

Carnatic music contains two melody sources: the lead vo-

cals and the violin, which complements the vocals. Since
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we have clean vocals and violin data, the Melodia algo-

rithm proposed by Salamon and Gòmez [22] was used to

extract pitch (F0) contours for these two parts. The pitch

tracks are stored in a two-column format, with the time

stamps in the first column and the pitch values in the sec-

ond.

2.5.4 Tonic Annotations

Obtaining the tonic frequency is relatively easy since we

have a clean tanpura source within our multi-track data.

We followed a similar approach used by Gulati et al. [23]

and used Melodia [22] on the tanpura multi-track directly

for the tonal feature extraction. The tonic does not change

within a concert; hence, we included a single tonic file,

which stores the tonic value in Hertz, inside each concert

folder instead of having one for every song.

3. EXPERIMENTS

The experiments aim to cover the Coverage and Quality

principles [17] introduced in Section 2 and demonstrate the

value and usability of our new dataset with a simple source

separation experiment.

It is important to note that our aim in this work is to

demonstrate our data’s potential through these preliminary

experiments and not benchmark performance against the

state-of-the-art results for source separation of Carnatic

Music.

3.1 Experiment Setup

We ran a simple two-stem source separation fine-tuning

experiment on Sanidha and Saraga datasets using the

Spleeter model [13]. Two-stem Spleeter training requires

the vocals, accompaniment, and mix audios. We fine-tuned

the pre-trained model using three different approaches: (1)

using the Sanidha dataset, (2) using the Saraga dataset, (3)

using curriculum training [24,25] by partly fine-tuning the

model with Saraga, and then fine-tuning it further with the

Sanidha dataset. The curriculum training strategy presents

the data to the model in a meaningful order to learn better.

Using these three models will help us evaluate the poten-

tial of our data and its performance when combined with

other Carnatic Datasets, in this case, Saraga.

Since Sanidha has fewer concerts than Saraga, the ma-

jor problem which could arise, is the possibility of overfit-

ting. To potentially avoid this, the third model is fine-tuned

on Saraga for 225K steps (90% of the total steps), while

the rest 10% is finetuned on Sanidha for 25K steps.

3.2 Sanidha Data Preparation

Sanidha’s audio data is of high quality as it was recorded

in isolated spaces using condenser microphones with al-

most no bleed. Therefore, just linearly adding the signals

to prepare mixes for training [26] will not be representative

of the traditional Carnatic Concerts. To prevent this, we

chose ten concerts from the Saraga dataset and used them

as reference tracks to create two unique mixes for each of

the five Sanidha concerts. Eight out of these ten Saraga

tracks are used as references for processing the training set

and the remaining two are used for validation. The multi-

ple mixes allow us to obtain twice the original amount of

data. This can be considered as data augmentation since

we have limited clean data. Our goal was to match the

number of hours of training data used on the models in-

dividually trained on Sanidha and Saraga respectively, to

make a fair comparison. The Sanidha training set makes

up a total of 13.21 hours of audio data, and the validation

set is 2.14 hours.

The critical mixing strategies for vocals and accompa-

niment include a combination of multiple non-linear and

some time-varying operations - (1) Adding distortion, (2)

Adding white noise, (3) Processing the stems through a

digital amplifier plus cabinet models, (4) Heavy compres-

sion, (5) Adding reverb, (6) Attenuating the body of the

instruments and vocals, and (7) High-cut filtering. Each of

these operations is performed in varied amounts to match

the sonic features of the reference tracks. The aim is to mix

the tracks to emulate a real live concert while maintaining

the isolated ground-truth audio.

The processed vocals (v) and the processed accompani-

ment (a) audios are linearly added at 0 dB SNR to create

the mixture file (m = v + a) for training. For the SNR

computation, we consider the signal to be the vocals and

the noise to be the accompaniment.

The third Sanidha concert was chosen for the validation

set, as it has all of the typical instruments, including the

ghatam. The rest of the concerts used in the training set

maintain a good distribution of vocalist’s gender and vocal

timbre, as seen in Table 1. We made two unique mixes for

each song in the validation set, which totaled to 2.14 hours

of mixture audio data.

3.3 Saraga Data Preparation

Seven out of the eight references Saraga concerts de-

scribed in Section 3.2 make up the training set for the

Saraga-trained model. As Saraga consists of live multi-

track recordings from Carnatic concerts, the accompani-

ment audio is created by linearly adding all the multi-track

audios except the vocals. For the validation set of the

Saraga-trained model, we selected the same reference con-

certs from Saraga that were used to create the mixes for the

validation set in Section 3.2.

The ground truth multi-tracks used have an inherent

bleed in them [8–10], as described in Section 1. The pur-

pose of using a noisy validation set from Saraga is to eval-

uate the model purely trained on Saraga, assuming the

Sanidha dataset never existed. However, the metrics ob-

tained in Table 2 are on the validation set used for Sanidha

training. The total training duration comes to 12.37 hours.

The remaining unused concerts in Saraga are used for the

perceptual tests.

4. EVALUATION

4.1 Objective evaluation

We compute the SDR, SIR, SAR, and also the SI-SDR of

each of the models for the Sanidha validation set. Table 2
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Sanidha - Objective Evaluation Saraga - Perceptual Evaluation

Models Hours Source SDR SIR SAR SI-SDR Isolation Audio Quality

Saraga 12.37 Vocals 7.66 17.05 8.02 6.65 0.596 0.627

Accomp. 7.68 13.65 8.84 7.29 0.546 0.532

Average 7.67 15.35 8.43 6.97 0.564 0.580

Sanidha 13.21 Vocals 7.86 17.38 8.26 6.93 0.598 0.635

Accomp. 7.87 13.96 8.99 7.52 0.541 0.507

Average 7.87 15.67 8.63 7.22 0.570 0.572

Mix 12.37 + 13.21 Vocals 7.63 16.88 8.00 6.62 0.605 0.621

Accomp. 7.65 13.99 8.73 7.25 0.561 0.525

Average 7.64 15.44 8.36 6.93 0.583 0.573

Table 2. Results

Figure 3. Mean participant responses across twelve con-

ditions, with 95% confidence limits.

displays all the results.

We can see that the Sanidha-trained model has outper-

formed, however marginally, in all the objective metrics for

vocals and the accompaniment separation. The improve-

ment is only slight, perhaps because Sanidha was only

trained on four concerts, while Saraga is trained on seven

(which would mean seven unique vocalists as compared to

four), even if the training hours are comparable. Also, the

curriculum training technique performs almost similar to

the Saraga-trained model.

4.2 Subjective evaluation

We conducted a listening study to evaluate the three source

separation models and assess their perceptual effectiveness

in isolating vocals and accompaniments in Carnatic Music.

The audio stimuli were selected after we randomly sam-

pled four ten-second excerpts from four different Saraga

recordings; If the randomly selected excerpt did not con-

tain the three key instruments in Carnatic Music (vocals,

violin, and the mridangam), we sampled again until an ap-

propriate excerpt was identified. This iterative process en-

sured that our evaluation remains focused on relevant au-

dio features while maintaining the unbiased nature of the

sample selection.

In the listening study—approved by the Georgia Tech

ethics board—fourteen participants listened to processed

versions of our selected excerpts. The survey was con-

ducted in a manner similar to the MUSHRA framework

[27]. All the participants responded to twelve questions

for each excerpt, which focused on vocal isolation, vocal

audio quality, accompaniment isolation, and accompani-

ment audio quality for the three models. This resulted in

48 questions per participant. These terms have been com-

monly used in subjective testing of source separation mod-

els [9, 28]. We used a slider-based metric for the evalua-

tion, ranging from zero to one. Isolation and quality were

explained with examples before the start of the survey and

also presented as a reference for each question.

Average slider responses for the twelve conditions are

shown in Figure 3 and in Table 2. We conducted a mixed-

effects ANOVA on the data, with the participant and ex-

cerpt as random intercepts and the three variables (re-

sponse type, target source, and model) as fixed effects.

No effect was statistically significant, except for the tar-

get source (voice vs accompaniment), where participants

tended to rate vocals higher in general (χ2(8) = 45.97,

p < .05). This behavior is very similar to the objective

results as well.

5. CONCLUSION AND FUTURE WORK

Although fine-tuning spleeter using Sanidha did not result

in a significant source separation improvement, we cannot

discount the importance of the availability of clean target

sources for source separation. This is a clear distinction

and advantage that our dataset collection methodology has

over the existing Saraga. We can now use common metrics

for source separation evaluation with a good degree of ac-

curacy using our dataset, which was not possible with the

existing Saraga dataset. Given the inherent challenges, our

introduction of the Sanidha dataset marks a significant ad-

vancement in this domain. This novel dataset also presents

an avenue for solving a multitude of other MIR and multi-

modal tasks in Carnatic Music.

We will soon expand our dataset and invite more musi-

cians to conduct concerts using our methodology. With the

resources at hand, we aim to promote computational anal-

ysis for Indian Art music and pave the path towards more

accessible research resources within the community.
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ABSTRACT

Generative AI models have recently blossomed, signifi-

cantly impacting artistic and musical traditions. Research

investigating how humans interact with and deem these

models is therefore crucial. Through a listening and reflec-

tion study, we explore participants’ perspectives on AI- vs

human-generated progressive metal, in symbolic format,

using rock music as a control group. AI-generated exam-

ples were produced by ProgGP [1], a Transformer-based

model. We propose a mixed methods approach to assess

the effects of generation type (human vs. AI), genre (pro-

gressive metal vs. rock), and curation process (random

vs. cherry-picked). This combines quantitative feedback

on genre congruence, preference, creativity, consistency,

playability, humanness, and repeatability, and qualitative

feedback to provide insights into listeners’ experiences. A

total of 32 progressive metal fans completed the study. Our

findings validate the use of fine-tuning to achieve genre-

specific specialization in AI music generation, as listeners

could distinguish between AI-generated rock and progres-

sive metal. Despite some AI-generated excerpts receiving

similar ratings to human music, listeners exhibited a pref-

erence for human compositions. Thematic analysis identi-

fied key features for genre and AI vs. human distinctions.

Finally, we consider the ethical implications of our work in

promoting musical data diversity within MIR research by

focusing on an under-explored genre.

1. INTRODUCTION

Recently, advancements in AI have resulted in genera-

tive models capable of creating remarkable musical pieces.

This has been particularly evident in the audio domain,

with models such as Jukebox (OpenAI) [2], MusicLM

(Google) [3], AudioCraft/MusicGen (Meta) [4] and Sta-

ble Audio (Stability AI) [5], to name a few. In contrast

to audio generative models, which can produce complete,

directly perceivable music with limited user input beyond

© P. Sarmento, J. Loth, and M. Barthet. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: P. Sarmento, J. Loth, and M. Barthet, “Between the AI

and Me: Analysing Listeners’ Perspectives on AI- and Human-Composed

Progressive Metal Music”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

specifying a prompt, symbolic music generation methods

yield outputs that necessitate subsequent decoding and in-

terpretation by performers and mixing by audio engineers

before transforming them into music suitable for listening

experiences. Unless automated using synthesis and ma-

chine mixing, by requiring human interpretation through

performance and mixing, symbolic music rendering opens

the door for the infusion of cultural and social elements.

These elements become integral aspects of the final musi-

cal experience for listeners.

One major controversy surrounding AI music genera-

tion models is their training on copyrighted data, often

without consent nor royalty mechanisms. This raises con-

cerns that AI-generated music could threaten artists’ and

musicians’ income streams, amongst others [6]. These is-

sues apply to both symbolic and audio AI music genera-

tion. However, symbolic approaches may pose less risk

to artists’ revenue streams since human musicians are still

essential to the final product.

In this work, we focus on symbolic generative AI ap-

plied to progressive metal, which is considered a sub-genre

of metal. Building on progressive rock’s complex phras-

ing and odd time signatures, it incorporates a heavier focus

on guitars and metal influences. The genre encompasses

prominent bands such as Dream Theater, Between The

Buried And Me 1 , and Meshuggah [7]. It is, however, rela-

tively unexplored in academic literature, particularly in the

context of AI music generation and MIR research [8] [9].

Guitar tablature (see Figure 1) is a symbolic musical no-

tation that translates guitar notes into fret and string num-

bers. Due to the genre’s emphasis on guitar, progressive

metal bands commonly use tablature to notate their com-

positions. Given that technical complexity is a large appeal

of the genre, artists often sell their music in the form of tab-

latures for learning purposes through tablature publishing

companies 2 . Musicians from within the genre often use

digital representations of tablatures and software like Gui-

tar Pro 3 for dissemination of musical ideas and computer-

assisted music making.

We conducted a listening and reflection study to ex-

plore participants’ perceptions of AI-generated progressive

metal music. We used examples generated by ProgGP [1],

1 Used as inspiration for the title of this paper.
2 As an example, Sheet Happens Publishing: https://www.

sheethappenspublishing.com/
3 https://www.guitar-pro.com/
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Figure 1. A screenshot from Guitar Pro of two measures

from an AI-generated progressive metal song.

an AI model for multi-instrument guitar tablature creation

(an example is shown in Figure 1). Overall, the contribu-

tions of this paper are: (1) a listening and reflective study

methodology and questionnaire; (2) a subjective assess-

ment of the capabilities of ProgGP for symbolic music gen-

eration, particularly in tablature format; (3) identification

of compositional features of the progressive metal genre;

(4) a critical analysis of AI-generated music through the

lens of the progressive metal community; (5) an ethical

reflection on musical data diversity in MIR, propelled by

this study focusing on the underexplored progressive metal

genre.

2. BACKGROUND

2.1 Symbolic Music Generation

Music generation has seen an increase in popularity due

to recent advances in deep learning [10], with many re-

searchers utilizing techniques such as Recurrent Neural

Networks (RNNs) [11] [12], Variational Autoencoders

(VAEs) [13], Generative Adversarial Networks (GANs)

[14], and Transformers [15]. The Transformer model [16],

known for its performance in natural language processing

(NLP) tasks, has been adapted for generating symbolic pi-

ano music in Huang et al.’s Music Transformer [15], with

Musenet [17] and Pop Music Transformer [18] further im-

proving the approach.

The field of guitar tablature generation gained signif-

icant momentum with the release of the DadaGP dataset

[19]. This dataset provides songs in two formats: Gui-

tarPro, a popular tablature editing software, and a ded-

icated textual token format. This allows researchers to

develop AI models that can both represent and generate

music in tablature format. GTR-CTRL [20] implements a

Transformer-based model [18] for generating tablature that

incorporates multiple instruments. It offers control over

instrumentation (inst-CTRL) and musical genre (genre-

CTRL). ProgGP [1], the model used in this study, focuses

specifically on the progressive metal genre (see Figure 1

and description in Section 3). LooperGP [21] adapts the

method to generate loopable music excerpts, making it

applicable e.g. for live coding performances. By fine-

tuning the model on the music of four iconic guitar players,

ShredGP [22] demonstrates its ability to replicate specific

styles.

2.2 Subjective Evaluation of AI-Generated Music

Objective computational measures can provide an initial

assessment of AI-generated music quality [23]. However,

often they struggle to capture the subtleties needed to judge

their aesthetic merit. The combination of objective compu-

tational measures with subjective human evaluations pro-

vides a more holistic understanding of AI-generated mu-

sic. Listening tests typically involve ranking or scoring AI-

and human-generated stimuli according to several metrics

to gain a more comprehensive understanding of perceived

quality. This often involves comparing outputs from dif-

ferent models with the established reference (the known

ideal or benchmark). Metrics used to assess AI music

vary from general attributes such as musicality [15], lik-

ing [24] [25] [18] [26], pleasantness [27], richness [28], to

more specific qualities such as consistency [29], or struc-

tural/stability properties [29]. Whereas ranking involves

sorting the different stimuli along a given dimension, scor-

ing tasks commonly rely on 5- or 7-point Likert items [30]

[31]. A musical Turing test, similar to the original Tur-

ing test, is designed to assess a machine’s ability to exhibit

human-level musical creation features. In such tests, par-

ticipants attempt to distinguish between human- and AI-

generated music [32]. To assess AI-generated music, we

employ a mixed methods approach, combining quantita-

tive and qualitative data from a listening and reflection

study. This approach, common in music perception and

HCI research (e.g. [33]), allows for a deeper understand-

ing of the problem. While listening tests enable us to better

understand human perception of AI-generated music, they

are not without limitations. These limitations include lis-

tener fatigue, potential biases due to stimuli or participant

selection. Additionally, they may lack sufficient statistical

power to generalize the findings to a broader population.

3. METHODOLOGY

We used a mixed methods listening and reflective study to

assess AI music, with an ethical approval from the Queen

Mary Ethics of Research Committee. All data was col-

lected anonymously. The study took around 1h to com-

plete and participants were compensated with a £10 Ama-

zon voucher.

We evaluated AI-generated progressive metal music

from the ProgGP model [1], a Transformer-XL model

trained on the DadaGP dataset [19] and fine-tuned on

a progressive metal corpus, by comparing it to human-

composed progressive metal pieces. We compare two

ways of choosing AI music: picking songs at random

and subjectively choosing the “best” ones (cherry-picking)

through active listening. Additionally, we compare the

ProgGP model’s outputs with rock music generated by the

genre-CTRL model [20], a similar model conditioned on

the rock genre. Human-composed rock music serves as

another control group in this comparison.
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3.1 Hypotheses

Our study tests the following hypotheses:

• H1: Human-composed music obtains better

scores than AI-generated music. We compare AI-

and human-generated music along the following di-

mensions: preference, creativity, consistency, playa-

bility and repeatability.

• H2: AI-generated and human-composed music

can be distinguished. This hypothesis is linked to

the musical Turing test.

• H3: AI-generated music matches the genre used

for model conditioning. The ability of the model to

specialize in a specific genre (progressive metal).

• H4: Cherry-picked AI-generated music is pre-

ferred to randomly chosen AI-generated music.

We hypothesize that picking examples by hand leads

to better performance than random selection.

3.2 Stimuli

The stimuli were rendered using Guitar Pro 7, a soft-

ware for playing/editing digital guitar tablatures. The

human-composed music was obtained using publicly avail-

able transcriptions of progressive metal and rock songs

hosted on Songsterr 4 , a website hosting Guitar Pro tab-

latures, as well as from the DadaGP dataset [19]. All

the examples were trimmed to 15 seconds, and rendered

as WAV files using the default virtual instruments in

Guitar Pro 7. They were further loudness-normalized

[34]. The study comprised 60 stimuli 5 broken down

into the following six groups with 10 examples per

group: progcp (progressive metal examples generated us-

ing ProgGP cherry-picked), progrand (progressive metal

examples generated with ProgGP, randomly selected),

proghum (progressive metal examples from the dataset

used to fine-tune ProgGP, human-generated, randomly se-

lected), rockcp (rock examples generated using genre-

CTRL prompted for rock, cherry-picked), rockrand (rock

examples generated using genre-CTRL prompted for rock,

randomly selected), and rockhum (from rock examples in

the dataset used for genre-CTRL, human-generated, ran-

domly selected). The AI-generated stimuli were selected

out of a corpus of 200 compositions from each genre.

3.3 Participants

We recruited participants familiar with progressive metal

as we wanted to involve domain experts capable of iden-

tifying differences between rock and progressive metal.

To this end, we advertised the call for participants on the

r/progmetal sub-forum from the Reddit platform. This

community comprises progressive metal aficionados 6 . 26

participants were gathered from this forum. We recruited

six additional progressive metal fans within our depart-

ment, for a total of 32 participants. Their age distribution

4 https://www.songsterr.com/
5 https://drive.google.com/drive/folders/

1-PVPXNCMu73ICfNf0qlwxzdVpNxrWIVL?usp=sharing
6 Available at: https://www.reddit.com/r/progmetal/

was 29 ± 5 years old, with 27 males and 5 females. The

participants had an average Gold-MSI score of 81.41, in-

dicating average level of musical sophistication compared

to results of previous studies [35].

3.4 Procedure

Participants first went through a familiarization stage con-

taining two excerpts, followed by the main task during

which musical excerpts were presented in random order

to minimise potential order effects. Participants were in-

structed to focus on the quality of the composition and

not on the quality of the virtual instruments or the mu-

sic production mix. For each excerpt, participants had to

listen to the stimulus, report their familiarity, and answer

the following questions using 7-point Likert items: Q1

(“This composition features the qualities of the progressive

metal genre.”), Q2 (“This composition features the quali-

ties of the rock genre.”), Q3 (“I like this composition.”),

Q4 (“This composition is creative.”), Q5 (“This composi-

tion is consistent.”), Q6 (“This composition is playable.”),

Q7 (“This composition was generated using AI.”) and Q8

(“This composition is repetitive.”). Once the participants

finished rating all excerpts, they were presented with a

post-task questionnaire to assess their reasoning when dis-

tinguishing between genres as well as between AI- and

human-composed excerpts (see Section 4.2).

4. RESULTS

4.1 Listening Test

We visualize Likert item answers using violin plots in Fig-

ure 2. We conducted statistical analyses investigating the

effects of the music creation process (six levels: progcp,

progrand, proghum, rockcp, rockrand, rockhum) on

several dependent variables (preference, creativity, consis-

tency, playability, repeatability, humanness, genre congru-

ency, and AI curation method, where relevant). Because

we employed a within-participant design with repeated

measures, and the collected data are ordinal, we used the

non-parametric Friedman test. We use a Type I error α of

0.05; results are presented in Table 1. The Friedman test

was followed by post-hoc pairwise Wilcoxon tests, using

a Bonferroni-adjusted α level of .0033 (.05/15). This en-

ables us to compare two generation types (AI vs. human),

two genres (progressive metal vs. rock), and two AI se-

lection methods (random vs. cherry-picked). Results are

presented in Table 2. For question about AI-generated mu-

sic (Q7), we excluded responses (345 out of 1,920) where

participants indicated prior song familiarity.

4.2 Thematic Analysis

We performed a thematic analysis [36] of answers to post-

task questions to better understand the thought process of

participants’ decisions during the study. Multiple themes

were obtained from the responses, and results are ordered

by number of codes within each theme (in parentheses next

to each theme, indicating number of occurences).
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Figure 2. Violin plots of answers to Likert items for Q1 to Q8, in plots (a) to (h), respectively, providing an estimation of

the probability density function of the data. Horizontal axis represents the different groups of stimuli. Vertical axis reports

the 7-point Likert ratings from 1 (Strongly Disagree) to 7 (Strongly Agree).

Question Friedman Test Statistic p-value Significance

Q1 χ2(5) = 136.90 8.14× 10−28 ***

Q2 χ2(5) = 110.09 3.90× 10−22 ***

Q3 χ2(5) = 77.56 2.72× 10−15 ***

Q4 χ2(5) = 88.54 1.36× 10−17 ***

Q5 χ2(5) = 42.50 4.67× 10−8 ***

Q6 χ2(5) = 55.47 1.04× 10−10 ***

Q7 χ2(5) = 51.59 6.53× 10−10 ***

Q8 χ2(5) = 79.20 1.23× 10−15 ***

Table 1. Friedman test results investigating the effect of

the creation method for each question (Q1 to Q8).

4.2.1 What features made you identify excerpts as

progressive metal?

Complexity (40): A huge emphasis was put on the com-

plexity of a composition, particularly the rhythmic but also

the harmonic and melodic complexity. Uncommon and

changing time signatures were mentioned by roughly half

of the participants. The difficulty of playing a composition

was also a very common answer.

Composition/style (38): Many compositional and stylis-

tic elements were seen as particularly relevant to the genre,

such as aggressiveness, speed and atmosphere. A sense of

cohesion is important, with “clear and distinct ideas glued

together”. The composition should be experimental, with

creative rhythms, unique segments and interesting har-

monic choices. Dissonant melodies, arpeggios, metal drum

patterns and guitar specific techniques such as “chugs” are

also deemed as important.

Instrumentation (7): Participants mention unique instru-

ments and extended range guitars being particularly indica-

tive of the genre.

4.2.2 What features made you identify excerpts as Rock?

Musical structure/composition (24): These excerpts

were repetitive and had slower tempos, utilizing a question

and answer structure and accents on beats two and four.

They were also generally soft and not particularly aggres-

sive.

Simple/straightforward (23): The excerpts identified

as rock were seen as simplistic, using simple drums,

melodies, chord progressions and particularly 4/4 time sig-

natures. These songs had straightforward grooves and

generic solos.

Guitar techniques (14): Many techniques were seen as

specific to the rock genre such as the use of the pentatonic

scale, open chords, power chords and double stops. Partic-

ipants noted a clear blues inspiration in the guitar playing.

Instrumentation (11): The rock genre was seen as guitar

driven, with guitars and bass parts being separated. The

drums were generally synchronized with the guitar and

emphasized the hi-hat cymbals.

4.2.3 What made you identify excerpts as being

composed using AI?

Something “off” about the composition (40): A major

theme involved participants having some feeling of unease

about the composition. Preference for human-composed

music might be attributed to a perceived lack of quali-

ties often associated with human creation, such as “soul"

and creativity, or the inability to emulate human-like mu-

sical performance (playability). Many participants noted

that some compositions lacked a sense of cohesiveness

and consistency, or even sounded random, with odd note

choices and bass lines which did not make sense. Partici-

pants also felt there was too much complexity, but also not

enough of particular types of complexity (e.g. harmonic

complexity).

Repetition (14): This theme specifically refers to nega-

tively perceived repetition. Many described excerpts being

overly repetitive or repeating “musically uninteresting or

unsatisfying phrases”.

Uninteresting/simple (8): Participants describe boring
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Group 1 Group 2 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

rockrand rockhum 1.10× 10−4 2.63× 10−5 0.26 0.15 4.29 1.70 0.44 0.55

rockcp rockrand 6.42 1.15× 101 8.25 1.32× 101 3.00 1.70 1.30 1.36× 101

rockcp rockhum 3.96× 10−4 1.43× 10−5 1.78× 10−2 7.52× 10−2 0.35 2.30× 10−2 7.22× 10−3 0.19

progrand proghum 5.79× 10−5 7.09 2.19× 10−7 2.46× 10−7 9.24× 10−2 5.16 2.94× 10−6 8.43× 10−4

progrand rockcp 3.78× 10−6 2.17× 10−4 4.24 4.42 1.39× 101 1.08× 101 9.08 1.40× 101

progrand rockrand 1.86× 10−4 1.36× 10−3 1.79 3.60 2.32 0.97 0.48 1.26× 101

progrand rockhum 3.45× 10−8 7.61× 10−9 5.47× 10−4 4.80× 10−3 0.24 1.30× 10−2 1.40× 10−3 0.34

progcp progrand 7.78× 10−3 3.56 3.69× 10−2 1.69× 10−4 1.44× 101 1.65 2.10 3.62× 10−4

progcp proghum 0.80 9.36 3.16× 10−3 0.25 0.14 0.22 5.60× 10−3 1.44× 101

progcp rockcp 9.29× 10−10 3.79× 10−5 0.67 3.16× 10−3 1.36× 101 0.64 4.71 7.25× 10−5

progcp rockrand 2.38× 10−8 1.98× 10−4 3.56 8.38× 10−3 2.56 1.78× 10−2 1.07× 101 7.31× 10−4

progcp rockhum 2.81× 10−9 1.63× 10−8 2.59 3.64 0.33 1.24× 10−4 0.34 0.60

proghum rockcp 4.11× 10−10 2.72× 10−5 8.83× 10−6 3.92× 10−6 0.14 7.92 3.00× 10−5 1.98× 10−4

proghum rockrand 3.50× 10−9 2.17× 10−4 5.31× 10−4 9.47× 10−6 2.32 5.69 5.06× 10−3 1.61× 10−3

proghum rockhum 8.49× 10−10 1.93× 10−8 0.37 2.40× 10−2 1.08× 101 0.25 3.00 0.65

Table 2. Pairwise post-hoc wilcoxon test results for each question. Each cell indicates p-value, while green cells indicates

statistical significance (i.e. with Bonferroni correction p < 0.0033).

and generic riffs as well as simplistic and bland drum pat-

terns.

Melody (7): A lack of interest or satisfaction with

melodies was mentioned, specifically melodies that “run

too long and miss their resolution” and “do not seem go

anywhere”.

4.2.4 What made you identify excerpts as being

composed by humans?

Well-composed (36): A sense of cohesion and consistency

throughout the instrumentation and musical ideas was a

popular reason for identifying an excerpt as human. Many

also mentioned musical choices which feel deliberate and

intentional. In general, compositions which felt natural,

predictable, and emotionally satisfying were seen as more

human.

Human-qualities (10): Certain qualities were perceived

as more human, such as creativity, “soul”, and playability.

The use of music theory, as well as breaking the rules of

music theory were also mentioned.

5. DISCUSSION

5.1 H1: Human-composed music obtains better

scores than AI-generated music

Human-composed progressive metal (proghum) was sig-

nificantly preferred to all the other AI-generated groups

(see Q3 in Table 2). However, this could be due to partic-

ipants all being progressive metal fans. Our findings sug-

gest that a Turing test style approach may have limitations

in evaluating generative models. While participants strug-

gled to distinguish AI-generated from human-composed

music, they still preferred the human compositions.

Participants’ evaluations used more negative language

(e.g., ’repetitive’) to describe AI compositions and more

positive language for human compositions (see Sections

4.2.3 and 4.2.4). One might naturally expect significant

differences in responses to the listening experiment be-

tween the AI-generated and human-composed music stim-

uli groups. While this is true for the randomly selected

AI-generated progressive metal group (progrand), it does

not hold for the rock groups as well as the cherry-picked

AI-generated progressive metal (progcp) group. How-

ever, the violin plots (see Figure 2) do show the human-

composed groups to generally have a better mean and

smaller variance. Q5 (“This composition is consistent”)

and Q6 (“This composition is playable”) saw no or few

significant differences between stimuli groups. One of the

negatively framed indicators of AI compositions was rep-

etition. The cherry-picked and human-composed progres-

sive metal groups were both significantly different to every

group other than each other and the human-composed rock

(rockhum) group in the responses to Q8 (“This compo-

sition is repetitive”). Figure 2 also shows the responses

in these groups trending toward not repetitive, while the

others trend closer to repetitive. The rockhum group was

not significantly different to any of the other groups, both

AI and human-composed. While the level of repetition in

AI-generated excerpts may be roughly similar to human-

composed excerpts in their respective genre (with the ex-

ception of progrand), it is possible that repetition qual-

ity is different between AI and human-composed excerpts.

Overall, we can conclude that the test shows strong evi-

dence for H1 in terms of preference, but not necessarily

for the other dimensions.

5.2 H2: AI-generated and human-composed music

can be distinguished

Figure 2 shows a large variance in the responses for Q7

(“This composition was generated using AI”) for the AI

generated stimuli groups, as well as numerous classifica-

tion errors. The human stimuli groups also show classifi-

cation errors, though less when compared to the AI stim-

uli groups. The proghum stimuli group was significantly

different from both the cherry-picked rock (rockcp) and

progrand groups. The rockhum group was only signifi-

cantly different to the progrand group. The progcp and

randomly selected AI-generated rock (rockrand) groups

were not found to be significantly different to either of
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the human-composed groups. Ultimately, this is evidence

against H2, though there seems to be some dependence on

the model used and the samples selected from that model.

5.3 H3: AI-generated music matches the genre used

for model conditioning

The responses to Q1 and Q2 (see Figure 2 (a) and (b))

show a clear ability of participants to distinguish between

the genres of progressive metal and rock, supporting H3.

This is expected given that participants described the gen-

res very differently to each other (see Sections 4.2.1 and

4.2.2). Of the progressive metal stimuli groups, only pro-

grand and proghum, differed significantly, suggesting

that at least the human curated AI-generated progressive

metal stimuli (progcp) have features of similar quality to

those of the human-generated group. The same cannot be

said of the rock samples, though Figure 2 (b) shows the

mean ratings in the rock groups are clearly higher than neu-

tral (rated as 4), indicating that they identified the samples

as rock. This may suggest that ProgGP excels in compar-

ison to genre-CTRL in generating musical examples in its

target genre. However, genre-CTRL, being trained on a

wider range of styles (rock, punk, metal, classical, folk),

could theoretically generate music in various styles, unlike

ProgGP which is limited to its training genre.

5.4 H4: Cherry-picked AI-generated music is

preferred over randomly chosen AI-generated music

At the surface level, the cherry-picked and randomly se-

lected stimuli groups do not seem to have many differ-

ences. The groups in the rock genre have no significant

differences between them in any of the questions, and the

progressive metal groups only yield significant differences

for Q4 (“This composition is creative”). However, we

observe that there are several questions with significant

differences between the progrand and proghum groups,

while the progcp and proghum groups only differ for Q3.

This seems to indicate that the progcp stimuli have more in

common with the human-composed excerpts than the ran-

domly selected ones do in the tested features. Addition-

ally, the difference seen in Q4 between the AI-generated

progressive metal groups concerns creativity, shown to be

an indicator of human composition in Section 4.2.4. It is

difficult to make any definite conclusions about H4 given

these results, but there seems to be some weak evidence

for it in the progressive metal genre.

5.5 Study Limitations

The study is bounded by the number of participants (32)

and an unbalanced gender distribution. Moreover, the

stimuli were only 15 seconds long each, meaning that par-

ticipants could not judge any long-term compositional fea-

tures. Finally, the responses discussed in the study focus on

compositional features and discard expressive and timbre-

related aspects.

6. ETHICS OF MUSICAL DATA DIVERSITY

The broader topic of diversity within MIR is debated by

Born in [37], in which the author highlights points such

as (1) the demographics within the field, (2) the nature of

the music that is commonly researched, questions (3) the

applicability of scientific work to a broader, more diverse,

corpus of music, and (4) how to better stir MIR research to-

wards a more encompassing music economy. Of particular

relevance to this reflection is (2), closely linked to the con-

cerns on musical data diversity. Despite efforts towards re-

search concerning traditional, folk or ethnic music, MIR is

still predominately based on the mainstream popular music

that follows a “western” tradition [38]. Moreover, by refer-

ring to an ISMIR keynote by Seeger [39], Sturm et al. [40]

point out that even within “western” music, there seems to

be an emphasis on US pop music and European classical

music. For automatic symbolic music generation, a closer

look at the most commonly used datasets in the MIR com-

munity [41] suggests that styles such as western classical,

pop and jazz music, often modelled using piano when deal-

ing with single instrument systems, are a recurrent practice

within the field. Following from these premises, it is im-

portant to first clarify that ProgGP is still grounded in the

western music tradition, and to acknowledge this as a lim-

itation given the musical data diversity concerns explained

before. However, its musical style can be said to emphasize

content that diverges from the mainstream popular music

landscape. This begged the question: can the stylistic bi-

ases in the outputs from ProgGP contribute to a wider con-

text of data diversity within MIR research? We argue that

releasing training data for specific genres, exemplified by

the release of data for fine-tuning ProgGP [1], is a step

towards a more musically diverse MIR. This, along with

publishing studies to understand underexplored genres and

their challenges, and fostering interaction with stakehold-

ers like the progressive metal community (as in this pa-

per), can significantly contribute to this goal. We pro-

pose that guitar tablature can enhance musical diversity in

MIR. Unlike MIDI, the dominant format, tablature excels

at representing string instrument-specific expressive tech-

niques, expanding the scope of representable music within

the field.

7. CONCLUSION

We conducted a listening and reflective study which exam-

ined listeners perspectives on the quality of symbolic AI-

generated compositions in the rock and progressive metal

genres. The study provided both a subjective evaluation of

recent Transformer-based music generation models and an

exploration of listeners’ perceptions of AI and human com-

positions. We found that participants preferred human-

composed music over AI-generated music, though they

were generally not able to fully distinguish between AI-

and human-composed music. Participants were able to dis-

tinguish between the two genres well. Cherry-picked ex-

amples in the progressive metal genre were rated similarly

to the human-composed examples in several compositional

metrics despite not being liked as much. With this method-

ology, we hope our work helps researchers better evaluate

their generative models using a mixed methods approach

through a listening and reflective study, as well as show the

merit in increasing musical data diversity within MIR.
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ABSTRACT

Deep generative models are now able to synthesize

high-quality audio signals, shifting the critical aspect in

their development from audio quality to control capa-

bilities. Although text-to-music generation is getting

largely adopted by the general public, explicit control and

example-based style transfer are more adequate modalities

to capture the intents of artists and musicians.

In this paper, we aim to unify explicit control and style

transfer within a single model by separating local and

global information to capture musical structure and tim-

bre respectively. To do so, we leverage the capabilities of

diffusion autoencoders to extract semantic features, in or-

der to build two representation spaces. We enforce dis-

entanglement between those spaces using an adversarial

criterion and a two-stage training strategy. Our resulting

model can generate audio matching a timbre target, while

specifying structure either with explicit controls or through

another audio example. We evaluate our model on one-

shot timbre transfer and MIDI-to-audio tasks on instru-

mental recordings and show that we outperform existing

baselines in terms of audio quality and target fidelity. Fur-

thermore, we show that our method can generate cover ver-

sions of complete musical pieces by transferring rhythmic

and melodic content to the style of a target audio in a dif-

ferent genre.

1. INTRODUCTION

Deep generative models are now particularly successful at

synthesising high-quality, realistic audio signals. Hence,

the major impediment to their broader use in creative work-

flows is not their audio quality anymore, but rather how

end-users can have complete control over the generation

process. Following early works on unconditional gen-

eration [1, 2], multiple methods proposed to enable con-

trol by conditioning generation on semantic tags or audio-

descriptors [3, 4]. However, such supervised approaches

remain limited to the use of explicit descriptors and are

constrained by their reliance on annotated datasets. The

© N. Demerlé, P. Esling, G. Doras, and D. Genova. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: N. Demerlé, P. Esling, G. Doras, and D.

Genova, “Combining audio control and style transfer using latent diffu-

sion”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

Structure

DDIM

Timbre

Figure 1. General overview of our method. We ex-

tract timbre and structure representations from waveform

and/or MIDI inputs using encoders ET ad ES respectively.

Those representations condition a latent diffusion model,

enabling both explicit and example-based control.

recent development of language models and representation

learning led to impressive performance in text-conditioned

generation, mainly relying on transformers [5, 6] or dif-

fusion models [7–9]. However, concepts such as timbre,

musical style or genres boundaries are usually elusive and

highly subjective. Hence, text descriptions might remain

limited to common sounds and insufficient to precisely

capture musical intentions.

A parallel stream of research to alleviate those issues

is to guide specific aspects of the generation process by

providing audio examples. Most approaches in this audio-

to-audio editing are focused on timbre transfer, where the

timbre of a given sound is applied on the content of an-

other. While some works can transfer any audio to the

timbre of a given training set [10]; others achieve many-

to-many timbre transfer but only between a small set of

predefined instrument classes [11, 12]. One-shot timbre

transfer between different instrument recordings have been

achieved using Variational Autoencoders (VAE) [13, 14],

but these models rely on a latent bottleneck to enforce dis-

entanglement between timbre and pitch, which hampers

their ability to generate high-quality audio on real-world

data. More recently, a text-inversion technique was pro-

posed to perform musical style transfer between arbitrary

content and style examples [15], but it relies on a large

pretrained text-to-music model and requires optimisation

prior to each transfer, resulting in very slow inference.
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In this paper, we aim to unify explicit control through

audio descriptors or MIDI sequences and style transfer

within a single model. To do so, we separate local, time-

varying factors of variations and global information, cap-

turing musical structure and timbre in two separate repre-

sentation spaces. We slightly abuse the terms structure and

timbre: by structure, we designate time-varying features,

e.g. melody, loudness; by timbre, we designate global fea-

tures such as actual timbre, but also style or genre. The

principle of our method is depicted in Figure 1. Our ap-

proach is based on the recently proposed diffusion autoen-

coder [16], which trains a semantic encoder to condition

a diffusion model, in order to achieve both high-quality

generation while being able to extract and control high-

level features from the data. We extend this approach by

building separate representations for timbre and structure,

while enforcing their disentanglement with an adversarial

criterion combined with a two-stage training strategy. Our

method can generate audio matching a timbre target, while

specifying the musical structure either with explicit con-

trols (such as MIDI data input) or an audio example. For

computation efficiency, our diffusion model operates in the

latent space of pretrained autoencoders, resulting in faster

than real-time inference on GPU 1 .

First, we benchmark our model on a one-shot timbre

transfer tasks and demonstrate that our model improves

upon existing baselines in terms of audio quality, timbre

similarity as well as note onsets and pitch accuracy. On

the same dataset, we show that our model can also generate

audio from MIDI input and a target timbre example with

performances superior to a state-of-the-art MIDI-to-audio

baseline. Finally, we show that our method can be applied

to complete musical pieces and generate cover versions of

a track by transferring its rhythmic and melodic content to

the style of a target audio in a different genre. We provide

audio examples, additional experiments and source code

on a supporting webpage 2

2. BACKGROUND

2.1 Diffusion models

Diffusion models (DMs) are a family of generative models

that learn to reverse a stochastic process that gradually adds

noise to the input data. These models benefit from high-

quality generation, stable training and conditioning abili-

ties, which led to their widespread adoption in image [17]

and audio generation [18].

Formally, we define a forward process q(x1:T |x0) =
∏T

t=1
q(xt|xt−1), which is a Markov chain that increas-

ingly adds noise to the data x0 by relying on the condi-

tional distribution

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where βt are hyperparameters defining the noise lev-

els at times t ∈ {0, T}, with T ∈ N. We are inter-

1 Experiments were conducted on a NVIDIA A5000 GPU
2 https://nilsdem.github.io/

control-transfer-diffusion/

ested in learning the reverse diffusion process pθ(xt−1|xt),
from which we can iteratively denoise a random sample

xT ∼ N (0, I) to a data sample x0 ∼ p(x0). In a re-

centy study, [19] made a connection between diffusion

and denoising score matching [20], leading to a simpli-

fied formulation and improved experimental results. The

authors show that the reverse process can be approximated

by learning a denoising network ϵθ that predicts the noise

ϵ ∼ N (ϵ,0, I) used to corrupt the data. This results in a

simpler training objective

min
θ∈Θ

Et,x0,ϵ

[

∥ϵθ(
√
αtx0 +

√
1− αtϵ, t)− ϵ∥

]

, (2)

where αt =
∏t

s=1
(1 − βs), and ϵθ is usually

parametrized by a UNet [21].

2.2 Diffusion autoencoders

DMs naturally yield a series of latent variables x1:T

through their forward process. However, these stochastic

variables built from increasingly adding noise do not cap-

ture much semantic information over the data. Although

the more recent proposal of Denoising Diffusion Implicit

Models (DDIMs) [22] extends the original diffusion for-

mulation to a deterministic process allowing each data in-

put to be mapped to a unique latent code xT , it still fails

to extract and organise high-level features from of the data.

Diffusion autoencoders [16] alleviate this issue by employ-

ing a learnable encoder that compress the data to a seman-

tic latent code zsem = Eϕ(x0), which then conditions a

diffusion decoder. The semantic encoder and the DDIM

decoder are trained jointly, following the objective

min
θ,ϕ

Et,x0,ϵ

[

∥ϵθ(
√
αtx0 +

√
1− αtϵ, Eϕ(x0), t)− ϵ∥

]

(3)

On image applications, the authors show that the se-

mantic code captures high-level attributes such as person

identity, smile or presence of glasses, and can be used for

downstream tasks such as conditional generation and at-

tributes manipulation, while achieving state-of-art recon-

struction. This approach was also successfully applied to

audio [8], where the authors encode magnitude spectro-

grams into a semantic latent space, allowing to achieve

high quality text-conditioned waveform generation.

2.3 Control in audio generation

A straightforward approach to extend unconditional gener-

ative models in order to provide instruments befitting artis-

tic control is to introduce conditioning on explicit controls.

The DDSP model [3] proposes explicit pitch and loudness

conditioning, while FaderRave [4] extended explicit con-

trol to non-differentiable time-varying attributes, but both

methods remain limited to explicit descriptors and anno-

tated datasets. While recent text-to-music methods like

MusicGen [5] and Music ControlNet [23] have incorpo-

rated melody conditioning capabilities, their expressive-

ness remains constrained by the need to define subjec-

tive timbre properties through text prompts. Li et al. [15]
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Figure 2. Detailed overview of our method. Input signal(s) are passed to structure and timbre encoders, which provides

semantic encodings that are further disentangled through confusion maximization. These are used to condition a latent

diffusion model to generate the output signal. Input signals are identical during training and but distinct at inference.

proposed to use text-inversion in order to extract pseudo-

words that represent timbre directly from audio, but their

method is computationally intensive and requires to per-

form an optimisation for each new timbre target. Timbre

conditioning directly from a waveform example was also

recently proposed the context of bass accompaniment gen-

eration [24].

2.4 Unsupervised disentanglement in sequential data

Many works proposed to model sequential data as a com-

bination of local (time-variant) and global (time-invariant)

factors of variation. Notably, the disentangled sequential

autoencoder [25] relies on simple architecture biases and

parameter tuning to obtain disantangled local and global

latent variables. Following this work, multiple methods

improved the learned representation by explicitely mini-

mizing the mutual information between the two learned

variables [26–28]. It was shown that disentanglement can

be further improved with contrastive learning and domain-

specific transformations that preserve local or global at-

tributes [26, 29].

More specifically in audio generation, SS-VAE [14] em-

ploys a Vector-Quantized VAE to achieve disentanglement

through compression on quantized structure latent codes,

combined with timbre-preserving data augmentations. Luo

et al. [13] follow a two-stage training strategy similar to

ours, and improve disentanglement by enforcing the con-

sistency of the global and local latent variables in style or

content transfer. However, both disentanglement strategies

degrades reconstruction accuracy, which on top of spectro-

gram inversion based synthesis leads in poor audio quality.

3. METHOD

Our approach is based on the assumption that musical au-

dio samples can be seen as specific instances of a set of

latent features that are separated between global features

that capture style, and time-varying features that capture

the local evolution of the signal. Although diffusion mod-

els are capable of high-quality conditional generation, they

are computationally expensive when dealing with high-

dimensional data. Hence, we employ an invertible audio

codec to first compress the audio into a low-dimensional

latent space, onto which we can build an efficient gener-

ative model. We extend the DiffAE [16] architecture to

two semantic encoders in order to extract separately timbre

and structure features from input samples. To further dis-

entangle the learned features and improve transfer as well

as explicit control performances, we employ an adversarial

training strategy during training. In this section, we detail

our proposed model depicted in Figure 2.

3.1 Audio codec

We build our audio codec as a convolutional autoencoder

based on the RAVE model [10] architecture, featuring the

adversarial discriminator recently proposed in [30]. The

model compresses audio waveforms x into an invertible

latent sequence z ∈ R
L×D, where D and L are the

embedding space and time dimensions respectively. On

top of the reconstruction and adversarial training objec-

tives of RAVE, we introduce a penalty on the latent codes

f(z) = max(0, |z| − 1) to enforce that most latent codes

are distributed between −1 and 1.

3.2 Model structure

We extract a timbre representation vT ∈ R
DT from an

audio target using an encoder ET
ϕ applied to the latent se-

quence z obtained with our audio codec. For structure, we

extract a temporal representation vS ∈ R
L×DS from ei-

ther an audio input or an explicit control signal c (such as

a MIDI sequence), using an encoder ES
ψ . In the case of

an audio input, it would be natural to also infer it from the

latent sequence z. However, we found experimentally that

it is particularly difficult to extract fine structure informa-

tion from the highly-compressed representation z. Hence,

we instead infer structure form the Constant Q Transform

(CQT) [31] of the target signal, which has been shown to

be a well-suited representation for pitch extraction tasks

[32]. For explicit control, the sequence c is directly used

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

723



as input for ES
ψ .

To generate audio, we sample a noise vector zT and

decode it to a latent code z0 through latent diffusion con-

ditioned on representations vS and vT . As diffusion for-

mulation, we leverage the recent improvements introduced

in [17] and parameterise our denoiser network Dθ to pre-

dict the data z0 instead of ϵ. ES
ψ , ET

ϕ and Dθ are trained

end-to-end to minimise the following loss function

Ldiff = Et,z0,ϵ∥Dθ(
√
αtz0+

√
1− αtϵ,vS ,vT , t)−z0∥

(4)

We parameterise Dθ as a 1D convolutional UNet with

residual blocks and self-attention layers. The two encoders

share a similar architecture as the encoding half of the

UNet, with the difference that the timbre encoder com-

presses the input temporally and applies average pooling

on the time dimension of the last layer. We condition the

UNet architecture on vS through concatenation with each

block inputs. For the timbre vector vT we use Adaptative

Group Normalisation (AdaGN) [33].

3.3 Style and content disentanglement

Although splitting the semantic content between two vec-

tors that are constrained on their dimensions already en-

courages disentanglement between timbre and structure in-

formation, there is no theoretical guarantee regarding their

separation. Furthermore, the appropriate feature dimen-

sions are highly dependent on the task and dataset at hand.

Hence, to enforce disentanglement without constraints on

the dimensions, we introduce a two-stage training com-

bined with an adversarial strategy. First, we freeze the

structure encoder and train the model to build an adequate

timbre representation. To avoid vT to encode all of the in-

formation required to reconstruct the target z, we extract

timbre from a different sample z̃ coming from the same

track, following the assumption that it shares the same tim-

bre as z but with a different structure.

In the next stage, we introduce a discriminator Dζ that

tries to predict vT from vS and is trained to minimise

LD = EvS,vT

[

∥vT −Dζ(vS)∥
]

. (5)

We train the discriminator alternatively with the en-

coders and denoising network, which try to minimize the

following objective

Ltotal = Ldiff − γLD, (6)

where γ is an hyperparameter balancing between the

reconstruction objective and disentanglement. Indeed, in-

creasing LD maximises the confusion of the timbre infor-

mation in the structure space. This restrains the diffusion

model from reconstructing z solely from vS and enables

independant control of structure and timbre at inference.

4. EXPERIMENTS

We aim to asses the ability of our model to generate high-

quality audio samples that match characteristics of struc-

ture and timbre targets, with the structure being either

taken from an audio example or through an explicit con-

trol signal.

MIDI-to-audio For explicit structure control, we eval-

uate the capability of our model to generate audio from a

MIDI score and a target recording for timbre. We compare

it to a state-of-art baseline in MIDI-to-audio generation.

Timbre transfer We evaluate the efficiency of our dis-

entanglement strategy on a task of one-shot timbre transfer

between polyphonic mono-instrument recordings. In this

case, we consider that structure designates the notes being

played (in terms of onset timing, pitch and loudness), while

timbre corresponds to the remaining characteristics of the

sound. We evaluate our model by randomly sampling tim-

bre and structure examples and evaluate audio quality, tim-

bre similarity as well as note accuracy. We compare our

model with two example-based timbre transfer methods on

synthetic and real recordings.

4.1 Dataset

Synthetic Data The Synthesized Lakh Dataset (SLAKH)

[34] was generated from the LAKH MIDI collection using

professional-grade sample-based virtual instruments. Syn-

thesis parameters as well as audio effects settings were ran-

domly chosen resulting in a very diverse set of timbres. We

retain only the individual stems of non-percussive instru-

ments, resulting in 400 hours of audio.

Real Data To the best of our knowledge there is no multi-

instrumental dataset of real recordings that contain a very

large number of hours of audio. Hence, we combined the

following three datasets to conduct our experiments :

• MaestroV2 : Maestro [35] is a piano dataset

recorded on Disklavier pianos, capturing both au-

dio and notes played, resulting in approximately

200hours of annotated piano recordings.

• GuitarSet : Guitarset [36] is a collection of live

guitar performances with solos and accompaniment

from various genres and play styles, with a total au-

dio duration of 6 hours.

• URMP : The URMP dataset [37] is composed of

pieces played by a large variety of classical in-

struments. For each piece we retain the mono-

instrumental recordings, resulting in approximately

4 hours of audio.

As the GuitarSet and URMP are low sample-size

datasets, we add synthetic data stems from SLAKH to the

training set to facilitate learning. Furthermore, as the dif-

ferent datasets are greatly imbalanced in terms of sample

size, we apply a sampling strategy to even the model per-

formance on each dataset. Following [38], if ni is the num-

ber of samples in a given dataset, we draw examples from

this dataset during training with probability (ni/Σjnj)
0.3.

4.2 Evaluation metrics

We aim to evaluate how our method is able to match the

timbre and structure targets characteristics, while main-

taining high-quality audio.
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Quality (FAD) ↓ Timbre similarity ↑ Onset F1 score↑
Rec. Transfer Rec. Transfer Rec. Transfer

MIDI-to-audio

Spectrogram diffusion [38] 3.46 - 0.76 - 0.32 -

Ours w/o ES 1.22 1.41 0.87 0.77 0.40 0.38

Ours 0.88 1.06 0.89 0.83 0.36 0.23

Timbre transfer

SS-VAE [14] 2.83 3.23 0.75 0.69 0.29 0.15

Music Style Transfer [15] 2.95 2.77 0.84 0.60 0.22 0.17

Ours w/o adversarial - DS = 4 0.95 1.75 0.91 0.75 0.36 0.23

Ours w/o adversarial - DS = 8 0.95 1.65 0.91 0.73 0.36 0.26

Ours 1.13 1.42 0.91 0.82 0.36 0.23

Table 1. Experimental results in terms of audio quality, timbre similarity and note accuracy on the SLAKH dataset,

for MIDI-to-audio generation (up) and timbre transfer (down). "Rec." corresponds to samples generated from identical

structure and timbre targets, while "Transfer" designates randomly chosen timbre targets.

Audio quality We rely on the widely used Frechet Au-

dio Distance (FAD) [39] to evaluate how the generated au-

dio distribution matches the dataset distribution, both for

reconstructed and transferred samples. We use the avail-

able reference implementation of FAD 3 and use VGGish

[40] embeddings of the samples to compute the distance

Timbre Similarity To evaluate timbre similarity we

employ the metric proposed in the SS-VAE baseline [14].

It relies on a triplet network trained to predict if samples

are played by the same instrument based on Mel-frequency

cepstral coefficients 2-13. We use their implementation

and train the metric on the mixing-secrets 4 dataset.

Structure To evaluate if our model is able to reproduce

the notes of the structure target, we employ a transcrip-

tion model [41] and compare its output to the ground-truth

MIDI data. As metric, we use Onset F1 score from mir-

eval, where two notes are considered identical if they have

identical pitch and onsets within ±50ms of each other.

4.3 Baselines

For the timbre transfer experiments, we compare our

method to SS-VAE [14] and Music Style Transfer [15] pre-

sented in Section 2. We train both models on the real and

synthetic datasets, using the official implementation. For

explicit control, we evaluate our method against a MIDI-

to-audio model [38] that was also trained on the SLAKH

dataset. We use the small configuration of the publicly

available pretrained model, as larger models do not fit on

our NVIDIA A5000 GPU.

4.4 Training details

We start by training our audio codec for 1M steps before

training our diffusion model for 500k steps, with an initial

timbre learning stage of 100k steps. The overall training

takes one day on NVIDIA A5000 GPU. For all experi-

ments we rely on the AdamW optimizer [42] with a con-

stant learning rate of 1e−4 and a batch size of 48. For in-

ference we use the deterministic sampler proposed in [17]

with 40 diffusion steps.

3 https://github.com/gudgud96/frechet-audio-distance/tree/main
4 https://www.cambridge-mt.com/ms/mtk/

5. RESULTS

5.1 MIDI-to-audio

First, we evaluate our model performance in MIDI-to-

audio generation in terms of audio quality, timbre similar-

ity and Onset F1 score. We detail our results in Table 1 for

reconstruction and transfer setups, where the target timbre

corresponds to either the instrument of the MIDI sequence

or a different sample. In both cases, we obtain higher sim-

ilarity, as our dedicated timbre embedding captures timbre

much more precisely than simple label conditioning on in-

strument categories. Interestingly, we also obtain better F1

scores, although we did not design our model specifically

for MIDI inputs as opposed to [38] where authors employ

a dedicated note sequence embedding strategy.

To assess the benefit of our disentanglement strategy,

we experiment with bypassing the structure encoder and

directly conditioning the UNet on the MIDI sequence

(Ours w/o ES entry in Table 1). This results in overall

better Onset F1 score, but degrades timbre similarity and

FAD. This demonstrates that our disentanglement strategy

improves the capability of the model to precisely render the

timbre of the target recording. As described in Section 4.2,

the Onset F1 score characterises the difference between the

generated notes and the input MIDI sequence. The lower

accuracy obtained with our full model in the transfer setup

can be explained by the fact that some MIDI sequence are

not plausible scores for some target instruments (such as

playing chords with a flute). Through the disentangled

structure encoding, our model is capable of adapting the

input MIDI sequence to the range and capabilities of the

target instrument, which results in more realistic sounding

samples. We encourage the reader to listen to the examples

on our supporting webpage that support this statement.

5.2 Timbre transfer

Synthetic data Here, we first evaluate timbre transfer on

synthetic data and display the results in Table 1. The two

baselines appear to provide low audio quality and timbre

similarity, and both methods obtain lower Onset F1 scores

indicating that they are not able to adequately control struc-

ture and timbre independently. Our method improve upon

the baselines on all three evaluated aspects, and is inter-
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estingly able to reach a comparable performance as in the

explicitly conditioned MIDI-to-audio setup.

We also performed an ablation study, by evaluating the

effect of applying an information bottleneck on the struc-

ture latent space instead of using our adversarial strat-

egy. As mentioned in Section 3.3, the model is able to

transfer timbre when DS is small but achieves a low F1

score. Increasing the latent dimensions improves structure

fidelity at the cost of degrading timbre similarity. Using

our disentanglement strategy, we are able to employ a 32-

dimensional latent space and achieve higher timbre sim-

ilarity with a slight decrease in note accuracy. Although

multiple definitions of timbre transfer are possible, we ar-

gue that the most convincing timbre transfer do not neces-

sarily imply a perfect note structure F1 score. In the case

of a transfer between monophonic instruments playing in

the same pitch range, we can expect all the notes from one

recording to be transferred to the other. However, when

performing transfer between recordings with very distinct

timbre such as a piano playing in its high range and a bass,

an interesting transfer would rather be the bass playing

the main melodic line a few octaves lower than the piano,

which would result in a low F1 score. The improvement in

terms of FAD between the distribution of transferred sam-

ples and the original data obtained with our disentangle-

ment strategy supports that our method generates more re-

alistic transfers, as an instrument playing notes outside its

usual range would be considered as out-of-distribution.

FAD ↓ Timbre ↑ F1↑
SS-VAE [14] 9.26 0.58 0.19

Music Style Tr. [15] 10.2 0.57 0.17

Ours w/o adv. 2.14 0.81 0.43

Ours 1.36 0.88 0.28

Table 2. Experimental results for timbre transfer on real

instruments in terms of FAD, timbre similarity and onset

F1 score. Metrics are averaged between the three datasets.

Real data. We present our results for transfer between

real instrumental recordings in Table 5.2. Our model im-

proves even further on the existing baselines for which real

instruments timbre seems particularly challenging. Even

without adversarial regularisation, our model obtains better

FAD, timbre similarity and note accuracy. Our disentan-

glement strategy further improves timbre match, although

the relative decrease in note accuracy appears to be greater

than on synthetic data. We believe this is mainly due to

a necessary simplification of note structure when transfer-

ring complex piano recordings to the mainly monophonic

URMP instruments. The improvement of transfer quality

captured by the FAD and timbre similarity supports this

interpretation.

Qualitatively, we found that on top of generating real-

istic samples with the appropriate structure, the model is

also able to add characteristic sound artefacts of the target

instrument such as fret or hammer noises, as well as match-

ing precise acoustic features of the original recording such

as reverb or background noise.

6. COMPLETE MUSIC STYLE TRANSFER

FAD ↓ Cover (%) ↑ Genre ↑
MusicGen [5] - 37.6 0.48

Ours w/o adv. 3.99 48.5 0.44

Ours 3.31 52.2 0.55

Table 3. Style transfer results on musical pieces, evaluated

through FAD, cover identification and genre classification.

Finally, we apply our model to the task of creating cover

versions of a song that match the style of an example in

a different genre. We rely on an in-house dataset of 200

hours of jazz, dub, lofi hip-hop and rock. We use the same

model architecture to extract structure from the original

track and timbre from the cover targets, with two minor

modifications. First, we introduce temporal compression

in the structure encoder to avoid vT to capture information

that is too precisely located in time. Second, we condition

the UNet on a BPM time series to help it generating co-

herent rhythms. Without those modifications, the rhythmic

elements from timbre and structure targets are conflicting

with each other, resulting in somewhat chaotic generations.

We evaluate our model using the cover detection algorithm

proposed in [43], which outputs a cover probability based

on melodic and harmonic similarities between tracks. To

assess style transfer, we rely on the text and audio joint-

embedding model CLAP [44] and classify genre based on

the cosine similarity between the audio and genre label em-

beddings. We compare our method to MusicGen [5], a

text-to-music generation model with audio-based melody

conditioning. We derive an input prompt from the target

genre and use the structure target for melody.

Our model without regularisation obtains a better cover

identification than MusicGen, and our disentanglement

strategy further improves transfer resulting in higher genre

accuracy. Qualitatively, MusicGen seems to only extract

the main melodic idea from the structure audio, whereas

our method is able to capture most of the harmonic and

melodic content. Furthermore, as our model extract style

directly form audio rather than through a text prompt, it

transfers the different structural elements towards the in-

struments actually present in the timbre target rather than

just the typical instruments of the genre.

7. CONCLUSION

We presented a simple method to learn disentangled tim-

bre and structure representations. To the best of our knowl-

edge, this is the first model capable of generating realistic,

high-quality audio through transfer and MIDI rendering.

We leave for future works improvements on the trade-off

between reconstruction and disentanglement and applica-

tions to more complex musical datasets. Furthermore, we

aim to initiate a reflection on the characterisation of the

elusive concept of musical style transfer, which we believe

to be an exciting stream of research towards a broader use

of deep generative models in artistic work-flows.
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ABSTRACT

Despite its musicological, cultural, and religious signifi-

cance, the Ethiopian Orthodox Tewahedo Church (EOTC)

chant is relatively underrepresented in music research.

Historical records, including manuscripts, research pa-

pers, and oral traditions, confirm Saint Yared’s estab-

lishment of three canonical EOTC chanting modes dur-

ing the 6th century. This paper attempts to investigate

the EOTC chants using music information retrieval (MIR)

techniques. Among the research questions regarding the

analysis and understanding of EOTC chants, Yaredawi

YeZema Silt, namely the mode of chanting adhering to

Saint Yared’s standards, is of primary importance. There-

fore, we consider the task of Yaredawi YeZema Silt clas-

sification in EOTC chants by introducing a new dataset

and showcasing a series of classification experiments for

this task. Results show that using the distribution of sta-

bilized pitch contours as the feature representation on a

simple neural-network-based classifier becomes an effec-

tive solution. The musicological implications and insights

of such results are further discussed through a compara-

tive study with the previous ethnomusicology literature on

EOTC chants. By making this dataset publicly accessi-

ble, our aim is to promote future exploration and analysis

of EOTC chants and highlight potential directions for fur-

ther research, thereby fostering a deeper understanding and

preservation of this unique spiritual and cultural heritage.

1. INTRODUCTION

The Ethiopian Orthodox Tewahedo Church (EOTC) chants

hold immense cultural and religious significance in

Ethiopia, yet they are largely overlooked [1]. 1 The EOTC

chant is believed to have originated with Saint Yared (505–

571), who composed the three EOTC chanting modes

1 The Eritrean Orthodox Tewahedo Church, which separated from
the EOTC administration system a few decades ago, also utilizes these
chants. We acknowledge its important role in preserving this sacred form
of church music.

© M. A. Muluneh, Y. T. Peng, and L. Su. Licensed un-

der a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: M. A. Muluneh, Y. T. Peng, and L. Su, “Computa-

tional Analysis of Yaredawi YeZema Silt in Ethiopian Orthodox Tewa-

hedo Church Chants”, in Proc. of the 25th Int. Society for Music Infor-

mation Retrieval Conf., San Francisco, United States, 2024.

(YeZema Siltoch in Amharic language), 2 namely Ge’ez, 3

Ezil and Araray. Saint Yared’s pioneering musical com-

positions, liturgical chants, and associated dance move-

ments had a significant impact on Ethiopian sacred mu-

sic tradition [2]. The Debterawoch (also called Merigeta-

woch), who are the expert musicians and heirs of Saint

Yared, play a crucial role in the transmission and perfor-

mance of the sacred music [1]. Ethiopian sacred music has

been preserved through oral and written traditions, with

written documents supporting and reinforcing the ongoing

oral traditions [3]. The significance of the EOTC chants

in Ethiopian culture and worldwide is evident through the

two major spiritual mass celebrations that have been rec-

ognized by UNESCO as intangible cultural heritages: the

Commemoration Feast of the Finding of the True Holy

Cross of Christ (in 2013) and the Ethiopian Epiphany (in

2019). 4 These two celebrations, primarily accompanied

by the EOTC chants, are among the five intangible cultural

heritages from Ethiopia registered by UNESCO.

Despite its long history and development, the research

of EOTC chants was quite rare. Among them, a renowned

ethnomusicological work from Western academia was by

Shelemay et al. [3, 4], based on the analysis of a series of

EOTC chants collected in Addis Ababa, 1975. They dis-

cussed the oral and written tradition of EOTC chants, the

EOTC chant music notation system, and further the defi-

nition of the three chanting modes, specifically the pitch

sets used in each of the modes. It should be noted that in

this work, all the recordings were transcribed and analyzed

by ear. As stated in the paper, the analysis, for a limited

number of recordings, was sometimes challenging when

transcribing the non-Western music scales. With no in-

digenous classification of their pitch materials [3], YeZema

Siltoch remains a primary research topic in the music the-

ory of EOTC chants.

This paper is a study on YeZema Siltoch of the EOTC

chants from computational perspectives. Our contributions

in this paper are three-fold. First, we propose a new dataset

for YeZema Silt classification and analysis. Second, we

2 Siltoch is the plural form of silt. For simplicity, the Amharic phrase
YeZema Silt and the English phrase chanting mode will be used inter-
changeably throughout this paper.

3 The term Ge’ez holds various connotations depending on context;
here, it denotes one of the three chanting styles. Conversely, it also refers
to the language and may have other applications.

4 https://ich.unesco.org/en/state/ethiopia-ET?

info=elements-on-the-lists
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benchmark the YeZema Silt classification on the dataset us-

ing neural network classifiers with a number of features,

primarily the pitch contour features which have been ver-

ified useful in analyzing various kinds of music [5–11].

Third, we perform a comparative study with [3,4] to echo,

and to revise their statements as well: while the pitch sets

used in Ezil and Araray was regarded as the same [3], our

numerical results indicate notable difference in between

them. In the rest of this paper, we will have a background

introduction of EOTC chants in Section 2. The proposed

dataset, benchmarks and the comparative study will be in

Sections 3, 4, and 5, respectively. Conclusion and future

works will be given in Section 6.

2. BACKGROUND OF EOTC CHANTS

2.1 Features and Performance Traditions

The spiritual schools of the EOTC have several depart-

ments, locally known as Guba’e bet. These departments

include Nibab-bet (reading practice), Zema-bet (introduc-

tory to advanced level offices chanting), Qidase-bet (or

Kidase-bet, liturgical chants), Qine-bet 5 (or Kine-bet, po-

etry), Aquaquam-bet (or Akuakuam-bet, advanced chant-

ing with accompaniments), and YeMetsahift Tirguame-bet

(exegesis of scriptures). The knowledge and skills ac-

quired from each Guba’e bet are crucial for understand-

ing the chants. Each Guba’e bet, which focused on chant-

ing, has two or more slightly different vocal and perfor-

mance styles [12]. For example, Zema-bet has Bethle-

hem, Achabir, Qoma, and Tegulet, and Qidase-bet has Se-

lelkula and Debre Abay. These nominations are based on

the names of places where the center of excellence, that

approves a senior student to be a teacher, is located. Such

Guba’e bet, for example, Bethlehem has a slightly different

vocal style, ornamentation, and notation complexity com-

pared to Qoma, and it also has its own swaying and reli-

gious dancing tradition with its own drumbeat.

The EOTC chants incorporate monophonic, antiphonal,

and choral ritual performances. Our dataset is derived from

Qidase-bet, which primarily focuses on monophonic and

antiphonal ritual performance components without accom-

paniments. In contrast, Aquaquam-bet emphasizes reli-

gious dance and movements, primarily choral with some

monophonic and antiphonal components. It is accompa-

nied by prayer staffs known as mequamia, drums, and

sistrums [12, 13]. The content of the chants - the text,

whether poetic or unpoetic, is directly or indirectly based

on the Holy Bible. The lyrics primarily employ Ge’ez

( ), an ancient Semitic language with a distinct script

known as Fidäl. These chants play an essential role in the

religious practices of nearly 43.5% of the country’s popu-

lation, or over 32 million Orthodox Tewahedo Christians,

according to the 2007 national census [14]. 6

The social groups involved in the chants include priests,

deacons, and laypeople who attend the service hours. Tra-

5 -ne’ is pronounced as in ‘Nelson’
6 The Ethiopian and Eritrean faithful worldwide served by the chants

is additional to the data reported in [14].

ditionally, the chants were transmitted orally, with singers

memorizing a repertoire of phrases and melodies to per-

form during liturgical celebrations. Several decades ago,

chant manuscripts were handwritten on parchment, which

refers to processed goat or sheep skins. Even today, some

scholars adhere to this practice to uphold the church’s cul-

tural traditions. However, in recent decades, transmission

has been supported by printed manuscripts for training

along with oral traditions for actual performance.

Despite its rich heritage, the tradition of EOTC chants

faces significant challenges. Many training centers are

closing down due to absence of government support, insuf-

ficient community support for students [12], and the dom-

inance of modern education since the 20th century. De-

spite the contributions of printing and recording advance-

ments, the computational contribution to the Ge’ez lan-

guage and the chants remains underdeveloped. Except for

a few works on MIR [13] and music generation [15], com-

putational research on the EOTC chants is not as devel-

oped as it is for some other secular music. These issues

highlight the need for more research on the EOTC chants.

Our research aims to contribute to MIR-related tasks on the

EOTC chants, addressing this gap.

2.2 YeZema Siltoch - Chanting Modes

The EOTC chants encompass three primary YeZema Sil-

toch (modes): Ge’ez, Ezil, and Araray. They are typically

employed sequentially or intermixed, sometimes aligning

with the church calendar’s seasons. Notably, during fasting

periods, the Ge’ez and Araray modes predominate, while

the Ezil mode mostly reserved for holidays. These modes

serve as conduits for conveying distinct emotions and sea-

sonal themes within the EOTC chants [1].

• Ge’ez: Characterized by a foundational, low tone,

Ge’ez chanting evokes a sense of despondency and

solemnity. Rendered in a relaxed, subdued manner

devoid of rhythmic constraints, it encapsulates feel-

ings of despair, disappointment, and sorrow [1]. In

[3], the Ge’ez mode is interpreted as a chain of third

(a-c′-e′) with “chromatic auxiliary notes around the

outer fifth” (♯g/ ♭b around a, and ♯d′/ f′ around e′).

• Ezil: Positioned within a mid-range vocal register,

the Ezil (or Izil) mode assumes a secondary role,

characterized by its unassuming, moderate cadence.

Emotionally neutral in essence, it is seldom utilized

during fasting periods, maintaining a comfortable,

ordinary vocal expression. Shelemay et al. [3] stated

that “Ezil uses the same pitch set as in Araray,” but

this pitch set is rendered as either c-d-e-g-a or c-d-

f-g-a, implying that the third note lies in between e

and f and causes ambiguity for Western ears.

• Araray: Distinguished by its high-pitched rendi-

tion, embellished with ornamental flourishes and a

brisk tempo, the Araray mode exudes vitality and

jubilation. It serves as a vehicle for conveying an-

imated expressions, elation, and manifestations of

compassion, happiness and fulfillment.
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Figure 1. Interlinear letter-based notations with inter-

spersed neumes. From the first underlined two words, the

letters enclosed in red rectangles are used as short-form

representations of the melody to be used over the other un-

derlined words, sung with the same melody.

The EOTC chants rely on a sophisticated system of

interlinear notations, encompassing neumatic signs inter-

spersed between letter-based representations [1, 3]. This

notation system serves as the cornerstone of melodic ex-

pression in chanting. Although some notations are com-

mon across different chanting modes, they produce distinct

melodies depending on the mode, making it challenging to

identify a specific mode solely based on notation. Figure

1 provides an example of the notation system used in the

EOTC chants.

3. DATASET

The dataset was manually collected from the Eat the Book

website, 7 a hub of numerous audio books for most of the

teachings in the EOTC school departments, with full and

partial coverage. From the available audio books, we se-

lected the Se’atat Zema (Horologium chant), which is part

of Qidase-bet department. All the audios selected for our

dataset were recorded by a single scholar at a sampling rate

of 44,100 Hz and in stereo channel.

Our first step in the audio arrangement process involved

narrowing the gap between the longest and shortest dura-

tion among the audios. Long audios, such as those over 13

minutes, were segmented into shorter audios of less than

three minutes (180 seconds) in a way that preserves mean-

ingful segments. This segmentation process also applied to

audios that contained multiple chanting modes. For exam-

ple, if an audio had 160 seconds of Araray mode followed

7 https://eathebook.org/, We acknowledge the website’s ad-
ministrators for their invaluable contribution.

Figure 2. Distribution of audio recording length (in secs).

Shelemay and Jeffery [4] This work

Modes # Length # Length

Araray 8 11m36s 118 192m36s

Ezil 6 9m56s 176 291m29s

Ge’ez 10 21m12s 75 118m6s

Total 24 42m44s 369 602m11s

Table 1. Data distribution among the chanting modes.

by 22 seconds of Ezil mode content, it would be segmented

into two separate audios of 160 seconds and 22 seconds.

Recordings that were less than three minutes but still had

multiple modes were also segmented based on the respec-

tive duration of the included chanting modes.

On the other hand, short audios, like a 19-second audio,

were merged with neighboring context audios when appli-

cable to our assumptions. If no neighboring audio with the

same mode was found, it would be counted as a separate

audio. As we arranged all audios to be in a single mode,

we have a corresponding mode label for each audio. An-

other audio cleaning process was removing non-chant seg-

ments as the recordings included short explanatory state-

ments about the corresponding chants. We manually re-

moved them to ensure that the full audio content will be for

chanting. In this process we also have shortened the dura-

tion of significant silent regions, resulted in only two silent

regions above two seconds, particularly 2.25 and 2.14 sec-

onds. After such cleaning procedures, the overall duration

distribution of our dataset, ranging from 20.142 seconds to

177.476 seconds, is shown in Figure 2. As our immediate

future work, we are working on expanding our dataset by

including annotation of word-level lyrics to audio align-

ment as well as other features, which are not uncovered

in this paper to keep the focus. We will do more research

regarding other possible additional features.

Table 1 presents the comparison between the previously

used dataset (i.e., the recordings collected by Shelemay et

al. in [4]) and our dataset. While the previous dataset, with

a total of 24 instances, is less than one hour, our dataset

accounts for more than 10 hours, with a total of 369 in-

stances. The chanting mode annotations of the dataset are

available on https://github.com/mequanent/

ChantingModeClassification.git.
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4. YAREDAWI YEZEMA SILT CLASSIFICATION

As a preliminary study, we only consider using time-

averaged audio features (i.e., the features ignoring the in-

formation lying in the temporal dimension) for Yaredawi

YeZema Silt classification. Focusing on such features also

supports our subsequent discussion on the pitch distribu-

tions of different chanting modes (see Section 5).

4.1 Feature Representations and Classifiers

Following previous works on the analysis of various kinds

of music [5–11], we consider pitch distribution, the dis-

tribution of the frame-level pitch values, for the classifi-

cation task. Our pipeline of feature extraction mostly re-

sembles [10, 16], by having the stages of pitch contour ex-

traction, stable region extraction, and pitch drift calibra-

tion. First, the pitch detection algorithm pYIN [17] is uti-

lized for pitch contour extraction. It sets the time reso-

lution to 128 samples (5.8 ms) while the frequency res-

olution to 10 cents. After having the pitch contour, the

pitch distribution is obtained by having a histogram over

the frame-level pitch values with a frequency resolution of

also 10 cents. To analyze the time-averaged aspects of the

chanting modes, extracting the stable regions of the pitch

contour while discarding the sliding, ornamental or other

unstable components might be helpful. We therefore re-

implement two stable region extraction methods, namely

the morphetic method and the masking method, both pro-

posed in [5]. There is also observable pitch drift during

the performance. With an investigation of the data, we

found that the pitch drifting along the whole recording is

relatively small (around 1 semitone upward for the whole

recording), so the pitch calibration process can be done

straightforwardly with a linear regression. More specif-

ically, the regression is performed on the pitch values 1

semitones around the global maximum of the pitch his-

togram. With the regression line with slope s, the pitch

contour f [t] indexed by time t is calibrated to fcalibrated[t]
by having fcalibrated[t] := f [t]− st.

The pitch distribution features are therefore based on

the six types of pitch contours: three stabilization modes

(no stabilization, stabilization with morphetic method, and

stabilization with masking method) times two calibra-

tion modes (with and without calibration). Besides, sev-

eral audio features are also compared: time-average mel-

spectrogram, mel frequency cepstral coefficient (MFCC),

and chromagram. The melspectrogram and MFCC are ex-

tracted using the torchaudio package [18], while the

chromagram is extracted with the librosa package [19].

The time-average features of them are obtained simply by

taking average over the time axis.

For the classifiers, we utilize the M5 (0.5M) model ar-

chitecture proposed in [20]. The model is a fully convo-

lutional network containing only 1-D convolution layers,

max pooling layers and a global average pooling layer.

Such a design has small number of training parameters and

can capture the invariance in data [21]. While this network

was taken for raw waveform, we adapt it to operate in the

frequency domain regarding it as an operator invariant to

pitch shifting. To customize the model to our extracted

features, we changed the receptive fields in the first convo-

lutional layer from 80 to 3 when running on the non-raw-

audio features in our experiments. For all the experiments,

we adopt the categorical cross entropy loss function, Adam

optimizer, learning rate of 0.001, batch size of 32, and 50

epochs, due to model convergence.

4.2 Experiment Settings

To observe how the characteristics of YeZema Silt vary

across different recordings, we consider both the within-

dataset and cross-dataset experiments. For the within-

dataset experiment, we perform 5-fold cross validation

(CV) on the proposed dataset and report the average clas-

sification accuracy. For the cross-dataset case, the model

is trained on the proposed dataset and then tested on the

recordings performed by a chanter from a different chant-

ing department, specifically Zema-bet, in different time

and location [4]. The recordings we used from [4], de-

scribed in Table 1, have a sampling rate of 44100 Hz with

stereo channel with 0.33 and 4.05 seconds of shortest and

longest audio recordings, respectively. Lastly, to examine

the reasonable identifiable audio duration among the chant-

ing modes and how the duration affects the performance,

we consider four input durations, namely 5 seconds, 10

seconds, 20 seconds and full length.

4.3 Results

Table 2 lists the classification accuracy of all the experi-

ment settings. First, the results of full length audio show

that all the pitch distribution greatly outperform other au-

dio features by a gap of over 25 percentage points. Also,

the pitch distribution is more robust than the other audio

features in the cross-dataset scenario, with a performance

drop by 7 to 23 percentage points. However, comparing

the six pitch distributions, it is not clear which calibra-

tion or stabilization mode is better. The best accuracy over

all in the CV scenario is the calibrated but non-stabilized

pitch distribution, but the trend does not apply to the cross-

dataset case. Besides, we observe that 1) pitch contour sta-

bilization does help on the accuracy for most of the cases,

2) using stabilization tends to reduce the performance gap

between within-dataset and cross-dataset scenarios, and 3)

the masking method can reduce this gap better than the

morphetic method does, though the morphetic method typ-

ically has better classification accuracy. Lastly, there is a

clear trend that a longer input audio leads to a better per-

formance. This implies that YeZema Silt is a long-term,

song-level music concept, while it can also be signified to

some extend upon a 10- to 20-sec duration, which is around

the duration of a set of music notation.

Table 3 shows two example confusion matrices for both

the within-dataset and cross-dataset cases. For the within-

dataset case, the accuracy of each class basically follows

the amount of data (Ezil > Araray > Ge’ez, see Table 1).

The trend is different for the cross-dataset case: all classifi-

cation errors occur between Ezil and Araray, a result being

in line with the experience of analysis [3].
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Feature representation Within-dataset (5-fold CV) Cross-dataset

Pitch contour

Calibration Stabilization full 20 sec 10 sec 5 sec full 20 sec 10 sec 5 sec

No

No 96.20 91.51 87.93 81.60 87.50 82.98 72.96 74.76

Morphetic 95.13 87.23 83.47 73.35 83.33 84.40 76.67 70.97

Masking 94.85 83.85 76.85 64.32 87.50 74.47 68.52 55.41

Yes

No 98.11 89.92 88.02 80.78 75.00 80.85 77.04 69.64

Morphetic 95.66 87.71 80.39 70.58 79.17 73.05 70.00 69.07

Masking 92.94 84.05 76.32 63.22 83.33 78.01 79.63 62.43

Time-average chromagram 68.01 66.63 62.28 55.93 62.50 50.43 42.68 45.33

Time-average mel-spectrogram 64.20 59.20 55.16 54.61 37.50 48.72 50.41 47.91

Time-average MFCC 68.52 66.62 66.16 65.42 37.50 35.90 36.18 39.17

Table 2. Results (classification accuracy, in %) of Yaredawi YeZema Silt classification.

5-fold CV Cross-dataset

G E A G E A

G 92.0 2.67 5.33 G 100.0 0.0 0.0

E 1.14 97.73 1.14 E 0.0 83.33 16.67

A 2.54 2.54 94.92 A 0.0 25.0 75.0

Table 3. Confusion matrices over the Ge’ez (G), Ezil (E)

and Araray (A) classes. The reported classifier is trained

on calibrated pitch contour with masking stabilization.

5. ANALYSIS OF YAREDAWI YEZEMA SILT

The goal of our analysis of YeZema Silt is using com-

putational tools to individually identify the pitches uti-

lized in the three chanting modes. Any attempt to this

relies on some music theoretical assumptions. The clas-

sification results presented in Section 4.3 supports two as-

sumptions that facilitate the analysis: first, YeZema Silt is

a song-level property that can be satisfactorily described

with time-average pitch distributions; second, YeZema Silt

can be identified by a classifier invariant to pitch-shifting

(i.e. convolution). On the other hand, the classification re-

sults also expose a few technical limitations. While the raw

pitch distribution (i.e., without pitch contour stabilization)

yields the best classification accuracy, it is highly noisy and

therefore less applicable for our analysis purpose. In fact,

we found in our study that the raw and the morphetic pitch

distribution are relatively deficient in the below-mentioned

analysis process. Therefore, instead of advocating a spe-

cific setting in terms of classification accuracy, we decided

to use the calibrated pitch contour with masking stabiliza-

tion method on the full length audio for subsequent anal-

ysis, although its performance is not the most favorable.

It is worth noting that in this case, the performance gap

between within-dataset CV and cross-dataset is relatively

small among all settings.

Our approach, which partly resembles [10], contains

three steps: 1) shift the pitch distributions of each record-

ing such that each of them are best correlated (i.e., best

aligned); 2) compute the average of the aligned pitch distri-

bution for all the recording of the same chanting mode; 3)

employ the Gaussian Mixture Model (GMM) to estimate

the representative pitch set from the distribution.

Specifically, the pitch distributions of two recordings pi

and pj are aligned through pitch-shifting pj by ξij such

that their cross-correlation Rij := Rij [ξ] is maximized:

ξij = −ξji := argmax
ξ

Rij [ξ] . (1)

The recording which has the highest average correlation

with all the other recordings is considered as an anchor:

the pitch distributions of all the other recordings are pitch-

shifted to this anchor according to their optimal ξ and are

then averaged for GMM fitting. The mean (µ), variance

(σ2) and weight (w) of each GMM component then repre-

sents the pitch center, pitch variance and pitch weight. The

GMM fitting process is initialized by user-specified mean

values to enhance convergence [10]. To facilitate the dis-

cussion, only the components having variance smaller than

100 cents are considered as representative pitches.

The top row of Fig. 3 illustrates the aligned pitch

distributions for the three chanting modes and the two

datasets. We observe that the recordings in the same chant-

ing modes typically have similar pitch distributions over

the two datasets. Such a consistent trend is also observed

from the average pitch distributions (middle row of Fig. 3),

which shows that only one pitch (the third peak from the

left) from the two dataset in Araray is somehow different.

The bottom row of Fig. 3 shows the GMM-estimated

pitch distributions for all the recordings from both datasets.

By selecting the pitches summing up to maximal weights

within one octave, we obtain three representative pitches

for Ge’ez (denoted as g1, g2 and g3, from low to high),

five for Ezil (denoted as e1, e2, e3, e4 and e5) and also

five for Araray (denoted as a1, a2, a3, a4 and a5). 8 Other

representative pitches outside this octave are also notated:

the pitch being one octave below g3 is denoted as G3, while

the pitch one octave above g1 is denoted as ġ1. The same

naming rules also apply for Ezil and Araray.

Table 4 shows the GMM-estimated parameters for the

three modes. First, the pitches used in the Ge’ez mode are

more flexible than other two modes, as can be observed

by their variances than the pitches in other two modes.

Among them, only g2 has the variance less than 10 cents.

8 Here, the subscript number does not imply the hierarchical order of
the musical scale (e.g., g1 does not mean “the tonic of the Ge’ez mode”).
The hierarchy of these pitches is another research question and will be
considered as future work.
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Figure 3. Illustration of pitch distributions for the three

YeZema Siltoch. Top: the aligned pitch distributions of all

the recordings. A row in the 2-D illustration represents

the pitch distribution of one recording. Darker color repre-

sents larger values. Red background represents pitch dis-

tributions of the recordings in [4]. Middle: the average

pitch distribution of the proposed dataset (green) and [4]

(red). Bottom: GMM-estimated pitch distributions for all

the recordings from both datasets. The pitch value of each

note name under the bottom row is listed in Table 4.

g3 and g2 form a major third (∆µ = 400 cents) while g1
and g2 form approximately a minor third g2 (∆µ = 324
cents). The pitches of g1 and g3 can vary by more or less

semitones. Besides, we also observe that the octaves of g1
and g3 (i.e., G3 and ġ1) also have large variances. This

implies that such variance (flexibility of pitch) depend on

the pitch name rather than the register. These findings are

basically in line with the statements (a scale ♯g-a-♭b-c′-♯d′-

e′-f ′ while g-c′-e′ are the stem pitches) made in [4].

Both the Ezil and Araray modes have five representative

pitches within one octave. However, the five representative

pitches of them are different. For Ezil, all the intervals lie

between 200 cents (major second) and 300 cents (minor

third), while for Araray, the intervals distribute from 172

cents (less than a major second) to 347 cents (in between

a minor third and a major third). In other words, there is a

consistent trend that the intervals in Ezil are more equally

distributed than Araray. There are also some flexible usage

of pitch, for example, e5 (E5) in Ezil. These suggest that

the pitch sets found in [4] needs revision: from our obser-

vation, each of the pitch sets used in the three EOTC chant-

ing modes is distinctive. Besides, a mode is characterized

by not only its pitch centers, but also its pitch variances.

Mode Note name µ σ2 w ∆µ

Ge’ez

G3 361 11 0.034
486

g1 847 21 0.211
324

g2 1171 7 0.171
400

g3 1571 14 0.419
476

ġ1 2047 18 0.112

Ezil

E4 189 6 0.022
258

E5 447 14 0.023
223

e1 670 6 0.106
270

e2 940 7 0.151
234

e3 1174 7 0.123
232

e4 1406 3 0.416
268

e5 1674 15 0.068
204

ė1 1878 5 0.059
261

ė2 2139 5 0.013

Araray

A5 173 3 0.008
347

a1 520 6 0.318
172

a2 692 8 0.173
218

a3 910 10 0.176
297

a4 1207 5 0.134
174

a5 1381 4 0.027
335

ȧ1 1716 5 0.084

Table 4. GMM-estimated mean (µ, in cents), variance (σ2,

in cents), weight (w) of the representative note pitches in

the Ge’ez, Ezil, and Araray modes. Reference pitch (0

cent) is 82.4 Hz. The intervals (difference between two

neighboring pitches, ∆µ) are listed in the last column.

6. CONCLUSION

In this paper, we presented a research on a relatively under-

explored music genre, the Ethiopian Orthodox Tewahedo

Church (EOTC) chant, from three computational perspec-

tives. First, through a rigorous data cleaning and annota-

tion process, we presented a new and high-quality EOTC

chant dataset, which can be extended for various music in-

formation retrieval (MIR) and music generation tasks. Sec-

ond, we conducted a chanting mode (YeZema Silt) recogni-

tion task using our dataset and achieved promising results.

Additionally, this paper is, to our knowledge, the first to

computationally analyze the pitch sets of the EOTC chant-

ing modes, specifically YeZema Siltoch, with new musico-

logical insights. In the future, we plan to keep enriching

the annotations of the datasets, by incorporating more de-

tails like lyrics, chanting options, reading tones and other

potential features. Analyzing YeZema Siltoch using the

features in the temporal dimension and the new data an-

notations are also our ongoing projects.

The EOTC chants encompass a wide range of styles and

forms. In this paper, we specifically concentrated on the

Se’atat Zema (Horologium chant), which falls under the

Qidase-bet department. Our objective is to encourage re-

sponsible research on EOTC chants, as computational re-

search in this area can lead to technological advancements

that enhance the learning process and increase accessibil-

ity. Diversifying the data and MIR of EOTC chants for the

protection and promotion of this spiritual-cultural heritage

is also our future work in the long term.
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ABSTRACT

Writing down lyrics for human consumption involves not

only accurately capturing word sequences, but also in-

corporating punctuation and formatting for clarity and to

convey contextual information. This includes song struc-

ture, emotional emphasis, and contrast between lead and

background vocals. While automatic lyrics transcription

(ALT) systems have advanced beyond producing unstruc-

tured strings of words and are able to draw on wider con-

text, ALT benchmarks have not kept pace and continue

to focus exclusively on words. To address this gap, we

introduce Jam-ALT, a comprehensive lyrics transcription

benchmark. The benchmark features a complete revi-

sion of the JamendoLyrics dataset, in adherence to indus-

try standards for lyrics transcription and formatting, along

with evaluation metrics designed to capture and assess the

lyric-specific nuances, laying the foundation for improving

the readability of lyrics. We apply the benchmark to recent

transcription systems and present additional error analysis,

as well as an experimental comparison with a classical mu-

sic dataset.

1. INTRODUCTION

Recent general-purpose automatic speech recognition

(ASR) models trained on large datasets [1, 2] have shown

a remarkable level of generalization, even improving the

performance of automatic lyrics transcription (ALT) [3–5].

Remarkably, these state-of-the-art ASR models are able

to take in larger temporal contexts and produce natural

text with long-term coherence which, in the case of Whis-

per [2], includes punctuation and capitalization [6]. One

may therefore ask how well these capabilities transfer from

speech to lyrics. Moreover, producing a high-quality lyrics

transcript suitable for user-facing music industry applica-

tions (e.g. to be displayed on streaming platforms or lyrics

websites) presents some unique challenges, namely the

need for specific formatting (e.g. line break placement,

parentheses around background vocals) [7–9]. This calls

© O. Cífka, H. Schreiber, L. Miner, and F.-R. Stöter. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: O. Cífka, H. Schreiber, L. Miner, and F.-R.

Stöter, “Lyrics Transcription for Humans: A Readability-Aware Bench-

mark”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

And I cannot could not breathe , <L>  

but since i watched you leave ( oh yeah ) <L> 

<S>

Word error

Case error

Line break errorPunctuation error

Section break error
Parenthesis error

Figure 1: Error types captured by our metrics. Each token

is classified as a word, punctuation mark, or parenthesis

(enclosing background vocals). Special tokens are added

in place of line and section breaks. Each token type is cov-

ered by a separate metric; differences in letter case are han-

dled separately.

for a new approach to ALT evaluation and development

that accounts for these distinctive nuances.

In ASR, the primary goal is a clear representation of

what was said. To that end, formatting is helpful for im-

proving the readability of transcripts [10]. Likewise, fillers

like um, uh, like, and you know can be omitted to improve

readability. Recent work [11] attempts to formalize this

concern for clarity, proposing a novel metric geared to-

wards assessing human readability. It employs human la-

belers, instructed to disregard filler words while, on the

other hand, taking account of punctuation and capitaliza-

tion errors that impact readability or alter the meaning of

the text.

In music, on the other hand, lyrics are not simply a

means of communicating meaning; they are a form of artis-

tic expression, closely tied to the rhythm, melody, and

emotionality of the song. For this reason, lyrics transcrip-

tion requires a different set of considerations. Line breaks,

often missing or arbitrarily placed in speech transcripts, are

essential in lyrics for capturing rhyme, meter, and musical

phrasing. Fillers like oh yeah, non-word sounds like la-

la-la and contractions such as I’ma (vs. I’m gonna, I am

going to) have prosodic significance, and their omission

would disrupt the song’s rhythm and rhyme scheme. Far

from being an impediment to readability, they are key to

any faithful rendition of a song for artist and fan alike.

We believe that readability-aware models for lyrics tran-

scription have the potential to facilitate novel applications

extending beyond the realms of metadata extraction and

relatively crude karaoke subtitles. However, in order to ad-

vance in this research direction, the ability to accurately

evaluate ALT systems in the aforementioned aspects is vi-
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tal. To the best of our knowledge, existing ALT literature

not only overlooks readability, but evaluates on datasets

(e.g. [12–15]) that have not been designed specifically for

ALT and lack some or all of the desirable features dis-

cussed above.

One of the datasets widely adopted by recent works

[3, 4, 16–18] as an ALT test set is JamendoLyrics [14],

originally a lyrics alignment benchmark. Its most recent

(“MultiLang”) version [19] contains four languages and a

diverse set of genres, making it attractive as a testbed for

lyrics-related tasks. However, we found that, in addition to

lacking in the aspects discussed above, the lyrics are some-

times inaccurate or incomplete. While such lyrics may be

perfectly acceptable as input for lyrics alignment (and in-

deed representative of a real-world scenario for that task),

they are less suitable as a target for ALT.

To address these issues and help to guide future ALT

research, we present the Jam-ALT benchmark, consist-

ing of: (1) a revised version of JamendoLyrics MultiLang

following a newly created annotation guide that unifies

the music industry’s conventions for lyrics transcription

and formatting (in particular, regarding punctuation, line

breaks, letter case, and non-word vocal sounds); (2) a com-

prehensive set of automated evaluation metrics designed to

capture and distinguish different types of errors relevant to

(1). The dataset and the implementation of the metrics

are available via the project website. 1 Additionally, to

explore the applicability of the proposed metrics to other

datasets, we present results on the Schubert Winterreise

Dataset (SWD) [20].

2. DATASET

Our first contribution is a revision of the JamendoLyrics

MultiLang dataset [19] to make it more suitable as a lyrics

transcription test set. Different sets of guidelines for lyrics

transcription and formatting exist within the music indus-

try; we consider guidelines by Apple [7], LyricFind [8],

and Musixmatch [9], from which we extracted the follow-

ing general rules:

1. Only transcribe words and vocal sounds audible in

the recording; exclude credits, section labels, style

markings, non-vocal sounds, etc.

2. Break lyrics up into lines and sections; separate sec-

tions by a single blank line.

3. Include each word, line and section as many times as

heard. Do not use shorthands to indicate repetitions.

4. Start each line with a capital letter; respect standard

capitalization rules for each language.

5. Respect standard punctuation rules, but never end a

line with a comma or a period.

6. Use standard spelling, including standardized spell-

ing for slang where appropriate.

7. Mark elisions (incomplete words) and contractions

with an apostrophe.

8. Transcribe background vocals and non-word vocal

sounds if they contribute to the content of the song.

1 https://audioshake.github.io/jam-alt/

9. Place background vocals in parentheses.

The original JamendoLyrics dataset adheres to rules 1, 3,

and 8, partially 2 and 6 (up to some missing diacritics, mis-

spellings, and misplaced line breaks), but lacks punctua-

tion and is lowercase, thus ignoring rules 4, 5, 7, and 9.

Moreover, as mentioned above, we found that the lyrics do

not always accurately correspond to the audio.

To address these issues, we revised the lyrics in order

for them to obey all of the above rules and to match the

recordings as closely as possible. As the above rules are

fairly unspecific, we created a detailed annotation guide

where we have attempted to resolve minor discrepancies

among the source guidelines [7–9] and fill in missing de-

tails (including language-specific nuances). This annota-

tion guide is released together with the dataset.

Each lyric file was revised by a single annotator profi-

cient in the language, then reviewed by two other annota-

tors. In coordination with the authors of [19], one of the

20 French songs was removed following the detection of

potentially harmful content.

Examples of lyrics before and after revision can be

found on the project website.

3. METRICS

In this section, we first discuss our adaptation of the con-

ventional word error rate (WER) metric and then our pro-

posed precision and recall measures for punctuation and

formatting. Our goal here is to design a comprehensive

set of metrics that covers all possible transcription errors

while allowing us to distinguish between different types of

errors (see Fig. 1 for a visual overview of the error types).

Note, however, that our goal is not to create metrics that

completely align with the rules put forth in Section 2 or

correlate with a specific notion of readability; the metrics

should be general enough to apply to any plain-text lyrics

dataset and adapt to its formatting style.

3.1 Word Error Rates

The standard speech recognition metric, WER, is defined

as the edit distance (a.k.a. Levenshtein distance) between

the hypothesis (predicted transcription) and the reference

(ground-truth transcript), normalized by the length of the

reference. If D, I , and S are the number of word deletions,

insertions, and substitutions respectively, for the minimal

sequence of edits needed to turn the reference into the hy-

pothesis, and H is the number of unchanged words (hits),

then:

WER =
S +D + I

S +D +H
=

S +D + I

N
, (1)

where N is the total number of reference words.

Typically, the hypothesis and the reference are pre-

processed to make the metric insensitive to variations in

punctuation, letter case, and whitespace, but no single stan-

dard pre-processing procedure exists. In this work, we ap-

ply Moses-style [21] punctuation normalization and tok-

enization, then remove all non-word tokens. Before com-

puting the WER, we lowercase each token to make the met-
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ric case-insensitive, but also keep track of the token’s origi-

nal form. To then measure the error in letter case, for every

hit in the minimal edit sequence, we compare the original

forms of the hypothesis and the reference token and count

an error if they differ. We then compute a case-sensitive

word error rate WER′ as:

WER′ =
S +D + I + Ecase

S +D +H
= WER +

Ecase

N
, (2)

where Ecase is the number of casing errors. We include

both variants (1) and (2) in our benchmark.

3.2 Punctuation and Line Breaks

Since the output of ASR systems traditionally lacks punc-

tuation, a common ASR post-processing step – punctua-

tion restoration [22] – consists of recovering it. This task

is usually evaluated using precision and recall:

P =
# correctly predicted symbols

# predicted symbols
,

R =
# correctly predicted symbols

# expected symbols
.

(3)

In this original setting where the system only inserts punc-

tuation and the words remain intact, computing the metrics

is trivial. In contrast, in our end-to-end setting, the hypoth-

esis and the reference may use different words, and hence

computing the numerator in Eq. (3) requires an alignment

between the two. We leverage the same alignment as used

in Section 3.1, but computed on text that includes punctu-

ation. Moreover, we extend this approach to account for

line breaks, which, though traditionally ignored in speech

data, are particularly important for lyrics.

We use the pre-processing from Section 3.1, but pre-

serve punctuation tokens and, as in [23, 24], add special

tokens in place of line and section breaks; this leaves us

with five token types: word W, punctuation P, parenthe-

sis B (separate due to its distinctive function), line break

L, and section break S. 2 After computing the alignment

between the hypothesis tokens and the reference tokens,

we iterate through it in order to count, for each token type

T ∈ {W,P,B,L,S}, its number of deletions DT , inser-

tions IT , substitutions ST , and hits HT . In general, each

edit operation is simply attributed to the type of the token

affected (e.g. the insertion of a punctuation mark counts

towards IP). However, a substitution of a token of type T

by a token of type T ′ ̸= T is counted as two operations: a

deletion of type T (counting towards DT ) and an insertion

of type T ′ (counting towards IT ′ ).

We can now use these counts to define a precision, re-

call, and F-1 metric for each token type:

PT =
HT

HT + ST + IT
, RT =

HT

HT + ST +DT

,

FT =
2

P−1

T
+R−1

T

.

(4)

2 We define a section break as one or more blank lines. Hence, every
section break is explicitly preceded by a line break in our representation.

English Spanish German French

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
ER

Whisper v2
Whisper v3
OWSM v3.1 +lang
AudioShake v3

+demucs
+demucs
+demucs

Figure 2: Song-level word error rates by language. Note

that strong outliers occur; for clarity, they are not displayed

here, but affect the means, which are indicated by triangles.

4. RESULTS

4.1 Benchmark Results

Table 1 shows the performance of various transcription

systems on our benchmark. Fig. 2 shows the distributions

of song-level word error rates by language.

We include two recent, freely available models ca-

pable of transcribing long, unsegmented audio: Whis-

per [2] (large-v2 and large-v3) and OWSM 3.1 [25]

(owsm_v3.1_ebf). For both models, we use Whisper-

style long-form transcription with a beam size of 5. Both

models have language identification capabilities, but may

perform better if the correct language is specified; for

Whisper, we evaluate both options, while for OWSM, for

simplicity, we only evaluate with the language provided.

For Whisper, which exhibits great variation between runs

due to its stochastic decoding strategy, we report averages

over 5 runs. We optionally use HTDemucs [26] to isolate

the vocals from the input audio.

Whisper and OWSM are general-purpose speech recog-

nition models and are not designed for lyrics transcrip-

tion. To make a fairer comparison, we apply simple

post-processing to their outputs to improve the formatting:

(1) The models do not produce line breaks, but split their

output into timestamped segments; we insert line breaks

between these segments. (2) We remove unwanted end-

of-line punctuation (all non-word characters except for

!?'"»)) and uppercase the first letter of every line. 3

We also evaluate LyricWhiz [4], a lyrics transcription

system combining Whisper with the commercially avail-

able instruction-following language model ChatGPT [27].

We report averages over two outputs per song (English

only), kindly provided by the LyricWhiz authors. Finally,

3 Although we observed that this transformation tends to improve the
outputs for Whisper and OWSM, in general, it may make evaluation re-
sults worse if the line break predictions are incorrect. For this reason, we
do not include this step as a fixed part of our benchmark.
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All languages English Spanish German French

WER WER′ FP FB FL FS WER WER′ FP FB FL FS WER WER′ WER WER′ WER WER′

Whisper v2 37.8 42.1 44.2 — 69.3 3.3 43.8 47.5 31.5 — 63.0 11.2 25.8 31.5 54.5 59.3 27.7 31.1
+lang 27.9 32.6 45.0 — 70.4 3.7 39.7 43.7 34.9 — 65.5 11.6 21.9 27.7 19.9 26.0 27.1 30.5
+demucs 44.5 49.8 41.6 — 61.2 — 33.3 39.1 42.2 — 53.9 — 39.6 46.5 65.2 70.4 43.3 46.9
+lang 33.5 39.3 39.4 — 60.6 — 35.6 41.3 41.8 — 53.4 — 34.9 42.2 23.9 30.4 38.2 42.1

Whisper v3 35.5 39.7 43.0 — 73.5 1.0 37.7 42.5 41.4 — 71.5 2.6 28.6 33.6 40.7 44.6 34.7 38.0
+lang 32.6 37.2 43.7 — 73.9 0.6 36.4 41.4 41.8 — 72.5 2.6 22.4 28.0 35.9 40.4 34.7 38.0
+demucs 48.0 51.6 33.0 — 65.7 — 43.0 47.2 25.8 — 66.9 — 61.5 64.9 43.5 47.4 44.9 48.2
+lang 46.6 50.4 33.7 — 65.8 — 43.0 47.2 25.8 — 66.9 — 58.6 62.1 40.8 44.9 44.9 48.3

OWSM v3.1+lang 69.3 75.0 22.5 0.6 37.8 — 68.6 74.0 22.3 — 42.7 — 73.3 78.5 63.3 71.8 71.6 75.7
+demucs 66.5 72.6 20.0 0.0 41.1 — 63.4 69.4 21.5 0.0 47.3 — 70.8 76.0 51.8 62.0 78.5 82.1

LyricWhiz — — — — — — 24.6 28.0 34.0 — 74.0 1.4 — — — — — —
AudioShake v3 16.1 20.1 57.0 29.4 84.4 73.9 17.3 20.9 65.3 37.9 84.3 84.8 12.6 17.7 12.6 17.5 20.8 23.5

JamendoLyrics 11.1 29.6 — — 93.3 85.3 14.4 29.6 — — 88.1 77.9 14.0 29.1 5.0 37.6 10.3 23.3

Table 1: Benchmark results (all metrics shown as percentages). WER is word error rate, WER′ is case-sensitive WER, the

rest are F-measures. +demucs indicates vocal separation using HTDemucs; +lang indicates that the language of each song

was provided to the model instead of relying on auto-detection. Whisper results are averages over 5 runs with different

random seeds, LyricWhiz over 2 runs; OWSM and AudioShake are deterministic, hence the results are from a single run.

The best results achieved by open-source systems are shown in bold. LyricWhiz and AudioShake are listed separately,

because they rely on proprietary technology. The last row shows metrics computed between the original JamendoLyrics

dataset as the hypotheses and our revision as the reference. For full results by language, see the project website.

All EN ES DE FR

WER FL FS WER

Whisper v2 39.1 70.0 2.8 43.0 31.7 54.7 28.0
+lang 28.8 71.0 2.6 38.8 27.9 19.8 27.4
+demucs 46.2 61.5 — 33.6 43.9 65.5 44.1
+lang 34.8 61.2 — 36.1 39.3 23.9 38.9

Whisper v3 37.7 71.6 1.0 39.3 34.5 40.8 36.1
+lang 34.9 72.3 0.6 38.0 28.9 36.0 36.1
+demucs 49.6 65.3 — 44.3 65.8 43.5 45.7
+lang 48.3 65.4 — 44.3 63.1 40.8 45.7

OWSM v3.1+lang 70.3 39.0 — 69.9 75.7 63.5 71.9
+demucs 67.5 41.6 — 65.0 72.7 51.7 79.1

LyricWhiz — — — 23.7 — — —
AudioShake v3 19.4 82.3 64.5 22.5 18.7 13.8 21.7

Jam-ALT 11.5 94.0 85.1 15.7 14.4 5.0 10.4

Table 2: Results with the original JamendoLyrics (i.e. be-

fore revision) as reference. The last row corresponds to our

revision. See also the caption of Table 1.

as an example of an ALT system built with formatting and

readability in mind, we include our in-house lyrics tran-

scription system, which integrates vocal separation.

As a first general observation, consistent with previous

studies [4, 5], the performance of Whisper models is rel-

atively good, considering that they were not specifically

designed for lyrics transcription. Among the formatting

metrics, we highlight a high accuracy in line break pre-

diction. This shows that, although the segments output by

Whisper do not always impose a meaningful structure, in

music, they do in many cases coincide with lyric lines.

Somewhat counter-intuitively, for Whisper, inputting

isolated vocals (+demucs) tends to substantially degrade

the results (with the single exception of large-v2 for

English). Whisper’s language identification mechanism

also turns out to have a significant effect, in that disabling

it and instead inputting the known language of the song

(+lang) tends to result in a sizeable drop in WER, espe-

cially on languages different from English. This suggests

that the language detected by Whisper is often incorrect.

We also observe that Whisper v3 does not necessarily

perform better on lyrics than v2. In fact, the WER in-

creases from 27.9 to 32.6 when comparing Whisper v2

+lang to v3 +lang.

The improvement of LyricWhiz over plain Whisper in

terms of WER is clear and even sharper than reported in

[4]. We also see some improvement in terms of line breaks

and punctuation.

Regarding OWSM, its performance is far behind Whis-

per, with differences far larger than reported in [25] for

speech, strongly suggesting that OWSM is poorly suited

for ALT, at least without finetuning. With isolated vocals

as input, the error is slightly reduced, but still large.

As for our own system, it outperforms all of the above

on all metrics shown in Table 1, by a large margin, e.g. with

a 57% reduction in overall WER compared to Whisper v2.

It is also the only one achieving acceptable accuracy for

parentheses (B) and section breaks (S).

4.2 Effect of Revisions

The revisions described in Section 2 have enabled us to

compute metrics related to letter case and punctuation, fea-

tures that are missing from the original dataset. How-

ever, the revisions also involved correcting words and

line breaks; to measure the effect of these corrections,

we present in Table 2 the relevant metrics computed on

the original JamendoLyrics data. Comparing Tables 1

and 2, we note that the revisions have mostly improved

the results, notably reducing the overall WER (by 1.7, or

5.3%, on average) for all systems, with Spanish seeing the

sharpest drop (4.7, or 17.4%, on average, likely due to fre-
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quently missing accents in the original data). The general

trends – in particular, the ranking based on WER and FL –

remain mostly unchanged.

To quantify the extent of our revisions more directly,

we also evaluate both versions of the lyrics against each

other and include the results as the last row in Tables 1

and 2. Remarkably, in terms of word tokens, Jam-ALT dif-

fers from JamendoLyrics by about 11% (around 15% for

English and Spanish), which is substantially more than the

difference between system performance on the two dataset

versions. One potential explanation is that a significant

number of the corrections correspond to low-intelligibility

singing, which is prone to transcription errors, or to back-

ground vocals, which are susceptible to being omitted by

transcription systems.

4.3 Error Analysis

In this section, we further analyze the errors made by se-

lected systems on our benchmark.

First, we visualize in Fig. 3 how each type of edit oper-

ation contributes to the WER. Besides the basic edit opera-

tions (hits, substitutions, insertions, deletions), we include

case errors from Section 3.1; that is, a hit with a difference

in letter case is shown as a case error instead. Moreover, to

account for small spelling differences, we consider a sub-

stitution as a near hit when the replacement differs from

the reference in at most two letters. 4

With Whisper, we observe that inputting separated vo-

cals causes more insertions (and longer output) in v2, but

more deletions (and shorter output) in v3. Upon inspecting

the outputs, we find that Whisper has a general tendency to

omit parts of the lyrics (often the entire song) and instead

produce generic or irrelevant text, and that this is more fre-

quent with separated vocals, especially with v3. On the

other hand, OWSM shows a slight improvement with sep-

arated vocals, but its predictions contain significantly more

substitutions, suggesting that they are more often incorrect

on a word-by-word basis.

Next, we focus on errors in punctuation and formatting

and investigate how often different token types are substi-

tuted for each other. To this end, we count the edit opera-

tions as in Section 3.2, but preserve the information about

substitutions across the four non-word token types (P, B,

L, S). We then present this information in a form akin to a

confusion matrix, adding a special “null” token type ∅ to

account for insertions and deletions.

The result is shown in Fig. 4 for three selected systems.

Most errors are insertions and deletions, but another fre-

quent type of error is the replacement of a line break by a

punctuation mark, especially in Whisper models. This is

explained by the fact that our guidelines forbid most end-

of-line punctuation, and hence, when transcription omits a

line break, inserting a punctuation mark in its place is often

needed to maintain grammatical correctness.

4 More precisely, we count a near hit if, after removing apostrophes
from the two words, their character-level Levenshtein distance is at most
2, and strictly less than half the length of the longer of the two words.
Examples include an/and, gon’/gonna, there/their/they/them, but not a/an

or this/that.

0.0 0.2 0.4 0.6 0.8 1.0
Relative count

JamendoLyrics

AudioShake v3

OWSM v3.1
+demucs+lang

OWSM v3.1
+lang

Whisper v3
+demucs+lang

Whisper v3
+lang

Whisper v2
+demucs+lang

Whisper v2
+lang

hit case near sub ins del

Figure 3: Word edit operation frequencies on our bench-

mark (one run per system). Near are substitutions that dif-

fer in few characters, sub are the remaining substitutions.

case are hits with case errors, hit are the remaining (case-

sensitive) hits. The rest are insertions and deletions. The

frequencies are normalized by the reference length, so that:

• hit + case + near + sub + del = 1,

• WER = near + sub + ins + del,

• WER′ − WER = case,

• hit+case+near+sub+ins corresponds to the length

of the prediction.

By manual inspection of the transcriptions, we find that

Whisper tends to produce much longer lines than in the

reference and frequently outputs periods (forbidden by our

annotation guide as a sentence separator) and, occasion-

ally, spuriously repeated punctuation.

4.4 Schubert Winterreise Dataset

To explore the application of the proposed metrics to other

datasets, we additionally perform an evaluation on the

Schubert Winterreise Dataset (SWD) [20]. SWD com-

prises nine audio versions of Franz Schubert’s 24-song

cycle Winterreise, along with symbolic representations,

lyrics, and other annotations. An example of Romantic

music based on early 19th century German poetry, it con-

trasts with JamendoLyrics and presents an interesting chal-

lenge for ALT. For our evaluation, we pick a single version,

SC06 (a 2006 live recording of singer Randall Scarlata),

one of the two with audio publicly available.

The lyrics in SWD are formatted as poems – contain-

ing line and section breaks –, but their spelling and punc-

tuation, mirroring an 1827 edition of the score [28], does

not exactly match our annotation guide. To make them

adhere to our punctuation and capitalization rules, we ap-

ply a simple transformation to the lyrics: replace all un-

wanted punctuation (.;:-) with commas, then remove all

end-of-line commas and uppercase the first letter of each

line. Note, however, that even after this transformation, the

lyrics’ obsolete spelling – predating the 1996 German or-

thography reform – violates our annotation guide to some

extent (mainly in the usage of the letter ß and the treatment

of elisions), which is expected to distort the WER.

We evaluate all models with the language provided (i.e.
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(a) Whisper v2 +lang
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(b) Whisper v2 +demucs+lang
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1458 2 148 4 933

26 108 26 6 436

317 1 2785 4 407

4 0 0 404 204

355 21 123 64
0
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1000
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2000

2500

(c) AudioShake v3

Figure 4: Edit operation counts on non-word (punctuation and formatting) tokens by token type (P = punctuation, B =

parenthesis, L = line break, S = section break). ∅ denotes the absence of a token, i.e. it stands for insertion (on the

reference axis) or deletion (on the prediction axis). Substitution of/by a word token is counted as an insertion/deletion,

respectively. Only a single run per system is considered.

WER WER′ FP FL FS

Whisper v2 34.5 40.4 42.6 66.2 —
+demucs 41.4 47.2 38.0 61.4 —

Whisper v3 59.0 63.8 40.0 63.6 —
+demucs 52.3 58.6 34.7 63.3 0.0

OWSM v3.1 75.6 82.5 12.9 39.6 4.9
+demucs 82.9 91.8 17.0 39.2 —

AudioShake v3 24.3 29.1 50.9 80.0 72.0

Table 3: Results on performance SC06 from SWD. Only

punctuation (P), line breaks (L) and section breaks (S) are

included, as the ground truth lyrics do not contain any

parentheses. Whisper results are averages over 5 runs with

different random seeds. The best result in each column,

excluding AudioShake, is shown in bold. For full results,

see the project website.

disabling language identification). The results are shown

in Table 3 and further error analysis in Fig. 5. We notice

substantially worse performance on SWD than the German

section of our benchmark (Table 1): for example, WER for

Whisper v2 +lang increased from 19.9 to 34.5. This likely

reflects the more challenging nature of the dataset, but also

possibly the mismatched spelling, as suggested by a higher

frequency of near hits (see Fig. 5) than seen in Section 4.3

(Fig. 3).

5. DISCUSSION

Given our focus on formatting and punctuation, the ques-

tion arises to what extent they are in fact dependent on

the audio. In particular, could line and section boundaries

be accurately predicted just from the textual context, e.g.

based on metrical patterns, rhyme, syntax, and semantics?

To answer this, we suggest an experiment where a human

annotator is tasked with formatting given lyrics first with-

out and then with access to the audio. Such a task would,

however, be highly time-consuming and require expert an-

notators unfamiliar with the songs. As a proxy, one might

instead train a formatting restoration model on lyrics or use

a general-purpose instruction-following language model.

Our attempts in this regard have only had limited success

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Relative count

AudioShake v3

OWSM v3.1
+demucs

OWSM v3.1

Whisper v3
+demucs

Whisper v3

Whisper v2
+demucs

Whisper v2

hit case near sub ins del

Figure 5: Word edit operation frequencies on SWD. See

the caption of Fig. 3.

and we therefore leave such experiments for future work.

Another issue is that there may not always be a single

correct division into lines and sections. For example, in a

song with relatively short lines, it may be acceptable to join

pairs of adjacent lines, especially in the absence of rhyme.

Likewise, 4-line sections may be joined to create 8-line

sections and so forth. However, it is not obvious how to

relax the metrics to allow for this kind of variation. Doing

so rigorously would likely require additional annotations,

which is contrary to our goal of creating a set of generally

applicable metrics. A possible solution compatible with

this idea is to create multiple references and pick the best-

scoring one during evaluation.

6. CONCLUSION

We have proposed Jam-ALT, a new benchmark for ALT,

based on the music industry’s lyrics guidelines. Our results

show how existing systems differ in their performance on

different aspects of the task, and we hope that the bench-

mark will be beneficial in guiding future ALT research.
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ABSTRACT

This paper surveys 560 publications about music genre
recognition (MGR) published between 2013–2022, com-
plementing the comprehensive survey of [474], which cov-
ered the time frame 1995–2012 (467 publications). For
each publication we determine its main functions: a review
of research, a contribution to evaluation methodology, or
an experimental work. For each experimental work we note
the data, experimental approach, and figure of merit it ap-
plies. We also note the extents to which any publication
engages with work critical of MGR as a research problem,
as well as genre theory. Our bibliographic analysis shows
for MGR research: 1) it typically does not meaningfully
engage with any critique of itself; and 2) it typically does
not meaningfully engage with work in genre theory.

1. INTRODUCTION

Despite much more work [1–560] music genre recognition
(MGR) still remains a compelling problem to solve by a
machine. This work comes on top of the 467 publications
surveyed over a decade ago by Sturm [474]. Of principal
concern in that survey is the question: “How does one mea-
sure the capacity of a system to recognize and discriminate
between abstract characteristics of the human phenomenon
of music?” The survey catalogues each of the 467 publi-
cations along several dimensions. 1 Sturm determined
whether each publication is mainly a review of MGR re-
search, a contribution to evaluation methodology, or a de-
scription of experimental work in which an MGR system is
built and tested. For each experimental work (438 of 467
publications) Sturm recorded its experimental designs (of
which there are 10), datasets (16), and figures of merit (9).

Now that at least 560 more publications have entered the
domain, where does the problem of MGR stand? This pa-
per aims to complement and extend the survey of [474] by

1 The data of that survey can be found here: https:
//github.com/boblsturm/Music-Genre-Recognition-
Survey--1995-2012

© O. Green, B. Sturm, G. Born, M. Wald-Fuhrmann. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: O. Green, B. Sturm, G. Born, M. Wald-
Fuhrmann, “A Critical Survey of Research in Music Genre Recognition”,
in Proc. of the 25th Int. Society for Music Information Retrieval Conf.,
San Francisco, United States, 2024.

exhaustively surveying research published between 2013–
2022 related to MGR—as well as any earlier publications
discovered to have been missed in Sturm’s original work—
such that the two surveys give a comprehensive account
up to 2022. It also aims to answer several critical ques-
tions. Is the experimental design Classify and figure of
merit accuracy still the most frequent, despite their noted
serious flaws threatening the validity of conclusions drawn
from them [470, 471, 561, 562]. Is GTZAN [563] still the
most used public dataset, despite its noted faults [400, 467,
471, 564]? How have these faults been considered or even
reconsidered in the past decade? How has all this new re-
search in MGR engaged with work that is critical of MGR
as a research problem, i.e., [231, 232, 329, 401, 467, 469–
471, 473, 475–478, 561, 562, 564–574]? How has all this
work engaged with genre theory such as [575–598]?

The next section describes the methodology we use to
collect and catalogue publications. Section 3 presents our
analyses of this collection along several dimensions. Sec-
tion 4 gives broad observations and recommendations to
guide future work in MGR. The resulting catalogue, bibli-
ography and analysis code are available online. 2

2. METHODOLOGY

We assembled a corpus of 560 publications in the following
way. We performed a broad search across Google Scholar
for publications appearing from 2013 onwards using search
terms like ‘music genre’, ‘recognition OR classification
“music genre”’. This gave over 67 pages of results that
we manually browsed. We supplemented these results with
searches of the ISMIR proceedings, TISMIR and arXiv.
We added each relevant publication we found to a dedi-
cated Zotero collection, 3 which is a convenient means to
gather, share and organize bibliographic data.

For each publication in our collection, we read it and
manually enter data into a spreadsheet. As done by Sturm
[474], we catalogue each publication according to its type,
then note the experimental designs, datasets and figures of
merit it uses. Additionally, we note whether each publi-
cation cites or engages with two kinds of published work:
genre-related work from the social sciences and humani-
ties; and work that is critical of MGR. We note what moti-

2 https://www.kth.se/profile/bobs/page/
research-data

3 https://zotero.org
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Figure 1. Annual numbers of publications related to music genre recognition between 1995 and 2022. Dashed vertical line
demarcates the end date of publications surveyed in Sturm [474]. The present survey adds ten references before 2013 [115,
149, 155, 181, 194, 202, 209, 354, 423, 426], but 550 other publications surveyed herein are published after 2012. The
white plot line shows the number of publications appearing at ISMIR or in the Transactions of ISMIR.

vations the paper describes for researching MGR.
To conduct our analyses of the collection, we query en-

tries in our spreadsheet and Zotero library, but also use
python and relevant libraries. We export our collection as a
BibTex-formatted file, and the spreadsheet as a text file of
comma-separated values. In the following subsections we
describe in more detail each dimension of our catalogue.
(Further details are given in the Supp. Mat.)

Publication Type We assign each publication to at least
one of three categories. A review publication is con-
cerned with surveying the domain of MGR, e.g., [474,
599]. An evaluation publication is concerned with eval-
uation methodology in MGR, such as proposing a dataset,
e.g., [113, 600], experimental design, e.g., [571, 601], or
taking a critical look at work in the domain, e.g., [471, 566].
Finally, an experimental publication is concerned with en-
gineering and testing MGR systems, e.g., [563, 602].

Dataset For experimental publications, we note what
data sets are used, whether private data was used, and the
modality of data used: musical audio (waveform or ex-
tracted features), symbolic data, or other types (e.g., lyrics,
WWW, playlists). We also note if a publication works with
non-Western musics.

Experimental Design Following the categorisations
described by Sturm [474, p. 32], we note the design(s) used
in the experiments described by a publication. These ten
designs are: Classify, Features, Generalize, Robust, Scale,
Cluster, Retrieve, Rules, Compose, Eyeball. (Supp. Mat.
S1.5 describes and gives examples of each of these.)

Figure of Merit (FoM) We note the figure(s) of merit
used in the evaluation of experiments [474]. The main
FoM we look for include Accuracy, Recall, Precision, F-
measure, Receiver Operating Characteristic (ROC) and
the Confusion Table. Where a confusion table has been
used we note whether or not there is an accompanying in-
terpretative discussion, and whether specific instances of
confusion are discussed. (Supp. Mat. S1.6 defines these.)

Referencing In a direction different from Sturm [474],
we record if a publication cites at least one of a collec-
tion of 26 publications we deem are critical of MGR, i.e.,

[231, 232, 329, 401, 467, 469–471, 473, 475–478, 561,
562, 564–574]. We also determine whether the citation is
accompanied by any discussion or concrete effects on the
experimental design in the publication. We also record if
a publication refers to work on musical genre from the so-
cial sciences and humanities, i.e., [575–591, 593–598], and
record if that citation is accompanied by substantive discus-
sion. Supp. Mat. S1.7 discusses both sets of references.

Motivation for MGR Where authors explicitly state a
motivating rationale for MGR work, we record which of
four non-exclusive categories they appeal to: industrial
need, public good, coping with information overload, or
are appealing to precedent. There is a degree of unavoid-
able subjectivity in this designation, and so we opt for par-
simony and look only for explicit statements of this kind
to avoid unwarranted inference. Supp. Mat. S1.8 provides
examples of each of these.

3. ANALYSIS AND RESULTS

We now analyze the 560 publications in this survey in re-
lation to the 467 in Sturm [474]. Figure 1 shows the an-
nual number of publications related to MGR since the ear-
liest reference cited in Sturm [474]—Matityaho and Furst
[603]. This shows that MGR publications grew to a high
point in 2010 after being established in the MIR community
a decade earlier as a “flagship problem” of music informa-
tion retrieval [604]. Thereafter the mean number of publi-
cations related to MGR each year is 56.7 (std dev. 13.1).
We see that the annual number of publications related to
MGR appearing at ISMIR or in its Transactions since 2010
is less than ten in all but two years (2011, 2016). Our sur-
vey does not include 28 publications [605–632] because we
cannot get access (e.g., behind a paywall), or the language
of the paper is not English.

3.1 Publication Types

Of the 560 publications we survey in this paper, we find
only nine review articles or book chapters discussing MGR

2

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

746



[98, 193, 247, 323, 325, 339, 467, 474, 493]. Among these,
Corrêa and Rodrigues [98] reviews MGR using symbolic
data. Kostek [247] is a review of MIR and has a section
about MGR; and Tzanetakis [493] is a book chapter re-
viewing music informatics generally, where music genre
appears in one section. Sturm [467] reviews all publica-
tions using the GTZAN dataset up to 2012; and Sturm [474]
is the survey we extend in this paper.

We find 19 of our 560 publications that primarily dis-
cuss evaluation in MGR research [113, 199, 231, 232, 329,
341, 367, 400, 401, 424, 467, 469–471, 473, 474, 476–
478]. In addition to those already described in Sec. 2,
Palmason et al. [341] investigates the agreement of music
genre ground truth between different stakeholders. Porter
et al. [367] discusses enriching the AcousticBrainz audio
feature dataset [633] using metadata collected from a vari-
ety of online sources, include genre information. Schreiber
[424] extends the Million Song Dataset; and Defferrard et
al. [113] introduces the FMA dataset. Finally, Hossain and
Al Marouf [199] discusses the creation of a dataset of song
lyrics exemplifying different genres of Bengali music.

Of the 560 publications we survey in this paper, we find
545 that make experimental contributions. Of these, the
next three subsections discuss the datasets, experimental
designs, and figures of merit used in this subset of publica-
tions, comparing and contrasting with the previous survey
[474]. We then go further than Sturm [474]. Subsection
3.7 looks at how all 560 publications we survey engage
with work critical of MGR. Subsection 3.8 investigates the
extent to which they engage with music genre theory. The
penultimate subsection 3.5 looks at how MGR is being mo-
tivated as a research problem. Subsection 3.6 looks at the
kinds of venues at which MGR research is being published.

3.2 Datasets

Sturm [474] finds the GTZAN dataset [563] from 2002
is the most used public dataset, appearing in 100 out of
435 publications with an experimental component. We
find that GTZAN remains the most frequently used dataset,
appearing in 254 of 545 publications that have an exper-
imental component. Some publications use GTZAN for
learning bases, which are then used for building MGR sys-
tems tested in other datasets, e.g., Jao et al. [213] and
Markov and Matsui [295]. Some publications we survey
use only a portion of GTZAN. For instance, Agarwal et al.
[5] uses only five of ten classes; and Rajesh and Bhalke
[390] uses only two. Others add classes to GTZAN, e.g.,
Iloga et al. [205, 206] adds Cameroonian music, Conceicao
et al. [95] adds music from Brazil, Wibowo and Wihay-
ati [519] adds Malaysian Dangdut music, and Shashirekha
[440] adds songs sung in an Indian language (Kannada).
Moving briefly to the entire collection we survey, we find
considerations of music from non-Western traditions to ap-
pear in only 61 of the 560 publications; Sturm [474] finds
47 in its survey of 467 publications.

Some publications analyze GTZAN as a dataset. Flexer
[150] analyzes hubs in GTZAN, and tests methods of out-
lier detection using it. Lu et al. [286, 287] attempt to auto-

matically find the faults in the dataset identified in Sturm
[467]. Rodriguez-Algarra et al. [400] investigates why
a particular MGR system performs so well on GTZAN,
and finds infrasonic information confounded with labels—
more formally explored in Rodriguez-Algarra et al. [401].
Kang and Lin [224] looks at inferring taxonomies of classes
in datasets, including GTZAN. Lu et al. [286, 287] use
GTZAN as a testbed for anomaly detection.

The next four most popular datasets we find are IS-
MIR2004 [634] from 2004 (appearing in 50 publications),
FMA [635] from 2016 (36), the Million Song Dataset [600]
from 2011 (32), and the Latin Music Dataset [636] from
2008 (23). We find that data that is not publicly available
(e.g., in-house data, or undisclosed data) appears in 176 of
545 publications. Of those, we find 146 of them exclu-
sively use non-publicly available data.

The predominant data modality in our catalogue is
acoustic (or features extracted from acoustic data), which
appears in 482 of 545 publications with an experimental
component. Sturm [474] finds 344 of 435 publications use
such a modality. We find symbolic modalities are used in
40 publications, while Sturm [474] finds them used in 81
publications. We find 11 publications use both modalities
[2, 23, 187, 189, 209, 270, 359, 360, 362, 507, 556]. Other
modalities (e.g., lyrics, WWW, playlists) appear used in 66
of our publications, while Sturm [474] finds these used in
27 publications.

3.3 Experimental design

The three most used experimental designs we find in the
545 publications we survey with an experimental compo-
nent match those found by Sturm [474]. The most used de-
sign in both is Classify: we find 514 publications use this,
and of those 264 exclusively use this design; Sturm [474]
finds this appears in 397 of 435 publications with an exper-
imental component. The second most used design is Fea-
ture, which appears in 145 of 545 publications we survey;
Sturm [474] finds this appears in 142 of 435 publications.
The third most used design is Generalize, which appears
in 127 of 545 publications we survey; Sturm [474] finds it
appears in 69 of 435 publications.

The two least-used designs we find are the same as in
Sturm [474]: Rules and Compose. Among our 545 papers
with an experimental component, we find Rules appears in
six publications [63, 70, 97, 209, 246, 402]. For instance,
Campobello et al. [63] derive an analytic formulae for
GTZAN genres whereby specific feature values extracted
from an audio signal are used to compute the relevance of
a class. We find the Compose design appears in five [175,
209, 476, 485, 489]. For instance, Sturm [476] inspects
the correspondence between randomly generated rhythmic
patterns classified with high confidence by a state-of-the-
art system trained in the BALLROOM dataset [637], and
the classes in that dataset.

3.4 Figure of merit

We find accuracy is the figure of merit that appears the
most: 449 out of 545 publications with an experimental
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component. Sturm [474] finds this appears in 385 of 435
publications. The confusion table is the next most com-
mon figure of merit, appearing in 193 publications sur-
veyed here. In those publications with a confusion table,
we find no discussion about it in 78 publications—that is, it
is merely presented as a table without interpretation. When
a confusion table is discussed, musical motivations for con-
fusions are often given. For example, Chathuranga et al.
[73] writes, “[In our confusion table] Rock music is mostly
misclassified as country and blue. This is due to the facts
that rock music and country music have similar roots and
rock music came from a combination of country music and
rhythm and blues.” Chen and Ramadge [77] writes, “Rock
music is easily confused with other genres—perhaps be-
cause of its broad nature.”

Specific instances of confusions are only discussed in
nine papers [63, 201, 231, 232, 341, 467, 470, 472, 475].
For instance, Sturm [467] and Campobello et al. [63] show
tables of confusions made by classifier for specific excerpts
in GTZAN, e.g., Sturm [467] shows GTZAN country ex-
cerpt 69 “My Heroes Have Always Been Cowboys” by
Willie Nelson is mislabeled “Classical”, and Campobello et
al. [63] shows GTZAN filename “country.00069” is misla-
beled “Blues”, “Classical” and “Rock”. Sturm et al. [472]
do the same but for the Latin Music Dataset. Hsu et al.
[201] look at four specific music recordings from a test set
they create and inspect how classifications of them differ
between systems they test. Finally, Kereliuk et al. [231,
232] and Sturm [470, 475] make use of a set of ten differ-
ent songs and show how each can be confidently classified
in any GTZAN class.

3.5 Justifications of MGR

How is MGR as a research problem being justified? We
noted two major shades of justification where one was of-
fered. 155 papers were found that explicitly invoke imag-
ined applications for the music industry (106) or end users
(49). In 150 of these papers, applications of MGR were
presented as useful or necessary in due contemporary in-
formation overload. Conversely, 103 papers were noted to
make no direct utilitarian appeal for MGR work, but in-
stead to call upon precedent: MGR problems are important
because there has been work on MGR.

In the 150 papers that invoke information overload as a
problem that MGR can help solve, a common presumption
is that there are problematic quantities of unlabelled musi-
cal data that would be more tedious or error-prone to orga-
nize by hand than with MGR, e.g [174, 439]. Sometimes,
the urgency of dealing with such a problem is emphasised.
For example: “a lot of music data has become available
recently …in order for users to benefit from them, an effi-
cient music information retrieval technology is necessary.”
[294]; “Given the vast number of current collections, auto-
mated genre classification is critical for music organization
…” [376]

Publications seldom motivate through learning some-
thing about music rather than classifier performance. [301]
sets out to understand the temporalities of musical change

over a 50 year period. [329] argues that MGR classifiers
can be repurposed towards greater understanding of genre
as musico-social. [189, 505] argue that more interpretable
models more useful for musicologists and listeners. [348]
investigates the potential of MGR for studying underrep-
resented traditions. [140] examines the ’tenuous’ relation-
ship between rhythmic similarity and genre.

3.6 Venues for MGR publications

Of the 560 publications we review, 350 are conference pa-
pers and 156 appear in journals. The most common venue
for MGR publications is the ISMIR conference (43 pa-
pers). The next most common conferences are Int. Conf.
Acoustics Speech and Signal Processing (ICASSP) (12),
Int. Joint Conf. Neural Networks (IJCNN) (9), and Inter-
speech (5). Six publications appear at the music comput-
ing conferences ICMC, SMC and DaFx. The most com-
mon journals were IEEE Access (7), Int. Research Jour-
nal of Engineering and Technology (6), then IEEE Signal
Processing Letters, Int. Journal of Computer Applications,
Journal of Intelligent Information Systems, IEEE Trans. on
Multimedia, Journal of New Music Research, Trans. of
the Int. Society for Music Information Retrieval, Expert
Systems with Applications, and Applied Soft Computing (4
publications each).

After stripping edition indicators from conference
names, we estimate that papers appeared at 235 unique con-
ferences, of which 195 hosted a single paper in our corpus.
Similarly, the 156 journal articles we reviewed appeared
across 101 journals, 74 of which hosted a single article from
our corpus. 82 publications appear in conferences or jour-
nals under the umbrellas of the ACM and IEEE, including
ICASSP and WASPAA. In addition to 9 more PhD theses
containing work related to MGR [2, 23, 160, 183, 336, 501,
518, 545] we reviewed 14 master’s theses [11, 35, 64, 112,
220, 262, 289, 308, 333, 374, 453, 465].

Elsevier publishes the greatest proportion of the jour-
nals encountered (11), followed by Springer (9), IEEE (8),
MDPI (5), Hindawi (4), IET (3) and ACM (3). 20 publica-
tions were on ArXiv or similar pre-print hosting providers
with no corresponding official publication. Many publi-
cations appear in venues not specifically concerned with
music, audio or informatics, but with computing topics
more generally or—more general still—with topics like
‘engineering’ or ‘technology’. Some publications appear in
venues apparently unrelated to music informatics. For ex-
ample, [176] appears in the International Journal of Early
Childhood Special Education. Others appear in venues
whose existence we could not confirm, e.g. [193] was ap-
parently presented at a 2018 ACM Symposium on Neural
Gaze Detection of which we can find no online trace.

3.7 Engagement with work critical of MGR

We now turn to another aspect not explored in Sturm [474]:
How does research in MGR engage with work that is criti-
cal of MGR? How many of the 560 publications we survey
cite 26 critical publications [231, 232, 329, 401, 467, 469–
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471, 473, 475–478, 561, 562, 564–574]? Do any imple-
ment proposed recommendations or alternatives? We find
that only 163 of the 560 publications cite at least one of
these critical references; and of these, only 77 engage in
some way with the critique. Such engagement can be sim-
ply applying artist filtering. It can also be motivating the
use of a specific experimental design.

Let us look specifically at criticism around GTZAN
[563], the most-used dataset in MGR research. Ten years
after its creation, this dataset was carefully analyzed by
Sturm [467, 471, 564], resulting in a catalogue of its faults
and an index of its contents. Kereliuk et al. [231, 232]
created and used the first partitioning of GTZAN that con-
siders its contents. 4 (See Supp. Mat. S2 for an overview
of the on-line availability of these materials.)

Considering the faults of GTZAN have been known
since 2012, let us focus on the 250 papers published af-
ter 2012 that use GTZAN with a Classify experimental
design reporting accuracy as a figure of merit. Of these,
we find only 62 acknowledge the existence of faults in
GTZAN, and 46 of those essentially ignore or dismiss
them. For instance, Sigtia and Dixon [447], Nanni et al.
[320], Jeong and Lee [218], Senac et al. [428] and Palma-
son et al. [340] are five papers that dismiss consideration
of the faults by appealing to the popularity of GTZAN as
a benchmark dataset: “Although the GTZAN dataset has
some shortcomings [564], it has been used as a benchmark
for genre classification tasks” [447]. Others claim that
their experimental results are not harmed by such problems,
e.g., “Despite [its faults], we still used [GTZAN] because
these small problems can not seriously damage our results”
[205]. We find 15 publications use the fault-filtered parti-
tions of Kereliuk et al. [231, 232]: [66, 81, 144, 145, 218,
236, 267, 271, 302, 305, 329, 349, 364, 540, 554]. Foleiss
and Tavares [152] create their own partitioning following
Sturm [467], which was then used by Ng et al. [327] and
Cai and Zhang [62]. Three other publications [15, 63, 374]
acknowledge the faults in GTZAN and perform their own
fault-filtering and partitioning.

The fact that 188 of these 250 publications using
GTZAN do not mention its faults could be partly explained
by the fact that websites linking to the dataset make no
mention of them. At least up to March 20 2022, the origi-
nal source of GTZAN 5 makes no mention of any faults or
of the cataloguing work of Sturm [467, 471, 564]. There
currently exist several online copies of GTZAN (or fea-
tures computed from the dataset), but none of these mention
faults; and at this time we find only two online repositories
of GTZAN that mention faults (See Supp. Mat. S2).

Another criticized aspect of MGR research is its use
of Classify as an experimental design. Sturm [470, 471,
473, 478, 561, 562] argue that this design is essentially a
“horse show”: systems are tasked with tapping their hooves
the correct number of times, but no reliable measurement
of musical intelligence can be made without controlling
for numerous independent variables. While the survey in

4 Both the catalogue of GTZAN and the fault-filtered partition are
available here: https://github.com/boblsturm/GTZAN.

5 http://marsyas.info/downloads/datasets.html.

Sturm [474] finds Classify appears in 91.3% of its surveyed
publications, the present survey finds it appears in 94.3%.
Furthermore, we find 264 publications only use Classify.
While we see at least some work in MGR has cited and en-
gaged with the faults in GTZAN, very few publications in
the present survey (outside of those by Sturm and collabo-
rators) meaningfully engage with the criticism of Classify.
To the best of our knowledge, there are no publications
that dispute the argument of Sturm [470, 471, 473, 478,
561, 562]; and we find only 17 publications citing those
six publications and engaging with them in any meaning-
ful way when it comes to experimental design [47, 48, 63,
67, 98, 140, 175, 244, 286, 327, 329, 374, 375, 393, 421,
507, 518], e.g., cautiously interpreting results of classifica-
tion, or motivating additional experimental designs.

3.8 Engagement with genre theory

We now turn to the question: how have the 560 publications
in our survey engaged with genre theory from the social sci-
ences and humanities? We find 36 references to such work
citing 23 sources [575–598]. Of these 36 publications, 10
go further than just citation [139, 146, 219, 329, 341, 375,
421, 453, 469, 471]. Useful indicators of the ways in which
musical genre is a more complex concept than just distribu-
tions of acoustic or other features are scattered across these
contributions. The following key points emerge from en-
gagements with genre theory in our corpus:

Relational The interrelationships between genres are cru-
cial to understanding them, yet more complex than
can be captured through simple taxonomies [329,
341, 375, 469, 471].

More-than-sonic The character of genres is determined
not only through sonic traits but that other modal-
ities can be of crucial importance, often as proxies
for the social roots of genres [146, 329, 375, 421].

Social The relationships between genres and social forma-
tions / identities is complex and bidirectional: gen-
res can articulate identities, but genres can also be
used as part of demarcating social groupings. The
agency in defining and consolidating genre terms is
distributed across different social planes, including
the institutions of industry, as well as musicians, crit-
ics and fans [219, 329, 341, 421].

Perspectival Genres and their relationships can be under-
stood quite differently by different groups of people
[375, 469, 471].

Dynamic No aspect of musical genre stands still. Their
salient sonic and other features, interrelationships,
connections to social formations are all in constant,
unpredictable motion. Crucially this means that the
association of particular musical texts and tastes with
genres is also subject to change [329, 471].
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4. DISCUSSION

Based on a survey of 560 MGR publications from 2013–
2022, we find some continuity with the previous survey
by Sturm [474]. GTZAN, Classify and Accuracy remain
respectively the most widely used dataset, experiment and
figure of merit. Despite an increase in the number of public
datasets available to MGR researchers, we also see that the
proportion of publications dealing with non-Western musi-
cal formations has not changed appreciably. Although the
use of alternative modalities of data (e.g., lyrics, WWW,
playlists) has roughly doubled, such work remains a mi-
nority and treating MGR as an audio-similarity problem
still prevails. However, our survey goes further to find that
MGR work has by and large not engaged with any critique
of its accepted methodologies, critique of the research task
itself, or of work in the social sciences and humanities re-
lated to genre.

We note that the engagement that there is has introduced
to MGR key facets of the challenges of studying musi-
cal genre, which warrant greater consideration—we com-
mend the introductory chapter of [577] as a comprehensive
overview. Crucially, each of the factors outlined in Sec.
3.8 not only provide key pointers towards threats to valid-
ity for MGR [638] but also indicate that for MIR to con-
tend with genre as a musical topic, a greater diversity of
approaches is called for [639]. However, given the quan-
tity of the surveyed publications that appear outside ISMIR
or core MIR venues, it is not certain whether MGR remains
a “flagship problem” of music information retrieval [604].

Has it, rather, become autonomous of MIR, as a conve-
nient downstream task for computer scientists that has the
appearances of addressing a domain-specific useful prob-
lem? Our reading of the given motivations for MGR re-
search found in this corpus supports the plausibility of this
interpretation, given the frequency of appeals to vaguely
described industrial and user applications. One way to in-
vestigate this further would be through a bibliometric anal-
ysis of this corpus, geared towards identifying possible
clusters of work through co-citation or collaboration. 6 .
A possibility is that MIR specialists have shifted their at-
tention to auto-tagging and away from MGR, which as a
‘superset’ problem of MGR, we do not cover here. How-
ever, an interesting area for follow-up research could be
to perform a similar survey of auto-tagging research along
with a bibliometric comparison, which may shed some light
on the movement of research within MIR.

Nevertheless, we put forward the normative position
that music informatics researchers should be oriented to
musical questions open to investigating their complexities
in collaboration with music scholars. Doing so likely in-
volves shifts in how this research is pursued. Currently,
what dominates is exploratory analysis where progress is
assessed through benchmarks. [641] provides a frame-
work for assessing the suitability of such ‘outcome rea-
soning‘ along dimensions of measurement, adaptability, re-

6 Open scholarly databases such as OpenAlex [640] could automate at
least some of this, although we note that its coverage of references for the
papers in this corpus doesn’t extend to around half of its ISMIR papers.

silience and compatibility with stakeholder beliefs. These
are telling questions, as it’s not clear that for much MGR
research who the stakeholders are. If one group of po-
tential stakeholders is other music researchers, rather than
the imagined needs of music platforms or their users,
then this points to more explanatory work in MGR. How-
ever, benchmark-driven predictive modelling need not be
abandoned. In [642] the authors point to ways in which
benchmark-driven work can be incorporated and redirected
towards richer ends and [643] shows how predictive mod-
els can be integrated into contemporary approaches to
causal inference, suited to theory-driven, explanatory reg-
isters of research.

5. CONCLUSION

We close with some recommendations. Broadly, MGR suf-
fers from threats to validity [638] that warrant more atten-
tion. Some progress could be made through a greater role
for theory in MGR, both through authors being more ex-
plicit about the theoretical perspective on genre at work in
a given study, as well as deeper engagement with theories
of musical genre.

In particular, a close and critical reading of the introduc-
tory discussion of [577] in terms of its implications for MIR
genre research could be generative for the field. Specifi-
cally, it is the sociality, temporality and heterogeneity of
genres that are least addressed in the work we have sur-
veyed, and these bring interesting challenges. One fruitful
direction to engaging with the social can be found in [644]:
by acknowledging that culture is present in every part of
the MIR ‘value-chain‘ [645], the authors propose a techni-
cal intervention on recommender system design in pursuit
of a normative social outcome (‘commonality’) often con-
sidered to be outside the scope of engineering concerns.
Some of the surveyed work already moves towards dealing
with genre as temporal [301], and social-temporal [329].
This suggests a possible intersection with work in music
and cultural evolution [646], which could serve as a con-
structive ‘interface’ between MIR and music studies.

Finally, to contend with the heterogeneity of genres
means dealing not only with their sonic variability, but
also variability across the many other dimensions that may
define a particular genre for a particular aesthetic coali-
tion. On the first point, we would recommend more genre-
specific computational-musicological work like [647–649]
to cast light on the relationships between computed features
and aesthetic saliences for groups of listeners. More fine-
grained, genre-specific datasets as in [276] might help here.
On the second point, engaging with ‘live’ genres in motion
implies the need for work in nonexperimental settings [650]
that can cope with diverse, noisy and incomplete data.
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ABSTRACT

Recent years have witnessed a rapid growth of large-scale

language models in the domain of music audio. Such mod-

els enable end-to-end generation of higher-quality music,

and some allow conditioned generation using text descrip-

tions. However, the control power of text controls on

music is intrinsically limited, as they can only describe

music indirectly through meta-data (such as singers and

instruments) or high-level representations (such as genre

and emotion). We aim to further equip the models with

direct and content-based controls on innate music lan-

guages such as pitch, chords and drum track. To this

end, we contribute Coco-Mulla, a content-based control

method for music large language modeling. It uses a

parameter-efficient fine-tuning (PEFT) method tailored for

Transformer-based audio models. Experiments show that

our approach achieves high-quality music generation with

low-resource semi-supervised learning. We fine-tune the

model with less than 4% of the orignal parameters on a

small dataset with fewer than 300 songs. Moreover, our

approach enables effective content-based controls. We il-

lustrate its controllability via chord and rhythm conditions,

two of the most salient features of pop music. Furthermore,

we show that by combining content-based controls and text

descriptions, our system achieves flexible music variation

generation and arrangement. Our source codes and demos

are available online 1 2 .

1. INTRODUCTION

Controllable music generation encompasses the creation

of music under various controls, such as musical or tex-

tual descriptions [1–4]. It enables amateur users to cre-

ate customized music and helps professional musicians ex-

plore new ideas for composition and arrangement. Re-

1 https://github.com/Kikyo-16/coco-mulla-repo.
2 https://kikyo-16.github.io/coco-mulla/.

© Liwei Lin, Gus Xia, Junyan Jiang and Yixiao Zhang. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: Liwei Lin, Gus Xia, Junyan Jiang and Yixiao

Zhang, “Content-based Controls For Music Large Language Modeling”,

in Proc. of the 25th Int. Society for Music Information Retrieval Conf.,

San Francisco, United States, 2024.

markable advancements have been made in this field in re-

cent years, particularly in text-to-music generation [3–6].

These cross-modality models are trained on extensive sets

of parallel text-audio data pairs, utilizing pre-trained large

language models [7] or multi-modal embeddings [8, 9] to

establish a mapping between natural language and music.

They enable high-level controls such as mood and tempo

by incorporating them into a text prompt.

However, not all music information can be expressed

via text. Existing models cannot yet apply effective con-

trols on intricate musical languages (e.g., chord progres-

sions) or directly refer to musical contents from other au-

dio recordings. The ability to accommodate such content-

based controls is crucial for tasks such as music editing,

music variation generation, and arrangement. For example,

in AI-assistant composition systems, the generative models

are required to compose based on a rough idea like motifs

or counter-melodies; in music re-instrumentation, we tend

to keep the underlying harmony unchanged and reinterpret

the song with new instruments.

Historically speaking, the shift from text-based (and

metadata-based) models to content-based models has once

happened in the realm of music information retrieval

(MIR), which dramatically improved the model perfor-

mances and also expanded the boundary of music under-

standing. In a similar fashion, we aim to push the bound-

ary of music audio generation domain by further equipping

off-shelf generative models with content-based controls.

A simple approach to incorporating content-based con-

trol is to train a separate generative model conditioned on

the provided control content [4, 10]. For example, both

the MusicGen and MusicLM systems offer two versions

of model: a vanilla text-to-music version, and a melody-

conditioned version for accompaniment generation. The

main issue with this simple conditioning approach lies in

the high training cost, which is at the same scale as the

base model in terms of both computational resources and

training data. Moreover, each conditioned model can only

deal with one type of content-based control input. This

rigid setting is not practical in real music production and

arrangement scenarios where multiple control contents are

often required for satisfactory results.

To solve the aforementioned problems, we contribute a

unified approach to incorporating different content-based

controls with music-audio generative models. Particularly,
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we see the immense potential of large-scale pre-trained

models in their semantic-level understanding of music and

therefore propose a novel parameter-efficient fine-tuning

condition adaptor based on llama adaptor [11].

The current design of the adaptor integrates the joint

embeddings of symbolic music chords and piano roll

and acoustic drum tracks with the pre-trained MusicGen

model. In theory, the adaptor can perform on joint embed-

dings of any combination of content-based controls and

can be integrated with any Transformer-based generative

model. In short, the main contribution of this work is as

follows:

• A unified approach on content-based controls:

Our model enables chord and drum pattern controls

via acoustic hints, achieving an arbitrary combina-

tion of textual, harmonic, and rhythmic description

for the controlled generation process.

• Low-resource fine-tuning on pseudo-labeled

datasets: We provide a method to fine-tune a

large auto-regressive audio generative model with

a small-size, pseudo-labeled dataset in which all

the pseudo labels are extracted using existing MIR

tools. We fine-tune MusicGen [4], an excellent

text-to-music model, on 4% trainable parameters of

the original model with a training set of fewer than

300 songs without text or other annotations.

• Flexible variation generation and arrangement:

Our model achieves flexible variation generation and

arrangement of the given polyphonic piano roll by

combining text prompts and content-based controls.

This enables numerous downstream music-editing

applications.

2. RELATED WORK

We review two realms of related works: 1) large-language

models (LLMs) for music audio and 2) existing methods

of parameter-efficient fine-tuning.

2.1 Music Audio Generation

Music audio generation necessitates extensive contextual

modeling to account for the intricate structure of musical

language. Recent large-scale music audio generative mod-

els, encompassing auto-regressive and diffusion-based ap-

proaches, have made remarkable strides in capturing such a

long-term structure while introducing cross-modality con-

ditions. For example, Jukebox [1] leverages VQ-VAE [12]

and transformer decoders to achieve lyrics- and genre-

based generation; Diffusion-based Moûsai [3] adopts the

pre-trained frozen T5 encoder [7] to summarize text condi-

tions; auto-regressive MusicGen [4] realizes monophonic

melody and text controls by assembling EnCodec [13], T5

encoder, and an acoustic transformer decoder. Specifically,

MusicGen is the first text- and melody-conditioned model,

limited to a monophonic melody condition, and it does not

accommodate drum tracks. Additionally, a contempora-

neous work, Music ControNet [14], shares a similar goal

with ours but is based on a diffusion model rather than on

pretrained large language models (LLMs).

2.2 Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning (PEFT) methods adapt pre-

trained language models (PLMs) without fine-tuning all

model parameters [15, 16], significantly reducing compu-

tational and storage expenses. [17] and [18] tailor PLMs

for specific tasks by appending task-specific prefixes to in-

put sequences. [19] employs low-rank adaption (LoRA) to

fine-tune pre-trained linear transformations in PLMs. [11]

and [20] propose LLaMA-Adapter, adjusting attention out-

puts using prompt adaptors and zero gate scalars. LLaMA-

Adapter also introduces a multi-modal conditional variant

by incorporating global image representations into prompt

adaptors. In this study, we present a novel PEFT method,

inspired by LLaMA-Adapter, designed to fine-tune large-

scale models while accommodating external sequential

multi-modal conditions.

3. BASE MODEL

In this work, we choose MusicGen [4], an excellent

Transformer-based music audio language model, as our

base model. MusicGen offers two variants: a text-only

model and a melody-based model. The melody-based

model conditions its generation on the dominant time-

frequency bin of the audio chromagram and text prompts,

limiting it to monophonic conditioning and preventing it

from incorporating rhythmic drum patterns. In this study,

we adopt the text-only MusicGen as our base model, aug-

menting it with content-based controls via the proposed

PEFT method.

The largest text-only MusicGen consists of 3 compo-

nents: a pre-trained EnCodec, a pre-trained T5 encoder,

and an acoustic transformer decoder. The transformer de-

coder comprises N = 48 layers, each including a causal

self-attention block and a cross-attention block to handle

condition text prompts.

MusicGen tokenizes audio signals using EnCodec [13],

a Residual Vector Quantization (RVQ) [21] auto-encoder,

compressing signals of sample rate Sr = 32000 into dis-

crete codes of a low frame rate fs = 50. The acoustic

transformer decoder takes these tokens as its input.

4. METHODOLOGY

Our approach consists of 2 components: 1) a joint embed-

ding encoder to integrate content-based controls, and 2) a

condition adaptor to fine-tune MusicGen by incorporating

the learned joint embeddings. To maintain the ability of

the vanilla MusicGen to associate text with music, we train

the adapter for only the self-attention blocks of the acoustic

transformer decoder. During training, all the parameters of

MusicGen are frozen.
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Figure 1. The joint embedding module. We randomly mask acoustic or piano roll embedding with probability r during

training.

Chord Name Pitch Root Bass Pitch Indices

C:maj C, E, G C (0) C (0) 0, 4, 7

C:maj/E C, E, G C (0) E (4) 0, 4, 7

D:min D, F, A D (2) D (2) 0, 3, 7

Table 1. Symbolic chord data structure.

4.1 Joint Symbolic and Acoustic Embedding

To incorporate the desired chord progression and to bor-

row musical content from another audio recording simul-

taneously, we design a joint symbolic and acoustic em-

bedding. For precise alignment of generated music with

acoustic hints, we use a frame-wise representation for both

symbolic and acoustic data.

4.1.1 Symbolic Chord and MIDI Representation

We describe a chord as a combination of a root pitch

class, the bass pitch class, and the chroma representation

of the chord quality. As shown in Table 1, we represent

a chord as {root, bass,m} (root, bass ∈ {0, 1, ..., 11}),

with m ∈ R
12 being a multi-hot positional vector indicat-

ing the active pitches in the octave starting from the root

note. Define ci ∈ R
12+12+12+1 to represent the ith-frame

chord:

ci =

{

[e(root); e(bass);m; 0], if ith frame has a chord

[0;0;0; 1], otherwise
,

(1)

where e is a function from an index j ∈ {0, 1, ..., 11} to its

one-hot vector e(j) ∈ R
12.

We represent MIDI using the piano roll format. Assume

pi ∈ {0, 1}128 is the ith frame in the piano roll indicating

the presence of each pitch. We further compress the sparse

piano roll into a low-dimension MIDI representation p′

i
us-

ing a trainable matrix W p ∈ R
d1×128:

p′

i
= W T

ppi ∈ R
d1 . (2)

Throughout the training process, we use pseudo chord

annotations obtained through a chord recognition model

from [22] and MIDI annotations via an automatic music

transcription model from [23].

4.1.2 Acoustic Representation

We convert the separated drum stem to discrete codes us-

ing EnCodec [13]. Instead of directly modeling these dis-

crete codes, we pass the ith-frame codes through the frozen

input embedding layer of MusicGen transformer decoder

to obtain a pre-trained acoustic embedding hi ∈ R
2048.

Such a continuous pre-trained representation is more ro-

bust since it can address the issue of utilizing discrete codes

not present in the training data during the inference stage.

To mitigate overfitting and reduce training complexity,

we employ a trainable low-rank matrix W a ∈ R
2048×d2 to

map hi into a lower-dimensional space:

h′

i
= W T

ahi ∈ R
d2 . (3)

We set d2 = d1 = 12 in our experiments.

4.1.3 Masking Scheme and Positional Encoding

During training, we randomly mask MIDI and acoustic

representation with a probability r independently:

z
p
i
=

{

p′

i
, if not masked

s
p
i
, otherwise

, (4)

za
i
=

{

h′

i
, if not masked

sa
i
, otherwise

. (5)

Here, s
p
i

and sa
i

are learnable masked embeddings. The

masking strategy trains the model to follow an arbitrary

combination of conditional tracks during inference. We

set r = 0.4 in our experiments.

We introduce a learnable matrix W e ∈ R
(d1+d2+37)×d

to incorporate the above embeddings and a learnable posi-

tional embedding z
pos
i

∈ R
d1+d2+37 to facilitate sequen-
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Cross-attention

Self-attention

…

Learnable input

embeddings

Encodec tokens

Text

embeddings 

Cross-attention

끫뢂 − 끫롾
layers

끫롾 layers

⊕
⊕ Cross-attention

Joint

embeddings끫뤶2

Self-attention

Cross-attention

Self-attention

⊕… …

Encodec tokens

Condition prefix

끫뤶1
끫뤶0 Self-attention

(a) To incorporate content-based control from the joint embeddings, the con-
dition prefix joins into the last L frozen self-attention layers of the MusicGen
decoder.

Condition prefix

r끫뢲 + 끫룎끫뢲 끫룊끫뢲

끫뢲 끫룎끫뢲 끫룊끫뢲끫뢲

(b) Inside the condition prefix, each position can attend to all
other positions within the condition prefix.

끫뢲 끫룎끫뢲 끫룊끫뢲

Condition prefix

r끫뢲 + 끫룎끫뢲 끫룊끫뢲
g끫뢲

(c) Outside the condition prefix are the hidden embeddings cor-
responding to Encodec tokens. They attend to all preceding
positions (following the causal mask) and the entire condition
prefix.

Figure 2. Condition adaptor. The condition prefix is injected to the self-attention mechanism of the MusicGen transformer

decoder. All transformation matrices in MusicGen are frozen. Only the input embeddings, joint embedding encoders, and

the gate factors are trainable.

tial modeling. The final joint symbolic and acoustic em-

bedding is as follows:

zi = W T

e ([ci; z
p
i
; za

i
] + z

pos
i

) ∈ R
d. (6)

Finally, let T be the total number of frames. The com-

plete sequential joint embedding is then:

z = {z1, z2, ..., zT } ∈ R
T×d. (7)

4.2 Condition Adaptor

To plug the joint embeddings into MuiscGen, we present

a novel condition adaptor that can take time-varying se-

quential conditions. In the vanilla Transformer, each self-

attention layer operates on a sequence of T hidden em-

beddings corresponding to T frames of Encodec tokens.

In the proposed condition adaptor, as shown in Fig 2, for

the last L layers of the MusicGen decoder, we expand the

sequence of hidden embeddings to 2T , where T new po-

sitions take on the task of incorporating and processing

condition-related information. We call the newly intro-

duced positions the condition prefix.

Specifically, we insert a sequence of learnable input em-

beddings into the (N − L + 1)th MusicGen transformer

decoder layer, initiating the condition prefix. Inside the

condition prefix, we pass the hidden states only through

self-attention layers, skipping cross-attention layers.

Let H
p
l
∈ R

T×d (N − L + 1 ≤ l ≤ N ) represent

the output of the lth-layer attention layer for the condition

prefix. H
p
0 is a sequence of learnable input embeddings.

We compute the condition prefix as follows:

Q
p
l
,K

p
l
,V

p
l
= QKV-projector(Hp

l
+Zl), (8)

H
p
l+1 = Self-Attention(Qp

l
,K

p
l
,V

p
l
), (9)

where the sequential joint embeddings Zl is defined in

Eq (7). Note that we learn distinct joint embeddings for

each decoder layer. Since the adaptor aims at capturing

the long-term contextual information of the sequential joint

embeddings, it does not employ a causal attention mask

for the condition prefix. Additionally, the condition prefix

does not attend to the Encodec token frames, as shown in

Fig 2(b).

For the non-prefix part, hidden states are passed through

both self-attention and cross-attention layers. Let H l ∈
R

T×d (1 ≤ l ≤ N ) represent the output of the lth attention

layer for the encoded tokens. we compute vanilla attention

output Sl as follows:

Ql,Kl,V l = QKV-projector(H l), (10)

Sl = Self-Attention(Ql,Kl,V l). (11)

To incorporate condition information, in the last L lay-

ers, we compute cross attention S
′

l
between Ql and

{Kp
l
,V

p
l
}. We leverage Self-Attetion layers to compute

S
′

l
rather than Cross-Attention layers since the controls are

closer to the audio modality than the textual modality. To
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Chordrec ↑ Chord∗

rec ↑ BeatF1
↑ CLAPscr ↑ FAD∗

vgg ↓ FADvgg ↓

Chord-only 0.412 0.195 - 0.401 6.209 6.695

MIDI-only 0.649 0.406 - 0.381 7.105 7.094

Drums-only 0.530 0.267 0.856 0.360 3.845 4.933

Full 0.791 0.524 0.864 0.351 3.697 4.370

MusicGen - - - 0.441 6.434 6.847

Oracle 0.885 0.695 0.898 - -

Table 2. The performance of the model with L = 48 on RWC-POP-100 subset. Oracle scores gauge the performance of

the chord recognition model [22] and beat tracking model [24] on the ground-truth audio.

Total Trainable
CLAP∗

scr ↑ Chordrec ↑
L Chord-only Full Chord-only Full

12 3.29B 0.87% 0.428 0.371 0.239 0.672

24 3.31B 1.66% 0.408 0.358 0.397 0.747

36 3.33B 2.44% 0.396 0.344 0.410 0.772

48 3.36B 3.20% 0.401 0.351 0.412 0.791

Table 3. The performance of models with different L values under the chord-only condition.

make {query, key, value} more compatible, we use the fu-

sion of Ql and Q
p
l

as the query instead of a single Ql:

S
′

l
= Self-Attention(Ql +Q

p
l
,K

p
l
,V

p
l
). (12)

Following this, we combine Sl and S
′

l
using a zero-

initialized learnable gating factor gl. Additionally, to main-

tain the text controllability of the model, we then compute

the cross attention between textual embedding and them:

H l+1 = Cross-Attention(Sl + gl · S
′

l
, text). (13)

All the layers in MusicGen are frozen, including the

QKV-projector, Self-Attention, and Cross-Attention lay-

ers. Hence, the total trainable parameters only comprise

H
p
0 , W p, W a, W e, zpos, and gl. Moreover, the pro-

posed adaptor can learn in a semi-supervised manner using

pseudo-separated tracks, pseudo MIDI, and pseudo chord

labels. Additionally, during training, each music piece

is assigned to a vague text description randomly sampled

from a small set of predefined phrases, eliminating the re-

quirement for text-audio data pairs.

5. EXPERIMENT

5.1 Datasets

The training dataset consists of 299 unannotated instru-

mental songs. We collect 150 of them from an open-

source dataset MUSDB18 [25] and download the remain

149 songs from the internet. The latter subset predomi-

nantly consists of Pop songs, with a limited data of other

genres such as Jazz and Rock. We omit the silent start and

end segments of each training song, yielding 17.12 hours

of audio. We employ Demucs to extract drum tracks, a

chord recognition model [22], an automatic transcription

model [26], and a beat tracking model [24] to generate

pseudo chord, MIDI, and beat labels.

The test set comprises 50 songs with chord, beat, and

MIDI annotations from RWC-POP-100 [27]. Vocals are

excluded by a music source separation model Demucs

[28].

5.2 Training Configuration

We train the proposed model using 4 RTX8000s with an

initial learning rate of 2e-3 and a batch of 24 20-second

samples for 10 epochs. We set the warm-up epoch to 2

and update the model using a cross-entropy reconstruction

loss. During training, for each audio sample, we simply

sample a text prompt from a text description set for each

music segment: {melodic music, catchy song, a song, mu-

sic tracks}.

5.3 Evaluation

We separate each audio clip in the test set into 4 stems

using Demucs and discard the vocal track. As shown in

Table 2, “Chord-only” signifies no drums and MIDI con-

trols, while “Full” indicates both drums and MIDI con-

trols. Within each group, we generate 16 20-second audio

samples per given chord progression, employing various

text prompts while keeping the same chord unchanged. In

total, we have 4 test groups, each with 800 generated audio

samples.

We report weighted recall score for chord accuracy,

standard F-measure for rhythm control, CLAP [29] score

for text control evaluation, and Fréchet Audio Distance

(FAD) [30] for audio quality measure. As depicted in

Table 2, Chordrec represents chord root accuracy, and

Chord∗

rec assesses full chord accuracy. FAD∗

vgg quan-

tifies the audio dissimilarity between generated samples
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(a) Chord and rhythm control (b) Chord and rhythm control with MIDI hints

Figure 3. Comparison of generated samples and groundtruth. The top two rows are generated samples, while the bottom

rows are reference soundtracks. The text prompt is “lazy jazz composition features a captivating saxophone solo that effort-

lessly melds with piano chords, skillfully weaving its way through the melody with languid grace. Instruments: saxophone,

piano, drums”.

Figure 4. The variation of |gl| during training.

and groundtruth audio from the RWC-POP-100 subset,

whereas FADvgg assesses this dissimilarity using the re-

maining 50 audios within RWC-POP-100.

5.4 Results

As illustrated in Table 2 and Figure 3, our model excels

in chord and rhythm control while maintaining the text-

conditioned ability, even though we do not train the model

with real text annotations. We do not report chord and beat

accuracy for the baseline model, as it cannot use these con-

trols. Code details and more demos are publicly available

online.

5.4.1 Low-resource Fine-tuning

During fine-tuning, our observations suggest that our

model works better with a smaller training dataset char-

acterized by high-quality audio fidelity than a larger one

featuring pseudo-separated instrumental ground truth. As

indicated in Table 3, we discern a trade-off between con-

trollability and semantic correlation. As the number of

trainable layers increases, the model achieves a simulta-

neous improvement in chord recall score while witnessing

a reduction in CLAPsrc. In addition, as shown in Fig 4, as

the layers go deeper, the absolute value of gate factor gl
increases. It demonstrates the proposed adapter primarily

affects the topmost layers of the decoder transformer, im-

plying that the lower layers are likely responsible for mod-

eling high-level semantics, while the upper layers shape

the finer details of the content.

5.4.2 Chord and Rhythm Control

As shown in Table 2 and Fig 3(a), the chord control capa-

bility of our model strengthens as MIDI hints are provided.

Additionally, the results highlight the model’s adeptness at

rhythm control when a drum track is included. However, in

cases of semantic conflict between the content-based con-

dition and the text prompt, we observe that the model tends

to prioritize the former, leading to music that aligns with

the drum pattern rather than the prompt.

5.4.3 Variation Generation and Arrangement

As depicted in Fig 3(b), our model, with the assistance of

MIDI hints, can produce variations by integrating musi-

cal elements from conditioned MIDI tracks, such as mo-

tifs and walking bass. Furthermore, we have observed in-

stances where the generated audio aligns with the original

main or counter melodies. This facilitates idea-driven vari-

ation generation and semantic-based arrangement within

the provided polyphonic piano roll.

6. CONCLUSION

We present a content-based music generative model,

achieved by fine-tuning a pre-trained Transformer-based

audio language model using the proposed condition adap-

tor. Our experimental results substantiate its proficiency

in seamlessly integrating chord progressions, rhythm pat-

terns, MIDI, and text prompts into the generated music.

Our work bridges the gap of direct control via musical ele-

ments and audio conditions in the music audio generation

field. Furthermore, the proposed condition adaptor facil-

itates efficient low-resource fine-tuning, even with a rela-

tively small unannotated training set. Nonetheless, results

generated with conflicting audio, MIDI, and text prompts

may lack musicality and may not fully meet semantic con-

trol expectations. In the future, we aim to explore further

enhancements in the areas of harmonic direct control and

content-based generation.
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[28] A. Défossez, N. Usunier, L. Bottou, and F. Bach,

“Demucs: Deep extractor for music sources with

extra unlabeled data remixed,” arXiv preprint

arXiv:1909.01174, 2019.

[29] Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick,

and S. Dubnov, “Large-scale contrastive language-

audio pretraining with feature fusion and keyword-to-

caption augmentation,” in ICASSP 2023-2023 IEEE In-

ternational Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[30] K. Kilgour, M. Zuluaga, D. Roblek, and M. Shar-
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ABSTRACT

Generative models are starting to become very good at gen-

erating realistic text, images, and even music. Identify-

ing how exactly these models conceptualize data has be-

come crucial. To date, however, interpretability research

has mainly focused on the text and image domain, leav-

ing a gap in the music domain. In this paper, we investi-

gate the transferability of straightforward text-oriented in-

terpretability techniques to the music domain. Specifically,

we examine the usability of these techniques for analyz-

ing how the generative music model MusicGen constructs

representations of human-interpretable musicological con-

cepts. Using the DecoderLens, we gain insight into how

the model gradually composes these concepts, and using

interchange interventions, we observe the contributions of

individual model components in generating the sound of

specific instruments and genres. We also encounter several

shortcomings of the interpretability techniques for the mu-

sic domain, which underscore the complexity of music and

need for proper audio-oriented adaptation. Our research

marks an initial step toward understanding generative mu-

sic models, fundamentally, paving the way for future ad-

vancements in controlling music generation.

1. INTRODUCTION

Generative AI systems for music have become mainstream

in the past year, and have become a popular application for

consumers, an eye-catching product for AI engineers and

companies, and a key research topic for researchers. The

most successful of these systems are built on top of recent

advances in deep learning for text and audio encoding, and

add a large text-to-music model, using the Transformer-

architecture [1], to allow users to generate music from a

text and/or audio prompt [2–5].

These systems are typically trained end-to-end, and

present us with the infamous black box problem: it is ex-

*These authors contributed equally to this work.

© M. A. Vélez Vásquez, C. Pouw, J. A. Burgoyne, and W.

Zuidema. Licensed under a Creative Commons Attribution 4.0 Interna-

tional License (CC BY 4.0). Attribution: M. A. Vélez Vásquez, C.

Pouw, J. A. Burgoyne, and W. Zuidema, “Exploring the inner mecha-

nisms of large generative music models”, in Proc. of the 25th Int. Soci-

ety for Music Information Retrieval Conf., San Francisco, United States,

2024.

tremely difficult to understand what is happening in the bil-

lions of mathematical operations between input and gen-

erated output. This severely limits the ability of users to

influence the generated output (other than by just trying a

different prompt), of companies to trace an individual out-

put to examples from the training set (and give credit where

credit is due), of engineers to diagnose shortcomings and

improve the system (other than by retraining on a better

dataset or bigger model) and of music researchers to relate

the behavior of these models to the large body of existing

theoretical and empirical work on how music works.

‘Opening the black box’ of generative music models is

therefore a key new area of research. In this paper, we build

on advances with interpretability techniques for generative

text models. Although there are many important differ-

ences between text and music (including their discrete ver-

sus continuous nature, and the temporal resolution needed

to build good models), we find that those techniques can be

adapted to the music domain and indeed give us insights

into the inner mechanisms. We focus on one representa-

tive, open-source generative music model, MusicGen [5],

and on two representative human-interpretable concepts:

musical instrument and genre. We ask: can we localize

and manipulate those concepts in MusicGen? We report

success on these tasks, and discuss in the final parts of the

paper how these initial steps might be extended to the full

toolbox needed to successfully address the negative conse-

quences of the black box problem.

2. RELATED WORK

Interpretability research is relatively sparse in the music

domain. Previous work has analyzed neural models trained

on symbolic music representations (MIDI) using prob-

ing classifiers [6, 7], visual inspection of the embedding

space [8], listenable explanations for classification mod-

els [9, 10], or post-hoc explanations in the form of high-

lighted parts of a piano roll [11]. To the best of our knowl-

edge, no previous work has tried to interpret generative

music models trained on raw audio data.

In the text domain, the Transformer architecture is dom-

inating the field [1]. Recent advancements in interpretabil-

ity methods are built on a key characteristic of Transformer

models: their use of residual connections across layers.

Typically, each layer of the Transformer contains an atten-

tion component and a Multilayer Perceptron (MLP), both
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Figure 1: Architecture of MusicGen. SA = self-attention, CA = cross-attention, MLP = Multi-Layer Perceptron. The

self-attention allows for communication between audio tokens; the cross-attention allows for communication between the

audio tokens and the conditioning signal (consisting of an encoded text prompt and optionally an encoded melody prompt).

of which interact with the residual stream. This arrange-

ment ensures that information in the residual stream re-

mains accessible throughout all layers, facilitating the de-

velopment of stable representations.

One method that exploits this characteristic is the De-

coderLens [12]. It is an adaptation of the LogitLens [13],

which was designed to interpret intermediate representa-

tions of decoder-only Transformer models. It applies the

unembedding matrix to intermediate layer outputs to ob-

tain a logit distribution over the vocabulary for each inter-

mediate layer. The DecoderLens was designed to interpret

the intermediate representations of encoder-decoder mod-

els. It applies the decoder to intermediate encoder outputs,

providing insight in what information that can be decoded

from earlier layers. In the original DecoderLens study,

the authors use the DecoderLens to analyze how encoder–

decoder models build meaningful representations for tasks

like machine translation and question answering.

Additionally, interchange interventions have been

used to identify model components that are causally in-

volved in specific behavior, such as greater-than reason-

ing [14], pronoun resolution [15], and gender bias [16,17].

By systematically altering model inputs or components and

observing resultant changes in behavior, researchers have

gained valuable insights into the underlying mechanisms

driving model performance and decision making.

3. EXPERIMENTAL SETUP

We conduct two interpretability experiments, one using the

DecoderLens and one using interchange interventions, for

interpreting the inner workings of a popular generative mu-

sic model, MusicGen [5].

MusicGen is an open-source, Transformer-based mu-

sic generation model, built by researchers at Meta [5]. Its

architecture is sketched in Figure 1. The model gener-

ates discrete audio tokens, optionally conditioned on a text

prompt and/or a melody. Text prompts are first processed

by a Transformer-based text encoder; music prompts by a

32-kHz EnCodec [18] tokenizer sampled at 50 Hz. Mu-

sicGen is autoregressive, and transforms its input over

successive layers through multi-head self-attention (inte-

grating information across timesteps) and MLP compo-

nents, while incorporating information from the text and/or

melody prompt through cross-attention to the respective

encoders. The generated audio tokens are then decoded

into a waveform by an EnCodec decoder.

We analyze three model sizes: MusicGen-small (300M

parameters, 1024 dimensions), MusicGen-medium (1.5B

parameters, 1536 dimensions), and MusicGen-large (3.3B

parameters, 2048 dimensions). We set the generation du-

ration to 4 seconds and keep the rest of the MusicGen pa-

rameters at their default values.*

In all of our experiments, we only condition MusicGen

on text prompts, not on melody prompts. We constructed

the following template for our text prompts: Compose a

[MOOD] [GENRE] piece with a [INSTRUMENT] melody.

Use a [TEMPO] tempo. We only modify the components

in between brackets and keep the remaining context fixed.

3.1 Experiment 1: DecoderLens

In our first experiment, we use the DecoderLens to glob-

ally examine how MusicGen builds up representations of

musicological concepts across its Transformer layers. This

involves extracting intermediate representations from each

layer and using the EnCodec decoder to map these to au-

dio. We examine the representation of musical instru-

ment and genre. We select four instruments and six genres

(listed in Table 1) and construct 100 text prompts per cate-

gory using our predefined template. We feed these prompts

to MusicGen and use the DecoderLens to obtain 100 music

outputs for each of the 24 Transformer layers.

We evaluate the recognizability of our selected musi-

cological concepts within the intermediate music outputs

by employing an audio classifier that was among the top-

ranking classifiers of the 2021 HEAR challenge [19]. This

multi-label classifier, trained on AudioSet [20], provides a

logit distribution across 527 audio classes, including both

musicological concepts and other sounds such as speech

and environmental noises. We run each intermediate mu-

sic output through the audio classifier and compute the

normalized discounted cumulative gain (NDCG) [21],

a metric commonly used in information retrieval to mea-

sure ranking quality. We consider this to be a proxy for the

recognizability of a specific concept.

For each concept, we establish an ‘ideal ranking’ of the

audio classes by assigning relevant labels (listed in Table

*For our code and listening examples, see our GitHub page: https:
//github.com/Marcel-Velez/musicgen-mech-interp
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Category Selection Relevant Labels

Instrument Guitar Guitar, Acoustic Guitar, Electric Guitar,
Bass Guitar, Plucked String Instrument

Piano Piano, Electric Piano, Keyboard (musi-
cal)

Trumpet Trumpet, Brass Instrument
Violin Violin/Fiddle, String Section, Bowed

String Instrument

Genre Classical Classical Music
Jazz Jazz, Rhythm and Blues
Pop Pop Music
Rock Rock Music, Rock and Roll, Progressive

Rock, Punk Rock
EDM Electronic Dance Music, Electronic

Music, Techno, Drum and Bass, Dub-
step, House Music

Hip Hop Hip Hop Music

Table 1: Relevant labels of the external audio classifier

[19] for each category.

1) a relevance score of 1, while assigning all other labels

a score of 0. This methodology facilitates a comparison

between the predicted ranking generated by the audio clas-

sifier and our predefined ideal ranking. NDCG returns a

high score when the relevant labels from our ideal ranking

are ranked high by the audio classifier, with a score of 1.0

indicating a perfect predicted ranking.

3.2 Experiment 2: Interchange Interventions

In our second experiment, we use interchange interven-

tions to identify the crucial model components responsi-

ble for generating specific musical instrument and genre

sounds. The workflow for performing these interventions,

which we apply for every permutation of two categories in

Table 1, is as follows.

1. Construct two sets of text prompts: one for a con-

cept such as guitar (henceforth the original con-

cept), and one for a contrasting concept such as pi-

ano (henceforth the desired concept).

2. Run both sets of prompts through MusicGen and

save the output of each individual component within

the MusicGen Transformer (these model compo-

nents are further explained in section 3.2.1). This

leaves us with two activation caches: one for the

original concept, and one for the desired concept.

3. While running MusicGen on the original concept

prompts again, replace the output of a specific model

component with the average output of that model

component across all desired concept prompts. Af-

ter the intervention, the forward pass continues as

normal, but yields an intervened music fragment.

Repeat this step for all model components.

4. To evaluate the effect of each individual interven-

tion, run a classifier on the original and intervened

music fragment, and assess how the odds for the

original and desired concept labels changed (we use

the same audio classifier that we used for our De-

coderLens experiments). If the intervention was

effective, the odds for the original concept should

have decreased, and the odds for the desired concept

should have increased.

3.2.1 Intervention techniques

We explore two intervention techniques: replace and ad-

just. With the “replace” technique, we entirely sub-

stitute an activation from an individual original concept

prompt with the average activation of 100 desired concept

prompts. With the “adjust” technique, we first subtract the

average activation of 100 original concept prompts from

an individual original concept activation. Then, we add the

average activation of 100 desired concept prompts to that

result. The latter technique is inspired by the idea that, in

language models, semantic properties of words can be ad-

justed by adding or subtracting specific word vectors, e.g.,

king – man + woman = queen [22], or in our case, music

with guitar – guitar + piano = music with piano.

We perform the interchange interventions across all 24

Transformer layers of MusicGen. Each layer consists of a

self-attention block, a cross-attention block, and a Multi-

Layer Perceptron (MLP). Thus, each intervention consists

of swapping the output of one of these three components

per layer individually. For a single text prompt, this adds

up to 24 layers × 3 layer components = 72 interventions.

3.2.2 Within-category vs. cross-category interventions

We investigate intervention effects on both instrument

prompts and genre prompts. For each instrument and

genre category listed in Table 1, we construct 100 text

prompts based on the template outlined in Section 3. We

then perform within- and cross-category interventions.

In within-category interventions, we interchange model

activations between two sets of instrument prompts, or be-

tween two sets of genre prompts. For instance, we intro-

duce piano activations during a forward pass intended for

guitar, or we introduce jazz activations during a forward

pass intended for classical.

In cross-category interventions, we interchange model

activations between a set of instrument and a set of genre

prompts. For example, we introduce piano activations dur-

ing a classical forward pass, or we introduce jazz activa-

tions during a guitar forward pass.

3.2.3 Evaluating Intervention Effects

An ideal intervention removes the original concept and in-

troduces the desired concept, but does not change anything

about the rest of the music. We therefore evaluate the inter-

ventions along two axes: intervention effectiveness and

intervention precision.

We evaluate intervention effectiveness using a metric

that quantifies the impact on both the original and desired

concept, inspired by the metric used in [23]. Specifically,

we calculate:

log
odds(originalbefore)

odds(originalafter)
− log

odds(desiredbefore)

odds(desiredafter)
(1)

A high score indicates that the odds of the original concept

decreased as a result of the intervention, or that the odds

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

793



0 2 4 6 8 10 12 14 16 18 20 22

0.2

0.3

0.4

0.5
Re

co
gn

iza
bi

lit
y

A. Instruments

guitar piano trumpet violin

0 2 4 6 8 10 12 14 16 18 20 22
Transformer Layer

0.2

0.3

0.4

0.5

Re
co

gn
iza

bi
lit

y

B. Genres

classical
jazz

pop
rock

edm
hiphop

Figure 2: Results for Experiment 1 (DecoderLens): Av-

erage recognizability of instruments (A) and genres (B)

across Transformer layers in MusicGen-small (as mea-

sured by the NDCG).

of the desired concept increased. We calculate odds by

applying a softmax function over the logit distribution of

our external audio classifier.*

We evaluate intervention precision using the Kullback-

Leibler (KL) divergence, which quantifies the overall

shift in softmax distribution across all audio labels. This

metric gauges how much the intervened music fragment

differs from the original. Ideally, our intervention only has

an effect on the odds for the original and desired concept

labels, leaving the odds for the others unchanged. This

means that low KL scores are desirable, but for ease of in-

terpretation, we reverse them to make higher scores better.

4. RESULTS

4.1 Results Experiment 1: DecoderLens

Figure 2 shows the average recognizability of our selected

instruments and genres across the Transformer layers of

MusicGen-small. For instruments, we observe relatively

stable recognizability in layers 0-19, followed by a grad-

ual increase in layers 20-23. This indicates that MusicGen

gradually builds up the representation of individual musi-

cal instruments across layers, with the final layers playing

a crucial role. The pattern for genres is different. Except

for EDM, all genres exhibit the same recognizability across

layers, with a slight increase in the final layer. In contrast,

EDM exhibits high scores across layers, with a gradual de-

cline in the final layers. This pattern could be attributed to

the genre distribution in MusicGen’s training data: EDM

is disproportionately represented [5], possibly leading to

the model overfitting to EDM characteristics. It could be

that most Transformer layers are tuned to generate music

reminiscent of EDM, and only the final layer has learned

to integrate genre information from the input text prompt.

An alternative explanation is that the DecoderLens is

*For simplicity, we only use one label for each concept in this analy-
sis, i.e., the first label listed for each category in Table 1.
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Figure 3: Self-similarity matrices (Euclidean distance) of

intermediate layer outputs of the Transformer block within

MusicGen-small, when conditioning the model on text

prompts containing the instrument guitar (left) or contain-

ing the genre EDM (right). Both matrices are averaged

over 100 prompts. A dark color indicates high similarity, a

light color indicates low similarity.

currently not optimized for music. Upon listening to De-

coderLens outputs, we noted instances of distortion and

disorganization. While these outputs predominantly re-

semble the EDM genre when compared to other genres like

classical or jazz, they may simply reflect artifacts of the

EnCodec decoder, trained specifically for decoding repre-

sentations from the final Transformer layer. The represen-

tations of earlier layers may be harder to decode, as they

may follow a different representational distribution.

To explore this alternative hypothesis, we examined the

similarity of intermediate layer outputs within the Trans-

former block of MusicGen-small. We re-ran the model

with the same 100 text prompts for each concept and ex-

tracted the output of each intermediate Transformer layer.

We averaged these layer outputs across time and then com-

puted the Euclidean distance between all combinations of

layers. Figure 3 displays the results for guitar and EDM,

but similar patterns were observed for the other instru-

ments and genres listed in Table 1. We indeed observe that

the final layer (24) is highly dissimilar to the other layers.

Further exploration, possibly involving a “translation

model” that maps intermediate layer outputs to final layer

outputs [24, 25], could help to refine the DecoderLens for

the music domain.

4.2 Results Experiment 2: Interchange Interventions

4.2.1 Intervention effects across model components

Figure 4A shows the average effect of intervening on dif-

ferent components (MLP, self-attention, cross-attention)

across the Transformer layers of MusicGen-small, for both

the “replace” technique (solid lines) and the “adjust” tech-

nique (dashed lines) (results for the medium and large

model can be found in the Appendix). Starting with the

“replace” technique, we observe a clear contrast between

the MLP and the attention components: the MLP con-

sistently shows positive intervention effects, whereas both

self-attention and cross-attention predominantly show neg-

ative effects. With the “adjust” technique, intervening on

the attention components results in positive scores, but they
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Figure 4: Results for Experiment 2 (interchange interventions) across model components and layers, for MusicGen-small

only. Solid lines show the result for the “replace” technique, dashed lines show the results for the “adjust” technique. Figure

A shows intervention effectiveness (as measured by our log odds ratio); Figure B shows intervention precision (as measured

by the inversed KL-divergence). Higher scores are better for both metrics.

Figure 5: Intervention effect vs. intervention precision of

the MLP across model sizes (small, medium, large) and in-

tervention techniques (replace vs. adjust). The datapoints

are labelled according to the layer where the intervention

was performed (b = beginning, i = intermediate, e = end).

are still much lower than intervening on the MLP. This sug-

gests that manipulating the sound of instruments and gen-

res is achievable by intervening on the MLP output, but not

to the same extent by intervening on the attention outputs.

Shifting focus to Figure 4B, we observe that interven-

tions on all model components produce negative interven-

tion precision scores This means that all interventions in-

duce some type of alteration to the audio output. To in-

terpret the magnitude of these changes, we compare them

to the “ideal” intervention precision score, where only

the original concept and desired concept probabilities flip

while everything else remains unchanged. We find that the

actual stability scores are much lower than this ideal sce-

nario, suggesting that the interventions are rather invasive

and change the audio in a way that goes beyond merely

flipping the original concept to the desired concept. A po-

tential future approach could be to perform the interven-

tions on specific frames rather than on the entire audio [26].

4.2.2 Dissecting intervention effects of the MLP

Figure 4A suggests that interventions on the MLP yield

the desired alteration (reducing the original concept and

increasing the desired concept). We now analyze these ef-

fects in more detail. Figure 5 shows the relationship be-

tween intervention effectiveness and intervention precision

for different model sizes (small, medium, large) and inter-

vention techniques (replace vs. adjust) for the MLP only.

For each combination of model size and intervention tech-

nique, we plot three scores: 1) the score for intervening on

the first layer, 2) the average score for intervening on the

intermediate layers, and 3) the score for intervening on

the final layer (we average the intermediate layers since

they showed very stable effects in Figure 4).

The effectiveness of intervention techniques seems to

depend on model size. We see that the “adjust” technique

performs best with the small model, while the “replace”

technique shows better results with the medium and large

models. We also notice that using the “replace” technique

for the large model yields the highest intervention preci-

sion overall. This suggests that the large model might rep-

resent musicological concepts in a more modular manner

compared to the smaller ones; thus, we can more easily

modify only a single concept without affecting other con-

cepts. One possible explanation could be that in the smaller

models, due to limited space, individual neurons represent

multiple features simultaneously, a phenomenon known as

superposition [27].

Finally, for all model sizes, we observe that interven-

ing at the final layer produces the best results, followed

by intervening at intermediate layers. Intervening at the

first layer tends to be least effective. This pattern may be

attributed to the model’s ability to “compensate” for inter-

ventions: when we intervene at early layers, the model still

has plenty of opportunity to change the original or desired

concept as it progresses through its forward pass.

4.2.3 Effect on original vs. desired concept

Figure 6 displays the intervention effect on the orig-

inal and desired concept separately, as well as the

combined score (scoreoriginal + scoredesired) for all three

model sizes. We also separately show the effects for

different intervention types: inter-category (instrument-
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Figure 6: Combined and separated intervention effect of the replace technique on the original and desired concept for the

MLP only, in the small (A), medium (B), and large (C) version of MusicGen. Bar colors indicate the intervention type

(inter-category/cross-category).

instrument, genre-genre) and cross-category (instrument-

genre, genre-instrument). Since intervention effects were

similar across layers, each bar represents the average inter-

vention effect across layers. We showcase the results for

the “replace” technique here; the results for the “adjust”

technique can be found in the Appendix.

When examining the scores for the original and de-

sired concepts separately, a clear pattern emerges across

all model sizes: the impact on the original concept is much

bigger than on the desired concept. This suggests that in-

terventions effectively reduce the original concept, but do

not introduce the desired concept as effectively.

For the inter-category intervention effects (blue and or-

ange bars), we observe that instrument–instrument inter-

ventions are much more effective than genre–genre inter-

ventions. This indicates that it is easier to manipulate

the sound of individual instruments in the output than the

sound of genres. This in turn suggests that instruments are

represented in a more modular fashion than genres, which

makes sense given the complex combination of features

that are typically involved in a genre.

The pattern for cross-category interventions (green

and red bars) is similar: instrument–genre interventions

are more effective than genre–instrument interventions.

Specifically, interventions inserting genre activations dur-

ing a forward pass with an instrument prompt notably im-

pact the instrument sound—but interventions inserting in-

strument activations during a forward pass with a genre

prompt have a less pronounced effect on the genre. This

supports the notion that genres are represented with multi-

ple features, making them more resistant to manipulation

compared to instruments’ more modular representation.

5. DISCUSSION

In this work, we explored the usability of text-oriented in-

terpretability techniques for analyzing the representation

of human-interpretable musicological concepts in Music-

Gen. We applied the DecoderLens for globally analyz-

ing how the model conceptualizes musical instruments and

genres across layers, and applied interchange interventions

to dissect the role of individual layer components in gener-

ating specific instrument and genre sounds across several

model sizes.

In our investigation, applying the DecoderLens to Mu-

sicGen revealed significant challenges in generating co-

herent audio from intermediate layers, a limitation under-

scored by the self-similarity matrix which showed that the

last layer is vastly different from the rest of the model.

Similarly, our attempts at interchange interventions, aimed

at dissecting the influence of specific model components

per layer on musical output, was fairly effective in remov-

ing existing musical concepts but was unsuccessful when

it came to injecting new ones into the network, across all

examined model sizes. These outcomes not only show

the complexities inherent in interpreting generative music

models but also underscore the need for music/audio spe-

cific intervention techniques.

In future work, we aim to adapt these interpretability

techniques to be more suitable for audio. As for the De-

coderLens, a single linear layer could be trained to map

intermediate representations to final layer representations,

possibly allowing for better decodability. Furthermore, we

aim to explore different intervention techniques (e.g., inter-

vening on specific frames instead of the entire sequence),

which could contribute to less drastic alterations of the

audio while still changing the desired concepts. These

improvements may allow us to additionally explore other

facets of music generation, such as tempo and rhythm.

5.1 Limitations

We used quantitative metrics based on a machine learn-

ing model to evaluate intervention effects, acknowledging

that this approach introduces extra noise. However, it al-

lowed us to investigate a larger parameter space compared

to a user-listening study. For instance, we evaluated 100

prompts across multiple model components (100 * 3 com-

ponents * 48 layers for the large model) for each permuta-

tion of concepts. Although human ratings from a listening

study could provide many complementary insights, setting

up such experiments is costly. Additionally, the authors

themselves listened to several intervention results and no-

ticed a lot of variation across samples, complicating the

selection of a representative subset for a listening study.

Therefore, we believe establishing robust quantitative re-

sults first is more practical. These results can inform the

design of more focused and efficient listening studies, en-

suring effective resource use and meaningful insights.
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ABSTRACT

This study aims to measure the similarity of melodies ob-

jectively using natural language processing (NLP) tech-

niques. We utilize Mel2word which is a melody tokeniza-

tion method based on byte-pair encoding to facilitate the

semantic analysis of melodies. In addition, we apply two

word weighting methods: the modified Tversky measure

for word salience and the TF-IDF method for word impor-

tance and uniqueness, to better understand the character-

istics of each melodic element. We validate our approach

by comparing song vectors calculated from an average of

Mel2Word vectors to the ground truth in 108 cases of mu-

sic copyright infringement, sourced from an extensive re-

view of legal documents from law archives. The results

demonstrate that the proposed approach is more in accor-

dance with court rulings and perceptual similarity.

1. INTRODUCTION

Since the landmark case of Millett v. Snowden 1 in 1844,

music plagiarism has been a contentious issue for over a
century. The term “plagiarism” refers to the subcategory of

copyright infringement that involves the false designation

of authorship and other unattributed uses of copyrighted

material [1]. In determining plagiarism, courts have tradi-

tionally considered three major aspects of music infringe-

ment lawsuits: 1) copyright ownership, 2) accessibility,

and 3) substantial similarity [2]. “substantial similarity”,

which is the most crucial yet debatable factor, lacks a com-

plete definition with no general agreement [3, 4, 5] due to
the varying requisite level from case to case [5]. Court

analyses are inconsistent within the same circuit, making

it more a matter of quality than quantity [6, 7].

1 Millett v. Snowden, available at: https://blogs.law.gwu.
edu/mcir/case/millett-v-snowden/

© S. Park, H. Kim, J. Jung, J. Park, J. Kim, J. Nam. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: S. Park, H. Kim, J. Jung, J. Park, J. Kim,

J. Nam, “Quantitative Analysis of Melodic Similarity in Music Copy-

right Infringement Cases”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

Melodic similarity is usually the determining element

in assessing whether or not two musical works are sub-

stantially similar [8, 6]. Melody is the most memorable

and characteristic feature of music [9, 10], and many

cases involve the plagiarism of the melody of an origi-

nal work [11, 9, 12]. Although numerous studies have de-

veloped various quantitative measures of melodic similar-

ity [13, 12, 14, 15], it still remains unclear what constitutes

substantial similarity. While a high degree of melodic sim-

ilarity may suggest plagiarism, it does not necessarily in-

dicate plagiarism. Instead, substantial parts of an existing

work that are considered essential and worthy of protection

can be crucial in determining plagiarism. For example, in
the case of Hawkes & Sons v. Paramount Film Services

(1934, as cited by [16] and [17]), twenty seconds (of 4 min-

utes) of a musical work without permission was deemed in-

fringement. Therefore, the use of any “recognizable” parts

may establish infringement, even if the overall similarity

of the pieces is questionable [17].

This study aims to develop a novel approach for quanti-

tatively evaluating the substantial similarities of melodies

by employing natural language processing (NLP) tech-

niques. Due to the shared characteristics between music

and language [18, 19, 20], various NLP approaches have

been applied to music analysis in different ways [21, 22,

23, 24]. The primary focus of the proposed approach is to
define the individual elements of melody using NLP-based

methods. To achieve this, we employ Mel2word [25], a
novel method for melody segmentation using NLP tok-

enization techniques to represent melodies as word-like

units and capture semantic information through word em-

beddings. In addition, two word weighting methods are

proposed to understand the characteristics of individual

melodic elements: a modified Tversky measure for word

salience and the TF-IDF method for word importance and

word uniqueness. The method is evaluated on 108 pla-

giarism cases with court decisions and perceptual similar-

ity as ground truth, compiling data from diverse sources

to represent one of the most extensive symbolic melodic

datasets available. This study provides detailed case anal-

yses, showcasing the numerical and graphical representa-

tion of the proposed method and its practical applications.

By doing so, we aim to provide empirical and quantitative
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evidence for the qualitative aspects of substantial similari-

ties in music.

2. LITERATURE REVIEW

There have been numerous studies on plagiarism detection

based on melodic similarities, which can be broadly cate-

gorized into two types of approaches: (1) audio-based and

(2) text-based.

Audio-based approaches employ music signal process-

ing to develop plagiarism detection tools that can identify

similar parts of music [26, 27, 28, 29]. While they use ad-

vanced audio-based analysis techniques to determine the

level of similarity between songs, they mainly focus on

identifying similarities rather than explaining how the de-

gree of plagiarism is related to the level of similarity. The

audio-based approaches are particularly useful in plagia-

rism cases involving unauthorized sampling or use of mu-

sical works. However, for research purposes related to

artistic analysis, notated music provides more useful in-

formation than audio-based analysis [15].

Text-based approaches analyze symbolic musical rep-

resentations, such as notated music. The study by [12]

is a remarkable attempt to quantitatively model court de-

cisions in plagiarism cases. This study compared sev-

eral similarity calculation algorithms and investigated how

melodic similarity calculated by text-based algorithms re-

lates to court decisions based on a sample of US copyright

cases from 1970. The study unveiled that an algorithm

rooted in statistical methods, notably Tversky’s similarity

measures [30], outperformed in predicting court decisions.

This finding was further corroborated by research con-

ducted by [31]. Percent Melodic Identity (PMI) also stands

out as another major measure in this context. Drawing

from automatic sequence alignment algorithms in the field

of molecular genetics, [32] introduced the PMI method

to quantify melodic similarity, which was further utilized

by [33, 34] to successfully predict plagiarism. Recent ad-

vancements in music research have demonstrated signifi-

cant progress, particularly in utilizing vectorized represen-

tations. These include fuzzy vector-based approaches [8],

CNN-based methods [35], and hybrid approaches [36].

While previous studies have explored the quantitative

similarities between melodies, the specific elements con-

tributing to plagiarism and the underlying reasons remain

unclear. This gap highlights the need for further investiga-

tion into what exactly constitutes melodic plagiarism and

“why” these particular elements are implicated. To address

this, we propose an NLP-based approach to define individ-

ual melodic elements by defining words as the basic unit

of text to reconstruct a melody as a sentence of meaning-

ful word units. We also introduce a function that combines

psychological and NLP models, particularly Tversky and

TF-IDF approaches, aiming to provide a comprehensive

framework for understanding melodic similarity.

3. METHODS

The proposed method involves three steps: 1) segmenting

melodies using Mel2Word [25], 2) vectorizing melodies

Figure 1: Example of (a) the Mel2Word representation

with (b) Byte Pair Encoding (BPE) process.

using the Word2Vec [37] algorithm, and 3) applying word-

by-word weighted measures to determine word salience,

importance, and uniqueness.

3.1 Textual Representation

Mel2word is a novel text-based representation method to
segment melodies into word-like units [25]. In this tex-

tual representation, each note is translated into a pitch fea-

ture indicating the interval’s direction and size, alongside

a rhythm feature denoted by the inter-onset interval (IOI)

between consecutive notes. Specifically, pitch features are

represented by the first character indicating the melody’s

direction (“U” for upward,“D” for downward, and “E” for

no change), followed by a two-digit number specifying the

interval size. Rhythm features are depicted with three-digit

numbers, obtained by multiplying the IOI by 100, assum-

ing a quarter note equals one beat with a 16th note quanti-

zation. This unit, as depicted in Figure 1-(a), composed of

two notes, form “morphemes” utilized for constructing a
melody word dictionary using Byte Pair Encoding, a com-

monly used tokenization technique in the field of NLP.

3.2 Byte-Pair Encoding

Mel2Word represents melodies as word-like units using

Byte Pair Encoding (BPE), a data-driven NLP method.

BPE is a bottom-up method that builds a vocabulary for

computational text analysis by replacing frequently occur-

ring byte pairs with a single and less frequently used byte

[38]. Originally developed for data compression, BPE has

found widespread adoption due to its successful applica-

tion in word segmentation for NLP tasks [39]. The uti-

lization of BPE in music, as implemented in Mel2word

has been effectively adopted for melody analysis, classi-

fying folk song families and jazz artists [25,40]. Similar to
its application in language, this method involves creating

subwords or tokens based on the frequency of consecutive

pairs. In other words, it identifies the most frequent con-

secutive pairs in the melody and merges them into a single

unit. As a result, the most frequent pairs are combined us-

ing an underscore (‘_’) symbol. Figure 1-(b) illustrates the

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

800



basic BPE process and the resulting token outcomes. 2

3.3 Word Embedding

Word embedding is a vector representation that captures

the meaning and relationships of words by representing

them as dense, distributed, and fixed-length vectors based

on their context in text. Built on the distributional hypoth-

esis [41], it maps words onto a high-dimensional space,

placing similar words close together. In music information

retrieval, word embeddings have been used to analyze and

model relationships between melodic elements. Specif-

ically, the Word2Vec model [37] has been successfully

employed in previous studies to represent notes [42, 43],

chords [44, 45] or motifs [46, 47] in a distributed vector

space. To capture the semantic analysis of melodic ele-

ments, we utilize the Word2Vec model in this study.

3.4 Toward the Substantiality of Melody

In determining the substantiality of music, the court has

considered the “distinctive characteristics” of the subject

matter as a crucial factor [48]. To evaluate the distinctive

features of a melody, we propose two methods drawn from

the fields of psychology and NLP: 1) assessing the salience

of a word or how noticeable it is, and 2) evaluating the

importance and uniqueness of a word or how important

and rare it is.

3.4.1 Word Salience

The Tversky ratio is a formula for similarity proposed by

Amos Tversky, a cognitive psychologist who suggested

that human perceptions and judgments of similarity are

based on the number of features two objects have in com-

mon and the salience of these features [30]. Tversky’s for-

mula is given by:

s(A, B) =
|A ∩B|

(|A ∩B|+ α|A \B|+ β|B \A|)
(1)

where A and B are sets, |A ∩B| is the number of com-

mon elements in A and B, |A \ B| is the number of el-

ements in A that are not in B, |B \ A| is the number of

elements in B that are not in A. The parameters α and

β adjust the impact of the unique elements of A and B

respectively, with higher s(A, B) indicating stronger sim-

ilarity. In the context of melody, features and elements

could refer to components such as note pitch or inter-onset

interval.

Since the original Tversky model does not account for

the individual salience of specific components, we intro-

duce a modified measure specifically designed to evalu-

ate the significance of individual melodic elements. This

adaptation evaluates the significance of each melodic ele-

ment by considering its prevalence in two melodies and its
distribution within each, providing a refined perspective on

2 Figures 1-(a) and (b) are sourced from [25]. More details on the
Mel2word representation and the BPE process, including the subsequent
steps of Dictionary Generation (Section 4.2) and Tokenization (Section
4.3) are found at [25].

their commonality and relative frequency. To evaluate the

significance of elements shared between two melodic se-

quences A, B and an element x of A, we propose a salience

measure T VA,B(x). When ax and bx represent the counts

of element x in sequences A and B respectively, along with

the lengths lA and lB of the sequences, the formula for

T VA,B(x) is given by:

T VA,B(x) =
ax

lA

ax

lA
+ α

(

1− ax

lA

)

+ β
(

1− bx
lB

) (2)

Here, α and β are coefficients designed to adjust for

the lengths of A and B, calculated as α = lA
lA+lB

and

β = lB
lA+lB

. 3 The T VA,B(x) measure evaluates the

salience of element x from the perspective of sequence A,

taking into account both shared and unique elements. This

method allows for a balanced evaluation across sequences,

aligning with Tversky’s concept of asymmetrical similar-

ity. By incorporating α and β, the measure provides a nu-

anced assessment of each element’s salience, considering

its frequency within the sequences and the overall sizes of

the melodies. This approach ensures a standardized mea-

sure, assigning a salience score ranging from 0 (indicating

no shared elements) to 1 (indicating fully shared), facilitat-

ing equitable comparisons regardless of sequence length.

3.4.2 Word Importance and Uniqueness

TF-IDF is a widely used algorithm in NLP that measures

the importance and uniqueness of a term in a document

compared to a collection of documents. It takes into ac-

count the frequency and rarity of each term in the doc-

ument and the corpus, respectively. The TF component

considers the relevance of a term proportional to its fre-

quency in the document, while the IDF component mea-

sures its rarity in the corpus. If a term is frequently used in
the corpus, it is considered less representative of a specific

document, and if it is rare, it is considered more relevant

to a specific document. The TF-IDF value is obtained by

multiplying the TF and IDF scores of a term in a document.

The formula is as follows:

TF-IDF(t, d) = TF(t, d)× IDF(t) (3)

where t represents a term or word in a document, d,

TF(t, d) represents the term frequency of t in d, and IDF(t)
represents the inverse document frequency of t in a collec-

tion of documents. In this study, each token in a melody is
treated as a single unit of text and the entire melody as a
single document. To determine the importance and unique-

ness of each melodic element, the TF and IDF scores are

utilized as weightings for the word embedding vectors, re-

spectively.

4. EXPERIMENTS

This section describes our empirical investigation of ana-

lyzing copyright infringement cases.

3 The constant 1 is derived from
lA

lA
for sequence A and

lB

lB
for se-

quence B.
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4.1 The Dataset

We collected copyright infringement cases from vari-

ous sources, including previous research and law school

databases. We prioritized the data provided by [34], who

used a similar sampling approach to [12] and included

updated metadata with perceptual data. 4 Additionally,

we extensively reviewed cases from the Music Copyright

Infringement Resource (MCIR) 5 and Lost in Music by

Westminster Law School 6 to compile a comprehensive

analysis, aiming to consider as many legal cases as pos-

sible. After the landmark case of Arnstein v. Porter,

which established the concept of substantial similarity, our

analysis delved into an extensive repository of legal docu-

ments and accompanying materials, up to 314 cases from

1946 to 2023. Following an in-depth review, we excluded

cases lacking audio or sheet transcription, those not involv-

ing similar musical elements (e.g., licensing, sampling, ar-

rangements, rap lyrics, etc.), and those without relevant ex-

pert commentary and opinions for the rulings. As a result,

we collected and transcribed into MIDI data on 116 cases

(Infringed N=32, Denied N=66, Settled N=18), encom-

passing 232 songs. We included settlement cases collected

in our database; however, for evaluation analysis, we in-

cluded only settlements with official payments or public

records of royalties or credit. In total, we analyzed 108

cases in this study.

4.2 Dictionary Generation

We utilized the Meertens Tune Collection - Folk Song

dataset (MTC-FS) to train our BPE model, consisting of

over 18,000 monophonic melodies from Dutch sources

spanning five centuries [49]. The MTC-FS is one of the

largest monophonic datasets, offering a rich repository

of melodies that have influenced both classical and mod-

ern music. We selected this dataset for its diverse range

rooted in oral transmission across generations, providing

a strong foundation for analyzing copyright infringement

cases across various eras and styles. With BPE applied to
the MTC-FS dataset, we initially constructed a base dictio-

nary, which serves as the primary resource for tokenization

in subsequent analyses. We constructed the base dictionary

using the Mel2word code by [25] 7 , applying BPE to ex-

tract words with a minimum frequency of 10 occurrences

and limiting the maximum unit size to 11 to prevent redun-

dancy.

4.3 Melody Tokenization

For tokenization, we utilized subsets of the base dictionary

to enable tokenization with dictionaries of varying sizes

for different levels of segmentation. The subsets were se-

lected based on the most frequent tokens in the base dic-

tionary. For instance, choosing 100 tokens would produce

4 Except for case 14 (Vargas v. Pfizer), as the supplied MIDI data did
not contain a melody.

5 https://blogs.law.gwu.edu/mcir/
6 https://www.lostinmusic.org/
7 https://github.com/saebyulpark/Mel2word

Figure 2: An example of melody tokenization (Dictionary

N=1000, pitch feature)

a dictionary with the 100 most frequent entries for tok-

enization. We relied on statistics from the base dictionary

for the maximum length (Mode) and minimum count pa-

rameters (Q1, 1st quartile). Consequently, we tokenized

melodies from copyright-infringed cases for subsequent

analyses using dictionaries of sizes N=100, 500, 1000,

and Full-token 8 , which indicates the maximum number

of words available with the parameter settings. Figure 2
illustrates an example of the resulting melody tokenization

in our dataset.

4.4 Melody Embedding

To build semantic word embeddings for melodic tokens,

we utilized Word2Vec embedding in our experiment. Us-

ing the MTC-FS dataset, we tokenized all songs for dif-

ferent dictionary sizes (N=100, 500, 1000, and Full) and

trained the corresponding Word2Vec models for each size.

We used the Gensim module [50], a Python implementa-

tion of the Word2Vec 9 , with a dimension size of 512, a
window size of 10, a minimum count of 2, and the skip-

gram model option, which is known to better represent

sparse words [51].

4.5 Similarity Calculation

Cosine similarity is a widely used measure of similarity be-

tween two vectors that quantifies the cosine of the angle be-

tween the two vectors in a high-dimensional space. In this

study, we used the cosine similarity to quantify the simi-

larity between two songs in infringement cases. In order

to determine the essential effectiveness of different meth-

ods, we opted to calculate melody vectors by averaging

as a baseline approach. Although vector summarization

through averaging involves a loss of information, it also

brings several advantages, such as simplicity in computa-

tion, low storage memory requirement, and faster process-

ing speed [52]. Consequently, to generate the melody vec-

tors for each song, we calculated the average of all word

vectors for each word unit using the trained Word2Vec

model.

4.6 Weight Functions

To assess individual melodic elements, we employed mul-

tiple weight functions. These weights are utilized for each

token when calculating the average vector of words to de-

rive the final melody vector. For each weight function,

8 With dictionary sizes of N=2399 for pitch, N=1184 for rhythm, and
N=3112 for both pitch and rhythm

9 https://radimrehurek.com/gensim/
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Figure 3: Summary of results with various dictionaries and weight presence.

Weight Function(w) Foundational Method

T V Tversky Model

T F TF-IDF

I D F TF-IDF

T F ∗ I D F TF-IDF

T V ∗ T F Tversky + TF-IDF

T V ∗ I D F Tversky + TF-IDF

T V ∗ T F ∗ I D F Tversky + TF-IDF

Table 1: Summary of Weight Functions

we defined specific parameters, as summarized in Table 1.

We calculated term frequency (T F ) and inverse document

frequency (I D F ) values using the TfidfVectorizer module

from the sklearn library 10 with the default settings. We

also computed the Tversky value (T V ) using the formula

described in Section 3.4.1 (Equation 2). To avoid zero-

multiplication for hybrid variables (e.g., T V ∗T F ∗I D F ),

we added one to each variable and multiplied it by the sub-

sequent value. Finally, all weights were experimented with

various normalization methods.

4.7 Evaluation

We conducted three types of evaluations, following the

previous work [32, 33, 34]. First, we assessed how well

the similarities evaluated by the algorithm corresponded

to the court’s decision. To measure this, we computed

the Area Under the ROC Curve (AUC), a commonly used

method to evaluate binary classification performance. Sec-

ond, we utilized AUC to determine TPR and FPR at differ-

ent thresholds, identifying the threshold with the highest

accuracy (ACC). Finally, we measured how well the sim-

ilarities correlated with human perceptual data provided

by [34] 11 , for which we computed the Pearson coefficient

only for the subset of songs with perceptual data available.

5. RESULTS

5.1 Overall Result

Figure 3 presents an overview of the results considering

different dictionaries and the presence of weights, with

combined feature (Pitch + Rhythm) and T V ∗ T F ∗ I D F

10 https://scikit-learn.org/
11 This data consists of a similarity scale ranging from 0 to

5 points, where 0 represents dissimilarity and 5 represents simi-
larity, available at: https://github.com/comp-music-lab/

music-copyright-expanded

weights achieving the highest scores. While the tokeniza-

tion method has a minor impact on AUC and ACC metrics,

it notably influences the correlation with perceptual data,

showing better performance across all dictionary sizes.

Additionally, the adoption of weights generally enhances

performance across most cases (except for morpheme-

level and Full-level).

Regarding measures related to legal decisions (AUC

and ACC), as previously discussed about performance lim-

its [34], once again, we found that the proposed method

was more effective in correlating with perception than with

court decisions. This is likely due to courts considering

various factors such as lyrics, arrangement, and other mu-

sical elements, as well as the worthiness of a melody to
be protected (e.g., Intersong-USA v. CBS). Additionally,

they consider the possibility of subconscious copying (e.g.,

Francis Day & Hunter v. Bron), and proof of access to
the original work (e.g., Ellis v. Diffie), even when simi-

larities between melodies exist. Since our study targeted

all possible cases involving melody, there may be various

confounding variables.

Interestingly, we noticed that the weight function un-

derperformed when analyzing melodies at the morpheme-

level (N = 0), possibly due to the high number of ran-

domly shared features at this level. Performance also de-

creased at the Full-level, likely because longer words led

to a decrease in shared features. Additionally, we found

that applying all weights multiplied by the Tversky model

improved performance, while the default T F and I D F
weights tended to reduce performance. This result sup-

ports the basic assumption of Tversky’s model that we per-

ceive similarity based on how many features are shared,

which is consistent with previous research [53, 12, 31]

showing a strong association of the Tversky model with

infringement decisions and perceptual similarity.

5.2 Comparison Results with Previous Studies

Table 2 compares evaluations conducted on subsamples

of 17 (N=17) 12 and 39 (N=39) 13 cases each, facilitat-

ing comparison with existing literature. As observed, our

method performed remarkably well, achieving the highest

scores for both sets. 14 These subsets consist of cases with

12 Based on [33], which includes 14 songs from [32].
13 While [34] included 40 cases; we analyzed 39, excluding Vargas v.

Pfizer due to the absence of melody.
14 Pitch feature, N=100, with quantile Gaussian normalization for 17

cases; pitch + rhythm, N=100 (AUC) and Full (ACC) with quantile Gaus-
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Cases
Savage

[32]

Yuan1

[33]

Yuan2

[34]
Proposed

N=17
AUC 0.69 0.61 0.61 0.94

ACC 0.80 0.71 0.71 0.94

N=39
AUC N/A N/A 0.73 0.79

ACC N/A N/A 0.75 0.79

Table 2: Comparison Results with Previous Studies

a significant indication of melodic similarity from the out-

set, making them subjects of a number of previous stud-

ies [12, 31, 32, 33, 34]. Therefore, they exhibited effective

discrimination based solely on the melody itself, compared

to our overall findings. Given that our study examined the

entire melodies obtained from the archive, we anticipate

that further investigation focusing on specific parts or cases

emphasizing the melody will yield even more intriguing

results.

5.3 Exploratory Result Analysis

Beyond the performance, the strength of our method lies

in its ability to numerically represent the characteristics

of each melodic element within a song. For example,

Figure 4 illustrates a copyright infringement case, Three

Boys Music v. Michael Bolton, where distinctive and

shared melodic features are quantified using T V , T F ,

I D F , and T V T F I D F . In this manner, by examining

these melodies, we can observe the numerical values of

their importance, uniqueness, and the degree to which they

are shared for each melodic element. Moreover, this can

play a crucial role when melodies are tokenized into more

meaningful units, potentially enhancing their interpretabil-

ity. For example, Figure 5 presents a cross-scape plot vi-

sualization, which provides a hierarchical analysis of the

similarities between two songs, indicating where and how

they are similar [54]. The left side represents the infringed

case (Three Boys Music v. Michael Bolton), while the right

side represents the denied case ( Baxter v. MCA, Inc.).

On the left, (a) depicts the morpheme-level, while on the

right, (b) showcases the token-level melody with weight-

ing applied. 15 As observed, at the morpheme level, seg-

mentation of each note leads to overall similarity across

all parts due to the frequently shared elements at the note

level. However, in the weighted tokenized songs, cer-

tain crucial phrases in the infringed case stand out notably

darker (i.e., more similar). This visually demonstrates how

our approach highlights specific parts that contribute to a
stronger similarity between two pieces of music. In this

way, by providing a quantitative method to identify the in-

dividual characteristics of melody elements, our research

can be of significant help in practical applications such as

legal analysis, as well as various fields of music research.

sian normalization for 39 cases.
15 The original plot was modified to compare song similarities us-

ing word vectors. Details and base code for the cross-scape plot
are at [54] and https://github.com/saebyulpark/cross_

scapeplot.

Figure 4: An example of melody weighting values (Three

Boys Music v. Michael Bolton, N=100, pitch feature)

Figure 5: Cross-scape plots: (a) Word2Vec at morpheme-

level, (b) Word2Vec at token-level with T V ∗ T F ∗ I D F .

6. CONCLUSION

In this study, we employed natural language processing

(NLP) techniques to objectively grasp the substantial simi-

larity of melodies, thereby making notable contributions in
several key areas: First, after an extensive review of legal

documents, we compiled one of the most extensive pub-

lic datasets, the Music Copyright Infringement Collection

(MCIC). 16 Although it is not big data, this dataset is sig-

nificant given the limited number of legal cases, as it in-

cludes MIDI transcriptions, sheet music, and metadata on

legal issues and decisions, forming the crucial groundwork

for future studies on music similarity and copyright issues.

Second, we encoded melodies into word-like units using

Mel2word to analyze melodic similarity for the music pla-

giarism study. This approach extends semantic analysis

beyond the note- or n-gram level, surpassing conventional

analysis methods. Third, we introduced the modified-

Tversky measure to evaluate the salience of each melodic

element. Derived from a prominent psychological theory,

this refined measure offers potential applications beyond

music, exhibiting its general versatility. Moreover, by in-

corporating traditional NLP-based weighting algorithms,

we conducted an in-depth analysis of individual features

to comprehensively grasp substantial similarity. Thus, by

integrating computational methods, psychological models,

data-driven techniques, and rule-based approaches, we per-

formed a detailed exploration of melodic similarity.

16 https://github.com/saebyulpark/MCIC. This site in-
cludes supplementary materials with comprehensive experimental details,
including transcriptions, statistics, normalization methods, additional re-
sults, and full and sub-dataset lists.
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ABSTRACT

Previous research contributions on blind lossy compres-

sion identification report near perfect performance metrics

on their test set, across a variety of codecs and bit rates.

However, we show that such results can be deceptive and

may not accurately represent true ability of the system to

tackle the task at hand. In this article, we present an in-

vestigation into the robustness and generalisation capabil-

ity of a lossy audio identification model. Our contribu-

tions are as follows. (1) We show the lack of robustness to

codec parameter variations of a model equivalent to prior

art. In particular, when naively training a lossy compres-

sion detection model on a dataset of music recordings pro-

cessed with a range of codecs and their lossless counter-

parts, we obtain near perfect performance metrics on the

held-out test set, but severely degraded performance on

lossy tracks produced with codec parameters not seen in

training. (2) We propose and show the effectiveness of an

improved training strategy to significantly increase the ro-

bustness and generalisation capability of the model beyond

codec configurations seen during training. Namely we ap-

ply a random mask to the input spectrogram to encourage

the model not to rely solely on the training set’s codec cut-

off frequency.

1. INTRODUCTION

Audio codecs can be roughly categorized into two cate-

gories: lossless and lossy. Lossless means that an exact

preservation of the signal is guaranteed by the codec. In

other words, the signal resulting from encoding and decod-

ing is exactly identical to the original. In contrast, lossy en-

coding means that some of the signal is lost in the encoding

and decoding process. In other words, the signal resulting

from encoding and decoding is not exactly identical to the

original signal.

Popular lossy audio codecs like MP3 [1], Ogg Vorbis [2]

or AAC [3] are known as "perceptual" codecs because they

rely on models of human auditory cognition to prioritise

the deletion of parts of the audio signal that have the least

© F. Author, S. Author, and T. Author. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: F. Author, S. Author, and T. Author, “Robust lossy audio

compression identification”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

perceptual impact on human listeners. Despite the sig-

nal degradation that they result in, perceptual lossy codecs

can achieve much greater compression ratios than lossless

codecs, and are therefore well suited for applications where

data bandwidth is limited. For example, they have been in-

strumental in enabling music streaming over networks with

limited bandwidth.

Digital audio codecs are readily available and are inte-

grated into many widespread professional and consumer

tools such as Digital Audio Workstations, software li-

braries, digital music players etc., which make convert-

ing an audio file from one format to another nowadays

extremely easy and accessible to anyone. As a result it

is easy to mistakenly encode a source audio signal with a

lossy codec, which degrades the signal, and then decode it

back into a lossless file container. This process may create

the illusion that a lossless file container (e.g. WAV) con-

tains unimpaired audio when it does in fact contain lossy-

compressed audio.

Guaranteeing audio integrity is essential in many ap-

plied scenarios such as large scale music distribution or

archiving. Because the aforementioned case of lossy audio

disguised as a lossless file would violate this guarantee,

there is a need to automatically detect such occurrences.

Identification of audio that has been compressed with a

lossy codec is a valuable component of quality assurance

processes, which form an important part of many modern

musical audio content pipelines.

Contributions. In this paper, we present an investi-

gation into the robustness and generalisation capability of

a lossy audio identification model. We show that when

we naively train a lossy compression detection model on

a dataset of music recordings processed with a range of

codecs and their lossless counterparts, we obtain near per-

fect performance metrics on the held-out test set. However,

we obtain severely degraded performance on lossy tracks

produced with codec parameters not seen in training. We

also propose a new training schema in which we randomly

mask the input spectrogram to improve the model’s robust-

ness. We show that our approach significantly increases

the robustness and generalisation capability of the model

beyond codec configurations seen during training.

2. BACKGROUND

In the following sections, we will first provide a high level

overview of lossy audio codecs (Section 2.1). Next, in Sec-
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Figure 1. Basic block diagram of a perceptual audio coder.

After spectral decomposition, a psychoacoustic model in-

forms the quantization of individual spectral components.

tion 2.2, related work on lossy audio identification is dis-

cussed. Finally, in Section 2.3, we briefly present related

work in MIR on robustness evaluation.

2.1 Lossy Codecs

Figure 1 shows a basic block diagram with the common

modules of a perceptual audio coder. The process of en-

coding an audio signal with a lossy codec is commonly

as follows. First, the original uncompressed (often pulse

code modulated - PCM) signal is transformed into a time-

frequency representation. This is typically done using

a modified discrete cosine transform (MDCT), but many

other transforms have been proposed [4]. Commonly used

signal block for the spectral decomposition are between

2ms and 50ms. The components of the spectral decompo-

sition are then individually quantized. The quantization of

the spectral components is controlled by a psychoacoustic

model that describes the time and frequency masking prop-

erties of the human auditory system. Auditory masking is

a process where one sound (maskee) becomes inaudible in

the presence of another sound (mask) [5].

Auditory masking can occur in the time domain (tempo-

ral masking) or in the frequency domain (frequency mask-

ing). The quantization controlled by the psychoacoustic

model effectively controls which spectral coefficients will

be removed, resulting in spectral band rupture and holes in

spectrograms, as observed in Figure 2. After quantization,

Huffman coding (or some other form of entropy coding)

is applied to remove or reduce the redundancy in the sig-

nal [6]. The bit rate of a codec effectively controls both the

size and the perceptual quality of the audio. A low bit rate

(like 128 kbps) will produce a small storage footprint, but

generally worse perceptual quality compared to a higher

bit rate (like 320 kbps). For more detail on audio codecs

and standards, we refer to [4].

2.2 Lossy Compression Identification

In previous research, multiple blind lossy compression

identification models have been proposed. These can

broadly be categorized into two approaches. One approach

is to estimate codec parameters from the audio signal, to

determine factors such as the decoder framing grid, fil-

ter bank parameters and/or quantization information. This

Figure 2. Spectrograms of examples of a lossless (left)

and lossy version of the same audio excerpt (right). The

latter is compressed with the LIBFDK_AAC codec at 128

kbps bit rate. The version on the right shows the hallmarks

of lossy compression: removal of FFT coefficients, holes in

the spectrum, and general loss of higher frequency content.

type of approach has been successfully applied for indi-

vidual codecs like AAC [7], MP3 [8–10]. Although this

type of approach can be very effective, it is computation-

ally very expensive, especially when multiple codecs are

considered.

The second method utilizes audio quality measures to

determine whether the audio is lossy. One effect of lossy

audio compression is the introduction of “holes” in the

spectrogram, especially right after louder transients. This

is the result of the fact that spectral coefficients can be re-

moved when they are perceptually masked by other coef-

ficients. Therefore, most approaches present some form of

“hole-detection“, such as estimating the number of inac-

tive spectral coefficients (e.g. [9,11]) or computing spectral

fluctuations [12–15].

In [16], Hennequin et al. presented a method for de-

tecting lossy compression based on a convolutional neural

network CNN applied to audio spectrograms. Similarly, Se-

ichter et al. in [17] also proposed a CNN approach for AAC

encoding detection and bit rate estimation. All research

contributions on lossy compression identification almost

uniformly report near-perfect performance metrics on their

test set, across a variety of codecs and bit rates.

However, most codecs can be configured with parame-

ters other than the bitrate too, such as a cutoff frequency

that controls the amount of higher frequencies that will be

preserved. AAC for example has a default cutoff frequency

of around 17kHz [18] for constant bit rates of 96 kbps per

channel and above, which means that the bandwidth of the

encoder is set to 0 - 17kHz. None of the previous research

explores what happens when this parameter is changed.

In this paper we show that a model naively trained on

default parameters may not efficiently learn to discrimi-

nate lossy audio encoded with different parameters and we

analyse what happens when varying the cutoff frequency

as an example. Therefore, the good results previously re-

ported must be taken with a pinch of salt.
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2.3 Robustness Evaluation in Music Information

Retrieval

Several studies in music information retrieval have shown

that models can seemingly achieve very high evaluation

performance, while further research reveals that what those

models have learned is some confound with the ground

truth dataset [19]. For example, in a research into the ro-

bustness of genre classification models, Sturm showed that

although these systems might have high mean classifica-

tion accuracies, they don’t actually reflect the underlying

properties of the genre [20]. Furthermore, it is shown that

by filtering the audio signal in a minimal way, the mod-

els produce radically different genre predictions. For a

larger overview of music adversaries in music information

retrieval research, we refer to [19]. Bob Sturm in [21]

introduced the term “horse” 1 to refer to system appear-

ing capable of achieving high evaluation performance, but

actually working by using irrelevant characteristics (con-

founds), and therefore not actually addressing the problem

it appears to be solving.

3. METHOD

In the following sections, we will first describe our model

setup (in Section 3.1), then our dataset (in Section 3.2) and

finally our proposed evaluation methods (in Section 3.3).

3.1 Network Architecture

For the detection of lossy audio we propose a model (vi-

sualized in Figure 3) that can be divided into four parts:

a spectrogram + random mask module, 4 convolutional

blocks, an lstm block and a classification head made of

a single dense layer. The architecture is partly inspired by

prior work by Hennequin et al. in [16] and Seichter et al.

in [17]. In the following sections, we will describe each

part in detail.

The model takes as input 2 seconds of raw monophonic

audio signal sampled at 44.1 kHz, which is passed to a

torchaudio spectrogram layer that produces a magnitude

spectrogram with 1024 FFT coefficients [22].

Random mask. A random mask is optionally applied

to the input spectrogram. This is achieved by uniformly

randomly sampling a cutoff frequency between 14 kHz and

the Nyquist frequency of the sample, and nulling all fft co-

efficients above that frequency by setting them to the min-

imum of the input spectrogram. A similar approach called

Specaugment was proposed by Park et al. in [23].

In our first experiment (as described in Section 4.1) this

layer is not used, and the spectrogram is directly fed to the

convolutional blocks. However, in the second experiment

(as described in Section 4.2), we use this random mask

layer with a different random cutoff frequency for every

training example.

CNN. Each of the CNN blocks consist of four layers: a

2D convolutional layer with a kernel size of (3,3), a ReLU

layer, a batch normalization layer and a 2D max-pooling

1 A nod to the Clever Hans horse, see https://en.wikipedia.
org/wiki/Clever_Hans
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Figure 3. Proposed model for the detection of lossy au-

dio Our model takes as input 2 seconds of audio, which is

passed to a torchaudio spectrogram layer (in green). De-

pending on the experiment, the spectrogram is then passed

to a masking layer (in blue), which simulates low-pass fil-

tering. The spectrogram is then passed to four convolu-

tional modules (in pink). We use a bi-directional LSTM (in

yellow) for dimensionality reduction. We classify the au-

dio into lossy or lossless in the final model head.

layer. The max pooling size for each block is (2,2), with

the exception of the last block, which is (2,4).

LSTM. We connect the CNN to a long short-term mem-

ory (LSTM) block for two reasons. Firstly, we want to ex-

ploit possible sequential properties of the CNN output, and

secondly, for dimensionality reduction for the last (dense)

part of the network. We use a bidirectional LSTM with two

layers of size 128.

Classification head. Our model’s lossy/lossless clas-

sification head is connected to the LSTM output with a

dense layer of size 256 (2x 128 because our LSTM is bi-

directional). The classification head has a softmax activa-

tion and 2 outputs that model the probability of the exam-

ple being lossless or lossy.

Training. We back-propagate our model on the binary

cross entropy of the classification head and the ground

truth. For each audio track, we take a 2-second random

crop at training time.

3.2 Datasets

For our experiments, we sample 10k tracks of lossless 16

bit, 44.1kHz WAV files from a large private library of com-

mercial music. From these tracks, we create two datasets.

3.2.1 DS1.

For the first dataset we encode each track with a codec ran-

domly chosen among LIBMP3LAME (MP3), LIBFDK_AAC

(AAC) and LIBVORBIS (OGG), with bit rate also randomly

chosen among 128, 256 and 320 kbps. Each encoded file

is then decoded back into a 16bit, 44.1 kHz WAV file that

is used as input to the model. All the encoding/decoding is

done using ffmpeg [24]. Between lossless and lossy tracks,

the dataset comprises of 20k tracks.

3.2.2 DS2.

For the second dataset, we use the same original tracks

as were used to create DS1. We also use the same codec

parameters, but vary the cutoff frequency of the codecs,
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Codec LIBFDK_AAC LIBVORBIS LIBMP3LAME Lossless Mean

Bit rate 128k 256k 320k 128k 256k 320k 128k 256k 320k — —

DS1 100.0 98.91 100.0 100.0 100.0 100.0 100.0 100.0 98.37 99.88 99.79

DS2 31.38 28.96 24.74 98.91 93.16 86.7 80.63 68.45 60.87 99.88 81.85

Table 1. Accuracy of evaluating the model without random mask on a dataset without (DS1) and with cutoff frequency

variations (DS2). Varying the cutoff parameter in the codec greatly degrades model results.

choosing among 14, 16, 18 and 20 kHz. DS1 and DS2,

therefore, differ only on the lossy versions obtained for

each track. We use the same random 70/10/20 split for

training/validation/testing for both datasets. All our exper-

iments are run using DS1 for training and validation. Eval-

uation is done on DS1 (cf. Sec. 4.1) or DS2 (Sec. 4.2).

3.3 Evaluation

We evaluate the performance of our lossy/lossless detec-

tion model in three ways. Firstly, we provide quantita-

tive evaluation and report the model accuracy. Secondly,

we inspect saliency maps of the CNN blocks of our model

to gain qualitative insight into what signal properties the

model is sensitive to. Finally, we also inspect the errors

of our model in detail to help us assess the effectiveness

our proposed method to make our model more robust, and

identify avenues for future work.

4. EXPERIMENTS & RESULTS

In this section we first describe our experiments and report

our results on a naively trained lossy/lossless audio detec-

tion model (Section 4.1). After an analysis of our results,

we report on a more robust variation of our model in Sec-

tion 4.2, and an analysis of errors in Section 4.3.

4.1 Experiment 1: Naive Model Training

In our first experiment, we train our model on DS1. For

each track in our test set, we extract 2-second windows of

raw audio with 50% overlap. For each window, we per-

form a forward pass through our trained network, and col-

lect the output of the classification head. We take the mean

of all windowed local model outputs as the global output

per track.

4.1.1 Results

In line with previous research (e.g. [16, 17]), we find near-

perfect performance on lossy/lossless audio detection of

audio with default codec settings. The top row of Table 1

shows the results broken down by codec and bit rate for

DS1. We obtain near-perfect results per bit rate/code com-

bination. On average, we obtain 99.79% accuracy across

all codecs and lossless files.

However, if we slightly tweak the codec parameters at

test time (i.e. we test our model on DS2) the performance

drops significantly. The bottom row of Table 1 shows the

results of evaluating the model on the dataset with cutoff

frequency variations. The results show much poorer results

for the lossy tracks across all codec/bit rate combinations.

Specifically, we find a big drop in accuracy of around 70

percentage points for the LIBFDK_AAC codec and around

30 percentage points for the MP3 codec. The LIBVORBIS is

less impacted, but is still significantly impacted by around

10 percentage points.

4.1.2 Analysis

To get a better sense of what our model has learned, we

turn towards a feature analysis of the CNN part of the net-

work. When inspecting the spectrogram of a potentially

lossy file with the naked eye, one of the most striking as-

pects is the nulling of coefficients, resulting in “holes” in

the spectrogram. We expected the convolutional part of

the network to pick up on those, and to design features that

capture this phenomenon.

However, when we visualize saliency maps from our

network, we find a different pattern (see Figure 4, top row).

It seems that the model is more concerned with the cut-

off frequency of the lossy audio than with the holes in the

spectrogram. Although the cutoff frequency is a useful fea-

ture, by itself it is neither necessary nor sufficient to de-

termine whether an audio signal has been encoded with a

lossy codec.

Table 2 shows the results of the model per cutoff fre-

quency, in the columns marked with ‘No’. Here again we

see that most cutoff frequency variations are severely un-

derperforming when compared to the previous test dataset.

The model performs best at a cutoff frequency of 16

kHz. This can be explained by the fact that this is the de-

fault cutoff frequency of LIBVORBIS, which is therefore

not affected by this transformation. In the next section, we

adapt the model to be robust against this cutoff effect.

4.2 Experiment 2: Creating a Robust Model

In order to increase the model’s robustness against the

lossy codec’s cutoff frequency, we present a second ex-

periment where we randomly mask the upper end of the

spectrum. The mask, defined in 3.1, is applied to all input

files.

The application of this random mask is intended to force

the model not to solely rely on the codec cutoff frequency

to make a prediction, and instead also rely on other signal

degradations included by codecs, such as "holes" in the

spectrogram. A fixed mask at a specific cutoff frequency

would have meant throwing away the information given

by the spectral rolloff entirely and this would have been

suboptimal in the opposite direction.

We train this model on DS1 and evaluate on DS2.
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LIBFDK_AAC LIBVORBIS LIBMP3LAME 128k 256k 320k MEAN

Cutoff No Mask No Mask No Mask No Mask No Mask No Mask No Mask

14 kHz 24.1 81.0 100.0 100.0 76.9 100.0 90.4 82.6 53.7 100.0 49.3 97.8 65.9 93.3

16 kHz 83.9 98.4 100.0 100.0 98.6 100.0 88.2 100.0 97.0 97.7 98.6 100.0 94.6 99.5

18 kHz 0.7 86.7 66.9 100.0 25.3 100.0 50.0 96.2 28.2 94.1 12.4 94.8 29.5 95.6

20 kHz 11.1 96.5 100.0 100.0 82.9 100.0 46.2 100.0 76.1 97.2 70.2 100.0 65.1 98.9

MEAN 28.3 90.1 92.9 100.0 70.1 100.0 70.1 93.6 64.1 97.9 57.3 98.8 63.7 96.8

Table 2. Accuracy (in percentage points) of evaluating our models without (No) and with (Mask) random mask on DS2,

per codec and bit rate, for varying cutoff frequency. Lossless accuracy is 99.9% for No and 99.8% for Mask.

Figure 4. Saliency maps from exposing a model trained

without (top) and with (bottom) random mask to lossy au-

dio. The model with random mask shows more activation

in the holes of the spectrogram without losing any of the

activations at the cutoff frequency.

4.2.1 Results

Table 2 shows the results obtained for the model trained

with the random mask on DS1 and evaluated on DS2. We

observe good classification results on average, 96.8% on

lossy files and 99.8% on lossless files. Overall, we ob-

tain 98.4% lossy/lossless classification accuracy across the

entire test dataset. Comparing with the naive model, the

accuracy on DS2 improves significantly across the board.

With the mean classification accuracy at 90% or above

in all conditions (last column of the table), this model is

broadly robust against cutoff frequency variations. It is in-

teresting to note that performance on the AAC codec is

comparatively lower than on other codecs. This result sug-

gests that the AAC codec is more challenging to detect,

and warrants further investigation, which we leave for fu-

ture work. We hypothesise it may be due to the AAC codec

producing less artefacts in the magnitude spectrogram.
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Figure 5. F1-score for varying thresholds, evaluated on

DS2. Each line analyses the subset made of lossless files

as negatives and the specified codec as positives; files en-

coded with different codecs are discarded. Left: model

without random mask; Right: model with random mask.

In Fig. 5, for both the model without random mask (cf.

Section 4.1) and the model with (cf. Section 4.2) we plot

the F1 score (i.e., the harmonic mean between precision

and recall) as a function of the threshold of the binary clas-

sification prediction. The F1-score for the model without

the random mask peaks at very low values of the thresh-

old and then decays for increasing threshold at a rate that

highly depends on the codec analysed.

This suggests three conclusions: (1) There are a num-

ber of test set files that yield a prediction p(x) in the cen-

tral region 0.1 < p(x) < 0.9, which shows a high de-

gree of uncertainty for the model; (2) since the F1-score is

monotonously decreasing, the model tends to output false

negatives rather than false positives; (3) different codecs

are identified with different level of proficiency.

Compare this with the output for the model with the ran-

dom mask: in the case of LIBMP3LAME and LIBVORBIS

codecs, the F1-score is almost flat and close to 1 for the

entire range of thresholds. The LIBFDK_AAC codec still

shows some decrease in performance for increasing thresh-

olds, but the peak value increased from 0.875 to 0.982 and

the area under the F1 curve jumped from 0.450 to 0.891.

From the results above we can conclude that the introduc-

tion of the random mask brings higher peak performance

and also reduces the impact of the choice of the threshold.

4.2.2 Analysis

Similarly to the analysis presented in Section 4.1.2, we vi-

sualise saliency maps of the model trained with the ran-

dom mask in the bottom row of Figure 4. Compared to

the saliency of the model with no mask (top row), we
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Figure 6. The five assumed lossless tracks misidentified as

lossy. However, A, C, and D are in fact lossy. B and E are

quiet tracks with a single instrument.

see a much brighter activation in the holes of the spectro-

gram without losing any of the activations at the cutoff fre-

quency. The model has learned to rely on more markers to

make its choice.

4.3 Qualitative Analysis of Errors

In this section, we present a qualitative analysis of the erro-

neous predictions produced by our model trained with the

random mask.

4.3.1 Lossless Errors.

From our entire test subset of DS2, we observe only 5 cases

(0.2%) where the model made a "lossy" prediction while

the recording is in the lossless part of the dataset. The

spectrogram of three out of the five tracks (A, C and D

in Figure 6) show the hallmarks of lossy compression. It

appears that our model was indeed correct in predicting a

lossy encoding, and therefore revealed "in-the-wild" cases

of accidental lossy compression that were present in our

dataset.

The other two tracks (B and E) are quiet and sparsely or-

chestrated tracks. It is notable that the spectrogram also ap-

pears sparse, with very little energy in the upper frequency

range. Given that lossy codecs often feature energy deple-

tion in the top part of the frequency range, we hypothesise

that the misclassification may be due to the model relying

on the absence of energy in the upper register in this case.

4.3.2 Lossy Errors.

Table 2 shows that the entirety of cases where the model

erroneously classified recordings as lossless when it should

be lossy comes from tracks encoded with the LIBFDK_AAC

codec. In Figure 7, spectrograms of 2 second excerpts from

a random selection of error tracks are visualized.

From inspecting the spectrograms of LIBFDK_AAC en-

coded tracks, we find that common characteristics are

(1) the spectral roll-off is relatively stable over time, (2)

the preservation of transients above the cutoff frequency,

which can often span upwards to the Nyquist frequency,

and (3) less nulling of spectral coefficients, resulting in

fewer holes in the spectrogram. The LIBFDK_AAC codec is

a superior codec in terms of compression efficiency, mean-

ing it can provide better audio quality at lower bitrates than

other codecs [25].

A

22.0

17.6

13.2

8.8

4.4

0

kH
z

256k / 20 kHz

B

320k / 18 kHz

C

320k / 16 kHz

D

128k / 14 kHz

Figure 7. A random selection of lossy tracks misidentified

as lossless. All tracks are encodec with LIBFDK_AAC. The

spectrograms show less holes and band rupture compared

to other codecs, especially under 14 kHz.

Table 2 shows that AAC with cutoff 14kHz is only 81%

accuracy. We hypothesize that the LIBFDK_AAC codec

does not produce as much “holes” in the spectrogram be-

low this threshold. Our model applies the random mask to

every example in our training dataset, which can be confus-

ing on LIBFDK_AAC samples. That is, as the random mask

is applied at a relatively low cutoff frequency, the resulting

spectrogram is almost identical to a lossless example. One

avenue for future work could be to apply the random mask

with a lower probability, to allow the model to also learn

other spectral characteristics of LIBFDK_AAC samples.

5. CONCLUSION

In this paper, we presented a lossy audio compression de-

tection method that can robustly estimate whether a given

audio file has been lossy encoded before. We show that

naively training a model results in near-perfect lossy audio

compression detection on the held-out test set generated

using the same encoding parameters.

However, we find that, for several widely used lossy

codecs, the performance of this model catastrophically de-

grades when exposed to variations of the cutoff frequency

parameter that were not seen during training. This result

suggests that a naively trained model is overly reliant on

the cutoff value. In response to this shortcoming, we pro-

pose to amend the training strategy by applying a random

mask to the upper range of the spectrogram, in order to

reduce the model’s reliance on the codec cutoff frequency

value.

We show that this method results in a model that is

significantly more robust against frequency cutoff varia-

tions. Our experiments reveal compelling performance on

all codec and bit rate combinations we considered, but re-

veal that there remains room for improvement on the de-

tection of the LIBFDK_AAC codec. We hypothesise that

the AAC codec is comparatively more difficult to detect

than MP3 and Ogg Vorbis because it generates less arte-

facts in the magnitude spectrogram. An avenue for future

work may consist in exploring further development of the

training strategy in order to improve performance on the

AAC codec.
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ABSTRACT

Music is plentiful, but labeled data for music theory tasks

like roman numeral analysis is scarce. Self-supervised pre-

training is therefore a promising avenue for improving per-

formance on these tasks, especially because, in learning a

task like predicting masked notes, a model may acquire

latent representations of music theory concepts like keys

and chords. However, existing models for roman numeral

analysis have not used pretraining, instead training from

scratch on labeled data, while conversely, pretrained mod-

els for music understanding have generally been applied

to sequence-level tasks requiring little explicit music the-

ory, such as composer classification. In contrast, this pa-

per applies pretraining methods to a music theory task by

fine-tuning a masked language model, MusicBERT, for ro-

man numeral analysis. We apply token classification to

get a chord label for each note and then aggregate the pre-

dictions of simultaneous notes to achieve a single label at

each time step. The resulting model substantially outper-

forms previous roman numeral analysis models. Our ap-

proach can readily be extended to other note- and/or chord-

level music theory tasks (e.g., nonharmonic tone analysis,

melody harmonization).

1. INTRODUCTION

Roman numeral analysis is the task of identifying the

chords in a piece of music and then indicating their role

with respect to the current key. Although it was developed

in the European classical tradition, it is an essential ele-

ment of the musical toolkit for musicians working in many

different Western-derived styles (for instance, a jazz musi-

cian might speak of a “ii-V to vi (‘two-five to six’)” or a

pop musician might say “the bridge starts on IV”).

A small but growing literature has employed deep learn-

ing models for automatic Roman numeral analysis of sym-

bolic music (Section 2), training the models from scratch

on labeled data. But labeled data for Roman numeral

analysis is scarce, whereas symbolic music is compar-

atively plentiful. Self-supervised pretraining therefore

seems likely to yield dividends, especially considering

© M. Sailor. Licensed under a Creative Commons Attribu-

tion 4.0 International License (CC BY 4.0). Attribution: M. Sailor,

“RNBert: Fine-Tuning a Masked Language Model for Roman Numeral

Analysis”, in Proc. of the 25th Int. Society for Music Information Re-

trieval Conf., San Francisco, United States, 2024.

that, in order to perform a self-supervised task, the model

can be expected to learn latent representations of music

theory concepts like chords and scales: if you need to pre-

dict a given musical note, you will do a lot better if you can

estimate the expected key and chord. Moreover, as a gen-

eral matter, it seems likely that it will prove more efficient

and more practical for MIR researchers and music theo-

rists to fine-tune large-scale foundation models for spe-

cific analytical tasks, rather than training bespoke models

from scratch for every task. These considerations inspire

the present work, where we fine-tune a masked language

model on Roman numeral analysis, obtaining state-of-the-

art classification accuracy. 1

2. RELATED WORK

Whereas automatic chord recognition using audio signals

has an extensive literature [1], this paper contributes to a

smaller body of work on Roman numeral analysis of sym-

bolic music, which is both an easier and a harder prob-

lem. Easier, because working with symbolic data means

the model does not need to devote capacity to identifying

the sounding pitches, but harder, because Roman numeral

analysis requires not only identifying chords but also de-

scribing their harmonic function within their tonal context

(e.g., rather than simply labeling a chord as “E major”, la-

beling it as “V6/vi in C major”). Details of Roman numeral

analysis are beyond the scope of this paper but are covered

in any textbook of classical harmony such as [2, 3].

While earlier work employed various approaches for

automated Roman numeral analysis, more recently, deep

learning has come to predominate, including recurrent

models [4–7], transformers [8, 9], and, most recently,

graph-based architectures [10]. As far as we know, the best

performance in the existing literature has been obtained by

AugmentedNet [6,7] and ChordGNN [10], and we compare

our results below with those reported in [6, 10]. 2

All of these models for Roman numeral analysis are

trained from scratch, not making use of self-supervised

pretraining. A hitherto separate area of research is pre-

training large models for the understanding of symbolic

music. Both MusicBERT [11], the model used in this

paper, and MidiBERT-Piano [12] pretrain BERT-like [13]

1 We release the code to reproduce our results at https://github.
com/malcolmsailor/rnbert.

2 Unfortunately, the results of [7] are reported in a manner that makes
them difficult to compare directly with these other papers and with our
own results.
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encoder-only transformers on a masked language model-

ing task. [14] adds a GPT-like causal language modeling

task as well. So far, these pretrained models have mainly

been fine-tuned on sequence-level tasks such as composer,

genre, or emotion classification. As far as we know, none

of these pretrained models have been applied to Roman

numeral analysis, or any other problem involving the pre-

diction of explicit music-theoretical labels.

3. EXPERIMENTAL SETUP

3.1 Corpus

To our knowledge, the corpus used in this study is the

largest yet assembled for Roman numeral analysis. The

major components of this corpus include the various cor-

pora released by the Digital and Cognitive Musicology

Lab [15–17], the TAVERN set of theme and variations by

Beethoven and Mozart [18], the set of Beethoven Piano

Sonatas first movements introduced in [4], and the various

other items included in the When in Rome meta-corpus

[19], including analyses of Bach preludes and chorales,

and a large number of 19th century lieder, including works

of women composers. The total contents of this corpus are

enumerated in the first line of Table 1.

Data subset Scores Notes Chords

All 1,404 1,289,888 161,473

AugmentedNet v1 347 701,703 77,570

Table 1. Overall contents of the datasets used for training

and evaluation.

For a fair comparison with [6, 10], we also train and

evaluate on the subset of our data used in those papers,

employing the same training/validation/testing splits. 3 We

refer to this subset as “AugmentedNet v1” to distinguish it

from the somewhat larger dataset used in [7]. Note that, for

scores having two analyses (in particular, the scores of the

TAVERN dataset, where each score was analyzed by two

separate annotators), AugmentedNet v1 includes both ver-

sions (following [6]), whereas in the full corpus, we ran-

domly choose only one of the two versions for inclusion.

AugmentedNet v1’s note count is substantially increased

by the inclusion of these duplicate TAVERN scores, which

comprise 106,981 notes.

Unlike some prior work (e.g., [6, 9]), we do not ex-

periment with training and/or evaluating on smaller, more

homogenous subsets of our corpus (for example, the

Beethoven piano sonatas only). Our goal is to train the

best and most general Roman numeral analysis model we

can and we expect that such a model will be best obtained

and evaluated by using as much data as possible.

3 7 scores from AugmentedNet v1 were excluded because of prepro-
cessing errors (for example, because they include time signatures not sup-
ported by MusicBERT’s OctupleMIDI encoding scheme). These scores
exclusively came from the training split and so, if their omission has
any effect on RNBert’s performance relative to that of the other models
trained on the AugmentedNet v1 dataset, it should bias it downwards.

3.2 Data representation

Figure 1. A hypothetical musical example and its analysis,

before and after salami-slicing.

Onset 0 0 0 2 2 2 3 3 3
Release 2 2 2 3 3 3 4 4 4
Pitch 59 67 79 62 69 79 62 69 78
RN I6 I6 I6 V V V V V V
Key G G G G G G G G G

Table 2. The example from Figure 1 in tabular format after

salami-slicing. Time signatures, tempi, and bar lines are

omitted.

The scores associated with the analyses in our dataset

are encoded in a variety of formats, such as MusicXML

(.xml or .mxl), MuseScore (.mscx), or Humdrum (.krn).

We convert these into a tabular format, illustrated in

Table 2, labeling each note with the associated key and

chord annotation. Note that, because we use a model

that was pretrained on MIDI data, which does not spec-

ify pitch-spelling, our pitch inputs are not spelled (that is,

they use midi numbers like “78” rather than pitch names

like “F#5”). For further discussion, see Section 3.3.1.

When reading scores, we apply several preprocessing

steps.

First, following MusicBERT, the score is quantized at

the 64th note level.

Second, we “salami-slice” the score: at each timestep

with one or more onsets or releases, we split any ongo-

ing notes into two, in order to obtain a purely homophonic

rhythmic texture in which all onsets and releases are syn-

chronized across all parts. (The term “salami-slicing” is

due to [20].) Salami-slicing is necessary to ensure that

each note belongs to only one chord. Otherwise, a note

may persist through multiple changes of chord, either be-

cause it is a common tone among each of the chords (like

the alto D in Figure 1), or because it realizes a suspension

or similar dissonant idiom (like the soprano G in Figure 1).

Fortunately for our purposes, salami-slicing should not af-

fect harmonic analysis, because it does not change the

pitch content of the score. Moreover, musical idioms like

suspensions and pedal tones that cross changes of chord are

analyzed the same whether or not they are tied or sounded

anew at the onset of the new chord.

Third, we dedouble the notes of the score, removing

any notes that have the same pitch, onset, and release (re-

gardless of whether they are performed by the same in-

strument). Dedoubling has two advantages. First, it re-

duces the sequence length. Second, it produces a more

homogeneous texture between music for small ensembles,
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where pitch doubling is less common, and music for large

ensembles like orchestras, where pitch doubling is ubiqui-

tous. Such homogeneity is particular desirable since nearly

all the available labeled scores are small-ensemble works

like piano sonatas and string quartets, but we would like

our model to generalize to large-ensemble works like sym-

phonies and operas.

MusicBERT has a maximum sequence length of 1000

tokens. Therefore, in both training and evaluation, we crop

scores into segments of 1000 tokens, stepping through the

score with a hop size of 250.

3.3 Task

Roman numeral analysis involves labeling chords with in-

tegers (Roman numerals) indicating their root with respect

to the scale of the current key (e.g., “V” in C major indi-

cates that the root is G, the 5th scale degree). Figured-bass

numerals are typically appended to to indicate the chord’s

inversion (e.g., “6” for first inversion). While the quality of

the chord is often assumed to conform to the scale, alter-

ations of quality can be indicated according to a variety of

conventions (e.g., upper-/lower-case for major/minor, ap-

pending “+” or “o” to indicate augmented or diminished

chords, or combining figured-bass numerals with acciden-

tal signs). The Roman numerals can be prefixed with acci-

dentals to indicate altered scale degrees (for example, bVI

in C major would be A-flat). “Tonicizations”—that is, one

or more chords borrowed from another key—can be indi-

cated by “secondary” Roman numerals, typically follow-

ing a slash, as in “V/ii”, which in C major would indicate

the V chord of d minor. Finally, since the Roman numeral

only indicates a harmony with respect to some key, for a

Roman numeral to be meaningful, we need to indicate the

key as well.

Since a complete Roman numeral consists of multiple

distinct elements, the combinatorial space of these ele-

ments is very large. Encoding each distinct combination

as a token, would require a large and sparse vocabulary,

posing challenges for training and generalization. There-

fore, the approach adopted here and elsewhere is to treat

Roman numeral analysis as a multitask learning problem,

where we predict the key, quality, inversion, and degree

separately. (The degree is sometimes further decomposed

into “primary” and “secondary” components, but in the

current work, we predict these jointly.) It should be noted,

however, that this multitask may approach obtain a smaller

vocabulary size at the expense of some coherence among

the different elements of the Roman numeral. For exam-

ple, suppose there is a passage that is ambiguous between

I and vi6 (two chords which share two of their three pitch-

classes as well as the same bass note). If the model dis-

tributes the probability roughly equally between the two

possibilities it may easily occur that the inversion and de-

gree predictions “decohere” and we end up with a plainly

incorrect prediction like I6 (rather than I) or vi (rather than

vi6). (One solution to this problem of decoherence was

proposed by [21], which we discuss in Section 3.6 below.)

3.3.1 Pitch spelling

One difference between our approach and some prior work

(e.g., [5, 7]) is that MusicBERT uses unspelled pitch in-

puts (midi numbers like “67”) rather than letter names (like

“F#5”). Our output key predictions are therefore also un-

spelled (e.g., pitch-class 6, rather than “F-sharp”) because,

with unspelled inputs, the output spelling is undefined. 4

We consider our model’s inability to predict spelled

keys unimportant. Given spelled inputs (e.g., pitches like

“Db5” rather than MIDI numbers like “61”) and an un-

spelled key (e.g., “1 major”), predicting a spelled key (e.g.,

“Db major”) is trivial and could likely be performed with

perfect accuracy by a rule-based algorithm (e.g., taking the

enharmonically equivalent key closest to the centroid of

the spelled pitches on the “line of fifths” [23]). Moreover,

keys with plausible enharmonic equivalents (like F-sharp

major or E-flat minor) are rarely used. Their classification

is therefore unlikely to significantly affect validation/test

performance.

3.4 Data augmentation

We employ two data augmentation techniques on the train-

ing data. First, we transpose each score to all 12 keys of

the chromatic scale. Second, we create a version of each

score with the durations scaled by a factor of 2. If the mean

duration in the score is greater than the mean duration of

the training set as a whole, we scale its durations down by

2; if it is less, we scale them up by 2.

We experimented with adding synthetic data similar to

the procedure introduced in [6,7] and also adopted in [10].

However, we did not find that it improved the model per-

formance. It is possible that synthetic data was less helpful

in our case than with AugmentedNet [7] because, whereas

for that model, the inputs consist of pitch-vectors at each

time step, for our model, the inputs are simply the notes of

the score, and therefore the difference between synthetic

and real data is more apparent to the model.

3.5 Model

3.5.1 MusicBERT

The model that we fine-tune, MusicBERT [11], is a bidi-

rectional transformer encoder pretrained on a masked lan-

guage modeling task. The dataset for pretraining is a cor-

pus of over 1 million midi files, 3 orders of magnitude

larger than our Roman numeral dataset. This difference

in scale motivates the use of a pretrained model. We chose

MusicBERT for our experiments because, of the pretrained

symbolic music models of which we are aware, it used the

largest pretraining dataset (by comparison, [12] pretrains

on fewer than 5,000 scores of exclusively piano music) and

also because of the elegance of the OctupleMIDI scheme

MusicBERT uses to encode its inputs. A more detailed

4 This is because the only difference between enharmonically equiva-
lent keys like F-sharp and G-flat is how they are notated. Certain pieces
of music, such as Fugue no. 8 of Bach’s Well-tempered Clavier, Book
1, have even been variously printed in two enharmonically equivalent
keys [22].
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comparison fine-tuning symbolic music models for Roman

numeral analysis will have to await further work.

In the OctupleMIDI encoding, eight features of a mu-

sical note are first embedded individually: time signature,

tempo, bar number, metric position within the bar, pitch,

duration, and velocity. 5 To obtain a single input at each

time step, these eight embeddings are concatenated and

then projected to the model’s embedding dimension. Octu-

pleMIDI reduces the sequence length when compared with

other encoding schemes like Midi-like [24,25], REMI [26],

or Compound Word [27]. This reduction occurs because

in OctupleMIDI, tokens and notes are in one-to-one corre-

spondence, whereas the other schemes use tokens for other

items such as time-signatures or barlines. For our use case,

the fact that all tokens correspond to notes has the added

virtue that we do not waste computations classifying non-

note tokens.

In our experiments, we use the MusicBERT “base” ar-

chitecture, whose hyperparameters are modeled on those

of the BERT base architecture ( [13]), with a hidden di-

mension of 768, 12 layers, and 12 attention heads. We use

the pretrained checkpoint provided by [11]. For further de-

tails we refer the reader to the original MusicBERT paper.

MusicBERT is not trained solely or even mainly on

Classical music, whereas our annotated data consists en-

tirely of Classical music. This does not seem likely to be a

problem, because in the first place, a great deal of the tonal

idiom (i.e., keys, chords) is shared between different styles

of tonal music, and tonal music surely predominates in

MusicBERT’s training set. Moreover, to pretrain on only

classical music would mean greatly reducing the amount

of training data, as it’s extremely unlikely that 1,000,000

distinct midi files of Classical music exist. ( [20] is based

on what is to our knowledge the largest corpus of Classical

midi files in existence and features under 15,000 files.)

3.5.2 Token classification

To perform Roman numeral analysis, we adopt a token

classification approach, predicting the key and Roman nu-

meral for each token in the input. Since each token cor-

responds to a note, this amounts to predicting the chord

during which each note occurs. While training, we calcu-

late the loss on a per-token basis. In evaluation, in order to

obtain a single prediction for each salami slice, we average

the logits of simultaneous notes.

The token-classification heads are two-layer multilayer

perceptrons (MLPs) whose inner dimension is the embed-

ding dimension of the model (768, in our experiments).

To obtain the overall loss, we simply take the mean of

the cross-entropy loss for each individual task. We tried

learning a weighting of the contribution of each task to the

global loss, following the approach introduced by [28] and

implemented in an MIR context by [29], but observed a

small degradation in model quality when doing so.

5 Midi velocity is encoded in the OctupleMIDI format but is absent
from the symbolic scores of our dataset. Therefore, we use a default
value of 96 for all note velocities in our dataset.

3.5.3 Fine-tuning procedure

In our fine-tuning experiments, we found it important to

freeze parts of the model to reduce the number of train-

able parameters and avoid overfitting. Freezing the first 9

layers of MusicBERT seemed to give the best results. The

parameter counts are given in Table 3.

We used a learning rate of 2.5 × 10
−4 with a linear

warmup of 2500 steps followed by a linear decay of the

learning rate to 0. When training on multi-task Roman nu-

meral classification, we fine-tuned for 50,000 steps. When

training on key classification only (see Section 3.6), we

fine-tuned for 25,000 steps.

When experimenting with varying these hyperparame-

ters, we did not typically find their precise values to have

much effect on the performance of the model. This implies

that the fine-tuning is fairly robust to different hyperparam-

eter choices.

Model Total Trainable

Base 108,805,598 26,782,729

Key conditioned 111,023,816 28,859,891

Table 3. RNBert parameter counts.

3.6 Key conditioning

In preliminary versions of RNBert, we found that high en-

tropy of the output probabilities for the degree task seemed

to mainly occur in two distinct scenarios. The first scenario

involved unusual or hard-to-analyze chords, where high

entropy is to be expected. The second scenario involved

chords that, given a key, were straightforward to analyze,

but where the model appeared to be uncertain about the

choice of key. 6 To illustrate this latter scenario, suppose

we are analyzing a passage, and we recognize an A minor

chord, but we are uncertain whether the key is C major or

G major. In that case, though we will not know whether

to label it with “vi” or “ii,” this uncertainty isn’t about the

chord itself, but only about the key. If the model distributes

the probability mass roughly evenly between the two pos-

sibilities, it may emit an incoherent composite prediction

like “ii of C major” (a D minor chord) or “vi of G major”

(an E minor chord). In general, the degree task depends

on the key task in this way. Therefore, in some of our

experiments, we made the Roman numeral prediction by

conditional on the key.

In these key-conditioned experiments, we embed the

key tokens with a two-layer MLP with hidden and out-

put dimensions of 256 and GELU activation. 7 We then

6 We do not have space to discuss this further, but there are music
theoretic reasons to think that a certain degree of uncertainty about key
annotations is inevitable because the key of certain passages, especially
transitional ones, can be analyzed in more than one way.

7 In principle, we should be able to replace this MLP with a simple
embedding layer and obtain the same results. In practice, however, we
found that using a simple embedding layer barely improved performance
above the unconditioned baseline, even with teacher forcing. We suspect
that this occurs because the loss landscape of the MLP has better training
dynamics. After training, on the other hand, it should be possible to re-
place the MLP with an embedding table that simply encodes the output
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concatenate this key embedding with the output from Mu-

sicBERT to obtain the input to the Roman numeral classi-

fication heads.

In training, we employ teacher forcing, that is, we con-

dition on the ground-truth key annotations from the labeled

data. In evaluation, we first predict the key with a sepa-

rately fine-tuned model, then condition the chord predic-

tions on these predicted keys.

Another attempt to encourage coherence between key

and Roman numeral predictions is [21], who use a neu-

ral autoregressive distribution estimator (NADE). Their ap-

proach extends beyond ours insofar as it conditions each

sub-task of the Roman numeral classification on the previ-

ous tasks. In preliminary experiments applying a similar

approach to RNBert, we observed a small decline in per-

formance across all metrics. We defer to future work a

qualitative evaluation of these predictions and further sim-

ilar experiments.

3.7 Post-processing steps

In postprocessing, we collate the predictions from each

segment, combining the overlapping logits of adjacent seg-

ments by linearly interpolating between them. (By analogy

to audio signal processing we could say that we cross-fade

between the logits of neighboring segments.) We then av-

erage the logits of simultaneous notes to obtain a single set

of logits for each salami-slice.

To avoid implausibly brief key changes of one or two

salami-slices’ duration (which otherwise sometimes oc-

cur at transitions between keys, when the model estimates

both keys to be approximately equiprobable), we use a dy-

namic programming approach to decode the key predic-

tions. Specifically, we employ the Viterbi algorithm, us-

ing RNBert’s output probabilities as the emission prob-

abilities and defining a transition probability matrix that

is uniform, except for self-transitions, whose probabilities

are upweighted. This decoding scheme has a negligible

effect on the measured accuracy of the predictions, while

effectively eliminating implausibly brief key changes.

4. RESULTS AND DISCUSSION

Table 4 provides our results, expressed following [6] as

the proportion of time the predicted labels are accurate,

with 32nd-note resolution. We give two sets of re-

sults: on lines 1 to 3, training on the dataset and train-

ing/validation/testing splits used by [6, 10] for a fair com-

parison with these prior papers, and on lines 4 to 6, training

on our complete dataset.

Concerning the composite “RN” labels, RN-root refers

to the conjunction of degree, quality, inversion, and key,

while RN+root adds to these the chord root. Predicting the

root is redundant: the root of a Roman numeral is a deter-

ministic function of the degree and key (e.g., the root of #iv

in C major is F-sharp). There is hence no need to include

of the MLP for each key. However, the MLP contributes such a small
proportion of the model’s overall parameter count that we did not bother
to do so.

it in the composite Roman numeral, or indeed, to predict it

at all. Therefore, when training RNBert on our full dataset,

we do not predict the root and report only RN-root. When

training on the AugmentedNet v1 data subset, in contrast,

in order to ensure a fair comparison with the prior mod-

els, both of which predicted the root, we train RNBert to

predict the root and report the results for both RN+root and

RN-root. It can be seen that the inclusion or exclusion of

the root makes almost no difference, as one would expect.

Finally RNalt refers to an alternate task learned in [6, 10],

replacing the quality, degree, and root predictions with a

vocabulary of the 75 most common Roman numerals in

the AugmentedNet v1 training set. We did not train RN-

Bert on this task, but we report the prior results on it to

facilitate comparison with our results.

When training on the AugmentedNet v1 subset

(Table 4, line 3), RNBert substantially outperforms the

prior models on degree and quality. However, it out-

performs the earlier models by a much more substantial

margin when predicting the composite Roman numeral

RN+root. This implies that there is more coherence among

the various dimensions of its predictions. Such coherence

may be due to the robustness of the representations Mu-

sicBERT learns in its pretraining. It implies that, even

where RNBert’s predictions don’t agree with a human an-

notator’s, they are more likely to be useful, since they are

more likely to be internally consistent.

When training on the complete dataset (Table 4, lines 4–

6), RNBert exceeds the performance of the earlier models

by an even larger margin, especially when predicting the

composite Roman numeral. We defer a discussion of the

effect of key conditioning to Section 4.1.

One thing to note about these results is that, while the

models on lines 4 and 5 greatly exceed the performance of

the models on lines 1–3 on degree, quality, inversion, and

RN-root prediction, when it comes to key prediction, the

AugmentedNet v1-trained models actually perform better

(with the exception of the ChordGNN model). We believe

this occurs because key prediction on the subset is simply

an easier problem, since it contains less music from the late

19th century and beyond, a period when music tended to

modulate more widely.

4.1 Effect of key conditioning

In Table 4, line 6, it can be seen that conditioning the

Roman numeral prediction on the ground-truth key (i.e.,

teacher forcing) has a large effect on degree accuracy. This

constitutes a sanity check that the conditioning works as

expected: if the model knows the key of the annotation,

its ability to predict the Roman numeral’s degree shoots

up. By contrast, key conditioning, with or without teacher

forcing, has little effect on the “quality” and “inversion”

metrics. This is also expected, since these tasks do not

depend on the key: a first-inversion minor chord is a first-

inversion minor chord regardless of the key in which it oc-

curs.

It is somewhat harder to interpret a comparison of RN-

Bert, conditioned on the predicted key (line 5), with the
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Accuracy

Model Degree Quality Inversion Key RN+root RN-root RNalt

AugmentedNet v1 data subset

1 AugmentedNet [6] .67 .797 .788 .829 .464 .515

2 ChordGNN+(Post) [10] .714 .784 .803 .813 .518 .529

3 RNBert (key conditioned) .731 .819 .796 .825 .574 .575

All data

4 RNBert (unconditioned) .762 .867 .872 .822 .620

5 RNBert (key conditioned) .749 .864 .872 .823 .624

6 RNBert (key conditioned, teacher forcing) .859 .865 .872 N/A N/A

Table 4. Accuracy of RNBert and two prior models. The meanings of RN+root, RN-root, and RNalt are described in

Section 4. In the model comparison of lines 1–3, we indicate the best metric in bold type. Because the teacher-forcing

model on line 6 does not predict key, and RN prediction involves key prediction, we do not report RN results for this model.

Figure 2. Beethoven, String Quartet in F major, op.

18, no. 1, iv, mm. 7–8. Arguably correct predic-

tions that do not agree with the human annotations are

printed in italic type and serve to illustrate the discussion

in Section 4.2. The prediction printed in strikethrough type

is straightforwardly incorrect and illustrates the discussion

in Section 4.1.

unconditonal RNBert (line 4). The unconditional model

does better predicting degree, but the conditioned model

does better predicting the composite RN-root. These results

make sense if key conditioning makes the key and Roman

numeral predictions more coherent with one another. Even

when the unconditional model does not predict the labeled

key, it should still predict the labeled degree some propor-

tion of the time, causing its degree accuracy to be higher.

The conditional model, on the other hand, should be less

likely to do this, but its composite RN prediction should be

more coherent and thus more accurate.

Figure 2 can serve as an illustration. The two RNBert

analyses are almost identical, being in the key of F ma-

jor throughout, with tonicized dominant chords at the half

cadence that concludes the example. The lone difference

occurs at the cadential 64 chord on the downbeat of the

second measure. Here, while the conditioned model gives

the correct annotation I64/V, the unconditioned analysis

gives I64, which is incorrect, since this is a C major chord,

and the annotated key is F. The unconditioned model’s key

and Roman numeral predictions are each plausible on their

own—I64 is the most common annotation for a cadential

64 chord—but they do not cohere with one another. And

yet, in spite of being incorrect with respect to its predicted

key, this I64 prediction happens to agree with the ground

truth, and thus the degree accuracy of this example is (spu-

riously) higher for the unconditioned model.

4.2 The problem of multiple acceptable analyses

One important problem in evaluating Roman numeral anal-

ysis models is that there is often more than one correct

analysis of a musical passage, so that a model’s predictions

can be labeled “inaccurate” even when they present valid

alternate readings. For example, this may occur with brief

passages in another key, which can be analyzed as either

modulations (indicated by a change of key) or as toniciza-

tions (indicated with secondary Roman numerals).

On a priori grounds, as well as based on qualitative

sampling of the model’s predictions, we suggest that a

high proportion of RNBert’s “inaccurate” predictions are

likely to be acceptable alternate analyses. For example, in

Figure 2, it is reasonable to analyze the half cadence that

concludes the example as a brief modulation to C, as the

human annotator did, or as a tonicization, as done by both

versions of RNBert. Either analysis is acceptable, but the

divergence means that nearly all labels in RNBert’s anal-

ysis do not agree with the ground truth, in spite of being

arguably correct. These considerations may place a ceiling

on the accuracy of all Roman numeral analysis models.

5. CONCLUSION

At the broadest level, our results imply that, by fine-tuning

pretrained models, we can obtain state-of-the-art perfor-

mance on music theory tasks. In the specific case of Ro-

man numeral analysis, we suggest that Roman numeral

analysis models have now matured to the point where they

are ready to be used in large-scale musicological studies.

Finally, we note that the approach described in this paper

could be readily extended to many other music theory tasks

that can be conceived of as a labeling of the notes of a

score, including the analysis of dissonant idioms (suspen-

sions, passing tones, and the like) or melody harmonization

(that is, labeling each pitch of a melody with a chord).
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ABSTRACT

Multimodal models that jointly process audio and language
hold great promise in audio understanding and are increas-
ingly being adopted in the music domain. By allowing
users to query via text and obtain information about a given
audio input, these models have the potential to enable a
variety of music understanding tasks via language-based
interfaces. However, their evaluation poses considerable
challenges, and it remains unclear how to effectively as-
sess their ability to correctly interpret music-related inputs
with current methods. Motivated by this, we introduce
MuChoMusic, a benchmark for evaluating music under-
standing in multimodal language models focused on audio.
MuChoMusic comprises 1,187 multiple-choice questions,
all validated by human annotators, on 644 music tracks
sourced from two publicly available music datasets, and
covering a wide variety of genres. Questions in the bench-
mark are crafted to assess knowledge and reasoning abili-
ties across several dimensions that cover fundamental mu-
sical concepts and their relation to cultural and functional
contexts. Through the holistic analysis afforded by the
benchmark, we evaluate five open-source models and iden-
tify several pitfalls, including an over-reliance on the lan-
guage modality, pointing to a need for better multimodal
integration. Data and code are open-sourced. 1

1. INTRODUCTION

Combining the success of large language models (LLMs)
with new advances in machine perception that have led to
image, audio and video foundation models [1], multimodal
LLMs are becoming influential across many fields [2–6].
Recently, models of this kind have started supporting the
audio modality, with a subset also being applied to the mu-
sic domain [7–13]. We refer to such models exhibiting au-
dio understanding capabilities as Audio LLMs. In a nut-

1 Data: https://doi.org/10.5281/zenodo.12709974,
website: https://mulab-mir.github.io/muchomusic

© B. Weck, I. Manco, E. Benetos, E. Quinton, G. Fazekas,
and D. Bogdanov. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: B. Weck, I. Manco,
E. Benetos, E. Quinton, G. Fazekas, and D. Bogdanov, “MuChoMusic:
Evaluating Music Understanding in Multimodal Audio-Language Mod-
els”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

Figure 1. Multiple-choice questions in MuChoMusic
have four answer options of different levels of difficulty.

shell, Audio LLMs consist of pre-trained LLMs whose in-
put space has been expanded beyond text to include tokens
from an audio encoder, granting them the ability to pro-
duce language outputs that require understanding of both
modalities. While promising, these models also inherit
many of the limitations of LLMs and little attention has
so far been given to their evaluation. In most cases, current
automatic evaluation relies on match-based metrics which
measure the semantic or lexical overlap between model
outputs and reference text. However, many works have
pointed out deficiencies in this approach [14], which fails
to capture the large space of acceptable language outputs
admitted by open-ended tasks. For example, the question
“What are some possible uses for this music in a film or

TV show?” may be suitably answered in many different
ways. Secondly, automatic music understanding evalua-
tion via language is only supported by a handful of human-
annotated datasets [15–17], of which only one [15] has
widely been adopted in the context of Audio LLMs. In-
stead, many prior works have created a variety of ad-hoc
datasets built upon synthetically generated captions from
tags and other metadata [8, 9, 18] to train and evaluate
their models, without explicit data validation mechanisms,
which raises questions around their reliability. These three
key issues, lack of standardisation, the inadequacy of text
generation metrics, and the quality of annotations in cur-
rent datasets, pose obstacles to the development of the field
and has prompted some to resort to human evaluations [7],
which can be costly and are hard to scale and reproduce.
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In this paper, we present MuChoMusic, the first bench-
mark for evaluating music understanding in Audio LLMs.
We design a test that is easy to evaluate by collecting a set
of multiple-choice (MC) questions that are scrutinised by
human annotators, on which simple classification accuracy
can be obtained as a reliable indicator of music understand-
ing over the categories covered by the test. The content
of our benchmark is intended to be challenging, grounded
in factual music knowledge, and tests core understanding
and reasoning skills across several dimensions such as mu-
sic theory, musical styles and traditions, historical and so-
cial contexts, structure and expressive analysis. Using Mu-
ChoMusic, we carry out a comprehensive evaluation of five
existing Audio LLMs with music understanding capabili-
ties. We envision that MuChoMusic will complement prior
efforts to standardise music understanding evaluation [19–
21] by including this new family of models and steering
their early development towards robust progress.

2. RELATED WORK

In the music domain, Audio LLMs are commonly evalu-
ated by assessing their text output in the context of a given
task defined by an instruction template. Tasks are either
designed to test whether the model is able to recognise
predefined musical properties such as key (“What is the

key of this song?”), genre, instrumentation, etc., or they
probe for outputs that encompass a variety of musical con-
cepts and that more closely resemble the dialogue format
typical of chatbots. Tasks that fall under the former usu-
ally mirror canonical MIR tasks and their evaluation lever-
ages standard metrics and benchmarks from the MIR liter-
ature. Evaluation of tasks that require broader understand-
ing follows instead less established protocols. Prior works
on Audio LLMs most commonly tackle this via two tasks,
music captioning (“Describe the contents of the provided

audio in detail”) [7–9, 11] and music question answering
(“What are some possible uses for this music in a film or

TV show?”) [8, 9]. To perform this kind of evaluation, the
authors in [7, 9, 11] make use of the MusicCaps dataset
[15], while others [8, 9] employ ad-hoc evaluation datasets
created with the help of LLMs. In particular, Liu et al.
[8] and Deng et al. [9] propose their own datasets for mu-
sic question answering, MusicQA and MusicInstruct re-
spectively. These are derived from captions in the Music-
Caps dataset or tags from the MagnaTagaTune dataset [22]
(MusicQA only), by augmenting them into music-question
pairs via pre-trained LLMs. Similarly to these works, we
also leverage LLMs to generate our set of questions and
answers, but we follow a multiple-choice format to en-
sure meaningful evaluation and validate all generated data
through human annotators to guarantee high data quality.

Finally, we note that concurrent work also proposes
evaluation benchmarks for music understanding in LLM-
based models [23–25], but these all differ from our work in
significant ways: MuChin [23] includes only text in Chi-
nese and does not follow a multiple-choice format, while
both MusicTheoryBench (MTB) and ZIQI-Eval focus on
the symbolic domain and address the evaluation of text-

Benchmark Size Source(s) Audio HC MC

MusicQA [8] 4.5k MagnaTagATune ✓ ✗ ✗

MusicInstruct [9] 61k MusicCaps ✓ ✗ ✗

ZIQI-Eval [25] 14k Music books ✗ ✗ ✓

MTB [24] 372 (human-written) ✗ ✓ ✓

AIR-Bench [26] 400 MusicCaps ✓ ✗ ✓

MuChin [23] 1k unknown ✓ ✓ ✗

MuChoMusic 1.2k MusicCaps, SDD ✓ ✓ ✓

Table 1. Comparison of MuChoMusic to existing

benchmarks. HC: human-curated, MC: multiple-choice.

based LLMs. AIR-Bench [26] includes a small subset of
music-related tasks, but puts its focus on audio understand-
ing more generally. We provide an overview of key differ-
ences with other benchmarks in Table 1.

3. MUCHOMUSIC

Through MuChoMusic, we aim to alleviate three promi-
nent issues in the evaluation of music understanding in
Audio LLMs: a lack of standardisation, the inadequacy
of existing text generation metrics, and the quality of cur-
rent evaluation sets. We address the first two by adopt-
ing a multiple-choice format, while our methodical gener-
ation and validation procedure attends to the third issue by
grounding the data in human-written descriptions and en-
suring that the final questions and answers are correct and
contextually relevant, as judged by multiple annotators.

3.1 Overview

MuChoMusic consists of 1,187 multiple-choice questions
aimed at testing the understanding of 644 unique music
tracks sourced from the MusicCaps [15] and the Song De-
scriber Dataset [16]. We adopt a multiple-choice format
in order to standardise evaluation and follow widespread
practice in LLM-centric evaluation scenarios [27–30]. As
illustrated in Figure 1, each question has four possible an-
swers. One option is the correct answer, the other three
are distractors. Inspired by [31], we structure these as fol-
lows: one does not fit the track of interest but is related to
the question (incorrect but related), one correctly fits the
audio, but does not address the question (correct but un-

related), and one does not apply to the track and is also
irrelevant to the question (incorrect and unrelated).

Evaluation dimensions MuChoMusic is built from a di-
verse set of musical works and their detailed descriptions,
and serves as a foundation for evaluating Audio LLMs
across various dimensions of music comprehension. To de-
lineate the specific evaluation dimensions encompassed by
our benchmark, we develop a taxonomy consisting of two
primary categories: knowledge and reasoning. Each cate-
gory is further divided into several dimensions, informed
by insights from national music education programs and
existing research on music folksonomies [32]. This struc-
tured approach allows us to assess the depth and breadth
of music-related competencies systematically, offering a
holistic view of models’ capabilities in the music domain.
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Figure 2. Distribution of evaluation dimensions covered
by MuChoMusic across knowledge and reasoning.

In the knowledge category, questions probe a model’s
ability to recognise pre-acquired knowledge across various
musical aspects: (i) melody, (ii) harmony, (iii) metre and
rhythm, (iv) instrumentation, (v) sound texture, (vi) per-
formance, and (vii) structure. Questions that test reason-

ing are instead designed to require the synthesis and ana-
lytical processing of multiple musical concepts: (i) mood
and expression, (ii) temporal relations between elements,
(iii) interpretation of lyrics, (iv) genre and style, (v) histor-
ical and cultural context, and (vi) functional context. An
example of reasoning might involve using an understand-
ing of tempo, chord quality, and instrumentation in concert
to ascertain the mood of a music piece. Each question can
cover multiple dimensions and their categorisation is ob-
tained automatically, as described in Section 3.2. Figure 2
shows the coverage of the two categories and their respec-
tive dimensions within the benchmark. Over half the ques-
tions test at least one aspect of musical knowledge, such as
features relating to instrumentation or performance char-
acteristics, while 44% are dedicated to probing reasoning
skills. While the distribution of dimensions within each
category is not balanced, we note that this reflects the dis-
tribution of different musical concepts within music cap-
tions [16], resulting in categories such as instrumentation,
mood and genre appearing more frequently.

3.2 Dataset construction

To build our dataset, we automatically transform human-
written music captions into multiple-choice questions.
These are then carefully validated by multiple human an-
notators, alongside the associated audio, in order to fil-
ter out invalid, ambiguous or irrelevant questions resulting
from inaccuracies or hallucinations in the model output.

Data sources We source our data from music caption
datasets as we aim for elaborate and linguistically diverse
information about the music. Currently, only two caption-
ing datasets provide sufficiently detailed music descrip-
tions, namely the Song Describer Dataset (SDD) and Mu-
sicCaps. SDD contains 2-minute-long music clips with

Figure 3. QA generation and validation pipeline. Ex-
ample shown here is from MusicCaps [15].

single-sentence captions crowd-sourced from music enthu-
siasts, while the captions in MusicCaps, describing 10-
second audio snippets, are written by professional musi-
cians. From SDD, we select all tracks that have at least
two captions, to ensure enough information is provided to
the model to be able to formulate interesting and challeng-
ing questions. While this is not possible for the MusicCaps
dataset, where only one caption is available for each track,
we note that descriptions are, on average, longer than in
SDD and designed to be more comprehensive. From the
genre-balanced subset of the MusicCaps test split, we ex-
clude all tracks for which the labels indicate a low record-
ing quality, to prevent differences in audio quality from
affecting the results. For both datasets, we employ a state-
of-the-art genre tagging model [33] to identify non-musical
tracks and to sub-sample songs from the most common
genres (e.g. rock and electronic). Through this curation
process, we select 227 unique tracks from SDD and 497
from MusicCaps. We supplement the descriptions with
short text labels taken from the dataset itself in the case
of MusicCaps and from a related dataset for SDD [34].

QA generation We generate the question-answer sets
by instructing Gemini 1.0 Pro [3] to formulate question
and answer options for a given human-written caption.
To leverage the model’s in-context learning capability, we
prompt it with a detailed task description and three exam-
ples of input (description and tags) and expected output. In
addition to the question and answer pairs, we ask the model
to start its output with a summary of the provided informa-
tion about the music recording and to interleave the distrac-
tor answer options with explanations of their suitability.
This way of prompting is inspired by the chain-of-thought
methodology and helps to elicit the best model responses
[35, 36]. This way, we obtain three multiple choice ques-
tions from each description on average and collect a total
of 2,091 question-answer pairs. An example of the gener-
ated questions is shown in Figure 3.

Data validation In order to ensure that questions and an-
swers in our benchmark are factually accurate, aptly writ-
ten and that each question can be correctly answered based
on the available audio, we validate all sets of questions via
human annotators. For this step, we recruit 222 partici-
pants via the Prolific platform (www.prolific.com). During
annotation, a question, the corresponding audio clip, and
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all four answer options are presented to the participants in
random order, for a total of 30 to 50 question items. Par-
ticipants are then asked to select all options that correctly
answer the question or skip the question by indicating that
they are unable to provide an answer or that the question is
not valid. Following this procedure, for each question, we
collect three to five annotations, stopping early if different
annotators are in agreement. This task setup is intended to
vet questions and detect those that do not adhere to the in-
tended multiple-choice format, either because the expected
correct answer is not the only plausible option or because
any one of the distractors is more likely. Consequently, we
exclude questions from our final dataset for which i) less
than 50% of the annotations indicate the intended correct
answer or ii) more than 50% of the annotations mark any
of the disctractors as a plausible answer. The final dataset
comprises 858 questions from MusicCaps descriptions and
the remaining 329 from SDD captions.

Question categorisation Once questions are validated,
we categorise them according to our taxonomy outlined in
Section 3.1. To achieve this, we employ Gemini 1.0 Pro,
this time prompting it to automatically label each ques-
tion with one or more of the evaluation dimensions. The
prompt includes the full taxonomy including detailed de-
scriptions of all dimensions, a chain-of-thought instruc-
tion, and a single question with only the correct answer.
The produced output contains an explanation of the cate-
gories and dimensions assigned to each question.

4. BENCHMARKING WITH MUCHOMUSIC

We now demonstrate the use of our benchmark, describ-
ing our proposed evaluation protocol and metrics, and then
detailing our experiments on benchmarking Audio LLMs.

4.1 Evaluation Protocol

In multiple-choice-based evaluation, a model is provided
with a question and a set of answer options, and is then
tasked with selecting the most suitable answer. In prac-
tice, this can be accomplished in different ways [29]. In
our experiments, we adopt output-based evaluation: given
a music clip and an associated question-answer set, the lan-
guage output produced by the model is mapped to one of
the candidate options by string matching. Another com-
mon approach in MC evaluation is to determine the se-
lected answer through the conditional log likelihood scores
of the tokens forming each of the different options. While
this can help estimate uncertainty and confidence in the
model predictions, in our experiments, we explore only
the output-based setting, for three reasons: (1) this cor-
responds to real-world use of the models, as interactions
usually take the form of a conversation; (2) it has a lower
computational cost; (3) prior work has demonstrated that
sentence probabilities are not necessarily indicative of the
probabilities assigned to the answers [37]. To extract the
selected answer from the generated outputs, we match ei-
ther the option identifier (A, B, C or D) or the full answer
text, if one and only one is given in the output.

Model Audio encoder LLM

MusiLingo [9] MERT [39] Vicuna 7B [40]
MuLLaMa [8] MERT [39] LLaMA-2 7B [41]
M2UGen [12] MERT [39] LLaMA-2 7B [41]

SALMONN [11]
BEATS [42] &

Whisperlarge-v2 [43]
Vicuna 7B [40]

Qwen-Audio [13] Whisperlarge-v2 [43] Qwen 7B [44]

Table 2. Overview of models we evaluate in our study.

Metrics We look at two main metrics to measure model
performance on our benchmark: accuracy and instruction
following rate (IFR). Accuracy is given by the percentage
of correctly answered questions out of the total set of ques-
tions. IFR is given by the percentage of generated answers
that correspond to one of the given options. In both cases,
finegrained scores can be obtained by considering only the
subset of questions covering at least one of the available
evaluation dimensions shown in Figure 2.

Adaptation An important design factor in the evaluation
of LLM-based models is adaptation [29], the process of
adapting the input to a suitable format. While the format
of the audio input is typically fixed by the model design,
text inputs allow for more flexibility and different prompt-
ing techniques have been shown to significantly influence
model’s behaviour [35, 36, 38]. Beyond simply passing
the question and answer options as the input text, corre-
sponding to zero-shot prompting, an effective alternative
strategy is to leverage few-shot in-context learning (ICL),
whereby the model is presented with a set of reference in-
puts that exemplify the task prior to being shown the ques-
tion of interest. We experiment with in-context learning
in our experiments, providing between 0 and 5 examples
in the text input. In the interest of standardisation and to
ensure a fair comparison between the models, unless oth-
erwise specified, we keep the prompt selection fixed in our
final experiments, following an initial exploration.

4.2 Models

In our evaluation, we consider three music-specific mod-
els, MuLLaMA [8], MusiLingo [9], and M2UGen [12],
and two general-audio LLMs which can be applied to mu-
sic, as reported in their respective papers, SALMONN
[11] and Qwen-Audio [13]. To the best of our knowl-
edge, these are all the existing Audio LLMs which can be
applied to music and for which open-source weights are
available. These all share a similar architectural design and
are composed of a backbone LLM, an audio encoder and
a lightweight learnable adapter module to align embed-
dings produced by the audio encoder to the input space of
the LLM, based on either the LLaMA-adapter [45] (MuL-
LaMA, MusiLingo, M2UGen) or a Q-Former network [46]
(SALMONN). An overview of the backbones used in each
model is provided in Table 2. All systems are trained via
instruction tuning [38, 47] and all employ a combination
of different instruction datasets, often in multiple training
stages including pre-training and fine-tuning. For all mod-
els, we follow the official implementation and use default
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Model
Accuracy IFR

All Knowledge Reasoning All

MusiLingo [9] 21.1 22.0 19.2 71.6
MuLLaMa [8] 32.4 32.3 31.3 79.4
M2UGen [12] 42.9 44.9 41.2 96.4

SALMONN [11] 41.8 41.0 43.3 99.8
Qwen-Audio [13] 51.4 51.1 51.0 89.7

Random guessing 25.0 25.0 25.0 100.0

Table 3. Overall benchmarking results.

inference settings. We repeat all experiments 3 times, ran-
domly shuffling the order in which answer options are pre-
sented, and report average performance across all runs.

5. RESULTS AND DISCUSSION

In this section, we first presents findings from our bench-
marking experiments, with the goal of elucidating the cur-
rent state of music understanding in Audio LLMs. We then
illustrate how MuChoMusic can be used to derive new in-
sights via a diagnostic analysis, and discuss key takeaways.

5.1 Benchmarking Results

We report results for all models in Table 3, showing the
overall accuracy score alongside detailed scores on knowl-
edge and reasoning questions, and the instruction follow-
ing rate (IFR). Figure 4 presents a breakdown of accu-
racy scores along all reasoning and knowledge dimen-
sions. Unless otherwise specified, we show one-shot per-
formance for all models, as we find this to be the over-
all optimal setting, as we discuss in more detail in Sec-
tion 5.2. From this, we observe that current models gener-
ally perform poorly across all settings and along all eval-
uation dimensions. Among these, Qwen-Audio stands out
with a score of 51.4%. Surprisingly, with the exception
of M2UGen, music-specialised models generally perform
worse than general-audio ones, in some cases performing
only marginally above or even below random performance.
As evidenced by the IFR, these models struggle to output
answers in the correct format, which in turn negatively im-
pacts their accuracy score. As shown later in Section 5.3,
we find that, when none of the answer options is selected
by the model, this is often due to auditory hallucinations,
language hallucinations or training biases.

5.2 Analysis and Discussion

We now investigate factors influencing performance along
different axes by using our benchmark as a diagnostic tool.

Are models sensitive to prompts? We first study the ef-
fect of varying the number of in-context examples. As
shown in Figure 5, providing a single example is occa-
sionally beneficial to accuracy and IFR, but with both the
difference magnitude and overall impact differing between
models. Additionally, this trend does not hold after the
one-shot setting, and we see no consistent improvement
when using a larger number of examples. Interestingly,

Figure 4. Finegrained accuracy across evaluation dimen-
sions in knowledge (labelled in blue) and reasoning (red).

we observe that, for M2UGen, Qwen-Audio and MuL-
LaMa, changes in accuracy from zero- to one-shot prompts
are accompanied by a reduction in variance, suggesting
that ICL can help minimise variability in the model out-
put. While we do not explore this in our experiments, we
also hypothesise that the advantages of ICL may become
more prominent through multimodal few-shot prompting
[48, 49], which we leave for future work.

How do models respond to different distractors?

Next, we shift our attention to examining how distrac-
tors in our benchmark influence the difficulty of the task.
To this end, we ablate answer options corresponding to
the different kinds of distractors described in Section 3.2,
and present the model with only two or three answer op-
tions. In Figure 6(a) we show how performance is affected
when using only one distractor alongside the correct op-
tion, always randomising their order. From this, we ob-
serve that the two distractors containing information which
is not related to the question (CU and IU) have a similar
effect, while including the incorrect but related (IR) op-
tion consistently makes the task more challenging. This
phenomenon persists when adding a second distractor (not
shown here), with combinations which include IR invari-
ably leading to worse performance. Intuitively, the two
unrelated options can be ruled out based on the text in-
put only, while selecting the correct answer between two
options that appear relevant requires engaging multimodal
understanding to relate information in the audio content to
the text in the question. Crucially, this indicates that mod-
els particularly struggle to discern between options that are
equally plausible based on the text input only, suggesting
that less attention is given to the audio content. This forms
the basis of our hypothesis that current Audio LLMs are
characterised by a strong language bias, leading to poor
performance in tasks that are more audio-dependent. We
test this hypothesis in the next section.

Do models actually pay attention to the audio? In or-
der to verify whether the audio input is effectively being
ignored or is overshadowed by its text counterpart, we de-
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Figure 5. Effect of the number of in-context examples

on accuracy (left) and instruction-following rate (right).

vise a simple test, which we call audio attention test, where
we replace the audio clip corresponding to a given ques-
tion with either white Gaussian noise or a randomly cho-
sen track from the dataset. In order to pass this test, a
model should display a statistically significant drop in per-
formance when either form of audio perturbation is used,
compared to its baseline performance. We showcase re-
sults on this test in Figure 6(b). From this, we clearly see
that, with the exception of SALMONN and Qwen-Audio,
all models fail the audio attention test, and the severity of
this failure is often negatively correlated to their overall
performance on the benchmark (see Table 3). This con-
firms that current Audio LLMs are biased towards textual
information, often choosing answers that score well under
their language prior. Additionally, it provides an explana-
tion for their low performance on the benchmark, as this
is effectively bounded by the maximum score they can at-
tain mostly based on the language input. We argue that this
constitutes a major pitfall in the design and training proce-
dure of these models, which results in music understand-
ing abilities that do not match the expected performance,
as obtained through prior evaluations.

5.3 Failure Modes

While the core goal of our benchmark is to provide stan-
dardised automatic evaluation to objectively measure gen-
eral music understanding capabilities, we argue that it can
also constitute a useful tool for qualitative assessment. We
showcase three examples here, focusing on the two lowest-
performing models. While this is not an exhaustive analy-
sis, these examples offer a bird’s-eye view of how language
pre-training biases percolate through multimodal training,
resulting in failures to attend to the inputs in our evalua-
tion. To describe these, we borrow terminology from [50].

Auditory hallucination One of the ways models fail to
provide a suitable answer falls under the category of audi-

tory hallucination, whereby a response includes references
to musical elements that are not present in the audio. For
example, when asked about an accompaniment instrument,
models with this type of hallucination may ignore any suit-
able option provided (“acoustic guitar” or “strings”), in-
stead answering “The song is accompanied by a piano.”,
when the audio clip clearly contains no piano.

Figure 6. (a) Effect of using different types of distrac-

tors: models tend to perform worst when tasked with dis-
tinguishing between two related answers. (b) Audio at-

tention test: only some models display a significant drop
in performance when provided with incorrect audio inputs.
For these experiments, we adopt zero-shot prompting.

Language hallucination Another instance of hallucina-
tion concerns mundane statements that deviate from the
topic of the question altogether. Among others, an ob-
served case of this failure mode is a statement of the form
“The song has a clear and coherent rhythm structure” to a
question specifically asking about the “type of drum beat”.

Training data bias The last failure mode we encounter
is related to a bias towards frequent patterns occurring in
the training data. While some of the benchmarked mod-
els undergo a stage of training that includes instruction-
tuning examples with questions and answers, occasionally
they still produce trivial outputs. For example, when asked
“What is the intended purpose of this song?”, a model with
this type of bias may answer “The intended purpose of this

song is not mentioned in the caption”. Reviewing Mu-
sicQA, used in training MuLLaMa and MusiLingo, reveals
that a high number of the LLM-generated training exam-
ples mention similar phrases, thus likely biasing the model
towards this type of uninformative but highly likely output.

6. CONCLUSION

We have presented MuChoMusic, a multiple-choice mu-
sic question answering benchmark designed to test mu-
sic understanding in Audio LLMs. From an evaluation of
five state-of-the-art systems, we find that our benchmark
acts as a challenging and informative test, and that current
models do not yet leverage both the audio and text modal-
ities fully. All questions in our benchmark are synthesised
from human-written music descriptions and manually re-
viewed to guarantee high data quality. A categorisation of
the questions highlights that MuChoMusic offers a broad
coverage of areas targeted by current models, and addition-
ally pinpoints gaps that could guide future developments
in the field. While we demonstrate that our approach leads
to new insights, we note that the multiple-choice format
presents some limitations [51]. Therefore evaluation on
MuChoMusic should be complemented via further bench-
marking efforts to address additional aspects of music un-
derstanding through different tasks and formats.
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7. ETHICS STATEMENT

7.1 Annotator welfare

Prior to participation, the annotation experiment described
in Section 3.2 was approved by the Queen Mary Ethics
of Research Committee to ensure alignment with ethical
guidelines and protections for human subjects in research.
We did not collect any personal data from our annotators,
safeguarding their privacy and confidentiality. Annotators
were fully informed about the objectives of the research,
the nature of their tasks, and the use of their annotations,
underpinning their informed consent before contributing to
the project. In an effort to provide a fair compensation for
their contributions, annotators were paid £9 per hour.

7.2 Biases and fairness

In constructing the MuChoMusic benchmark, our data col-
lection strategy included sourcing music tracks from a va-
riety of backgrounds, acknowledging the inherent chal-
lenges in representing the rich diversity of global music
cultures within our dataset. We recognise that our initia-
tive does not fully balance the benchmark across all gen-
res, languages, and cultural backgrounds, and annotations
were conducted exclusively in English due to logistical
constraints, highlighting areas for future expansion and im-
provement.
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ABSTRACT

Vocal concerts in Indian music are invariably associated

with the performers’ hand gesticulations that are believed

to convey emotion, music semantics as well as the individ-

ual style of the performers. Video recordings, with one or

more cameras, along with markerless human pose estima-

tion algorithms can be employed to capture such move-

ments, and thus potentially solve music information re-

trieval (MIR) queries. Nevertheless, off-the-shelf algo-

rithms are built for the most part for upright human con-

figurations contrasting with seated positions in Indian vo-

cal concerts and the upper body movements in the con-

text of performing music. Current state-of-the-art algo-

rithms are black box neural network based and this calls

for an investigation of the components of such algorithms.

Key decisions involve the choice of one or more cameras,

the choice of 2D or 3D features, and relevant parameters

such as confidence thresholds in common machine learn-

ing methods. In this paper, we quantify the increase in the

performance with three cameras on two music information

retrieval tasks. We offer insights for single and multi-view

processing of videos.

1. INTRODUCTION

Performances of vocal music in the Indian classical tradi-

tions involve the use of hand gestures that accompany the

singing. We therefore wish to perform the automated anal-

ysis of performances with audiovisual recordings. One or

more video cameras can be used to record musical perfor-

mances. Our goal in this work is to explore different Hu-

man Pose Estimation (HPE) methods for the computational

analysis of expressive movements of upper body limbs of

the vocalist.

Markerless Human Pose Estimation algorithms consti-

tute a novel technology that is available to investigate hand

gestures by looking at important keypoints such as wrists

and elbows. These algorithms are trained with artificial

deep neural networks on whole body movements, and oc-

casionally on music recordings. One important concern in

© S. Roychowdhury, P. Rao, and Sharat Chandran. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: S. Roychowdhury, P. Rao, and Sharat Chan-

dran, “Human Pose Estimation for Expressive Movement Descriptors in

Vocal Musical Performances”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

Figure 1: We analyze seated vocalists with multiple cam-

eras. We identify singers purely based on hand gestures,

and predict stable notes.

the use of HPE in musical gesture studies is that the ges-

tures are typically expressive movements and not routine

motor movements such as walking, jumping, or perform-

ing yoga poses, the latter motor movements being the bulk

of the training data used in the development of HPE al-

gorithms. Indian classical music, in both Northern and

Southern traditions, is particularly rich in the use of ges-

tures invariably in a seated position.

Paschalidou [1] studied associations between sound and

“effort" in gesture in Dhrupad performances using an opti-

cal motion capture system. Although she finds correspon-

dences, generalizing to multiple singers was challenging.

Pearson and Pouw [2] look at vocal-gesture coupling in

Karnatak music performance; the Kinect camera and an

older, machine learning technique is technique is used for

obtaining keypoints. With the current deep-learning HPE

technology, Clayton et. al. [3,4] use OpenPose-based wrist

keypoints to classify raga and identify singers on a dataset

of multimodal Hindustani music recordings. Nadkarni et

al. [5] also use OpenPose to explore the correspondence

between vocal singing and gestures.

However, to the best of our knowledge, there has been

no work which uses multiple camera views for studying

gesture and vocal correspondence in music. While it is

natural to expect that more cameras help HPE, on a careful

examination of prior work, we see that the process of esti-

mating keypoints requires multiple design decisions. Sev-

eral options present themselves in terms of camera posi-

tion, the number of views, the keypoint detection method

and its parameters, and finally, methods for combining in-

formation from multiple camera views.
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1.1 Scope of this paper

In this paper, we choose 3 recent models for keypoint de-

tection and 3 different HPE methods to obtain information

from multiple views for the purposes of analyzing gestures.

We restrict our study to wrist and elbow of both hands since

they appear to be the ones most relevant when singers are

seated. We consider two MIR tasks.

Stable Note Prediction from Gestures This problem

was studied by Nadkarni et al. [5]. The authors define a

stable note as a region of at least 250 ms duration across

which the singer’s pitch lies within a 25 cent interval of the

mean intonation of the raga note.

Gesture-based Singer Identification In this task, the

goal is to identify the singer purely from gestures, i.e.,

without accessing the audio stream, or the face. Rahaim [6]

emphasises that gestures in music are not taught or re-

hearsed and therefore tend to be idiosyncratic. The pro-

posed MIR task attempts to validate the hypothesis that it

should be possible to identify the singer from the gesture

using 12s randomly chosen snips from the video. Similar

problems may be interesting in other MIR settings such as

a western music conductor’s motions when the face is not

visible, or in dance and musical performances where the

face is hopelessly masked. A gesture-based singer identi-

fication system can also be used to validate a digital avatar

system that is attempting to realistically mimic singers.

1.2 Contributions

Although our work is focused on the two tasks mentioned

above, we offer insights more generally useful in the HPE

analysis of multiview recordings of music performances.

• Every HPE algorithm provides confidence scores.

We suggest an approach to the choice of confidence

thresholds for fair comparisons across algorithms.

• Multiple cameras lend themselves to 3D reconstruc-

tion, and indeed a single camera can also be used in

recent state-of-the art methods to infer 3D. We sug-

gest that decision fusing 2D information from mul-

tiple cameras can be almost as competitive as using

3D reconstruction.

In term of concrete results for the two problems we re-

port the following:

1. By considering position coordinates and individual

coordinates of velocity and acceleration as features,

a systematic choice of confidence thresholds, and the

best HPE method, we improve the performance of

stable note prediction (from gestures) from ∼66%

[5] to ∼83% (single camera).

2. We report the accuracy of the best performing HPE

method for gesture-based singer identification (8-

way) to be ∼93%.

It is to be noted that the two MIR tasks are solved using

two different methods. The Stable Note problem uses the

classical machine learning method of SVM. There is no ar-

tificial neural network here. On the other hand, the gesture-

based singer identification problem uses a deep neural net-

work with an inception block.

The rest of the paper is organized as follows. In Sec. 2

we look at different keypoint detection methods, and the

reported performance. Sec. 3 describes the dataset used.

Task agnostic comparisons of HPE methods is discussed

in Sec. 4. Our two suggested methods of consuming infor-

mation from multiple cameras is described in Sec. 5. The

details of our experiments and the results are reported in

Sec. 6. A summary appears in Sec. 7.

2. BACKGROUND

We first briefly describe three popular HPE methods, one

[7] of which is proprietary. Later we describe the appli-

cations of these to areas in sports, and medicine in order

to understand current understanding of their usage. We are

not aware of the direct use of HPE for gesture understand-

ing except the ones mentioned in the introduction.

2.1 Human Pose Estimation Techniques

The pose of a human in HPE methods results in a stick

diagram (similar to Fig. 1) of important joints such as the

shoulder, wrist, elbow, hip, knee and so on from images

and videos. At the turn of the century, the joints, referred

to as keypoints were obtained with markers placed on dif-

ferent parts of the body — however this can only be set

up in controlled experimental settings and may also affect

the natural movement of the subject. Subsequently spe-

cialized cameras such as the Kinect was employed using

classical machine learning techniques. With the advent of

deep learning (DL), nowadays standard RGB cameras may

be employed for markerless pose estimation.

One of the first DL-based techniques is OpenPose [8]

which can identify 25 keypoints in terms of pixel coordi-

nates reported as (x, y). OpenPose is based on estimating

confidence heatmaps for keypoints and part affinity fields

(PAF) which are vector fields encoding the connection

across limbs between different joints. Since their method

estimates keypoints and parts directly from the image using

a multi-stage Convolutional Neural Network (CNN) their

method is called a bottom-up approach in the literature [9].

OpenPose is trained on the MP-II human dataset [10] and

the COCO [11] datasets. The MP-II dataset, with 25K im-

ages in 20 activity categories like cycling, running, violin

playing, etc., has both full body and seating position data.

The COCO dataset has 200K annotated images of 17 body

keypoints in both seated and full body positions.

Alternatively, approaches based on Mask R-CNN [12]

perform semantic segmentation of the image to identify

masks on people in the image. Detectron2 [13] uses this

mask to identify 17 keypoints for the body parts. As this

method uses an identified mask for the prediction of the

keypoints, this is often referred to as a top-down keypoint

estimation method. Detectron2 is trained on the COCO

dataset [11].
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Multiple calibrated cameras can use well understood

geometric computer vision methods of the 90s for depth

estimation from 2D keypoins, thus producing 3D coordi-

nates (x,y,z). Aniposelib [14] is a library which imple-

ments the 3D reconstruction from multiple synchronized

calibrated cameras. However, the 2D keypoints in Detec-

tron2 can be extended to 3D by a different deep learning

based model VideoPose3D [15]. Videopose3D uses two

DL models – a temporal dilated convolution for estimating

depth per person and a separate 3D trajectory model for

the center of the body viz. center-hip coordinate. Depth is

estimated as a distance with respect to the center-hip of the

body. Videopose3D is trained on Human 3.6M [16] and

Human Eva [17] datasets.

There is, however, a direct way of obtaining 3D pro-

vided the face of the image is visible. BlazePose [18]

identifies thirty-three 3D keypoints from single-view im-

ages. This model is trained on a custom dataset consisting

of 60K images and is used in the Mediapipe library [7].

2.2 HPE-based Applications

A number of studies (for example, [19]) in HPE have in-

volved evaluation of the accuracy of the HPE models by

comparing markerless pose estimation with marker based

pose estimation and shown that the Mean Absolute Error

to be less than 30mm on 80% of trials.

Markerless systems are evaluated in clinical settings by

Zhang et al. [20] and Mroz et al. [21] where they compare

Hyperpose [22] vs OpenPose and OpenPose vs BlazePose

(Mediapipe) respectively. Zhang et al. [20] establishes that

OpenPose is better than HyperPose using manual anno-

tations and then compares OpenPose with BlazePose via

Root Mean Squared Error (RMSE) and correlation metrics.

Their findings are that while BlazePose is faster, Open-

Pose provides for more accurate results in their setting.

A similar comparison study [23] between three models

– OpenPose, BlazePose and AlphaPose looks at a multi-

camera setting for estimating biomechanical parameters

like Ground Reaction Force (GRF). They observe that the

detection rate is dependent on the camera view and the

model. Also, they observe the BlazePose has lower de-

tection rate than the other models.

Mehdizadeh et al. [24] look at estimating gait variables

comparing OpenPose, AlphaPose [25] and Detectron and

do not find any differences between their correlation with

gait variables. Since all of the HPE models estimate a con-

fidence score, they choose a confidence threshold for each

model independently and discard estimates with a lower

confidence than threshold and interpolate the values lin-

early. They choose the confidence thresholds so that less

than 10% of frames were interpolated as a result.

Evaluating athlete anterior cruciate ligament (ACL) in-

jury risk in jumps is important for athletes and the studies

by Blanchard et. al [26] and Roygaga et al. [27] look at this

using a multi-view camera setting and OpenPose model for

HPE. They train models to identify if the jump is erroneous

on each view independently and also a fusion model com-

bining the individual models. Their choice of a confidence

threshold of 0.3 for OpenPose confidence is validated by

an ablation study across different thresholds. Their results

indicate that the task performance depends on the view and

the type of error. They drop frames below threshold of 0.3

but do not interpolate dropped frames.

2.3 Synopsis

All of these studies bring us to some conclusions which

motivate our research in MIR space. First, we are aware of

a variety of techniques and approaches for HPE estimation

and 3D reconstruction. Second, markerless pose estima-

tion models have acceptable accuracy This is necessary in

a musical setting since performers may not be comfortable

using markers. Third, we realize the possible benefits of

doing multi-view reconstruction in downstream tasks. We

understand that performance on any downstream task de-

pends on the view and model of choice. Finally, we are

aware of the importance of the choice of thresholds in re-

jecting or retaining HPE estimates and how these are de-

pendent on the model and view in question.

3. DATASET

We used the dataset from our earlier study [5]. The de-

tails of the dataset, data processing and links to download

the data are available on github. 1 The dataset consists

of 11 professional singers singing 2 alaps 2 each of 9 ra-

gas. Recordings are captured by 3 synchronized cameras.

However, we discovered that the recordings for 3 of the

11 singers were done with uncalibrated cameras and thus,

since we are interested in 3D information, Anipose [14]

cannot be used. Therefore we base our MIR tasks de-

scribed in Sec. 1.1 on only the remaining 8 singers. We

are left with 143 recordings with about 7 hours 10 mins of

recording. These recordings are at 24 fps with a resolution

of 1920× 1080. The angle between the front and the right

camera is approximately 55 degrees and the front and left

camera is approximately 47 degrees. We refer to left and

right camera based on the singer’s point of view. Fig. 1

shows a sample of the singer in the three views.

4. TASK-AGNOSTIC COMPARISONS

We choose the three HPE models because they provide a

mix of bottom-up (OpenPose), top-down (Detectron) sin-

gle view 2D keypoint estimation as well as single view

3D keypoint estimation (Mediapipe). In addition, our re-

construction techniques involve both frame-wise geomet-

ric reconstruction via Anipose [14] as well as DL-based

methods (Videopose3D [15]) which uses information from

neighbouring frames. Thus our methods of estimation and

reconstruction are relatively independent of each other.

4.1 Confidence Threshold

All HPE models provide a confidence score for each of

the estimated keypoints and it is conventional to choose

1 Dataset github
2 Alap is the unmetered introduction in raga performances.
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a threshold for the confidence score to ignore predictions

with a lower confidence score. Various previous studies

[5, 27–29] have used a 0.3 threshold for OpenPose. How-

ever, we find that this method is not based on the actual

data distribution and also cannot be extended to other HPE

models like Detectron and Mediapipe. Due to this, we ap-

proach the problem similar to [24]. In every frame, if any

of the left and right wrist and elbow keypoints have a con-

fidence score to be less than some value x then we remove

the position coordinate in question and interpolate it from

the available neighbouring frames. For each model-view

combination we change the threshold from 0 to 1 in steps

of 0.01 and, in line with [24], choose the threshold so that

no more than 10% of frames are dropped in that model-

view combination. The corresponding obtained confidence

thresholds are given in Tab. 2 and used for all our experi-

ments. Abbreviations used in this paper are in Tab. 1.

OpenPose - OP2 Detectron - DE2 Mediapipe - MP2

Aniposelib - AP3 Videopose3D - VP3 Mediapipe3D - MP3

Table 1: Abbreviations for the various HPE techniques.

View OP2 DE2 MP3

Front 0.49 0.17 0.27

Left 0.20 0.10 0.01

Right 0.38 0.15 0.12

Table 2: Confidence values obtained when the maximum

number of interpolated frames is 10%.

4.1.1 Observations

We observe that thresholds for the left view are lower in

all the 3 HPE models and this indicates that the keypoints

are predicted with lower confidence for this view. The ob-

tained threshold is particularly low for Mediapipe. Also,

we observe that thresholds for OpenPose are higher than

the other models indicating that OpenPose predicts key-

points with a higher confidence score. If we use the pre-

viously reported threshold of 0.3 for OpenPose then we

would have 3.67%, 15.49% and 7.23% of interpolated

frames in front, left and right views respectively. How-

ever, as seen from Tab. 5, there is no particular advantage

of using the previous reported confidence value of 0.3 with

its performance lower than what we have in Tab. 4.

4.2 Correspondence between models

Given that the models are attempting to predict the same

joints, we expect that that the predictions would be close

to each other in the pixel coordinate system. To verify this

we consider the Euclidean distance of the predicted key-

points between 2 models in a pair in every frame. We ig-

nore frames where any of the four keypoints have a confi-

dence less than the corresponding threshold as defined in

Tab. 2. The results are presented in Fig. 2.

4.2.1 Observations

We observe that the three models correspond well to each

other in the front view (noting that the dimensions of the

frame to be 1920× 1080). However, in other views, while

OpenPose and Detectron predictions maintain pair-wise

consistency, the same cannot be said for Mediapipe. We re-

peat these experiments by choosing thresholds correspond-

ing to 5% and 15% interpolated frames and the same trends

hold true. These trends also hold when we study the pair-

wise correlations (instead of RMSE distances). This analy-

sis, however, can only say that the models concur with each

other in the front view but not so in the other views with

least concurrence in the left view. We cannot conclude that

one model is better than the other based on this analysis.

A partial intuition for these results is that the left hand ob-

scures the right hand in the left view, and most singers are

right-handed.

5. MULTIPLE CAMERAS

In this section, we provide the details of the use of multiple

cameras for the downstream MIR tasks. Fig. 3 shows the

algorithms we use to get 2D and 3D coordinates.

5.1 Reconstruction

Reconstruction involves the combination of the data from

multiple views to estimate a depth-coordinate either via

classical computer vision [14] or DL. The z-coordinate is

measured in distance from the camera in geometric re-

construction. On the other hand, with DL the depth is

estimated to be a distance with respect to the center hip

with larger values indicating further distance from the cen-

ter. In the recording setting, a higher value of the esti-

mated z-coordinate (e.g., for an outstretched hand) would

mean closer to the camera. Mediapipe which predicts the

z-coordinate from a single view uses a similar definition

of the z-coordinate. Reconstruction using both Aniposelib

[14] and Videopose3D can be done using any of the cam-

eras as reference view and information from other cameras

used for reconstruction. The results for the downstream

tasks can be different.

5.2 Model Fusion

The second method for consuming data from multiple

views in a machine learning based MIR setting is to have

the downstream task (e.g. classifiers) trained individually

on each view and then use the probability predictions of

these classifiers as an input to a further classifier. This

can be done based on classifiers on three sets (each us-

ing 2D data) in which case this will be an alternative to

reconstruction. On the other hand, one can use classifiers

trained on three reference views using 3D reconstructed

data (anipose, videopose3D) or predicted data (e.g. Medi-

apipe), and then use their probability outputs as an input to

a further model. Both of these approaches are examples of

multi-view fusion which exploit the complementary infor-

mation present in different views.
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(a) Left view (b) Front view (c) Right view

Figure 2: The average Euclidean distance in pixel coordinates different keypoints for pairwise HPE techniques. Non-

interpolated frames considered are shown in parenthesis and four joints are considered. See Table 1 for the legend.

Figure 3: The three HPE methods (see Table 1) in this

paper. Left and Right are views defined with respect to the

singer.

6. EXPERIMENT DETAILS

6.1 Kinematic Features

The keypoint detection methods algorithms give us the x

and y pixel coordinates for the keypoints and the 3D esti-

mation gives us the z-coordinate to some scale. We linearly

interpolate keypoints in frames that having confidence lev-

els lower than the thresholds defined in Tab. 2. We use

a low-pass Savitzky-Golay filter [30] to remove any jitter.

We next interpolate the gesture data from the video frame

rate to 10 ms sampling interval. We use z-score normaliza-

tion for each keypoint by considering the mean and stan-

dard deviation for that keypoint and that coordinate across

all frames of the recording. For repeatability, following [5],

we estimate velocity and acceleration on each coordinate

axis by a 101-point biphasic filter to get a smooth velocity

and acceleration profile. We re-use the parameters of the

biphasic filter defined in the supplementary link provided

in [5].

6.2 Stable Note Detection

Although we replicate from [5] the stable note identifica-

tion algorithm on audio, we use different features for the

gesture classification. Instead of using the velocity and

acceleration vector magnitudes, we consider the position,

velocity and acceleration along each coordinate axis inde-

pendently. We thus have 9 kinematic features per wrist.

As in [5], we only consider stable and non-stable segments

which are at least of 500 ms duration. Using this for the

8 singers, we have 15312 segments with 40.65% of them

as stable notes. We use the mean and standard deviation

per segment of each of the kinematic features for both

wrists as input to our classifier. Thus, for models trained

on 3D data (aniposelib, Videopose3d, Mediapipe) we have

9 × 2 × 2 = 36 features considering both wrists. For

models trained on 2D data (aniposelib, Videopose3d, Me-

diapipe2D) we have 6 × 2 × 2 = 24 features. With these

features, we train a SVM classifier per singer using 10-fold

cross-validation and report the mean cross-validation accu-

racy. (Note that Mediapipe outputs 3D coordinates but we

drop the z-coordinate in the experiments for comparison of

2D results.)

6.3 Gesture-based Singer Identification

We use randomly chosen 12s splits from the video in an

attempt to identify the singer. We use a time series for the

position, velocity and acceleration (PVA) features along

each coordinate axis at (each) 10ms time interval for both

wrists and elbows. Thus we have 36 features considering

wrist and elbow for models using 3D data and 24 features

for models using 2D data. We keep aside data for 3 ragas

as test data (4103 samples), and train on the rest of the data

using a random 80–20 train–validation split. We use a deep

neural network consisting of convolutional layers followed

by a 2D inception block as shown in Fig. 3 of [3]. We find

best hyperparameters separately for each HPE technique,

retrain the model with best hyperparameters and then re-

port the results on the test set.

6.4 Fusion models

In the fusion models (for both 2D and 3D classifiers) for

the stable note classifier we use the predicted probability

for the stable note classifier. Thus we have 3 features in

the fusion classifier and we train per singer using 10-fold

cross-validation a classification model by a hyperparame-

ter choice over logistic regression, random forests and sup-

port vector machines. We report the average of the mean

per-singer cross-validation F1-score.
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For the fusion models (both 2D and 3D) for the gesture-

based identification of 8 singers, we take the softmax out-

put of the final layer of the classifier from all views. Thus

we have 24 features in the fusion classifier and we train a

classifier by 10 fold hyperparameter tuning across logistic

regression, random forests and support vector machines.

Our training data for the fusion model consists of the soft-

max predictions on the train and val data of the neural

network. We report the accuracy using features generated

from the excerpts corresponding to the 3 held-out ragas.

6.5 Results

The results of the stable note detection appears at the first

row of Tab. 3. We report the best result across camera

views (or reference view for 3D reconstruction) for the

HPE method. We note that the performance for the 2D

models, MP2 performs better than either OP2 or DE2.

Moving to 3D coordinates, we see a significant improve-

ment in AP3 and VP3.

The results of the (pure) gesture-based singer identifica-

tion classifier is given in the second row of Tab. 3. We re-

port the best result across camera views (or reference view

in the case of 3D). The classification accuracies, compared

to a chance accuracy of 12.5%, indicate (given gestures

are idiosyncratically singer-specific) that the HPE methods

are reliable. We observe to our surprise that the method

of classical computer vision (AP3) is the best performing

model.

2D 3D

OP2 DE2 MP2 AP3 VP3 MP3

StableNote 77.7 78.6 83.0 78.6∗ 82.5∗ 83.5

SingerID 83.2 81.9 79.6 83.3 81.4 82.9∗

Table 3: F1-score (%) for stable note detection and ac-

curacy (%) for gesture-based singer identification.star(*)

indicates significant (p<0.05) difference between 2D and

3D, and bold indicates best result for a task in correspond-

ing methods of 2D/3D.

The first row of Tab. 4 shows the results of decision

fusion models based on the corresponding models across

views for the stable note task. The results show that 2D

fusion gives us comparable performance to reconstruction.

The results of the models using fusion of classifiers across

views are present in the second row of Tab. 4 for the

gesture-based singer identification task. We see that when

we use fusion instead of reconstruction, the results are

much better with every possible technique for both MIR

tasks. Accordingly we recommend this method. All fusion

results are statistically significantly better than the corre-

sponding best single view results in Tab. 3.

6.5.1 Ablation Study of Thresholds

Tab. 5 has the OpenPose results using a constant thresh-

old of 0.3 for all views and the Anipsoselib result tasks.

Tab. 6 has the results ablation study for various levels of

interpolated frames.

The results show that our chosen threshold has com-

parable performance with default 0.3 threshold but our

2D-Fusion 3D-Fusion

OP2 DE2 MP2 AP3 VP3 MP3

StableNote 82.0† 82.1 83.9 82.0 85.0∗ 86.6∗

Singer-ID 91.4† 93.0† 92.3† 93.3∗ 93.6 92.7

Table 4: Fusion based results. Values in %. Bold and

star have same meaning as Tab. 3. Values with dagger (†)

indicate the 2D-fusion model is better (p< 0.05) than the

corresponding 3D model in Tab. 3

method is extensible to other HPE models. Results for

5%,10% and 20% interpolated frames are very similar.

However if we set thresholds corresponding to 30% inter-

polated frames the performance is poorer.

OP2-Front OP2-Left OP2-Right AP3

Stable Note 77.1 77.8 77.5 78.2

Singer ID 80.8 81.5 82.6 82.3

Table 5: Performance (in %) of OP2 for all views and AP3

using the confidence threshold of 0.3 used in the literature.

Interpolated % 2D Models 3D Models

OP2 DE2 MP2 AP3 VP3 MP3

5 78.2 78.6 83.0 78.0 82.6 83.0

10 77.7 78.6 83.0 78.1 82.5 83.0

20 77.1 78.5 82.9 77.4 82.2 82.9

30 75.1 74.8 80.5 75.4 79.0 80.6

Table 6: F1-score (%) across HPE techniques.

7. SUMMARY AND CONCLUSION

Given the importance of reliable joint pose estimation in

gesture analysis, we investigated a set of distinct available

approaches to the keypoint detection of wrists and elbows

for an application of expressive hand movements in two

MIR tasks. We showed that the different ways of using

multiple camera views, in terms of the single-view pose

estimation method and the manner of combining multiple

views, can influence task performance significantly. While

3D reconstruction affords a complete description of the

gesture movements, the fusion of multiple 2D information

is competitive. The fusion of multiple 3D representations

is seen to bring in further benefits. The superiority of fu-

sion results over single view is established via statistical

significance. The two MIR tasks involve the use of dis-

tinctly different machine learning methods (classical SVM,

and recent deep-learning) and involve scenes where the ac-

tion is only in the upper body, providing evidence for the

use modern HPE methods. We expect the outcomes of this

study therefore to be useful in any application of expres-

sive movement analysis involving upper-body limbs.

Future work would involve the fine-tuning of HPE al-

gorithms with a set of manually labelled keypoints to see

whether the optimization with respect to upper body key-

points helps improve the estimates.
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ABSTRACT

Predicting a listener’s experience of music based solely

on audio features has its limitations due to the individual

variability in responses to the same music. This study ex-

amines the effectiveness of electroencephalogram (EEG)

in predicting the subjective experiences while listening to
music, including arousal, valence, familiarity, and pref-

erence. We collected EEG data alongside subjective rat-

ings of arousal, valence, familiarity, and preference from

both fans (N=20) and non-fans (N=34) of the K-pop idol

group, NCT127 to investigate response variability to the

same NCT127 music. Our analysis focused on determin-

ing whether the inclusion of EEG alongside audio features

could enhance the predictive power of linear mixed-effect

models for these subjective ratings. Specifically, we em-

ployed stimulus-response correlation (SRC), a recent ap-

proach in neuroscience correlating stimulus features with

EEG responses to the ecologically valid stimuli. The re-

sults showed that familiarity and preference was signifi-

cantly higher in the fan group. Furthermore, the inclusion

of SRC significantly enhanced the prediction of familiarity

compared to models based solely on audio features. How-

ever, the impact of SRC on predictions of arousal and va-

lence exhibited variation depending on the correlated audio

features, with certain SRCs improving predictions while

others diminished them. For preference, only a few SRCs

negatively affected model performance. These results sug-

gest that correlations of EEG responses and audio features

can provide information of individual listeners’ subjective

responses, particularly in predicting familiarity.

1. INTRODUCTION

The neuroscience of music, employing neuroimaging

methods, has revealed how the brain processes music

through regions responsible for auditory, motor, and emo-

tional functions, with recent approaches focusing on the

brain’s predictive processes [1, 2, 3, 4]. The convergence

© S. Park, H. Kim, and K.M. Lee. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-

bution: S. Park, H. Kim, and K.M. Lee, “Enhancing predictive models

of music familiarity with EEG: Insights from fans and non-fans of K-pop

group NCT127”, in Proc. of the 25th Int. Society for Music Information

Retrieval Conf., San Francisco, United States, 2024.

of music information retrieval (MIR) and neuroscience has

gained significant traction in recent years [5, 6, 7]. For ex-

ample, Rajagopalan and Kaneshiro have highlighted the

potential of electroencephalogram (EEG) in the analysis

of musical structure [8]. Furthermore, Ofner and Stober

demonstrated the reconstruction of perceived and imagined

music from EEG data [9]. These findings highlight the

synergistic benefits of integrating MIR and neuroscience.

In this paper, we aim to investigate how EEG can enhance

the predictive model of subjective listening responses to
music, given the individual variability in such experiences.

1.1 Predicting Subjective Music Listening Experience

using Audio Features

Subjective music listening experience refers to the indi-

vidual and unique responses that people have when they

listen to music. It encompasses a wide range of as-

pects, including emotional reactions, preferences, familiar-

ity, and overall enjoyment of the music. Subjective expe-

rience acknowledges that each listener’s response to mu-

sic is personal and may be influenced by various factors

such as their musical background and cultural upbring-

ing [10, 11, 12, 13].

Predicting listeners’ subjective experiences of music

through audio features has been a significant focus within

MIR research. For example, Music Emotion Recognition

(MER) aims to predict listeners’ emotional responses us-

ing various techniques [14, 15, 16, 17]. Audio features, in-

cluding tempo, rhythm, melody, and harmony, have been

shown to correlate with listeners’ emotional responses and

preferences [18, 17]. However, the relationship between

audio features and subjective experiences is complex, in-

fluenced by individual differences in musical background,

culture, and personal taste [19, 20, 21]. Notably, emotional

responses can significantly vary depending on individual

differences [21, 22, 23, 24]. Thus, relying solely on audio

features may not capture the full spectrum of music’s im-

pact on the listener, emphasizing the need for incorporat-

ing physiological measures such as EEG in understanding

subjective music experiences [18].

1.2 Stimulus-response Correlation

The use of EEG offers a breakthrough in predicting subjec-

tive music listening experiences [25]. EEG provides real-

time measures of brain activity, allowing direct observa-
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tion of neural responses to musical stimuli. Specifically,

stimulus-response correlation (SRC), a recent method cor-

relating stimulus features with EEG responses, enhances

the ecological validity of studies by using real-world mu-

sic stimuli and offers interpretable insights into the di-

rect effects of stimulus features on the listener’s experi-

ence [26, 27]. For example, SRC analysis revealed that

neural responses are strongly correlated with specific task-

relevant visual areas [28]. Additionally, SRC enabled the

prediction of speech intelligibility [29]. Despite employ-

ing a different method to calculate the correlation between

audio features and EEG responses, Weineck et al. found

that neural response intensity increased with music famil-

iarity [30]. Therefore, SRC is considered to be useful tool

for predicting subjective music listening experiences.

1.3 Research Question

In this study, we aim to investigate the variability of subjec-

tive music listening experiences by comparing responses of

fans and non-fans to K-pop idol music. Subsequently, we

explore the effectiveness of SRC in predicting this individ-

ual response variability. To achieve this goal, we formu-

lated the following research questions:

RQ 1: How do subjective music listening experiences,

such as arousal, valence, familiarity, and preference, vary

individually for the same music among fans and non-fans

of K-pop idol music?

RQ 2: How does the inclusion of SRC alongside audio

features affect the predictive power of models for arousal,

valence, familiarity, and preference in music listening?

RQ 3: Does the effectiveness of SRC in predicting sub-

jective experiences vary depending on the type of audio

feature it is correlated with?

To address these questions, we conducted an experi-

ment collecting EEG data and subjective ratings from both

fans and non-fans of NCT127 as they listened to music by

the group. Utilizing linear mixed-effects models, we an-

alyzed the contribution of audio features and SRC in pre-

dicting subjective experiences, providing a comprehensive

understanding of how these components interact to shape

individual music listening experiences.

2. MATERIALS AND METHODS

2.1 Participants

We recruited 20 fans of NCT127 (mean age 24.8 years, 2
males) and 34 non-fans (mean age 26.1 years, 7 males). To

participate in the experiment as part of the fan group, par-

ticipants were required to meet at least one of the follow-

ing conditions: they must have attended at least one event

featuring NCT127, such as a concert or fan meeting, or

they must own at least one piece of NCT127-related mer-

chandise, such as an album, light stick, photocard, LP, or

sheet music. This was verified through a photo submis-

sion process when applying for the experiment. All par-

ticipants were Korean non-musicians. All participants had

normal hearing and provided written informed consent be-

fore starting the experiment.

Figure 1: Schematic view of data collection and analysis.

2.2 Stimuli

The music used in the experiment consisted of the

NCT127’s top 10 songs based on the YouTube Music rank-

ings as of December 26, 2023. The music was edited from

the beginning to the end of the first chorus. The length of

the edited audio varied between 60 to 92 seconds. Each

audio was edited to began with a 0.5 second fade-in and

ended with a 0.5 second fade-out. Then, volume normal-

ization was applied to each channel before being exported.

As a result, ten stereo audio files with a 44100Hz sampling

rate and 16-bit depth were created for the stimuli.

2.3 Experiment

The EEG experiment was conducted using the Com-

pumedics Neuroscan system. For EEG recordings, a

Synamp RT 64-channel amplifier and a 64-channel Quik-

Cap with sintered Ag/AgCl electrodes were used. The data

collection was carried out through the Curry 8 acquisition

software. EEG electrodes were placed in accordance with

the international 10-20 system, and EEG data were col-

lected at a sampling rate of 1000Hz across 64 channels.

The experiment was conducted using STIM2 software

in a soundproof room to eliminate noise interference. Par-

ticipants listened to each stimulus through insert earphone

while focusing on a cross in the center of the monitor. Each

stimulus was played once, and after listening to each, par-

ticipants rated their arousal, valence, familiarity, and pref-

erence using a 7-point scale. Participants were able to pro-

ceed to the next stimulus after completing their ratings.

There was a 5-second silence window before and after each

stimulus, and the stimuli were played in a randomized or-

der. An overall view of the data collection and analysis is
presented in Figure 1.

2.4 Analysis

2.4.1 EEG Preprocessing

The preprocessing of EEG data was conducted using MAT-

LAB with the EEGLAB toolbox [31]. From the 64 chan-

nels, the reference channels M1 and M2 were excluded.

The EEG data underwent a 1-55 Hz bandpass FIR fil-

ter, followed by epoching for each stimulus. Subsequent

steps included baseline removal and downsampling from

1000Hz to 125Hz. The data were re-referenced using
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the common average reference method, and all EEG data

were merged by each participant. Independent Component

Analysis (ICA) decomposition (using runamica15 func-

tion) was performed to remove artifacts [32]. Artifactual

components (eye, muscle, heart) were chosen by auto-

mated artifact IC classifier ’IClabel’ and additional artifac-

tual components were manually chosen [33]. Finally, the

EEG data were epoched by each stimulus.

2.4.2 Stimulus-response Correlation

To calculate SRC, we applied a hybrid encoding-decoding

technique, performing canonical correlation analysis to

maximize the correlation between temporally filtered stim-

uli (audio) and spatially filtered neural responses (EEG).

A detailed explanation of the method, including the com-

putation of spatial and temporal response functions for

each component, can be found in Dmochowski et al.’s pa-

per [26].

For SRC calculations, stimulus features were extracted

from each audio stimulus using MATLAB mirtoolbox

[34]. From audio features that Lange and Frieler explored

[18], only audio features permitting extraction in a time-

by-feature value manner, thus enabling SRC calculation,

were selected for investigation. This process resulted in
extracting ten audio features: sound envelope, root mean

square (RMS), spectral flux, zero-crossing rate, roughness,

spectral entropy, spectral centroid, spectral spread, spectral

rolloff, and spectral flatness. Each feature was extracted

using mirtoolbox functions—mirenvelope, mirrms, mir-

flux, mirzerocross, mirroughness, mirentropy, mircentroid,

mirspread, mirrolloff, mirflatness—and adjusted to a sam-

ple rate of 125Hz. If the sample number of audio features

slightly differed from the EEG data, they were adjusted to
match the length of the EEG data: longer samples were

cut, and shorter ones were zero-padded. Finally, all audio

features were z-scored for normalization.

The SRC calculation was performed using a modified

version of a publicly available MATLAB implementation

by Dmochowski 1 . SRCs were computed on a per-stimulus

basis for each participant. The regularization parameters

were set to 7 for both stimuli and EEG data. The represen-

tative SRC value for each stimulus and participant was de-

termined by summing the three components with the high-

est values. As a result, a total of 54 x 10 x 10 (participants

x songs x audio features) SRC values were computed.

2.4.3 Modeling Subjective Experience

Our analysis used linear mixed-effects models to exam-

ine the effects of individual audio features, both in isola-

tion and in conjunction with their corresponding SRC, on

subjective music listening experiences: arousal, valence,

familiarity, and preference. Separate models were con-

structed for each dependent variable, with each model in-

corporating a single audio feature as a fixed effect (AF

model). In the case of AFSRC models, compared to AF

model, SRC was added as a fixed effect. This approach

1 https://github.com/dmochow/SRC

allowed for a detailed examination of the influence of spe-

cific audio features and their neural correlates on listeners’

subjective experiences.

The general form of the linear mixed-effects model used

in this study is given by:

y = X β + Z γ + ϵ (1)

where y is the vector of observed dependent variables

(e.g., arousal, valence), X is the matrix of fixed effects,

β represents the coefficients for the fixed effects, Z is the

matrix for random effects, γ represents the coefficients for

the random effects, and ϵ is the error term.

We fitted two types of models for each dependent vari-

able:

For the audio feature only models, the general form of

the model can be represented as:

Yij = β0 + β1Xij + uj + ϵij (2)

where Yij is the dependent variable (arousal, valence,

familiarity, or preference) for the i-th song listened to by

the j-th participant, β0 is the intercept, β1 is the fixed effect

coefficient of the audio feature Xij , uj is the random effect

for the j-th participant, and ϵij is the error term.

For the models with audio feature and SRC as the fixed

effects, the equation expands to include the SRC:

Yij = β0 + β1Xij + β2Sij + uj + ϵij (3)

where β2 is the fixed effect coefficient of the SRC Sij

related to the audio feature Xij .

The fitting of models was carried out using the lme4

and lmerTest packages in R software. All AF and AF-

SRC models were cross-validated using leave-one-subject-

out cross-validation. To evaluate the significance of each

model, we compared it against a null model predicting the

same dependent variable using anova function. Specifi-

cally, we compared AF models with AFSRC models, again

using the anova function. When comparing models, it is
generally accepted that a difference of 2 or more in AIC

values indicates a meaningful difference in model perfor-

mance [35]. In our experiment results, we also categorized

a difference in AIC value of 1.9 as a marginal but meaning-

ful difference. This approach allowed us to quantitatively

determine the added value of incorporating EEG-derived

SRCs into the predictive models of subjective music lis-

tening experience.

3. RESULTS

3.1 Subjective Experience of Fans and non-Fans

Independent samples t-test were conducted to examine the

group differences between NCT127 fan group and non-fan

group while listening to 10 NCT songs in terms of arousal,

valence, familiarity, and preference (Figure 2).

For arousal, there was no significant difference between

the fan group (M = 4.54, SD = 1.38) and the non-fan group

(M = 4.98, SD = 0.75); t(25.812) = −1.320, p = .199.
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Figure 2: Average subjective ratings by fan and non-fan

group. Error bar indicates standard error. *** = p < .001

Valence scores were significantly higher for the fan

group (M = 5.75, SD = 0.84) compared to the non-fan

group (M = 4.26, SD = 0.97); t(52) = 5.665, p < .001,

indicating that fans experienced more positive emotions to-

wards NCT127 songs.

A significant difference in familiarity with the songs

was observed, with the fan group reporting much higher

familiarity (M = 6.89, SD = 0.28) than the non-fan group

(M = 3.37, SD = 1.61); t(36.199) = 12.425, p < .001.

Preference ratings were also significantly higher in the

fan group (M = 6.58, SD = 0.47) compared to the non-fan

group (M = 3.47, SD = 1.42); t(43.705) = 11.734, p <
.001. This result suggests a strong preference for NCT127

music among fans.

Overall, the results indicate that while fans and non-

fans do not differ significantly in arousal when listening

to NCT127 songs, fans report significantly more positive

valence, greater familiarity, and a stronger preference for

the NCT127 songs compared to non-fans.

3.2 Predicting Subjective Music Listening Experience

with Stimulus-response Correlation

Integrating SRC into the audio feature only models yielded

variable results depending on the subjective ratings and au-

dio features. Most importantly, for familiarity, SRC sig-

nificantly enhanced predictive power of the models across

various audio features (Figure 3C). Among ten audio fea-

tures, SRC correlated with eight audio features showed sig-

nificant improvement in predicting familiarity.

The prediction of arousal was enhanced from SRC cal-

culated with specific audio feature—spectral flux, spec-

tral centroid, spectral rolloff, and spectral flatness—while

roughness was found to negatively impact model perfor-

mance (Figure 3A). For valence, SRC correlated with spec-

tral flux improved the model performance, whereas sound

envelope, RMS, and zero-crossing rate increased the AIC

values by 1.9 or more, suggesting reduction in model per-

formance (Figure 3B). In models predicting preference,

the addition of SRC related to sound envelope, roughness,

spectral centroid, and spectral rolloff resulted in an in-

crease of 1.9 or more in the AIC values, indicating a de-

cline in performance (Figure 3D).

In our analysis of the significance of AF models by

comparison to null models, we observed distinct patterns

across subjective music listening experiences (Table 1).

Specifically, roughness and spectral flatness were key pre-

dictors for arousal, while sound envelope, RMS, spec-

tral flux, and zero-crossing rate significantly predicted va-

lence. Familiarity was well predicted by RMS, spectral

rolloff, and spectral flatness, and preference was effec-

tively predicted by sound envelope, RMS, spectral flux,

zero-crossing rate, spectral entropy, and spectral flatness.

Notably, the inclusion of SRC based on RMS, spectral

flux, zero-crossing rate, spectral entropy, and spectral flat-

ness did not significantly enhance the performance of mod-

els predicting preference (Figure 3D), yet these models

demonstrated a good fit using only audio features. For

detailed comparisons and summaries of all model fits and

cross-validation results, refer to the supplementary materi-

als 2 .

4. DISCUSSION

We compared subjective music listening experiences,

specifically focusing on arousal, valence, familiarity, and

preference when fans and non-fans of NCT127 listened

to the same NCT127 songs. The results showed that va-

lence, familiarity, and preference were significantly higher

in the fan group, while there was no significant difference

in arousal. Then, we investigated the combined effects of

audio features and SRC derived from EEG data on predict-

ing subjective music listening experiences. Through com-

paring linear mixed-effects models based solely on audio

features with those incorporating both audio features and

SRC, we revealed that integrating SRC with audio features

significantly enhances the predictive power for familiarity.

However, the influence of SRC on predictions of arousal

and valence showed variation depending on the correlated

audio features. The inclusion of few SRC decreased the

predictive power of preference.

The notably higher familiarity and preference ratings

observed in the NCT127 fan group were anticipated out-

comes, aligning with the criteria we set for participant re-

cruitment: participants in the fan group were required to
regularly listen to NCT127’s music, confirm their atten-

dance at an NCT127 event, and own NCT127-related mer-

chandise.

The absence of significant difference in arousal between

groups suggests that arousal ratings were predominantly

influenced by the acoustic characteristics of the music,

such as tempo and timbre, rather than personal traits [36].

This finding aligns with previous research indicating mini-

mal variability among individuals in arousal ratings for the

same musical piece. [37, 38].

Incorporating SRC alongside audio features enhances

the predictive accuracy for familiarity. SRC, derived

from a hybrid encoding-decoding technique, captures dis-

tributed representations in neural response [26]. Since

2 https://blues95.github.io/ISMIR2024/
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Figure 3: AIC values for each model. (A) Arousal (B) Valence (C) Familiarity (D) Preference. Asterisk symbols indicate

the significant improvement of the AFSRC model compared to AF model. Note that the scale of y-axis are different. * = p
< .05, ** = p < .01, *** = p < .001.

Table 1: Significance of AF models compared to null models. * = p < .05, ** = p < .01, *** = p < .001.

Audio Feature
Arousal Valence Familiarity Preference

AIC P r(> χ2) AIC P r(> χ2) AIC P r(> χ2) AIC P r(> χ2)

Envelope 1896.7 0.682 1834.1 0.029* 1954.3 0.628 1839.5 0.002**

RMS 1896.7 0.732 1825.3 <0.001*** 1943.7 0.001** 1841.8 0.007**

Flux 1896.8 0.841 1834.5 0.037* 1954.4 0.698 1844.9 0.041*

Zerocross 1896.8 0.925 1829.0 0.002** 1954.4 0.686 1842.5 0.010*

Roughness 1888.0 0.003** 1838.3 0.448 1954.4 0.734 1847.0 0.150

Entropy 1896.1 0.394 1837.9 0.327 1954.5 0.795 1843.6 0.019*

Centroid 1896.5 0.597 1838.5 0.535 1952.0 0.108 1847.2 0.170

Spread 1896.4 0.531 1835.1 0.052 1953.7 0.357 1846.8 0.127

Rolloff 1894.8 0.150 1838.7 0.751 1950.2 0.036* 1848.4 0.417

Flatness 1889.7 0.008** 1835.7 0.076 1942.6 <0.001*** 1842.3 0.009**

SRCs in this study were computed by correlating partic-

ular audio features with EEG responses, it is possible that

audio features of highly familiar music were more effec-

tively represented in neural responses. Familiar music is
known to enhance brain activity related to recurring mu-

sical patterns and structures [39]. Familiarity may foster

better recall of the song, leading to enhanced representa-

tion in the brain [40]. Thus, exposure to or familiarity with

stimuli may facilitate the processing of specific stimulus

features.

In a previous study examining the relationship between

audio features and neural responses, Weineck et al. used

temporal response function and reliable component anal-

ysis to calculate neural synchronization, employing meth-

ods distinct from our study [30]. They investigated how

synchronization varied with music familiarity, enjoyment,

and beat easiness. Their findings indicated that the in-

tensity of neural responses increased with familiar music.

While a direct comparison with our study is challenging

due to the methodological differences, both studies demon-

strate that music familiarity is reflected in the relationship

between stimulus (audio features) and response (EEG).

The impact of SRC on the predictions of arousal and va-

lence varied depending on the correlated audio features. In
the case of preference, the inclusion of few SRC decreased

the model performance, suggesting that emotions or pref-

erences evoked by music may be relatively less dependent

on how the audio features are represented in the brain com-

pared to familiarity. Contrary to our findings regarding

preference, Pandey et al. demonstrated that stronger SRCs

predict increased levels of enjoyment of music [41]. This

difference may be due to the selection of features for SRC

calculation. Our study used various audio features sepa-

rately, whereas they used the principal component of 18
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audio features for SRC calculation.

The fitting of AF models demonstrated that specific au-

dio features alone can predict subjective music listening

experiences. This aligns with the effectiveness of using

audio features for training deep learning models in prior

MER research.

There are few limitations of this work. First, the de-

mographic composition of our participants, particularly re-

garding gender distribution, may limit the generalizability

of our findings. The process of recruiting fans of a spe-

cific artist resulted in a gender imbalance among our par-

ticipants. Future research should aim to recruit a more

balanced participants to enhance the reliability of the re-

sults. Second, our analysis only used linear mixed-effects

models, making it challenging to generalize the signifi-

cance of specific audio features in relation to subjective

music listening experiences. Since the impact of audio fea-

tures and SRC on subjective experience may have an inher-

ent nonlinear characteristics, future studies should validate

the efficacy of SRC as a learning feature or predictor us-

ing a broader range of models, including deep learning-

based models capable of capturing nonlinearity. Finally,

we only considered ten low-level signal components as

audio features in our study. However, the correlations of

higher-level audio features, such as chromagrams and var-

ious rhythmic features, and EEG might contain unique in-

formation about the subjective music listening experience.

Therefore, future research should investigate the use of a
broader range of audio features, including higher-level au-

dio features.

5. CONCLUSION

This paper explores individual differences in music listen-

ing experiences among both fan and non-fan groups of the

K-pop idol group NCT127. We aim to demonstrate how

responses to the same NCT127 music vary in arousal, va-

lence, familiarity, and preference across different individ-

uals. Furthermore, we investigate the predictive capabil-

ity of EEG responses, particularly through SRC, regarding

subjective music listening experiences. By comparing lin-

ear mixed-effects models that solely rely on audio features

with those incorporating SRC, our findings underscore the

significant role of EEG data in improving the prediction

accuracy of music familiarity. This result suggests that us-

ing SRC could enable the prediction of individual music

listening experiences, which would be challenging using

audio features alone.

6. ACKNOWLEDGMENTS

This work was supported by the Ministry of Education of

the Republic of Korea and the National Research Founda-

tion of Korea (NRF-2023R1A2C100475512).

7. ETHICS STATEMENT

The ethics of the study were approved by the Institutional

Review Board of the Korea Advanced Institute of Science

and Technology.

8. REFERENCES

[1] R. J. Zatorre, J. L. Chen, and V. B. Penhune, “When the

brain plays music: auditory–motor interactions in mu-

sic perception and production,” Nature Reviews Neuro-

science, vol. 8, no. 7, pp. 547–558, Jul. 2007.

[2] S. Koelsch, “Towards a neural basis of music-

evoked emotions,” Trends in Cognitive Sciences,

vol. 14, no. 3, pp. 131–137, 2010. [Online]. Avail-

able: https://www.sciencedirect.com/science/article/

pii/S1364661310000033

[3] ——, “Brain correlates of music-evoked emotions,”

Nature Reviews Neuroscience, vol. 15, no. 3, pp. 170–

180, Mar. 2014.

[4] P. Vuust, O. A. Heggli, K. J. Friston, and M. L. Kringel-

bach, “Music in the brain,” Nature Reviews Neuro-

science, vol. 23, no. 5, pp. 287–305, May 2022.

[5] B. Kaneshiro and J. P. Dmochowski, “Neuroimaging

Methods for Music Information Retrieval: Current

Findings and Future Prospects.” in Proceedings of

the 16th International Society for Music Information

Retrieval Conference. ISMIR, Sep. 2015, pp. 538–

544. [Online]. Available: https://doi.org/10.5281/

zenodo.1416082

[6] E. B. Abrams, E. M. Vidal, C. Pelofi, and P. Ripollés,

“Retrieving musical information from neural data:

how cognitive features enrich acoustic ones,” in

Proceedings of the 23rd International Society for

Music Information Retrieval Conference. ISMIR,

Nov. 2022, pp. 160–168. [Online]. Available: https:

//doi.org/10.5281/zenodo.7343078

[7] A. Ofner and S. Stober, “Modeling perception with

hierarchical prediction: Auditory segmentation with

deep predictive coding locates candidate evoked

potentials in EEG,” in Proceedings of the 21st

International Society for Music Information Retrieval

Conference. ISMIR, Nov. 2020, pp. 566–573.

[Online]. Available: https://doi.org/10.5281/zenodo.

4245496

[8] N. Rajagopalan and B. Kaneshiro, “Correlation of

EEG Responses Reflects Structural Similarity of

Choruses in Popular Music,” in Proceedings of the

24th International Society for Music Information

Retrieval Conference. ISMIR, Dec. 2023, pp. 264–

271. [Online]. Available: https://doi.org/10.5281/

zenodo.10265273

[9] A. Ofner and S. Stober, “Shared Generative Rep-

resentation of Auditory Concepts and EEG to

Reconstruct Perceived and Imagined Music,” in

Proceedings of the 19th International Society

for Music Information Retrieval Conference. IS-

MIR, Nov. 2018, pp. 392–399. [Online]. Available:

https://doi.org/10.5281/zenodo.1492433

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

847



[10] E. Przysinda, T. Zeng, K. Maves, C. Arkin, and P. Loui,

“Jazz musicians reveal role of expectancy in human

creativity,” Brain and Cognition, vol. 119, pp. 45–53,

2017. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0278262617300994

[11] E. H. Margulis, P. C. M. Wong, C. Turnbull,

B. M. Kubit, and J. D. McAuley, “Narratives

imagined in response to instrumental music reveal

culture-bounded intersubjectivity,” Proceedings of the

National Academy of Sciences, vol. 119, no. 4,

p. e2110406119, 2022. [Online]. Available: https:

//www.pnas.org/doi/abs/10.1073/pnas.2110406119

[12] K. B. Doelling and D. Poeppel, “Cortical entrainment

to music and its modulation by expertise,” Proceedings

of the National Academy of Sciences, vol. 112, no. 45,

pp. E6233–E6242, 2015. [Online]. Available: https:

//www.pnas.org/doi/abs/10.1073/pnas.1508431112

[13] Y.-H. Yang and X. Hu, “Cross-cultural Music Mood

Classification: A Comparison on English and Chinese

Songs.” in Proceedings of the 13th International

Society for Music Information Retrieval Conference.

ISMIR, Sep. 2012, pp. 19–24. [Online]. Available:

https://doi.org/10.5281/zenodo.1416666

[14] L. Zhang, X. Yang, Y. Zhang, and J. Luo, “Dual

Attention-Based Multi-Scale Feature Fusion Ap-

proach for Dynamic Music Emotion Recognition,”

in Proceedings of the 24th International Society

for Music Information Retrieval Conference. IS-

MIR, Dec. 2023, pp. 207–214. [Online]. Available:

https://doi.org/10.5281/zenodo.10265259

[15] S. Chaki, P. Doshi, S. Bhattacharya, and P. P. Patnaik,

“Explaining perceived emotion predictions in music:

An attentive approach,” in Proceedings of the 21st

International Society for Music Information Retrieval

Conference. ISMIR, Nov. 2020, pp. 150–156.

[Online]. Available: https://doi.org/10.5281/zenodo.

4245388

[16] Y. E. Kim, E. M. Schmidt, R. Migneco, B. G.

Morton, P. Richardson, J. J. Scott, J. A. Speck,

and D. Turnbull, “State of the Art Report: Music

Emotion Recognition: A State of the Art Review.”

in Proceedings of the 11th International Society for

Music Information Retrieval Conference. ISMIR,

Sep. 2010, pp. 255–266. [Online]. Available: https:

//doi.org/10.5281/zenodo.1417945

[17] T. Eerola and J. K. Vuoskoski, “A Review of

Music and Emotion Studies: Approaches, Emotion

Models, and Stimuli,” Music Perception, vol. 30,

no. 3, pp. 307–340, 02 2013. [Online]. Available:

https://doi.org/10.1525/mp.2012.30.3.307

[18] E. B. Lange and K. Frieler, “Challenges and Opportu-

nities of Predicting Musical Emotions with Perceptual

and Automatized Features,” Music Perception, vol. 36,

no. 2, pp. 217–242, 12 2018. [Online]. Available:

https://doi.org/10.1525/mp.2018.36.2.217

[19] H. Lee, F. Höger, M. Schönwiesner, M. Park,

and N. Jacoby, “Cross-cultural Mood Perception in

Pop Songs and its Alignment with Mood Detection

Algorithms,” in Proceedings of the 22nd International

Society for Music Information Retrieval Conference.

ISMIR, Oct. 2021, pp. 366–373. [Online]. Available:

https://doi.org/10.5281/zenodo.5625680

[20] J. H. McDermott, A. F. Schultz, E. A. Undurraga, and

R. A. Godoy, “Indifference to dissonance in native

amazonians reveals cultural variation in music percep-

tion,” Nature, vol. 535, no. 7613, pp. 547–550, Jul.

2016.

[21] E. Mas-Herrero, J. Marco-Pallares, U. Lorenzo-Seva,

R. J. Zatorre, and A. Rodriguez-Fornells, “Individual

Differences in Music Reward Experiences,” Music

Perception, vol. 31, no. 2, pp. 118–138, 12 2013.

[Online]. Available: https://doi.org/10.1525/mp.2013.

31.2.118

[22] S. Liljeström, P. N. Juslin, and D. Västfjäll,

“Experimental evidence of the roles of music choice,

social context, and listener personality in emotional

reactions to music,” Psychology of Music, vol. 41,

no. 5, pp. 579–599, 2013. [Online]. Available:

https://doi.org/10.1177/0305735612440615

[23] M. Park, K. Hennig-Fast, Y. Bao, P. Carl, E. Pöppel,

L. Welker, M. Reiser, T. Meindl, and E. Gutyrchik,

“Personality traits modulate neural responses to

emotions expressed in music,” Brain Research,

vol. 1523, pp. 68–76, 2013. [Online]. Avail-

able: https://www.sciencedirect.com/science/article/

pii/S0006899313007816

[24] K. Mori and M. Iwanaga, “General reward sensitivity

predicts intensity of music-evoked chills,” Music Per-

cept., vol. 32, no. 5, pp. 484–492, Jun. 2015.

[25] I. Daly, D. Williams, J. Hallowell, F. Hwang, A. Kirke,

A. Malik, J. Weaver, E. Miranda, and S. J. Nasuto,

“Music-induced emotions can be predicted from a

combination of brain activity and acoustic features,”

Brain and Cognition, vol. 101, pp. 1–11, 2015.

[Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0278262615300142

[26] J. P. Dmochowski, J. J. Ki, P. DeGuzman, P. Sajda,

and L. C. Parra, “Extracting multidimensional

stimulus-response correlations using hybrid encoding-

decoding of neural activity,” NeuroImage, vol. 180,

pp. 134–146, 2018, new advances in encoding

and decoding of brain signals. [Online]. Avail-

able: https://www.sciencedirect.com/science/article/

pii/S1053811917304299

[27] B. Kaneshiro, D. T. Nguyen, A. M. Norcia, J. P.

Dmochowski, and J. Berger, “Natural music evokes

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

848



correlated eeg responses reflecting temporal structure

and beat,” NeuroImage, vol. 214, p. 116559, 2020.

[Online]. Available: https://www.sciencedirect.com/

science/article/pii/S105381192030046X

[28] J. J. Ki, J. P. Dmochowski, J. Touryan, and L. C.

Parra, “Neural responses to natural visual motion

are spatially selective across the visual field, with

selectivity differing across brain areas and task,”

European Journal of Neuroscience, vol. 54, no. 10,

pp. 7609–7625, 2021. [Online]. Available: https:

//onlinelibrary.wiley.com/doi/abs/10.1111/ejn.15503

[29] I. Iotzov and L. C. Parra, “Eeg can predict speech

intelligibility,” Journal of Neural Engineering, vol. 16,

no. 3, p. 036008, mar 2019. [Online]. Available:

https://dx.doi.org/10.1088/1741-2552/ab07fe

[30] K. Weineck, O. X. Wen, and M. J. Henry, “Neural

synchronization is strongest to the spectral flux of

slow music and depends on familiarity and beat

salience,” eLife, vol. 11, p. e75515, sep 2022. [Online].

Available: https://doi.org/10.7554/eLife.75515

[31] A. Delorme and S. Makeig, “Eeglab: an open source

toolbox for analysis of single-trial eeg dynamics

including independent component analysis,” Journal

of Neuroscience Methods, vol. 134, no. 1, pp. 9–21,

2004. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0165027003003479

[32] S.-H. Hsu, L. Pion-Tonachini, J. Palmer,

M. Miyakoshi, S. Makeig, and T.-P. Jung, “Modeling

brain dynamic state changes with adaptive mix-

ture independent component analysis,” NeuroImage,

vol. 183, pp. 47–61, 2018. [Online]. Avail-

able: https://www.sciencedirect.com/science/article/

pii/S1053811918306888

[33] L. Pion-Tonachini, K. Kreutz-Delgado, and S. Makeig,

“Iclabel: An automated electroencephalographic in-

dependent component classifier, dataset, and web-

site,” NeuroImage, vol. 198, pp. 181–197, 2019.

[Online]. Available: https://www.sciencedirect.com/

science/article/pii/S1053811919304185

[34] O. Lartillot and P. Toiviainen, “MIR in Matlab

(II): A Toolbox for Musical Feature Extraction from

Audio.” in Proceedings of the 8th International

Conference on Music Information Retrieval. ISMIR,

Sep. 2018, pp. 127–130. [Online]. Available: https:

//doi.org/10.5281/zenodo.1417145

[35] S. Müller, J. L. Scealy, and A. H. Welsh, “Model

selection in linear mixed models,” Statistical Science,

vol. 28, no. 2, pp. 135–167, 2013. [Online]. Available:

http://www.jstor.org/stable/43288485

[36] R. T. Dean, F. Bailes, and E. Schubert, “Acoustic

intensity causes perceived changes in arousal levels in
music: An experimental investigation,” PLOS ONE,

vol. 6, no. 4, pp. 1–8, 04 2011. [Online]. Available:

https://doi.org/10.1371/journal.pone.0018591

[37] S. Yang, C. N. Reed, E. Chew, and M. Barthet, “Ex-

amining emotion perception agreement in live music

performance,” IEEE Transactions on Affective Com-

puting, vol. 14, no. 2, pp. 1442–1460, 2023.

[38] B. Gingras, M. M. Marin, E. Puig-Waldmüller, and

W. T. Fitch, “The eye is listening: Music-induced

arousal and individual differences predict pupillary

responses,” Frontiers in Human Neuroscience, vol. 9,

2015. [Online]. Available: https://www.frontiersin.org/

articles/10.3389/fnhum.2015.00619

[39] C. Freitas, E. Manzato, A. Burini, M. J. Tay-

lor, J. P. Lerch, and E. Anagnostou, “Neural

correlates of familiarity in music listening: A sys-

tematic review and a neuroimaging meta-analysis,”

Frontiers in Neuroscience, vol. 12, 2018. [On-

line]. Available: https://www.frontiersin.org/journals/

neuroscience/articles/10.3389/fnins.2018.00686

[40] V. Vuong, P. Hewan, M. Perron, M. H. Thaut,

and C. Alain, “The neural bases of familiar music

listening in healthy individuals: An activation

likelihood estimation meta-analysis,” Neuroscience

Biobehavioral Reviews, vol. 154, p. 105423, 2023.

[Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0149763423003925

[41] P. Pandey, P. S. Bedmutha, K. P. Miyapuram, and

D. Lomas, “Stronger correlation of music features with

brain signals predicts increased levels of enjoyment,”

in 2023 IEEE Applied Sensing Conference (APSCON),

2023, pp. 1–3.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

849



MOSAIKBOX: IMPROVING FULLY AUTOMATIC DJ MIXING THROUGH
RULE-BASED STEM MODIFICATION AND PRECISE BEAT-GRID

ESTIMATION

Robert Sowula

TU Wien
robert@sowula.at

Peter Knees

Faculty of Informatics, TU Wien
peter.knees@tuwien.ac.at

ABSTRACT

We present a novel system for automatic music mixing
combining diverse music information retrieval (MIR) tech-
niques and sources for song selection and transitioning.
Specifically, we explore how music source separation and
stem analysis can contribute to the task of music similarity
calculation by modifying incompatible stems using a rule-
based approach and investigate how audio-based similarity
measures can be supplemented by lyrics as contextual in-
formation to capture more aspects of music. Additionally,
we propose a novel approach for tempo detection, outper-
forming state-of-the-art techniques in low error-tolerance
windows. We evaluate our approaches using a listening ex-
periment and compare them to a state-of-the-art model as a
baseline. The results show that our approach to automatic
song selection and automated music mixing significantly
outperforms the baseline and that our rule-based stem re-
moval approach significantly enhances the perceived qual-
ity of a mix. No improvement can be observed for the in-
clusion of contextual information, i.e., mood information
derived from lyrics, into the music similarity measure.

1. INTRODUCTION

DJs have become an essential aspect of many large social
events today. The quality of their performance heavily de-
pends on the DJ’s experience, knowledge of music, and
understanding of what resonates with the audience [1]. Al-
though many attempts [2–8] have been made to automate
this role, a DJ is still considered indispensable for provid-
ing enjoyable and seamless listening experiences and mix-
ing, i.e., transitioning of tracks.

In this paper, we propose Mosaikbox, an automatic mu-
sic mixing system primarily focused on EDM, incorporat-
ing state-of-the-art MIR methods to mimic aspects consid-
ered by DJs when selecting and mixing tracks. For selec-
tion, these aspects include timbre, which has been shown to
improve methods for judging music similarity if combined

© R. Sowula and P. Knees. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:

R. Sowula and P. Knees, “Mosaikbox: Improving Fully Automatic DJ
Mixing Through Rule-based Stem Modification and Precise Beat-Grid
Estimation”, in Proc. of the 25th Int. Society for Music Information Re-

trieval Conf., San Francisco, United States, 2024.

with other auditory descriptors [9]. For mixing, a typi-
cal transition technique is the fade in/fade out. During its
transition period, the two songs are audible for some time.
Even if the tempo and key match perfectly and the tim-
bral compatibility is high, a dissimilar drum pattern, e.g.,
with off-beats at different times than the original track or
clashing vocals, can result in a combination that does not
sound right. Removing incompatible stems during transi-
tions would solve many traditional mixing challenges.

A rather open question is the use of contextual infor-
mation for track selection by DJs. Contextual informa-
tion, such as song lyrics, contains information that audio-
based approaches cannot capture and vice versa. Since ap-
proaches such as [10] have shown that lyrics can be used
to predict the mood of a song, combining audio-based and
contextual information might further improve the quality
of track selection.

The objectives of this paper are therefore: (1) to in-
troduce a novel automatic music-mixing pipeline, (2) to
investigate how a rule-based stem modification procedure
can support a music similarity measure in automatic mu-
sic mixing, and (3) to explore whether we can improve the
used musical similarity measure by complementing it with
contextual information.

2. RELATED WORK

Besides commercial, closed-source tools, such as Virtu-
alDJ, djay, and NI Traktor, various academic approaches
have been proposed for automatic music mixing. Jehan
[2] introduced an automated DJ system focused on beat
matching on downbeats and transitioning on rhythmically
similar segments without incorporating harmonic or tim-
bral information or automatic track selection. Building on
this, Lin et al. [3] incorporated pitch information and in-
troduced a method for automatic track selection and order-
ing. Ishizaki et al. [4] further proposed a method for reduc-
ing discomfort when mixing songs with heavily differing
tempi in his automatic DJ system. Davies et al. developed
AutoMashUpper (AMU) [5], an automatic mashup system
that mixes songs using a mashability estimate over phrase-
level segments. AMU incorporates a weighted combina-
tion of rhythmic and harmonic similarity and spectral bal-
ance into its mashability measure. Hiari et al. [6, 7] intro-
duced another automated DJ system based on latent topic
modeling of the chroma features and beat similarity for
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song selection and cue point estimation. Vande Veire and
De Bie [11] built an automatic mixing system similar to
AMU with multiple transition methods and a focus on mu-
sical style similarity, but less powerful similarity measures
compared to AMU to optimize for runtime performance.
Huang et al. [8] proposed a pure mashup system that uses
isolated stems of different songs to create a mashup. Un-
like the previously described automated mixing systems,
this approach focuses on mixing a combination of stems,
ensuring that each stem type is used only once.

Our work differs from existing methods by proposing a
more comprehensive mixability measure to capture addi-
tional audio and contextual aspects to better match DJ mu-
sic selection techniques. Furthermore, we focus on work-
ing with completely mastered tracks, integrate state-of-the-
art MIR techniques, and perform stem separation to sup-
port our mixability measure.

3. METHOD

Our method for automatic mixing comprises the follow-
ing components to build the Mosaikbox system: beat grid
estimation and tempo detection, structural segmentation,
multi-faceted estimation of music similarity, and mixing
of tracks.

3.1 Beat Grid Estimation and Tempo Detection

We build our beat and tempo detection pipeline upon a
fixed beat grid approach using a 4/4 time signature, sim-
ilar to popular DJ software. To build a beat grid, we need
two types of information: the song’s tempo and the loca-
tion of the first downbeat. We derive the beat positions,
including the beat types (1st, 2nd, 3rd, and 4th beat) using
the state-of-the-art beat tracking system BeatNet [12].

Calculating the tempo by averaging inter-beat intervals
or using their median can lead to octave errors ( 12 , 1

3 , 2, 3
multiples of the tempo), where the problematic tempi are
the 1

3 and 3 multiples of the true tempo for non-duple me-
ter music. To address this, we model the beat grid estima-
tion as a 2-dimensional constrained minimization problem,
given the detected beat timings ti, where i = 1, 2, . . . , n.
Note that some beats might be missing due to detection er-
rors. We want to find the optimal first downbeat position g1
and the tempo bpm such that the beat positions of the con-
structed beat grid gj are evenly spaced and have minimal
deviation from the detected beat positions ti.

To restrict the search space, we estimate the tempo
bpmest by using the inter-beat median ∆tMdn. We then
perform a global search twice using the dual annealing al-
gorithm, a variant of the simulated annealing algorithm,
paired with a local search algorithm for accepted solu-
tions [13]. The objective is to minimize the mean of the
absolute differences between each estimated beat grid po-
sition gi and detected beat positions tj . The initial global
search spans a wide range, from 60 bpm to +15% of bpmest

and the first downbeat from 0 to +40% of ∆tMdn. To avoid
local minima, we conduct a subsequent narrower search
within ±5% of bpmest and 0 to +5% of ∆tMdn. Finally, we

fine-tune the beat grid by performing local minimization
over only the offset of the first downbeat position from 0
to +40% of ∆tMdn.

3.1.1 Benchmark

We evaluated the performance of our beat grid and tempo
estimation algorithm on the GiantSteps dataset [14, 15], as
it has not been used for training BeatNet [12] nor current
state-of-the-art tempo estimation approaches such as the
one by Böck and Davis [16].

Slight deviations in the estimated tempo lead to signif-
icant errors in the beat grid estimation. Thus, we deem the
metrics Accuracy 1 and Accuracy 2 as defined by Gouyon
et al. [17] using a 4% tolerance window as too loose,
and additionally evaluate the performance of our tempo
estimation algorithm for smaller tolerance windows of 1%
and 0%. Table 1 compares our tempo estimation algorithm
and its inter-beat interval (IBI) pre-estimation with the
state-of-the-art tempo estimation algorithm by Böck and
Davis [16] on the GiantSteps dataset. While our approach
does not outperform the state-of-the-art algorithm for the
4% tolerance window, it demonstrates better performance
for the 1% and 0% tolerance windows. The results also
show that while IBI is important, it is not the primary
contributor to our method’s performance.

Böck & Davis [16] IBI Ours

Accuracy 1 (4%) 87.29 74.13 82.30
Accuracy 1 (1%) 67.02 58.40 69.59

Accuracy 1 (0%) 0.15 3.03 19.97

Accuracy 2 (4%) 96.97 78.08 90.77
Accuracy 2 (1%) 74.38 61.35 76.70

Accuracy 2 (0%) 0.45 3.11 24.51

Table 1. Comparison of our tempo estimation algorithm
and its inter-beat interval estimation with a state-of-the-art
approach on unseen data from the GiantSteps dataset.

3.2 Structural Segmentation

Music transitions sound most pleasing when performed at
musically fitting positions of a song. We therefore com-
bined the boundary detection algorithm by Serrà et al. [18]
with the labeling approach by Nieto and Bello [19].

In electronic music, segments typically align with
downbeats. Therefore, we quantize the detected segment
boundaries to the nearest beat position and shift them by
one beat to the nearest downbeat. Boundaries starting or
ending on the third beat are not shifted, due to potential
causes, such as errors in the downbeat detection, time sig-
nature estimation, or different song structures.

Although mixing intros with outros is a straightforward
way of transitioning whole songs, we abstain from this
practice as we aim for a more energetic mix. Thus, we
penalize intro and outro segments by the factor 0.5, which
is then multiplied by the similarity measure. The progres-
sion of the energy level is a task addressed in the similar-
ity measure. We assume that low-energy and high-energy
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segments will not be mixed and thus do not differentiate
between other segment types.

3.3 Music Similarity

3.3.1 Rhythmic Similarity

We believe that drums are the primary rhythmic compo-
nent in EDM music. Instead of relying on onset detection
functions, which have poor performance in polyphonic au-
dio, we employ the drum transcription system by Southall
et al. [20, 21] to extract drum patterns from the audio. To
be able to detect different kinds of rhythm patterns besides
the classical ”straight“ pattern, such as ”swing“, ”shuffle“
or ”offbeats“ which are a primary component in EDM sub-
genres such as drum and bass, we follow the AMU ap-
proach of Davies et al. [5] and sub-divide the beat grid
into 12 equally spaced intervals. We then detect the kick,
snare, and hi-hat drum positions, quantize them over the
sub-beat grid, and stack them on top of each other to ob-
tain a 3-dimensional binary vector Rn for all songs n of
length K ∗ 12, where K is the number of beat positions
of a song. The rhythmic similarity is then calculated be-
tween phrase sections p of the seed song s and a candidate
song c for all k beat shifts of c. While AMU uses cosine
similarity as a rhythmic similarity measure, we decided to
employ a stricter similarity measure to capture dissimilar-
ities in the drum patterns. Thus, we defined the similarity
measure as the average of the sub-beat positions where the
drum patterns of the seed song section and the candidate
song section match.

For each drum vector Rs,p,d within phrase section p of
the seed song s, where d ∈ 1, 2, 3 denotes the drum vector
dimensions corresponding to the kick, snare, and hi-hat,
we compute the average number of matching sub-beat po-
sitions l over all beat shifts k against all candidate songs c.
The overall rhythmic similarity MR,s(k) is then derived by
averaging the similarities obtained across the three drum
dimensions d as

MR,c(k) =
1

3

3
∑

d=1

(

1

m

m
∑

l=1

[Rs,p,d,l = Rc,k,d,l]

)

, (1)

where m is the length of the drum vector Rs,p of the
phrase section in the seed song, and [Rs,p,d,l = Rc,k,d,l]
denotes the Iverson bracket.

3.3.2 Timbral Similarity

To model the timbral component, we will follow the ap-
proach of Rocha et al. [22] and Panteli et al. [23], using
MFCCs and the auditory descriptors spectral flatness and
dirtiness. By stacking the MFCCs, spectral flatness, and
dirtiness descriptors on top of each other, we obtain a 28-
dimensional vector Tn,p for a song n and phrase section p.
Due to high computational demands, we calculate the tim-
bral component once per phrase section instead of every
beat shift k of the candidate song c, assuming the timbral
component remains relatively constant across phrase sec-
tions. The timbral similarity is then calculated by comput-
ing the cosine similarity between the timbral component

Ts,p of phrase section p of seed song s and the timbral com-
ponent Tc,q of all phrase sections q of candidate song c as

MT,c(q) =
Ts,p · Tc,q

∥Ts,p∥∥Tc,q∥
. (2)

3.3.3 Key Similarity

Harmonic compatibility is essential when mixing songs,
as it avoids dissonance and supports continuity between
songs by enabling smooth transitions. We decided to use
the key detection algorithm KeyFinder [24] due to its open-
source availability and still good performance compared
to recent state-of-the-art key detection algorithms. Addi-
tionally, we incorporate pitch shifting in the song selec-
tion process to be more flexible and less constrained by
the harmonic aspect of the songs. As pitch-shifting algo-
rithms can hurt the audio quality [25], we nonetheless want
to keep pitch-shifts as small as possible. To this end, we
identify key distances.

We define a harmonic key distance measure DK1
(K2)

as the minimum semitone distance between the tonic notes
of two keys K1 and K2. The key similarity measure MK,c

is then defined as

MK,c =

{

1, if DKs
(Kc) = 0

DKs
(Kc)

−1, otherwise
, (3)

where DKs
(Kc) is the key distance between the key Ks

of the seed song s and the key Kc of the candidate song c.

3.3.4 Harmonic Similarity and Spectral Balance

Harmonic content and the energy across the low-, mid-,
and high-frequency bands change throughout a song and
thus must be reflected in the similarity measure. We com-
pute the harmonic similarity and spectral balance measure,
MH,c(k) and ML,c(k), respectively, based on the approach
by Davies et al. [5].

3.3.5 Contextual Similarity

Mixing songs at positions with similar lyrics is a tran-
sition technique that could make the transition more re-
lated and seamless, independently of audio-based similar-
ity. This method is commonly executed by playing a re-
peated phrase of the first song and then mixing in the sec-
ond song with a similar vocal phrase.

Although lyrics are content information, they are often
analyzed using contextual methods and are thus treated ac-
cordingly [26]. Due to the significant variation in lyrics
across song sections, we find classical textual similarity
measures such as TF-IDF unsuitable for our task. Instead,
we capture the lyrics’ similarity by extracting the whole
lyrics’ semantic meaning. We use Reimers and Gurevych
[27] approach to compute sentence embeddings Cn over
the lyrics of all songs n. The similarity measure MC,c

is then calculated by computing the cosine-similarity be-
tween the sentence embedding Cs of the seed song s and
the sentence embedding Cc of the candidate song c as

MC,c =
Cs · Cc

∥Cs∥∥Cc∥
. (4)
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3.3.6 Mixability

We compute the beat-wise mixability for a candidate song
c against the phrase section p of the seed song s by com-
bining the weighted similarity measures of rhythm, timbre,
key, harmony, and spectral balance, as follows:

Mc(k) = ωRMR,c(k) + ωTMT,c(q) + ωKMK,c

+ ωHMH,c(k) + ωLML,c(k),
(5)

where q is the phrase section of c corresponding to the beat
shift k. The mixability measure considers the 64 beats af-
ter the phrase section p of the seed song s instead of the
entire phrase section p. This forward-moving approach en-
ables us to maintain a song’s dynamics by focusing on the
upcoming segments instead of past segments. Through ex-
tensive, informal testing, we found the following weights
to give the most convincing results: ωR = 0.3, ωT = 0.75,
ωK = 0.2, ωH = 0.2, and ωL = 0.1.

To incorporate the contextual similarity measure, we
extend the audio-based mixability measure Mc(k) by the
contextual similarity measure MC,c with the weight ωC =
0.25, as follows:

M ′

c(k) = Mc(k) + ωCMC,c. (6)

Our initial experiments showed that choosing the tran-
sition point by selecting the beat shift k with the highest
mixability score did not yield satisfactory results. Songs
were transitioned at non-downbeat positions or unnatural
downbeat intervals (e.g., 7, 9, 15, 17 downbeats), leading
to a misaligned mix. To counteract this, we consider only
beat shifts k that correspond to the segment boundary q

of the candidate songs c and calculate the transition (cue)
point as follows:

kcue(c) = argmax
k∈q

Mc(k). (7)

We also record the timbral and rhythmic similarity at the
transition point, tcue(c), rcue(c), and will use this informa-
tion to improve the equalization in the mixing process.

We compute the song schedule by selecting the can-
didate song c with the highest mixability and extract the
phrase section p for c up to the next segment boundary q,
but at least for a minimum of λminPlay. We found that a
λminPlay value of 55 seconds leads to a good balance be-
tween how long a song is played and how often songs are
changed. We then select the phrase section p of c as the
seed phrase section and repeat the process until the desired
length of the mix is reached.

3.4 Mixing

Before transitioning, we first bring the loudness of each
song to a consistent level of −14 LUFS. We then pitch-
shift the audio to a harmonically compatible key and beat-
match the song by time-stretching the audio to the same
tempo as the previous song, using a maximal tempo change
of ±8% as a limit. We use a transition length of 16 down-
beats, where the transition starts with eight downbeats be-
fore the song excerpt’s end and ends with eight downbeats
after the transition point of the current song.

To prevent clashing frequency bands in the mix, we
mainly base our equalization process on the ”bass-swap“
technique [28, Chapter 16] and extend it to the high-
frequency band as well. A visualization of our standard
equalization process is depicted in Figure 1.
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Figure 1. Standard equalization applied to both excerpts.

Overequalization can lead to a dull mix, which is why
we will use information from our mixability calculation
to identify and adjust problematic frequency ranges. We
consider mid frequencies of songs with a dissimilar timbre
(tcue(c) < 0.95) as clashing and reduce the mid frequen-
cies of the song that is currently playing, shifting the focus
on the mid frequencies to the new song. In case of a high
rhythmic similarity (rcue(c) ≥ 0.95), we apply less atten-
uation to the bass frequencies. Finally, we also assume
that songs with an attenuated drum stem need even less
equalization in the high frequencies, as drums, especially
hi-hats, are a primary contributor to the high frequencies.
We therefore introduce the high frequencies of the song
that are to be mixed in earlier and with less attenuation.

3.4.1 Rule-based Stem Modification

We employ the pre-trained music source separation (MSS)
model HT Demucs [29, 30] to separate the audio into the
four stems: vocals, drums, bass, and other.

As previously noted, our tempo estimation algorithm
predicts the tempo for only around 25% of songs with per-
fect accuracy. Even though the rhythmic similarity mea-
sure implicitly captures errors in tempo detection, rhyth-
mic compatibility is only one of the components of the
mixability measure, thus opening up the possibility of mix-
ing in a rhythmic incompatible song. To counteract this,
without entirely excluding rhythmic incompatible songs,
we introduce a drum stem modification procedure for
songs with rhythmic compatibility below rcue(c) < 0.95.

Further, we generally want to prevent mixing song ex-
cerpts containing vocals, as vocal clashing can similarly
lead to a reduced mix quality. We detect vocal segments by
splitting the vocal stem, obtained by our MSS stage, into
boundaries on ”silent“ sections that persist for one second
or longer with a loudness below -40 dBFS and filter our
vocal segments with a length below 400ms. We consider
two song excerpts as clashing if the vocals during the tran-
sition intersect for more than two seconds and attenuate the
vocals of the currently playing song. Figure 2 depicts the
drum stem and vocal modification procedure.
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Figure 2. Equalization over the vocal and drum stems.

4. LISTENING EXPERIMENT

Due to the subjective nature of mixes [8] and the lack of
ground truth corpora for similarity ratings between songs
[22], we will evaluate the performance of our proposed so-
lutions with qualitative methods, specifically using a lis-
tening experiment. For this, we developed a web-based
survey that facilitates the evaluation of the models by hu-
man participants.

4.1 Models

We select AMU by Davies et al. [5] as our baseline model
because it aligns with our methodology in prioritizing op-
timal mixing over runtime compromises and continues to
be recognized as a relevant benchmark in recent research,
such as [8]. To ensure a fair comparison of our models and
counteract the negative influence of mismatched beats, we
replace outdated components of AMU with state-of-the-art
approaches. In particular, we replace their beat tracking
and percussion detection method with our approaches and
utilize our mixing procedure to create the mix.

To compare the performance of our models, we evalu-
ate three models: MBbase, our approach without the stem
modification and contextual information; MBstem, our ap-
proach with the stem modification but without contextual
information; and MBfull, our approach with the stem mod-
ification and contextual information (using M ′

c). The code
of our implementations is available open-source 1 .

Note that, in order to maintain full control over the ap-
proaches and integration into a common interface, no com-
mercial tools are included in the evaluation.

4.2 Setup

To understand the impact of musical knowledge on eval-
uation, we first ask the participants about their musical
background and DJing experience. We split the follow-
ing survey for each model into two parts. In the first part,
we gather Song-Pair Compatibility (SPC) ratings by ask-
ing the participants to rate the song-scheduling aspect of
the models. This allows us to compare the song selection
of the models to the collected SPC ratings later on. For
all pairs of songs, the participants assess the compatibility
based on four categories by answering the following ques-
tions: Timbre: Are the songs similar regarding timbre?

1 https://github.com/robaerd/mosaikbox

Rhythm: Do the songs have a similar rhythmic pattern?
Harmony: Do the songs have a similar harmonic structure?
Overall Mixable: Are the songs overall mixable?

In the second part, the participants are presented with
the generated mix of a model and are asked to rate the
overall quality of each transition of the mix on a scale of
1 (awful) to 5 (excellent), where 3 represents a neutral rat-
ing. The models are presented in random order to prevent
presentation bias, with no details about the model type dis-
closed to the participants.

4.3 Dataset

Due to the tempo ”lock-in“, only songs with a tempo tol-
erance of maximum ±8% are considered. This commonly
results in a genre ”lock-in“ as well, as songs of the same
genre usually have a similar tempo. A preliminary poll
among potential participants revealed that most are famil-
iar with the drum and bass genre (DnB). We therefore de-
cided to base our dataset on this genre to make the evalua-
tion more relevant and valid.

We collected a dataset of 250 songs from the most popu-
lar DnB playlists of streaming services and randomly sam-
pled 16 songs from this collection to use as input for the
mix generation of the models. Out of these 16 songs, we
sampled one song as the starting song for all models. To
highlight the song selection aspect of the models, we used
a top-k approach with k=8 for song selection instead of
forcefully mixing all 16 songs.

5. RESULTS AND DISCUSSION

We recruited 30 participants (22 male/8 female), primar-
ily academics aged 23-30 with backgrounds in STEM and
economics, 8 of whom had prior experience in DJing.
Among the participants, 10 classified their musical back-
ground as novice, 13 as intermediate, 7 as advanced, and
none stated being a professional musician.

Model Transition SPCTimb SPCRhy SPCHar SPCMix

AMU 2.490 0.457 0.505 0.429 0.624
MBbase 3.076 0.486 0.648 0.505 0.648
MBstem 3.457 0.486 0.648 0.505 0.648
MBfull 3.033 0.500 0.619 0.529 0.705

Table 2. Average transition and SPC ratings for all mod-
els from all transitions. MBbase and MBstem share identical
SPC ratings due to the same song selection.

Table 2 shows that all our models significantly outper-
formed the AMU baseline in average transition and SPC
ratings. The MBfull model received the highest SPC ratings
for timbre, harmony, and mixability, while the MBbase, stem

models scored higher in rhythm and the MBstem model
achieved the best average transition rating.

In Figure 3, we can observe that AMU mostly received
negative ratings, while those of MBfull had a more con-
sistent distribution, declining towards the end of the mix.
Except for the first two transitions, MBstem consistently
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Figure 3. Transition ratings across all models, with bub-
ble size indicating the number of ratings per transition and
lines representing each transition’s average rating and SPC.

outperformed MBbase, suggesting that stem separation pos-
itively impacts mix quality.

After confirming non-normality with the Shapiro-Wilk
test, we test for significant differences using the Friedman
test, resulting in a p-value < 0.00001. To determine the
best-performing model, we then conduct Wilcoxon signed-
rank tests for pairwise comparisons. To account for the
family-wise error rate, we correct the p-values using the
Holm-Bonferroni method and reject the null hypothesis if
the corrected p-value p̂ is less than the significance level
α = 0.05. The results in Table 3 show that all our models
significantly outperform AMU, while MBstem significantly
outperforms its base counterpart MBbase. No significant
difference is found between the MBfull and MBstem models,

which suggests that contextual information does not have
a significant impact on the mix quality.

Model 1 (F) Model 2 (G) p̂-valueF (u)<G(u)

MBbase AMU < 0.0001
MBstem AMU < 0.0001
MBfull AMU < 0.0001
MBstem MBbase < 0.0001
MBfull MBbase ×
MBfull MBstem ×

Table 3. Pairwise tests for significance between models
showing corrected p-value levels of the Wilcoxon signed-
rank test (’×‘ means no significance at 0.05 level).

Further significance tests using Mann-Whitney U tests
revealed a significant difference in ratings between DJ ex-
perience and all musical knowledge levels only for the
baseline model AMU, with p-values of 0.001 and 0.0001,
respectively. Participants with DJing experience rated the
AMU model significantly worse. Analogous, based on the
mean ranks of the transition ratings, the higher the musical
knowledge level, the worse the rating.

Finally, we tested for significance of the Pearson corre-
lation between transition ratings and the averaged SPC val-
ues, indicating a significant strong correlation for MBbase

with (r = 0.83, p = 0.02), suggesting mixes align closely
with participant expectations. In contrast, there was a mod-
erate non-significant correlation (r = 0.6, p = 0.1) for
AMU and MBstem and no significant correlation for MBfull

(r = −0.03, p = 0.95).
The performance gains of our models over AMU in

SPC ratings may stem from our rhythmic similarity cal-
culation and the integration of timbral and key similarities
into the mixability estimate. Improved transition ratings
could be linked to our updated structural segmentation ap-
proach. Higher timbre, harmony, and mixability SPC rat-
ings, alongside lower rhythm ratings, might be influenced
by mood-related contextual similarities. Lower transition
ratings could stem from the lesser relevance of lyrics’ se-
mantic meaning in DnB. The listening experiment results
are available online. 2

6. CONCLUSION

In this paper, we proposed the automatic mixing system
Mosaikbox and demonstrated that it outperforms compa-
rable state-of-the-art systems. We showed that our rule-
based stem modification significantly improves the overall
mix quality. However, we could not show that including
contextual information has any significant positive impact
on the mix quality.

Future work will include the impact of new features,
such as the energy level of songs and the use of similarity
measures obtained by collaborative filtering approaches.
In addition, a dynamic transition length will be explored to
enhance creativity and adaptability across various genres.

2 https://github.com/robaerd/mosaikbox-survey
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cordingly.

9. REFERENCES

[1] F. Broughton and B. Brewster, How to DJ Right: The

Art and Science of Playing Records. Grove/Atlantic,
Inc., Dec. 2007.

[2] T. Jehan, “Creating Music by Listening,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, Jan.
2005.

[3] H.-Y. Lin, Y.-T. Lin, and M.-C. Tien, “Music Paste:
Concatenating Music Clips based on Chroma and
Rhythm Features,” in Proceedings of the 10th Interna-

tional Society for Music Information Retrieval Confer-

ence. ISMIR, Jan. 2009, pp. 213–218.

[4] H. Ishizaki, K. Hoashi, and Y. Takishima, “Full-
Automatic DJ Mixing System with Optimal Tempo
Adjustment based on Measurement Function of User
Discomfort,” in Proceedings of the 10th International

Society for Music Information Retrieval Conference.
ISMIR, Jan. 2009, pp. 135–140.

[5] M. Davies, P. Hamel, K. Yoshii, and M. Goto, “Au-
toMashUpper: Automatic Creation of Multi-Song Mu-
sic Mashups,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 22, no. 12, pp.
1726–1737, Dec. 2014.

[6] T. Hirai, H. Doi, and S. Morishima, “MusicMixer:
computer-aided DJ system based on an automatic song
mixing,” in Proceedings of the 12th International Con-

ference on Advances in Computer Entertainment Tech-

nology. Association for Computing Machinery, Nov.
2015, pp. 1–5.

[7] ——, “Musicmixer: Automatic dj system considering
beat and latent topic similarity,” in MultiMedia Model-

ing - 22nd International Conference, Q. Tian, R. Hong,
X. Liu, N. Sebe, B. Huet, and G.-J. Qi, Eds. Springer
International Publishing, 2016, pp. 698–709.

[8] J. Huang, J.-C. Wang, J. B. L. Smith, X. Song, and
Y. Wang, “Modeling the Compatibility of Stem Tracks
to Generate Music Mashups,” Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 35, no. 1, pp.
187–195, May 2021.

[9] K. Seyerlehner, G. Widmer, and T. Pohle, “Fusing
Block-level Features for Music Similarity Estimation,”
in Proceedings of the 13th International Conference on

Digital Audio Effects (DAFx-10). DAFx, 2010.

[10] X. Hu, J. Downie, and A. Ehmann, “Lyric Text Mining
in Music Mood Classification,” in Proceedings of the

10th International Society for Music Information Re-

trieval Conference. ISMIR, Jan. 2009, pp. 411–416.

[11] L. Vande Veire and T. De Bie, “From raw audio to a
seamless mix: creating an automated DJ system for
Drum and Bass,” EURASIP Journal on Audio, Speech,

and Music Processing, vol. 2018, no. 134, pp. 1–21,
Sep. 2018.

[12] M. Heydari, F. Cwitkowitz, and Z. Duan, “BeatNet:
CRNN and Particle Filtering for Online Joint Beat
Downbeat and Meter Tracking,” in Proceedings of the

22nd International Society for Music Information Re-

trieval Conference. ISMIR, 2021.

[13] Y. Xiang, S. Gubian, B. Suomela, and J. Hoeng, “Gen-
eralized Simulated Annealing for Global Optimization:
The GenSA Package,” The R Journal, vol. 5, no. 1, pp.
13–28, 2013.

[14] P. Knees, Á. Faraldo, P. Herrera, R. Vogl, S. Böck,
F. Hörschläger, and M. L. Goff, “Two Data Sets for
Tempo Estimation and Key Detection in Electronic
Dance Music Annotated from User Corrections.” in
Proceedings of the 16th International Society for Mu-

sic Information Retrieval Conference. ISMIR, Sep.
2018, pp. 364–370.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

856



[15] H. Schreiber and M. Müller, “A Crowdsourced Exper-
iment for Tempo Estimation of Electronic Dance Mu-
sic,” in Proceedings of the 19th International Society

for Music Information Retrieval Conference. ISMIR,
2018.

[16] S. Böck and M. Davies, “Deconstruct, analyse, recon-
struct: How to improve tempo, beat, and downbeat es-
timation,” in Proceedings of the 21st International So-

ciety for Music Information Retrieval Conference. IS-
MIR, Nov. 2020, pp. 574–582.

[17] F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzane-
takis, C. Uhle, and P. Cano, “An experimental compari-
son of audio tempo induction algorithms,” IEEE Trans-

actions on Audio, Speech, and Language Processing,
vol. 14, no. 5, pp. 1832–1844, Sep. 2006.

[18] J. Serrà, M. Müller, P. Grosche, and J. L. Arcos, “Un-
supervised Music Structure Annotation by Time Se-
ries Structure Features and Segment Similarity,” IEEE

Transactions on Multimedia, vol. 16, no. 5, pp. 1229–
1240, Aug. 2014.

[19] O. Nieto and J. P. Bello, “Music segment similarity us-
ing 2D-Fourier Magnitude Coefficients,” in 2014 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP). Florence, Italy: IEEE,
May 2014, pp. 664–668.

[20] C. Southall, R. Stables, and J. Hockman, “Automatic
Drum Transcription Using Bi-Directional Recurrent
Neural Networks.” in Proceedings of the 17th Interna-

tional Society for Music Information Retrieval Confer-

ence. ISMIR, Sep. 2016, pp. 591–597.

[21] ——, “Automatic drum transcription for polyphonic
recordings using soft attention mechanisms and convo-
lutional neural networks,” in Proceedings of the 18th

International Society for Music Information Retrieval

Conference. ISMIR, 2017.

[22] B. Rocha, N. Bogaards, and A. Honingh, “Segmenta-
tion and timbre- and rhythm-similarity in Electronic
Dance Music,” University of Amsterdam, Elephant-
candy, Tech. Rep., Apr. 2013.

[23] M. Panteli, B. Rocha, N. Bogaards, and A. Honingh,
“A model for rhythm and timbre similarity in electronic
dance music,” Musicae Scientiae, vol. 21, no. 3, pp.
338–361, Sep. 2017.

[24] I. Sha’ath, “Estimation of key in digital music record-
ings, MSc Computer Science Project Report,” Master’s
thesis, Birkbeck College, University of London, 2011.

[25] T. Royer, “Pitch-shifting algorithm design and applica-
tions in music,” Master’s thesis, KTH Royal Institute
of Technology, School of Electrical Engineering and
Computer Science, 2019.

[26] P. Knees and M. Schedl, Music Similarity and

Retrieval, ser. The Information Retrieval Series.
Springer Berlin Heidelberg, 2016, vol. 36.

[27] N. Reimers and I. Gurevych, “Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks,”
in Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP). Association for Com-
putational Linguistics, Nov. 2019, pp. 3982–3992.

[28] J. Steventon, DJing For Dummies, 2nd ed. For Dum-
mies, Sep. 2010.

[29] S. Rouard, F. Massa, and A. Défossez, “Hybrid trans-
formers for music source separation,” in 2023 IEEE In-

ternational Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP). IEEE, 2023.

[30] A. Défossez, N. Usunier, L. Bottou, and F. Bach, “Mu-
sic Source Separation in the Waveform Domain,” Apr.
2021, arXiv preprint arXiv:1911.13254.

[31] A. Flexer and D. Schnitzer, “Effects of album and
artist filters in audio similarity computed for very
large music databases,” Computer Music Journal,
vol. 34, no. 3, p. 20–28, sep 2010. [Online]. Available:
https://doi.org/10.1162/COMJ_a_00004

[32] I. Vatolkin, G. Rudolph, and C. Weihs, “Evaluation
of Album Effect for Feature Selection in Music Genre
Recognition.” in Proceedings of the 16th International

Society for Music Information Retrieval Conference.
ISMIR, Sep. 2018, pp. 169–175. [Online]. Available:
https://doi.org/10.5281/zenodo.1416328

[33] A. Flexer, M. Dörfler, J. Schlüter, and T. Grill, “Hub-
ness as a case of technical algorithmic bias in music
recommendation,” in Proceedings of the 2018 IEEE

International Conference on Data Mining Workshops

(ICDMW), 2018, pp. 1062–1069.

[34] A. Holzapfel, B. L. Sturm, and M. Coeckelbergh, “Eth-
ical dimensions of music information retrieval technol-
ogy,” Transactions of the International Society for Mu-

sic Information Retrieval, Sep 2018.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

857



MIDICAPS: A LARGE-SCALE MIDI DATASET WITH TEXT CAPTIONS

Jan Melechovsky ∗, Abhinaba Roy ∗, Dorien Herremans

Singapore University of Technology and Design

jan_melechovsky@mymail.sutd.edu.sg, abhinaba_roy@sutd.edu.sg, dorien_herremans@sutd.edu.sg

ABSTRACT

Generative models guided by text prompts are increasingly

becoming more popular. However, no text-to-MIDI mod-

els currently exist due to the lack of a captioned MIDI

dataset. This work aims to enable research that combines

LLMs with symbolic music by presenting MidiCaps,

the first openly available large-scale MIDI dataset with

text captions. MIDI (Musical Instrument Digital Inter-

face) files are widely used for encoding musical informa-

tion and can capture the nuances of musical composition.

They are widely used by music producers, composers, mu-

sicologists, and performers alike. Inspired by recent ad-

vancements in captioning techniques, we present a curated

dataset of over 168k MIDI files with textual descriptions.

Each MIDI caption describes the musical content, includ-

ing tempo, chord progression, time signature, instruments,

genre, and mood, thus facilitating multi-modal exploration

and analysis. The dataset encompasses various genres,

styles, and complexities, offering a rich data source for

training and evaluating models for tasks such as music in-

formation retrieval, music understanding, and cross-modal

translation. We provide detailed statistics about the dataset

and have assessed the quality of the captions in an ex-

tensive listening study. We anticipate that this resource

will stimulate further research at the intersection of music

and natural language processing, fostering advancements

in both fields.

1. INTRODUCTION

The recent development of large-language models (LLMs)

has revolutionised how we interact with text, images, and

even audio. By incorporating elements of multimodal

learning, researchers have combined LLMs with other

modalities. The resulting models can analyze and gener-

ate accurate descriptions and captions, which in turn fa-

cilitates downstream tasks such as question answering [1],

image generation [2], and music generation [3]. However,

we have yet to see such an evolution for MIDI files.

*These authors contributed equally to this work.

© J. Melechovsky, A. Roy, and D. Herremans. Licensed

under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: J. Melechovsky, A. Roy, and D. Herremans, “Midi-

Caps: A large-scale MIDI dataset with text captions”, in Proc. of the 25th

Int. Society for Music Information Retrieval Conf., San Francisco, United

States, 2024.

Figure 1: Overview of our approach. We extract mean-

ingful and relevant features from MIDI files. These fea-

tures are then added as tags to the human instructions that

are sent to an LLM (Claude-3) to generate meaningful text

captions of MIDI files.

In the field of Music Information Retrieval (MIR),

MIDI plays a crucial role as a symbolic and musically

meaningful representation of music. The format is often

used by music producers and composers working in Digi-

tal Audio Workstations (DAWs). It is also a useful format

for the computational analysis of music and related tasks

such as music transcription, genre classification, similar-

ity measurement, and music recommendation [4]. Further-

more, due to the symbolic nature of music, it has long been

used by music generation algorithms [5]. In recent years,

we have seen a surge of interest in music generation from

free-flow text instructions [3, 6–9]. These studies lever-

age the expressive capabilities of LLMs to translate tex-

tual representation of musical attributes into actual music

audio. This necessitates a meticulous alignment between

the textual and musical feature spaces to ensure that the

generated music closely follows text instructions. To vali-

date and establish benchmarks for this text-to-music map-

ping, large-scale datasets with text captions have been de-

veloped [3, 10].

No such efforts, however, have yet been made for the

MIDI format, despite its widespread use by musicians and

its obvious, historically supported usage in music genera-

tion. This lack of text-MIDI datasets, in turn, has inhibited
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researchers from exploring interesting and novel tasks such

as MIDI generation from free-flow text prompts. In this

work, we identify this shortcoming and develop a robust

solution in the form of a large-scale curated MIDI dataset

accompanied by text captions. Our goal is to obtain cap-

tions that are i) large in volume, ii) contain accurate infor-

mation about the musical contents, and iii) feature a rich

and refined vocabulary. We posit that such a dataset-level

approach opens up further opportunities for researchers in

MIDI-LLMs-related tasks.

To address the first goal, we identify an open source

large-scale MIDI dataset in the form of Lakh MIDI dataset

[11], that contains over 170K MIDI examples. Second,

to attain the musical contents in each MIDI file, we ex-

tract meaningful features encompassing tempo, chord pro-

gression, time signature, instruments present, genre and

mood. Each of the features are extracted using state-of-

the-art MIR tools that ensure the quality and accuracy of

the features extracted. After feature extraction, we are still

left with the task of caption generation. Relying on tradi-

tional human annotation is tedious, time-consuming, and

costly. Instead, motivated by the recent success of LLMs,

we utilize in-context learning – a model’s ability to tem-

porarily learn from human-provided instructions [12]. Our

decision is motivated by Melechovsky et al. [3], who have

demonstrated the efficacy of in-context learning in gen-

erating captions that are accurate, rich in description as

well as grammatically coherent. In our approach, we fur-

nish the LLM with instructions to generate captions based

on the extracted music features, supplemented by a small

set of feature-caption pairs created by expert annotators.

Given the current absence of freely available MIDI-caption

datasets, we anticipate that the provision of a substantial

volume of detailed and informative captions will inspire

the research community to delve further into tasks related

to MIDI and Large Language Models (LLMs). The main

contributions of this work can be summarized as follows:

• We introduce the first curated large-scale open

dataset of MIDI-caption pairs, termed MidiCaps1.

• Furthermore, we present a comprehensive set of

music-specific features extracted from MIDI files.

These features succinctly characterize the musi-

cal content, encompassing tempo, chord progres-

sion, time signature, instrument presence, genre, and

mood.

• Finally, we provide a text caption annotation frame-

work tailored specifically for MIDI data (see Fig-

ure 1). Leveraging the in-context learning capabil-

ity of large language models (LLMs), we enable the

generation of captions using only a small number

of feature-caption training pairs. This framework,

a first of its kind, is made freely accessible to users2,

facilitating the generation of MIDI-caption pairs for

their individual MIDI files.

1huggingface.co/datasets/amaai-lab/MidiCaps
2github.com/AMAAI-Lab/MidiCaps

2. RELATED WORK

To the best of our knowledge, there are no publicly avail-

able MIDI caption datasets. In this section, we briefly men-

tion various publicly available MIDI datasets and discuss

the closely related topic of caption generation from audio

and music.

Despite the scarcity of MIDI caption datasets, existing

repositories offer potential resources that could be adapted

for this purpose. Among these, the Lakh MIDI Dataset

[11] stands out, comprising a vast collection of MIDI files.

While primarily tailored for MIR tasks such as melody

extraction and chord estimation, its volume and diversity

present an opportunity for repurposing towards caption-

ing tasks, albeit requiring appropriate preprocessing. The

MAESTRO Dataset [13] offers aligned pairs of MIDI and

audio files, primarily for piano music generation. The

MuseGAN Dataset [14] focuses on multi-track songs, and

the MAPS Dataset [15], contains recordings of classical

piano pieces alongside aligned MIDI files and thus also

present potential avenues for MIDI captioning research.

Additionally, the Wikifonia Dataset [16] features a sub-

stantial collection of lead sheets accompanied by MIDI

files. Closest to our proposed MIDI-caption dataset is

the WikiMusicText (WikiMT) dataset [17], which includes

lead sheets in ABC notation with metadata including text

descriptions. These descriptions, however, pertain to gen-

eral information about the music piece rather than detailed

descriptions of musical contents provided in MIDI files

within our captions.

In the last three years, several models were released

for automatic caption generation from music audio files.

One of the earlier models, MusCaps [18], uses an archi-

tecture based on recurrent and convolutional layers as well

as a multimodal encoder. Recent research includes the use

of large language models (LLMs) for captioning [3, 7, 10].

In [7], a pseudo labeling approach is used to label a large

training dataset. First, existing captions from other datasets

are curated, then the MuLaN [19] model, a joint music-text

embedding model, evaluates the distance between captions

and unlabeled audio files. The top caption candidates are

selected based on their frequency to ensure balance among

all samples. In [20], the focus is on capturing the full sen-

timent of classical music recordings through text descrip-

tions, introducing a Group-Topology Preservation Loss to

be used with their cross-modality translation model. A re-

cent study by Doh et al. [10] targets pseudo labeling of

audio data with the help of an LLM, utilizing the Music-

Caps [6] dataset as ground truth and instructing GPT-3.5

Turbo [21] to generate full captions from these tags.

In [3], Melechovsky et al. curate a new dataset based

on the MusicCaps dataset [6], called MusicBench. In Mu-

sicBench, the original captions are enhanced by includ-

ing additional music descriptors such as chord sequence,

musical key, time signature, and tempo. After perform-

ing audio and text augmentations to expand the dataset

size, they use ChatGPT [22] for rephrasing captions to

create more diverse captions. Furthermore, they employ

in-context learning to guide ChatGPT using a small set
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of human-annotated examples, instructing it to generate

diverse captions to create an evaluation dataset from ex-

tracted tags, named FMACaps. Inspired by their method-

ology, we adopt a similar approach and utilize in-context

learning alongside a large-language model to generate cap-

tions from MIDI features. In the subsequent section, we

offer an in-depth description of our proposed framework

for MIDI captioning.

3. METHOD

In this section, we discuss details regarding the music-

specific features we extract from MIDI files.

3.1 Feature extraction

In a first step, as per Figure 2, we extract various musical

features from the MIDI files. This is achieved in two ways:

a number of features are extracted directly from the MIDI

files, and others are extracted from the synthesized MIDI

files. The details of our approach are described below.

3.1.1 Preprocessing

We preprocess all files to remove faulty files. For instance,

we found multiple files that had never-ending notes. Using

Mido [23], we further exclude files of duration shorter than

3 seconds and longer than 15 minutes.

3.1.2 MIDI feature extraction

We use Music21 [24] and Mido [23] libraries to extract the

following features from MIDI: Musical Key (Music21),

Time Signature (Music21), Tempo (Mido), Duration of the

MIDI file (Mido), and a list of Instruments (Mido).

The Key and Time Signature features are ob-

tained through music21.midi.analyze(’keys’)

and music21.midi.getTimeSignatures() func-

tions, respectively. To calculate the Tempo, we first look

for the set_tempo MIDI message to get the MIDI tempo.

Then, the mido.tempo2bpm() function is used to con-

vert this MIDI tempo to beats per minute (bpm). For

MIDI file Duration, we retrieve the length attribute of a

mido.MidiFile object.

To extract a list of instruments, we filter the MIDI mes-

sages based on channel number and their associated instru-

ment program obtained from the program change message.

To treat ambiguity given by some faulty files, we always

take the last assigned program number as the definite in-

strument number for each MIDI channel. For channel 10,

which is reserved for drums, we always consider the as-

signed instrument to be drums, unless there is another per-

cussion instrument specified.

We further process the extracted instruments in three

steps to identify the most prominent instruments. First, we

extract total note duration for each of the instruments by

scraping through note-on and note-off messages, and rank

them by this duration. Second, we map the program num-

bers to their respective instrument names, grouping similar

variations (e.g., both nylon and steel string acoustic guitars

as ‘acoustic guitar’) . Third, we reduce the list of instru-

ments to only include one instance of the same instrument

name (in the previous example, the two acoustic guitars

would merge into one), and then take top five instruments

sorted by their total note duration.

3.1.3 Synthesized audio feature extraction

We use the Midi2Audio library [25] that utilizes Flu-

idSynth [26, 27] to synthesize audio from MIDI with the

Fluid Release 3 General-MIDI sound font. Then, we use

these audio files to extract genre, mood, and chord features.

To extract genre and mood, we use Essentia [28],

specifically the MTG-Jamendo genre and mood/theme

discogs effnet models3. We keep the top two genre

tags with the highest confidence score, and the top five

mood/theme tags, also based on their confidence score.

The confidence scores for each tag are also stored.

Next, we extract the single most occurring chord se-

quence of length 3 to 5. To obtain this, we first extract

all chords from the audio using Chordino [29]. To ob-

tain the most frequent short chord sequence, we first iter-

ate through the chord list to find the most frequent patterns

consisting of 3, 4, and 5 consequent chords. We do not

allow these patterns to have the same first and last chord,

e.g., [A, B, C, A] for a pattern of length 4 is not allowed,

as this is likely an [A, B, C] pattern of length 3. Then,

we decide on which pattern to keep through a set of rules

described in Algorithm 1. In the below algorithm ni repre-

sents the occurrence count of the most frequent pattern (pi)

of length i. We save the final selected pattern along with

a number denoting how many times it occurred. Once we

have extracted all of the features extracted, we move on to

caption generation, described in the next subsection.

Algorithm 1 Selecting the most frequent chord pattern.

▷ pi: most frequent pattern of length i

▷ ni: occurrence count of pi
▷ p: final selected most frequent pattern

n = n3 + n4 + n5

if (n5 ≥ 0.8 · n4) & (n5 ≥ 0.25 · n) then

p← p5

else if (n4 ≥ 0.8 · n3) & (n4 ≥ 0.3 · n then

p← p4

else if (n3 == 0) then

if (n4 == 0) then

if (n5 == 0) then

p← None

else

p← p5

end if

else

p← p4

end if

else

p← p3

end if

3essentia.upf.edu/models.html#discogs-effnet
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Figure 2: Detailed overview of our proposed captioning framework.

3.2 Caption generation

In this step, we take the extracted features and execute

caption generation. To harness the expressive power and

few-shot capability of a Large Language Model (LLM),

we refer to a recent benchmarking study on LLMs [30],

and ultimately selected Claude 3 Opus [31] due to its supe-

rior performance compared to other LLMs such as GPT4.

Employing in-context learning (a task in which the LLM

is given example data of paired input-output to serve as

‘context’, and is expected to continue producing outputs

for new unpaired inputs in a similar manner), we begin

by selecting 174 diverse examples from the extracted fea-

tures and request a human annotator to craft appropriate

text captions for each of these based solely on the extracted

features. This approach aims to prevent any auditory influ-

ence on human captioning, as Claude 3 (or any LLM, for

that matter) will subsequently only process text inputs, not

audio files. Once the 17 examples are prepared, we con-

struct a text prompt instructing Claude 3 to analyze the

human-prepared feature-caption pairs and generate suit-

able captions for new sets of features. To maintain clarity,

we specify that the generated captions should be between

three to seven sentences. Before generating captions for all

168K MIDI files, we conduct a sanity check on ten exam-

ples to evaluate Claude 3’s response to in-context learning,

ensuring our prompt does not produce unrelated output or

"hallucinate." Please note, this check differs from the qual-

ity evaluation of the generated captions reported in the next

section. In our study, a single round of sanity checks suf-

ficed, obviating the need to modify prompts or alter the

feature-caption pairs for in-context learning. Finally, us-

4Optimized based on limit on input tokens in Claude 3 text prompts.

ing the features extracted from each MIDI file, we generate

corresponding captions, creating our proposed MidiCaps

dataset, which we describe in detail in the next section.

4. EVALUATION AND STATISTICS

In this section, we first introduce the MidiCaps dataset

and subsequently detail subjective evaluation in form of

listening study.

4.1 MidiCaps dataset

To generate our MidiCaps dataset, we start with MIDI

files provided in the Lakh MIDI dataset [11], comprised

of a collection of 176,581 unique MIDI files, designed to

facilitate large-scale music information retrieval. Addi-

tionally, the dataset is distributed under a CC-BY 4.0 li-

cense, enabling us to expand the dataset without encoun-

tering copyright constraints. Subsequently, we process the

raw MIDI files and extract musical features as described

in Section 3.1, which we used in the captioning process

Section 3.2 to create our final MidiCaps dataset consist-

ing of 168,407 MIDI files with matching text caption. A

couple of examples of captions generated are provided be-

low. They encapsulate key information regarding the mu-

sic contents while infusing a fluid human touch:

1. “A melodic and happy rock and pop song featuring

a string ensemble, piano, clean electric guitar, slap

bass, and drums. The song is in the key of F major

with a 4/4 time signature and a tempo of 120 BPM.

The chord progression alternates between Bb and F

throughout the song, creating a motivational and en-

ergetic corporate vibe.”
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Figure 3: Genre distributions.
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Figure 4: Instrument and key distributions (in log scale).
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Figure 5: Time signature and tempo distributions (in log scale).

2. “A melodic and happy pop song with a Christmas

vibe, featuring piano, clean electric guitar, acoustic

guitar, and overdriven guitar. The song is in the key

of A major with a 4/4 time signature and a moder-

ate tempo. The chord progression revolves around

D, E6, D, and E, creating a motivational and loving

atmosphere throughout the piece.”

Moreover, we provide a summary of some of the ex-

tracted features below to gain further insight into the diver-

sity within the dataset. In Figure 3a, we illustrate the distri-

bution of the primary (highest confidence score) and sec-

ondary (second highest confidence score) genres present

in the dataset. In both cases, electronic and pop genres are

most prominent in the dataset. The secondary genre ex-

hibits more variation, such as folk, instrumental pop, and

easy listening, which have more occurrences as secondary

genre but do not appear in the primary genre figure. This

means that they can be used by the captioning system to

further specify and narrow down the broad primary gen-

res (e.g. classical) into more specific descriptions such as

‘ambient classical’ etc. Please note that only genres with

more than 1,000 occurrences are displayed in the figures.

Figure 4 summarizes the instruments and keys present in

the dataset. Piano, drums, and various types of guitars

are predominant in the instrument summary, corroborat-

ing the fact that a significant portion of the songs belongs

to electronic, pop, and rock genres. Additionally, the keys
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Audience: General audience Music experts

Annotated by: Human AI Human AI

Question Avg. rating (1-7)

Overall matching 5.46 5.63 5.40 4.92

Human-like 5.21 5.32 5.09 4.98

Genre matching 5.80 5.63 5.54 4.73

Mood matching 5.50 5.62 5.43 4.82

Key matching 5.87 5.70 5.51 5.69

Chord matching 6.12 5.78 5.74 5.09

Tempo matching 5.71 5.86 5.37 5.77

Table 1: Results of the listening study. Each question is

rated on a Likert scale from 1 (very bad) to 7 (very good).

The table shows the average ratings per question for each

group of participants.

of C, G, F, and D major have the highest occurrences in the

dataset. Regarding time signature, 4/4 is significantly more

common than any other (Figure 5a ), while most songs fol-

low a moderate tempo (Figure 5b).

4.2 Listening study

Since there is no ground truth or baseline model to com-

pare our new dataset to, we conduct a listening study with

the help of the PsyToolkit platform [32,33]. Listeners were

asked to listen to 20 MIDI files, chosen at random, from

which 15 are captioned by our framework and 5 are anno-

tated by an expert human rater with absolute pitch. Then,

listeners were asked to rate these captions in seven aspects,

which are: 1) Overall matching of caption to audio, 2)

How human-like the caption is, 3) Genre matching of cap-

tion with audio, 4) Mood matching, 5) Key matching, 6)

Chord matching, and 7) Tempo matching. Those listeners

who indicated that they do not have the ability to recognize

chords/key were tagged as General audience. A total of 16

participants belong to this general audience, of which 25%

has more than 1 year of musical training. Another 7 partic-

ipants indicated that they can recognize chords and key or

have absolute pitch. These were tagged as Music experts.

4.3 Results and discussion

Table 1 shows the results of the listening study. The av-

erage rating for overall matching of the text caption with

the MIDI file for the general audience is even slightly

higher (5.63) for the AI generated caption compared to

the human-written caption (5.46). When it comes to the

ratings by music experts, the overall matching rating is

slightly lower, but still well above average (4.92). In term

of how human-like the captions are, the general audience

again provides high ratings, comparable to those given

to the human-written captions (5.21). The music experts

are slightly more critical and rate them at 4.98, which

is still very close to their rating for human-written cap-

tions (5.09). A similar pattern can be seen for ratings of

genre matching and mood matching. The ratings for tempo

matching outperformed the human-written ones for both

general audience and music experts.

In terms of key and chord matching, the general au-

dience provide good ratings. For these questions the rat-

ings from the music experts, however, are more reliable,

as these participants have explicitly indicated that they are

able to recognize chords and keys. Their rating for key

matching (5.69) is on par with the rating for human-written

captions (5.51), and confirm the high agreement that the

musical key described in the caption matches the audio

pieces. For chord matching, the music experts’ average

rating of 5.09 falls below the rating for the human-written

caption. Please note, however, that this particular question

was not easy to answer. Extracting a single ‘main’ pattern

(3-5 chords) from the entire list of extracted chords is chal-

lenging as there are many different cases, e.g., very short

fragments of a few chords, and very long pieces with many

chord patterns. Slight changes in chord patterns can also

be intentional, e.g., a chord progression of C, G, D, C, G,

D6 would likely be detected as a C, G, D, C, G pattern

instead of a C, G, D variation. All this makes it hard to ob-

jectively judge a single-chord pattern in the text captions.

Despite this, the chord matching rating of 5.09 provides

support that our caption contains a matching chord sum-

mary. Overall, the results from the listening study support

that our text captions provide a high-quality, human-like

textual description that matches the MIDI files well.

The task of automatically labelling files of various

length is difficult by nature as longer music pieces might

require more text to be described precisely, while shorter

pieces may need only a single sentence. This problem

is further magnified when considering chord progressions

and their summary as mentioned above. Additionally, ex-

tracting features from synthesized audio files is not op-

timal, as the choice of the sound font has an impact on

the obtained results, which is likely to be most apparent in

genre and mood features. Future research could focus on

improving accuracy related to these features. In sum, we

are confident that our MidiCaps dataset will facilitate the

development of the first Text-to-MIDI generation models.

5. CONCLUSION

We present the first large-scale open MIDI captioned

dataset, MidiCaps. This dataset also includes a com-

prehensive set of musical features such as chord patterns,

genre, and mood. To facilitate the development of this

dataset, we have developed a MIDI captioning framework.

This approach includes music feature extraction and sum-

marization from MIDI and the synthesized audio, as well

as the use of the Claude-3 LLM to generate the final

captions using in-context learning. To evaluate the final

dataset, we have conducted two subjective listening stud-

ies, which confirm that the captions are natural and in-

deed contain a text description of the musical features con-

tained in the accompanying MIDI file. The resulting new

MidiCaps dataset contains 168,407 MIDI files with de-

scriptive text captions and is available online5 under a Cre-

ative Commons licence.

5huggingface.co/datasets/amaai-lab/MidiCaps
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ABSTRACT

Schenkerian Analysis (SchA) is a uniquely expressive
method of music analysis, combining elements of melody,
harmony, counterpoint, and form to describe the hierarchi-
cal structure supporting a work of music. However, despite
its powerful analytical utility and potential to improve mu-
sic understanding and generation, SchA has rarely been
utilized by the computer music community. This is in
large part due to the paucity of available high-quality data
in a computer-readable format. With a larger corpus of
Schenkerian data, it may be possible to infuse machine
learning models with a deeper understanding of musical
structure, thus leading to more “human” results. To en-
courage further research in Schenkerian analysis and its
potential benefits for music informatics and generation,
this paper presents three main contributions: 1) a new
and growing dataset of SchAs, the largest in human- and
computer-readable formats to date (>140 excerpts), 2) a
novel software for visualization and collection of SchA
data, and 3) a novel, flexible representation of SchA as a
heterogeneous-edge graph data structure.

1. INTRODUCTION

With the continuously growing availability of “big data,”
machine learning models and algorithms have made enor-
mous strides in many fields, such as computer vision and
language modeling. Recent approaches to music infor-
mation retrieval (MIR) and music generation tasks are in-
creasingly fueled by massive datasets as well, particularly
when working with raw audio. For instance, for genera-
tion tasks, Meta’s MusicGen is trained on approximately
20,000 hours of licensed music [1], OpenAI’s Jukebox

on 1.2 million songs [2], and Google’s Noise2Music on
340,000 hours of music [3]. Castellon et al. show how
these large generation models produce useful representa-
tions for downstream MIR tasks [4]. Won et al. perform

© S. Ni-Hahn, W. Xu, J. Yin, R. Zhu, S. Mak, Y. Jiang, and
C. Rudin. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: S. Ni-Hahn, W. Xu, J. Yin,
R. Zhu, S. Mak, Y. Jiang, and C. Rudin, “A New Dataset, Notation Soft-
ware, and Representation for Computational Schenkerian Analysis”, in
Proc. of the 25th Int. Society for Music Information Retrieval Conf., San
Francisco, United States, 2024.

multimodal metric learning for tag-based music retrieval
using approximately 158,000 tracks [5].

Despite this promising body of work, many areas of
music research do not have access to such data and are
therefore under-researched and underappreciated, particu-
larly in the realm of symbolic music or Schenkarian Anal-
ysis (SchA). By infusing an understanding of Schenke-
rian musical structure, generative machine learning models
may be able to learn more artistic, theoretically-informed
structural features beyond simple form and metric features
when making inference. Unfortunately, there is currently
only one sizeable publicly available dataset for SchA in
computer-readable format, and it is relatively small with
41 excerpts [6].

Schenkerian analysis provides a powerful, flexible, and
broadly-used analytical framework for understanding mu-
sical melodic-harmonic structure in a sensitive, “human”
way. Rather than viewing a piece of music as a series of
vertical chunks or horizontal melodies, SchA instead ana-
lyzes music as an artistic “unfolding” of harmony through
time, taking into account elements of melody, harmony,
form, and counterpoint. Schenker’s theories have inspired
numerous performers and composers [7–9], helping them
to understand their own interpretations of musical struc-
ture, which in turn may inform their own performance
and/or composition. An understanding of Schenkerian
structure helps performers determine what notes deserve
emphasis and which may be more transient. A composer
can learn to imitate and develop structures they have seen
in other pieces of music they admire.

Because Schenkerian theory requires a significant
amount of background knowledge in music theory and
practice and has a difficult learning curve, it is often over-
looked or misunderstood. For instance, SchA is often
deemed too narrow due to its origins in repertoire of West-
ern common practice tonal music. However, aspects of
Schenkerian theory have shown strong analytical power in
works of popular, rock, jazz, and even African folk mu-
sic, Chinese opera, and 20th century western atonal mu-
sic [10–13]. To be clear, we see SchA as a broad and evolv-
ing field with various analytical tools that can be applied to
a wide array of musical genres, not as a static theory solely
designed for common practice tonality.

It is our belief that research in computational SchA
can enable performers and composers to more easily an-
alyze music and guide the process of understanding mu-
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sical structure. Computational SchA can also aid the ex-
pert human analyst by offering several potential solutions,
speeding up their ability to parse through a piece of music
or potentially unveiling unusual and interesting analytical
insights. The computer would not replace the human ex-
pert; rather, it would help the analyst find reasonable so-
lutions more quickly, which would be immensely helpful
when conducting large-scale corpus studies. Furthermore,
inclusion of SchA in MIR and generation tasks may greatly
improve results. This injection of computational models
with musical theory and/or structure has shown benefits in
numerous MIR and generation tasks [14–17].

This paper introduces three main contributions. The
first is a new and growing SchA dataset, the largest in
human- and computer-readable format to date (>140 ex-
cerpts). Second, we present a novel notation software for

SchA in an effort to ease data collection and visualization.
Lastly, we describe a representation of SchA as a graphi-
cal data structure and graph pooling problem.

The following subsections describe SchA in more de-
tail, as well as the relevant history of computational SchA.
Section 2 describes our novel dataset and data collection
tool. Finally, Section 3 describes how SchA may be repre-
sented as a graph data structure.

1.1 Hierarchical Music Analysis

Music is often composed and understood in terms of hi-
erarchical structures such as phrase and rhythmic struc-
ture [18, 19], form structure [20, 21], and linear/harmonic
structure [22, 23]. In this paper, we focus on the Schenke-
rian model of harmonic-melodic structure. As mentioned
earlier, SchA aims to reveal how harmonies are “unfolded”
through linear motion on various levels of structure. Figure
1 shows the relationship between a fugue’s subject melody
and its underlying harmony, as well as the hierarchy of
melodic tones.

Figure 1: The primary author’s analysis of J.S. Bach’s F
major fugue subject from Das Wohltemperierte Klavier I.

The annotated score on the upper line shows how notes
relate on various levels of structure, forming two theoret-
ical outer voices. Longer stems indicate deeper levels of
structure. The reduction on the bottom line exemplifies
the underlying harmony that is unfolded by the subject
melody. Green-stemmed notes correspond with the deep
outer voices of the reduction.

SchA has shown that similar harmonic and motivic fea-
tures often exist on multiple levels of hierarchy, revealing
music’s “fractal” nature [24]. For instance, in Figure 1,
the foreground melody within the first full measure (D4-
C4-B♭3) can be seen as a parallelism of the deep level
melody spanning the entire excerpt (C4-B♭3-A3); the two
melodies have a similar motivic descending third in step-
wise motion. One can also see the first full measure lead-
ing into the second measure as a V♭ − I motion in the key
of V, paralleling the deep level V♮ − I shown in the re-
duction. While these examples are on a very small scale,
one can see more complex harmonic and motivic structures
unfolded through entire pieces. For instance, see Example
12 in [24] describing Schubert’s Erlkönig or Example 2
in [25] describing The Beatles’ Something.

Because these same music-theoretical ideas and motifs
permeate multiple levels of structure, the use of a carefully-
designed machine learning model may reveal such struc-
ture in a layered approach. With the rise of machine learn-
ing in data science, this calls into importance the need for
computer-readable SchA datasets for model training.

1.2 Previous Work and Data for Computational

Schenkerian Analysis

The majority of past attempts at computational SchA [26–
30] were based on heuristics and rule-based algorithms,
and therefore did not require a true computer-readable
dataset for SchA. To our knowledge, Marsden [31] was the
first to venture towards a machine learning approach, using
a humble corpus of six Mozart analyses. He developed a
“goodness metric” based on these six analyses to find the
best candidate analyses within a massive search space.

More recently, Kirlin designed a probabilistic model
for SchA that understands SchAs as maximal outerplanar
graphs (MOPs) and learns how likely certain notes prolong

others using random forests [32, 33]. He defines prolon-
gation as “a situation where an analyst determines that a
group of notes is elaborating a group of more structurally
fundamental notes.” For instance, the syntax follows the
pattern X(Y )Z, where the note(s) of Y prolong the mo-
tion from note X to note Z.

One potential drawback of Kirlin’s model is that it al-
ways considers one musical voice as one theoretical voice.
Looking back at Figure 1, for example, we see there is
clearly a deep level bass motion from E3 to F3, support-
ing the upper voice, which follows the motion C4-B♭3-A3.
The sixteenth notes of m. 2 act to fill the gap between the
lower and upper theoretical voices. An MOP reduction of
the melody would force all notes to be understood as a sin-
gle theoretical voice, thus obscuring the underlying coun-
terpoint of the passage. For this reason, we represent SchA
as a more general graph data structure, described further in
Section 3.

For his model, Kirlin released the first large-scale
computer-readable dataset of symbolic music with cor-
responding expert Schenkerian analyses, Schenker41 [6].
This collection consists of 41 excerpts from the common
practice period of European art music, with analyses from
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(a) JSON representation. (b) Graphical representation.

Figure 2: Screenshots of a toy Schenkerian analysis in JSON and graphical form as generated by our notation software.

three textbooks [23, 34–36] and an independent, anony-
mous expert in Schenkerian analysis. Kirlin also created
the first computer-readable format for Schenkerian analy-
sis, which describes all prolongations present in an analy-
sis. The text-based format can also encode linear progres-
sions, omitted repetitions, and harmonic context.

The Schenker41 dataset is an important first step to-
wards broader musical-hierarchical research in the MIR
community; however, there are some limitations. First of
all, the quality of the excerpts chosen are questionable.
Kirlin and Jensen recruited three expert Schenkerian an-
alysts to grade textbook analyses as well as their machine
learning model’s analyses in their 2015 paper (see Figure 8
in [37]). One would expect the textbook analyses to receive
grades of “A-” or greater, allowing wiggle room for dif-
ferences of opinion. However, many excerpts score lower
marks; some were even given failing grades. Given the
high proportion of dubious quality “ground truth” data, it
is necessary to produce a greater quantity of quality data
before successful, generalizable models can be trained.

There are also several Schenkerian symbols and con-
cepts that are not currently represented in the text-based
notation. For instance, unfoldings, voice exchanges, and
other hierarchical harmonic function information are ig-
nored. Concerning larger pieces, it is vital to understand
the harmonic structure in several layers; an F major triad
may stand as a local tonic “I” harmony in the foreground
that serves to expand a deeper subdominant “IV” of the
background, global key of C. Furthermore, more abstract
concepts, such as motivic parallelisms, implied tones, and
written commentary are eschewed for the sake of simplic-
ity.

2. DATASET AND NOTATION SOFTWARE FOR

SCHENKERIAN ANALYSIS

We thus introduce a new large-scale dataset of Schenke-
rian analyses in human- and computer-readable formats.
As of the writing of this paper, the dataset contains 145
analyses from four analysts for a broad range of com-
posers including J.S. Bach, Mendelssohn, Brahms, Bartók,
Shostakovich, Gentle Giant, and more. The majority of

analyses were created by the first author (Stephen Ni-
Hahn) with consultation from one of the other analysts,
who wishes to remain anonymous at this time. Ni-Hahn
currently has nearly a decade of experience with SchA
including a graduate degree in music theory. The other
three analysts are veteran Schenkerian scholars with sev-
eral decades of experience in the field. The dataset is not
static and aims to grow over time. Please contact Stephen
Ni-Hahn (stephen.hahn@duke.edu) for questions regard-
ing, and access to the dataset and notation software de-
scribed in this paper.

Currently, the vast majority of analyses in the dataset
describe the hierarchical relationships within fugue sub-
jects by Bach and Pachelbel. Fugue subjects are ideal for
preliminary trials with machine learning models since sub-
jects are generally brief, consist of a single instrumental
line (which may consist of multiple theoretical voices),
generally have clear functional relationships, and each
have a definite sense of closure by their end.

Rather than writing out each prolongation explicitly, we
produce prolongations as a by-product when assigning a
hierarchical depth to each note. For example, Figure 2
shows a toy example of an analysis in which the numbers
to the left of the note heads indicate depth. Higher depth
indicates deeper structure. To retrieve the prolongations,
we simply traverse the graph at each depth level (greater
than 0), connecting consecutive notes that are at the same
level or higher. Custom prolongations that do not occur
within this system may be added in a similar fashion to
Kirlin’s text format by describing the voice and index of
the start, middle, and end notes.

Figures 3 and 4 present simple statistics about our
dataset. Figure 3a shows the distribution of excerpt lengths
in terms of verticalities. A verticality is defined as a point
in time where one or both of a treble and bass note exist.
Note that this does not measure length of time or number of
measures; rather, the number of verticalities describes the
number of potentially unique depths in an excerpt. Figure
4 shows the distribution of intervals between consecutive
notes in the treble and bass voices at various depths. We
see that as depth increases, the distribution of treble in-
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(a) Distribution of excerpt length. (b) Dataset statistics regarding note depth.

Figure 3: Dataset statistics. Verticality is defined as a point in time where one or both of a treble and bass note exist.
“Inclusive” includes notes of higher depth when counting notes of lower depths. “Literal” counts the note depths as they
are defined. The final column describes the distribution of max depths over all excerpts. See Section 2 for more details.

tervals moves from smaller to larger intervals, while bass
intervals increasingly concentrate around 0 and 5. These
statistics suggest that surface level treble motions in our
dataset are mostly stepwise and span larger intervals at
deeper levels of structure. Furthermore, deep bass struc-
tures tend to hold steady and support the upper voice or
move along the circle of fifths by jumping 5 or 7 half steps.
Table 3b describes various statistics regarding the notes
and depths of our dataset. Columns labeled “inclusive”
mean that notes of higher depth are included when count-
ing notes of lower depths. For instance, a depth 4 note is
counted in the number of depth 0 notes, while the depth 4
note would not count towards the number of depth 5 notes.
The “literal” label counts the note depths as they are de-
fined. The final column describes the distribution of max
depths over all excerpts.

Figure 4: Distribution of intervals between consecutive
notes at each depth.

2.1 Data Collection Tool

To facilitate easy collection and visualization of Schenke-
rian data, we introduce a new computer notation system for
Schenkerian analyses (see Figure 2 for a screenshot).

As of the writing of this paper, our software is capable
of notating up to four voice structures of any length. Sim-
ple commands allow the user to adjust the pitches, note
depths, harmonic/scale-degree label, notes considered part

of the Ursatz, etc. Slurs and beams of the outer theoretical
voices are automatically generated based on the depths of
the notes. We are currently working on ways to render cus-
tom markings, such as voice exchanges, unfoldings, and
linear progression beams.

Behind the scenes, the Schenkerian analysis is a simple
standardized object in JavaScript Object Notation (JSON),
which is highly generalizable, lightweight, and simple to

parse, and is capable of describing any obscurities within
a particular analysis. Our JSON object contains metadata
about the analysis, key information, and information on
each of four theoretical voices. Metadata describes the an-
alyst, composer, title, subtitle, and any associated written
description of the analysis. Furthermore, each theoretical
voice is encoded as a list of pitch names, depths, Ursatz in-
dices, scale degree/Roman numerals, flagged note indices,
sharp/flat/natural indices, and parenthetical indices. Ad-
ditionally, the JSON object stores “cross voice” symbols
such as voice exchange lines and lines indicating related
tones across larger spans of time.

Note that it is straightforward to translate between Kir-
lin’s OPC text notation and our JSON notation. To trans-
late from text to JSON, the notes can be parsed from the
musicxml and placed in their appropriate voice. Then
note depths may be determined by the location and rela-
tive length of their prolongation. Translating from JSON
to text is simpler, as one can traverse each depth and re-
trieve the prolongations.

The software is constructed using languages
Javascript/Typescript and the Vue web framework. It
is packaged using Electron Forge. Software access can be
requested by emailing the first author.

3. SCHENKERIAN ANALYSIS AS A

HETEROGENEOUS GRAPH DATA STRUCTURE

As mentioned in Section 1.2, Kirlin’s model simplifies
the difficult problem of performing SchA, using a lim-
ited version of Yust’s MOP representation for SchA. With
a greater amount of data, less compromising representa-
tions may be used for modeling. The following section
describes how a musical score may be represented as a
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algo2e 1 JSON to Clusters
Definitions

parts← {sop, alto, ten, bass}
nv ← the number of verticalities v (indexed by i) in an analysis
pi ← note of part p ∈ parts within vi

d
(p)
i ← depth of note pi
∀p ∈ parts, len(p) = len(d(p)) = nv .

Procedure CLUSTER(p, i)

if ∃j < i s.t. dpj > 0 then

j ← argmin
j
|i− j| s.t. j < i and d

(p)
j > 0

return {(p, j)} // Note in the same voice to the left
else if ∃j > i s.t. dpj > 0 then

j ← argmin
j
|i− j| s.t. j > i and d

(p)
j > 0

return {(p, j)} // Note in the same voice to the right
else

j1, j2 ← argmin
j1,j2

min(|i− j1|, |i− j2|) s.t. (i− j1) · (i− j2) ≤ 0 and d
(sop)
j1

> 0 and d
(bass)
j2

> 0

return {(sop, j1), (bass, j2)} // Closest two notes in outer voices in opposite directions to the inner voice note
end if

heterogeneous-edge directed graph data structure and how
SchA may be conceptualized as a graph clustering prob-
lem.

3.1 Graph Music Representation

In what follows, we represent music as a heterogeneous
directed graph G, where each node describes a note, and
various types of edges describe the relationships between
notes. Concretely, G is represented as (A, X), where
A ∈ {0, 1}h×n×n describes the set of h adjacency matri-
ces (one for each edge type) over n nodes, and X ∈ R

n×d

is the node feature matrix with d as the number of features.
These d features may be learned by a neural network, for
instance, to correspond with categorical and numerical mu-
sical features.

We adapt the encoding scheme proposed by Jeong et
al. [38] for the purpose of Schenkerian analysis. Nodes
may be encoded with any musical feature present in the
score, such as pitch class, octave, absolute duration, posi-
tion (absolute or relative), metric strength, etc. We suggest
the use of five main edge types: (i) forward edges connect
two consecutive notes within a voice, (ii) onset edges con-
nect notes that begin at the same time, (iii) sustain edges
connect notes that are played while the source note is held,
(iv) rest edges are like forward edges, but imply a rest oc-
curs between the two related notes, and (v) linear edges
connect each note with the next notes that occur at specific
intervals from the source.

3.2 Schenkerian Analysis as Hierarchical Clustering

With this graphical representation of music, the process of
Schenkerian analysis may then be posed as a hierarchical
graph clustering problem. Figure 5 presents a toy example
of how Schenkerian analysis may be represented as a series

of hierarchical clusters. The clustering between two subse-
quent levels of Schenkerian analysis is expressed through
a clustering matrix, S(l) ∈ R

nl×nl+1 , where nl is the num-
ber of nodes in clustering layer l and nl+1 < nl is the
number of nodes after one iteration of clustering. We de-
fine n0 to be the total number of notes in the music.

Note that we can understand a clustering between any

two layers as a single matrix, denoted as S(li)→(lj) ∈
R

nli
×nlj ; i < j, where i and j are the index of the source

and destination layers respectively. This single matrix is
obtained by simply multiplying all sequential clustering
matrices. For example, in Figure 5, to retrieve the matrix
describing how all five nodes of the original score are clus-
tered into the two nodes of the final middleground layer,
we can multiply each clustering matrix together:

S(0)→(2) = S(0) · S(1) · S(2) =

[

1 1 1 1 0
0 0 0 0 1

]⊤

.

3.3 Converting Schenkerian Analyses from JSON to

Matrix Notation

Schenkerian analysis JSON data (collected using our tool
described in Section 2.1) requires extra processing to be
represented as hierarchical clusters. Here, we provide an
algorithm to convert our JSON data into a series of pro-
gressively smaller clustering matrices (see Algorithm 1).

Essentially, we first traverse the outer voices of the
JSON file, clustering notes of depth 0 into the closest note
of higher depth to the left in the same voice. If that note
does not exist, it defaults to the closest note of a higher
depth to the right. For inner voices, if they do not de-
scribe hierarchical depth (all 0 depth), they are clustered
50%-50% between the nearest bass and soprano below and
above or left to right, in that order. If the inner voice has
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Figure 5: Visualization of Schenkerian analysis as a series of clustering matrices. The bottom row shows a simple score
with Schenkerian annotation moving from all notes in the score to more abstracted versions of the score from left to right.
The middle row visualizes the music as a graph. The top row shows the ground truth cluster matrices that relate one layer
to the next; rows describe nodes before clustering, while columns describe nodes after clustering.

specified depth, it is treated similarly to the outer voices.
All depths are then decremented and the process begins
again for the next clustering matrix.

3.4 Implications of SchA Graph Clustering

The above formulation of SchA as a graph clustering prob-
lem facilitates more generalizable analysis. Whereas Kir-
lin’s MOP-based model focuses on a single melody as one
theoretical voice, a fuller graph representation allows for
greater flexibility via any number of theoretical voices.
There are, however, several drawbacks with this new ap-
proach. Because the clustering works with the notes of the
score, it is unclear how to handle cases where multiple the-
oretical voices converge on a single note. This issue may
also be present when handling inner voices of unspecified
depth. In our algorithm, we suggest splitting unspecified
inner voices 50%-50% between the outer voices, but other
approaches may also be reasonable.

Another advantage that the proposed graph clustering
representation has over the MOP representation is its abil-
ity to cluster multiple notes into one in a single layer. This
is particularly common when there are several repeated
notes. In a MOP, repeated notes must be given detailed hi-
erarchy, whereas a human expert would generally think of
such repetitions as structurally redundant. There are also
instances of prolongations that span more than one child,
where having only one child would not properly reflect the
music. For instance, if the melody over a C major tonic
triad (CEG) quickly plays out the upper tetrachord of the
scale, G-A-B-C, then the A and B are structurally equal;
they both bridge the gap from G to C. On the other hand,
allowing multiple children for every prolongation makes
the search space for potential solutions orders of magni-
tude larger.

As the amount of labeled SchA data grows and compu-
tational power improves, there is great potential for learn-
ing complex relationships via machine learning that may

be unattainable in previous analyses. Deep learning has en-
joyed considerable success on analyzing the Bach chorale
dataset [39–41], thus we are optimistic that SchA can also
be learned for broad datasets from different genres. The
proposed dataset, notation software and graph representa-
tion provides a promising step towards this goal.

4. CONCLUSION

In this paper, we introduce the largest corpus of Schenke-
rian analyses in computer-readable format to date. This
was largely made possible using our novel SchA notation
software, which is natural, interpretable, and enables easy
data collection and visualization. Finally, we describe and
discuss a novel representation for SchA as a graph clus-
tering problem that allows representation of any possible
Schenkerian analysis, avoiding the limitations of MOPs. It
is our hope that the growing amount of data and ease of its
collection will enable broader research into SchA’s appli-
cations.

5. REFERENCES

[1] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Syn-
naeve, Y. Adi, and A. Défossez, “Simple and control-
lable music generation,” Advances in Neural Informa-

tion Processing Systems, vol. 36, 2024.

[2] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford,
and I. Sutskever, “Jukebox: A generative model for
music,” arXiv preprint arXiv:2005.00341, 2020.

[3] Q. Huang, D. S. Park, T. Wang, T. I. Denk,
A. Ly, N. Chen, Z. Zhang, Z. Zhang, J. Yu,
C. Frank et al., “Noise2music: Text-conditioned mu-
sic generation with diffusion models,” arXiv preprint

arXiv:2302.03917, 2023.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

871



[4] R. Castellon, C. Donahue, and P. Liang, “Codified
audio language modeling learns useful representa-
tions for music information retrieval,” arXiv preprint

arXiv:2107.05677, 2021.

[5] M. Won, S. Oramas, O. Nieto, F. Gouyon, and X. Serra,
“Multimodal metric learning for tag-based music re-
trieval,” in ICASSP 2021-2021 IEEE International

Conference on Acoustics, Speech and Signal Process-

ing (ICASSP). IEEE, 2021, pp. 591–595.

[6] P. B. Kirlin, “A data set for computational studies of
schenkerian analysis.” in ISMIR, 2014, pp. 213–218.

[7] B. Finane, “The humanist - murray perahia - steinway
& sons.” [Online]. Available: https://www.steinway.
com/news/features/the-humanist-murray-perahia

[8] H. Schenker, The art of performance. Oxford Univer-
sity Press, 2000.

[9] T. L. Jackson, “Heinrich schenker as composition
teacher: The schenker-oppel exchange,” Music Anal-

ysis, vol. 20, no. 1, pp. 1–115, 2001.

[10] D. F. Nobile, “A structural approach to the analysis
of rock music,” Ph.D. dissertation, 2014, copyright
- Database copyright ProQuest LLC; ProQuest does
not claim copyright in the individual underlying
works; Last updated - 2023-03-03. [Online].
Available: https://login.proxy.lib.duke.edu/login?
url=https://www.proquest.com/dissertations-theses/
structural-approach-analysis-rock-music/docview/
1506971540/se-2

[11] J. Stock, “The application of schenkerian analysis to
ethnomusicology: problems and possibilities,” Music

Analysis, vol. 12, no. 2, pp. 215–240, 1993.

[12] S. Larson, Analyzing Jazz: A Schenkerian Approach,
ser. ACLS Humanities E-Book. Pendragon, 2009.
[Online]. Available: https://books.google.com/books?
id=CmMJAQAAMAAJ

[13] A. Didier, “Form and tonal spectrum in 12-tone music:
Approaches to analysis in schoenberg, walker, and we-
bern,” Ph.D. dissertation, University of Oregon, 2022.

[14] H. Fong, V. Kumar, and K. Sudhir, “A theory-based in-
terpretable deep learning architecture for music emo-
tion,” Available at SSRN 4025386, 2023.

[15] J. Wu, C. Hu, Y. Wang, X. Hu, and J. Zhu, “A hier-
archical recurrent neural network for symbolic melody
generation,” IEEE transactions on cybernetics, vol. 50,
no. 6, pp. 2749–2757, 2019.

[16] S. Hahn, R. Zhu, S. Mak, C. Rudin, and Y. Jiang,
“An interpretable, flexible, and interactive probabilis-
tic framework for melody generation,” in Proceedings

of the 29th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, 2023, pp. 4089–4099.

[17] X. Zhang, J. Zhang, Y. Qiu, L. Wang, and
J. Zhou, “Structure-enhanced pop music generation via
harmony-aware learning,” in Proceedings of the 30th

ACM International Conference on Multimedia, 2022,
pp. 1204–1213.

[18] W. N. Rothstein, “Phrase rhythm in tonal music,” (No

Title), 1989.

[19] F. Lerdahl and R. S. Jackendoff, A Generative Theory

of Tonal Music, reissue, with a new preface. MIT
press, 1996.

[20] J. Hepokoski and W. Darcy, Elements of sonata theory:

Norms, types, and deformations in the late-eighteenth-

century sonata. Oxford University Press, 2006.

[21] W. E. Caplin, Analyzing classical form: An approach

for the classroom. Oxford University Press, USA,
2013.

[22] H. Schenker, Free Composition: Volume III of new mu-

sical theories and fantasies. Pendragon Press, 2001,
vol. 1.

[23] A. C. Cadwallader, D. Gagné, and F. Samarotto, “Anal-
ysis of tonal music: a schenkerian approach,” (No Ti-

tle), 1998.

[24] C. Burkhart, “Schenker’s" motivic parallelisms",”
Journal of Music Theory, vol. 22, no. 2, pp. 145–175,
1978.

[25] R. Gauldin, “Beethoven, tristan, and the beatles,” in
College Music Symposium, vol. 30, no. 1. JSTOR,
1990, pp. 142–152.

[26] M. Kassler, Proving musical theorems I: The mid-

dleground of Heinrich Schenker’s theory of tonality.
Basser Department of Computer Science, School of
Physics, University of Sydney, 1975, no. 103.

[27] R. E. Frankel, S. J. Rosenschein, and S. W. Smoliar,
“A lisp-based system for the study of schenkerian anal-
ysis,” Computers and the Humanities, pp. 21–32, 1976.

[28] S. W. Smoliar, “A computer aid for schenkerian anal-
ysis,” in Proceedings of the 1979 annual conference,
1979, pp. 110–115.

[29] P. Mavromatis and M. Brown, “Parsing context-free
grammars for music: A computational model of
schenkerian analysis,” in Proceedings of the 8th Inter-

national Conference on Music Perception & Cognition,
2004, pp. 414–415.

[30] É. Gilbert and D. Conklin, “A probabilistic context-free
grammar for melodic reduction,” in Proceedings of the

International Workshop on Artificial Intelligence and

Music, 20th International Joint Conference on Artifi-

cial Intelligence. Citeseer, 2007, pp. 83–94.

[31] A. Marsden, “Schenkerian analysis by computer: A
proof of concept,” Journal of New Music Research,
vol. 39, no. 3, pp. 269–289, 2010.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

872



[32] P. B. Kirlin, “A probabilistic model of hierarchical mu-
sic analysis,” PhD thesis, University of Massachusetts
Amherst, Amherst, MA, February 2014, available at
https://www.cs.rhodes.edu/~kirlinp/diss.html.

[33] J. D. Yust, Formal models of prolongation. ProQuest,
2006.

[34] A. Forte and S. E. Gilbert, “Instructor’s manual for in-
troduction to schenkerian analysis,” (No Title), 1982.

[35] A. Forte and S. Gilbert, “Introduction to schenkerian
analysis: structor’s manual,” 1982.

[36] T. Pankhurst, SchenkerGUIDE: a brief handbook and

website for Schenkerian analysis. Routledge, 2008.

[37] P. Kirlin and D. Jensen, “Learning to uncover deep mu-
sical structure,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 29, no. 1, 2015.

[38] D. Jeong, T. Kwon, Y. Kim, and J. Nam, “Graph neu-
ral network for music score data and modeling expres-
sive piano performance,” in International conference

on machine learning. PMLR, 2019, pp. 3060–3070.

[39] G. Hadjeres, F. Pachet, and F. Nielsen, “Deepbach: a
steerable model for bach chorales generation,” in In-

ternational conference on machine learning. PMLR,
2017, pp. 1362–1371.

[40] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer,
C. Hawthorne, A. M. Dai, M. D. Hoffman, and D. Eck,
“An improved relative self-attention mechanism for
transformer with application to music generation,”
arXiv preprint arXiv:1809.04281, vol. 2, 2018.

[41] F. T. Liang, M. Gotham, M. Johnson, and J. Shotton,
“Automatic stylistic composition of bach chorales with
deep lstm.” in ISMIR, 2017, pp. 449–456.

6. ETHICS STATEMENT

This particular work has no direct negative ethical impli-
cations.

We acknowledge that Heinrich Schenker (the inventor
of Schenkerian analysis) was racist and nationalist. His
sociopolitical views are not condoned by authors of the
present work. As originally designed, his style of anal-
ysis did not extend far beyond German composers of the
common practice era. As we address in Section 1, we do
not see Schenkerian analysis as a static analysis defined by
Schenker; rather, we see it as a growing and developing
set of tools that may be applied to various musical genres,
detached from Schenker’s personal views.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

873



DITTO-2: DISTILLED DIFFUSION INFERENCE-TIME T-OPTIMIZATION
FOR MUSIC GENERATION

Zachary Novack1 Julian McAuley1 Taylor Berg-Kirkpatrick1 Nicholas J. Bryan2

1University of California – San Diego 2Adobe Research

znovack@ucsd.edu, njb@ieee.org

ABSTRACT

Controllable music generation methods are critical for

human-centered AI-based music creation, but are currently

limited by speed, quality, and control design trade-offs.

Diffusion inference-time T-optimization (DITTO), in par-

ticular, offers state-of-the-art results, but is over 10x slower

than real-time, limiting practical use. We propose Distilled

Diffusion Inference-Time T -Optimization (or DITTO-2),

a new method to speed up inference-time optimization-

based control and unlock faster-than-real-time generation

for a wide-variety of applications such as music inpaint-

ing, outpainting, intensity, melody, and musical structure

control. Our method works by (1) distilling a pre-trained

diffusion model for fast sampling via an efficient, modified

consistency or consistency trajectory distillation process

(2) performing inference-time optimization using our dis-

tilled model with one-step sampling as an efficient sur-

rogate optimization task and (3) running a final multi-

step sampling generation (decoding) using our estimated

noise latents for best-quality, fast, controllable genera-

tion. Through thorough evaluation, we find our method

not only speeds up generation over 10-20x, but simulta-

neously improves control adherence and generation qual-

ity all at once. Furthermore, we apply our approach to

a new application of maximizing text adherence (CLAP

score) and show we can convert an unconditional diffusion

model without text inputs into a model that yields state-

of-the-art text control. Sound examples can be found at

https://ditto-music.github.io/ditto2/.

1. INTRODUCTION

Audio-domain text-to-music (TTM) methods [1–6] have

seen rapid development in recent years and show great

promise for music creation. Such progress has been

made possible through the development of diffusion mod-

els [7–9], language models [1, 2], latent representations of

audio [10–13] and text-based control [4, 14]. Such control,

however, can be limiting for creative human-centered AI

© Z. Novack, J. McAuley, T. Berg-Kirkpatrick, and N.J.

Bryan. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: Z. Novack, J. McAuley, T. Berg-

Kirkpatrick, and N.J. Bryan, “DITTO-2: Distilled Diffusion Inference-

Time T-Optimization for Music Generation”, in Proc. of the 25th Int.

Society for Music Information Retrieval Conf., San Francisco, United

States, 2024.
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Figure 1: DITTO-2: Distilled Diffusion Inference-Time

T -Optimization. We speed up diffusion inference-time

optimization-based music generation by 10-20x while im-

proving control and audio quality. (Top) We use diffusion

distillation to speed up performance (optimize with 1-step

sampling). (Bottom) We then run multi-step sampling for

final higher-quality generation (decoding).

music applications, motivating more diverse and advanced

control (e.g., melody) that target’s fine-grained aspects of

musical composition.

Recent control methods that go beyond text-control fall

into training-based and training-free methods. Training-

based methods like Music-ControlNet [15] fine-tune

DMs with additional adaptor modules that can add time-

dependent controls over melody, harmony, and rhythm, of-

fering strong control at the cost of hundreds of GPU hours

of fine-tuning for each control. With training-free meth-

ods, in particular the class of inference-time guidance meth-

ods [16,17], the diffusion sampling process is guided at each

step using the gradients of a target control∇xt
L(x̂0(xt)),

where x̂0(xt) is a 1-step approximation of the final output.

While training-free, the reliance on approximate gradients

limits performance [18]. Finally, inference-time optimiza-

tion (ITO) methods [19, 20] like DITTO [18] offer state-

of-the-art (SOTA) control without the need for large-scale

fine-tuning via optimizing for noise latents, but suffer from

slow inference speeds (10-20x slower than real-time) [18].

In this work, we propose Distilled Diffusion Inference-

Time T -Optimization (or DITTO-2), a new method for

speeding up ITO-based methods by over an order of magni-
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tude for faster-than-real-time generation for a wide-variety

of controllable generation tasks including inpainting, out-

painting, intensity, melody, and musical structure control.

Our method works via 1) distilling a pre-trained diffusion

model for fast sampling via an efficient, modified consis-

tency model (CM) [21] or consistency trajectory model

(CTM) [22] distillation process (only 32 GPU hours on a

40GB A100), (2) performing inference-time optimization

using our distilled model with a 1-step surrogate objec-

tive, and (3) running a final multi-step sampling generation

(decoding) using our estimated noise latents for final best-

quality results as shown in Fig. 1. We find our approach

accelerates optimization 10-20x, improves control, and im-

proves audio quality at all once. Furthermore, we apply our

approach to maximize text adherence (CLAP score) and

show how an unconditional diffusion model trained without

text inputs can yield SOTA text control.

2. BACKGROUND

2.1 Diffusion-Based Music Generation

Audio-domain music generation has become tractable

through diffusion-based methods, popularized with models

such as Riffusion [3], MusicLDM [23], and Stable Au-

dio [4]. Diffusion Models (DMs) [8, 24] are defined using

a closed-form forward process, where input audio is it-

eratively noised according to a Gaussian Markov Chain.

DMs then learn to approximate the score of the probability

distribution of the reverse process ∇xt
log q(xt) using a

noise prediction model ϵθ, which progressively denoises a

random initial latent xT ∼ N (0, I) to generate new data

x0. For audio-domain DMs, diffusion is performed over

spectrograms [15] or on the latent representations of an

audio-based VAE [3, 4, 23, 25], with an external vocoder

used to translate spectrograms back to the time domain.

Though DMs are efficiently trained by a simple MSE score

matching objective [8, 26], sampling from DMs typically

requires running the denoising process for 100s of itera-

tions (calls to ϵθ), and have slower inference than VAEs or

GANs [27].

2.2 Fast Diffusion Sampling

Fast diffusion sampling is critical. DDIM [8] or DPM-

Solver [28] accelerates DMs to sample in only 10-50 sam-

pling steps. To truly increase speed, however, distilla-

tion can be used to produce a model that can sample in

a single step [21, 22, 29, 30]. Two promising DM dis-

tillation methods include consistency models (CM) [21]

and consistency trajectory models [22]. The goal of CMs

is to distill a base DM ϵθ into a new 1-step network

x0 = Gϕ(xt, c) that satisfies the consistency property

∀t, t′ ∈ [T, 0],Gϕ(xt, c) = Gϕ(xt′ , c) or that every point

along the diffusion trajectory maps to the same output. For-

mally, CMs are distilled by enforcing local consistency be-

tween the learnable Gϕ and an exponential moving average

(EMA) copy Gϕ− :

Et∼T,(x,c)∼D∥Gϕ(xt, c)−Gϕ−(Θ(ϵθ,xt, c), c)∥
2
2, (1)

<latexit sha1_base64="70Ye91d7PQ4rWlCyuE7ZO38ICZ4=">AAACCHicbVDLSsNAFJ34rPXRqEs3wSK4Kon4WhbduKxgH9CWMpnetENnkjBzI5aQH/AX3Orenbj1L9z6JU7bLGzrgQuHc+7lXI4fC67Rdb+tldW19Y3NwlZxe2d3r2TvHzR0lCgGdRaJSLV8qkHwEOrIUUArVkClL6Dpj24nfvMRlOZR+IDjGLqSDkIecEbRSD271EF4Qj9IkaoBYNazy27FncJZJl5OyiRHrWf/dPoRSySEyATVuu25MXZTqpAzAVmxk2iIKRvRAbQNDakE3U2nj2fOiVH6ThApMyE6U/XvRUql1mPpm01JcagXvYn4n9dOMLjupjyME4SQzYKCRDgYOZMWnD5XwFCMDaFMcfOrw4ZUUYamq7kUX2ZFU4q3WMEyaZxVvMvKxf15uXqT11MgR+SYnBKPXJEquSM1UieMJOSFvJI369l6tz6sz9nqipXfHJI5WF+/IyqaWQ==</latexit>

get

<latexit sha1_base64="hs0goRKjvg8YcP0OPbehhF1Tx8U=">AAACAXicdVDLSgMxFM3UV62vqks3wSKIi2FGtLW7ohuXFfrCdiyZNG1Dk8yQZMQyzMpfcKt7d+LWL3Hrl5ipI1jRAxcO59zLvff4IaNKO867lVtYXFpeya8W1tY3NreK2zstFUQSkyYOWCA7PlKEUUGammpGOqEkiPuMtP3JReq3b4lUNBANPQ2Jx9FI0CHFSBvpuufz+C65Oeo3+sWSY5erbsUtQ8d2ZkiJ61QdF7qZUgIZ6v3iR28Q4IgToTFDSnVdJ9RejKSmmJGk0IsUCRGeoBHpGioQJ8qLZxcn8MAoAzgMpCmh4Uz9OREjrtSU+6aTIz1Wv71U/MvrRnp45sVUhJEmAn8tGkYM6gCm78MBlQRrNjUEYUnNrRCPkURYm5Dmtvg8KZhQvj+H/5PWse2W7dOrk1LtPIsnD/bAPjgELqiAGrgEddAEGAjwAB7Bk3VvPVsv1utXa87KZnbBHKy3TwZIl40=</latexit>

⇤

<latexit sha1_base64="nsI/WfKeTCMIANDNmFfBe0S1NIg=">AAAB/3icbVC7SgNBFL3rM8ZX1NJmMAhWYVd8lUEbywh5QbKE2clsMmRmdpmZFcOyhb9gq72d2Poptn6Jk2QLk3jgwuGce7n3niDmTBvX/XZWVtfWNzYLW8Xtnd29/dLBYVNHiSK0QSIeqXaANeVM0oZhhtN2rCgWAaetYHQ38VuPVGkWyboZx9QXeCBZyAg2Vmp3A5E+Zb16r1R2K+4UaJl4OSlDjlqv9NPtRyQRVBrCsdYdz42Nn2JlGOE0K3YTTWNMRnhAO5ZKLKj20+m9GTq1Sh+FkbIlDZqqfydSLLQei8B2CmyGetGbiP95ncSEN37KZJwYKslsUZhwZCI0eR71maLE8LElmChmb0VkiBUmxkY0tyUQWdGG4i1GsEya5xXvqnL5cFGu3ubxFOAYTuAMPLiGKtxDDRpAgMMLvMKb8+y8Ox/O56x1xclnjmAOztcvoEuWyA==</latexit>

<latexit sha1_base64="70Ye91d7PQ4rWlCyuE7ZO38ICZ4=">AAACCHicbVDLSsNAFJ34rPXRqEs3wSK4Kon4WhbduKxgH9CWMpnetENnkjBzI5aQH/AX3Orenbj1L9z6JU7bLGzrgQuHc+7lXI4fC67Rdb+tldW19Y3NwlZxe2d3r2TvHzR0lCgGdRaJSLV8qkHwEOrIUUArVkClL6Dpj24nfvMRlOZR+IDjGLqSDkIecEbRSD271EF4Qj9IkaoBYNazy27FncJZJl5OyiRHrWf/dPoRSySEyATVuu25MXZTqpAzAVmxk2iIKRvRAbQNDakE3U2nj2fOiVH6ThApMyE6U/XvRUql1mPpm01JcagXvYn4n9dOMLjupjyME4SQzYKCRDgYOZMWnD5XwFCMDaFMcfOrw4ZUUYamq7kUX2ZFU4q3WMEyaZxVvMvKxf15uXqT11MgR+SYnBKPXJEquSM1UieMJOSFvJI369l6tz6sz9nqipXfHJI5WF+/IyqaWQ==</latexit>

get

<latexit sha1_base64="BW1WPreWbwTPV36gJDJViwUWwCs=">AAACBHicdVDLSgMxFM3UV62vqks3wSK4GjJtR9td0YUuK9gHtEPJpGkbmsyMSUYow2z9Bbe6dydu/Q+3fonpQ7CiBy4czrmXe+/xI86URujDyqysrq1vZDdzW9s7u3v5/YOmCmNJaIOEPJRtHyvKWUAbmmlO25GkWPictvzx5dRv3VOpWBjc6klEPYGHARswgrWRvK4vkqu0l3SjEUt7+QKykVusuggiu1xyXFQypFopVSsV6NhohgJYoN7Lf3b7IYkFDTThWKmOgyLtJVhqRjhNc91Y0QiTMR7SjqEBFlR5yezoFJ4YpQ8HoTQVaDhTf04kWCg1Eb7pFFiP1G9vKv7ldWI9qHgJC6JY04DMFw1iDnUIpwnAPpOUaD4xBBPJzK2QjLDERJuclrb4Is2ZUL4/h/+TZtF2zmz3plyoXSziyYIjcAxOgQPOQQ1cgzpoAALuwCN4As/Wg/VivVpv89aMtZg5BEuw3r8AKaSZXA==</latexit>

<latexit sha1_base64="BW1WPreWbwTPV36gJDJViwUWwCs=">AAACBHicdVDLSgMxFM3UV62vqks3wSK4GjJtR9td0YUuK9gHtEPJpGkbmsyMSUYow2z9Bbe6dydu/Q+3fonpQ7CiBy4czrmXe+/xI86URujDyqysrq1vZDdzW9s7u3v5/YOmCmNJaIOEPJRtHyvKWUAbmmlO25GkWPictvzx5dRv3VOpWBjc6klEPYGHARswgrWRvK4vkqu0l3SjEUt7+QKykVusuggiu1xyXFQypFopVSsV6NhohgJYoN7Lf3b7IYkFDTThWKmOgyLtJVhqRjhNc91Y0QiTMR7SjqEBFlR5yezoFJ4YpQ8HoTQVaDhTf04kWCg1Eb7pFFiP1G9vKv7ldWI9qHgJC6JY04DMFw1iDnUIpwnAPpOUaD4xBBPJzK2QjLDERJuclrb4Is2ZUL4/h/+TZtF2zmz3plyoXSziyYIjcAxOgQPOQQ1cgzpoAALuwCN4As/Wg/VivVpv89aMtZg5BEuw3r8AKaSZXA==</latexit>

Optimization

Decoding

<latexit sha1_base64="nsI/WfKeTCMIANDNmFfBe0S1NIg=">AAAB/3icbVC7SgNBFL3rM8ZX1NJmMAhWYVd8lUEbywh5QbKE2clsMmRmdpmZFcOyhb9gq72d2Poptn6Jk2QLk3jgwuGce7n3niDmTBvX/XZWVtfWNzYLW8Xtnd29/dLBYVNHiSK0QSIeqXaANeVM0oZhhtN2rCgWAaetYHQ38VuPVGkWyboZx9QXeCBZyAg2Vmp3A5E+Zb16r1R2K+4UaJl4OSlDjlqv9NPtRyQRVBrCsdYdz42Nn2JlGOE0K3YTTWNMRnhAO5ZKLKj20+m9GTq1Sh+FkbIlDZqqfydSLLQei8B2CmyGetGbiP95ncSEN37KZJwYKslsUZhwZCI0eR71maLE8LElmChmb0VkiBUmxkY0tyUQWdGG4i1GsEya5xXvqnL5cFGu3ubxFOAYTuAMPLiGKtxDDRpAgMMLvMKb8+y8Ox/O56x1xclnjmAOztcvoEuWyA==</latexit>

xT

<latexit sha1_base64="70Ye91d7PQ4rWlCyuE7ZO38ICZ4=">AAACCHicbVDLSsNAFJ34rPXRqEs3wSK4Kon4WhbduKxgH9CWMpnetENnkjBzI5aQH/AX3Orenbj1L9z6JU7bLGzrgQuHc+7lXI4fC67Rdb+tldW19Y3NwlZxe2d3r2TvHzR0lCgGdRaJSLV8qkHwEOrIUUArVkClL6Dpj24nfvMRlOZR+IDjGLqSDkIecEbRSD271EF4Qj9IkaoBYNazy27FncJZJl5OyiRHrWf/dPoRSySEyATVuu25MXZTqpAzAVmxk2iIKRvRAbQNDakE3U2nj2fOiVH6ThApMyE6U/XvRUql1mPpm01JcagXvYn4n9dOMLjupjyME4SQzYKCRDgYOZMWnD5XwFCMDaFMcfOrw4ZUUYamq7kUX2ZFU4q3WMEyaZxVvMvKxf15uXqT11MgR+SYnBKPXJEquSM1UieMJOSFvJI369l6tz6sz9nqipXfHJI5WF+/IyqaWQ==</latexit>

target

Standard Diffusion Sampling

Backpropagation to Initial Latent

Feature 

Matching

Loss

<latexit sha1_base64="hs0goRKjvg8YcP0OPbehhF1Tx8U=">AAACAXicdVDLSgMxFM3UV62vqks3wSKIi2FGtLW7ohuXFfrCdiyZNG1Dk8yQZMQyzMpfcKt7d+LWL3Hrl5ipI1jRAxcO59zLvff4IaNKO867lVtYXFpeya8W1tY3NreK2zstFUQSkyYOWCA7PlKEUUGammpGOqEkiPuMtP3JReq3b4lUNBANPQ2Jx9FI0CHFSBvpuufz+C65Oeo3+sWSY5erbsUtQ8d2ZkiJ61QdF7qZUgIZ6v3iR28Q4IgToTFDSnVdJ9RejKSmmJGk0IsUCRGeoBHpGioQJ8qLZxcn8MAoAzgMpCmh4Uz9OREjrtSU+6aTIz1Wv71U/MvrRnp45sVUhJEmAn8tGkYM6gCm78MBlQRrNjUEYUnNrRCPkURYm5Dmtvg8KZhQvj+H/5PWse2W7dOrk1LtPIsnD/bAPjgELqiAGrgEddAEGAjwAB7Bk3VvPVsv1utXa87KZnbBHKy3TwZIl40=</latexit>

x
⇤

T

<latexit sha1_base64="70Ye91d7PQ4rWlCyuE7ZO38ICZ4=">AAACCHicbVDLSsNAFJ34rPXRqEs3wSK4Kon4WhbduKxgH9CWMpnetENnkjBzI5aQH/AX3Orenbj1L9z6JU7bLGzrgQuHc+7lXI4fC67Rdb+tldW19Y3NwlZxe2d3r2TvHzR0lCgGdRaJSLV8qkHwEOrIUUArVkClL6Dpj24nfvMRlOZR+IDjGLqSDkIecEbRSD271EF4Qj9IkaoBYNazy27FncJZJl5OyiRHrWf/dPoRSySEyATVuu25MXZTqpAzAVmxk2iIKRvRAbQNDakE3U2nj2fOiVH6ThApMyE6U/XvRUql1mPpm01JcagXvYn4n9dOMLjupjyME4SQzYKCRDgYOZMWnD5XwFCMDaFMcfOrw4ZUUYamq7kUX2ZFU4q3WMEyaZxVvMvKxf15uXqT11MgR+SYnBKPXJEquSM1UieMJOSFvJI369l6tz6sz9nqipXfHJI5WF+/IyqaWQ==</latexit>

target

Baseline (DITTO)

Standard Sampling from Optimized Latent 

<latexit sha1_base64="cypOpGU6NskeR3Vq5Y8A8Qi7Foc=">AAACD3icbVDLSgNBEJz1GeMrKnjxshgET2FXfB2DXjxGMA/IhjA76SRDZmaXmV4hrPsR/oJXvXsTr36CV7/EyeNgEgsaiqpuqqkwFtyg5307S8srq2vruY385tb2zm5hb79mokQzqLJIRLoRUgOCK6giRwGNWAOVoYB6OLgd+fVH0IZH6gGHMbQk7Sne5YyildqFwyCUaQCx4SJSWTsNsA9Is3ah6JW8MdxF4k9JkUxRaRd+gk7EEgkKmaDGNH0vxlZKNXImIMsHiYGYsgHtQdNSRSWYVjr+P3NPrNJxu5G2o9Adq38vUiqNGcrQbkqKfTPvjcT/vGaC3etWylWcICg2CeomwsXIHZXhdrgGhmJoCWWa219d1qeaMrSVzaSEMsvbUvz5ChZJ7azkX5Yu7s+L5ZtpPTlyRI7JKfHJFSmTO1IhVcLIE3khr+TNeXbenQ/nc7K65ExvDsgMnK9f26ydeQ==</latexit>

✏✓

<latexit sha1_base64="cypOpGU6NskeR3Vq5Y8A8Qi7Foc=">AAACD3icbVDLSgNBEJz1GeMrKnjxshgET2FXfB2DXjxGMA/IhjA76SRDZmaXmV4hrPsR/oJXvXsTr36CV7/EyeNgEgsaiqpuqqkwFtyg5307S8srq2vruY385tb2zm5hb79mokQzqLJIRLoRUgOCK6giRwGNWAOVoYB6OLgd+fVH0IZH6gGHMbQk7Sne5YyildqFwyCUaQCx4SJSWTsNsA9Is3ah6JW8MdxF4k9JkUxRaRd+gk7EEgkKmaDGNH0vxlZKNXImIMsHiYGYsgHtQdNSRSWYVjr+P3NPrNJxu5G2o9Adq38vUiqNGcrQbkqKfTPvjcT/vGaC3etWylWcICg2CeomwsXIHZXhdrgGhmJoCWWa219d1qeaMrSVzaSEMsvbUvz5ChZJ7azkX5Yu7s+L5ZtpPTlyRI7JKfHJFSmTO1IhVcLIE3khr+TNeXbenQ/nc7K65ExvDsgMnK9f26ydeQ==</latexit>

✏✓

Figure 2: (Top) Baseline DITTO runs optimization over a

multi-step sampling process to find an initial noise latent to

achieve a desired stylized output, incurring a large speed

cost. (Bottom) When generating the final output (decoding),

the same multi-step diffusion sampling process is used.

where Θ(ϵθ,xt, c) denotes one sampling step from xt to

xt−1 using the frozen teacher model ϵθ and some sampling

algorithm (e.g. DDIM).

CMs are not perfect, however, and one-step performance

lags behind DM quality [29]. Multi-step “ping-pong” sam-

pling [21] also does not reliably increase quality due to com-

pound approx. errors in each renoising step. CTMs [22],

on the other hand, are designed to fix this problem. CTMs

bridge the gap between CMs and DMs by distilling a model

xs = Gϕ(xt, c, t, s) that can jump from anywhere t to

anywhere s along the diffusion trajectory as shown in Fig. 3.

CTMs then use γ-sampling to interpolate between few-step

deterministic sampling along the trajectory (γ = 0) and

CM’s “ping-pong” sampling (γ = 1), allowing a way to

balance sampling stochasticity with overall quality. To our

knowledge, CTM distillation is unexplored for audio, and

CM distillation has only been applied to general audio [31].

2.3 Diffusion Inference-time Optimization

Diffusion inference-time optimization (DITTO) [18–20] is

a general-purpose framework to control diffusion models

at inference-time. The work is based on the observation

that the initial noise latent xT , traditionally thought of

as a random seed, encodes a large proportion of the se-

mantic content in the generation outputs [18, 32]. Thus,

we can search for an initial noise latent of the diffusion

generation process via optimization to achieve a desired

stylized output as shown in Fig. 2. We do this by defining

a differentiable feature extraction function (e.g. chroma-

based melody extraction) f(·), a matching loss function L
(e.g. cross entropy), a target feature y, and optimize xT :

x∗

T = argmin
xT

L (f(x0),y) (2)

x0 = ΘT (ϵθ,xT , c), (3)

where ΘT (ϵθ,xT , c) denotes T calls of the model using

any sampler Θ. In practice, DITTO is run with a fixed

budget of K optimization steps using a standard optimizer

(i.e. Adam). This approach allows for any control that can
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Figure 3: CTM Distillation for DITTO-2. We distill Gϕ by

minimizing the distance between the jump from xt to xs

and xt−1 to xs, where xt−1 is generated by sampling with

the base model ϵθ.

be parameterized differentiably, including melody, intensity,

and musical structure, as well as editing tasks like inpainting

and outpainting. For brevity, we combine Eq. 2 and Eq. 3

into the shorthand x∗

T = argminxT
L
(T )
θ (xT ).

The downside of DITTO, however, is that it is slow. We

need to backpropagate through the entire sampling pro-

cess for each of the K optimization steps and use memory

management techniques like gradient checkpointing [33]

or invertible networks [19] to handle large memory use

that slows down generation. The overall cost of running

a single ITO generation is on the order of 4KT : T -step

diffusion chain for K opt. steps, with a factor of 2 from gra-

dient management and 2 from using classifier-free guidance

(CFG) [34] to improve quality.

3. METHOD

3.1 Overview

We seek to dramatically speed up the diffusion ITO process

to achieve controllable music generation for near-interactive

rate music co-creation. To do so, we focus on three critical

methodological improvements. First, we leverage diffusion

distillation to significantly speed up diffusion sampling

with an efficient, modified distillation process designed to

be used together with ITO methods. Second, we introduce

surrogate optimization, or the idea of decoupling the task

of estimating noise latents from the task of rendering a final

output or decoding, which allows us to leverage both fast

sampling for optimization for control estimation and multi-

step sampling for final, high-quality generation. Third, we

combine diffusion distillation with surrogate optimization

within the DITTO framework and produce a new, more

efficient diffusion inference-optimization algorithm (no gra-

dient checkpointing) as found in Section 3.4.

3.2 Acceleration through Diffusion Distillation

The clearest way to speed up ITO is to simply reduce the

number of diffusion sampling steps T . From initial experi-

ments, however, we found that (1) reducing the number of

sampling steps T degrades overall generation quality [8],

(2) quality degradation makes the optimization gradients

weaker (as the outputs are less semantically coherent) lead-

ing to control degradation, and (3) achieving close to real-

time performance requires < 4 sampling steps, which pro-

duce fully incoherent results on standard DMs. Thus, we

employ distillation to speed up the diffusion process [29].

First, we develop CM distillation [21, 29, 31] for ITO-

based controllable music generation. For CM distillation,

we follow past work [29] for our training recipe, optimiz-

ing (1), and also learn an explicit embedding for the CFG

scale w in the model Gϕ(xt, c, w) during distillation fol-

lowing [29]. By distilling CFG, we are able to half the

number of total model calls per distilled diffusion sampling

step. Once distilled, Gϕ jumps from xT to x0, allowing

for deterministic 1-step sampling and stochastic multi-step-

sampling by repeatedly renoising with some ϵ ∼ N(0, I)
back to xt−1.

Second, we develop CTM distillation [22] for ITO-based

controllable music generation. CTM distillation offers more

advantageous speed vs. quality design trade-offs, but comes

at a cost of a more complex training procedure. In more

detail, CTM distillation normally involves an expensive

soft-consistency loss in the data domain with added GAN

and score-matching loss terms. As we aim to distill our

base model for surrogate optimization (see Sec. 3.3), we

are able to simplify and speed up the CTM distillation

process. First, we remove the image-domain GAN loss

to reduce complexity of developing an audio-based GAN

loss. Second, we use the consistency term from CTM in

local-consistency form [35]:

Et,s∼T,(x,c)∼D∥Gϕ(xt, c, w, t, s)−

Gϕ−(Θ(ϵθ,xt, c), c, w, t− 1, s)∥22. (4)

Third, we use the 1-step Euler parameterization of Gϕ

from [22]’s Appendix, which avoids explicitly learning

additional parameters for the target step s in order to ac-

celerate distillation. These changes reduce the number of

per-training step model calls from 10-30 to 3, leading to

a near order-of-magnitude speed up in wall clock time for

performing the distillation process. Finally, we upgrade

CTM’s unconditional framing for conditional diffusion by

incorporating c into the distillation procedure, and adding

w directly into the model to distill the CFG weight into an

explicit parameter following past work [29], resulting in

CFG control at inference but without double the complexity.

In total, we perform distillation in as few as 32 GPU hours

on an A100, the fastest trajectory-based distillation to our

knowledge [22, 35].

3.3 Surrogate Optimization

Given a distilled CM or CTM model, we seek to mini-

mize our inference runtime and maximize control adherence

and audio quality. The obvious choice to minimize runtime

is to use our distilled model with one-step sampling, but this

results in limited audio quality and text-control. To solve

this, we first split the ITO process into two separate phases:

optimization, i.e. the nested loop of optimizing the ini-

tial latent over M -step multi-step sampling, and decoding,

i.e. the final T -step sampling process from the optimized

latent x∗

T , where M = T in all past work [18, 19]. In this

light, it is clear that the optimization phase is mostly respon-
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Algorithm 1 Distilled Diffusion Inference-Time T -

Optimization (DITTO-2)

input : Gϕ, feature extractor f , loss L, target y, starting

latent xT , text c, optimization steps K, optimizer g,

decoding steps {τ0, . . . , τM}, γ, CFG weight w

1: // Optimization Loop

2: for K iterations do

3: x0 = Gϕ(xT , c, w, T, 0)
4: ŷ = f(x0)
5: xT ← xT − g(∇xT

L(ŷ,y))
6: end for

7: // Decoding Loop

8: xt ← xT

9: for t = M to 1 do

10: τ̂t−1 =
√

1− γ2τt−1

11: xt−1 = Gϕ(xt−1, c, w, τt, τ̂t−1) + γτt−1ϵ

12: end for

output : x0

sible for the control strength and runtime, while decoding

is generally responsible for final output quality.

Thus, we fix our final decoding process as multi-

step sampling with T steps. Then, we perform con-

trol optimization over a surrogate objective x̂∗

T =

argminxT
L
(M)
ϕ (xT ) using some model ϵϕ and M ≪ T ,

where our surrogate is more efficient but yields approx.

equal latents to our original objective

argmin
xT

L
(M)
ϕ (xT ) ≈ argmin

xT

L
(T )
θ (xT ) . (5)

A natural candidate for a surrogate model would be the base

DM ϵθ with fewer sampling steps. DM performance, how-

ever, becomes fully incoherent as M −→ 1 [21, 22], causing

a significant domain-gap when M < T . Alternatively, our

distilled models are naturally strong surrogates:

• One-step outputs are generally coherent unlike in

base DMs, resulting in more stable gradients when

M = 1.

• Since distilled models excel at few-step sampling (i.e.

< 8) [21,22], the control domain gap between M and

T can be reduced while ensuring coherent outputs.

• CTMs can increase quality with more sampling.

As a result, we use a CM or CTM Gϕ as our surrogate,

optimize with M = 1, and decode with T ∈ [1, 8].

3.4 Complete Algorithm

Given our efficient CTM-based distillation process, and our

surrogate objective, we propose a new ITO algorithm for

controllable music generation in Alg. 1. Here, we run opti-

mization to estimate control parameters using our surrogate

1-step objective. Then, we use the optimized latent x∗

T and

decode from our surrogate model with T steps using either

multi-step CM Sampling (i.e. γ = 1) or CTM γ-sampling

(γ < 1). Beyond decoupling optimization and decoding, we

also eliminate the need for gradient checkpointing found

in the original DITTO method [18]. In total, we reduce

the ITO speed from 4KT costly operations for DITTO to

K + T .

4. EXPERIMENTS

To evaluate our proposed method, we follow the evaluation

protocol used for DITTO [18] for intensity, melody, music

structure, inpainting, and outpainting as described below.

Before the full breadth of application tests, however, we

explore our design space by comparing different distillation

techniques and surrogate options on the task of intensity

control. We further conclude with an experiment show-

ing an adaptive sampling surrogate scheme as well a new

experiment on maximizing text-adherence (CLAP score).

4.1 Controllable Generation Evaluation Protocol

We benchmark our method on five controllable music gen-

eration tasks from DITTO [18] including:

• Intensity Control [15, 18]: Here, we control the

time-varying volume and overall semantic density

to some target intensity curve y using the extractor

f(x0) := w ∗ 20 log10(RMS(V(x0))) (i.e. the RMS

energy of the vocoder V outputs smoothed with a

Savitsky-Golay filter w) and L = ||f(x0)− y||22.

• Melody Control [2, 15, 18]: We control the model

outputs to match a given target melody y ∈
{1, . . . , 12}N×1 (where N is number of frames) us-

ing the chromagram of the model outputs f(x0) =
log(C(V(x0))) and L = NLLLoss(f(x0),y).

• Musical Structure Control [18]: We control the

overall timbral structure of the model outputs by

regressing the self-similarity (SS) matrix f(x0) =
T(x0)T(x0)

⊤ of Mel Frequency Cepstrum Coeffi-

cients (MFCC) T against a target SS matrix y like

“ABA" form with L = ||f(x0)− y||22.

• Inpainting and Outpainting [16, 18]: Given music

xref, we can continue (outpainting) or infill (inpaint-

ing) xref by matching the model outputs over o-length

overlap regions f(x0) := Mgen⊙x0 to the reference

y = Mref ⊙ xref (where Mref and Mgen denote the

overlap masks) and L = ||f(x0)− y||22.

For brevity, we focus on the o = 1 case for outpainting and

inpainting (i.e. a gap of 4 seconds) and omit looping given

its equivalence. See [18] for a more thorough description.

4.2 Pre-training and Distillation Details

For our base DM, we follow a similar setup and model de-

sign to DITTO [18], using the same base model and vocoder.

Specifically, we train a 41M parameter Stable Diffusion-

style 2D UNet directly over 6-second mel-spectrograms

trained on ≈ 1800 hours of licensed music, and Mu-

sicHiFi [36] as the vocoder. The base model is trained

with genre, mood, and tempo tags similar to [37] rather
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Figure 4: DITTO-2 inference speed vs. control MSE vs.

audio quality (FAD, denoted by size, smaller is better).

Dashed line denotes the cutoff for real-time performance,

color denotes ITO method, and subscripts denote number

of sampling steps during optimization / final decoding. Ap-

plied to intensity control. Trends also hold for CLAP score.

than full text descriptions. Both the CM and CTM sur-

rogate models are distilled using a maximum of T = 20
sampling steps, evenly spaced across the trajectory for 4

hours across 8 A100 40GB GPUs on the same data. For

DITTO-2, we use Adam. During CTM γ-sampling, we set

γ ∈ [0.05, 0.35] as empirically we found that using deter-

ministic γ = 0 resulted in noticeable audio artifacts that

degrade overall quality.

4.3 Metrics

For all tasks, we report the Frechet Audio Distance (FAD)

and CLAP Score with the CLAP [38] music backbone (as

for FAD the standard VGGish backbone poorly correlates

with human perception [39]), which measure overall audio

quality and text relevance respectively across 2.5K genera-

tions. FAD is calculated with MusicCaps as the reference

[1] dataset. Since our base model uses tags rather than

captions, we convert each tag set into captions for CLAP

Score calculation using the format “A [mood] [genre] song

at [tempo] beats per minute.” Additionally, we report the

MSE to the control target for intensity and structure control,

and the overall accuracy for melody control.

5. RESULTS

5.1 Design Exploration Results

We study our design space for ITO via a case study on

the task of intensity control. Notably, we compare DITTO

with our proposed approach using CM and CTM distilled

models in Fig. 4. We show runtime in seconds (x-axis),

control MSE (y-axis), and FAD (point size) for an array

of (M,T ) combinations for our base DM, as well as our

distilled CTM models (i.e. DM-8/20 corresponds to the

base DM with M = 8, T = 20). We find that our distilled

models are over 10x faster than the standard DITTO (20, 20)
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Figure 5: FAD, MSE, and CLAP results on Intensity Con-

trol for 1-step optimization, where orange lines denote base-

line 20-step performance. MSE increases with more decod-

ing steps for both CM/CTM given the domain gap though

beats the baseline with < 4 steps. CM is unable to beat

baseline quality due to accumulated errors in multi-step

sampling, while multi-step CTM achieves SOTA quality.

configuration, while simultaneously achieving both better

audio quality and control adherence. To understand these

trends more in depth, specifically as we vary the number

of decoding steps for our distilled models, we show both

FAD (top), MSE (middle), and CLAP (bottom) in Fig. 5

as a function on number of decoding steps with M = 1,

where the orange line denotes the baseline DITTO results

with M = T = 20.

A few key points of DITTO-2 are visible here. Notably,

both CM and CTM distilled models are able to achieve

better control adherence than the base performance, as the

shorter optimization process allows convergence to happen

more effectively. Additionally, we find that CTM is clearly

stronger than CM in terms of quality, as CTM is able to

cleanly trade-off quality for control adherence (as sampling

with more steps with M = 1 introduces a domain gap) and

even improve baseline quality, while CM exhibits no real

quality trend when sampling more due to its accumulated

errors in multi-step sampling. In particular, CTM with

M = 1, T = 2 achieves SOTA control adherence and

FAD with faster than real-time. CM and CTM multi-step

sampling also improves text relevance above the base DM.

5.2 Benchmark Results

We show full results on our suite of controllable music gen-

eration benchmarking results in Table 1. Here, we compare

baseline DITTO with DITTO-2, where we display results

for the best performing (M,T ) setup in each experiment

for CM and CTM, where best performance was chosen by

finding the setup with the lowest latency (and thus best

control adherence) while roughly matching the best overall

FAD. As a whole, DITTO-2 achieves comparable or bet-

ter performance than DITTO on all tasks with an 10-20x

speedup, clearing the way for near real-time inference-time
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Intensity Time (s) FAD CLAP MSE

DITTO 82.192 0.682 0.296 4.758
DITTO-2 (CM) 5.206 0.685 0.320 3.055

DITTO-2 (CTM) 5.467 0.640 0.309 3.311

Melody Time (s) FAD CLAP Acc.

DITTO 230.780 0.699 0.283 82.625
DITTO-2 (CM) 21.867 0.697 0.303 81.577
DITTO-2 (CTM) 22.501 0.698 0.273 85.226

Musical Structure Time (s) FAD CLAP MSE

DITTO 245.295 0.632 0.281 0.024
DITTO-2 (CM) 11.381 0.669 0.234 0.020

DITTO-2 (CTM) 11.749 0.658 0.226 0.022

Outpainting Time (s) FAD CLAP

DITTO 144.437 0.716 0.343
DITTO-2 (CM) 6.658 0.694 0.319
DITTO-2 (CTM) 7.098 0.680 0.347

Inpainting Time (s) FAD CLAP

DITTO 145.486 0.690 0.339
DITTO-2 (CM) 6.744 0.689 0.358
DITTO-2 (CTM) 6.814 0.660 0.337

Table 1: Controllable generation benchmark results. Best

performing configuration for each DITTO-2 setup across

five unique tasks. Both CM and CTM results yield excellent

results with 10-20x speed ups.

M T Runtime FAD CLAP MSE

1 1 5.447 0.696 0.295 1.835
1 2 5.467 0.640 0.307 3.311
1 4 5.502 0.643 0.301 5.792
2 2 10.171 0.659 0.281 2.384
2 4 10.387 0.658 0.296 3.894

Adaptive 4 10.315 0.644 0.296 2.561

Table 2: Intensity control results with various (M,T ) op-

tions including an adaptive sampling during optimization.

controllable music generation. Specifically, we find that

CTM outperforms CM, showing noticeably better quality

with similar runtime and control adherence.

5.3 Variable Compute Budget Optimization

Though we are primarily interested in real-time perfor-

mance (i.e. as fast as possible), we additionally investi-

gated how we can use a varying compute budget during

optimization (in terms of runtime). As simply increasing

M predictably increases runtime by a multiplicative factor,

we designed an adaptive schedule for M (denoted as ∗ in

Fig. 4) in order to improve downstream decoding perfor-

mance without increasing runtime significantly. Formally,

for K optimization steps, we set the adaptive budget as

using M = 1 for ⌊K2 ⌋ iterations, then M = 2 for ⌊ 3K8 ⌋,
and finally M = 4 for ⌊K8 ⌋ iterations, thus allowing a

coarse-to-fine optimization process. In Table 2, using the

adaptive schedule exhibits the runtime of the M = 2 case

yet achieves much better FAD and similar control adher-

ence. This shows that given a more flexible compute budget,

using an adaptive M schedule balances downstream per-

formance better than simply modifying a fixed M , and

allows smoother objective tradeoff between audio quality

Method Condition FAD CLAP

Base TTM Tags 0.488 0.167
DITTO-2 Tags 0.456 0.317
DITTO-2 N/A 0.440 0.341
U-DITTO-2 N/A 0.430 0.347
MusicGen (1.5B) Caption 0.444 0.237
MusicGen (3.3B) Caption 0.437 0.226

Table 3: Text similarity results. We use DITTO-2 to max-

imize CLAP similarity using a fully unconditional pre-

trained diffusion model and yield a 54% relative improve-

ment over past SOTA CLAP score (MusicGen).

and control strength.

5.4 Inference-time Optimization of Text-Control

Past ITO methods for music generation use simple fea-

ture extractors f(·) (i.e. chroma or RMS energy) [18] to

minimize runtime speed. Given that our method is much

faster, however, we can introduce new bespoke control

applications with neural network-based feature extractors.

Thus, we propose the task of inference-time text similarity

control. We extract the normalized CLAP audio embed-

ding [38] of our model outputs f(·) = CLAP(x0) and,

given some natural language caption y, calculate the cosine

distance between the output and the normalized CLAP text

embedding of the caption L(x0) = 1− f(x0)
⊤f(y).

Using FAD and CLAP score as metrics, we bench-

mark several configurations including our base DM model

with tag inputs, DITTO-2 method with tag inputs, DITTO-

2 method with null tag inputs, MusicGen w/melody

(1.5B) [2], and MusicGen w.o./melody (3.5B) [2]. For mod-

els that take input text, we use captions from MusicCaps [1]

as input and for models with tag inputs, we convert Music-

Caps captions to tags via GPT-4 as done in past work [15]

with tempo extracted from audio. Furthermore, to ablate

whether any part of the tag-conditioned training process

influences downstream DITTO-2 CLAP control, we retrain

and distill our base model without any text input, which

we denoted U-DITTO-2. In Table 3, we see that DITTO-2

enables SOTA text relevance compared to MusicGen by an

over 54% relative improvement (large), thus showing the

benefits of ITO-based approaches which allow us to directly

optimize for desired downstream metrics, and notably en-

ables fully-unconditional models to have text control with

no paired music-text training.

6. CONCLUSION

We present DITTO-2: Distilled Diffusion Inference-Time

T -Optimization, a new efficient method for accelerating

inference-time optimization for fast controllable music gen-

eration. By utilizing a modified consistency or consistency

trajectory distillation process and performing inference-

time optimization on efficient surrogate objectives, we

speed up past ITO methods by over 10-20x while simulta-

neously improving audio quality and text control. Further-

more, we find we can leverage the efficiency of our method

on new, more complex tasks like text-adherence and show

we can convert a fully unconditional diffusion model into a

TTM model that yields SOTA results on evaluated metrics.
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ABSTRACT

We present “The Concatenator,” a real time system

for audio-guided concatenative synthesis. Similarly to

Driedger et al.’s “musaicing” (or “audio mosaicing”) tech-

nique, we concatenate a set number of windows within

a corpus of audio to re-create the harmonic and percus-

sive aspects of a target audio stream. Unlike Driedger’s

NMF-based technique, however, we instead use an explic-

itly Bayesian point of view, where corpus window indices

are hidden states and the target audio stream is an observa-

tion. We use a particle filter to infer the best hidden corpus

states in real-time. Our transition model includes a tunable

parameter to control the time-continuity of corpus grains,

and our observation model allows users to prioritize how

quickly windows change to match the target. Because the

computational complexity of the system is independent of

the corpus size, our system scales to corpora that are hours

long, which is an important feature in the age of vast audio

data collections. Within The Concatenator module itself,

composers can vary grain length, fit to target, and pitch

shift in real time while reacting to the sounds they hear, en-

abling them to rapidly iterate ideas. To conclude our work,

we evaluate our system with extensive quantitative tests of

the effects of parameters, as well as a qualitative evaluation

with artistic insights. Based on the quality of the results,

we believe the real-time capability unlocks new avenues

for musical expression and control, suitable for live perfor-

mance and modular synthesis integration, which further-

more represents an essential breakthrough in concatenative

synthesis technology.

1. INTRODUCTION

Concatenative synthesis, or audio mosaicing, is a data-

driven approach to arrange granular fragments of audio

samples, particularly using data sourced from the spectral-

temporal features of a target sound. While granular syn-

thesis systems typically rely on combinations of aleatoric

parameterization, deterministic automation, and traditional

synthesis modulation to achieve complex and evolving tex-

tures from sound fragments [1], concatenative synthesis al-

© C.J. Tralie, B. Cantil. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution:

C.J. Tralie, B. Cantil, “The Concatenator: A Bayesian Approach To Real

Time Concatenative Musaicing”, in Proc. of the 25th Int. Society for

Music Information Retrieval Conf., San Francisco, United States, 2024.

gorithms utilize Music Information Retrieval technology to

decide parameters such as the index, amplitude, and pitch

of each sound fragment.

Modern music producers are inundated by audio data.

Services like Splice offer hundreds of thousands of sam-

ples readily available on the cloud, and Kontakt multi-

sample libraries can often take up over 10gb of disk space

to capture a single instrument. Music Producers generate

plenty of their own audio data as well: stems, multi-tracks,

long-form recordings, and mix variations account for a

large portion of many a music producer’s audio collection.

Recent software such as XO by XLN Audio, Sononym,

and Ableton Live 12 offer automatic organization of audio

files based on various tags and descriptors, but these im-

plementations of MIR technology are more utilitarian than

creative in their design and application. Meanwhile, con-

catenative synthesis options remain sparse since its con-

ceptual inception [2]: Reformer by Krotos is designed to

create foley designs, apps like Samplebrain and CataRT

[3, 4] are lacking in critical musical areas such as pitch

tracking, with the more advanced options having limited

accessibility for artists, requiring prior knowledge of Max

(FluCoMa, MuBu) or Python (Audioguide).

The Concatenator advances concatenative synthesis in 3

major ways: 1) it is capable of accurately reproducing har-

monic and percussive sounds using arbitrary corpora 2) in

real-time at scale, 3) affording new levels of control and ac-

cessibility. Furthermore, unlike neural audio systems [5],

it requires no training and can adapt to arbitrary corpora

at runtime. The speed, ease, and scope of The Concatena-

tor offers a fresh paradigm for music producers to interact

creatively with their ever-expanding excess of audio data,

leading to what we believe is a breakthrough in the field.

2. RELATED WORK

We build on important works in Bayesian inference, par-

ticle filters, concatenative synthesis, and applied nonnega-

tive matrix factorization (NMF), which we briefly describe

Driedger’s Technique. From an artistic point of view,

the most similar technique to ours is Driedger et al.’s 2015

“Let It Bee” concatenative musaicing technique [6], which

uses NMF to learn activations of spectral window tem-

plates in a corpus collection so that their combination will

match a target spectrogram. This technique was a fruitful

innovation in sound design for electronic music produc-

tion, as featured heavily on Zero Point by Rob Clouth [7],
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using custom software also authored by Clouth. The al-

gorithm was also implemented in an open source python

script in 2018 [8], and in Max by the FluCoMa project in

2021 (fluid.bufnmfcross) [9], which made NMF-inspired

audio mosaicing accessible enough to contribute towards

the production of at least two more albums heavily featur-

ing the technique: Edenic Mosaics by Encanti (2021) [10]

and Hate Devours Its Host by Valance Drakes (2023) [11].

We now detail the mathematics of Driedger et al.’s tech-

nique, as we borrow a few ideas in our work. Driedger et

al. learn H in the equation V ≈ WH , where V is an

M × T target spectrogram with M frequency bins and

T times, W is an M × N set of N spectral corpus tem-

plates that are treated as fixed, and H is a matrix of N ×T
learned activations. For instance, W could be the windows

of a collection of buzzing bees and V could be an excerpt

from The Beatles’ “Let It Be” (hence the title). Driedger et

al. use the Kullback-Liebler (KL) divergence loss, an in-

stance of the more general β-divergence [12], to measure

the goodness of fit of WH to V . This loss function is

D(V ||WH) =
∑

V ⊙ log

(

V

WH

)

− V +WH (1)

where ⊙, /, +, and − are all applied element-wise, and

the sum is taken over all elements of the resulting matrix.

As Lee/Seung show, choosing the right step size turns gra-

dient descent of Equation 1, with respect to W and H , into

multiplicative update rules that guarantee monotonic con-

vergence. Driedger et al. keep W fixed to force the final

audio to use exact copies of the templates, so only the up-

date rule for H is relevant. At iteration ℓ, this is:

Hℓ
kt ← Hℓ−1

kt

(∑

m WmkVmt/(WHℓ−1)mt
∑

m Wmk

)

(2)

Crucially, though, Driedger et al. note that the update

rules in Equation 2 alone will lose the timbral character of

the templates in W . They hence disrupt ordinary KL gra-

dient descent by performing several increasingly impactful

modifications to H before Equation 2 in each step, which

are eventually set in stone after L total iterations. First,

they avoid repeated windows to avoid a “jittering” effect,

allowing a particular window k to only activate once in

some r-length interval based on where it’s the strongest:

(Hr)
ℓ
kt ←

{

Hℓ−1
kt Hℓ−1

kt > Hℓ−1
ks , |t− s| ≤ r

Hℓ−1
kt (1− ℓ+1

L
) otherwise

}

(3)

They also promote sparsity similarly by shrinking all but

the top p activations in each column of Hr to create Hℓ
p.

Finally, they encourage time continuous activations by do-

ing “diagonal enhancement,” or by doing a windowed sum

down each diagonal of Hp, assuming the columns of W
are also in a time order.

(Hc)
ℓ
kt =

c
∑

i=−c

(Hp)
ℓ
k+i,t+i (4)

Since this encourages the algorithm to mash up chunks

of W in a time order, it effectively encourages sound grains

from the templates than the length of a single window that

ordinary NMF would take. Finally, Driedger et al. apply

Equation 2 to Hℓ
c instead of Hℓ−1 to obtain Hℓ.

These disruptions remove the guarantee that Equation 1

will be minimized, or that it will even monotonically de-

crease, but Driedger et al.’s key insight is that the loss func-

tion is merely a guide to choose reasonable activations; a

suboptimal fit leaves room to better preserve timbral char-

acteristics. We take a similar perspective.

Driedger Tweaks. The idea of spectrogram decompo-

sition used for concatenative musaicing goes back to the

work of [13]. Beyond that, the authors of [12] provide

some improvements to Driedger et al.’s technique, includ-

ing mixing corpus windows directly rather than performing

phase retrieval on WH . One issue with Driedger et al.’s

technique is the sources have to be augmented with pitch

shifts to span additional pitches in the target, increasing

memory consumption and runtime. The authors of [14,15]

avoid this by using 2D deconvolutional NMF [16] on the

Constant-Q transform, whereby pitch shifts are modeled as

constant shifts of the activations instead of the templates,

saving memory. The other convoluational axis models time

history and time shifts, avoiding the need for the diagonal

enhancement of Equation 4. The authors apply 2D NMF

to both the source and target, so they do not preserve the

original sound grains. However, for our preferred style, we

want to take the source grains exactly as they are.

Other Concatenative Techniques. Schwarz created an

offline concatenative synthesis system dubbed “Caterpil-

lar” that uses the Viterbi algorithm [2], which he later ap-

proximated with a real time system, “CataRT” that uses a

greedy approach instead of the Viterbi algorithm [3,4]. Si-

mon’s “audio analogies” is quite similar [17], but instead

of a user controlled traversal through timbral space, they

use features from some source (e.g. midi audio) to guide

synthesis to a target with a different timbre (e.g. real au-

dio of someone playing a trumpet). Caterpillar and audio

analogies are both sequentially Bayesian in nature, where

the hidden state is the template to concatenate, and the “ob-

servation” is a user-controlled trajectory or features from a

source timbre, respectively. The prior transition probabil-

ities are based on temporal continuity. However, they use

the Viterbi algorithm, which is computationally intensive

and which needs all time history, so it cannot be applied in

real time. By contrast, a particle filter is a scalable Monte

Carlo method for sequential Bayesian inference [18–20].

It is less common in MIR, but it has found use in a few real

time MIR applications such as multi-pitch tracking [21],

tempo tracking [22, 23], and beat tracking [24].

3. THE CONCATENATOR

The NMF technique of Driedger is not suitable for real-

time applications; the gradient update rules of Equation 2

scale linearly in the length of the corpus, leaving all but

minutes long corpora usable (Section 3.3), and the equa-

tions to suppress repeated windows and promote time con-
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Random Initialization

Input Audio (Target) Output AudioCorpus

3a. Aggregate Top 0.1P Particles

3b. Do KL on Top p Activations

p=2, P=45

Figure 1. The Concatenator maintains P “particles,” each of which represents p specific corpus windows. Each window

moves forward by 1 timestep in the corpus with probability pd, or otherwise jumps randomly. Then, particles each mix

their windows to best match the target, and particles with the top 10% best fits to the target vote on a final set of p windows.

tinuity at each entry of H require knowledge of all activa-

tions in H , including future activations. Instead, The Con-

catenator does many tiny KL-based NMF problems (Equa-

tion 2) online in “particles” based on random sampling at

each timestep. The particles then vote on a final set of

activations to use at that timestep (Figure 1) 1 . The ran-

dom sampling trades off historical context to choose longer

grains, with fit to the target audio streaming in. We provide

the mathematical and implementation specifics below.

3.1 Sequential Bayesian Formulation And State Space

Formally, The Concatenator uses a sequential Bayesian

formulation, where the tth column of the target spectro-

gram V is the “observation,” at time t. The hidden state

indexes p out of N possible windows in the corpus spec-

trogram W . We use a particle filter to efficiently infer the

the best such windows (Section 3.2). Henceforth, we refer

to the observations as vectors v⃗t to emphasize that the data

is streaming, and we focus on one timestep t at a time.

State space. To keep the state space simple, we de-

couple which windows are active from their activation

weights; we only model the former as the hidden state,

while we infer the weights as a best fit under the KL-loss

(Equation 1). To control for polyphony directly, we use a

p-sparse nonnegative integer-valued vector s⃗t ∈ N
p as the

hidden state. This vector indexes the p corpus windows

that are active at time t, where p is fixed ahead of time.

For convenience of implementation, template indices can

repeat and are in no particular order:

s⃗t[k] ∈ {0, 1, ..., N − 1} , k = 0, 1, ..., p− 1 (5)

We then infer the associated nonnegative weights h⃗t[k]
for each activation to give the approximation Λ⃗t at time t:

Λ⃗t[m] =

p−1
∑

k=0

h⃗t[k]Wm,s⃗t[k] (6)

1 CC musical instrument images adapted from vectorportal.com

In particular, given W , s⃗t, and v⃗t, we apply the update

rules of Equation 2 for a pre-specified number L of itera-

tions, using the corresponding columns s⃗t of W

h⃗t

ℓ
[k]← h⃗t

ℓ−1
[k]





∑

m(Wm,s⃗t[k])(v⃗t[m])/(Λ⃗t

ℓ−1
[m])

∑

m Wm,s⃗t[k]





(7)

Transition Model. We use the KL-loss (Equation 1)

to measure the spectral fit of Λt to v⃗t. As in Driedger et

al. [6] (Equation 4), however, we are willing to sacrifice

fit to take longer grains from the corpus W . To that end,

we define the prior state transition probability in the as

a Factorial Hidden Markov Model (FHMM) [25]. Each s⃗t
satisfies the Markov property and is conditionally indepen-

dent of all previous steps given ⃗st−1, but each component

k of s⃗t[k] also transitions independently of other compo-

nents, leading to the following transition probability:

pT (s⃗t = b⃗| ⃗st−1 = a⃗) =

p−1
∏

k=0

{

pd b⃗[k] = a⃗[k] + 1
1−pd

N−1 otherwise

}

(8)

where pd ∈ [0, 1] is the “probability of remaining time-

continuous.” Intuitively, if pd > 0.5, then we are more

likely to continue to use a time-continuous activation than

we are to jump to a new random activation, which pro-

motes longer contiguous sound grains from the corpus,

even at the expense of a lower fit to the spectral template 2 .

As such, pd a parameter that can be tuned by the artist and

set closer to 1 to promote longer grains. We generally find

pd ∈ [0.9, 0.99] to be effective (Section 4.1).

We must also specify the observation probability,

which pulls the states closer to matching v⃗t, even if they

have to jump away from time continuity; otherwise, the

2 This has a similar effect to “extend matches” functionality in Sturm’s
MatConcat [26] when a match isn’t found. In our Bayesian framework,
such extensions happen on a continuum based on fit to target.
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result would sound nothing like the target. Though each

component transitions independently, they all contribute

jointly to an observation, which makes inference trickier

than it is for traditional HMMs.

3.2 Sampling, Observing, And Synthesizing

We now describe how to apply Bayesian inference to find

the sequence of corpus windows s⃗t and their activation

weights h⃗t that maximize the posterior probability given

the transition model in Equation 8 and the observation

model below. While the authors of [27] use a similar

FHMM applied to multi-pitch tracking, inferring the hid-

den states via message passing algorithms known as “Max-

Sum” [28] and “Junction Tree” [29], we need a faster tech-

nique which is also real-time, and which has tunable accu-

racy that degrades gracefully with restricted computational

resources. To that end, we turn to a particle filter.

Our particle filter consists of P particles, each of which

is a p-dimensional state vector (Equation 5) that we refer

to as s⃗i. The particles traverse the corpus over time, and

they each have a weight wi that keeps track of the posterior

probability of its accumulated motion over all timesteps

(we now dispense with the time index t on s⃗i and wi since

t will be clear from context). Since each particle is its own

estimate of a state that best describes what templates to

choose, our goal is to sample them in such a way that (at

least some of) the particles are close to capturing activa-

tions that maximize the posterior probability given all v⃗t.
Tracking Weights. All particles begin with even

weights wi = 1/P . At the beginning of each time step, we

sample new indices for each s⃗i according to Equation 8.

Then, we multiply each weight by the observation prob-

ability pO. Given the KL loss di between the ith particle’s

spectral approximation Λ⃗i (Equation 6) and v⃗t after L iter-

ations of Equation 7, for each particle i, pO is:

pO[i] =
e−τdi

∑

j e
−τdj

(9)

In other words, the observation probability is a softmax

over KL-based goodness of fits of s⃗i to v⃗t, and the softmax

has a “temperature” τ . We use a negative exponential since

a larger di loss indicates a poorer fit using windows s⃗i and

hence, should be a lower probability. Intuitively, a higher

τ will emphasize particles that fit the observation better,

putting more importance on the observation relative than

the transition probability. This is tunable and has a similar

effect to varying pd in the transition, as we will explore

more in Section 4.1. After multiplying each wi by pO[i],
we normalize the weights so that they sum to 1.

Resampling. The above is a naive particle filter, but it

suffers from “sample impoverishment,” where a few par-

ticles stand out with high weights and the rest are stuck

with vanishing weights, leaving the system unable to adapt

to new observations. To ameliorate this, we compute a

standard definition of the “effective number of particles”

neff = 1/(
∑

i w
2
i ), which is maximized when all par-

ticles have equal weight 1/P . If neff goes below 0.1P
at a particular time step, we resample the particles with

stochastic universal sampling [30,31], an O(P ) resampling

technique, and reset all weights to 1/P before continuing.

This leads to “survival of the fittest” where particles with

a higher weight are more likely to be replicated and those

with a lower weight are more likely to be eliminated.

Synthesizing audio. After updating the weights, we

take a weighted average of the windows in the top 0.1P
particles, with the option to further boost windows that fol-

low continuously from those chosen in previous steps. We

also ignore windows that would be repeated from up to r
timesteps in the past (analogous to Driedger’s Equation 3).

We then let s⃗t be the top p such windows by weight, and

we compute the corresponding activations h⃗t. These steps

can be done in O(Pp) time with hash tables and linear

time selection. Finally, we mix together the corresponding

waveforms from the corpus (as in [12]) and apply a Hann

window to overlap-add this audio to the output stream.

3.3 Computational Complexity

The dominant cost of both The Concatenator and of

Driedger is computing activations via KL iterations. Given

N corpus templates, T times in the target, and a spectral

dimension of M , for L KL iterations, the time complex-

ity of Driedger (Equation 2) is O(LMNT ). This is a lin-

ear dependency on the corpus length. So if, for example,

Driedger’s technique takes a minute on a target sourcing a

corpus that’s a minute in length, it will take 2 hours a 2-

hour corpus on that same target. To improve this scaling,

the authors of [12] do a greedy nearest neighbors search in

the corpus, but this requires tuning and may miss important

windows. In fact, our random sampling naturally scales in

an even more favorable way. Specifically, given P par-

ticles and p windows per particle, the time complexity of

our analogous Equation 7 is only O(LPMpT ), which does

not scale with the corpus size N at all (though P may need

to scale with N for the best results (Section 4.1)). As an

example, for a 60 minute corpus a window length of 2048

(M = 1025, hop=1024) at a sample rate of 44.1khz, using

P = 1000 and p = 5, this is a speedup of nearly 30x over

Driedger. Moreover, propagating particles and applying

the observation model are also embarrassingly paralleliz-

able at the particle level, which we leverage in our imple-

mentation. Finally, while Driedger et al. use L = 20 [6],

we find that L = 10 is sufficient in our context.

3.4 Bells And Whistles (Pun Intended)

Regularizing Quiet Moments in The Corpus. One pitfall

using KL-based NMF is that if enough activations are near

silence, Equation 7 becomes numerically unstable and the

weights h⃗i can approach ∞. To address this, we modify

the KL-loss to include a masked L2 penalty for h⃗i for the

ith particle for the target v⃗t at time t. Given the correspond-

ing approximation Λ⃗i (Equation 6), the modified loss is

D(v⃗t||Λ⃗i) =

(

∑

v⃗t ⊙ log

(

v⃗t

Λ⃗i

)

− v⃗t + Λ⃗i

)

+
||α ⊙ h⃗i||

2

2

2
(10)
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where, abusing notation, α is a mask that is a fixed value

(we use 0.1) if the corresponding corpus window is less

than -50dB and 0 otherwise. Equation 7 then turns into

h⃗i

ℓ
[k]← h⃗i

ℓ−1
[k]





∑

m(Wm,s⃗i[k])(v⃗t[m])/(Λ⃗i

ℓ−1
[m])

(
∑

m Wm,s⃗i[k]) +α[k]h⃗i

ℓ−1

[k]





(11)

Intuitively, if si[k] is a quiet corpus window, α[k] =

0.1, which shrinks h⃗i

ℓ−1
[k] down 3 .

Pitch Shifting. Though we don’t use this in Section 4,

we implemented Driedger et al.’s technique to increase the

pitch coverage of the corpus; that is, we can replicate the

corpus in its entirety for different pitch shifts that are cho-

sen up-front. This only incurs a preprocessing cost since

the complexity of The Concatenator is independent of cor-

pus length (Section 3.3), which does not impact real-time

performance once the system starts. However, our sys-

tem could choose a different trade-off of space and time

complexity by augmenting the state space as the Cartesian

product of window indices and pitch shifts. Pitch shifts

could be computed on the corpus audio on demand when-

ever a state with a nonzero pitch shift is chosen.

Finally, for a fixed corpus with or without pitch shifts,

the user can control a slider that pitch shifts the target in

real time, so that the chosen windows move relatively to

the audio input. This could be used, for example, to har-

monize to singing in an interval that’s a fifth away.

3.5 How Many Particles?

In practice, few particles are surprisingly effective at cap-

turing windows that fit the target, which we explain with

a simple probabilistic argument. Given a corpus with N
sound grains (including pitch shifts) and P particles that

each capture p windows, suppose also that we have a hypo-

thetical “ideal particle” s⃗t with the p best windows at time

t, which are completely disjoint from all current particles;

the only way to jump to the best windows is to randomly

resample with probability (1 − pd). Since we use a small

hop length relative to the sample rate (1024/44100 ≈ 23

ms), we have a few timesteps to jump without a large effect

on the final audio. Also, there are usually several windows

in the corpus that sound acceptably similar to windows in

s⃗t. Let δ be the maximum tolerable offset before or after

in time for choosing the best windows, and let w be a fac-

tor of acceptable windows (e.g. w = 11 would consider

each window in x⃗ and its ten most similar in the corpus).

Assuming all offsets of acceptable windows are disjoint,

then the probability of jumping to at least one of the top

k windows of s⃗t, or to one of their acceptably close corre-

sponding offsets, is:

1−

(

pd + (1− pd)
(N − 1− wk)

N − 1

)(2δ+1)pP

(12)

For example, for pd = 0.95, δ = 2 and w = 11, and

N = 10000 (≈ 4min corpus), the probabilities are 0.747,

3 For a derivation of similar additive constraints on NMF, refer to [32]

P=100, p=5

Figure 2. Increasing polyphony leads to a better fit (ratios

< 1), and increasing particles leads to a better fit, espe-

cially for larger corpora like the Woodwinds (≈1.6hrs).

0.936, 0.983 for k = 1, 2, 3, respectively. These probabili-

ties all degrade when N gets larger for a larger corpus, but

in that case, it is likely that the acceptable w is also larger.

Furthermore, once one of the particles catches on to

a good window in the corpus, it is promoted with a high

weight and gets carried on to a longer grain. This is simi-

lar to how the “patch match” technique in computer graph-

ics [33, 34] computes nearest neighbors of many nearby

patches by starting with a random initialization of nearest

neighbors, and then well-matched to patches correct the

nearest neighbors of spatially adjacent patches [33].

4. EVALUATION

4.1 Quantitative Evaluation

To empirically assess reliability, we do an extensive MIR-

style evaluation, which is much more comprehensive than

standard evaluation in other concatenative synthesis works.

Effect of Parameters. First, to complement our anal-

ysis in Section 3.5, we want to empirically examine how

many particles are needed for different sized corpora. We

also want guarantee the impact of important parameters

in our system for artistic control. We select 3 corpora:

Driedger’s buzzing bees (small, 66 seconds), a corpus used

in Edenic Mosaics [10] known as “EdenVIP2,” which con-

sists of various real-world percussive sounds (medium,

10.5 minutes), and all Woodwind clips from the pre-2012

UIowa MIS dataset [35] (large,≈1.6 hours). Then, we ran-

domly subsample 1000 30 second clips from the Free Mu-

sic Archive (FMA)-small dataset [36], each of which we

use as a target for the three different corpora for various

parameter choices. We use a sample rate of 44.1khz for all

corpora, we use stereo audio for the bees and EdenVIP2,

and we use mono audio for the Woodwinds.

First, we assess the effect of particles on fit; we fix

pd = 0.95, temperature τ = 10, and r = 3, using

L = 10 iterations for all KL operations, and we take

P ∈ {100, 1000, 10000}. We also compare to Driedger

et al.’s technique with c = 3 and r = 3 using L = 50 itera-

tions, though we omit comparisons with Woodwinds due to

computational cost (Section 3.3). In all cases, we use fre-

quencies from 0 to 8000hz with a sample rate of 44100hz,

a window length of 2048 samples, and a hop length of 1024

samples. Since the spectral similarity of different targets to

a particular corpus varies widely, we report the ratio of the
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Figure 3. Increasing pd increases the average grain length

since windows are less likely to jump at each timestep.

Figure 4. Increasing τ decreases the average grain length

since this prioritizes the observation probability.

KL loss in Equation 1 to the KL loss for The Concatenator

with P = 100, p = 5. Figure 2 shows the results. As ex-

pected, an increased polyphony leads to a better fit, as does

increasing particles for all but the Bees, though the effect

of increased particles is most pronounced for the largest

corpus of Woodwinds, which makes sense by Equation 12.

As we noted in Section 2, however, a very good fit may

lose the timbral characteristics of the corpus. A lower

p helps, but we also need to ensure that grains are long

enough. Therefore, we also examine mean grain length for

various parameters. Figure 3 shows the result of varying

pd for a fixed temperature τ = 10 and p = 5, and Figure 4

shows the result of varying the temperature τ for p = 5
and pd = 0.95. As expected, grain length goes up with

increased pd and down with increased τ . In practice, low-

ering τ and raising pd will lead to especially long grain

lengths, albeit with a lower target fit.

Reproducing Pitch. In addition to fits and grain

lengths, we quantify how well The Concatenator repro-

duces target pitch. Using the Woodwinds corpus, we cre-

ate targets out of all stems in the MDB-stem-synth dataset

[37]. We compare ground truth pitch annotations of the

stems to the pitches estimated with CREPE [38] on both

P
ro

p
o
rt

io
n
 C

o
rr

e
c
t

Within 2 HalfstepsWithin 1 Halfstep Within An Octave

Figure 5. The Concatenator reproduces reasonably correct

pitches in the 1.6 hour Woodwinds corpus with targets in

MDB-stem-synth, in real time (at P = 100, 1000), at all

but the lowest octave C1.

the raw target and the synthesized audio for various P , and

we break the results down by octave. Figure 5 reports the

proportion of pitches correctly identified at each 23ms hop

length to within different tolerances, over all stems. Even

though CREPE was not trained on concatenated audio, it

reports pitch nearly as clearly as on the raw target for most

octaves except for C1, which makes sense since the spec-

tral resolution is only 21.5hz. We can mitigate this in the

current system by increasing the window, at the expense

of temporal resolution. In the future, though, we would

like to try a streaming CQT that can better capture lower

frequencies. Finally, since the bassoon is the only instru-

ment out of 10 in the Woodwinds that has notes in the C2

octave, additional particles are needed for precise pitch in

that octave, which can be explained by w in Equation 12.

4.2 Qualitative Evaluation

This algorithm was tested in a variety of contexts to assess

its performance and accuracy for applications in music and

sound design. Our Corpora contained audio samples that

fell into the following categories: Test Tones, Percussion,

Full Mixes, Sample Libraries, Foley, and Driedger Com-

parisons. Our Targets were single audio files that were

designed to test how the Concatenator re-created varying

kinds of melody, counterpoint, full mixes, basses, drums,

vocals, noise, and prior examples used with the Driedger

algorithm. Our tests reveal that the Concatenator performs

highly accurately in pitch reproduction for most melodies,

two-part harmonies, and full mixes that contain prominent

melodic features, while struggling with accurate reproduc-

tion of more complex three-part harmony. Given the nature

of the particle filter, which rotates through new temporal

positions in the corpus at random, some notes are more ac-

curate than others, and some notes are dropped all together,

as expected from our quantitative analysis. While this ten-

dency might make the Concatenator unfit for replacing the

role of large multi-sample instruments, the vast majority

of pitches remain wholly accurate while the aleatoric vari-

ation of off-color audio grains may represent an entirely

desirable aesthetic quality of its own. Similarly for drums,

sometimes transients are incredibly accurate, while other

times they sound a little smeared. This tendency is due

to the particle filter’s random positioning, and can be im-

proved by increasing the particle amount.

4.3 Supplementary Material / Discussion

We include supplementary material at https://www.

ctralie.com/TheConcatenator. This includes a

python prototype for the real-time system that uses port

audio [39], audio examples for all corpus/target pairings in

Section 4.2, and a video showing artistic examples of what

the real time system enables in the loop with Ableton Live.

This is only the beginning. Since The Concatenator ex-

ists feedback loop, we expect artists will go much deeper,

likely well beyond the “obstacle course” we put it through.
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ABSTRACT

The widespread availability of music loops has revo-

lutionized music production. However, combining loops

requires a nuanced understanding of musical compatibil-

ity that can be difficult to learn and time-consuming. This

study concentrates on the ’vertical problem’ of music loop

compatibility, which pertains to layering different loops to

create a harmonious blend. The main limitation to apply-

ing deep learning in this domain is the absence of a large,

high-quality, labeled dataset containing both positive and

negative pairs. To address this, we synthesize high-quality

audio from multi-track MIDI datasets containing indepen-

dent instrument stems, and then extract loops to serve as

positive pairs. This provides models with instrument-level

information when learning compatibility. Moreover, we

improve the generation of negative examples by matching

the key and tempo of candidate loops, and then employing

AutoMashUpper [1] to identify incompatible loops. Cre-

ating a large dataset allows us to introduce and examine

the application of Transformer architectures for address-

ing vertical loop compatibility. Experimental results show

that our method outperforms the previous state-of-the-art,

achieving an 18.6% higher accuracy across multiple gen-

res. Subjective assessments rate our model higher in seam-

lessly and creatively combining loops, underscoring our

method’s effectiveness. We name our approach the Deep

Recombinant Transformer and provide audio samples 1 .

1. INTRODUCTION

The widespread availability of music loops used in Dig-

ital Audio Workstations (DAWs) has revolutionized mu-

sic production. For example, Umbrella by Rihanna, com-

posed using the "Vintage Funk Kit 03" GarageBand loop,

transformed a royalty-free sample into a Grammy-winning

global hit [2]. However, combining loops requires a nu-

anced understanding of musical compatibility and mostly

relies on manual selection. Furthermore, the vast number

of available loops presents a daunting challenge in decid-

ing which loops pair well, leading to a combinatorial prob-

* The first two authors contributed equally.
1 Samples available at: https://conference-demo-2024.github.io/demo/

© M. T. Haseeb, A. Hammoudeh, and G. Xia. Licensed un-

der a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: M. T. Haseeb, A. Hammoudeh, and G. Xia, “DEEP

RECOMBINANT TRANSFORMER: ENHANCING LOOP COMPATI-

BILITY IN DIGITAL MUSIC PRODUCTION”, in Proc. of the 25th Int.

Society for Music Information Retrieval Conf., United States, 2024.

lem. Finding compatible loops was recognized as one of

the grand challenges in MIR research [3].

The loop compatibility problem can be broken down

into two sub-problems: the vertical problem and the hor-

izontal problem. The vertical problem pertains to the lay-

ering of different loops — and understanding how rhythm,

melody, and harmony interact within a single moment of

music — to create a harmonious blend. Conversely, the

horizontal problem addresses the sequencing of loops over

time, ensuring that transitions between different loops are

smooth and maintain the overall coherence of the musical

piece. This research focuses on the vertical problem.

A major limitation to applying deep learning to this

domain has been the absence of high-quality, labeled,

datasets. Previous works propose source separating ex-

isting music, extracting loops from each stem, and creat-

ing positive pairs [4,5]. Source separation models produce

these four stems: vocal, bass, drum, and other. The outputs

of source separation models are not perfect and often suffer

from noise and distortion. Moreover, the "other" category

can include a wide range of sounds — for example, entire

string sections — and can be too noisy for the model to

learn what makes two loops compatible. To generate nega-

tive samples, loop reversal, beat shifting, or key and tempo

modifications are made to a loop in a positive pair. Altering

loop characteristics to generate negative samples risks mis-

leading models to distinguish these superficial differences

rather than learning true musical incompatibility.

Our proposed solution to the above mentioned problems

is to generate positive examples using MIDI datasets con-

taining independent stems for each instrument, synthesiz-

ing them into audio, and extracting loops. This provides

models with more granular information about each instru-

ment when learning loop compatibility. Similarly, we find

that while AutoMashUpper (AMU) demonstrates mod-

est success in identifying compatible loops, its strength

lies in accurately identifying incompatible loops after we

match the tempo, key, and phase of query and target loops

— thereby providing more realistic negative samples for

model training [1]. Obtaining a large, high-quality, labeled

dataset allows us to introduce and examine the application

of Transformer-based architectures for addressing the ver-

tical loop compatibility problem.

Our method outperforms the previous state-of-the-art

for loop compatibility by 18.6% higher accuracy, proving

its versatility and robustness across 13 genres through rig-

orous evaluations. Our contributions are as follows:

1. A novel method to generate a large, high-quality,

labeled dataset for models to learn musical compati-

bility by providing positive and negative loop pairs that
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share identical keys, tempos, and phases.

2. Transformer-based architectures to enhance accu-

racy for instrument-level music loop compatibility.

3. Extensive objective and subjective assessments

demonstrating our method’s effectiveness.

2. RELATED WORK

Two approaches exist in the literature: rule-based and

learning-based. Rule-based methods establish a set of rules

to generate a compatibility score. In contrast, learning-

based methods require positive and negative examples to

train models for compatibility prediction. We review both.

2.1 Rule-Based Methods

Davies et al. set the groundwork for loop compatibility [6].

Their model, AutoMashUpper, computes mashability esti-

mation by evaluating a weighted average of harmonic and

rhythmic compatibility, and spectral balance across key-

adjusted sections within a loop database. Best matching

loops are aligned through time stretching and pitch shift-

ing to match the query loop. Davies et al. introduce fur-

ther improvements in a subsequent study, enhancing their

system’s capabilities [1]. Key improvements include the

development of a faster algorithm for assessing harmonic

similarity, integration of rhythm and loudness for masha-

bility evaluation, and a subjective evaluation to assess the

overall mashability of music pieces. Later works use this

as a baseline to compare loop compatibility performance.

Lee et al. introduce a framework incorporating both

vertical and horizontal dimensions of musical segments to

create harmonious mashups [7]. Features include tempo,

beat-synchronous chromagram, chord signatures, Mel Fre-

quency Cepstral Coefficients, and volume levels. The sys-

tem uses a Group of Background Units (GBU) from a spe-

cific track, typically comprising multiple background units

that adhere to prevalent structures found in popular mu-

sic genres, forming the foundational layer of a mashup. It

evaluates potential lead units to layer atop the established

GBUs, which pivots on three factors: Harmonic Matching

which determines the harmonic compatibility between lead

and background units, Harmonic Change Balance mon-

itors the rate of harmonic transitions between to reduce

monotony, while Volume Weighting calibrates the audi-

bility of lead units. The framework computes a vertical

mashability score for each candidate pair and selects those

with the highest compatibility. Tsuzuki et al. overlay vo-

cal tracks from other artists who have performed the same

piece, aligning them with the instrumental track [8].

Bernardes et al. assess the harmonic compatibility of

musical tracks through small- and large-scale structures

[9]. Small-scale compatibility is determined by blending

dissonance and perceptual relatedness, derived from the

Tonal Interval Space [10], resilient to instrumental timbral

variations. Large-scale compatibility is based on key es-

timations, aiding in overarching harmonic planning. Soft-

ware showcases these metrics through interactive visual-

ization to aid in finding harmonically compatible tracks.

Maças et al. present MixMash by building on this method

[9, 11]. MixMash enhances user interaction through a

force-directed graph that visualizes multidimensional mu-

sical attributes like hierarchical harmonic compatibility,

onset density, spectral region, and timbral similarity. The

visualization represents tracks as nodes with varying dis-

tances and connections indicating their compatibility.

2.2 Learning-Based Methods

A major limitation in using Deep Neural Networks to eval-

uate the compatibility of musical loops has been the lack

of adequately labeled datasets. Chen et al. are the first

to use neural network models [4]. First, they propose an

innovative pipeline to generate a labeled dataset using the

Free Music Archive. To create positive samples they em-

ploy an unsupervised MSS algorithm that isolates looped

content [12]. Negative samples are created by editing a

loop in a positive loop pair by doing one of three things:

reversing, randomly shifting beats, or rearranging beats of

one of the loops. They propose using two architectures,

a Convolution Network (CNN) and a Siamese Network

(SNN), to learn compatibility between two loops. While

both models outperform traditional rule-based systems, the

CNN model demonstrates superior performance. Subse-

quent studies have identified limitations in the proposed

data acquisition process. Specifically, it employs multi-

ple heuristics for source separation and does not ensure the

outputs consist of distinct instruments, e.g. a positive train-

ing example could comprise two similar drum loops [5]. In

addition, they restrict their work to hip-hop without explor-

ing how well this approach generalizes to other genres. Fi-

nally, they use a two-second input which may not capture

the complexity and variability of longer musical pieces.

Huang et al. introduce an alternative method for assem-

bling a training dataset by developing their own supervised

music source separation model, which splits tracks into

four distinct stems: vocal, bass, drum, and other. While it

is an innovative approach, it leaves serious gaps in dataset

quality. The outputs of source separation models are not

perfect and often suffer from noise and distortion. In ad-

dition, the "other" category can include a wide range of

sounds — e.g. guitars, pianos, trumpets, saxophones, vio-

lins, cellos, ambient sounds, synthesizers, reverb, choirs,

flutes, clarinets, and even entire string sections. Since

professional-grade musical loops contain distinct sounds

— a guitar riff, a saxophone lick, a violin jig, etc. — using

"other" may be too noisy for the model to learn what makes

two instrument loops compatible. Similarly, as observed

by Chen et al., bass and drum loops seamlessly adapt

across most genres and styles when matched for tempo and

key, and are somewhat trivial to learn for the model. On

the other hand, they generate negative samples by vary-

ing the basic characteristics of a loop — key, tempo, or

phase shifts. Even though it guarantees incompatibility,

simply altering the basic loop characteristics to generate

negative examples risks misleading the model to learn to

distinguish these superficial differences rather than under-

standing true musical incompatibility. Instead, we propose

training models to determine compatibility between loops

sharing identical tempo, key, and phase to mirror choices

made in actual music production — a significantly more

challenging task. While there are some similarities, Huang

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

891



Figure 1. Our dataset generation pipeline takes multi-track MIDI music as input and generates a labeled loop dataset.

et al. do not extract loops and instead use complete stems

to train a model on mash-ups involving combinations of

vocal and backing track stems; whereas our research delves

into the compatibility of instrumental music loops. There-

fore, we use Chen et al. as a baseline for our work.

Broadly, despite their utility, these methods do not cap-

ture the complex interplay of musical elements, underscor-

ing the necessity for more advanced methods. With the

availability of a larger dataset, we introduce and examine

the application of Transformer-based architectures for ad-

dressing the vertical loop compatibility problem.

3. DATA GENERATION PIPELINE

We introduce a novel self-supervised method to create a

large, high-quality, labeled dataset to provide instrument-

level granularity. Our method also ensures identical basic

attributes — such as tempo, key, and phase — amongst

incompatible pairs to compel models to learn compatibility

and not focus on such superficial differences.

3.1 Generating Positive Examples

Synthesized datasets have shown promise in enhancing

model performance across various music information re-

trieval tasks, including transcription, understanding com-

positional semantics, sound synthesis, and instrument

recognition [13]. In the absence of an instrument-level la-

beled dataset, we modify the data collection pipeline pro-

posed by Chen et al. to instead create loops from synthe-

sized data [4]. Similar to Flakh, we generate our dataset

by taking songs from the Lakh dataset, rendering MIDI

files using sample-based synthesizer and then extracting

loops [13, 14]. For this task, we used FluidSynth 2 .

The Lakh MIDI dataset, with over 175,000 unique

MIDI files, provides detailed musical score data for various

instruments that can be synthesized due to distinct track

segmentation. We chose files with significant parts for pi-

ano, bass, guitar, and drums. A total of 20,371 files are

identified, of which 15,000 were taken at random and ren-

dered [13]. Each MIDI file is split into individual instru-

ment tracks, matched with appropriate patches based on

program numbers, and rendered into audio. As observed

by Chen et al., when adjusted for tempo and key, drum

and bass loops tend to be universally compatible. There-

fore, all drum and bass MIDI tracks were removed from

synthesis and subsequent creation of positive and negative

2 Available at: http://www.fluidsynth.org/

pairs [4]. The collected set of 15,000 songs spans 13 gen-

res and 47 instruments. We then use the same method

as Chen et al. to extract loops from each rendered au-

dio [4]. Of the 15,000 songs, 12,193 songs have at least

one valid loop pair. Specifically, of these 12,193 songs, we

obtained 126,746 loops and 90,376 valid positive pairs of

loops. This provides our training models with more granu-

lar information about each instrument loop while learning

what constitutes compatibility. Files were separated into

training (72,301 loop pairs), validation (9,037 loop pairs),

and testing (9,038 loop pairs) — leaving us with a total of

251 hours of positive examples, with roughly equal repre-

sentation of instruments and genres in each set. To ensure

consistency, we standardize the duration of each loop to 10

seconds by either repeating or trimming the loops.

3.2 Generating Negative Examples

Generating pairs of negative loops is a difficult task. One

naive approach could be to randomly select combinations

from our loop set. However, this does not guarantee incom-

patibility. Unlike what’s been proposed in similar works,

we argue that simply altering the basic loop characteris-

tics to guarantee the generation of negative examples risks

misleading the model to learn to distinguish these superfi-

cial differences rather than understanding true musical in-

compatibility. Instead, to reflect real-life music produc-

tion choices, we train models to determine incompatibil-

ity between loops sharing identical tempo, key, and phase.

We find that while AutoMashUpper demonstrates modest

success in identifying compatible loops, its strength lies

in identifying incompatible loops within the same tempo,

key, and phase, thus furnishing reliable negative labels for

compatibility modeling. Inversely applying the original

method focuses on least compatible pairs. Harmonic in-

compatibility finds significant chord progression clashes,

rhythmic incompatibility leads to off-sync combinations,

and spectral imbalance points to lopsided energy distribu-

tions, cultivating disturbances and noise.

We adopt AMU to a subset of loops by drawing, with-

out replacement, 1,500 positive pairs (3,000 loops) from

varied genres and instruments. For each loop in this col-

lection, we calculate its incompatibility against every other

loop by adjusting the target loop’s keys and tempos to

match the query loop and then calculating weighted sums

of harmonic, rhythmic, and spectral compatibility between

the source and target. For this task, we use a Python im-
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plementation 3 of the Krumhansl-Schmuckler key-finding

algorithm [15], Rubber Band 4 for sound stretching and

pitch-shifting, and weights proposed by Bernardo — 0.4

for both harmonic and rhythmic, and 0.2 for spectral com-

patibility — to derive an overall compatibility score be-

tween loop pairs [16]. After obtaining all scores, the 35

least compatible loops are paired with each loop in the

set. We exclude any duplicate pairs, culminating in 95,281

unique negative pairs. More than 1,000 negative pairs are

tested at random by the research team to confirm incom-

patibility. The final pairs are then partitioned into training

(76,225 loop pairs), validation (9,528 loop pairs), and test-

ing segments (9,528 loop pairs), leaving us with a total of

264 hours of negative examples. The negative set can be

significantly expanded by drawing more pairs at the start.

Data Type # Loops # Loop Pairs # Hours

Training 101,397 148,526 412

Validation 12,674 18,565 51.5

Test 12,675 18,566 51.5

In Total 126,746 185,657 515

Table 1. Overview of data, including positive and negative

examples, across training, validation, and test subsets.

4. MODEL ARCHITECTURE

Recent advancements in self-attention networks, particu-

larly the Transformer architecture, provide a new perspec-

tive for solving the vertical loop compatibility challenge

[17]. In this study, a large labeled dataset allows us to in-

troduce and examine the application of Transformer-based

architectures. Specifically, we use the same model ar-

chitecture as MusicTaggingTransformer (MTT), proposed

by Won et al., for its robustness on other MIR tasks

[18]. We refer to this adapted Transformer architec-

ture as the Deep Recombinant Transformer (DRT). Ini-

tial pre-processing employs MelSpectrogram transforma-

tion and AmplitudeToDB conversion of the input, which

comprises the summed audio signals of two candidate

loops. This is followed by Res2DMaxPoolModule for

downsampling, with subsequent convolutional layers and

max-pooling operations for detailed feature extraction.

The core Transformer architecture is equipped with 256-

dimensional attention vectors across four layers and eight

heads, PreNorm, Residual structures, and GELU-activated

Feed Forward networks for processing. A unique class

([CLS]) token, alongside positional embedding, is added to

the feature set for sequence analysis. The output from the

Transformer is directed through a sigmoid function, map-

ping the high-dimensional feature vectors to a binary out-

come space, and delineating the likelihood of each audio

sample belonging to a specific category. Then, we com-

pute the binary cross entropy loss (BCELoss) to update the

parameters of the whole model. Model’s output is between

0 and 1, with values closer to 1 indicating a higher proba-

bility that the pair of loops are compatible, and closer to

0 when they are not. Therefore, we can use its output

3 https://pypi.org/project/pymusickit/
4 https://breakfastquay.com/rubberband/

Figure 2. Architecture of Deep Recombinant Transformer.

to estimate the compatibility of any two loops. Dropout

(0.1) and batch normalization strategies are implemented

to mitigate over-fitting and ensure robust model general-

ization. This integration of convolutional and Transformer

elements captures both local and global audio features for

deep and context-aware analysis. To investigate the adapt-

ability and performance of the Transformer architecture for

this task, our study explores two distinct configurations:

one variant employs two-encoder layers, while the other

utilizes four-encoder layers. This enables us to evaluate

the impact of architectural depth on model performance.

5. EXPERIMENT SETUP AND EVALUATION

We evaluate the performance of Transformer architectures

in identifying compatible loops against the state-of-the-art.

Following this, we focus on understanding the impact of

our new dataset on model performance. Finally, we con-

duct a subjective assessment.

5.1 Effect of Using a Transformer

First, we compare the performance of Transformers against

CNN-based architectures. We train and evaluate two con-

figurations for the Transformer architecture — two and

four encoder layers. For comparison, we explore the per-

formance of the original CNN-based NLC 5 model pro-

posed by Chen et al. Initially, we adhere to the original

NLC specification, applying it to two-second audio seg-

ments extracted from our 10-second dataset. However, we

also train a modified NLC on a 10-second long input for a

fair comparison. Moreover, acknowledging that extended

audio contexts may require a deeper CNN architecture, we

also train Short-chunk CNN Res [19], a deeper CNN ar-

chitecture, due to its strong performance on MIR-related

classification tasks. We perform hyperparameter optimiza-

tion for each architecture using unseen validation sets.

5 https://github.com/mir-aidj/neural-loop-combiner
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The first type of evaluation entails a classification task.

It assesses a model’s ability to distinguish compatible

loops from incompatible ones. We report accuracy and F1

scores for each model. Table 2 summarizes these results.

Model Accuracy ↑ F1 Score ↑

NLC (2 seconds) 62.25 68.76

NLC (10 seconds) 60.50 70.76

Short Chunk CNN Res 70.50 77.13

DRT (2 Attn Layers) 78.60 82.02

DRT (4 Attn Layers) 80.90 83.66

Table 2. Comparative performance on loop compatibility

classification task for models trained using our dataset.

Model
Avg. ↓

Rank

Top ↑

10

Top ↑

30

Top ↑

50

NLC (2 seconds) 43.4 0.25 0.44 0.56

NLC (10 seconds) 51.2 0.13 0.25 0.52

Short Chunk CNN Res 38.3 0.07 0.46 0.77

DRT (2 Attn Layers) 25.7 0.15 0.69 1.00

DRT (4 Attn Layers) 16.2 0.44 0.75 1.00

Table 3. Comparative performance on loop ranking task

for models trained using our dataset, using average rank

and accuracy in the top-k positions across 100 queries.

Another performance evaluation reported in the re-

search involves ranking candidate loops by compatibility

with a particular query loop [4, 5]. This assessment is es-

pecially important for a model’s practical use, which seeks

to find loops that match a specific query from a large col-

lection of loops. Using AMU, and the unseen test set, we

create a collection of candidate loops for each query loop,

ensuring that precisely one of these candidates pairs pos-

itively with the query. The model’s performance is mea-

sured by where the "target loop" ranks in the list, with a

higher position indicating better performance. Following

the benchmark set by Chen et al., we also assess the com-

patibility of exactly 100 candidate loops balanced across

genres and instruments. Each model is evaluated for accu-

racy within the top 10, 30, and 50 positions, as well as the

mean rank. Table 3 shows these aggregated averages.

The results indicate that the four attention layer Music-

TaggingTransformer demonstrates superior performance

across loop compatibility classification and ranking tasks.

We also observe that models, though not explicitly trained

for it, perform well in identifying compatible drum and

bass loops, confirming these are relatively trivial to learn.

5.2 Effect of Using Our Dataset

Generating negative examples by altering loop character-

istics can mislead models toward learning superficial dif-

ferences instead of true musical incompatibility. To objec-

tively evaluate this, we create a control dataset using the

negative sampling methodology proposed by Chen et al.

In this control dataset, the positive pairs remain the same,

while for negative pairs we reverse, randomly shift beats,

or re-arrange beats of one of the loops. Although reversing

performed best in the original study, the performance dif-

ferences across the three strategies were small. To account

for potential non-transferability to our dataset, we include

an equal representation of all three methods in our con-

trol set. We retrain the three best-performing architectures

from Table 2, and evaluate them, on this control dataset.

The classification results are summarized in Table 4 while

the retrieval results are summarized in Table 5.

Model Accuracy ↑ F1 Score ↑

NLC (2 seconds) 66.4 71.4

Short Chunk CNN Res 88.9 89.3

DRT (4 Attn Layers) 88.2 88.7

Table 4. Comparative performance on loop compatibility

classification task for models trained using control dataset.

Model
Avg. ↓

Rank

Top ↑

10

Top ↑

30

Top ↑

50

NLC (2 seconds) 13.25 0.57 0.75 1.00

Short Chunk CNN Res 1.0 1.00 1.00 1.00

DRT (4 Attn Layers) 1.0 1.00 1.00 1.00

Table 5. Comparative performance on loop ranking task

for models trained using control dataset, using average

rank and accuracy in the top-k positions across 100 queries

While all models show improved performance across

both tasks, we perform another set of evaluations to deter-

mine if these on-paper performance gains are transferable

to real-life production scenarios. Here, we evaluate these

models, trained on the control set, against the test set gen-

erated by our proposed method — where pairs sharing the

same tempo, key, and phases are analyzed for compatibil-

ity. These results are presented in Tables 6 and 7.

Model Accuracy ↑ F1 Score ↑

NLC (2 seconds) 50.95 62.49

Short Chunk CNN Res 53.30 67.52

DRT (4 Attn Layers) 54.15 67.93

Table 6. Classification performance of models trained on

control set (Table 4), but evaluated on our original test (Ta-

ble 1) containing loops pairs with identical tempo and keys.

Model
Avg. ↓

Rank

Top ↑

10

Top ↑

30

Top ↑

50

NLC (2 seconds) 50.7 0.13 0.31 0.50

Short Chunk CNN Res 39.4 0.00 0.30 0.85

DRT (4 Attn Layers) 35.8 0.14 0.40 0.67

Table 7. Ranking performance on our original test set us-

ing average rank and accuracy in the top-k positions.

While the models trained on the controlled dataset have

better performance (Tables 4 and 5) than models trained

on our dataset (Tables 2 and 3), they do not generalize for

negative samples that are more in line with real-world pro-

duction choices (Tables 6 and 7). This is because real-life

comparison involves two loops that are identical in tempo,
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key, and phase, without being reversed or subjected to ran-

dom beat shifts. Since these models have not encountered

such incompatible samples during training, their perfor-

mance tends to degrade in the production setting.

5.3 Subjective Assessment

Study Methodology: We perform a subjective analysis

using Apple loops from GarageBand to evaluate the ef-

fectiveness of our proposed method and demonstrate its

applicability to high-quality production loops. Based on

superior objective performance, three models are selected

for this user study: NLC (2 seconds), Short Chunk CNN

Res, and DRT (4 Attn Layers). Two variants of each model

were included, the first trained on our proposed dataset,

and the second trained on the control dataset. For this sub-

jective assessment, we employed a methodology similar to

that used by Zhao et al. [20]. We paired one query loop

against 99 candidates, within the query loop’s genre, and

formulated audio test clips by combining the query loop

with the highest-ranked match. Each set contained eight

query-target pairs: top matches proposed by each variant

of the three models, a human musician-generated pair, and

a randomly selected target loop to serve as a control group.

Each audio sample was of equal length (10 seconds). A

total of 6 such sets were created. The subjects were asked

to rate each sample on a 5-point Likert scale according to

the following criteria:

• Seamlessness: Naturalness of the loop combination.

• Creativity: Originality and inventive quality.

The study engaged a total of 37 participants. To qualify,

participants were required to have a baseline engagement

with music, defined as listening to at least five hours of

music per week, to ensure sufficient exposure to music to

provide informed feedback. Each survey participant lis-

tened to exactly three of the sets chosen at random (24 au-

dio combinations, or 240 seconds of audio). To ensure di-

verse and representative survey respondents, we employed

demographic filtering to include different ages, genders,

and cultural backgrounds. The sequence of the presenta-

tion was randomized to eliminate any potential bias, and

the origins of the pairs were not disclosed to participants.

Figure 3. Subjective evaluation results for composition

seamlessness computed using within-subject ANOVA.

Results and Analysis: Figures 3 and 4 display our find-

ings from the subjective evaluation. The y-axis represents

Figure 4. Subjective evaluation results for composition

creativity computed using within-subject ANOVA.

the mean scores and the error bars denote the Standard De-

viation calculated through a within-subject ANOVA [21].

Our model demonstrated superior performance over the

control, achieving statistical significance (p<0.05) for both

measures. The proposed DRT architecture, trained on our

dataset, surpassed other models by a significant perfor-

mance difference (p < 0.001). The participant responses in

the survey demonstrated high reliability, as evidenced by

a Cronbach’s α of 0.812 [22]. Overall, the scores for our

approach were on par with human music compositions.

6. CONCLUSION

We explored the vertical loop compatibility problem in

music production. One major limitation to applying deep

neural networks in this domain has been the absence of

labeled datasets. We presented a novel self-supervised

method for generating a large, high-quality, labeled dataset

from a multi-track MIDI dataset, containing separate in-

strument tracks, and synthesizing them into audio to ex-

tract loops. This provides our training models with more

granular information about each instrument across dif-

ferent genres and provides negative pairs with matching

tempo, key, and phase to force models to learn true mu-

sical compatibility. A large dataset allows us to introduce

and examine Transformer-based architectures. Our archi-

tecture employs a larger context window of ten seconds

allowing a holistic input representation and consequently

better compatibility prediction. Experimental results show

that our method outperforms the previous state-of-the-art,

achieving an 18.6% higher accuracy across multiple gen-

res. Subjective assessments rate our model higher in seam-

lessly and creatively combining music loops.

Nevertheless, implementing Transformer architectures

demands significant computational resources. Also, while

AMU performs well in identifying incompatible pairs, it

does not guarantee incompatibility and may contain leak-

age. Finally, synthesized audio from MIDI may not fully

capture the richness of professionally recorded music. This

could limit the model’s learning scope, especially regard-

ing timbral and expressive nuances which otherwise may

be important to learn. Future work may involve ex-

perimenting with more efficient architectures, collecting

human-labeled datasets, and synthesizing MIDI using pro-

fessional virtual instruments for better dataset quality.
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ABSTRACT

Music two-tower multimodal systems integrate audio and

text modalities into a joint audio-text space, enabling di-

rect comparison between songs and their corresponding

labels. These systems enable new approaches for clas-

sification and retrieval, leveraging both modalities. De-

spite the promising results they have shown for zero-shot

classification and retrieval tasks, closer inspection of the

embeddings is needed. This paper evaluates the inherent

zero-shot properties of joint audio-text spaces for the case-

study of instrument recognition. We present an evaluation

and analysis of two-tower systems for zero-shot instrument

recognition and a detailed analysis of the properties of the

pre-joint and joint embedding spaces. Our findings suggest

that audio encoders alone demonstrate good quality, while

challenges remain within the text encoder or joint space

projection. Specifically, two-tower systems exhibit sen-

sitivity towards specific words, favoring generic prompts

over musically informed ones. Despite the large size of

textual encoders, they do not yet leverage additional tex-

tual context or infer instruments accurately from their de-

scriptions. Lastly, a novel approach for quantifying the se-

mantic meaningfulness of the textual space leveraging an

instrument ontology is proposed. This method reveals de-

ficiencies in the systems’ understanding of instruments and

provides evidence of the need for fine-tuning text encoders

on musical data.

1. INTRODUCTION

Multiclass classification has been a heavily researched

topic in Music Information Retrieval (MIR) with many

concrete applications such as genre, instrument and emo-

tion recognition [1–4]. Despite the success of Deep

(DL) systems for such tasks, recurring deficiencies persist

among these problems. These are: (1) the limited availabil-

ity of large-scale annotated datasets curated by experts, (2)

the restricted capability of these systems to infer only a set

of predefined classes.

© Y. Vasilakis, R. Bittner, and J. Pauwels. Licensed un-

der a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: Y. Vasilakis, R. Bittner, and J. Pauwels, “I can lis-

ten but cannot read: An evaluation of two-tower multimodal systems

for instrument recognition”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

Figure 1: Figure of a pipeline for two-tower multimodal

systems. A separate model for each modality is used

and their individual representations are projected to a joint

audio-text space through a Multi-Layer Perceptron (MLP).

This enables direct comparison between audio and textual

data. We refer to embeddings obtained before joint-space

projection as pre-joint space embeddings.

Music is an ever-evolving art form and as a result, there

is an inherent need to make these systems adaptable to new

terms/classes [5–7] and infer task-agnostic representations

that can be useful for a plethora of downstream tasks with

representation learning [8–10]. Zero-shot learning (ZSL)

is focused on estimating a classifier capable of inferring

unseen, new classes without annotated examples [11–14].

ZSL is often achieved in either of two ways: (1) by de-

composing each class into attributes and inferring unseen

classes through their related attributes (e.g. genres de-

composed into presence or absence of instruments [12])

or (2) using word embeddings from Language Models

(LM) [12–14]. The success of contextualized Large Lan-

guage Models (LLM) has driven the research community

predominantly toward the second solution, as it doesn’t re-

quire experts to define attributes and the mapping between

classes and attributes [15–17].

As a result, ZSL for audio classification is primar-

ily focused on connecting the audio and semantic repre-

sentation spaces. This interconnection can happen in 2

main ways: (1) mapping the audio representations to text

space [12, 13], or (2) mapping both of the spaces to a

new, joint audio-text space [14, 18–20]. The systems of

the second category are named two-tower multimodal sys-

tems, where pre-trained audio models and LMs are used as

the audio and text encoders respectively. Representations

obtained from each modality are then mapped to a joint

audio-text space and systems are jointly optimized such
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that the audio and text representation are close in the joint

space (e.g. the phrase “A rock song track” is similar to the

recording of a “rock” song). We will call such representa-

tions as embeddings from here on.

This work aims to better understand the properties of

existing two-tower systems. We use instrument classifi-

cation as a case-study to provide insights into the pres-

ence (or absence) of semantic properties in the audio, text

or joint spaces in addition to reporting classification met-

rics. Concretely, we consider 3 systems: MusCALL [18], a

CLAP [20,21] model trained on speech and music datasets,

and a CLAP model trained on music data [21]. We eval-

uate the performance of these systems on instrument clas-

sification using the TinySOL dataset [22]. We would like

to highlight that multimodal DL models typically excel at

simple tasks and datasets like this.

Furthermore, a novel approach for quantifying the se-

mantic meaningfulness of textual encoders for instrument

recognition is proposed.

For reproducibility, our experiments are performed on

open-source datasets and the code of our experiments is

made publicly available 1 , such that they can be repro-

duced.

2. RELATED WORK

2.1 Zero-shot transfer

ZSL focuses on estimating classifiers for novel, unseen

classes without annotated examples. Two-tower systems

are not primarily optimized for ZSL but due to the pre-

trained textual encoder, novel words or phrases can be in-

terpreted during inference. This property is known as zero-

shot transfer (ZST) [23].

Side-information can be used in multiple ways that fall

into two categories: (1) decomposing classes into shared

attributes and (2) using LMs to represent this information

as a text embedding. Despite its success, the first solution

requires experts to effectively estimate the relevance of at-

tributes and several classes and is a costly activity. As a

result and due to the remarkable results obtained through

contextualized LLMs, research has focused on the second

option.

Generally, the methodology can be broken down into 3

components: (1) an audio encoder, (2) a textual encoder

and (3) a projection to a common space. General purpose

audio DL models that have been used as the audio encoder

include VGGish [24], PANN [8], HTS-AT [9] and Audio

Spectrogram Transformers [25]. For the textual encoder,

distributional LMs like GloVE [26], Word2Vec [27] and

contextualized LMs like BERT [28] have been thoroughly

tested. As each modality produces heterogeneous repre-

sentations, different methods of establishing comparability

have been tested. This is predominantly achieved through

projecting audio to text/semantic space [11–13] or a novel,

joint audio-text space [18–20].

1 https://github.com/YannisBilly/i_can_listen_

but_cannot_read

2.2 Two-tower multimodal systems

Multimodal systems aim to represent data with additional

knowledge from multiple modalities. Examples are audio

combined with images [29], text [12, 30] or a combination

thereof.

Two-tower multimodal systems focus on combining the

textual and audio modalities by projecting them in a joint

audio-text space. In that space, words that are relevant to

a specific song will produce embeddings that will be close

in terms of some similarity metric. An illustration of a

two-tower system is presented in Figure 1. Information

flowing through the audio encoder or textual encoder is re-

ferred to as the audio and textual branch respectively. We

are also interested in the embeddings obtained through the

encoders before projecting them into the joint audio-text

space. We will call these the pre-joint spaces from now on.

The text used during training is usually a description of

a song and will be referred to as a caption. The text used

during inference will be referred to as a prompt.

MusCALL [18] combined a ResNET-50 for audio [31]

with a Transformer for text encoding [32], optimized

jointly over InfoNCE contrastive loss [33]. Additionally,

a weighing mechanism based on caption-caption similar-

ity was incorporated between negative audio-caption pairs.

This is based on the premise that similar captions will be

given to similar audio. The audio used is private but the

training code is publicly available and used for this work.

MuLan [19] experimented with ResNET-50 as well as

Audio Spectrogram Transformers [25] for audio encod-

ing and a pretrained BERT model for the text branch.

Both were jointly optimized over the Contrastive Multi-

view Coding loss [34], which is a cross-modal extension

of InfoNCE. Neither the data nor the code is available.

LAION-CLAP tested 6 different combinations of au-

dio and text embedding models, the best one of which was

HTS-AT with RoBERTa [35]. The latter is the one that will

be used in this paper. The LAION-Audio-630k dataset was

formed by combining AudioCaps, CLotho and Audioset.

Generally, research for two-tower systems is limited

to testing different combinations of audio and text en-

coders, optimized jointly over a form of contrastive loss

and modalitity fusion. We believe that closer inspection of

their embeddings and evaluation protocol is needed.

3. EVALUATION OF TWO-TOWER SYSTEMS

3.1 Dataset and models

We use the TinySOL dataset which contains 2913 audio

clips with a single note played from a single instrument

out of a set of 14 instrument classes. This dataset has been

chosen as it has consistent recording settings without noise,

it is a simple dataset for instrument recognition and finally,

confounding factors (compression, sampling rate etc) are

minimized. We consider 3 models in total:

1. Music/Speech CLAP: [20, 21] A CLAP-based

model trained on music/speech data 2

2 music_speech_epoch_15_esc_89.25.pt
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2. Music CLAP: [21] A CLAP-based model trained on

music data 3

3. MusCALL: A version of [18], retrained on music

data 4

We use the two pretrained CLAP systems provided by

LAION 5 . For this work, the original MusCALL imple-

mentation was retrained from scratch, as both the data

and trained models used in the original paper are not pub-

licly available. Instead, we train on the LPMusicCaps-

MTT [36] dataset, which is built by leveraging the audio

and 188 tags from Magna Tag A Tune [37] to artificially

generate captions through a GPT-3.5 model. The audio is

resampled to 44.1 and 16 KHz for CLAP and MusCALL

respectively, and the pre-processing steps described in their

respective code repositories are followed.

3.2 Zero-shot transfer for instrument classification

Given an unseen audio segment x∗, a text label l∗ and a

two-tower system f(x), we want to model the likelihood

P (l∗|x∗) based on the embeddings provided by f(x). In

the general case, f 7→ R
F is a function that represents a

two-tower system and maps audio or text information to

a joint audio-text space, where F is the dimension of the

joint space. Also, let δ : (RF x R
F ) → R be a function

that measures similarity between joint space embeddings.

In this approach, we model the P (l∗|x∗) based on δ, as in:

P (l∗|x∗) ∝ δ(f(x∗), f(l∗)) (1)

Multiclass classification attributes the most probable

class to each recording and equivalently, the one that has

the maximum likelihood. Given our approximation, the

output class for each recording is:

c∗ = argmax
c∈C

δ(f(x∗), f(c)) (2)

for c ∈ C, where C = {c1, c2, · · · , cN} is the set of

classes that we are interested in.

In our work, the embedding similarity function δ is the

cosine similarity:

δ(e1, e2) =
e1 · e2

∥e1∥ · ∥e2∥
(3)

where ∥·∥ is the L2 norm and ei ∈ R
F are embeddings.

3.3 Experiment 1: Are two-tower systems context

dependent?

Two-tower systems are typically not trained on single

words, but rather longer prompts. As a result, the em-

bedding produced for a single-word text label (e.g. “gui-

tar”) can be very different from the embedding for a longer

prompt, with additional context (e.g. “a guitar track”).

When using two-tower models for classification, the class

label can be wrapped in a prompt such as “A <label>

3 music_audioset_epoch_15_esc_90.14.pt
4 https://github.com/ilaria-manco/muscall
5 https://github.com/LAION-AI/CLAP

track” [18], to better match the training distribution. Meth-

ods to introduce stochasticity in the prompts used during

training have been empirically proven to lead to more ro-

bust results [38]. Retraining the systems and testing differ-

ent ways of augmenting captions used for training is left

for future work, but works in image-text [39] and video-

text [40] two-tower systems provide some evidence for

their usefulness.

The impact of different approaches for giving additional

context to a single-word text label during inference has

not been well-explored. We explore the prompt sensitivity

of each system by slightly changing the text prompt used

for zero-shot classification in order to better understand to

which extent these systems leverage contextual informa-

tion. As far as we are aware, we are the first to evaluate

the use of different types of prompts for two-tower sys-

tems during inference. Specifically, we evaluate 3 systems

against 6 different prompts:

1. MusCALL prompt: “A <label> track”

2. Generated definition: “The <label> is a ...”

3. Generated definitions without label words: “The

<removed> is a ...”

4. Label word with random context: “<label> <ran-

domly selected lorem ipsum segment>”

5. Musically informed #1: “This is a recording of a

<label>”

6. Musically informed #2: “Solo musical instrument

sound of a <label>”

The first prompt proposed is the prompt that was used

in MusCALL. The second prompt is generated using GPT-

3.5 [41]. The third prompt is the same as the second but we

removed all instances of the label itself to evaluate the in-

fluence of the context on its own. To evaluate if the systems

are sensitive to specific words and to further evaluate if the

context is useful, the fourth prompt adds random words

alongside the label. Lastly, we test 2 musically informed

prompts.

As a first metric, we consider Top-k accuracy with

k = {1, 2, 3}. We calculate the cosine similarity between

each recording and instrument prompt and sort them. We

assign zero-shot class labels as described in Section 3.2

and check if the true label is present in the top-k assigned

class labels. Furthermore, we calculate Receiver Operating

Characteristic and Precision-Recall Area Under the Curve

(ROC-AUC and PR-AUC respectively) following [42].

Figure 2 presents the zero-shot instrument recognition

results for the three models across the 6 prompts, as well as

the audio-only alternatives that will be described in Section

3.4. Despite the focus on music data, Music CLAP doesn’t

display very different results from Music/Speech CLAP.

While music-specific systems are generally expected to

perform better, this is not the case for two-tower systems.

This might be an indication that music requires special

treatment, as the metrics approach the state of the art in

audio-text [21] and image-text [43] two-tower systems.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

899



Figure 2: Metrics for 6 textual prompts (See Section 3.3), 2 audio based label embeddings (See Section 3.4) and the 3 two-

tower multimodal systems. The top row contains top-1 through top-3 accuracy and the bottom ROC-AUC and PR-AUC.

The red line represents random choice.

Top-1 accuracy is worse than random for 4 out of 6 tex-

tual prompts for MusCALL. This might be caused by the

small size of training data used, the absence of instrument-

specific captions or their underrepresentation in the cap-

tions used, as well as the absence of single-note recordings

in LPMusicCaps-MTT. While the metrics are low for Mus-

CALL in most of the cases, a relatively large performance

is still evident for the audio-only scenario. This implies

that the problem lies in the audio-text alignment or the text

branch.

The performance of CLAP models seems to be heav-

ily correlated with the instrument labels themselves. Re-

moving the label from definitions provides evidence that

relevant context cannot be leveraged properly. Also, us-

ing musically informed prompts doesn’t always result in

greater or even comparable results. Specifically, top-1 ac-

curacy drops when using the second musically informed

prompt for CLAP models, despite the prompt being a more

precise description of what is occurring in the audio.

These results suggest that CLAP models do not leverage

extra context in the input prompt effectively. Both models

performed worse when using relevant context without the

instrument word, suggesting that the textual encoders put a

lot more emphasis on the presence of specific words rather

than the meaning of the prompts themselves. In addition,

using a generic prompt provided better results than a mu-

sically informed one in most cases. Furthermore, any kind

of context added at the prompts seems to harm the perfor-

mance in most of the cases and provide more evidence that

the model’s text encoder cannot properly decompose the

sentence to its constituents and use these semantically. De-

spite this observation, using definitions (prompt 2) seems

promising for Music CLAP and for every metric apart from

top-1 accuracy.

In the following experiments, we will consider only the

“MusCALL prompt” as it leads to the highest top-1 accu-

racy, when model accuracy surpasses random choice.

3.4 Experiment 2: Inspecting the cosine similarity

distributions

As a next experiment, we calculate the cosine similarity be-

tween the joint space embeddings of each recording from

TinySOL and the MusCALL prompt for each instrument,

then compare the similarities of positive pairs vs nega-

tive pairs. We define a positive pair as an audio-label pair

where the label corresponds to the instrument in the record-

ing, and the negative pairs as all other pairs. Figure 3a

presents histograms of similarities for positive and nega-

tive pairs when using text prompts. If the audio-text coher-

ence is good, positive and negative histograms should be

well separated.

Positive and negative similarity distributions overlap

greatly, as can be seen in Figure 3a. As a result, retrieval

is far from optimal. Fundamentally, a caption is a multi-

faceted sentence. We suspect that treating a sentence as

only one embedding point (mean of word embeddings) is

fundamentally problematic and greatly hinders the seman-

tic properties of the joint space. A hypothesis that needs
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(a) Histogram of cosine similarity between TinySOL data and
MusCALL prompts in joint audio-text space.

(b) Histogram of cosine similarity between TinySOL audio data
and the mean of intra-class embeddings in joint audio-text space.

Figure 3: Histograms of audio and label embeddings for

positive and negative pairs. When using textual prompts

(a), the alignment is problematic, as can be seen from the

overlap between positive and negative distributions.

testing is that by using composite sentences, a model can-

not properly infer the relative embeddings of the sentence

constituents.

To further evaluate if the audio encoder produces mean-

ingful representations, we use the mean of intra-class song

embeddings as the label embedding. This label embedding

takes the role of the prompt embedding in the previous ex-

periment. We generate the embeddings in joint audio-text

space for each song. Then, we collect the songs that belong

to k-th class ck and estimate the mean of the embeddings.

The latter serves as the optimal embedding that the text

label would have to be mapped to in order to maximize

performance and will be referred to as the “audio-only” la-

bel. Note that this embedding is only optimal in the case

of TinySOL data.

The resulting histograms for positive and negative pairs

are shown in Figure 3b. They are well separated, indicating

that the audio-encoder itself produces meaningful, separa-

ble embeddings.

Audio embeddings seem to be of good quality before

and after the projection to the joint audio-text space, as the

metrics are almost equal before and after projection in Fig-

Figure 4: The histogram of top-2 class similarities for ev-

ery song in TinySOL. The CLAP models tend to be not

very confident while the metrics are greater than the over-

confident MusCALL with the worst metrics.

ure 2. The metrics almost double when using any audio-

only labels, which further provides evidence that the prob-

lem resides in the text branch, or joint-space projection and

there remains a large performance gap to bridge.

3.5 Experiment 3: How confident are two-tower

systems in their prediction?

We calculate the histogram of the difference between the

top-2 candidate classes for each recording [44] to quantify

the classification confidence. The similarity between each

audio and instrument embeddings is estimated and they are

sorted in descending order. The difference between top-

2 similarities for each song is then calculated and a his-

togram of that difference is plotted in Figure 4.

MusCALL seems to be overly confident in its predic-

tion, which is unwarranted given the metrics reported. The

opposite can be stated for CLAP models, where despite

their better performance, the difference has a median value

of 0.05-0.08.

3.6 Experiment 4: Quantitative evaluation of the text

branch

While there are datasets that can be used to quantify the

semantic properties and/or quality of a LM, there isn’t one

that focuses on music. To overcome this lack of text data

for the case of instrument recognition, we can utilize in-

strument ontologies, which encompass semantic similar-

ity of instruments at multiple levels. We propose to lever-

age them to quantify the semantic similarity between dif-

ferent instruments and instrument families. In this ex-

periment we use the instrument ontology by Henry Dok-

torski 6 (HDIO). As every instrument ontology has its lim-

itations [45], repeating the same experiment with other on-

tologies is left for future work.

We extract the tree based on HDIO and form every

possible triplet of TinySOL instrument labels in the tree

for a total of 364 =
(

14

3

)

combinations of positive word

6 https://free-reed.net/
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Figure 5: Semantic meaningfulness quantification lever-

aging Henry Doktorski’s instrument ontology. We eval-

uated the systems over valid triplets obtained through

TinySOL labels, as well as every available triplet obtained

from the ontology’s labels. Accuracy ranges from 49-59%

which stresses that the models do not properly understand

musical instruments in depth.

pairs without repetition. The triplets are of the form (<an-

chor>, <positive>, <negative>) where the <anchor> la-

bel has to be more semantically similar according to HDIO

to the <positive> than the <negative>, e.g (“violin”, “vi-

oloncello”, “trumpet”). Subsequently, every (<anchor>,

<positive>) pair that is linked through the root node of

HDIO is excluded. The number of remaining triplets is

273. As a way to quantify semantic meaningfulness with

respect to musical instruments, we calculate cosine sim-

ilarity between the (<anchor>, <positive>) and (<an-

chor>, <negative>) pairs for each system. Triplets for

which the similarity is higher for the first pair than the sec-

ond are considered “correct”, and triplets where this is not

the case are considered “incorrect”. We compute the accu-

racy score as the percentage of correct triples.

We repeat this procedure with every valid triplet from

the full ontology, as opposed to just using the instru-

ment labels appearing in TinySOL. This gives us ≈ 443k
triplets.

The accuracy for triplets from TinySOL and the full

HDIO ontology are both presented in Figure 5. We see that

half of the triplets are “incorrect” and this means that ab-

stract semantic relations between instruments are not effec-

tively captured in the textual branch, indicating a need for

fine-tuning textual encoders on music related data. Note

that the accuracy is roughly the same as we would obtain

by creating arbitrary triplets, though it is important to high-

light that several instruments and instrument categories are

words that are not frequently used in English. Closer ex-

amination of the validity and usefulness of specific triplet

cases (e.g. “stringed”, “plucked”, “violin”) is left for future

work.

3.7 Experiment 5: Does joint space mapping

introduce noise?

To further examine the origins of the problematic embed-

ding alignment, we repeat zero-shot evaluation with audio-

only labels described in Sections 3.4 and semantic mean-

ingfulness evaluation described in 3.6 with the embeddings

in the audio space and text space before the joint audio-text

space mapping.

A minor performance increment can be seen when using

the joint embedding instead of the pre-joint audio embed-

ding, as can be seen in the last two columns of Figure 2,

apart from MusCALL where the metrics remain almost the

same. We believe that the reduction in dimensionality of

the joint space compared to the separate spaces is the un-

derlying cause of these increments.

On the other hand, the accuracy based on HDIO re-

mains the same, except for a decrement observed for Mu-

sic CLAP and TinySOL subset of HDIO triplets, as can be

seen in Figure 5. This could be an indication that the MLP

can effectively map knowledge to the joint space. This is

a further hint that potentially the problem lies in the LM

used and fine-tuning might be needed to enforce musical

semantics to be better represented.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated 3 two-tower multimodal sys-

tems for instrument classification. We provided a zero-

shot classification analysis and an elaborate evaluation of

the audio and text embeddings in the pre-joint and joint

audio-text spaces. We also proposed a novel way to quan-

tify the semantic meaningfulness of text embeddings based

on triplets derived from an instrument ontology.

Generally, experiments showed that audio encoders are

of good quality and hence, the alignment issue might be

traced back to the text branch and/or the joint audio-text

space mapping. Therefore, a solution could be to freeze

the audio encoder and map the text information to audio

space. Also, further attention to modality imbalance [46]

can be placed with weighing in negative and positive exam-

ples [18,47–50]. Additionally, to avoid sensitivity towards

instrument labels and the inability to leverage context, we

propose to use text augmentation over captions or mask-

ing/removing the words from them. It is important to state

that the relation between sentence and word embeddings

is not as straightforward as with bag-of-words Language

Models [51] and as a result, the way to utilize captions or

put additional emphasis on their constituents have to be

further tested.

As a result, using two-tower systems might not be very

useful for multi-class scenarios, given the large overlap be-

tween positive and negative histograms of cosine similari-

ties shown in our experiments. We believe that it is essen-

tial for a music terminology similarity corpus to be estab-

lished. The benefits will be two-fold: (1) it will provide a

useful way of quantifying the semantic meaningfulness of

the textual branch for two-tower model and (2) it can serve

as a baseline to quantify the need for music-informed fine-

tuning. Last but not least, genre and emotion ontologies

can be used to further evaluate the semantic meaningful-

ness of language models.
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ABSTRACT

This paper describes a streaming audio-to-MIDI transcrip-

tion method that can sequentially translate a piano record-

ing into a sequence of note-on and note-off events. The

sequence-to-sequence learning nature of this task may call

for using a Transformer model, which has been used for

offline transcription and could be extended for stream-

ing transcription with a causal restriction of the attention

mechanism. We assume that the decoder of this model

suffers from the performance limitation. Although time-

frequency features useful for onset detection are consid-

erably different from those for offset detection, the sin-

gle decoder is trained to output a mixed sequence of on-

set and offset events without guarantee of the correspon-

dence between the onset and offset events of the same

note. To overcome this limitation, we propose a streaming

encoder-decoder model that uses a convolutional encoder

aggregating local acoustic features, followed by an autore-

gressive transformer decoder detecting a variable number

of onset events and another decoder detecting the offset

events of the active pitches with validation of the sustain

pedal at each time frame. Experiments using the MAE-

STRO dataset showed that the proposed streaming method

performed comparably with or even better than the state-

of-the-art offline methods while significantly reducing the

computational cost.

1. INTRODUCTION

Automatic music transcription (AMT) is a central topic in

the field of music information retrieval (MIR), which refers

to converting a music recording into a symbolic musical

score (MusicXML format) or a piano-roll representation

(MIDI format) [1]. It has remarkably been improved with

the technical progress of deep learning techniques and the

public availability of large-scale music datasets. In this pa-

per, we focus on streaming audio-to-MIDI AMT because it

remains relatively unexplored unlike streaming automatic

© W. Wei, J. Zhao, Y. Wu, and K. Yoshii. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: W. Wei, J. Zhao, Y. Wu, and K. Yoshii, “Streaming Pi-

ano Transcription Based on Consistent Onset and Offset Decoding with

Sustain Pedal Detection”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.
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Figure 1. An overview of the proposed streaming audio-

to-MIDI piano transcription method aware of onset-offset

correspondence.

speech recognition (ASR) [2–4] and forms the basis of

real-time music applications such as performance evalu-

ation and interactive jam session. The previous research in

[5] applied auto-regressive convolutional recurrent neural

network (CRNN) frame-by-frame for piano transcription.

The auto-regressive CRNN model can be easily adapted

for the online scenario [6]. But the transcription perfor-

mance for note offsets still has significant room for im-

provement.

Inspired by the sequence-to-sequence learning for ASR,

many studies on AMT have recently attempted to use the

Transformer [7] by serializing the polyphonic information

of the estimation target [8,9]. AMT is essentially different

with ASR in a sense that the onsets, durations, and pitches

of musical notes should be estimated, while the tempo-

ral information of output tokens (e.g., words and charac-

ters) is not considered in ASR. For audio-to-MIDI piano

transcription, one may define the input and output of the

Transformer as a sequence of raw audio features (e.g., mel

and constant-Q spectrograms) and a sequence of note-on
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and note-off events sorted in time and pitch, respectively.

The performance of this naive approach, however, is po-

tentially limited. Despite the significant differences in fea-

tures needed for detecting onsets and offsets, the Trans-

former decoder estimates these events in a mixed manner.

In addition, the correspondence between the onset and off-

set events of the same note is not guaranteed.

For streaming AMT, one can use the causal Trans-

former that restricts the self-attentive region to a certain

number of past frames, which could reduce the compu-

tational cost of the basic self-attention mechanism that

increases quadratically with the input length. Nonethe-

less, due to the strong coupling between note events,

Transformer-based transcription methods often underper-

form the state-of-the-art frame-level methods [10, 11], es-

pecially in offset detection and velocity estimation.

To overcome these limitations, we propose a stream-

ing audio-to-MIDI piano transcription method based on

a novel encoder-decoder architecture (Fig. 1). The en-

coder is implemented with a convolutional neural network

(CNN) that sequentially aggregates latent features from lo-

cal regions of an input piano recording. The two Trans-

former decoders that operate framewise are then separately

used for detecting a variable number of onset events and

offset events for the active pitches with guarantee of onset-

offset correspondence. For further improvement, the off-

set decoder is trained to judge the activation of the sustain

pedal in a way of multitask learning.

The main contribution of this study is to develop an ef-

ficient streaming encoder-decoder model and pave a way

for interactive and responsive applications based on real-

time music transcription. We experimentally show that our

method performs comparably with a state-of-the-art offline

transcription method and outperforms existing sequence-

to-sequence transcription methods.

2. RELATED WORK

This section reviews related work on automatic music tran-

scription and sequence-to-sequence transcription.

2.1 Automatic Piano Transcription

Automatic piano transcription (APT) is the most popular

form of AMT. Early methods rely on handcrafted features

and rule-based algorithms [12–15], while modern meth-

ods use deep learning models such as CNNs [16–19], re-

current neural networks (RNNs) [20, 21], and transform-

ers [22, 23]. In APT, the framewise transcription has still

been the mainstream approach due to its superior perfor-

mance and accuracy [10, 24]. In this approach, audio fea-

tures such as short-time Fourier transform (STFT) spectro-

grams are mapped to a binary matrix of dimensions T ×N

indicating the presence of pitches over time frames, where

T represents the number of frames and N the number

of pitches. Early transcription methods, mostly based on

CNNs, perform comparably at the frame level but under-

perform in term of note-level.

Onsets and Frames [19] is a major breakthrough in APT

that learns to sequentially predict note onsets and pitches in

a multitask framework. To improve the performance, a mu-

sic language model (MLM) based on a bidirectional long

short-term memory (BiLSTM) network is used for model-

ing the temporal dependency of musical notes. This study

has triggered many extensions. Kong et al. [25], for exam-

ple, proposed a high-resolution piano transcription (HPT)

model that simultaneously deals with onset, offset, veloc-

ity, and frame prediction tasks. The predicted velocities are

used as conditional information to predict onsets, and the

predicted onsets and offsets are used to predict frame-wise

pitches, forming a hierarchical structure.

Our previous work [24] proposed HPPNet that uses har-

monic dilated convolution for constant-Q transform (CQT)

spectrograms and an enhanced frequency grouped LSTM

(FG-LSTM) as a MLM. This model exhibits improved

performance in both frame-level and note-level predic-

tions. To capture long-term temporal and spectral depen-

dencies, Toyama et al. [10] proposed a two-level hierar-

chical frequency-time transformer (hFT-Transformer) and

achieved the state-of-the-art performance on the prediction

of note with offset and velocity.

2.2 Sequence-to-Sequence Transcription

Sequence-to-sequence models are able to learn a mapping

between input and output sequences of variable lengths

and have actively been investigated in many fields such as

natural language processing (NLP) and automatic speech

recognition (ASR). Such models have recently been imple-

mented with the Transformer or the self-attention mecha-

nism due to its excellent performance. Awiszus et al. [26],

for example, proposed a piano transcription model based

on an LSTM and a Transformer for frame-level multi-pitch

estimation. The performance of this method, however, is

limited due to the lack of training data and using improper

relative time shifts.

Inspired by this study, Hawthorne et al. [8] proposed a

note-level piano transcription model that uses Transformer

encoder and decoder in a way similar to the T5 model [27].

The encoder extracts latent features from an input spectro-

gram and the decoder refers to the input in an autoregres-

sive manner, and the token with the highest probability

is selected at each frame. This method achieved promis-

ing performance on the MAESTRO dataset and was later

extended to multi-track music transcription [9]. However,

this sequence-to-sequence transcription method still faces

limitations. It encodes all types of note events and absolute

time location of each event into a single sequence. This

increases the complexity of sequence-to-sequence trans-

formation and also constrains the length of the input se-

quence.

3. PROPOSED METHOD

This section explains the proposed method of streaming

audio-to-MIDI piano transcription based on a single en-

coder and onset and offset decoders.
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3.1 Streaming Transcription

As shown in Algorithm 1, the model takes a spectrogram

X ∈ R
T×Fi as input, where T represents the number of

frames and Fi represents the number of frequency bins. It

outputs an onset sequence list Y and an offset sequence list

Y, where each element Yt in Y represents the detected on-

sets sequence of frame t with sequence length kt, and each

element Yt in Y represents the detected offsets sequence

with sequence length nt in frame t.

The model consists of one encoder and two decoders

(Fig. 2). The encoder is implemented with a CNN that

efficiently extracts and aggregates local features from the

audio spectrogram X. The two separate decoders are then

used at each frame for detecting a variable number of on-

set times and judging the offset of the detected notes by

focusing on different aspects of the latent features.

More specifically, at each frame t, the encoder takes as

input the audio spectrogram around frame t with a recep-

tive field of a fixed size M and outputs a hidden embedding

sequence Ht ∈ R
Fh×D in the frequency domain with a se-

quence length of Fh and the hidden embedding size of D.

In addition, positional encodings are incorporated into the

encoder hidden states Ht. Then the decoders receive Ht

with the cross attention (encoder-decoder attention).

For onset detection, the onset sequence Yt at frame t

is initialized with the beginning-of-sequence token (BOS).

The onset events are then detected using the onset de-

coder Decoderon iteratively until the end-of-sequence to-

ken (EOS) is obtained, considering the current encoder

hidden state Ht, the onset sequences Y1:t−1 detected in

previous times, the current onset sequence at frame t, and

decoder positional encodings. The detected onset events

are finally added to the active onsets set A. The process is

repeated throughout the input sequence X.

The offset events are detected using the offset decoder

Decoderoff , considering the current encoder hidden state

Ht, the active onsets set A, and decoder positional encod-

ings. Then active onsets corresponding to the detected off-

sets are removed from A indicating the end of notes. It

should be emphasized that the offset decoder does not per-

form sequence prediction. Instead, it predicts the offset for

each onset that has been activated in the past time steps all

at once.

3.2 Encoder

The encoder is based on the harmonic dilated convolution

originally used for HPPNet [24] and uses the same con-

figuration proposed for the acoustic model of HPPNet. It

extracts local acoustic features with a fixed receptive field

and feeds them to the decoders. There are three sets of

convolutional layers with different kernel sizes: three lay-

ers with a kernel size of 7 × 7, one harmonic dilated con-

volution layer with a kernel size of 1 × 3, and five layers

with a kernel size of 5× 3. The resulting receptive field in

the time dimension is M = 39.

For streaming piano transcription, we use the shifting

window approach for sequentially feeding an input spec-

trogram to the encoder. Instead of feeding the entire spec-

Algorithm 1 Streaming piano transcription. The length

of output onset sequence equals to the number of the de-

tected onsets, while the length of offset sequence has an

additional output for pedal offset indexed as 0.

1: Input: Source sequence X = (x1, x2, ..., xT )
2: Output:

3: Onset sequence Y = (Y 1:k1

1 , Y 1:k2

2 , ..., Y 1:kT

T )

4: Offset sequence Y = (Y
0:n1

1 , Y
0:n2

2 , ..., Y
0:nT

T )
5: Parameters:

6: Receptive field of encoder: M

7: Initialize positional encodings: PEenc and PEdec

8: Initialize active onsets set: A = {}
9: for t = 1 to T do

10: Ht ← Encoder(Xt−M

2
:t+M

2

)
11: Ht ← Ht +PEenc

12: // Offset decoder

13: nt ← A.size()
14: Y t ← Decoderoff (Ht,A,PEdec)
15: Delete onsets in A corresponding to offsets in Y t

16: // Onset decoder

17: kt ← 0
18: Y kt

t ← BOS

19: y ← BOS

20: while y != EOS do

21: y ← Decoderon(Ht, Y1:t−1, Y
0:kt

t ,PEdec)
22: if y == EOS then

23: break

24: end if

25: kt ← kt + 1
26: Y kt

t ← y

27: end while

28: A.add(Yt)
29: end for

trogram at once, we segment it into smaller chunks or win-

dows to simulate real-time processing. These windows are

shifted along the time axis, allowing the model to gradu-

ally analyze incoming audio data. We define the size of

each window based on the desired temporal context for

transcription. Typically, smaller window sizes facilitate

faster processing but may sacrifice some contextual infor-

mation, whereas larger window sizes provide more context

but may introduce latency. To ensure continuity of tran-

scription and avoid information loss at window boundaries,

we apply overlap between consecutive windows.

3.3 Decoder

Both the onset and offset decoders are the same as the de-

coder of T5 [27] (Fig. 2). In the decoder architecture, the

embedding size is set to Ddec = 256, and decoder layers

to L = 6, attention head number to Nhead = 8. The multi-

layer perceptron (MLP) dimension is set to Dmlp = 1024.

A maximum decoder sequence length Nseq = 64. The

length of the decoder output varies with the number of ac-

tivated onsets. During the training phase, we use padding

and masking to fix the output tokens length of offset de-

coder to 16.
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Figure 2. The implementation of the streaming transcrip-

tion model that uses one encoder for latent feature extrac-

tion and two decoders for onset and offset detection.

3.4 Consistent Decoding

Existing piano transcription models that applied onset and

offset detection [9, 25] often face issues with mismatched

detected onsets and offsets. This is due to the little con-

strains in the detection processes for onsets and offsets.

Although this issue can be addressed with post-processing

methods, we prefer to solve it end-to-end within the model.

Our proposed architecture makes a constriction to the off-

set decoder to detect offsets for detected onsets only, and

also detects sustain pedal release events to improve perfor-

mance of note offsets detection.

The onset decoder sequentially outputs onset events in

an autoregressive manner while the offset decoder detects

all the offset events at once for the active notes detected

by the onset decoder with judgement of the sustain pedal.

If the offset event for an active note is not detected at the

current frame, a special token BLANK is obtained as de-

scribed in Section 4.1.3. The onset decoder considers only

notes detected in the past and current frames. The sustain

pedal plays a crucial role in expressive piano performance

and considerably affects offset detection. The lifting time

of the sustain pedal is highly relevant to the absolute offset

times and thus determines the duration and decay charac-

teristics of musical notes.

The input of the onset decoder in each step at frame t

consists of the onset tokens detected in the previous step

and the onset tokens detected at previous frames. This

enables to capture long-term dependency between musical

notes. By incorporating information from previous frames,

the decoder can better understand the context of the current

onset detection and facilitate the recognition of typical pat-

terns and structures in the music sequence over time.

4. EVALUATION

This section reports a comparative experiment conducted

for evaluating the performance of the proposed and con-

ventional piano transcription methods.

Time Target Tokens

1 <EOS> <blank>
2 <EOS> <blank>
...
i <C4><D4><EOS> <blank>

i+1 <C4><D4><EOS> <blank><blank><blank>
i+2 <EOS> <blank><blank><blank>
...
j <E4><F4><EOS> <blank><C4_off><blank>
...
k <EOS> <pedal_off><D4_off><E4_off><F4_off>

Table 1. Target tokens for onset decoder(red) and offset

decoder(blue).

4.1 Experimental Conditions

We explain the dataset used for evaluation and the input

and output data of the proposed method.

4.1.1 Dataset

We used the MAESTRO dataset V3.0.0 [28] composed of

about 200 hours of virtuosic piano performances captured

with fine alignment between note events and audio record-

ings. The split of the dataset into training, validation, and

test sets was defined officially. The validation set was used

for selecting the best-performing trained model based on

its performance on unseen data. The dataset also provides

information about the states (on or off) of the sustain pedal.

The pedal information is crucial for accurately transcribing

piano performances as it affects the actual durations and

offset times of sustained notes.

4.1.2 Input

The original audio recordings were resampled with a sam-

pling rate of 16 kHz. To increase the variation of the train-

ing data and reduce the memory footprint, 10-sec segments

were randomly clipped from the recordings and the CQT

spectrograms were computed on the fly with the nnAudio

library [30]. We used the CQT for its capability of cap-

turing both higher and lower-frequency components in the

logarithmic frequency domain suitable for analyzing mu-

sic signals. The lowest frequency was set to 27.5 Hz cor-

responding to the lowest key of the standard 88-key piano.

One octave was divided into 48 frequency bins and the total

number of frequency bins was 352. This ensures a fine fre-

quency resolution over the entire audible frequency range.

The hop length was set to 320 samples (20 ms), taking

the balance between the time resolution and the compu-

tational efficiency. After obtaining the CQT spectrogram,

the amplitude values were converted to decibels (dB) using

transforms available in the torchaudio library.

4.1.3 Output

The vocabulary of output tokens used in our study was the

same as that used for the music transformer 3 (MT3) [8,

9] except that time location tokens were not used. This

contributes to reducing the length of the output sequence

and stabilizing the training. The output vocabulary consists

of the following tokens:
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Model Params
Frame-level Note-level (onset only) Note-level (onset + duration)

P (%) R (%) F1(%) P (%) R (%) F1(%) P (%) R (%) F1(%)

Onsets & Frames [28] 26M 92.11 88.41 90.15 98.27 92.61 95.32 82.95 78.24 80.50

Semi-CRFs [29] 9M 93.79 88.36 90.75 98.69 93.96 96.11 90.79 86.46 88.42

HPPNet-sp [24] 1.2M 92.79 93.59 93.15 98.45 95.95 97.18 84.88 82.76 83.80

hFT-Transformer [10] 5.5M 92.82 93.66 93.2493.2493.24 99.64 95.44 97.4497.4497.44 92.52 88.69 90.5390.5390.53

Streaming Seq2Seq (ours) 16M 91.91 91.73 91.75 98.30 94.83 96.52 91.08 87.89 89.44

Table 2. The transcription performances of the existing and proposed methods on MAESTRO V3.0.0 test set.

Model Segment Encoder Input

Seq-Length

Decoder Output

Seq-Length

Latency Note F1 Note w/ Offset

F1

Seq2Seq [8] 4088 ms 511 1024 4088 ms 96.01 83.94

Streaming Seq2Seq (ours) - 39 64 380 ms 96.5296.5296.52 89.4489.4489.44

Table 3. The transcription performances of sequence-to-sequence transcription models on MAESTRO V3.0.0 test set.

Onsets and offsets (128+128 tokens) Each token repre-

sents the presence of an onset or offset of the cor-

responding pitch given as a MIDI note number.

Pedal states (2 tokens) Two tokens representing the pres-

ence and absence of the sustain pedal.

BLANK (1 token) A special token representing silence or

absence of any musical event.

BOS and EOS (2 tokens) Special tokens representing the

beginning and end of the output sequence.

The onset decoder and offset decoder both need only

part of the vocabulary. But we kept the full vocabulary for

all decoders to maintain consistency in the model archi-

tecture, regardless of whether there is only one decoder or

multiple decoders. We set the length of each onset and off-

set events into 2 frames. During the transcription process,

if consecutive onsets or offsets were detected, we only kept

the first one and discard the duplicates. To estimate note

events from the output of the decoders we used a simple

greedy regression algorithm. We then selected the near-

est corresponding offsets after the onsets to determine the

duration of the notes. If offsets were not detected, we se-

lected the nearest pedal offset as the offsets for the notes or

a maximum duration of 4 seconds.

4.1.4 Training

We used the cross entropy loss for training the proposed

model. It represents the negative log-posterior probability

over output tokens for the ground-truth annotation. For op-

timization, we utilized the AdamW optimizer [31], which

is a variant of the Adam optimizer with weight decay regu-

larization. The mini-batch size was set to 16 and the learn-

ing rate was set to 6e-4. A dropout rate of 0.1 was applied

to the decoder layers to prevent overfitting. Training was

iterated for 200,000 steps with early stopping.

4.1.5 Metrics

The performance of piano transcription was evaluated with

the mir_eval library [32] in terms of the precision and re-

call rates and F1 score at the frame and note levels. In the

note-level evaluation, an estimated note was judged as cor-

rect if its onset time was detected correctly or if both the

onset time and duration were estimated correctly. The er-

ror tolerance in onset estimation was set to 50 msec as in

many studies. The error tolerance in duration estimation

was set to the larger of 50 msec or 20% of the ground-truth

duration. These metrics were averaged over the test set.

4.2 Experimental Results

We report the experimental results obtained through com-

parative and ablation studies.

4.2.1 Comparison with Existing Methods

We conducted a comprehensive experiment that compared

our method with state-of-the-art methods such as frame-

level and event-level transcription methods (Table 2). We

found that our method achieved competitive performance

and surpassed an event-level transcription method named

Semi-CRFs in terms of both the note-level F1-scores with

and without duration evaluation. This superiority indicates

the robustness of our method in capturing the musical onset

events and their corresponding offsets.

4.2.2 Sequence to Sequence Transcription

For comparison, we tested the generic transformer-based

sequence-to-sequence transcription model [8] (Table 3).

Audio recordings were split into segments of 4088 msec to

be fed to the encoder. Since different segments were tran-

scribed independently, the long-term correlation between

note events is hard to learn from the data. Moreover, in-

creasing the segment length would exponentially increase

the computational complexity of the self-attention layers.

It would increase the number of absolute-time-location to-

kens and further complicates the estimation of time loca-

tions for note events.

Thanks to the streaming encoder-decoder architecture,

the proposed model kept the actual input length constant
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Decoder Onset Offset Pedal
Note-level (onset only) Note-level (onset+duration)

P (%) R (%) F1(%) P (%) R (%) F1(%)

1 ✓ ✓ ✓ 98.32 93.36 95.73 89.91 85.41 87.56

2 ✓ ✓ 98.23 94.75 96.44 88.11 85.00 86.51

2 ✓ ✓ ✓ 98.30 94.83 96.5296.5296.52 91.08 87.89 89.4489.4489.44

Table 4. Ablation study on MAESTRO V3.0.0 test set.

and significantly reduced the computational complexity of

the self-attention layers. The length of the encoder input

was set to 39 and the maximum length of the decoder out-

put was set to 64. This enables the processing of variable-

length audio recordings without the need for segmenta-

tion and offers the potential for real-time transcription.

Compared with the generic model, our streaming model

showed better performance in terms of the note-level F1-

scores with and without duration evaluation. This indi-

cates the potential application to streaming and sequence-

to-sequence music transcription scenarios.

4.2.3 Latency

The latency of a streaming model refers to the gap between

the actual time of an onset or offset event and the time of

the event output. Putting the actual computational speed

aside, the latency of a non-streaming model is equal to the

length of the input sequence because the whole sequence

needs to be processed for generating outputs. In contrast,

for streaming models, the latency is equal to the length of

future frames in the input data stream.

In Table 3, our streaming model had a latency of 380

msec. The CNN-based encoder takes 19 future frames

and 19 past frames as input. Even with a short input con-

text, the streaming model still achieved competitive perfor-

mance on piano transcription. This indicates that onset and

offset events could be detected without heavily relying on

long-term dependency of acoustic features.

4.2.4 Ablation Study

To verify the effectiveness of sustain pedal detection and

that of the separated decoders for onset and offset detec-

tion, we conducted an ablation study. Besides the proposed

model, we trained a model without pedal detection and an-

other model that uses a single decoder for onset, offset,

and pedal detection. The training and evaluation were per-

formed in the same way.

Table 4 shows the performances of the compared meth-

ods. We found that removing the pedal detection slightly

decreased the note-level F1-score without duration esti-

mation, but significantly degraded the note-level F1-score

with duration estimation. This suggests that pedal detec-

tion plays a crucial role in estimating note durations. Sim-

ilarly, using a single decoder for both onset and offset de-

tection degraded both the note-level F1-scores with and

without duration estimation, compared with the proposed

model. This demonstrated the effectiveness of incorporat-

ing pedal detection and a separated decoder for onset and

offset prediction for better piano transcription.

5. CONCLUSION

In this paper, we have presented a novel streaming audio-

to-MIDI piano transcription method. We tackled an open

problem of detecting note onset and offset events from a

piano recording in an online manner. Our method is based

on a streaming encoder-decoder architecture that combines

a convolutional encoder for aggregating local acoustic fea-

tures with separate transformer decoders for detecting on-

set and offset events at each time step while validating the

use of the sustain pedal.

In extensive experiments with the MAESTRO dataset,

our method attained competitive performance, compared

with the state-of-the-art offline methods. Our model also

outperformed the generic transformer-based sequence-to-

sequence model in terms of both accuracy and latency. The

ablation study showed the effectiveness of incorporating

pedal detection and that of using the separated decoders

for onset and offset detection. Our method uses a limited

number of incoming frames for detecting the onset and off-

set events and paved a way for latency-critical practical ap-

plications. We achieved a system latency of 380 msec and

plan to thoroughly investigated the trade-off between the

latency and the transcription performance. Additionally,

decoding every frame may not be necessary. Some scenar-

ios might not require such high temporal precision. The

setting of the time step also requires further exploration

for real-time scenarios.
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ABSTRACT

Recent advances in Deep Learning have propelled the de-

velopment of fields such as Optical Music Recognition

(OMR), which is responsible for extracting the content

from music score images. Despite progress in the field,

existing literature scarcely addresses core issues like per-

formance in real-world scenarios, user experience, main-

tainability of multiple pipelines, reusability of architec-

tures and data, among others. These factors result in high

costs for both users and developers of such systems. Fur-

thermore, research has often been conducted under certain

constraints, such as using a single musical texture or type

of notation, which may not align with the end-user require-

ments of OMR systems. For the first time, our study in-

volves a comprehensive and extensive experimental setup

to explore new ideas towards the development of a uni-

versal OMR system—capable of transcribing all textures

and notation types. Our investigation provides valuable in-

sights into several aspects, such as the ability of a model to

leverage knowledge from different domains despite signif-

icant differences in music notation types.

1. INTRODUCTION

Optical Music Recognition (OMR) is a field of research

focused on converting written music documents into

machine-readable formats, such as Humdrum **kern,

MEI, or MusicXML [1–3]. This technology holds sig-

nificant promise for digital musicology, libraries, and

academia, facilitating the digitization of scores for fur-

ther musical analysis, large-scale information retrieval, and

making vast musical archives more accessible [4].

Historically, the development of OMR has evolved from

relying on basic heuristic methods to a more dynamic ap-

plication of Deep Learning (DL) techniques [5]. This shift

brought new advances to the field, leading to substantial

improvements in the accuracy of music score transcrip-

© J. C. Martinez-Sevilla, D. Rizo, and J. Calvo-Zaragoza.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: J. C. Martinez-Sevilla, D. Rizo, and

J. Calvo-Zaragoza, “Towards universal Optical Music Recognition: A

case study on notation types”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

tion [6–9]. However, despite these advances, OMR mod-

els still face significant challenges in generalization. The

DL methodologies, while robust in specific contexts, often

struggle to perform consistently across diverse data dis-

tributions [10]. This is particularly evident when dealing

with a variety of music notations and textures, from an-

cient Neumic chants to modern polyphonic compositions.

Most existing OMR works focus on a narrow range of mu-

sic types (often just one), which limits their usability for

more comprehensive archival tasks [11].

In response to these limitations, this paper proposes the

conceptualization of a universal OMR system capable of

processing all types of musical notations and textures. 1

The long-term objective is to develop a versatile technol-

ogy that can adapt to any musical document, regardless of

its historical period or stylistic characteristics.

This paper takes the first steps towards such a system

by exploring a few alternatives to achieve this goal. In

particular, we carry out a specific case study focused on

diverse notation types, involving medieval square nota-

tion, Mensural notation, and Common Western Modern

Notation (CWMN) corpora. We consider whether it is

more feasible to develop separate OMR models for each

notation or to create a single, all-encompassing model.

This dichotomy has not been thoroughly studied before.

Separate OMR models for each notation maximize accu-

racy by addressing specific characteristics, but require ex-

tensive resources and individual updates. Conversely, a

single, all-encompassing model enhances scalability and

maintenance efficiency, benefiting from shared knowledge

across notations—a potential advantage in deep learning—

although it may struggle with variability. Additionally, we

include an intermediate case in which a part of the model

is common and only one specialized module is created for

each notation, thereby representing a trade-off between the

previous pros and cons.

This paper is organized as follows: Section 2 offers

background information on OMR. In Section 3, we outline

our methodology for analyzing the question at hand and the

different training scenarios to leverage the system’s per-

formance. Section 4 details the experimental setup, while

1 In this work, we will focus on Western notations that share some
fundamental characteristics, such as indicating duration with the shape
of the music-notation symbols and pitch with their position over a set of
staff lines. These also follow a left-to-right reading order.

914



Section 5 presents the work results and analysis. Finally,

we conclude the paper in Section 6, along with potential

avenues for future research.

2. RELATED WORK

Modern research in OMR using DL methodologies has led

to several successful approaches [4,5,12]. Notably, one ap-

proach that stands out is the so-called “end-to-end” formu-

lation. This approach provides a holistic method where im-

ages of music notation are directly inputted into the model,

which then predicts their content. The end-to-end formu-

lation represents the state of the art in related areas such as

text or speech recognition and is now considered by several

works in OMR [11, 13–15].

Some works have successfully addressed end-to-end

OMR for monophonic staff images, likely because most

ancient notations depict monophonic staves. Specific ef-

forts are underway to address other textures such as ho-

mophonic scores [6], polyphonic music [7, 16], and vo-

cal pieces [8, 17]. However, despite recent advances in

the field, there is still no approach for building a univer-

sal OMR system capable of handling all this variability of

music notation types and textures simultaneously.

The fundamental challenge lies in an unsolved problem

in DL models: they perform well when there are regular

statistics and abundant data to train on, allowing them to

learn the regularities in the distribution properly [10]. This

is not the case in the OMR problem, where rich labeled

data is scarce and the graphical feature variability is exten-

sive, making it a complex task.

Due to the inherent characteristics of DL methodolo-

gies, the existing literature work with analogous or highly

similar train-test distributions [11]. Consequently, since

there is a lack of research focusing on the development

of universal OMR systems capable of processing any in-

put score regardless of its content, we propose the first

study aimed at developing, understanding, and evaluating a

universal OMR system for dealing with different notation

types simultaneously.

3. METHODOLOGY

Our objective is to explore an initial approach towards de-

veloping a universal OMR system. Specifically, we con-

sider the case of accounting for different notation types.

To achieve this, we consider three different scenarios: (i) a

single model per dataset; (ii) a model leveraging all avail-

able data; and (iii) a hybrid model, for which some parts

are common across all cases, but there are also specific

layers tailored to each notation type. We opt for a deep

end-to-end model as representative of the state-of-the-art

in OMR. Below, we provide a detailed explanation of how

this model works and then explain the different approaches

selected to address the task.

3.1 Learning framework

The end-to-end OMR model seeks to directly retrieve the

music notation from a single staff image. As in recent lit-

erature [11,13,14], we assume that a certain preprocessing

stage has already separated the staves of the score [18].

Based on other works addressing the OMR challenge

[13], a Convolutional Recurrent Neural Network (CRNN)

scheme is considered for the end-to-end pipeline. The

CRNN architecture incorporates an encoder: a block of

convolutional layers that learns a set of features from the

input image. Then, it includes a decoder: group of re-

current stages that model the temporal dependencies of

the feature-learning block. Finally, a fully connected net-

work with a softmax activation is used to retrieve a pos-

teriogram, which is decoded to obtain the predicted mu-

sical symbols 2 . The Connectionist Temporal Classifica-

tion (CTC) training procedure [19] is used to achieve an

end-to-end scheme, as it allows training the network using

unsegmented sequential data.

For training, let T ⊂ X × Σ∗ be a set of data where

sample xi ∈ X of single staff image is related to symbol

sequence zi =
(

zi1, zi2, . . . , zi|zi|

)

∈ Σ∗, where Σ repre-

sents the symbol vocabulary used for encoding the music

score. Note that the use of CTC to model the transcription

task requires the inclusion of an additional “blank” symbol

in the Σ vocabulary, i.e., Σ′ = Σ ∪ {blank}.

At prediction, for a given music staff image input xi ∈

X , the model outputs a posteriogram pi ∈ R
|Σ′|×K , where

K represents the number of frames provided by the re-

current stage. Finally, the predicted sequence ẑi is ob-

tained resorting to a greedy policy that retrieves the most

probable symbol per frame in pi, later a subsequent map-

ping function merges consecutive repeated symbols and re-

moves blank labels.

3.2 Approaches to OMR for different notation types

In order to explore diverse learning frameworks to assess

the transcription performance, we pose three different sce-

narios that differ in how data is fed to the model and

the training strategies for the model layers. An overview

of these scenarios is described as follows (illustrated in

Figure 1):

Only: In this scenario, one model is trained for each

single dataset. This is the baseline of our experiments

and it will allow us to compare properly the different ap-

proaches selected. It should be emphasized that this train-

ing scenario will employ a set of resources and time as-

sociated with each corpora. This methodology stands as

the current state of the art, as recent research resorted to

training individual models as described in Sec.2.

All: For this scenario, all available notation types in this

work are merged to train a single model. As commented

in the introduction, our long-term objective is to create a

universal OMR capable of retrieving all types of notation

and textures. This option allows us to explore the capabil-

ities and drawbacks of integrating all possibilities in the

same model.

2 In this work, a musical symbol is represented as the conjunction of
the glyph or shape and the position within the staff.
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Figure 1: Graphical scheme of the three different approaches considered for this work using the CRNN architecture as the

backbone. Only: a model trained per notation type individually. All: a model trained with all the notation types available

for this work. Specific Decoder: once the All scenario is finished, the encoder (already trained) is frozen to train specific

decoders for each notation type.

Specific Decoder: Recent DL approaches pictured the ad-

equacy of learning via a general feature extractor (en-

coder) [20]. Similarly, we leverage the encoder block of

the All approach weights as our starting point. By do-

ing so, we establish an already-evaluated feature extractor

shared across all corpora. Having the features extracted,

we then fine-tune a notation-specific decoder block based

on the unique underlying musical context.

The selection of these scenarios helps to study perfor-

mance but also other important aspects such as maintain-

ability, reusability, or resource leveraging, which are valu-

able for real-case systems and have been barely analyzed

in OMR literature.

4. EXPERIMENTAL SETUP

According to the choices made for the experimental road

map, we first introduce the studied evaluation metrics.

Later we give further details about the learning model hy-

perparameters selected and the training techniques used.

Eventually, we describe the data collections used for train

and evaluation.

4.1 Evaluation

Current OMR systems are designed to serve as a tool.

Bearing this in mind, it should be more than interesting

to compute the amount of effort it would take a user to cor-

rect the errors made by the system. However, there is not

a clear way of properly measuring this case. This is why

when evaluating an OMR system we resort to the Symbol

Error Rate (SER). Given a prediction ẑi and the ground

truth musical symbol sequence zi, SER is calculated as the

average number of elementary editing operations (inser-

tions, deletions, or substitutions) required to convert pre-

diction ẑi into reference zi, normalized by the length of

the latter. Formally, this is expressed as:

SER (%) =

∑|S|
i=1

ED (ẑi, zi)
∑|S|

i=1
|zi|

(1)

where S is a set of test data, ED : Z × Z → N0 denotes

the string edit distance, and ẑi and zi respectively represent

the estimated and target sequences.

4.2 Neural model configuration

The CRNN hyperparameters used in this study are based

on the ones used in previous works [11,13]. Authors adopt

a 4 Convolutional layer block with batch normalization

2D, Leaky ReLu activation, and max-pooling 2D down-

sampling. Feature maps extracted from the encoder, i.e.

the Convolutional Neural Network (CNN) block, are in-

troduced into 2 Bidirectional Long Short-Time Memory
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(BLSTM) layers with 256 hidden units each and a dropout

value of d = 50% followed by a fully connected network

with |Σ′| units. The architecture described results in a

model with 5.3M parameters.

All the models were trained with a batch size of 16

samples—it is important to mention that given the different

sizes of the datasets, all the generated batches had the same

proportion of samples from each dataset so the network

did not adjust to the bigger dataset, i.e., dataset interleav-

ing. The ADAM [21] optimizer was considered, a fixed

learning rate of 10−3, and weight decay of 10−6. We iter-

ate over 200 epochs using image augmentation techniques

(blur, rotation, contrast, erosion, brightness, etc.), ensur-

ing the robustness of the model, keeping the weights of

the model that minimize the SER evaluation metric in the

validation partition. The early stopping technique is used

with a patience of 20 epochs. Lastly, all experiments were

run using the Python language (v3.10.13) with the PyTorch

and PyTorch Lightning frameworks on a single NVIDIA

GeForce RTX 4090 card with 24GB of GPU memory.

4.3 Datasets

As introduced in Sec.1, music manuscripts depict a great

challenge for transcription methods. Their variety in con-

tent and appearance poses a still unsolved question. In

order to study the adequacy of a universal OMR system,

we gathered data sources taking into account their variabil-

ity in terms of notation, graphical appearance, and musical

context, aiming to reflect Western musical diversity. A set

of 40 different works has been collected that have been

grouped to simplify the experimentation and insights re-

ported. Among them, we find square notation, white Men-

sural notation, and CWMN. A brief description of some

dataset features and staves can be found in Table 1 and

Fig. 2.

Table 1: Dataset descriptions in terms of notation type,

pages, music fragments (staves), and vocabulary sizes.

Notation

type
Dataset

Number of

pages

Music

fragments

Vocabulary

size

Square AUSTRIA 685 4 850 270

Mensural

BNE 4 125 27 746 709

SEILS 151 1 136 206

GUATEMALA 385 3 263 316

CAPITAN 97 828 373

CWMN

FMT 348 1 305 425

CATEDRALES 52 308 245

CAMERA-PRIMUS – 15 000 1 443

Diverse cases have been considered looking for differ-

ent printers, copyists, authors, and periods considering the

more variability the better. The list of datasets used is clas-

sified by notation type and ordered temporally below.

4.3.1 Square Notation

Square notation is written on a staff with four lines and

three spaces. In this notation, ascending notes are shown

as stacked squares, while descending notes are written with

(a) AUSTRIA

(b) BNE

(c) SEILS

(d) GUATEMALA

(e) CAPITAN

(f) FMT

(g) CATEDRALES

(h) CAMERA-PRIMUS

Figure 2: Samples of staves of the different datasets em-

ployed in the experimentation.

diamonds. This system of notation appears in liturgical

chant books.

AUSTRIA. The Austria dataset contains 685 printed

pages of 15th-century manuscripts in German Gothic

square notation. Provided by the Austrian Centre for Dig-

ital Humanities and Cultural Heritage. 3

4.3.2 White Mensural Notation

Notation system used in polyphonic European vocal mu-

sic. Mensural notation can use different note shapes to de-

note rhythmic durations. It is written on a staff with five

lines and four spaces.

BNE. The “Biblioteca Nacional de España (BNE)”

dataset corresponds to the pages from the corpus obtained

from the collection of mensural books of the Biblioteca

Digital Hispánica. 4 It comprises multiple authors and

printers, e.g., F. Guerrero, H. of G. Scoto or Antonio Gar-

dano, with a size of 4 125 pages. License: public.

SEILS. The “Second Edition of the Il Lauro Secco

(SEILS)” dataset consists of 151 printed pages of the “Il

3 https://www.oeaw.ac.at/ (accessed April 8th, 2024)
4 https://www.bne.es/es/catalogos/

biblioteca-digital-hispanica (accessed April 8th, 2024)
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Lauro Secco” collection corresponding to an anthology

of 16th-century Italian madrigals in white Mensural nota-

tion [22]. License: public.

GUATEMALA. The Guatemala dataset incorporates 383

handwritten pages from a polyphonic choir book, part of

a larger collection held at the “Archivo Histórico Arquid-

iocesano de Guatemala” [23]. License: private.

CAPITAN. The Capitan dataset contains 100 handwritten

pages of 17th-century manuscripts in late white Mensural

notation extracted from collections found in the “Catedral

del Pilar” in Zaragoza [24]. License: private.

4.3.3 Common Western Modern Notation

Current notation system, written in five lines and four

spaces. It is capable of indicating to the musician all the

parameters to properly interpret the piece, such as dynam-

ics or tempo changes. 5

FMT. This collection consists of four groups of hand-

written score sheets of popular Spanish songs transcribed

by musicologists between 1944 and 1960. taken from the

"Fondo de Música Tradicional IMF-CSIC" 6 , with a total

of 348 images. License: public.

CATEDRALES. The Catedrales dataset contains 52 pages

of printed liturgical examples from Málaga, Granada, and

Sevilla cathedral archives [25]. License: public.

CAMERA-PRIMUS. The Printed Images of Music

Staves (PrIMuS) dataset is a hybrid corpus, i.e., the mu-

sical content comprehends the RISM Database 7 but the

images have been obtained using the digital engraver tool

Verovio [26]. To the generated images multiple distor-

tions and textures are applied to simulate the look and

conditions of the real sources. Although the original

dataset consists of almost 100 000 samples, we have ran-

domly selected 15 000 to make it more suitable for our

experimentation [27]. License: public.

All the datasets presented use an agnostic out-

put encoding which represents a musical symbol as

glyph:position_in_staff. This encoding helps

transcribe the tokens given their graphical appearance

rather than their musical meaning, which can be ambigu-

ous in many situations for the model to learn, making it

unsuitable for OMR. Additionally, the agnostic encoding

facilitates a straightforward conversion to standard formats

such as MusicXML, MEI, or Humdrum **kern [28].

5. RESULTS

Table 2 presents the test results obtained with the proposed

experimental scheme in terms of the SER (%) metric.

The Only scenario acts as our baseline. Here training,

validation, and testing splits comprise exclusively samples

5 For evaluation, pitch, rhythm and articulation are considered.
6 https://musicatradicional.eu/es/home (accessed

April 8th, 2024)
7 https://rism.info/ (accessed April 8th, 2024).

Table 2: Results in terms of the SER(%) metric for the

training scenarios Only, All and Specific Decoder.

Dataset
Only

(baseline)
All

Specific

Decoder

AUSTRIA 3.77 3.87 3.78

BNE 3.25 3.67 3.31

SEILS 2.71 1.88 1.94

GUATEMALA 2.22 1.87 1.88

CAPITAN 8.60 6.80 7.91

FMT 8.98 5.72 7.11

CATEDRALES 17.34 8.49 17.94

CAMERA-PRIMUS 1.54 3.07 1.60

from each individual dataset. We observe varying perfor-

mances across different datasets. Notably, the SER met-

ric ranges from 1.54% for the CAMERA-PRIMUS dataset

to 17.34% for the CATEDRALES dataset. This indicates

significant variability in model performance depending on

the dataset size, notation, and graphical features, being the

higher values the ones associated with CWMN, where we

find more complex musical symbols and context.

When training on the All scenario, the model demon-

strates performance improvements compared to the Only

scenario for most datasets. This proves the validity of uni-

fying training pipelines for different notations as the model

learns to extract more robust features from the images,

which helps in datasets with fewer samples while sacri-

ficing very little accuracy in other datasets, e.g., BNE or

CAMERA-PRIMUS. It is worth highlighting the great im-

provement in the CATEDRALES dataset reducing the SER

from 17.34% to 8.49%. On the other hand, we lose accu-

racy in datasets such as AUSTRIA (from 3.77% to 3.87%),

BNE (from 3.25% to 3.67%), and CAMERA-PRIMUS

(from 1.54% to 3.07%). This situation reports valuable in-

sights given that on bigger datasets like BNE or CAMERA-

PRIMUS with enough data to be trained individually we

lose performance, but if we are willing to sacrifice that per-

formance we improve in several datasets. AUSTRIA poses

a different situation, due to being the only square notation

dataset, the labeling is slightly different to the other cor-

pora increasing the SER metric when merging it with the

other datasets. 8

After training on the All scenario, experiment outcomes

show the adequacy of merging different datasets to better

learn the data features. Thus, in the Specific Decoder sce-

nario, the All encoder, or CNN, is frozen, and specific de-

coders were trained for each dataset individually. This ap-

proach is aimed at capturing dataset-specific features and

learning the underlying musical language of each dataset.

While some datasets exhibited improved performance

8 For the All scenario we have checked that the tokens predicted are
present in the target vocabulary. Without performance variation, such a
fact evinces the adequacy of using all data available to train a unique
model, to better learn the image features and the inherent difficulty of
music when applying OMR without focusing on a specific given dataset.
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(e.g., SEILS with a 1.94% SER in the Specific Decoder

compared to 2.71% SER in the Only setup), others experi-

enced only marginal improvements or even a slight degra-

dation in performance (BNE, GUATEMALA, CAPITAN,

FMT, CAMERA-PRIMUS). Since this approach could be

discarded at first glance for not being the best performing,

we make an in-depth explanation of the results obtained in

the latter scenario in Sec. 5.1.

5.1 Time-efficient model training

Another important factor to take into account when looking

at the experiment results is the time consumption, which is

a key factor to better understand the outcomes of this re-

search. Given the datasets presented in this work, we em-

ploy a total of 54 436 monophonic staff images with dif-

ferent notation types and graphical features. In Fig. 3,

we report the runtime of the experiments presented. When

using the training scenario specified as All and the con-

figuration explained, the time that took to train the model

was 1D 20H 36M 49S. If we evaluate the performance

obtained in the All scenario we could think that these are

the best approaches, as the SER metric poses improve-

ments even in datasets with few samples. However, in

real scenarios, this approach would have to be retrained

from scratch in case we want to integrate a new dataset 9 .

That is why the Specific Decoder scenario—where a com-

mon CNN is trained and specific decoders, i.e, BLSTMs,

are created for each dataset—emerges, given that once the

encoder block (CNN) is trained the average time to inte-

grate a new dataset, i.e., train its decoder block, is 1H 6M

11S. This time-efficient model training approach attends

more accurately to the end-user requirements in conjunc-

tion with better resource management.

This analysis strengthens our proposal of building a uni-

versal OMR system, that leverages all the existent musi-

cal data and is capable of transcribing multiple notation

types. In these experiments, we explore the end-to-end ar-

chitecture for every notation type, which clearly helps as

explained in Sec.5. This will allow creating a robust, main-

tainable, reusable system as a first step never done before

towards universal OMR.

6. CONCLUSIONS

This work stands out as the first to introduce the universal

OMR goal, which involves the design, construction, and

evaluation of a system capable of retrieving musical con-

tent from a document, taking into account different nota-

tion types and textures, such as monophonic, homophonic,

vocal, polyphonic, etc., and the end-user requirements in

real-case scenarios. To achieve this, we studied and com-

pared different settings of real and heterogeneous data cor-

pora to provide invaluable insights into these first steps to-

wards universal OMR.

The obtained results validate the capabilities of current

OMR state-of-the-art model architectures to transcribe real

9 Except if we use Continual Learning techniques [29], yet to be ex-
plored in OMR.
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Figure 3: Runtime of experiments presented in this work

in minutes for the All, Only (baseline) and Specific De-

coder scenarios.

documents with different notation types, as the SER(%)

rates match those observed in works that exclusively ad-

dress one notation (either square, Mensural, or CWMN).

Moreover, the use of a frozen trained encoder block as

a common feature extractor proves to be useful for sav-

ing resources, maintaining the system, and reducing train-

ing time, since in some cases it considerably improves

the overall transcription performance when there are not

enough samples.

Future work seeks to expand the presented assortment

by considering other textures such as homophony, vocal, or

polyphony, to provide further insights and analysis towards

universal transcription pipelines. Fine-tuning all or certain

layers of the encoder would also be relevant, given that

differences among datasets manifest in their visual repre-

sentation rather than in their output. Furthermore, given

the results obtained, another promising avenue is to inves-

tigate adequate encoding formats to properly represent mu-

sic from different centuries and textures.
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ABSTRACT

In recent years, the quality and public interest in music

generation systems have grown, encouraging research into

various ways to control these systems. We propose a novel

method for controlling surprisal in music generation using

sequence models. To achieve this goal, we define a metric

called Instantaneous Information Content (IIC). The IIC

serves as a proxy function for the perceived musical sur-

prisal (as estimated from a probabilistic model) and can

be calculated at any point within a music piece. This en-

ables the comparison of surprisal across different musical

content even if the musical events occur in irregular time

intervals. We use beam search to generate musical material

whose IIC curve closely approximates a given target IIC.

We experimentally show that the IIC correlates with har-

monic and rhythmic complexity and note density. The cor-

relation decreases with the length of the musical context

used for estimating the IIC. Finally, we conduct a qual-

itative user study to test if human listeners can identify

the IIC curves that have been used as targets when gen-

erating the respective musical material. We provide code

for creating IIC interpolations and IIC visualizations on

https://github.com/muthissar/iic.

1. INTRODUCTION

In music generation, controlling the generation process

with user inputs is essential for creating flexible systems

that support a creative human/machine co-creation pro-

cess [1]. Typically, controls are based on low-level features

with a direct musical interpretation, for instance, the pitch

of a generative synthesizer [2], or meter, harmony, and in-

strumentation for symbolic generation [3]. A high-level

musical feature that has received little attention in gen-

erative composition systems is musical surprisal — how

surprising a musical event is to a listener, given the past

musical context. The surprisal tends to be high when the

© F. Author, S. Author, and T. Author. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: F. Author, S. Author, and T. Author, “Controlling surprisal

in music generation via information content curve matching”, in Proc.

of the 25th Int. Society for Music Information Retrieval Conf., San Fran-

cisco, United States, 2024.

music is complex, when a pitch deviates from the prevail-

ing tonality, or when there is a variation in rhythm [4, 5].

As such, musical surprisal shares similarities with musi-

cal complexity, however, it is importantly also affected by

learning: Repeating complex musical content can lead to

decreased surprisal on the repetitions as a result of learn-

ing [6]. In contrast, the musical content and the complexity

remain unchanged across repetitions.

Studies suggest that the amount of musical surprisal

needs to be balanced for music to be deemed preferable

[7, 8], which is typically achieved by balancing regularity

and novelty [9]. Being able to control surprisal in gener-

ated music might help users create compositions that bal-

ance regularity and novelty and thus suit listeners’ pref-

erences. In addition, if this can be controlled, rather low

surprisal could be used indirectly to induce repetitions in

machine-generated music and high surprisal to produce

novel parts, possibly with high perceived complexity.

In [10], it was proposed to quantify the surprisal of a

musical event by its Information Content (IC) conditioned

on past musical events. For that, a sequence of musical

events is modeled as a stochastic process, where the con-

ditional distribution and, hence, the conditional IC can be

estimated. As such, a surprising event is an event that is

unlikely to occur under the estimated distribution given

the past musical context. In the works of [11], the au-

thors find correlations between the IC of a variable-order

Markov model (called IDyOM) [12] and perceived surprise

in a controlled pitch anticipation experiment. A correlation

between high IC and tonal and rhythmic complexity was

shown in [4, 5].

This indicates that the IC of trained sequence models

can be used as a proxy for human perception of musi-

cal surprisal and that its measurement can identify musical

complexity and regularities. This paper proposes a novel

framework for generating music with user control over the

IC. Specifically, we define an Instantaneous Information

Content (IIC) measure, which can be calculated at any time

point based on the IC of musical events in the recent past

and approximates a causal information density. We use the

IIC as a fitness score to direct a beam search toward gen-

erating samples following a given IIC target curve. Our

sampling strategy can be used with any pretrained auto-

regressive generative music model. We demonstrate our

approach in symbolic classical music generation using a
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pretrained PIA model [13] and show quantitatively that our

approach can generate samples that follow IIC curves ex-

tracted from real data. We conducted a qualitative study

to test if humans can identify simple IIC curves used for

generation. Finally, we analyze relationships between IIC

and harmonic, rhythmic, and note density complexity.

2. METHODS

In the following, we describe a method for IC-controlled

token sequence generation. Let IC∗ (t) be a target curve

with support in the time interval [0, T ], representing the

desired information content over time of a generated se-

quence of tokens x = x1, x2, ...xn ∈ X , with a dura-

tion of T seconds. ‘Tokens’ are not necessarily individ-

ual notes or note onsets but can be any token type com-

monly used in Transformer-based music generation sys-

tems (e.g., [13–15]). Also, note that we operate on the

physical time dimension, not symbolic (score) time mea-

sured, e.g., in beats or number of tokens.

Furthermore, let q be a generative sequence model and

p an autoregressive critic model, used for estimating the

the i’th token’s conditional token information content

IC (xi|x<i) = − log p (xi|x<i) , (1)

where x<i = x1, x2, ..., xi−1. In our context, p will be

a Transformer model. The proposed method creates new

samples using q with an information content that matches

the target curve as measured by p. Our method works as

follows: Firstly, we define the Instantaneous Information

Content (IIC) – a mapping from a (temporally irregular) to-

ken sequence and its information content values to a func-

tion representing the musical surprisal in the continuous

time domain. Secondly, we define an IC deviation – a met-

ric for comparing the similarity between a sequence’s IIC

curve and the target curve. Finally, we devise a method for

generating token sequences with q that minimize the IC
deviation.

2.1 Instantaneous Information Content

2.1.1 Temporal Localization of IC Estimates

To align the information content of musical events, mea-

sured on sequence tokens, with the time-domain target IC

(IC∗), we face a challenge: IC is calculated on sequence

elements, while IC∗ pertains to the time domain. Our so-

lution involves assigning each token a temporal position

using a mapping function f , effectively “temporally local-

izing” or aligning tokens within the musical timeline. Note

that f can be constructed by analyzing the specific detok-

enization method associated with x’s tokenization that in-

volves turning a sequence of tokens into a time-based mu-

sic representation like MIDI 1 . In section 3.1, we present

an example of such f using the tokenization of [13].

Temporal Localization allows us to map IC tokeniza-

tions to their respective time points in the music. This is

crucial, especially for analyzing tokenizations of symbolic

1 https://midi.org/midi-1-0-detailed-specification

music commonly used with Transformers [13–15], where

the decoded musical events do not uniformly align in time.

Through this approach, IC measured on tokens can be di-

rectly compared with the time-domain IC∗, facilitating a

coherent analysis across different domains of musical rep-

resentation.

2.1.2 Interpolation

Let f : N × X → R be a localization function, mapping

the i’th token of sequence x ∈ X to the time domain. The

IIC at time t in a piece (represented by token sequence x),

is a real number computed by a time interpolation of x’s

token ICs:

IIC(t,x) =
∑

f(i,x)<t

λ (t− f (i,x) , i) · IC (xi|x<i) . (2)

λ (t, i) defines a weighting of the information of the i’th
token and the constraint f(i,x) < t ensures causality. As

a result, the IIC at any time step t is a weighted sum of IC

values of past events, using a weighting kernel λ.

The choice of the critic model p in combination with

the weight function λ defines different perceptual models

of the instantaneous information content. We propose to

choose λ so that the recent past is weighted higher than the

remote past. More specifically, we define λ as a window

function centered around t and equal to zero at time steps

greater than t. In this initial work, we chose a Hann win-

dow for the following reasons: As it is (half) bell-shaped,

it is insensitive to inaccuracies in the temporal localization

of recent events. It is smooth at the boundaries, preventing

sudden drops as events “leave” the window.

Using the IIC, we quantify the segment surprisal of seg-

ment [t1, t2] by the L1 norm of the IIC with support re-

stricted to [t1, t2] by calculating:

∥

∥IIC |t2t1
∥

∥

1
=

∫ t2

t1

|IIC (t,x)| dt. (3)

In section 3.5, we compare segment surprisal with

segment-based complexity metrics.

2.2 IC Deviation

Given a sample x, the IC deviation of IIC(·,x) from the

target IC∗ is defined as the L1 norm of their function dif-

ference:

∥IC∗ − IIC∥1 =

∫ T

0

|IC∗ (t)− IIC (t,x)| dt. (4)

Which is equal to zero if IC∗ = IIC(·,x) almost every-

where, implying that minimizing eq. (4), aligns the target

curve IC∗ with the IIC curve. In practice, we compute

eq. (4) by the Riemann sum:

∥IC∗ − IIC∥1 ≈

m
∑

i=1

|IC∗ (ti)− IIC (ti,x)|∆t, (5)

where m∆t = T .
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Figure 1. The temporal localization function f and

the weight function λ, involved in computing the IIC of

x1, x2, ..., a sequence of three notes, at time t1.

2.3 Information Content Conditioned Sampling

We can now rank sequences of different lengths accord-

ing to their proximity to the target IC∗ using eq. (5). We

use this to guide a beam search to follow the target curve.

The beam search is done in iterations. At each iteration,

we generate k continuations of the best-performing sam-

ple from the last iteration (initially the empty sequence)

in parallel. We stop expanding the continuation when the

duration of the newly generated content exceeds a prede-

fined step size t′. We then evaluate eq. (5) and keep only

the continuation with the lowest IC deviation for the next

iteration 2 . We stop when the generation’s duration is T .

3. EXPERIMENTS

3.1 Model and Data

All experiments are performed with a PIA Transformer

model [13], a symbolic music generation system pretrained

on expressive classical piano performances. The model

was trained on data consisting of 1,184 MIDI files of ex-

pressive music recorded with high precision on a Yamaha

Disklavier [16], as well as a larger dataset of 10,855 MIDI

files containing automatically transcribed piano perfor-

mances [17]. For evaluation, we use the dataset of [18],

consisting of performances of 36 Mozart piano sonata

movements. The midi files are tokenized using a struc-

tured MIDI encoding [13], where midi notes, sorted by

their onset times, are serialized successively using four to-

kens Pitch,Velocity ,Duration,Timeshift in that order.

Therefore, every fourth token represents the same token

type. Pitch is an integer describing the 88-note pitch

values on the piano. Velocity is an integer describing

the 128 possible midi velocity values. Duration is an

integer representing quantized note duration in seconds:

2 Practically, in beam search iteration i, we evaluate the integral of
eq. (4) from 0 to it′.

{0.02, 0.04, ..., 1.0, 1.1, ..., 5.0, 6.0, ..., 19.0}. Timeshift

is an integer encoding the inter-onset intervals (IOI,

i.e., the time durations between subsequent note onsets).

Timeshift is quantized similarly to the duration token,

with the addition of an extra symbol representing a time

shift of zero, allowing the model to understand that notes

less than 0.02 seconds apart are to be played concurrently.

In contrast to the PIA model described in [13], which does

non-causal inpainting, we use a causal Transformer based

on the Perceiver IO architecture [19] and do continuation

generation 3 . We make these modifications such that the

IC calculations ignore future observations. We use the

same pretrained model both as the generator model q and

the critic model p and leave the exploration of other critic

models for future work.

3.2 IIC

The elements involved in computing the IIC are given in

fig. 1. For IIC calculations, we choose to consider only

the surprisal of Pitch and Timeshift tokens, such that the

token’s IC represents the surprisal of pitches and IOI. We

ignore Velocity and Duration tokens because they con-

tribute less to the perception of surprise, being mostly re-

lated to the performance dimensions dynamics and articu-

lation. This is achieved in the IIC calculation by setting

λ(t, i) = 0 for i = 2, 6, 10, ... and i = 3, 7, 11, ... in

eq. (2). We choose f such that the pitch token contributes

to the surprisal function at its note onset time 4 , and the

timeshift token contributes to its surprisal at the onset of

the following note (as an IOI is perceived at the onset of

the next note). The remaining weights are then defined by

the scaled half Hann window

λ(t, i) =

{

ci
1
L
cos2(πt

L
) for 0 < t < L

2 ,

0 otherwise
, (6)

where ci is a weight that takes on two different values for

the pitch and timeshift tokens, respectively. ci is used to

weigh the IC of pitches and timeshifts, respectively. For

both token types to have equal importance, we estimate a

normalization constant empirically by calculating a mean

IC over all tokens of the evaluation dataset. The window

length is chosen to be L = 4 so that the weight is zero after

2 seconds.

3.3 Beam Search Parametrization Study

Using the beam search strategy described in section 2.3,

we run initial experiments to determine the effect of pa-

rameters associated with the beam search on the similar-

ity between generated samples and target curves IC∗ ex-

tracted from real music. Specifically, we randomly select

400 snippets of the MIDI files (10 seconds long) and cre-

ate the IIC curve associated with those snippets. Then, we

generate four new samples using our beam search and eval-

uate the IC deviation between the IIC curve induced by the

3 The model generates sequences using an initial context of real music.
4 The note onset times are found by accumulating the time values as-

sociated with previous Timeshift tokens.
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real data and the generated data. We discretize the integral

in the IC deviation (see eq. (5)) with ∆t = 0.1s.

To investigate the effect of the step size t′, we fix the

number of continuations generated in parallel to k = 16
to reduce computation. To investigate the importance of

the number of parallel generated samples k, we use a fixed

step size of t′ = 0.3s.

We find that in cases where the generation model q and

the critic model p are the same (p = q), it is challenging

to sample a single continuation xi, xi+1, ..., xi+m (using

q) that has a high segment surprisal ∥IIC |
f(xi+m)
f(xi)

∥1 (mea-

sured by p), precisely because the probability of sampling

such a continuation is low.

To sample low-probability tokens more efficiently, we

propose a heuristic that alters the entropy 5 of the gener-

ating distribution H(q) using a temperature parameter dy-

namically set using the IIC. Specifically, in iteration i−1 of

the beam search, we measure IC∗(it′), the target IC at the

time where the generation of the continuations halts next

time, and calculate a target entropy:

Htarget = min

(

IC∗(it′)

CH

, Hmax

)

, (7)

where CH is a constant parameter to be estimated and

Hmax is the entropy of the uniform distribution. We then

fix q’s entropy to the target entropy Htarget by search-

ing for a temperature r such that Htarget = H(q) =
H(softmax (l/r)) with binary search, where l are the log-

its of the neural network. Note that temperature is only

used for the generator q and not for the critic model p.

3.4 Qualitative Evaluation

We conducted an online user study to investigate if the IIC

curves computed on generated and real music correspond

to users’ experience of being musically surprised.

Firstly, we present the participant with a musical section

generated by our method using one of five target curves.

The participant is then tasked to select the IIC curve that

best describes their perceived surprise when listening to the

section. Secondly, we present the user with a segment of

real music and IIC curves extracted from real music, one of

which corresponds to the music segment. The user’s task

is to identify the corresponding curve.

The experiment is conducted on a website that, after an

initial experiment description, asks the user for their years

of musical training (more or less than five years). Then,

it shows an example of a generated piano music section

and the surprisal curve used as a target for the generation

(together with a textual explanation).

The participant is then presented with five pages, like

the one in fig. 2. Each presents a musical section generated

using one of five simple target curves. The participant is

asked to identify which of the five curves they think has

been used to generate the section. The final page contains

a 10-second segment of real piano music from the evalua-

tion set and two IIC curves, one corresponding to the piano

5 Entropy is the expectation of IC.

music and the other to a randomly selected 10-second seg-

ment from the evaluation dataset.

The samples for the first five pages are generated as fol-

lows: As contexts for the model, we select the first 13 mea-

sures of Mozart K.331, 1st mvt. and the first 16 measures

of K.332, 2nd mvt. from the evaluation dataset and gener-

ate 200 samples for every combination of the two musical

contexts and the five IIC curves shown on the page, with

CH = 50, t′ = 0.3s and k = 128 (i.e., the optimal beam

search parameters, as shown in table 1). For each combi-

nation, we then select the 25 samples with the lowest IC

deviation for the user study. For the final page of the user

study related to real performances, we select 300 different

10-second segments from the evaluation dataset and com-

pute the IIC curves. The results of the user study will be

presented and discussed in section 4.2

3.5 Analysis of IIC

As discussed in the introduction, IC and surprisal might

be related to aspects of musical complexity, but learning

effects may lead to a decrease in surprisal in passages

with repeated musical content. To investigate these rela-

tionships, we designed an experiment to determine if the

IIC correlates with harmonic complexity, as quantified by

tonal tension (cloud diameter) [20], where the IIC is calcu-

lated using progressively larger segments of musical con-

text. Tonal tension is calculated for a segment of music by

considering its most dissonant pitch class interval, where

an interval dissonance is measured as the distance between

the interval pitches embedded in a specific Euclidian space

where the position is based on the circle of fifths [21].

We extracted one-second segments centered on the on-

sets of notes in the evaluation dataset. For i = 1, ..., 1000,

we then compute the Pearson correlation coefficient be-

tween the tonal tension and the segment surprisal (see

eq. (3)) of the first i segments within every performance.

In addition, we investigate complexity in terms of note

density, i.e., the number of notes per segment. To do so,

we use the same setup as for tonal tension but count the

number of notes within one-second segments.

Finally, we investigate rhythmical complexity using the

IOI histogram entropy of measures [22]. We choose this

measure over other structural rhythmical complexity mea-

sures [23–28] since it does not assume the rhythm to

be cyclic. We follow the same procedure as mentioned

above, but instead of selecting fixed-sized segments cen-

tered around note-onsets, we select segments of one mea-

sure based on the measure annotations [18]. More specifi-

cally, we match the notes of the performance with its score

notes and extract for each measure: 1) the normalized en-

tropy of the score notes IOI histogram and 2) the segment

IIC of the measure normalized with the length of the mea-

sure. The segment boundaries are estimated by the mean

onset time of the first and last note in subsequent measures.
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Figure 2. Example page of the user study with a generated musical section and five target curves to choose from.

t′ 0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s 1.0s 2.0s

IC dev. 3.63 2.71 2.61 2.72 2.69 2.93 3.03 3.11 3.31 3.90

k 1 2 4 16 32 64 96 128

IC dev. 8.41 5.90 4.36 2.61 2.14 1.89 1.76 1.69

CH 10 20 30 40 50 60 70 80 120 No

IC dev. 8.33 4.11 2.67 2.21 2.15 2.15 2.25 2.45 3.12 2.61

Table 1. IC deviation between target curves IC∗ extracted from real music, and IIC curves from continuations generated

with different beam search parameters.

4. RESULTS

4.1 Beam Search Parameter Study

In table 1, we report the mean IC deviation of samples gen-

erated with different beam search step sizes t′, numbers

of continuations generated in parallel k and CH , constants

used for setting the softmax temperature dynamically. Big-

ger step sizes create longer continuations with high IC de-

viation variance, resulting in worse performance. The low-

est values (t′ = 0.1s, 0.2s) also worsen IC deviation, likely

because sampled notes exceed the timestep, causing inac-

curacies in the next beam search iteration. For the num-

ber of continuations generated in parallel k, we find that

the IC deviation always decreases with higher k. This is

not surprising as the model has more candidate continua-

tions to choose from. The decrease flattens out as seen by

the small IC deviation differences when k ≥ 64. For the

dynamic temperature, we find that CH = 50, 60 reduces

the IC deviation compared to using no temperature scaling

(marked with "No" in table 1).

4.2 Qualitative Results

The user study results reported as a binary classification

of finding the correct curve, among the curves described

in section 3.4, are presented in Table 2. 29 users partic-

ipated, 23 participants had more than 5 years of musical

training, and 6 participants had less than 5 years of ex-

perience. 152 generated samples and 21 samples of real

music were classified in total. Due to the imbalance in the

number of untrained and trained participants and since we

found little difference in the classification performance be-

tween the groups, we combined their results in the table.

The overall F1-score was reported as 0.52 for gener-

ated data and 0.71 for real data, which is reasonably above

the proportions 0.2 and 0.5, being the F1 scores of ran-

dom classifiers, with 5 and 2 classes respectively. The re-

sults for the individual curves show difficulty differences in

classifying the different curve types, with RAMP_DOWN

having the lowest F1-score of 0.41 and STEP_UP having

the highest F1-score of 0.71. We therefore investigate the

confusion of curves in Figure 3. We find that the confusion

of CONSTANT is evenly distributed on all curves, except

for STEP_UP, which is reasonable since CONSTANT does

not share any characteristics with the other curves. We fur-

thermore find that generations that start with the same IIC

value, either high or low, are confused. This is seen by the

confusion of RAMP_DOWN with STEP_DOWN and the

confusion of STEP_UP and RAMP_UP.
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IIC Curves

CONSTANT RAMP_DOWN STEP_UP RAMP_UP STEP_DOWN Gen. all curves Real

F1 0.53 0.41 0.71 0.48 0.49 0.52 0.71

#True 36 34 29 29 24 152 21

#Pred 36 33 31 30 22 152 21

Table 2. Results from the user study reported as F1-score of identifying the: IIC curve used for generation, the IIC curve

of real music.

CONST
ANT

RAMP_D
OWN

ST
EP

_U
P

RAMP_U
P

ST
EP

_D
OWN

Predicted Curve

CONSTANT

RAMP_DOWN

STEP_UP

RAMP_UP

STEP_DOWN

Tr
ue

 C
ur

ve

19 4 1 5 7

4 11 0 3 6

1 4 18 6 0

6 3 3 15 2

6 8 0 4 16

Confusion matrix user study

Figure 3. The confusion matrix for users identifying the

IC∗ curves used to generate the music examples.

4.3 Analysis of IIC

The correlations between IIC and the tonal tension tt, note

density d, and the IOI histogram entropy he were calcu-

lated on the first n segments of the 36 evaluation data

performances as described in section 3.5 and reported in

fig. 4. We report the results for IIC calculated using Pitch

only, Timeshift only, or both token types. For tt, d, and

heTimeshift , the correlations reported were found signifi-

cant using a significance level of 0.05, whereas for hePitch

and heBoth , the correlations are not significant.

The results show a moderate to high correlation of

IIC with all metrics at the beginning of the performances

(when n is small). However, these correlations decrease in

later parts of the performances (when n is high), likely due

to “learning” (simulated by longer context) over time.

The highest correlations are found for note density d.

This may be explained by the definition of IIC (see eq. (2))

as a weighted sum of token ICs since more tokens per seg-

ment simply lead to higher sums.

Considering the different token type combinations, we

find that tt is most correlated with IIC calculated using

only Pitch tokens and he using only Timeshift tokens.

This is reasonable, considering that very dissonant seg-

ments and very complex rhythms tend to be associated

with Pitch and Timeshift tokens, respectively, which are

infrequent in the training dataset, resulting in a high to-

ken IC. Interestingly, tt is also correlated with IIC calcu-

lated using only Timeshift tokens (encoding IOIs), which

100 101 102 103

First n segments

0.0

0.2

0.4

0.6

0.8

Correlation between IIC and musical complexity.

ttPitch

ttTimeshift

ttBoth

dPitch

dTimeshift

dBoth

hePitch

heTimeshift

heBoth

Figure 4. Correlation between IIC and tonal tension tt ,

note density d, and IOI histogram entropy (he).

might stem from the critic model facing greater uncertainty

in predicting any token type when confronted with a highly

harmonic complex context that is infrequent in the dataset.

The curves of Both and Pitch follow each other closely

for total tension and note density, indicating that using both

Timeshift and Pitch tokens does not significantly reduce

the complexity correlations. For rhythmical complexity,

using Both tokens instead of Timeshift tokens alone de-

creases the correlation more.

5. CONCLUSION

In this study, we introduced a novel framework for con-

trolling musical surprisal through Instantaneous Informa-

tion Content (IIC), which maps token-based surprisal to a

continuous time-domain function. Using a beam search

algorithm, we demonstrated that our approach can gener-

ate music that closely follows predefined IIC curves, effec-

tively aligning generated and target surprisal curves.

Our user study confirmed that participants could rea-

sonably identify target IIC curves from generated music,

indicating that our method captures perceptible aspects of

musical surprise. Furthermore, our analysis showed that

IIC correlates with measures of musical complexity such

as tonal tension and note density.

Future work will explore alternative critic models, like

personalized models, trained on music that is familiar to

the user or models with smaller context windows to more

directly control local musical complexity.
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ABSTRACT

Optical music recognition (OMR) aims to convert music

notation into digital formats. One approach to tackle OMR

is through a multi-stage pipeline, where the system first

detects visual music notation elements in the image (ob-

ject detection) and then assembles them into a music nota-

tion (notation assembly). Most previous work on notation

assembly unrealistically assumes perfect object detection.

In this study, we focus on the MUSCIMA++ v2.0 dataset,

which represents musical notation as a graph with pairwise

relationships among detected music objects, and we con-

sider both stages together. First, we introduce a music ob-

ject detector based on YOLOv8, which improves detection

performance. Second, we introduce a supervised training

pipeline that completes the notation assembly stage based

on detection output. We find that this model is able to out-

perform existing models trained on perfect detection out-

put, showing the benefit of considering the detection and

assembly stages in a more holistic way. These findings,

together with our novel evaluation metric, are important

steps toward a more complete OMR solution.

1. INTRODUCTION

Optical music recognition (OMR) focuses on converting

music notation into digital formats amenable to playback

and editing. OMR systems are generally divided into two

categories: end-to-end systems (which directly convert the

image into music notation) and multi-stage systems. Pro-

posed and refined by [1–3], a standard multi-stage system

consists of four stages: preprocessing, music object de-

tection, notation assembly, and encoding. In this study, we

focus on the object detection and notation assembly stages.

MUSCIMA++ [4] suggests representing music notation

as a graph where each pair of musical symbols is linked

by a binary relationship, allowing for clear notation re-

construction. The authors created a dataset of handwritten

scores with a bounding box for each music object and a

human-annotated graph of object relationships in each im-

age. Notation assembly on MUSCIMA++ can be framed

© G. Yang, M. Zhang, and L. Qiu, and Y. Wan, and N. A.

Smith. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: G. Yang, M. Zhang, and L. Qiu, and

Y. Wan, and N. A. Smith, “Toward a More Complete OMR Solution”, in

Proc. of the 25th Int. Society for Music Information Retrieval Conf., San

Francisco, United States, 2024.

as a set of binary classification decisions to predict the pair-

wise relationships between music symbols. Most prior re-

search has explored notation assembly with the assumption

of perfect detection output [5], but such assumptions can

introduce unwanted biases that deteriorate the performance

of the notation assembly system when applied as part of a

pipeline. Pacha et al. [6] evaluate a notation assembler on

realistic detector output, finding some degradation relative

to gold-standard objects, but they do not seek to mitigate

the problem.

To improve notation assembly robustness, we propose

a training method to complete notation assembly on top

of (imperfect) object detection output directly. To have

a strong detector to start with, we train YOLOv8 [7] and

perform a set of preprocessing steps to adapt the model to

the MUSCIMA++ v2.0 dataset. Our detector outperforms

previous detectors on MUSCIMA++ v2.0 [8] by 2.4%, es-

tablishing a solid foundation for notation assembly.

Traditional evaluation methods, which perform notation

assembly over all pairs of ground-truth objects and report

an F1 score or a precision-recall curve, become inade-

quate when the input objects come from imperfect detec-

tion. We propose an end-to-end evaluation metric, called

Match+AUC, that accounts for both detection errors and

assembly errors by first matching detected objects with

their ground-truth counterparts before assessing notation

assembly accuracy. It complements metrics that evaluate

pipeline components individually.

Our code for reproducing all of the experiments

is publicly available at https://github.com/

guang-yng/completeOMR.

2. MULTI-STAGE OMR

We focus on the MUSCIMA++ v2.0 dataset [4] and follow

its multi-stage pipeline for the OMR system. This dataset

includes 140 high-resolution annotated images out of 1000

images from the CVC-MUSCIMA dataset [9]. It contains

91,254 symbol-level annotations and 82,247 relationship

annotations between symbol pairs by human annotators.

These annotations span 163 distinct classes of music sym-

bols. Figure 2 shows an example from this dataset.

As the MUSCIMA++ dataset provides symbol-level

pairwise relationships, it allows study of two stages of the

pipeline: (i) detection and (ii) assembly. In (i), given an

image as input, an object detector is used to extract all mu-

sic symbols in the image, denoted as the set V = {vi}i,
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Figure 1. An overview of our OMR pipeline, highlighting key components: object detection, notation assembly, and

evaluation metric. Detailed explanations of each component can be found in Subsections 3.1, 3.2, and 3.3 respectively.

Figure 2. Example of a music image (binarized) extracted

from the MUSCIMA++ dataset.

where vi = (bi, ci) is a tuple of a bounding box and a

class label. Each pair of music symbols (vi, vj) is then fed

into (ii) the notation assembly model to predict whether or

not there exists a relationship between them. The notation

assembly stage can be framed as an edge prediction prob-

lem where the model needs to output a set of edges E to

get a directed graph G = (V,E). MUSCIMA++ defines a

grammar over all possible music symbol classes so that the

direction of an edge is uniquely determined by the class la-

bels (ci, cj) of the vertices (vi, vj). Consequently, the edge

prediction problem can be reduced to predicting an undi-

rected graph. The authors of [4] argue that such a graph

G enables straightforward reconstruction of the full sym-

bolic music notation, so we do not consider the decoding

process after (i) and (ii) in this work.

In previous works, the two stages are considered sep-

arately, either focusing on object detection, without fully

analyzing its effect on downstream notation assembly [8,

10, 11]; or focusing on notation assembly and assuming

perfect detection input during training [5, 6]. This raises

the question of whether the best object detector is a good

fit for the best notation assembly model. To investigate, we

developed an end-to-end metric that evaluates the perfor-

mance of the entire pipeline, as explained in Section 3.3.

We found that, compared with our approach where both

stages are considered together—specifically, where the no-

tation assembly model is trained using the output of the

object detector—treating the two stages separately leads to

poorer results.

3. METHODOLOGY

We describe our method for each stage, and how we

connect the two stages together and evaluate the entire

pipeline. Figure 1 shows an overview of our methods.

3.1 Music Symbol Detection

A music object detection system analyzes an image to

identify each music object it contains, providing both

the bounding box and class label for every detected ob-

ject [10]. Traditionally, this process would begin with an

initial stage of image preprocessing, typically aimed at re-

moving staff lines, followed by a second stage focusing on

the segmentation and classification of symbols. Thanks to

recent advances in computer vision, there are mature so-

lutions for image preprocessing and staff line removal, al-

lowing us to treat it as a largely solved problem [12–14].

In our case, MUSCIMA++ provides us with staff line re-

moved images as input, so we directly build our detectors

on top of these images.

Following the work of Zhang et al. [8], we adopted

a convolutional neural network-based approach for page-

level object detection of handwritten music notes, opt-

ing for this approach over segmentation-based methods,

because segmentation-based methods often struggle with

overlapping symbols. We choose YOLOv8 [7], which is

the latest version of YOLO [15], due to its superior per-

formance on traditional computer vision tasks. Compared

to YOLOv4 [16], which is used by [8], YOLOv8 has a

new loss function and a new anchor-free detection head,

achieving higher performance on various detection tasks.

YOLOv8 has not yet, to our knowledge, been applied to

OMR. Furthermore, since the images of handwritten music

notation in MUSCIMA++ have high resolution and mu-

sic objects are drastically different from the objects con-

sidered in computer vision research, directly applying the

training strategy of YOLOv8 doesn’t work well. We fol-

low [2, 8, 17] to crop images into small snippets during

the training stage to alleviate this issue. Specifically, we

randomly crop the images during training and compactly

segment the image during inference. More details are pre-
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sented in Section 4.1.2.

The MUSCIMA++ v2.0 dataset includes 163 object

classes in total, covering a large variety of notation. How-

ever, most of the classes scarcely appear and barely affect

the replayability of the OMR output (e.g., the construc-

tion of a MIDI file encoding the score). The distribution

of classes is shown in Figure 3; 48 classes never appear in

the entire dataset. Given this, we manually remove these

48 classes along with some other rare classes, leading to a

subset of 73 attested “essential” classes that are observed

in the dataset. To get a direct comparison with previous

methods, while also keeping a focus on essential classes,

we report results using both the full class set and essential

classes only. Meanwhile, we also report results on the 20

“primitive” classes selected for evaluation by [8].

3.2 Notation Assembly

The notation assembly model takes a pair of nodes as in-

put, and gives a binary output indicating whether there is a

relationship between them. An intuitive method is to first

concatenate the features of two nodes, and then pass the

pair as a single feature vector through a series of layers of

a multi-layer perceptron (MLP). A sigmoid function σ is

applied at the end to output the probability that there exists

a relationship.

êij = σ(ϕMLP([vi, vj ])) (1)

As notation assembly is essentially binary classifica-

tion, we use binary cross-entropy as our loss function:

LBCE(êij) = −eij log(êij)− (1− eij) log(1− êij).

We adopt the input feature design in [5], where each vi
is represented by its 4-dimensional bounding box and the

class label. The class label is passed to an embedding layer

with x dimensions. Therefore, the input to MLP will be a

(4 + x)× 2 dimensional vector.

Existing work assumes perfect detection output; there-

fore, the input bounding box and class label are the ground-

truth information. While previous work has attempted to

manually perturb the bounding box as a test of robust-

ness, such perturbations don’t reflect the kind of errors that

might arise in a practical object detector.

To ensure our notation assembly system can adapt to

errors introduced in the detection stage, we propose a su-

pervised training pipeline that directly trains the assem-

bly model on detection output Ṽ . Since most of the time

Ṽ ̸= V , we can’t directly use the ground truth E as the

supervision signal.

To deal with this issue, we construct a maximum weight

matching M in the bipartite graph GM = (Ṽ , V ) and build

Ê for supervising our notation assembly model. We de-

scribe the detail of our matching procedure in Section 3.3,

where it is also employed in evaluation. We adopt the

edges from the ground truth according to our matching.

Given a pair (ṽi, vk) ∈ M and an edge (vk, vh) ∈ E, we

add (ṽi, ṽj) to Ê if (ṽj , vh) ∈ M . Our method essentially

builds a training set for the detection output that is in the

same format as the ground-truth, allowing seamless train-

ing and evaluation.

3.3 End-to-End Evaluation

The main challenge of OMR evaluation is finding the edit

distance between two music scores under some particu-

lar representation (e.g., XML format [18]). Hajič [19]

argued that intrinsic evaluation is needed to decouple re-

search of OMR methods from individual downstream use-

cases, since specific notation formats change much faster

than music notation itself. Some works have taken steps

to analyze the complexity of standard music notation [20]

and propose common music representation formats [21].

As a general system consisting several modules, we

seek to also evaluate our OMR pipeline holistically, with-

out a specific focus on what the downstream processing

will be. We therefore propose a novel matching-based

evaluation metric to assess predictions that include errors

from the detection stage. For the same reason we had to

adapt ground-truth edges to create training data for the

notation assembly model (Ṽ ̸= V ), we cannot straight-

forwardly use the ground-truth graph to evaluate notation

assembly. Our metric finds a matching between a test in-

stance’s predicted objects and those in the ground-truth ob-

ject detection, and then uses this as a bridge to evaluate the

edges returned by the notation assembly module.

The results reported by Pacha et al. [6] are the sole

benchmark for assessing a notation assembly model using

detected symbols. To address the matching issue between

Ṽ and V , Pacha et al. employ a rule-based method, consid-

ering two objects identical if they belong to the same class

and their intersection over union is at least 50%. However,

this greedy matching approach is inadequate, as inaccura-

cies in symbol detection cannot be compensated for by the

notation assembly model. Furthermore, Pacha et al. use

conventional precision/recall metrics with a hard decision

boundary, which fails to capture the overall performance
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dicted graph, alongside ground truth. At the right is

the constructed bipartite graph (zero-weight edges not

shown). Thick edges represent the matching function

M induced by the matching algorithm. In our nota-

tion, E = {(v2, v1), (v3, v1), (v4, v1)} and the match-

ing function maps v1 to ṽ1, v2 to ṽ2 and v4 to ṽ4.

Therefore, Ê = {(ṽ2, ṽ1), (ṽ4, ṽ1)}. Because Ẽ =
{(ṽ2, ṽ1), (ṽ2, ṽ4), (ṽ3, ṽ1), (ṽ4, ṽ1)}, we get a precision of

0.5 and recall of 1.0.

of the model comprehensively. To resolve these issues, we

propose a complementary metric based on a global optimal

matching and area under the precision-recall curve.

Formally, we denote Ṽ = {ṽ1, ṽ2, · · · , ṽñ} as the set of

symbols obtained from an object detection model, where

ṽi = (b̃i,pi) is a tuple of a bounding box b̃i ∈ R
4 and

a probability distribution vector pi ∈ R
C over all sym-

bol classes. A notation assembly prediction on Ṽ would

be an edge set Ẽ = {ẽ1, ẽ2, · · · , ẽm̃} where each edge

ẽi is a tuple of two vertices. Similarly, we denote the

ground truth notation graph as G = (V,E) with V =
{v1, v2, · · · , vn}, vi = (bi, ci), E = {e1, e2, · · · , em},

where bi ∈ R
4 is a bounding box and ci ∈ {1, 2, · · · , C}

is a symbol class label.

We first construct a complete weighted bipartite (Ṽ , V )
where the weight for edge (ṽi, vj) is wij = IoU(b̃i,bj) ·
pi,cj . Here, IoU is the intersection-over-union between the

area occupied by the two boxes, defined as:

IoU(bi,bj) =
Area(bi ∩ bj)

Area(bi ∪ bj)
.

Based on this bipartite graph, we find the maximum

weighted matching M using the implementation described

in [22] and filter the “weak" matching edges with weight

wij less than a threshold Tmatch to get the matching func-

tion M : V → Ṽ ∪ {∅}:

M(vj) =

{

ṽi, if (ṽi, vj) ∈ M and wij > Tmatch,

∅, otherwise.

Here, Tmatch is a filtering threshold for matching and we

set it to 0.05 without tuning.

After getting the matching function, the ground truth

assembly edges are naturally mapped back to edges be-

tween predicted vertices. The mapped edge set Ê =
{(M(vi),M(vj)) | (vi, vj) ∈ E,M(vi) ̸= ∅,M(vj) ̸=
∅} represents a ground truth edge set on detected vertices,

which can be used to evaluate predictions Ẽ to get a preci-

sion and recall. An example is shown in Figure 4.

Most notation assembly models predict a probability of

the existence of an edge (vi, vj), and the probability is

further compared with a threshold Tpredict to determine

whether (vi, vj) belongs to the prediction set Ẽ. By ad-

justing the model prediction threshold Tpredict, we can get

a series of predictions {Ẽ1, Ẽ2, · · · } and therefore derive a

series of precision-recall pairs, which are used to estimate

the area-under-the-curve (AUC) score. We refer to the full

evaluation metric as “Match+AUC.”

“Match+AUC” is an end-to-end evaluation metric for

the OMR pipeline with following advantages:

• “Match+AUC” accounts for model performance in both

the object detection and notation assembly stages. To be

specific, given an object detector’s output, a notation as-

sembly model will achieve a higher score if it predicts no

edges among redundant objects, since connecting redun-

dant nodes into the assembly graph would greatly affect

the final output music score. Also, for the same assembly

model, a worse object detector would generate a large

amount of redundant and inaccurate objects, making it

very hard for the assembly model to distinguish them.

• Instead of a hard rule-based matching used in past meth-

ods, “Match+AUC” creates a comprehensive match-

ing among detected symbols and ground truth symbols,

making the final score more accurate and sensitive.

• “Match+AUC” evaluates the model using the area un-

der the precision-recall curve, which summarizes perfor-

mance across a range of threshold choices that could be

made by a downstream module or a system user.

We believe that our novel “Match+AUC” is a compelling

tool for analyzing OMR pipelines that is complementary

to existing approaches.

4. IMPLEMENTATION DETAILS

4.1 Music Symbol Detection

4.1.1 Model Details

We finetune the “large” version of YOLOv8 (YOLOv8l),

an object detection model pre-trained on the COCO

dataset [23], on MUSCIMA++ v2.0 for music object de-

tection. The model consists of 43.7M parameters and is

capable of detecting object bounding boxes and generating

corresponding class distributions. The input image size of

our model is set to 640.

4.1.2 Training

We used the MUSCIMA++ v2.0 dataset to train and evalu-

ate the music symbol detection model [4]. The images are

binarized (pixels are 0/1-valued) and in a size of approxi-

mately 3500 × 2000 pixels. For simplicity, we use images

with staff lines removed. Additionally, following the ex-

act method described in [6], we split the dataset into 60%

training data, 20% validation data, and 20% test data. To

effectively train YOLOv8 on these dense images involv-

ing many small annotations, which include augmentation

dots and piano pedal markings, we have to reduce the im-

age size. Therefore, following the methods used by [8],
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Figure 5. Example of music symbol detection segments

for inference. The thick red line indicates the primary

cropped area, while the thick blue line represents an ex-

tended cropped section designed to include partial symbols

that may extend beyond the main cropped area. For better

visualization, we only show the extended area of one im-

age crop. Image crops on the right and bottom border of

the page are padded to fit into YOLOv8.

given a large music score image, we randomly sample 14

1216× 1216 crops and further resize them in to 640× 640
to fit the YOLOv8 input requirement.

We fine-tune the YOLOv8 model for 500 epochs with

a batch size of 8. We use the AdamW optimizer with a

learning rate of 5.5×10−5 and a momentum of 0.9, which

are automatically set by the YOLOv8 codebase [7]. During

training, we use the early stopping strategy with a patience

of 100 epochs. We keep the checkpoint with the highest

validation performance as our final model.

4.1.3 Inference

Since our detector is trained on cropped data, during the

inference stage, we also need to segment the large im-

ages into smaller segments. However, partial objects at

the edges of these crops would be hard to detect since the

model can’t see the full object. To resolve this issue, we

extend every crop with a margin, which serves as a context

for each image. The cropping is visualized in an example

in Figure 5. We then perform symbol detection on each ex-

tended crop and consolidate the detection results. To make

sure the objects on the edges are only detected once, over-

lapping bounding boxes are filtered based on their Inter-

section over Union (IoU) overlap rate.

4.2 Notation Assembly

4.2.1 Model Details

We use a 4-layer MLP for ϕMLP, where the two hidden

layers both have hidden dimension 32. The embedding di-

mension for the symbol class is also set to be 32. We use

ReLU [24] as the activation function.

4.2.2 Training

Again we used the MUSCIMA++ v2.0 dataset to train and

evaluate the notation assembly model [4]. Following previ-

ous work [5, 6], we balance the positive and negative pairs

in the training set by filtering out the pairs of nodes that

are too distant from each other since they are unlikely to

be connected. Before feeding the bounding box coordi-

nates to the model, we normalize them by the image width

while keeping the aspect ratio fixed, so that all of the x-

coordinate values fit in the range of [−1, 1].
We train our models for 200 epochs with batch size 256,

and use Adam optimizer with a learning rate of 0.0001. We

evaluate our model every 20 epochs and pick the check-

point with highest validation Match+AUC as our final

model. All of the experiments are conducted with three

different random seeds.

In our experiments, we consider three methods for train-

ing the notation assembly model:

• A baseline, which uses the ground-truth object lists pro-

vided in the MUSCIMA++ dataset to train the notation

assembly model. This is the setup used in [5].

• A pipeline, which runs the music object detection model

on the images to construct the training set for the nota-

tion assembly model, as discussed in Section 3.2.

• A “soft” variant of the pipeline, where we replace the

embedding layer for the symbol class with a linear layer

that maps the symbol class probabilities outputted from

the music object detection model to a 32-dimensional

vector. Note that this linear layer will have the same pa-

rameter count (number of classes multiplied by the hid-

den dimension) as the replaced embedding layer.

4.2.3 Inference

Since we consider both stages together, the input to the no-

tation assembly stage should correspond to the output of

the object detection stage. As described in Section 3.2, the

detection output is converted into (V ′, E′). We then pass

each pair of nodes to the notation assembly model, and

feed the result into our evaluation function. We hypothe-

size that this realistic setup introduces a distribution shift

to the model that was trained on the ground-truth objects

and we will make the comparison in Section 5.

5. EXPERIMENTS

In this section, we first report the performance of our mu-

sic symbol detection model. Then, we compare the per-

formance of different notation assembly training pipelines

using the evaluation metric described in Section 3.3.

5.1 Music Symbol Detection

Following the evaluation protocols of the Pascal VOC chal-

lenge [25], which is used by previous methods [8, 10, 11],

we present both the mean average precision (mAP) and the

weighted mean average precision, as detailed in Table 1.

To elaborate, a predicted bounding box b̃i is thought to

be a true positive only if IoU(b̃i,bj) > 0.5 for some

ground truth box bj . Then, average precision (AP) com-

putes the area under the precision-recall curve, providing

a single value that encapsulates the model’s precision and

recall performance. The weighted/unweighted mean Aver-

age Precision (mAP) extends the concept of AP by calcu-

lating the average AP values across multiple object classes,
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Models # Classes mAP (%) Weighted mAP (%)

YOLOv8 + cropping (ours) 163 (all) 84.79 92.67
YOLOv8 + cropping (ours) 73 (essential) 85.67 89.96

YOLOv8 + cropping (ours) 20 94.22 95.72

YOLOv4 + CBAM [8] 20 91.8 94.56†

PP-YOLO-V2 [8] 20 91.1 –
YOLO-X [8] 20 90.4 –
YOLOv4 [8] 20 89.1 –
Faster R-CNN [8] 20 86.2 –

Table 1. Object detection results on test set. “mAP” is mean average precision. We compared it with results reported

by [8]. The lower block is included for comparability with the 20-class setting from past work. †: Value computed from

average precision per class reported in [8].

Models # Classes
Match+AUC

Average S.D.

MLP baseline (train on ground truth objects) 73 92.44± 0.24

+ pipelined training (ours) 73 93.09± 0.16

+ pipelined training + soft label (ours) 73 95.00 ± 0.18

MLP baseline (train on ground truth objects) 163 83.97± 3.04

+ pipelined training (ours) 163 85.76± 0.42

+ pipelined training + soft label (ours) 163 87.10 ± 1.19

Table 2. Multi-stage system results (test set) using our Match+AUC metric.

taking into account the number of occurrences of each

class in a weighted or unweighted manner. Our experi-

ments are conducted with the MUSCIMA++ v2.0 dataset,

while the authors of most previous methods [10, 11] have

only tested their models on MUSCIMA++ v1.0. This in-

troduces a misalignment between our results. Thanks to

Zhang et al. [8], who provided reproduced results of most

previous methods on MUSCIMA++ v2.0, we directly re-

port their reproduced results in the table.

Our model outperforms Zhang et al.’s method on their

selected 20 classes by 2.4% (mAP, absolute), likely due to

the improvements in YOLOv8 compared to v4.

5.2 Notation Assembly

In this section, we complete the multi-stage OMR system

by chaining different notation assembly models to the best

music object detection model we trained in Section 5.1.

We use the metric we designed in Section 3.3 to report the

end-to-end performance of the OMR system.

In Table 2, we compare the notation assembly systems

trained with baseline training, pipelined training, and soft

pipelined training as described in Section 4.2. We found

that pipelined training improves the Match+AUC score by

0.65% (essential) and 1.79% (all), absolute, and incorpo-

rating the soft class label further increases the performance

by 1.91% (essential) and 1.34% (all), absolute. Training

the notation assembly model on the detection model output

and using the soft label probability to represent the class in-

formation, we are able to improve the Match+AUC of the

OMR system by 3.13%. We hypothesize that pipelined

training helps the assembly model adapt to any inaccu-

racies our object detector has, and incorporating the soft

class labels enables the assembly model to consider alter-

native class labels, not just those chosen by the object de-

tector.

6. CONCLUSION AND FUTURE WORK

In our study, we reconsider a multi-stage OMR pipeline

built and evaluated using the MUSCIMA++ dataset. We

first propose a state-of-the-art music symbol detector, serv-

ing as a strong preprocessor for the notation assembly

stage. We then propose a training pipeline in which no-

tation assembly is learned from imperfect object detection

outputs (rather than ground-truth objects), which leads to

higher performance. Finally, we introduce an evaluation

score, Match+AUC, which can jointly consider the error in

both detection and assembly stages, allowing evaluation of

the two stages together.

Match+AUC is not restricted to being an evaluation

metric. Future research could explore the application of

Match+AUC within a joint training objective function for

both the object detection and notation assembly stages.

This approach would enable the entire model to be op-

timized for retrieving a globally optimal music notation

graph.

In this study, we focused on the object detection and no-

tation assembly stages in the OMR pipeline. Progress on

the encoding stage is also required for a complete OMR

solution; while the music notation graph arguably contains

the essential information for recovering a score [4], con-

version of such graphs into standard formats remains un-

solved.
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[19] J. Hajič, Jr., “A case for intrinsic evaluation of optical

music recognition,” International Workshop on Read-

ing Music Systems, 2018.

[20] D. Byrd and J. Simonsen, “Towards a standard

testbed for optical music recognition: Definitions,

metrics, and page images,” Journal of New Music

Research, vol. 44, 07 2015. [Online]. Available:

https://doi.org/10.1080/09298215.2015.1045424

[21] P. Torras, S. Biswas, and A. Fornés, “The common op-

tical music recognition evaluation framework,” arXiv

preprint arXiv:2312.12908, 2023.

[22] D. F. Crouse, “On implementing 2D rectangu-

lar assignment algorithms,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 52,

no. 4, pp. 1679–1696, 2016. [Online]. Available:

https://doi.org/10.1109/TAES.2016.140952

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,

D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft

COCO: Common objects in context,” in Computer

Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele,

and T. Tuytelaars, Eds. Cham: Springer International

Publishing, 2014, pp. 740–755. [Online]. Available:

https://doi.org/10.1007/978-3-319-10602-1_48

[24] A. F. Agarap, “Deep learning using rectified linear

units (ReLU),” 2019. [Online]. Available: https:

//doi.org/10.48550/arXiv.1803.08375

[25] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.

Williams, J. Winn, and A. Zisserman, “The pascal

visual object classes challenge: A retrospective,”

International Journal of Computer Vision, vol. 111,

no. 1, pp. 98–136, Jan. 2015. [Online]. Available:

https://doi.org/10.1007/s11263-014-0733-5

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

937



AUGMENT, DROP & SWAP:
IMPROVING DIVERSITY IN LLM CAPTIONS FOR EFFICIENT

MUSIC-TEXT REPRESENTATION LEARNING

Ilaria Manco

Queen Mary University of London

i.manco@qmul.ac.uk

Justin Salamon

Adobe Research

salamon@adobe.com

Oriol Nieto

Adobe Research

onieto@adobe.com

ABSTRACT

Audio-text contrastive models have become a powerful ap-

proach in music representation learning. Despite their em-

pirical success, however, little is known about the influence

of key design choices on the quality of music-text repre-

sentations learnt through this framework. In this work, we

expose these design choices within the constraints of lim-

ited data and computation budgets, and establish a more

solid understanding of their impact grounded in empir-

ical observations along three axes: the choice of base

encoders, the level of curation in training data, and the

use of text augmentation. We find that data curation

is the single most important factor for music-text con-

trastive training in resource-constrained scenarios. Moti-

vated by this insight, we introduce two novel techniques,

Augmented View Dropout and TextSwap, which increase

the diversity and descriptiveness of text inputs seen in

training. Through our experiments we demonstrate that

these are effective at boosting performance across different

pre-training regimes, model architectures, and downstream

data distributions, without incurring higher computational

costs or requiring additional training data.

1. INTRODUCTION

Music-text embedding models have become a cornerstone

of music information retrieval (MIR), facilitating core

tasks that underpin music organisation and search, such as

music tagging and cross-modal retrieval [8, 11, 14, 26, 27].

At a high level, these are multimodal models that produce

aligned audio-text representations by learning to project

high-dimensional data from the audio and text modalities

onto a lower-dimensional joint representation space whose

structure encodes semantic similarity. The canonical learn-

ing framework to obtain such embeddings is dual-encoder

multimodal contrastive learning, first popularised by CLIP

[20] in the image domain, and soon after adopted in most

areas of machine perception, including audio [9, 29] and

music processing [8, 11, 14].

© I. Manco, O. Nieto, and J. Salamon. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: I. Manco, O. Nieto, and J. Salamon, “Augment, Drop &

Swap: Improving Diversity in LLM Captions for Efficient Music-Text

Representation Learning”, in Proc. of the 24th Int. Society for Music

Information Retrieval Conf., Milan, Italy, 2023.

Driven by the empirical success of this framework, a

recent line of research has attempted to analyse its inner

workings from a theoretical perspective [18, 36] or eluci-

date which aspects are most responsible for its effective-

ness in visual models [34, 35]. However, within the au-

dio domain, our understanding of multimodal contrastive

learning remains limited [8], with sparse effort into ablat-

ing design choices, or training data- and compute-efficient

models. Among prior work that takes a step in this direc-

tion, the focus is mostly on comparing backbone models

[8, 11, 29], but without considering other important factors

such as model initialisation or training data. Additionally,

audio-text learning poses specific challenges in the context

of music, as the amount of data with aligned audio and

text is typically orders of magnitude smaller than in other

domains, where large-scale web-crawled data is common-

place. This makes transferring insights from other areas of

representation learning particularly challenging.

In this paper we present a deep dive into music-text con-

trastive learning and its use in text-based music retrieval,

adopting a practical perspective and thoroughly investigat-

ing the impact of major design choices. In particular, we

study the problem of how to train this family of models un-

der different resource-constrained scenarios (with respect

to data and compute), and how to meaningfully evaluate

them for real-world use. In brief, our contributions are

as follows: (i) we systematically compare backbone en-

coders in parameter-efficient settings, and demonstrate that

we can leverage this to enable multilingual support for the

first time and without additional training data (Section 3);

(ii) we study the trade-off between training dataset size and

quality, showing that the impact of data curation outweighs

that of scale (Section 4); (iii) building upon these find-

ings, we propose a training recipe, Augment, Drop & Swap

to construct more effective contrastive views (via Aug-

mented View Dropout) and improve model robustness (via

TextSwap) with no extra computational overhead (Section

5). Incorporating the proposed pipeline within variants of

the music-text contrastive framework under different com-

putational constraints, we show that this consistently im-

proves over prior work, establishing a new state-of-the-art

on three benchmark datasets. Finally, we conduct the first

listening study to evaluate text-based music retrieval, fur-

ther corroborating our automatic evaluations and under-

scoring the importance of accounting for distribution gaps

when measuring performance.
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Figure 1: Overview of our approach. We study the role of encoders and data in music-text learning and propose a text

augmentation pipeline, Augment, Drop & Swap, to increase data diversity and introduce hard negatives during training.

2. STUDYING THE DESIGN SPACE OF

MUSIC-TEXT EMBEDDING MODELS

We explore two major factors in the design of music-text

embedding models: architecture and data. While we ac-

knowledge that there are others, such as training proce-

dure, and alternative designs, we choose to restrict our fo-

cus exclusively to these two axes and to dual-encoder mod-

els, due to their predominance in the field. In the rest of the

paper, we always refer to this family of models when dis-

cussing music-text embeddings or music-text models, and

interchangeably use the terms text and language.

The typical design of a music-text embedding model

consists of the following components: two modality-

specific base encoders which separately process inputs of

the text and audio modality to an intermediate represen-

tation space; a fusion or projection module responsible for

mapping the intermediate representations to the shared em-

bedding space; and a contrastive loss, through which the

model parameters are optimised to encode semantically

related audio and text inputs within the same neighbour-

hood of the embedding space, while pushing apart unre-

lated items. We provide an overview of this design in Fig-

ure 1. While prior works have converged towards standard

choices for the last two components, it remains unclear

how to reliably choose unimodal encoders among several

existing options. We look at this in Section 3, before dis-

cussing the role of training data in Section 4.

2.1 Our experimental approach

Before delineating our areas of focus, we outline here the

standard experimental setup used in our experiments.

Projection module We design our experiments to com-

pare variations of the dual-encoder contrastive architecture

described above, varying several components, but keep-

ing two fixed throughout: the projection module and the

loss. Similarly to [16, 24], we adopt a two-head, two-

layer Transformer as our projection module. From a se-

quence of 256-dimensional embeddings produced by each

projection head, we employ the [CLS] token embedding

as the global representation for each branch. For ease of

reference, we denote this model architecture by DuET-MC

(Dual-Encoder Text-Music Contrastive).

Training We optimise our network via the multimodal

formulation of the InfoNCE loss [19], using cosine sim-

ilarity between the l2-normalised projection embeddings

from the audio and text branch as our scoring function,

and a temperature parameter of 0.03. As part of our train-

ing procedure, we use the Adam optimizer with decoupled

weight decay of 0.05, varying our learning rate through a

cosine decay schedule from its peak value of 1e-3, after a

linear warm-up of 5 epochs. We train on 8 A100 NVIDIA

GPUs, with an effective batch size of 1024 or 2048 based

on memory requirements, for a maximum of 100 epochs,

with early stopping based on the validation loss. Unless

otherwise specified, our default training data is a corpus

of licensed instrumental music with high-quality, manually

curated genre, mood, and instrument tags, which we refer

to as MusicTextHQ. For training, we select a subset to-

talling a duration of 100 hours, and augment tags into cap-

tions following our data augmentation strategy described

in Section 4.

2.2 Evaluation

We evaluate all our models on text-based music retrieval,

as this represents the most prominent task for music-text

embedding models and has been shown to correlate to per-

formance on other tasks [11, 14]. Retrieval is performed

by ranking all audio clips in the dataset by decreasing co-

sine similarity of their embedding with the embedding of a

text query. From this, we compute Recall@k (R@k), the

average number of times the target appears within the top-

k retrieved items, and Median Rank (MR). To normalise

performance scores by the different dataset sizes, we re-

peat this procedure on random subsets of 500 items, and

report the average value for each metric. When reporting a

single metric, we always refer to R@10.

Datasets In order to robustly measure performance

across our experiments, we adopt a multi-dataset evalua-

tion suite comprising three public datasets containing au-

dio tracks paired with human-written captions: YT8M-

MusicTextClips (MTC) [16], MusicCaps [2] and Song De-
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Dataset Hours* Tags Captions

Training
LP-MusicCaps [7] (A) 50 Human Synthetic
MusicTextHQ (B) 100 Human Synthetic
YT8M-MV [1] (C) 270 Synthetic Synthetic

Evaluation
YT8M-MTC [16] 8 - Human
MusicCaps [2] 8 - Human
Song Describer [15] 2 - Human

Table 1: Overview of the datasets used in our experi-

ments. *Hours denotes the audio duration used in training.

Encoder # Params Model version

Audio

HTS-AT [5] 30M AudioSet
1

MERT [33] 330M MERT-v1-330M

Text
RoBERTa [13] 125M roberta-base

CLIP-T [20] 151M clip-vit-base-patch32

T5 [21] 11.3B flan-t5-xx

mT5 [30] 13B mt5-xx

Table 2: Audio and text encoders we compare in our ex-

periments on the impact of encoder backbones (Section 3).

scriber (SDD) [15]. These all represent out-of-distribution

data (see Table 1), with different degrees and types of dis-

tribution shifts in both the audio and text modality. For ex-

ample, MTC and MC both contain 10-second audio clips

from YouTube videos, but they differ significantly in their

captions, with respect to content, descriptiveness and even

text length [15]. Audio in the SDD consists instead of mu-

sic recordings from the music platform Jamendo [3], while

captions describe much longer audio segments.

3. THE ROLE OF ENCODER BACKBONES

We experiment with two audio encoders, HTS-AT [5] and

MERT [33], and three text encoders, RoBERTa [13], the

text encoder from CLIP [20] (CLIP-T), T5 [21] and mT5

[30]. We choose these either because they represent the

state of the art in their respective tasks, or because they

have been previously used in contrastive audio-text learn-

ing, thus allowing for direct comparison with prior work.

3.1 Encoders: initialization and freezing

In this set of experiments, our goal is to study parameter-

efficient configurations of existing audio and text encoders,

training only a subset of the model weights. The motiva-

tion for exploring this setting is threefold: freezing part of

the model lowers the memory budget and training time,

it avoids catastrophic forgetting [17], and it reduces the

risk of overfitting in data-constrained scenarios. To fulfil

these requirements, we do not consider end-to-end finetun-

ing, and instead focus on leveraging pre-training, locking

the audio and text encoders based on their parameter size.

1 We use the HTSAT_AudioSet_Saved_6 checkpoint of HTS-AT
trained on AudioSet from the official repository.

Figure 2: Retrieval performance (R@10) of differ-

ent combinations of audio and text encoders compared

through the lens of our DuET-MC framework.

Specifically, we keep all text encoders frozen, as these all

count over 100M parameters, as shown in Table 2, and only

train the full audio encoder, both with and without general-

audio pre-training when using HTS-AS, due to its smaller

size. When using MERT, we keep the encoder frozen but

train a learnable aggregator over the hidden states of each

layer, implemented as a 1D convolutional layer, to obtain

audio representations that capture the different levels of ab-

straction encoded at different depths of the network [33].

Results From Figure 2 we first observe that, under the

constraints described above, the overall best configuration

is given by MERT and CLIP-T. We attribute this to two

main reasons: with regards to the audio branch, the supe-

rior performance exhibited by MERT suggests that a larger

model capacity and stronger music prior may be beneficial

to music-text alignment; with regards to the text branch,

while all encoders are characterised by large-scale pre-

training, CLIP-T stands out as the only model with mul-

timodal capabilities. Although this is somewhat surpris-

ing, as CLIP is pre-trained on image-text pairs, we note

that prior work has also shown that it can be successfully

transferred to the audio and music domains [6, 16, 28, 32].

Secondly, when using MERT with any of the text encoders

considered, we find that we can train less than 1% of the to-

tal amount of weights (∼ 3M making up the projection and

aggregation layers) without loss of performance compared

to current state-of-the-art models (shown later in Table 4).

This demonstrates that we can successfully align locked

text representations to the audio modality through light-

weight music-text contrastive learning, confirming that our

encoder locking strategy is effective when leveraging pow-

erful music-specific pre-training, in line with similar find-

ings in the visual domain [35]. With regards to the audio

branch initialization, comparing the two variants of HTS-

AT, we find that general-purpose audio pre-training can

give a slight advantage over training from scratch, but this

benefit is not consistent across the different text encoders

HTS-AT is paired with. In the rest of the paper we fix the

encoder configuration to locked MERT + locked CLIP-T

in all experiments, unless otherwise specified.
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Language
R@10

YT8M-MTC MusicCaps Song Describer

English 10.43 16.00 19.00
German 9.90 13.28 18.00
French 11.71 12.32 15.40
Italian 10.43 13.68 15.80

Spanish 11.60 13.48 18.40

Table 3: Multilingual retrieval performance.

3.2 Supporting retrieval in multiple languages

Due to a lack of data in different languages, music-text

modelling has so far exclusively focussed on English.

Real-world applications for music-text embeddings, how-

ever, can greatly benefit from the support of multiple lan-

guages. To address this limitation, we explore the use of

pre-trained locked encoders, similarly to Section 3.1, this

time adopting mT5 [30], a multilingual text-to-text Trans-

former model, as our text encoder. To evaluate multilingual

performance, we choose a subset of four languages, Ger-

man, French, Italian and English, and translate our eval-

uation datasets via GPT3.5-turbo [4]. In Table 3, we

show that this approach provides a viable solution to text-

based retrieval in multiple languages while using only En-

glish text paired with music in training and with only a

minor drop in performance compared to English.

4. THE ROLE OF TRAINING DATA

Having established best practices with respect to choosing

audio and text backbones, we now shift our attention to the

training data. As widely acknowledged in the literature [7,

8, 14], a major limitation in training music-language mod-

els is the lack of large public datasets with paired audio-

text data. To circumvent this issue, a number of works

have proposed to employ large language models to aug-

ment text data more commonly found in music datasets,

such as categorical labels, metadata and tags, into full nat-

ural language sentences, corresponding to pseudo-captions

[7, 10, 16]. In the next section we present our investigation

of the impact of tag-to-caption augmentation.

4.1 Tag-to-caption augmentation via LLMs

Following [16], we leverage the in-context learning abil-

ity of LLMs via few-shot prompting, and adopt a simi-

lar approach to augment tags into captions for our train-

ing dataset MusicTextHQ. For this, we use BLOOM-176B

[23], a competitive open-access LLM trained on responsi-

bly sourced data. Differently from [16], we do not employ

synthetic tags, but use tags provided by expert annotators.

We compare this to training on LP-MusicCaps-MTT [7]

(LP-MusicCaps for short), a dataset obtained via a simi-

lar approach, where tags from the MagnaTagATune [12]

dataset are augmented into captions via GPT3.5-turbo.

To measure the impact of tag-to-caption augmentation, we

train three variants of our model on each dataset, varying

pcap, the probability of selecting captions over tags as the

text input for each training pair.

Figure 3: The effect of varying pcap, the probability of

swapping tags with captions. On the y-axis, we show the

relative change in performance compared to pcap = 0.

Results Results are shown in Figure 3, where we com-

pare the effect of gradually shifting from tags to captions

in the two training datasets considered. We first note that

introducing tag-to-caption augmentation for at least a por-

tion of the training data (pcap = 0.5) leads to an improve-

ment regardless of training dataset. Interestingly, unlike

in MusicTextHQ, this trend does not extend to the sce-

nario where we replace all text inputs with pseudo-captions

(pcap = 1) in LP-MusicCaps. In this case, we observe in-

stead a slight degradation in performance on two of the

evaluation datasets, compared to using only tags, or using

captions half of the time. We posit that this divergence may

be due to a gap in label quality between the two training

sets, as pseudo-captions in LP-MusicCaps are generated

based on sparse labels, with 50% of the items in the dataset

paired to only three tags or less, and in many cases without

being balanced across categories. Intuitively, this is likely

to result in non-descript, or even inaccurate captions, as the

LLM generation will be more prone to hallucinations and

may therefore deviate substantially from the audio content.

In contrast, MusicTextHQ provides strong grounding to the

audio content, with multiple expert-provided tags per cat-

egory (often three or more for each tag category). From

this, we conclude that, while LLM-enabled text augmen-

tation can provide a valuable strategy for enriching train-

ing data, it is not a substitute for adequate data curation,

but rather a supplement. This is an important observation,

as prior work has also found that specificity in captions is

instrumental to effective multimodal contrastive learning

[22, 31]. Since LLM-based augmentation, being bounded

by the information content in the source data, cannot in-

crease specificity, our results highlight an often overlooked

shortcoming of synthetic text.

4.2 Training data: size vs quality

Next, we ask whether simply increasing dataset size can

emphasise the benefits of tag-to-caption augmentation. To

scale up the size of our training data, we include YT8M-

MV, a subset of the YouTube8M dataset [1] tagged as mu-

sic video, as an additional dataset to our training pool. For

this, we follow [16] and employ tags from an automatic
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music tagger and pseudo-captions generated following the

same procedure described in Section 4.1. For simplic-

ity, we refer to LP-MusicCaps, MusicTextHQ and YT8M-

MV as Dataset_A (or simply A), Dataset_B (B) and

Dataset_C (C), ordered by size as shown in Table 1. We

also consider combining the two biggest datasets (B + C)

and all three together (A + B + C). We note that each dataset

differs not only in size, but also in audio and label quality.

Results In Figure 4 we showcase results from training on

the datasets described above. Notably, we find that scal-

ing dataset size does not consistently result in an improve-

ment, signalling that the gap in quality between datasets

can eclipse their size difference. Although we observe that

combining all datasets yields better performance, likely

due to overall increased diversity in the training data, the

difference is not proportionate to the rise in training cost

necessary to scale up. Instead, our results underscore the

importance of data curation as a more efficient way of

boosting performance, confirming that constructing a sub-

set of highly curated examples, with descriptive and accu-

rate captions, more positively contributes to learning in the

contrastive setting [22].

5. IMPROVING DIVERSITY VIA TEXT

AUGMENTATIONS

Having established that augmenting high-quality tags into

captions offers a useful and inexpensive strategy to en-

rich training data, we explore this further and propose two

augmentation-based techniques aimed at increasing data

diversity and model robustness.

5.1 Augment, Drop & Swap

Augmented View Dropout First, building upon the tag-

to-caption strategy described in Section 4.1, we explore

text augmentation with the goal of constructing more ef-

fective views for contrastive learning, following the prin-

ciple that optimal views should minimise mutual informa-

tion between paired items while retaining a high degree of

semantic alignment [25]. To this end, we propose Aug-

mented View Dropout, where, for each item in our dataset,

we randomly sample a subset of the tags, balanced by cat-

egory (genre, mood, instrumentation) and produce a set of

10 different captions. Each can be thought of as a comple-

mentary, but partial view of the associated music track, as

we mask a subset of all the ground-truth tags to produce

each view. At training time, views are randomly sampled,

effectively resulting in a further form of data augmentation.

Hard negatives via TextSwap Finally, we tackle an-

other important challenge in contrastive learning, hard neg-

ative sampling, and propose to also address this through

the lens of text augmentation, via a technique which we

call TextSwap. In order to increase the rate of hard nega-

tives beyond the natural rate found in the dataset, we create

partially perturbed versions of the captions by stochasti-

cally swapping genre, mood or instrument keywords with

alternative descriptors from a predefined dictionary (e.g.

“a mellow pop track” becomes “a mellow hip-hop track”).

Figure 4: Retrieval performance across models trained on

datasets that differ in size and annotation quality.

During training, for each positive pair, we then select a ran-

dom subset of the negative captions in a batch and replace

them with hard negatives by applying TextSwap once per

descriptor category. This is illustrated in Figure 1, where

we provide a visual guide for the full Augment, Drop &

Swap pipeline. We hypothesise that the presence of hard

negatives is particularly critical in later stages of training,

once the model has already acquired basic features, and

learning on “easy” negatives has saturated. Based on this,

we follow a curriculum learning approach and linearly in-

crease the probability of applying TextSwap from 0 to 15%

over the course of 20 epochs, after a warm-up period of 5.

5.2 Experiments

Ablations In this set of experiments we examine the ef-

fect of each of the three components in our augmentation

pipeline: tag-to-caption augmentation, Augmented View

Dropout and TextSwap. We look at two scenarios: one

where we want to measure their contribution in training

two variants of our parameter-efficient DuET-MC frame-

work, each with different degrees of audio pre-training and

finetuning and locked text encoders, and one where we re-

lax our computational requirements and explore whether

our proposed method can be usefully applied in finetun-

ing a general purpose audio-text embedding model (CLAP

[29]), with limited paired music data.

Results We present our ablations on the proposed

pipeline in Table 4, where we also compare to two audio-

text contrastive baselines, CLAP [29] and TTMR [8],

trained on general-purpose audio and music respectively.

The table displays three different settings to which we ap-

ply our proposed pipeline: (1) training the audio encoder

from scratch (shown in the HTS-AT + CLIP-T configura-

tion), (2) training only 1% of the parameters in our locked

audio-text encoder (MERT + CLIP-T), and (3) fine-tuning

the full model on music, following general audio-text pre-

training (CLAP-FT). From this, we observe that, while the

vanilla version of DuET-MC (trained only on tags) exhibits

at best comparable performance to the baselines, each ad-

ditional component in our pipeline lifts performance across

all model configurations, pre-training regimes and finetun-

ing strategies. Among these, tag-to-caption augmentation
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Model
Tag-to-
caption

Augmented
View Dropout

TextSwap
YT8M-MTC MusicCaps Song Describer Avg

R@10 ↑
R@10 ↑ MR ↓ R@10 ↑ MR ↓ R@10 ↑ MR ↓

Baselines
CLAP [29] - - - 11.9 80 40.3* 17* 19.8 53 24.0*
TTMR [8] - - - 11.6 79 9.6 115 16.5 57 12.6

DuET-MC
(HTS-AT +
CLIP-T)

✗ ✗ ✗ 8.5 103 12.2 82 15.3 53 12.0
✓ ✗ ✗ 8.0 104 13.4 76 14.1 57 11.8
✓ ✓ ✗ 9.4 93 15.1 65 19.6 49 14.7
✓ ✓ ✓ 9.4 93 15.8 66 17.4 48 14.2

DuET-MC
(MERT +
CLIP-T)

✗ ✗ ✗ 10.8 82 18.3 56 20.2 45 16.4
✓ ✗ ✗ 11.7 69 21.3 41 23.4 36 18.8
✓ ✓ ✗ 13.4 65 24.9 36 27.7 32 22.0
✓ ✓ ✓ 14.5 62 24.6 34 27.3 29 22.1

CLAP-FT

✗ ✗ ✗ 14.2 63 38.8* 18* 20.8 38 24.6*
✓ ✗ ✗ 14.6 61 42.3* 15* 23.5 34 26.8*
✓ ✓ ✗ 16.3 55 41.6* 16* 24.5 36 27.3*
✓ ✓ ✓ 15.7 57 43.5* 14* 26.3 31 28.5*

Table 4: Ablations. For each model, subsequent rows show the effect of introducing an additional step in our proposed

Augment, Drop & Swap pipeline. We highlight best results for each model (underlined) and amongst all models (bold). *

denotes values that may be inflated due to in-distribution bias.

and Augmented View Dropout emerge as the most influ-

ential, while the benefits of TextSwap are more prominent

for model configurations where encoders have higher lev-

els of pre-training, hinting at the necessity to increase the

complexity of negatives later in training. This suggests

that our Augment, Drop & Swap recipe provides a data-

efficient strategy to improve music-text modelling under

a variety of model configurations, at no additional com-

putational cost. Importantly, this trend generalises across

evaluation datasets, suggesting that it is beneficial to model

robustness, and demonstrates that the lack of large-scale

paired data in the music domain can be alleviated through

augmentation-based techniques which enhance data qual-

ity instead of quantity. Finally, comparing retrieval scores

of different family of models (TTMR, CLAP and DuET-

MC), we note consistent differences between datasets, with

CLAP-based models invariably showing a significant jump

in performance on the MusicCaps dataset compared to

MTC and SDD. We hypothesise that this may be a result

of in-distribution bias, since there are several instances of

non-music or noisy, low-quality recordings in MC. Since

CLAP is trained to recognise everyday sounds, this points

at a smaller shift from its training distribution, compared to

SDD and MTC, which are exclusively composed of music

recordings. We posit that further mismatches in the train-

ing and test distributions exist along the text dimension and

investigate this through human evaluation.

Are metrics aligned with human preference? We re-

cruit 35 participants to evaluate DuET-MC, CLAP and

TTMR in a head-to-head pairwise comparison. Partic-

ipants are presented with up to 24 text prompts, where

each is a caption taken from one of the three evaluation

datasets, and are asked to choose which one of two music

tracks best aligns to the description. Through this qual-

itative evaluation, we find that DuET-MC does substan-

tially better than TTMR, losing against it only 30.9% of

the times, and largely mirroring our findings from Section

5.2. Surprisingly, the win and tie rate vs CLAP drops in-

stead to 37.3% and 38.5% respectively. Looking at the

breakdown of scores by dataset, this advantage in CLAP

is predominantly observed on MC and MTC, while DuET-

MC outperforms CLAP on SDD. Interestingly, DuET-MC

is preferred or considered equivalent to the ground truth

38.9% of the times on MTC compared to 15.4 and 17.9%

on the other two datasets. This points to significant dif-

ferences in the level of alignment between caption and au-

dio in the different datasets, signalling that evaluating on

several datasets is paramount to understanding real-world

performance. Additionally, it leads to an observation that

complements our automatic evaluation in Table 4: the dis-

crepancy between DuET-MC’s performance on MTC com-

pared to MC and SDD may be ascribed to a higher degree

of vagueness in MTC captions, which, as revealed through

our qualitative evaluation, admit instead alternative match-

ing tracks to those in the ground truth.

6. CONCLUSIONS

In this work we presented Augment, Drop & Swap, a train-

ing recipe for efficient music-text representation learning

informed by our findings on training music-text contrastive

models in resource-constrained scenarios. Through our

experiments, we provide a practical guide to this fam-

ily of models, and foreground their real-world use by fo-

cusing on multilingual support, computationally efficient

techniques, and cross-dataset evaluation. Showing that

data curation has a significant effect at modest data scales,

we design each step in our pipeline to tackle specific as-

pects of the text used in training, such as descriptiveness

and specificity, via data augmentations, leading to views

that are more effective in multimodal contrastive learning.

Through automatic and qualitative evaluations, we show

the usefulness of our approach and reveal insights on the

relation between measured performance and distribution

shifts in the test data.
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ABSTRACT

A conversational music retrieval system can help users dis-

cover music that matches their preferences through dia-

logue. To achieve this, a conversational music retrieval

system should seamlessly engage in multi-turn conversa-

tion by 1) understanding user queries and 2) responding

with natural language and retrieved music. A straightfor-

ward solution would be a data-driven approach utilizing

such conversation logs. However, few datasets are avail-

able for the research and are limited in terms of volume

and quality. In this paper, we present a data generation

framework for rich music discovery dialogue using a large

language model (LLM) and user intents, system actions,

and musical attributes. This is done by i) dialogue intent

analysis using grounded theory, ii) generating attribute se-

quences via cascading database filtering, and iii) generat-

ing utterances using large language models. By applying

this framework to the Million Song dataset, we create –

LP-MusicDialog, a Large Language Model based Pseudo

Music Dialogue dataset, containing over 288k music con-

versations using more than 319k music items. Our evalua-

tion shows that the synthetic dataset is competitive with an

existing, small human dialogue dataset in terms of dialogue

consistency, item relevance, and naturalness. Furthermore,

using the dataset, we train a conversational music retrieval

model and show promising results. 1

1. INTRODUCTION

In recent years, conversational systems have emerged as a

promising solution to enhance user experience in various

domains [1–4], including conversational music retrieval

and recommendation [5, 6]. The goal of a conversational

1 Our code is available at https://github.com/seungheondoh/lp-music-
dialog/

© S. Doh, K. Choi, D. Kwon, T.Kim and J. Nam. Licensed
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4.0). Attribution: S. Doh, K. Choi, D. Kwon, T.Kim and J. Nam, “Mu-

sic Discovery Dialogue Generation Using Human Intent Analysis and

Large Language Models”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

Figure 1. The generation process of pseudo musical dia-

logue.

music system is to assist users in finding their desired mu-

sic through dialogues. Such a system should possess three

key capabilities: i) to understand the intents and musical

needs of users from their queries expressed in natural lan-

guage, ii) to generate responses and facilitate human-like

interaction, iii) to find music that aligns with the user’s

preferences by taking previous dialogues into account.

Currently, the primary challenge of developing a con-

versational music retrieval system is the scarcity of large-

scale public datasets. Chaganty et al. [5] introduce the

Conversational Playlist Curation Dataset (CPCD). This

crowd-sourced dataset comprises human-to-human dia-

logues that simulate the process of music discovery. How-
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ever, as it relies on a manual process, the dataset is small

and exhibits biases from the music streaming platforms

used by the recommenders. To address this problem,

Leszczynsk et al. [6] propose a dialogue generation frame-

work through random walks in the music-text joint embed-

ding space and dialogue inpainting [7]. However, this ap-

proach requires a high-quality music-text joint embedding

and needs to use template-based system responses as input.

As a result, the system’s responses are always composed of

limited format utterances, leading to low naturalness in hu-

man evaluation.

In this paper, we introduce a framework for generating

human-like music discovery dialogues using intent and a

large language model (LLM). The proposed framework is

based on the existing method [6], but we address their lim-

itations by employing cascading music database filtering

instead of a joint embedding and extensive intent analysis

for naturalness. Using the grounded theory approach [8],

we analyze a dataset of human music discovery dialogues

and develop taxonomies for user intents, system actions,

and musical attributes relevant to the task of music dis-

covery. Furthermore, we introduce a model-free attribute

sequence generation by applying cascading filtering to a

multi-label music annotation database. Finally, we synthe-

size music discovery dialogues through an LLM using the

created attribute sequences and human intents/actions.

Our contributions are threefold: First, we analyze music

discovery dialogues and propose a taxonomy. Second, we

introduce the LP-MusicDialog dataset, a large-scale syn-

thetic dialogue dataset created using human intent and an

LLM. Third, we present extensive objective and subjective

evaluations to demonstrate the effectiveness of LLM-based

pseudo-music dialogues.

2. RELATED WORK

Recently, there has been some progress in conversa-

tional music systems including language-based music re-

trieval [9–11]. However, existing systems are often limited

to single-turn tasks. This means users are not able to refine

their queries to obtain a highly satisfactory outcome. To-

wards multi-turn dialogues, Chaganty et al. [5] released the

Conversational Playlist Curation Dataset (CPCD), which

comprises 917 dialogues averaging 5.7 turns each. Un-

like single-turn retrieval, conversational retrieval takes into

account previous chat history to find relevant items. The

model in [5] aggregates the context of history embedding

and the current query embedding using average pooling,

then uses contrastive loss to maximize the similarity be-

tween them. However, their model showed limited perfor-

mance due to the small size of CPCD.

A solution to the data scale issue is synthesizing data

using existing datasets and language models. Recently,

synthetic datasets that bridge natural languages and mu-

sic have been proposed to enhance music understand-

ing [12, 13], captioning [13, 14], reasoning [13], and

retrieval [11]. For the conversational music retrieval,

Leszczynski et al. [6] proposed a two-stage data synthe-

sis framework: musical attribute sequence generation via

random walk and utterance generation through dialogue in-

painting [7]. The musical attribute sequence represents the

evolution of user queries over turns (e.g., ask for workout

music in the first turn, then refine the results to be also pop

music). During utterance generation, a language model

creates user queries using system responses as input, which

include sampled musical attributes and a static template. 2

As a result, they created one million multi-turn music dis-

covery dialogues: TtW Music, leveraging a private playlist

dataset. However, this approach encounters issues with

model errors in the music-text joint embedding space used

for the random walk method and faces challenges with re-

sponse consistency due to the reliance on manually created

templates for system responses.

Deep understanding in music query has to be preceded

aforementioned data generation. So far, query understand-

ing has primarily focused on describing musical needs.

Downie and Cunningham [15] analyzed 161 music queries

and categorized them into 1) information needs, 2) desired

outcomes, 3) intended uses for the information, and 4) so-

cial and contextual elements. Bainbridge et al. [16] uti-

lized the grounded theory approach to analyze 502 real-

world music queries, expanding upon prior research with

10 types of need descriptions. Lee [17] analyzed 1,705

Google Answers queries to propose a refined taxonomy for

information needs and searching behavior. Despite these

efforts, previous studies have been limited to the informa-

tion needs (musical attributes) contained in queries, and

intent in multi-turn queries has not received significant at-

tention.

3. DIALOGUE INTENT ANALYSIS

3.1 Taxonomy Development

For the dialogue-specific music discovery taxonomy,

we analyze the existing human-to-human music dia-

logue dataset (CPCD [5]) using the grounded theory ap-

proach [8]. Grounded theory is a qualitative approach that

creates refined theory from unstructured real-world data.

In detail, (1) we adopt the taxonomy from previous re-

search as our initial taxonomy. For user intent and sys-

tem action, we use the conversational movie intent taxon-

omy [18], and for musical needs, we use music feature tax-

onomy [17] as the initial taxonomy. (2) Three authors an-

notate ten dialogues using the initial taxonomy and discuss

the limitations of the existing taxonomy. (3) We update the

taxonomy and annotate a new randomly sampled five dia-

logues. This cycle of proposing, refining, and annotating

was completed three times to ensure our taxonomy could

capture the full range of scenarios present in the dialogue

samples.

3.2 Analysis Results

3.2.1 Taxonomy for User Intents

In Table 1, we categorize user intents into four main cate-

gories, with eight detailed sub-intents. The Initial Query

2 For example, “Of course! Let me add some songs described as <mu-
sical attributes>. What else?"
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User Intent Description Example %

Start Dialogue

Initial Query User initiates the inquiry with a specific request. “Hi, I want to create a playlist for hiking." 18.5

Greeting User initiates the dialog, often with greeting words. “Hello, I would like... / “Good Morning! Let’s start..." 12.7

Item Discovery Query (Retrieval / Recommendation)

Positive Filter User requests to include an additional criterion. “I would like to add a bit of Rihanna." 76.7

Negative Filter User requests to negative criterion in this turn. “I do prefer them to not have any lyrics" 3.7

Continue User requests for more songs with the current criteria. “Those are good songs. More like these would be great." 6.8

Item Understanding Query (Question Answering)

Item Attribute Question User questions attributes of music. “Do you know where Samer (Artist) is from?" 0.2

Feedback Response

Accept Response User responds positively to the recommendations. “Thank you, they are perfect" 44.4

Reject Response User responds negatively to the recommendations. “I still didn’t get any song suggestions..." 4.8

Table 1. Taxonomy for user intents. % represents the percentage of occurrences within the user query.

System Action Description Example %

Request

Feedback Request System requests the user to evaluate recommendations. “What about these ones?" 12.8

Detail Attribute Request System requests for the user’s needs or desires for recommendations. “Are there any particular artists you want to see?" 20.8

Item Discovery Response (Retrieval / Recommendation)

Passive Recommendation System recommends music based on user’s preferences. “Here are some pop songs for kids." 71.4

Active Recommendation System proactively recommends music without being explicitly asked. “Nice! I added a couple more." 14.9

Item Understanding Response (Question Answering)

Item Attribute Answer System answers to user’s question with musical attributes. “Frederic Chopin was a Polish composer..." 0.1

General Response

Parroting Response System responds to the user’s inquiry by mirorring. “Here’s some picks from The Who." 25.4

Sympathetic Response System responds to the user’s inquiry with human-like sympathy. “Excellent! Looks like a great Kickstart!" 57.2

Table 2. Taxonomy for system actions. % represents the percentage of occurrences within the system response.

is part of the ‘start-dialogue’ category, serving as the kick-

off point for recommendation dialogues. At times, users

start interactions with Greetings to initiate the system into

a more engaging mode of communication. The ‘item-

discovery-query’ captures user preferences for music re-

trieval and recommendations, subdivided into Positive Fil-

ter for add preferences, Negative Filter for discarding ex-

isting ones, or Continue to sustain the current preferences.

Item Attribute Question, where users inquire about the

precise attributes of music tracks, such as their genre,

mood, tempo, and key/mode. Feedback responses are out-

lined, with users either expressing satisfaction (Accept Re-

sponse) or dissatisfaction (Reject Response) to the recom-

mended music.

3.2.2 Taxonomy for System Actions

Table 2 shows the system action taxonomy, structured

into four primary categories, and seven specific intents.

The ‘request’ category enhances the search experience, ei-

ther through post-recommendation Feedback Request to

gauge satisfaction or Detail Attribute Request to clar-

ify vague or incomplete user queries. To address user

queries for music discovery, the system can adopt a Pas-

sive Recommendation approach to comply with user re-

quests. This approach is similar to a retrieval task because

there is an explicit query from the user. The system also

proactively engage through Active Recommendation. It

is similar to a recommendation task because it implicitly

uses the context of the dialogue even without an explicit

query from the user.

In Item Attribute Answer, the system responds to

users’ inquiries about specific musical attribute questions

such as genre, mood, tempo, and key/mode. For general

responses, the system mimics user requests in its recom-

mendations (Parroting Response) to affirm that user pref-

erences are being considered, or it may adopt a more em-

pathetic stance (Sympathetic Response) to foster a more

human-like interaction.

3.2.3 Taxonomy for Musical Attribute

Musical attributes such as genre, mood, and artist are

closely related to user preferences. They are categorized

into (1) objective metadata produced when a track is regis-

tered on the platform, (2) subjective similarity with mu-

sic entities, (3) user & listening context, and (4) music

content information (Table 3). Metadata is mainly asso-

ciated with entity recognition [19], where Track refers to

requests for a single music recording entity, Artist denotes

user requests for tracks released by a specific artist, Year

reflects the era/year in which a piece of music was released,

and Popularity indicates the level of attention a piece of

music has received. Culture is related to the national or

regional style of the music, often linked to the artist’s na-

tionality. Unlike objective metadata, Similar Track and

Similar Artist are subjective musical attributes, represent-

ing connections to other track or artist entities. The user

% listening context consist of User, which is related to

the demographics of the listener, and Theme, which en-

compasses the location, time, usage, and activities asso-

ciated with listening. Mood refers to the emotional tone

conveyed by the music or the listener’s emotional state.

Lastly, the categories tied closely to music content itself

include Genre, which relates to high-level music form and

style, and aspects associated with timbre such as Instru-
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Musical Attribute Description Example %

Metadata

Track A single musical work, recording, performance Can you add montero from lil nas? 4.5

Artist A creator or performer of music. How about some more Justin Timberlake? 43.1

Year The time of music’s creation or release Could you throw in some 90s hip hop? 6.6

Popularity The widespread acclaim of music. Awesome! How about more male disco hits? 0.7

Culture The national or regional influences on music. i like Nigerian songs 0.9

Similar with Music Entity

Similar Track The song is similar to the specific track. Can I have more songs similar to Jessie’s Girl? 1.1

Similar Artist The song is similar to the specific artist. Adele and Sia type of music 5.0

User & Listening Context

User The listeners characterized by demographics. I want to create a fun playlist for the kids 1.9

Theme A context for music listening related to location, time, usage, and activity. hi please i need a playlist to workout with 15.2

Mood The emotional tone conveyed by music, or the emotional state of user. I want to create playlist for when I’m sad 6.7

Music Content Information

Genre A category of music characterized in form, style, or subject matter. I would love to start with classical music 17.2

Instrument A tool or device designed to produce musical sounds What other quartet music do you suggest? 1.1

Vocal The singing voice in music, including styles, techniques, and expressions try some female vocalists too 1.2

Tempo The speed or pace at which a piece of music is played Add me some slow slow songs from juice wrld 1.3

Key / Mode The tonal information of music (Not appear) 0.0

Table 3. Taxonomy for musical attributes. % represents the percentage of occurrences within the user query.

ment and Vocal, as well as Tempo related to rhythm, and

Key/Mode for tonal information.

3.2.4 Dialogue intent annotation

After the development of the taxonomy, the three annotat-

ing authors proceeded to annotate user intent, system ac-

tion, and musical attributes according to the proposed tax-

onomy within a new sampled 30 CPCD [5] dialogues. To

measure the level of agreement among the annotators for

the degree of concurrence, we employed Krippendorff’s al-

pha [20]. The results showed high agreement levels, with

Krippendorff’s alpha scores of 0.83 for user intent, 0.85 for

system action, and 0.71 for musical attributes. Following

this agreement phase, each annotator independently anno-

tated a portion of the total 888 CPCD dialogues, excluding

29 error samples out of the total 917 dialogues.

3.3 Intent Analysis and Findings

The proportion of categories in each taxonomy is on the

rightmost columns of Tables 1 – 3. For user intent (in Table

1), the majority of item discovery queries progress through

the Positive Filter (76.7%), whereas the opposite, Negative

Filter, constitute a smaller portion (3.7%). Item Attribute

Questions are almost non-existent (0.2%). The majority of

recommendation are accepted (44.4% of Accept Response

vs 4.8% of Reject Response). Regarding system actions, a

notable observation is that the system predominantly pro-

vides recommendations passively, rather than actively of-

fering suggestions (71.4% vs 14.9%). In the case of gen-

eral responses, the system favors eliciting human-like con-

versations through sympathetic responses over merely par-

roting back information (57.2% vs 25.4%). In the case of

music, categories such as artist (43.1%), genre (17.2%),

and theme (15.2%) occupy a significant portion of the user

queries. This may suggest that in a Wizard of Oz set-

ting [21], where the recommender utilizes music streaming

platforms, the platform’s search support may be limited to

these categories. Conversely, similarity queries or music

content queries beyond genre are rarely employed.

4. MUSIC DISCOVERY DIALOGUE

GENERATION

In this section, we describe the framework for generating

music discovery dialogue consisting (1) attribute sequence

generation and (2) utterance generation. This two-step ap-

proach is an improved version of previous research [6]

with model-free attribute sequence generation by Cascad-

ing music database filtering, and utterance generation by a

LLM and Intent Analysis.

4.1 Musical Attribute Sequence Generation

For attribute sequence generation, we employ a series of

cascading filters on a multi-label annotated dataset to ex-

tract samples with overlapping semantics. Inspired by

[22], which utilized functional programs to construct a vi-

sual reasoning dataset, we apply this approach to the do-

main of music discovery dialogue using user intents such

as add filter, remove filter, and continue. Figure 2 illus-

trates an example of a cascading data filter. For exam-

ple, a user may initially request songs in the EDM genre,

narrow it down to a party theme, and finally specify a

need for fast tempo music. This sequence can be rep-

resented by a series of connected functional program fil-

ters: filter(tempo:fast, filter(theme:party, filter(genre:edm,

database))). This method requires the types of filters and

musical attributes. We derive filter types from the anno-

tated intents (Section 3.2). For musical attributes, we ini-

tially conducted random sampling. Subsequently, to en-

sure diverse sampling with high co-occurrence with previ-

ous attributes, we employed top-k sampling (k=20), which

involves randomly selecting a word from the top k words

with the highest frequency. During top-k sampling, we in-

clude attributes from the metadata and similar with music

entity categories.

4.2 Utterance Generation via Language Model

The sequence of musical attributes and annotated intent

becomes prompts for LLMs to generate user and system
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Figure 2. Cascading database filtering.

utterances. Our proposed utterance generation follows

the formulation: xtext = fLLM(P, yintent, ymusic), where

yintent and ymusic refer to the annotated intent/action (Sec

3.2) and the sampled musical attribute (Sec 4.1), respec-

tively, and P is the prompt for dialogue generation. We as-

sumed that dialogue intent and musical attribute can serve

as effective conditions for human-like dialogue generation.

5. DATASET: LP-MusicDialog

5.1 Data Source

To construct our synthetic dialogue dataset, we utilize the

Million Song Dataset (MSD) [23], which has rich metadata

including track details, artist information, release year, and

artist familiarity. We quantize year and artist familiarity

into decades and popularity, respectively. 3 To cover a

wide range of musical attributes as listed in Table 3, we

interlink multiple annotation datasets using track IDs. For

culture, mood, theme, genre, instrument, and vocals, we

utilize tags from Tagtraum [24], Last.fm [25, 26], and All-

Music [27]. 4 For similar track attribute, we incorporate

merged data from the Art of the Mix playlist [28] and

EchoNest taste profiles. We utilize a weighted matrix fac-

torization technique [29] to create a similarity matrix of

item vectors. We then annotate the top-k similar tracks

for each track (k=128). For artist similarity, we use cul-

tural similarity annotation from the OLGA [30] dataset.

Finally, for key/mode and tempo, we extract beats per

minute (BPM), 24 key/mode using the pretrained classi-

fier [31, 32]. 5

5.2 Creation Process

Based on the proposed pseudo dialogue generation

method, we created LP-MusicDialog, an LLM-based

Pseudo Music Dialogue dataset. We integrate user intents

and system actions annotated in CPCD dialogues (Sec.3.2)

with musical attributes obtained through cascading music

database filtering (Sec.4.1) as inputs for GPT 3.5-turbo.

At each cascading filtering step, we randomly sample 10

3 We categorize the top 10% of artist familiarity as high popularity,
10-30% as mid popularity, and the lower 30% as low popularity.

4 As the ‘style’ category in AllMusic is structured as sub-genres, we
merged it with ‘genre’ category.

5 BPM was quantized into three text label: songs below 70 BPM were
classified as slow, those between 70 BPM and 130 BPM as moderate, and
those above 130 BPM as fast.

Data Source # of Track Musical Attributes

Million Song Dataset [23] 1,000,000 Track,Artist,Year,Popularity

TagTraum [24] 280,831
Genre, Instrument, Vocal,

Mood, Theme, Culture
Last.fm [25, 26] 344,865

AllMusic [27] 507,435

Art of the Mix [28] 119,686
Similar Track

TasteProfile [23] 380,462

OLGA [30] 542,364 Similar Artist

Madmom Key/Mode [32] 992,525 Key/Mode

Madmom Tempo [31] 978,759 Tempo

Table 4. Data sources for the dialogue generation

CPCD [5] TtW [6] LPMD (Ours)

# of Dialog 917 1,037,701 287,675

# of Tracks 106,736 332,594 391,465

# of Vocab 9872 N/A 105,832

Avg.# of turns 5.7 5.6 4.97

Avg. query len. 54.4 80.3 63.8

Avg. response len. 45.8 N/A 87.8

Public Available Yes No Yes

Table 5. Statistics of conversational music retrieval

datasets. LPMD stands for LP-MusicDialog.

tracks to link with the dialogue turn. As a result, we ac-

quire 287,675 user query, system response, music item

triplets for each turn of the dialogue.

As detailed in Table 5, LP-MusicDialog is significantly

larger and more diverse than existing datasets. Compared

to the human dialogue dataset CPCD [5], it contains ×313

larger dialogues, a more than ×10 diverse vocabulary, and

nearly four times more tracks. While remaining open to the

public, our dataset is on par with a private dataset, TtW [6],

in many aspects, with plans to expand further upon con-

firming active usage. In contrast, LP-MusicDialog is not

only publicly available but also offers an extensive col-

lection of connected tracks. Figure 3 shows the musical

attribute ratio in dialogue. Unlike CPCD [5], where a sig-

nificant portion is occupied by artist and genre due to plat-

form bias, LP-MusicDialog shows a higher proportion of

dialogues concerning music content and user listening con-

text. Although the proportion of queries for entity recogni-

tion such as track and artist has decreased, the percentage

of similarity queries has increased.

5.3 Human Evaluation

Following previous work [6], we assess the quality of

our generated data through human evaluation, focusing on

three key aspects: 1) Consistency - evaluating if the user

preferences are coherent across dialogue turns; 2) Rele-

vance - determining the alignment between the retrieved

music items and the user query; 3) Naturalness - assessing

the likelihood of such a conversation occurring in real life.

Unlike previous work, we adhere to mean opinion score

(MOS) that uses a 5-point Likert scale instead of a 3-point

scale. A total of 26 raters evaluated 10 randomly sampled

dialogues each. Within 260 total ratings, we only reported

dialogues assessed by three or more raters.

Table 6 presents the MOS evaluations for dialogues

from CPCD [5] and LP-MusicDialog. To understand the
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Figure 3. The ratios of musical attributes in music discovery dialogues.

Consistency Relevance Naturalness

LP-MusicDialog 3.79 ± 0.56 4.04 ± 0.74 3.87 ± 0.57

+ Intent / Action 3.88 ± 0.87 4.05 ± 0.53 4.24 ± 0.38

Human Dialogue [5] 3.90 ± 0.70 4.16 ± 0.68 4.29 ± 0.43

Table 6. Mean opinion scores of the generated dialogues

(LP-MusicDialog) and human dialogues (CPCD [5])

impact of user intent and system action, we conducted an

ablation study synthesizing dialogues with only musical at-

tributes and prompts. Comparing the first and second rows,

we find minimal differences in consistency and relevance,

as both sets of generated dialogues utilize identical musical

attributes. However, a notable distinction arises in natural-

ness, suggesting that LLMs can foster more human-like

dialogue synthesis by incorporating intents and actions. In

comparing human dialogues with our generated dialogues,

we found that the generated dialogues perform compara-

bly to the human dataset across all three metrics, within

the standard deviation.

6. CONVERSATIONAL MUSIC RETRIEVAL

In this section, we present a benchmark of conversational

music retrieval models. Unlike prior studies [5, 6] that

have music embeddings solely relying on metadata-based

text modality, 6 we expand it to include audio modal-

ity. We use a pre-train audio-text joint embedding model

(TTMR++ [11]), that consists of a text encoder that han-

dles user queries and system responses and an audio en-

coder that takes music tracks. We freeze TTMR++ and

add a trainable MLP layer for both text and audio encoder.

To handle chat history, we use a chat embedding created

by average-pooling the current query, previous queries, re-

sponses, and music embeddings. Two encoders are trained

to maximize the cosine similarity between the chat embed-

ding and target music embedding using the InfoNCE [33]

loss. In the inference stage, we extract chat embeddings for

each turn in the same way as in the training stage and mea-

sure the similarity score with all music embeddings in the

train and test splits. Based on the similarity score, we re-

trieve the most similar k items by nearest neighbor search.

We chose the CPCD dataset as the compared dataset and

report Hit@K as evaluation metric (k={10,20,100}). 7

Our baseline models are as follows: (1) BM25 [34], as

a sparse retrieval baseline; (2) Contriever [35], an unsu-

6 {title} by {artist} from {album}
7 Excluding the lost audio due to YouTube crawling, we use 98,738 out

of 106,736 tracks for evaluation. We use the official evaluation codebase:
https://github.com/google-research-datasets/cpcd

Model Type Hit@10 Hit@20 Hit@100

BM25 [34] - 0.180 0.251 0.433

Contriever [35] Zeroshot 0.176 0.255 0.344

TTMR++ [11] Zeroshot 0.201 0.275 0.505

+ LPMD only FinetuneOD 0.173 0.253 0.479

+ CPCD only FinetuneID 0.209 0.295 0.530

+ LPMD & CPCD FinetuneOD+ID 0.219 0.304 0.533

Table 7. Conversational music retrieval performance on

CPCD Dataset. OD stands for out of domain. ID stands

for in domain.

pervised dense retrieval baseline; and (3) TTMR++ [11],

an audio-text joint embedding baseline. Table 7 shows the

performance of conversational retrieval. Among the base-

lines, TTMR++ shows superior performance over BM25

and Contriever, highlighting the importance of the au-

dio modality in the music domain. Furthermore, training

TTMR++ with only LP-MusicDialog (i.e., inter-dataset

evaluation) somewhat leads to a performance decrease.

This is presumably due to the musical entity difference be-

tween the two datasets. Specifically, the LP-MusicDialog

dataset derives from the MSD, which contains music up

to the year 2010, while the CPCD dataset includes music

extending up to the year 2023. Nonetheless, training with

both LP-MusicDialog and CPCD results in performance

improvement over training only with CPCD, suggesting

the usefulness of the proposed dataset.

7. CONCLUSION

We proposed a musical dialogue generation approach with

i) dialogue intent analysis using the grounded theory, ii)

generating attribute sequences via cascading database fil-

tering, and iii) generating utterances using a large lan-

guage model. Our intent analysis underpins the synthesis

of human-like conversations, demonstrating strengths in

naturalness. Cascading filtering allows us to utilize music

attributes from external music databases to generate new

dialogues. The outcome, the proposed LP-MusicDialog

covers a broader range of musical attributes and aids in the

conversational music retrieval task.

However, the proposed methods have several limita-

tions. The first is that cascading filtering is sensitive to

annotation errors [36]. The second is that top-k sampling,

by following the tag distribution, inevitably leads to a data

imbalance problem. We hope that these limitations of cas-

cading filtering will be addressed in future research by in-

corporating balanced sampling.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

951



8. REFERENCES

[1] K. Christakopoulou, F. Radlinski, and K. Hofmann,

“Towards conversational recommender systems,” in

Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining,

2016.

[2] R. Li, S. Ebrahimi Kahou, H. Schulz, V. Michal-

ski, L. Charlin, and C. Pal, “Towards deep conversa-

tional recommendations,” Advances in neural informa-

tion processing systems (NeurIPS), 2018.

[3] D. Jannach, A. Manzoor, W. Cai, and L. Chen, “A

survey on conversational recommender systems,” ACM

Computing Surveys (CSUR), 2021.

[4] Z. He, Z. Xie, R. Jha, H. Steck, D. Liang, Y. Feng,

B. P. Majumder, N. Kallus, and J. McAuley, “Large

language models as zero-shot conversational recom-

menders,” in Proceedings of the 32nd ACM interna-

tional conference on information and knowledge man-

agement, 2023.

[5] A. T. Chaganty, M. Leszczynski, S. Zhang, R. Ganti,

K. Balog, and F. Radlinski, “Beyond single items: Ex-

ploring user preferences in item sets with the con-

versational playlist curation dataset,” in Proceedings

of the 46th International ACM SIGIR Conference on

Research and Development in Information Retrieval,

2023.

[6] M. Leszczynski, S. Zhang, R. Ganti, K. Ba-

log, F. Radlinski, F. Pereira, and A. T. Chaganty,

“Talk the walk: Synthetic data generation for con-

versational music recommendation,” arXiv preprint

arXiv:2301.11489, 2023.

[7] Z. Dai, A. T. Chaganty, V. Y. Zhao, A. Amini, Q. M.

Rashid, M. Green, and K. Guu, “Dialog inpainting:

Turning documents into dialogs,” in International Con-

ference on Machine Learning (ICML), 2022.

[8] B. G. Glaser, A. L. Strauss, and E. Strutzel, “The dis-

covery of grounded theory; strategies for qualitative re-

search,” Nursing research, 1968.

[9] I. Manco, E. Benetos, E. Quinton, and G. Fazekas,

“Contrastive audio-language learning for music,” In-

ternational Society for Music Information Retrieval

(ISMIR), 2022.

[10] S. Doh, M. Won, K. Choi, and J. Nam, “Toward uni-

versal text-to-music retrieval,” in ICASSP 2023-2023

IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2023.

[11] S. Doh, M. Lee, D. Jeong, and J. Nam, “Enriching mu-

sic descriptions with a finetuned-llm and metadata for

text-to-music retrieval,” in ICASSP 2024-2024 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2024.

[12] S. Liu, A. S. Hussain, C. Sun, and Y. Shan, “Mu-

sic understanding llama: Advancing text-to-music gen-

eration with question answering and captioning,” in

ICASSP 2024-2024 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP),

2024.

[13] J. Gardner, S. Durand, D. Stoller, and R. M. Bittner,

“Llark: A multimodal foundation model for music,”

arXiv preprint arXiv:2310.07160, 2023.

[14] S. Doh, K. Choi, J. Lee, and J. Nam, “LP-musiccaps:

LLM-based pseudo music captioning,” International

Society for Music Information Retrieval (ISMIR),

2023.

[15] J. S. Downie and S. J. Cunningham, “Toward a theory

of music information retrieval queries: System design

implications,” 2002.

[16] D. Bainbridge, S. J. Cunningham, and J. S. Downie,

“How people describe their music information needs:

A grounded theory analysis of music queries,” 2003.

[17] J. H. Lee, “Analysis of user needs and information fea-

tures in natural language queries seeking music infor-

mation,” Journal of the American Society for Informa-

tion Science and Technology, 2010.

[18] W. Cai and L. Chen, “Predicting user intents and satis-

faction with dialogue-based conversational recommen-

dations,” in Proceedings of the 28th ACM Conference

on User Modeling, Adaptation and Personalization,

2020.

[19] E. Epure and R. Hennequin, “A human subject study

of named entity recognition in conversational music

recommendation queries,” in Proceedings of the 17th

Conference of the European Chapter of the Associa-

tion for Computational Linguistics, 2023.

[20] K. Krippendorff, “Testing the reliability of content

analysis data,” The content analysis reader, 2009.

[21] E. Dinan, S. Roller, K. Shuster, A. Fan, M. Auli,

and J. Weston, “Wizard of wikipedia: Knowledge-

powered conversational agents,” arXiv preprint

arXiv:1811.01241, 2018.

[22] J. Johnson, B. Hariharan, L. Van Der Maaten, L. Fei-

Fei, C. Lawrence Zitnick, and R. Girshick, “Clevr: A

diagnostic dataset for compositional language and ele-

mentary visual reasoning,” in Proceedings of the IEEE

conference on computer vision and pattern recogni-

tion, 2017.

[23] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and

P. Lamere, “The million song dataset,” in Interna-

tional Society for Music Information Retrieval (IS-

MIR), 2011.

[24] H. Schreiber, “Improving genre annotations for the

million song dataset.” in International Society for Mu-

sic Information Retrieval (ISMIR), 2015.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

952



[25] M. Won, S. Oramas, O. Nieto, F. Gouyon, and X. Serra,

“Multimodal metric learning for tag-based music re-

trieval,” in IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), 2020.

[26] M. Won, K. Choi, and X. Serra, “Semi-supervised mu-

sic tagging transformer,” in International Society for

Music Information Retrieval (ISMIR), 2021.

[27] A. Schindler and P. Knees, “Multi-task music represen-

tation learning from multi-label embeddings,” in Proc.

International Conference on Content-Based Multime-

dia Indexing (CBMI), 2019.

[28] B. McFee and G. R. Lanckriet, “Hypergraph models

of playlist dialects.” in International Society for Music

Information Retrieval (ISMIR), 2012.

[29] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative fil-

tering for implicit feedback datasets,” in 2008 Eighth

IEEE international conference on data mining, 2008.

[30] F. Korzeniowski, S. Oramas, and F. Gouyon, “Artist

similarity with graph neural networks,” in Interna-

tional Society for Music Information Retrieval (IS-

MIR), 2021.

[31] S. Böck, M. E. Davies, and P. Knees, “Multi-task learn-

ing of tempo and beat: Learning one to improve the

other.” in International Society for Music Information

Retrieval (ISMIR), 2019.

[32] F. Korzeniowski and G. Widmer, “Genre-agnostic

key classification with convolutional neural networks,”

arXiv preprint arXiv:1808.05340, 2018.

[33] A. v. d. Oord, Y. Li, and O. Vinyals, “Represen-

tation learning with contrastive predictive coding,”

arXiv:1807.03748, 2018.

[34] S. Robertson, S. Walker, and S. Jones, “M. hancock-

beaulieu, m., and gatford, m.(1995). okapi at trec-3,” in

The Third Text REtrieval Conference (TREC-3), 1994.

[35] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bo-

janowski, A. Joulin, and E. Grave, “Unsupervised

dense information retrieval with contrastive learning,”

arXiv preprint arXiv:2112.09118, 2021.

[36] K. Choi, G. Fazekas, K. Cho, and M. Sandler, “The

effects of noisy labels on deep convolutional neural

networks for music tagging,” IEEE Transactions on

Emerging Topics in Computational Intelligence, 2018.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

953



STONE: SELF-SUPERVISED TONALITY ESTIMATOR

Yuexuan Kong1,2 Vincent Lostanlen2 Gabriel Meseguer-Brocal1

Stella Wong Mathieu Lagrange2 Romain Hennequin1

1 Deezer Research, Paris, France
2 Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

ykong@deezer.com

ABSTRACT

Although deep neural networks can estimate the key of a
musical piece, their supervision incurs a massive annotation
effort. Against this shortcoming, we present STONE, the
first self-supervised tonality estimator. The architecture be-
hind STONE, named ChromaNet, is a convnet with octave
equivalence which outputs a “key signature profile” (KSP)
of 12 structured logits. First, we train ChromaNet to regress
artificial pitch transpositions between any two unlabeled
musical excerpts from the same audio track, as measured
as cross-power spectral density (CPSD) within the circle
of fifths (CoF). We observe that this self-supervised pre-
text task leads KSP to correlate with tonal key signature.
Based on this observation, we extend STONE to output a
structured KSP of 24 logits, and introduce supervision so as
to disambiguate major versus minor keys sharing the same
key signature. Applying different amounts of supervision
yields semi-supervised and fully supervised tonality estima-
tors: i.e., Semi-TONEs and Sup-TONEs. We evaluate these
estimators on FMAK, a new dataset of 5489 real-world
musical recordings with expert annotation of 24 major and
minor keys. We find that Semi-TONE matches the classi-
fication accuracy of Sup-TONE with reduced supervision
and outperforms it with equal supervision.

1. INTRODUCTION

Self-taught musicians can tell whether two pieces go “in
tune” or “out of tune”. To do so, they do not need to know
the name of every key [1]. Meanwhile, in music information
retrieval (MIR), current tonality estimators depend on a
vocabulary of labels such as C : maj or F : min.

In this context, we aim to develop models which “learn
by ear” like humans; i.e., from little or no annotated data.
This goal is justified in practice by the fact that online digital
music corpora are larger and more musically diverse than
established MIR datasets, yet often lack expert metadata.

© Y. Kong, V. Lostanlen, G. Meseguer-Brocal, S. Wong,
M. Lagrange and R. Hennequin. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Y.
Kong, V. Lostanlen, G. Meseguer-Brocal, S. Wong, M. Lagrange and R.
Hennequin, “STONE: Self-supervised Tonality Estimator”, in Proc. of the

25th Int. Society for Music Information Retrieval Conf., San Francisco,
United States, 2024.

To overcome the need for large amount of labeled data,
self-supervised learning (SSL) has emerged as an alternative
paradigm to supervised learning, with numerous applica-
tions in speech and music processing [2–5].

The design of pretext tasks is a long-standing issue in
SSL for audio. On one hand, some of them are meant as a
pretraining step for general-purpose representation learning:
contrastive predictive coding [6], deep metric learning [7],
and self-distillation [8], to name a few. On the other hand,
another family of pretext tasks is designed to suit a par-
ticular downstream task, such as tempo and pitch estima-
tion [9, 10]. In this context, the concept of equivariance

plays a central role. Loosely speaking, equivariance means
that a certain parametric transformation of the input data
forms a simple trajectory in the space of learned represen-
tations. Yet, equivariant SSL has never been used to study
tonality, for lack of an adequate pretext task.

The main idea of our paper is that, even so absolute key
labels are unknown, we can construct paired samples in
which relative harmonic progressions serve as a learning
signal for tonality estimation. Our contributions are:

STONE. To our knowledge, the first SSL framework
whose model predictions correlates with key signa-
tures. It comprises a new equivariant neural network
named ChromaNet and a noncontrastive loss function
based on cross-power spectral density (CPSD).

Downstream task. We extend STONE into Semi-TONE,
a semi-supervised model that is tailored for 24-way
key estimation. Semi-TONE performs on par with a
supervised counterpart (Sup-TONE) while reducing
dependency on annotated data by 90% 1 .

FMAK. A new large dataset of 5489 real-world music
recordings, collected from the Free Music Archive
(FMA) and annotated by an expert for 24 major and
minor keys, is available for free download 2 .

2. RELATED WORK

2.1 Equivariant self-supervised learning in music

Equivariant SSL learns task-specific embeddings by rep-
resenting the transformations which underlie its factors of

1 Companion website: https://github.com/deezer/stone
2 FMAK dataset (version 2): https://zenodo.org/records/12759100
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variability: e.g., variations in pitch or tempo [10–12]. In
particular, PESTO is a monophonic pitch estimator trained
by learning the pitch shift of the same sample [9]. However,
its extension to multipitch tracking is an open problem [13].

2.2 Computational models of tonality

Tonality estimation remains a relatively under-researched
field, due to the scarcity of labeled data available for both
training and evaluation purposes. The earliest methods
were based on template matching [14–17]. Later, convo-
lutional neural networks (convnets) and transformers ap-
peared, treating the task as a supervised 24-class classifica-
tion problem [18–20]. Among studies employing the same
dataset, the convnet of Korzeniowski et al. [21] achieves
the best performance. Against the lack of annotated data,
prior work proposed to integrate key estimation with unsu-
pervised autoencoding [18, 19]. However, their approach is
computationally intensive and its evaluation is limited.

2.3 Annotated datasets for key estimation

Key detection datasets face a conundrum between diversity
and reproducibility. The Million Song Dataset [22] offers
key labels for diverse commercial music but lacks public
audio. GiantSteps MTG Key (GSMK) 3 , GiantSteps Key
(GSK) [23] and McGill Billboard datasets [24] offer public
data, yet they are restricted in terms of genres and quantity.
In particular, GSMK and GSK serve in the training and
evaluation of supervised SOTA [21].

3. METHODS

Figure 1 illustrates our proposed method for STONE.

3.1 Artificial pitch transpositions of the CQT

We compute a constant-Q transform (CQT) with Q = 12
bins per octave and center frequencies ranging between
ξmin = 27.5 Hz and ξmax = 299/12ξmin = 8.37 kHz.

Given a CQT matrix xxx and a integer c ≤ 15, we reduce
the number of rows from 99 down to 84 (7 octaves) by
trimming the c lowest-frequency bins and (15− c) highest-
frequency bins. This is tantamount by a pitch transposition
by c semitones [9]. We denote the result by Tcxxx where
Tcxxx[p, t] = xxx[p− c, t] for each frequency p < 84 and time t.

3.2 ChromaNet: a convnet with octave equivalence

The cropped CQT matrix Tcxxx has a frequency range of QJ =
84 semitones with Q = 12 and J = 7 octaves. We define a 2-
D fully convolutional network fθθθ with trainable parameters
θθθ , operating on Tcxxx with no pooling over the frequency
dimension. The last layer has a single channel and performs
global average pooling over the time dimension.

The architecture fθθθ composes seven blocks, each of
them composing a ConvNeXT block [25] and a time down-
sampling block, and layer normalization. It returns a vector
in dimension QJ. While ConvNeXt blocks leaves the input

3 https://github.com/GiantSteps/giantsteps-mtg-key-dataset

Figure 1. Overview of the equivariant pretext task in
STONE. Given two segments A and B from an unlabeled
musical recording, we compute their constant-Q transforms
(CQT) and apply random crops by c and (c+k) to simulate
pitch transpositions. We feed them to ChromaNet, an equiv-
ariant neural network with octave equivalence, yielding a
learned key signature profile (KSP) of 12 chromas. We
compute the discrete Fourier transform (DFT) of each KSP
and derive pairwise cross-power spectral densities (CPSD).
Self-supervised losses LAA, LAB, and LBA are formulated
as CPSD regression residuals in the complex domain.

resolution unchanged, time downsampling blocks decrease
time resolution while preserving frequency resolution.

We compose the convnet fθθθ with a non-trainable opera-
tor g whose role is to guarantee octave equivalence. We roll
the log-frequency axis into a spiral which makes a full turn
at every octave, thus aligning coefficients in fθθθ (Tcxxx) of the
form (p±Q j) for integer j. The operator g sums these co-
efficients across octaves j for each pitch class q and applies
a softmax transformation. We obtain a Q-dimensional vec-
tor yyyθθθ whose entries are nonnegative and sum to one. We
propose to call this vector a “key signature profile” (KSP):

yyyθθθ [q] = (g◦ fθθθ )(Tcxxx)[q]

=
exp

(
∑

J−1
j=0 fθθθ (Tcxxx)[Q j+q]

)

∑
Q−1
q′=0 exp

(
∑

J−1
j=0 fθθθ (Tcxxx)[Q j+q′]

) . (1)

For brevity, we do not recall the dependency of yyyθθθ upon
xxx nor c. Equation 1 resembles the extraction of chroma
features [26], hence the proposed name of ChromaNet.

3.3 DFT over key signature profiles

With Q = 12, the discrete Fourier transform (DFT) of the
KSP yyyθθθ is

ŷyyθθθ [ω] = F{yyyθθθ}[ω] =
11

∑
q=0

yyyθθθ [q]e
−2πiωq/12, (2)

where ω is an integer between 0 and 11 that is coprime to
12 for a full circular distribution over all 12 pitches. With
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ω = 7, a circular shift of yyyθθθ by seven chromas corresponds
to a multiplication of ŷyyθθθ [ω] by e2πi49/12 = e2πi/12. Hence,
the phase of the complex number ŷyyθθθ [ω] denotes a key mod-
ulation in the circle of fifths (CoF). Alternatively, ω = 1
would correspond to a circle of semitones. Our paper evalu-
ates both settings but only describes the CoF setting (ω = 7)
for the sake of conciseness.

3.4 Cross-power spectral density (CPSD)

Let us split the CQT matrix xxx into two disjoint time seg-
ments of equal length: xxx = (xxxA,xxxB). We denote the Chro-
maNet response for A by yyyθθθ ,A = (g◦ fθθθ )(Tcxxx) idem for B.
The circular cross-correlation between yyyθθθ ,A and yyyθθθ ,B is

RRRyyyθθθ ,A,yyyθθθ ,B [k] =
Q−1

∑
q=0

yyyθθθ ,A[q]yyyθθθ ,B[(q+ k)modQ] (3)

for 0≤ k < 12. Taking the DFT of the equation above yields
the circular cross-power spectral density (CPSD)

R̂RRyyyθθθ ,A,yyyθθθ ,B [ω] = F{RRRyyyθθθ ,A,yyyθθθ ,B}[ω] = ŷyyθθθ ,A[ω]ŷyy∗θθθ ,B[ω], (4)

where the asterisk denotes complex conjugation.

3.5 Differentiable distance over the circle of fifths

Given a constant DFT frequency ω = 7 and an arbitrary
musical interval k in semitones, we compute the CPSD asso-
ciated to the pair (yyyθθθ ,A,yyyθθθ ,B) and measure its half squared

Euclidean distance to e−2πiωk/Q in the complex domain:

Dθθθ ,k(xxxA,xxxB) =
1
2

∣∣e−2πiωk/Q − R̂RRyyyθθθ ,A,yyyθθθ ,B [ω]
∣∣2. (5)

Intuitively, in the case where ŷyyθθθ ,A[ω] and ŷyyθθθ ,B[ω] are both
one hot-encoding of 12 dimensions, they will be mapped
as complex numbers of module 1 on the border of the CoF,
R̂RRyyyθθθ ,A,yyyθθθ ,B [ω] measures the difference of phases on the CoF.
Then, Dθθθ ,k(xxxA,xxxB) measures its deviation from the DFT
basis vector e−2πiωk/Q, which corresponds to the actual
pitch shift k on the CoF. This distance is differentiable with
respect to the weight vector θθθ .

3.6 Invariance loss

Although the contents of xxxA versus xxxB may differ in terms
of melody, rhythm, and instrumentation, we assume them to
be in the same key. This implies that ChromaNet responses
yyyθθθ ,A and yyyθθθ ,B should be maximally correlated at the unison
interval k = 0 and decorrelated for k ̸= 0. In other words,
the CPSD at the frequency ω should be maximal; i.e., equal
to one. Thus, given an arbitrary pitch interval c, we define
an invariance loss LAB, defined as the distance between
TcxxxA and TcxxxB on the CoF. We obtain 4 :

LAB(θθθ |xxx,c) = Dθθθ ,0(TcxxxA,TcxxxB) (6)

4 In this paper, we use the vertical bar notation so as to clearly separate
neural network parameters on the left versus data on the right.

3.7 Equivariance loss

We want the model fθθθ to be equivariant to pitch transposi-
tions. Hence, we define an equivariance loss L AA

c,k as the
distance between TcxxxA and T(c+k)xxxA on the CoF:

LAA(θθθ |xxx,c,k) = Dθθθ ,k(TcxxxA,Tc+kxxxA). (7)

In theory, setting the architecture of fθθθ to a ChromaNet
should lead to equivariance by design, for any value of
the weight vector θθθ . Yet, in practice, we observed that
some values of θθθ break this property of equivariance, likely
due to boundary artifacts in 2-D convolutions—a similar
observation to PESTO [9]. For STONE, only minimizing
the invariance loss L AB

c causes the ChromaNet to collapse
and predict a constant one-hot vector regardless of audio
input xxx under certain hyperparameter choices, particularly
for ω = 1. To prevent this collapse, we penalize fθθθ with
the equivariance loss in Equation 7.

3.8 Combined invariance and equivariance loss

In addition, we penalize fθθθ according to the following loss:

LBA(θθθ |xxx,c,k) = Dθθθ ,k(TcxxxB,Tc+kxxxA)., (8)

i.e., the distance between ChromaNet responses TcxxxB and
T(c+k)xxxA on the CoF. Observe that both these responses are
already available after Equations 6 and 7. Therefore, the
inclusion of Equation 8 in the loss comes at almost no extra
computational cost during gradient backpropagation.

4. SELF-SUPERVISED KEY SIGNATURE

PROFILES

4.1 Training on real-world unlabeled data

We collect 60k songs from the catalog of a music streaming
service, with due permission. For each of them, we extract
two disjoint segments xxxA and xxxB of duration equal to 15
seconds each. Following prior knowledge in music cog-
nition [27], we set this duration to be as large as possible,
considering the memory constraints of GPU hardware.

We implement ChromaNet and CPSD in PyTorch. The
interval c (see Section 3.1) varies between zero and 15 semi-
tones while the interval k (see Section 3.7) varies between
−12 and 12 semitones. We define a CPSD-based stochastic
loss function by combining Equations 6, 7, and 8:

L
CPSD(θθθ |xxx,k,c) = LAB(θθθ |xxx,c)

+LAA(θθθ |xxx,k,c)+LBA(θθθ |xxx,k,c), (9)

where CQT samples xxx and intervals c and k are drawn
independently and uniformly at random. We train the Chro-
maNet for 50 epochs using a cosine learning rate schedule
with a linear warm-up. We use an AdamW optimizer with
a learning rate of 10−3 and a batch size of 128.

The self-supervised procedure above learns an approx-
imately equivariant mapping from CQT to key signature
profiles (KSP). After training, we observe informally that
for each input xxx, most of the softmax activation in the KSP
yyyθθθ is concentrated on a single pitch class. In other words,
the loss L CPSD (Equation 9) is sparsity-promoting.
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4.2 Calibration on a C major scale

By learning to predict pitch transpositions between seg-
ments, STONE learns the notion of relative tonality, just
like the relative pitch of musicians; however, it lacks a no-
tion of absolute tonality. Thanks to the equivariant property
of ChromaNet, we only need to introduce this notion via
a single recording of a C major scale paired with C major
chords. This calibration procedure resembles previous work
in self-supervised fundamental frequency estimation [9,11].

Denoting the C:maj calibration sample by xxxcal, we look
up the index of its highest KSP coefficient in STONE:

qcal(θθθ) = arg max
0≤q′<Q

(g◦ fθθθ )(xxxcal)[q
′]. (10)

Then, given a CQT matrix xxx from the test set, we realign its
ChromaNet response yyy = (g◦ fθθθ )(xxx) via a pitch transposi-
tion of the learned KSP by qcal(θθθ) semitones:

hθθθ (yyy)[q] = yyy[(q−qcal(θθθ))modQ]. (11)

4.3 Evaluation on real-world labeled data (FMAK)

FMAK is a subset of Free Music Archive dataset [28] con-
taining 5489 songs that present a clear key and are in major
or minor modes. We label these songs by ear. Each of the 24
keys is represented in FMAK by at least 89 songs. C:maj
and A:min are the best represented, while G\:maj and
G\:min are the least represented. Songs are distributed in
major and minor modes evenly. Rock and electronic dance
music are the best represented genres; jazz and blues are the
least represented. To our knowledge, FMAK stands as the
largest and most diverse MIR dataset with key annotation.

4.4 Key signature estimation accuracy (KSEA)

In compliance with MIREX [29], we propose the following
figure of merit for key signature estimation:

KSEA(θθθ) =
1
N

N−1

∑
n=0

(
δδδ [sn(θθθ)−Sref

n ]

+
1
2

δδδ
[
||sn(θθθ)−Sref

n |−6|−1
])

, (12)

where sn(θθθ) = argmax0≤q<Q

(
hθθθ ◦g◦ fθθθ

)
(xxxn)[q] and δδδ is

the Kronecker symbol. KSEA assigns a full point to the
prediction if it matches the reference and a half point if the
prediction is one perfect fifth above or below the reference.

4.5 Results on key signature estimation

We evaluate two variants of STONE on FMAK, all other
things being equal: ω = 7 (CoF) and ω = 1. For compari-
son, we also evaluate the work of Korzeniowski et al., the
supervised state of of the art (SOTA) for this task [21], a
convnet trained on GSMK. Lastly, we evaluate a feature
engineering pipeline, requiring no supervision: i.e., we take
the global average of the chromagram representation and
extract the pitch class with highest energy.

Table 1 summarizes our results. We observe that, for
both values of the CPSD frequency ω , STONE outperforms
the feature engineering baseline. Furthermore, for ω = 1,
the KSEA approaches that of the supervised SOTA.

Table 1. Evaluation of self-supervised models on FMAK.
KSEA denotes key signature estimation accuracy. We also
report the supervised state of the art (SOTA) for comparison.

Correct Fifth KSEA
Feature engineering 1599 981 38%
STONE (ω = 7) 3587 1225 77%
STONE (((ωωω === 111))) 3883 920 79%

Supervised SOTA [21] 4090 741 81%

Table 2. Ablation study of STONE (ω = 7) on FMAK.
CPSD denotes cross-power spectral density. KSEA denotes
key signature estimation accuracy. We report a naive base-
line (i.e., predict the key signature of C:maj and A:min
for every sample) for comparison.

Correct Fifth KSEA
STONE (((ωωω === 777))) 3587 1225 77%

w/o octave equivalence 1052 1267 31%
w/o CPSD 1049 1267 31%
Baseline (predict C) 1049 1267 31%

4.6 Ablation study

The two main novel components of STONE are the Chro-
maNet (Section 3.2) on one hand and cross-power spectral
density (CPSD) over learned key signature profiles (KSP)
on the other hand. In order to evaluate their relative on per-
formance, we conduct an ablation study: i.e., we substitute
them by more conventional alternatives.

First, we replace the non-learned octave equivalence
layer g (Equation 1) by a fully connected layer with same
output size. Secondly, we replace the three CPSD-based
losses (Equation 9) by 12-class cross-entropy losses. Intu-
itively, the first ablation disables equivariance in fθθθ while
the second disables equivariance in L . We observe that
both ablations cause a collapse of SSL, leading it to predict
the majority class (i.e., C:maj) on almost every sample.
This suggests that both octave equivalence and CPSD are
essential to the success of STONE.

5. SELF-SUPERVISED TONALITY ESTIMATION

5.1 Structured prediction

After having established that STONE learns to represent
key signatures without any supervision, we turn to study
its transferability to the well-known MIR problem of key
estimation. For this purpose, we must accommodate the
distinction between major and minor keys, thus doubling
the output dimension of the ChromaNet from 12 to 24.

We note that key signature and mode are orthogonal
concepts: each major key has exactly one relative minor
and vice versa. These considerations suggest that the down-
stream task of key estimation may be formulated as struc-
tured prediction: i.e., in a 2-D label space. We encode struc-
tured labels in a matrix Y with 12 rows and two columns.
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Figure 2. We modify the ChromaNet architecture of Figure
1 to accommodate structured prediction key signature and
mode. We apply batch normalization per mode m and soft-
max over all coefficients, yielding a 12×2 matrix Yθθθ (xxx).
Summing Yθθθ (xxx) over modes m yields a learned key signa-
ture profile λθθθ (xxx) in dimension 12; summing Yθθθ (xxx) over
chromas q yields a pitch-invariant 2-dimensional vector
µθθθ (xxx).

5.2 Batch normalization across key signatures

We modify the last layer of the ChromaNet fθθθ to output two
channels instead of one. We also redefine the non-learnable
operator g for octave equivalence to accommodate two chan-
nels, apply batch normalization with non-learnable param-
eters on each channel, and a softmax nonlinearity over all
batch-normalized coefficients. This procedure normalizes
each channel to null mean and unit variance over the train-
ing set, thus ensuring that both channels are activated and
thus prevents a form of collapse during self-supervision.

The composition of g and fθθθ , under their new definitions,
yields a matrix Yθθθ (xxx) with Q = 12 rows and two columns.
By property of the softmax in g, all 24 coefficients in Yθθθ (xxx)
are positive and sum to one. As illustrated in Figure 2, we
take advantage of this property to derive a key signature
estimator λθθθ and a mode estimator µθθθ , respectively defined
as row-wise and column-wise partial sums of Yθθθ (xxx):

λθθθ (xxx)[q] =
1

∑
m=0

Yθθθ (xxx)[q,m] (13)

µθθθ (xxx)[m] =
11

∑
q=0

Yθθθ (xxx)[q,m]. (14)

We verify that the 12-dimensional vector λθθθ (xxx) is positive,
sums to one, and is equivariant to pitch transpositions in
Yθθθ (xxx). Conversely, the 2-dimensional vector µθθθ (xxx) is posi-
tive, sums to one, and is invariant to pitch transpositions in
Yθθθ (xxx). We use λθθθ as a substitute for (g◦ fθθθ ) in L CPSD.

5.3 Self-supervised mode estimation

We now introduce a loss for self-supervised mode estima-
tion. To this aim, we posit that mode is not only constant
throughout the musical piece, but also remains invariant by
pitch transposition. Therefore, going back to the notations
from Section 4: TcxxxA, TcxxxB, and Tc+kxxxB should elicit the
same value of the mode estimator µθθθ .

We recall the definition of binary cross-entropy (BCE)
for 2-D vectors whose entries are positive and sum to one:

BCE(µµµ,µµµ ′) =−µµµ[0] log µµµ ′′′[0]−µµµ[1] log µµµ ′′′[1]. (15)

We compute the pairwise BCE between mode estimator
responses a ssociated to the three predictions of the self-
supervised ChromaNet (see Figure 1) 5 :

L
BCE(θθθ |xxx,c,k) = BCE(µθθθ (TcxxxB),µθθθ (TcxxxA))

+BCE(µθθθ (TcxxxA),µθθθ (Tc+kxxxA))

+BCE(µθθθ (TcxxxB),µθθθ (Tc+kxxxA)). (16)

We add the BCE-based loss in Equation 16 to the CPSD-
based loss in Equation 9, thus yielding a full-fledged loss
for self-supervised tonality estimation (STONE):

L (θθθ |xxx,c,k) = L
CPSD(θθθ |xxx,c,k)+L

BCE(θθθ |xxx,c,k).
(17)

We train the modified ChromaNet to minimize L with
the same optimization hyperparameters as in Section 4.1.
The resulting model, named 24-STONE, performs key sig-
nature estimation with λθθθ and mode estimation with µθθθ .
However these estimators are uncalibrated: i.e., λθθθ only
contains information of relative tonalities and µθθθ may swap
relative major and minor. We calibrate them by means of a
C:maj scale, via the same procedure as in Section 4.2.

5.4 Results on key and mode classification

We evaluate two variants of 24-STONE on FMAK: ω =
1 and ω = 7; as well as the supervised SOTA. We also
evaluate the template matching algorithm of [17], requiring
behavioral data but no supervision.

Table 3 summarizes our results. The 24-STONE model
with ω = 7 is best in the unsupervised category, although
well below the supervised SOTA. However, setting ω to 1
dramatically hurts the MIREX score of 24-STONE, placing
it below the naive baseline. Thus, formulating CPSD re-
gression over the CoF (see Section 3.5) seems necessary for
STONE to transfer to key and mode estimation, even so it
is ouperformed by ω = 1 in KSEA (see Section 4.4). With
this result in mind, we set ω = 7 in the rest of this paper.

6. SEMI-SUPERVISED TONALITY ESTIMATION

6.1 Supervising the ChromaNet

Thanks to structured prediction, the ChromaNet accommo-
dates supervised training in the same label space as self-
supervised training. Note that the 24-STONE losses L CPSD

and L BCE involves pairwise comparisons between three
items belonging to the same xxx: i.e., two transposed versions
of the same segment xxxA and one from another segment xxxB.
In this context, a simple way to introduce supervision is to
replace the responses λθθθ ,B and µθθθ ,B by “oracles” λref and
µref which are informed by the ground truth.

Given the ground truth key signature qref and mode mref,
one-hot encoding yields the sparse vectors λref,c(xxx)[q] =
δδδ [(q − qref − c) mod 12] and µref(xxx)[m] = δδδ [m − mref],
where c is a pitch interval in semitones (see Section 3.1).
We use these oracles to write supervised variants of losses

5 Compared to L CPSD, we have swapped xxxA with xxxB in the first term.
This is for compatibility with the supervised setting, as described in Section
6.1, so as to avoid an undefined BCE due to a logarithm of zero.
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Correct Fifth Relative Parallel Wrong MIREX
Template matching [17] 2398 631 390 506 1564 53.4%
24-STONE (ω = 1) 421 535 399 253 3881 15.6%
24-STONE (((ωωω === 777))) 2443 628 1320 115 983 57.9%

Supervised SOTA [21] 3586 482 504 165 752 73.1%
Baseline (predict C:maj) 551 568 498 286 3586 19.0%

Table 3. Evaluation of self-supervised models for key and mode estimation on FMAK. We also report the supervised state of
the art (SOTA) [21] and a naive baseline (i.e., predict C:maj for every sample) for comparison. See Section 5.4 for details.

L CPSD and L BCE. This seamless switch from SSL to su-
pervised learning requires no change of architecture nor
optimizer. Thus, instead of using supervision as fine-tuning,
we propose an alternated scheme: one epoch of SSL fol-
lowed by one epoch of supervised learning, and so on.

6.2 Semi-TONE and Sup-TONE

Introducing supervision into 24-STONE yields a semi-
supervised tonality estimator, or Semi-TONE for short. We
alternate between self-supervised epochs on 60k unlabeled
recordings (see Section 4.1) and supervised epochs on the
1159 songs in GSMK in which annotators agree. For the
sake of comparison, we experiment with disabling SSL and
training the ChromaNet directly on GSMK: hence a fully
supervised tonality estimator, or Sup-TONE for short.

To compare their ability to learn from limited labeled
data, we retrain Semi-TONE and Sup-TONE after subsam-
pling GSMK at random by factors of 10 and 100.

Figure 3. Evaluation of self-supervised (dashed blue), semi-
supervised (solid blue), and supervised models (orange)
on FMAK. All models use ω = 7. We also report the
supervised state of the art (SOTA) [21] in dashed green.

6.3 Results on key and mode classification

Figure 3 summarizes our results. We observe that
Semi-TONE systematically outperforms Sup-TONE at any
amount of training data. In particular, training Semi-TONE
with 10% of GSMK leads to a comparable MIREX score
as training Sup-TONE with 100% of GSMK. This result

Figure 4. Confusion matrices of STONE (left, 12 classes)
and Semi-TONE (right, 24 classes) on FMAK, both using
ω = 7. The axis correspond to model prediction and refer-
ence respectively, keys arranged by proximity in the CoF
and relative modes. Deeper colors indicate more frequent
occurences per relative occurence per reference key.

confirms the interest of our proposed pretext tasks towards
the overarching goal of reducing human annotation effort.

Training Semi-TONE on the full GSMK dataset yields
a MIREX score of 72.6%; i.e., roughly on par with the
supervised SOTA (73.1%). Figure 4 shows the confusion
matrix of calibrated STONE and Semi-TONE on FMAK.
Although our methods do not outperform the SOTA on key
estimation, it brings insights into a novel framework that
does not require high supervision for training. Moreover,
we note that self-supervision remains beneficial even when
the full GSMK dataset is available for training. Therefore,
a promising avenue of research is to scale up the dataset of
unlabeled recordings (see Section 4.1), thus widening the
gap between Semi-TONE and Sup-TONE on FMAK.

7. CONCLUSION

STONE learns key signature profiles (KSP) via equivariant
self-supervised learning in the time–frequency domain. We
have seen than a semi-supervised extension of STONE
(semi-TONE) reduces expert annotation by 90% less at
no loss of MIREX score compared to the fully supervised
variant (sup-TONE). The primary limitation of our work
resides in the inability of the STONE objective (CPSD,
i.e., cross-power spectral density) to distinguish major keys
from minor keys. Future work will study how STONE can
be adapted to other pitch-relative MIR tasks.
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ABSTRACT

We propose a system for tracking beats and downbeats with

two objectives: generality across a diverse music range, and

high accuracy. We achieve generality by training on multi-

ple datasets – including solo instrument recordings, pieces

with time signature changes, and classical music with high

tempo variations – and by removing the commonly used

Dynamic Bayesian Network (DBN) postprocessing, which

introduces constraints on the meter and tempo. For high

accuracy, among other improvements, we develop a loss

function tolerant to small time shifts of annotations, and

an architecture alternating convolutions with transformers

either over frequency or time. Our system surpasses the

current state of the art in F1 score despite using no DBN.

However, it can still fail, especially for difficult and un-

derrepresented genres, and performs worse on continuity

metrics, so we publish our model, code, and preprocessed

datasets, and invite others to beat this.

1. INTRODUCTION

Beat tracking is the task of estimating the temporal locations

of musical beats in an audio signal. It is often combined

with the downbeat tracking task, which targets a higher

metrical level: tracking the beginning of each measure. De-

spite being one of the long-standing problems in the Music

Information Retrieval (MIR) field, it still attracts attention

and several approaches were proposed in recent years [1–8].

Most recent work follows a common pipeline: the audio

files are transformed into some spectrogram-like represen-

tation, then a deep neural network predicts frame-wise beat

and downbeat probabilities, which are postprocessed to

obtain the final predictions. The most widely used postpro-

cessing technique is the Dynamic Bayesian Network (DBN)

in the form proposed by Böck et al. [9]. It addresses four

tasks: variable threshold peak-picking, forcing the tempo

to stay in a certain range (i.e., limiting the allowed distance

* Equal contribution.

© F. Foscarin, J. Schlüter, and G. Widmer. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: F. Foscarin, J. Schlüter, and G. Widmer, “Beat this! Accurate

beat tracking without DBN postprocessing”, in Proc. of the 25th Int.

Society for Music Information Retrieval Conf., San Francisco, United

States, 2024.

between beats), limiting sudden tempo changes, and (for

downbeat tracking) ensuring that the downbeat falls every

n beats, where n is constant for a piece of music and is

selected from a limited list of values.

We argue that the DBN is a problematic component be-

cause it is inherently bound to fail for several music pieces:

pieces with time signature changes, pieces whose tempo

falls outside of the tempo range (or that slow down/speed up

outside the tempo range), and pieces whose number of beats

per measure are not included in the list of supported val-

ues. Moreover, it has a fixed parameter controlling allowed

tempo variations, although we can expect, for example, clas-

sical music to have bigger tempo variability than rock music.

Finally, even the hypotheses of having periodic beats and

downbeats may be invalid, for example, for songs where the

players make mistakes or audio tracks containing multiple

concatenated songs.

Still, the DBN performs well on most pieces commonly

used to train and evaluate beat tracking systems: music with

a constant time signature of 3/4 or 4/4 and a stable, medium

tempo. This can be seen from the default DBN parameters

which most systems use, 1 i.e., tempo range [55, 215] BPM,

beats per measure [3, 4], and a tempo variability optimised

on pop, rock and dance datasets. Pieces outside these spec-

ifications are likely to be mispredicted by the system, but

form a minority in typical datasets. Therefore, in terms

of evaluation metrics, it usually does not pay to remove

the DBN. However, working in these “simplified” condi-

tions blocks research from solving corner cases in existing

datasets and targeting more challenging or diverse data.

Our first goal is thus to replace the DBN with minimal

postprocessing, free of the aforementioned musical assump-

tions. A recent attempt to remove the DBN was made by

Chen and Su [2]. However, their system may not look

appealing to practitioners requiring beat tracking for down-

stream tasks, or researchers seeking a system to improve,

as its accuracy falls clearly behind DBN-based ones.

Our second goal is to provide a powerful basis for practi-

tioners and researchers. The current best-performing system

(which uses a DBN) from Hung et al. [10] falls short in

this regard, as its code or a pretrained model is not public,

its architecture is very complex, and (to the best of our

knowledge) the results could not be reproduced by others.

1 We could verify that [3, 4, 8] use these parameters, since their code
is publicly available, and we assume [1, 10] do as well, since they do not
mention any details in their paper.
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In this paper, we present an open-source system that

obtains new state-of-the-art F1 scores without a DBN. It

is based on a rotary transformer [11] applied on spectro-

grams, with the following novelties: (1) We design a fron-

tend alternating convolutions with a transformer variant

by Lu et al. [12] that attends alternatively over frequency

bins or time frames. (2) We train with a shift-tolerant bi-

nary cross-entropy (BCE) that can cope with small devia-

tions in the beat/downbeat annotations, and with weights

on beat/downbeat frames to balance their relative scarcity.

(3) We propose an approach that encourages downbeat pre-

dictions to be a subset of beat predictions, and (4) a data

augmentation masking input segments to encourage the net-

work to consider a longer context. Our code, pretrained

models, and preprocessed datasets are openly available. 2

2. RELATED WORK

The currently best-performing model (on the GTZAN

dataset [13] commonly used for evaluation) is by Hung

et al. [10] and serves as a point of comparison. It uses

a complex neural network architecture named SpecTNT

which alternates computing frequency-related features with

a frequency-oriented transformer, and processing a virtual

extra frequency band with a time-oriented transformer. This

runs in parallel with a more widely used Temporal Convo-

lutional Network (TCN, a fully convolutional network with

dilated convolutions), and the outputs of the two networks

are merged for the final predictions. Unfortunately, the ap-

proach is not open source, and to the best of our knowledge,

no other research group has managed to reproduce its re-

sults. Moreover, it still uses the DBN, which, as argued in

the introduction, limits the system’s generality.

Although no other work could reach the accuracy re-

ported by Hung et at., two other recent beat tracking papers

brought new interesting ideas [3, 4]. Both perform instru-

ment separation (with a pretrained network) and feed the

separate stems (bass, drums, vocals, other, for [3] also

piano) into the model, mixing their information in cross-

instrument attention blocks. While this approach is very

reasonable from a music perception standpoint, it reduces

the generality of the system, since it assumes that the input

pieces will contain such instruments, at least to some extent.

Another proposal of [3, 4] is the use of dilated attention,

following the successful use of dilated convolutions in beat-

tracking architectures to increase the receptive field without

adding computations. We find that flash attention [14] en-

ables us to train with dense attention over a satisfactorily

large input size, and leave experiments with dilated atten-

tion for future work.

Chen and Su [2] try to remove the DBN and propose

a set of improvements. The most impactful is to replace

the BCE with the Dice [15] and Focal [16] loss, inspired

by their common usage for medical image segmentation.

While these losses improve results, possibly due to their

inherent ability to handle unbalanced classes, we found that

a BCE with weights on the positive (beat and downbeat)

2 https://github.com/CPJKU/beat_this

classes outperforms them. We suspect this is because, in

contrast to medical image segmentation, our positive exam-

ples are single frames, and the Dice and Focal loss perform

better when the area of positive predictions is larger [17].

Another proposal by Chen and Su is to predict the phase of

the beat/downbeat instead of a single binary value, follow-

ing [18]. Although this seems promising, the results on both

papers (and ours) do not show any consistent improvement.

Many recent approaches [2, 3, 18, 19] use the additional

task of tempo prediction (a single tempo target for each

input excerpt) in a multi-task setting. While this improves

their results, it goes against our goals of generality, since

it assumes an (almost) constant tempo in the file excerpt,

which is not the case for many kinds of music.

Other recent papers do not align with the goal of this

paper: [1] explores the usage of different time resolutions be-

tween the input audio and output predictions (only address-

ing beats); [8] performs unsupervised beat tracking; [20]

focuses on online beat tracking; [5] notices the problems

of the DBN for music with tempo changes, and proposes

a different postprocessing method targeted specifically to

classical music; [7] focuses on fine-tuning existing systems,

and changing the DBN parameters for targeting specific

underrepresented genres.

3. METHOD

Our beat tracker is based on a neural network with ∼20 M

parameters. It starts from 30 seconds of mono audio sam-

pled at 22.05 kHz and converts it to a 128-bin mel spectro-

gram from 30 Hz to 10 kHz, with a window size of 1024

and hop size of 441 samples (yielding 50 frames per sec-

ond), and magnitudes scaled via ln(1 + 1000x) (similar

to ln(max(10−3, x)), but maps silence to zero). These hy-

perparameters were optimised in preliminary experiments.

Our model processes this into frame-wise beat and down-

beat probabilities, followed by minimal post-processing to

derive beat and downbeat locations.

3.1 Model

Our model (Figure 1) processes a T×128 spectrogram into

T ×2 probabilities; T being the number of input frames

(1500 in case of 30 s). It consists of three components:

a frontend converting the spectrogram into a sequence of

feature vectors, a transformer processing these vectors, and

two task heads computing the output probabilities.

3.1.1 Frontend

The frontend’s role is to integrate information across the 128

frequency bands into feature vectors. Typically, this is done

via 2d convolutions gradually reducing the number of bands

to 1 while increasing the number of channels [3, 10]. We

adopt this, but found it helps to interleave convolutions with

Partial Transformers, which treat the time and frequency

axis independently. Overall, our frontend consists of a stem,

three identical blocks, and a linear projection.

The stem (Figure 1, top right) starts with a batch nor-

malisation that processes each frequency band separately
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Figure 1: Full model architecture.

to homogenise them, followed by a 2d convolution of 3×4
kernels, regular batch normalisation, and GeLU nonlinear-

ity. The convolution is strided to reduce the number of

frequency bands to a fourth and creates 32 channels.

Each block (Figure 1, middle right) consists of two par-

tial transformers, a strided 2d convolution halving the num-

ber of bands while doubling the number of channels, batch

normalisation and GeLU. The first partial transformer is

frequency-directed, i.e., it processes the T ×F ×C ten-

sor by treating each time frame as a sequence of length F
(the number of bands), the second one is time directed and

treats each frequency band as a sequence of length T (the

number of frames), an idea adopted from the Band Split

RoFormer [12]. Each transformer has a head size of 32

(one head in the first frontend block, two in the second, four

in the third), rotary positional embedding [11], a sigmoid

gate per head [21, Sec. 4.2], and includes a usual pointwise

feedforward network with a hidden size of four times the

channel count.

After three frontend blocks, the resulting T ×4×256
tensor (4 bands, 256 channels) is reshaped to a T×1024
tensor and linearly projected to 512 features.

3.1.2 Transformer

The transformer makes up the bulk of our model’s param-

eters and compute. It consists of 6 stacked transformer

blocks processing the 512-dimensional vectors with 16

heads of size 32, rotary positional embedding, sigmoid

gating, and a pointwise feedforward network of 2048 hid-

den units. This matches the configuration in the frontend

transformer blocks, but as it processes a single sequence of

512-dimensional feature vectors, it is a regular transformer

over time without separately considering a frequency di-

mension. Its goal is to map the 512 input features to a space

that relates to beats and downbeats. Due to the attention

mechanism, the transformer’s receptive field covers the full

sequence, and it could therefore produce an output that

has characteristics that we want in the beat predictions, for

example, regularity.

3.1.3 Task Heads

The output of the final transformer block is processed by

two linear layers, one for beats and one for downbeats. Ini-

tially, we used the common approach of passing their output

into 2 sigmoid functions to produce a probability for each

input frame, and then threshold this probability at 0.5 to

obtain "hard" beat predictions. However, we observe that

this sometimes produces downbeat predictions not coin-

ciding with a beat prediction, which is allowed under the

evaluation metrics but is a musically invalid and unusable

output. This problem is solved when using a DBN to jointly

process beats and downbeats. However, we noticed that

several works, e.g., [3,6], use two independent DBNs to pre-

dict beats and downbeats (and others [2,10] do not specify).

To our surprise, this leads to better metrics, but it severely

limits practical use.

To mitigate this problem, we propose a Sum Head that

sums the output of the beat and downbeat layers, and treats

this as the beat logits (for prediction and training). This is

a very simple way of helping the network produce a beat

when there is a downbeat (though it does not enforce that; a

highly negative output of the beat layer can still counter the

downbeat layer). We explored other ways of aggregating

the beat and downbeat logits, like taking their maximum,

but this hampered training due to the sparser gradients.

On the GTZAN dataset, the sum head almost halves the

percentage of downbeats that are more than 70 ms away

from the closest beat, from 1.1% to 0.62%, compared to

directly using the output of the linear layers. We observe

that the remaining unmatched downbeats are in pieces with

very erratic predictions that would be incorrect anyway.

Some systems circumvent the problem by using a 3-way

classifier (beat vs. downbeat vs. none) instead of the two

binary classifiers (beat vs. none, and downbeat vs. none).

However, to be able to train on datasets that do not include

downbeat annotations, we stick to binary classifiers.

3.2 Postprocessing

To obtain beat/downbeat locations, we pick all frames as-

signed the highest beat/downbeat probability within a neigh-

borhood of ±3 frames (±70ms), and probability > 0.5. In

case adjacent frames are assigned the same probability, we

report their center. Finally, we move all downbeat predic-

tions to the closest beat prediction to correct the remaining

mismatches described in the previous section. For music

pieces longer than 30 s, we concatenate predictions over

non-overlapping 30-second excerpts.

3.3 Loss

The model is trained by gradient descent on a loss func-

tion that compares the frame-wise beat and downbeat pre-

dictions with frame-wise binary annotations. The usual

loss for binary classification is Binary Cross-Entropy,
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Figure 2: The standard binary cross-entropy loss (left plot)

encourages high network outputs (upward arrow) at beat

annotations (vertical line), and low outputs for all other

frames (downward arrows). Max-pooling the predictions

over time redistributes gradients to local maxima (right

plot). This way, slightly shifted annotations do not affect

learning, and the network produces confident sharp peaks.

Lbce(y, ŷ) = −
∑

t
yt log(ŷt)+(1−yt) log(1− ŷt). Train-

ing with BCE leads to unconfident predictions since the

problem is heavily imbalanced. To counter this, we can

weight positive examples by a factor w as Lwbce(y, ŷ, w) =
−
∑

t
wyt log(ŷt) + (1 − yt) log(1 − ŷt). We found that

setting w to the number of negative examples divided by the

number of positive examples (over the training set) yields

the best result and is crucial when not using a DBN.

Another problem persists: annotations are not precise

down to our spectrogram resolution, due to annotators’ im-

preciseness, players’ asyncronicity, or simply the limits

of human perception. This is taken into account during

the evaluation, e.g., the typically used F1 score accepts

predictions in a ±70 ms window around labels. During

training, the BCE loss punishes close positive predictions

(Figure 2, left) even though they may be correct, thus cre-

ating two problems: training is slower and the network

learns to predict wide “blurred” peaks. This is commonly

addressed by adding two extra positive labels around each

annotation weighted by 0.5, but this only mitigates the for-

mer problem without helping with the latter. Instead, we

max-pool predictions over time (7 frames, stride 1) before

comparing them to the labels. In this way, only the largest

positive prediction ±3 frames from each label is consid-

ered (Figure 2, right). The loss for negative examples is

ignored ±6 frames from each label, as this is how far a

max-pooled prediction 3 frames away from a label spreads.

Denoting max-pooling of k frames with mk(·), we can for-

malise our Shift-tolerant weighted BCE as: Lst(y, ŷ, w) =
−
∑

t
wyt log(m7(ŷ)t)+ (1−m13(y)t) log(1−m7(ŷ)t).

3.4 Data Augmentation

Masking. To encourage the model to not only rely on local

information for its predictions, we mask 0 to 6 areas of 0.5

to 2 s. Each masked area is randomly divided into 5 to 10

parts which are randomly reordered. This destroys local

correspondence between audio and beats without changing

local input statistics, and works better than zero masking

as employed in SpecAugment [22]. We assume our ap-

proach makes it harder for the network to learn a dedicated

behaviour for masked areas.

Pitch and time. We speed up and slow down every song

by 20, 16, 12, 8, and 4%, and transpose by at most +6 and

−5 semitones. We precompute these augmentations (us-

ing Pedalboard [23]) so experiments become reproducible

without access to the original audio. To limit storage use,

tempo and pitch augmentations are not combined, giving 22

variations for each song. We verified that our limited tempo

augmentation gives comparable results to the commonly

used approach by Böck and Davies [19] of performing on-

the-fly augmentations by randomly changing the hop size

of the STFT, at the advantage of not requiring audio access.

4. EXPERIMENTS

We perform 8-fold cross-validation experiments on multiple

datasets, compute results on the test-only GTZAN dataset,

and do an ablation study.

We use the standard beat-tracking metrics: F1, CMLt,

and AMLt and compute them using the mir_eval

package [24] with default parameters. 3 CMLt and

AMLt are called continuity metrics, and only consider

a beat/downbeat as correct if both it and the previous

beat/downbeat are correct; AMLt also accepts different met-

rical levels such as half or double time, and offbeats [25].

The metrics and their settings match those used by Hung

et al. [10]; this enables a comparison with their reported

results, though it is unclear which 8-fold datasplit they use,

and we cannot run any statistical significance tests since

their code is not reproducible. Therefore, any comparison

needs to be taken only as an indication.

4.1 Datasets

We train and validate with several datasets: Simac [26],

SMC [27], Hainsworth [28], Ballroom [26, 29], HJDB [30],

Beatles [31], Harmonix [32], RWC [33, 34] (classical,

pop, royalty-free, and jazz), TapCorrect [35], JAAH [36],

Filosax [37], ASAP [38], Groove MIDI [39], GuitarSet [40],

Candombe [41]. The first two datasets contain only beat

annotations, all others both beat and downbeats. We dis-

card one Beatles piece which does not contain downbeat

annotations and one with empty beat annotations, resulting

in a total of 4556 tracks. For comparison, Hung et al. [10]

train with only the first 7 datasets reported above (Simac

to Harmonix), plus RWC pop, for a total of 3144 pieces

(when assuming the same handling of missing annotations).

We use the GTZAN [13] dataset (993 pieces discarding one

unannotated track and 6 tracks that miss downbeat annota-

tions) for testing only.

We use only the backing tracks of Filosax without the

saxophone solos. For ASAP, we discard the tracks that

contain the “rubato” beat annotations. In Groove MIDI, we

keep all pieces that are longer than 20 seconds and use the

provided audio renderings. We only use the comping tracks

of GuitarSet, discarding the solos.

We employ the 8-fold cross-validation splits published

by Böck and Davies [19] for the datasets they used and

produce new ones for our added datasets, ensuring different

versions of the same piece are not spread across folds, and

3 This includes “trim_beats” of 5s that discards the first 5 seconds
during the evaluation, which is a choice we do not necessarily approve
of, but we use it to be consistent with what seems the standard way of
evaluating.
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stratifying by metadata when possible. We also produce a

new single split with ∼ 15% of the pieces on each dataset

as validation (again taking care of different versions of the

same piece).

4.2 Training

We train for 100 epochs with gradient accumulation over 8

batches of size 8, 4 AdamW optimizer [42], weight decay

of 0.01 (excluding biases and learned norms), learning rate

warm-up [43] of 1000 steps to a maximum of 0.0008, and

cosine annealing. During each epoch, we randomly sample

30 seconds of each piece, and pad if the total piece duration

l is less than 30 seconds. We draw k samples from pieces

that are longer than 30 seconds, following the equation

k = round (α · l/30) with α = 0.65, since we observe it

leads to faster convergence than using one random sample

per piece, or l/30 non-overlapping samples. On average,

this yields ∼ 3 samples per piece. During training, every

time a sample is drawn, we randomly select a precomputed

augmentation described in Section 3.4, and apply masking.

The full training takes around 8 hours on a single NVIDIA

RTX 2080 Ti, 6 hours on A40, and 4 hours on A100.

During our experimentation, we found that to achieve

good results without a DBN, we need our network to be

overconfident in its predictions. This may seem to violate

usual deep learning practice, but can be explained by a

closer look at the beat tracker’s desirable output. We do not

want our network to produce probabilities close to 0.5 when

unsure, since this will lead to random oscillations between

positive and negative predictions, and thus erratic beats. In-

stead, we want it to give steady, high-probability predictions

even when unsure, exactly like the DBN would. To achieve

this, we keep training even after the validation loss starts in-

creasing, which would typically indicate overfitting. Indeed,

we see that the validation F1 score continues to improve

even with increasing validation loss. This means that even

with our modifications, the BCE loss is not a good indicator

of the F1 score, and further research into alternative losses

may be valuable.

The reader may wonder why, once we obtain our well-

performing network, we do not use the DBN to increase the

metrics even more. By having overconfident predictions, we

reduce the benefits of such a postprocessing method. With a

degree of simplification, we can imagine the DBN as using

a model’s most high-confident predictions to infer beats

in low-confidence areas. By avoiding the low-confidence

predictions, we are disrupting this mechanism.

4.3 Main Results

We report the results on our 18 datasets in the commonly

used 8-fold cross-validation setting: each dataset is split

into 8 parts, we jointly train on 18 · 7 parts (all but one per

dataset) and predict on the remaining 18, after 8 such runs

we covered all pieces and average metrics over pieces by

dataset. We observe that our model outperforms Hung et

al. [10], except for Harmonix and RWC Pop (downbeat). In

4 This enables training with under 8 GiB of GPU memory.

Beat F1 Downbeat F1

Our Hung Our Hung

ASAP 76.3 - 61.2 -

Ballroom 97.5 96.2 95.3 93.7

Beatles 94.5 94.3 88.8 87.0

Candombe 99.7 - 99.7 -

Filosax 99.5 - 98.5 -

Groove MIDI 93.7 - 82.1 -

GuitarSet 92.0 - 88.1 -

Hainsworth 91.9 87.7 80.0 74.8

Harmonix 95.8 95.3 90.7 90.8

HJDB 98.2 - 96.6 -

JAAH 95.1 - 85.0 -

RWC Classical 77.1 - 66.3 -

RWC Jazz 83.3 - 80.7 -

RWC Pop 96.1 95.0 93.7 94.5

RWC RF 94.5 - 91.9 -

Simac 77.9 - - -

SMC 62.7 60.5 - -

TapCorrect 93.0 - 86.4 -

Table 1: Results with 8-fold cross-validation.

our results, the lowest downbeat performance is obtained

in the ASAP and RWC Classical datasets, confirming the

well-known difficulty of beat-tracking classical music [2,5].

Performance on SMC (where only beat annotations are ac-

cessible) is also very low, consistent with the outcomes

of other systems, highlighting the substantial room for im-

provement that beat tracking systems continue to hold.

We also report the results on the GTZAN dataset in

Table 2. We compute these results with a single model

trained on the entirety of our training-val dataset (note that

we do not perform any early stopping or other techniques

for which the validation dataset may still be necessary).

All our runs are computed 3 times with different random

seeds, and we report the means and standard deviations

of the computed metrics over the 3 seeds. We notice that

even when training on the reduced collection of datasets by

Hung et al. (third row in the table), we still outperform their

F1 score without a DBN, proving the effectiveness of our

design choices. Our main model has ∼20 M parameters, 5

times more than Hung et al. with 4 M, so we also show the

results for a smaller model with the hidden dimension of

the main transformer blocks reduced from 512 to 128, and

the number of heads from 16 to 4. This small model has

∼2 M parameters and still gives SOTA F1 scores.

Disappointingly, we notice that the continuity metrics

(CMLt and AMLt) are lower than those of Hung et al. From

qualitative inspections of the results, we notice that for com-

plex or underrepresented pieces, our network introduces

non-periodic beats, which drastically lower the continuity

metrics. We are then brought to wonder why our network

cannot learn a supposedly obvious behaviour, such as only

producing periodic-like output, and we can propose two

explanations. Firstly, our loss does not specifically penalise

non-periodic predictions, but treats each beat individually.
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Beat Downbeat

F1 CMLt AMLt F1 CMLt AMLt

Hung et al. [10] 88.7 81.2 92.0 75.6 71.5 88.1

Our system 89.1 ± 0.3 79.8± 0.6 89.8± 0.4 78.3 ± 0.4 67.3± 0.8 79.1± 0.6
– limited to data of [10] 88.9± 0.1 79.9± 0.4 89.4± 0.2 75.5± 0.5 60.8± 1.2 75.5± 0.5
– smaller model 88.8± 0.2 79.4± 0.4 89.0± 0.4 77.2± 0.2 65.3± 0.3 78.0± 0.3
– with DBN 88.1± 0.3 80.5± 0.4 91.1± 0.2 77.4± 0.2 73.3 ± 0.2 87.8± 0.5

Table 2: Evaluation on the test dataset (GTZAN). The results for Hung et al. [10] are taken from their paper.

Beat F1 Downbeat F1

Our system 92.6 ± 0.1 85.4 ± 0.1

No sum head 92.6 ± 0.1 85.0± 0.1
No tempo augmentation 92.5± 0.1 84.9± 0.1
No mask augmentation 92.2± 0.0 84.5± 0.3
No partial transformers 92.2± 0.1 83.9± 0.2
No shift tolerance 91.2± 0.2 82.2± 0.4
No pitch augmentation 88.3± 0.4 80.8± 0.5
No shift tol., no weights 79.5± 0.7 68.7± 0.8

Table 3: Ablation studies on the single split validation

dataset, ordered by decreasing downbeat F1.

This results in a discrepancy between what is preferred by

continuity metrics and what the network learns to predict in

difficult parts to minimise the loss. Secondly, our datasets

contain several non-periodic annotations, some due to qual-

ity issues (see Section 4.5), some in correctly annotated

pieces such as tapcorrect_10 or beatles_Wild-Honey-Pie,

where a 2/4 measure in the middle of a 4/4 piece disrupts the

assumption of periodicity for downbeats. Finally, one could

also question the generality of the AMLt metric as a tool to

quantify double/half-time errors, since the computations of

different metrical levels assume that the time signature and

the tempo do not change and that a measure can always be

divided into 2 or 3 parts.

Using a DBN increases our CMLt downbeat perfor-

mance by correcting some of the (wrongly) non-periodic

outputs, but it reduces our F1 performance, by changing

other otherwise correct predictions that fall outside the DBN

assumptions. The AMLt score does not increase since our

network is overconfident in its predictions, and the DBN

cannot easily switch to another metrical level.

4.4 Ablation Studies

We ablate multiple components of our model on the single

split described in Section 4.1. We perform every experiment

3 times with different seeds and report the mean and stan-

dard deviation on the validation set in Table 3. The usage of

our Sum Head shows little impact, but we use it to have a

musically valid output, rather than to increase the F1 score.

Pitch, mask, and tempo augmentations help, in this order of

importance. The usage of partial transformers in our fron-

tend proves more effective than only having convolutions.

Our most impactful design choice is the weighted shift-

tolerant loss. Using a normal BCE with positive example

weights results in decreased performance, which decreases

even further when the weights are removed.

4.5 Notes on Dataset Quality

While exploring the datasets, we found multiple problems

in the annotations, and we think this hinders the develop-

ment of better models, especially for downbeat predictions.

Even the GTZAN dataset, which is commonly used for eval-

uation, is not immune to quality problems. Some of them

are evident and not debatable, like jazz_00000, jazz_00002,

jazz_00083, blues_00015, reggae_00095, classical_00077,

rock_00067. Furthermore, there are pieces where even for

experts it would be hard to agree on a unique beat and

downbeat annotation, like metal_00081 or classical_00056,

and multiple annotations would be necessary. Finally, some

pieces question the primary assumption of beat tracking,

i.e., that there is a beat/downbeat to track, like pop_00064,

and jazz_00003.

5. CONCLUSIONS AND OUTLOOK

In this paper, we presented a new beat tracking system

which obtained a state-of-the-art F1 score on a very di-

verse set of music, with minimal assumptions about the

tempo, time signature, and their changes over time. Re-

markably, we do not use the DBN postprocessing, which

was employed by all recent high-accuracy models. How-

ever, removing the DBN hurts the CMLt and AMLt metrics.

A study on how this trade-off affects human perception, al-

ternative metrics, and a direct comparison with DBN-based

models on complex pieces is left for future work.

We emphasise that beat tracking is not a solved prob-

lem, even for commonly targeted genres such as rock or

electronic music, especially for the downbeat tracking task.

We provide an open-sourced model that can be used as a

starting point, and we invite future researchers to improve it.

Potential directions are: reducing the model parameters, de-

veloping new losses that enforce periodicity during training,

using other data augmentation techniques to make the sys-

tem more robust to multiple sound conditions, fine-tuning

it on specific genres, and training on larger datasets. The

contribution of people with musical expertise will also be

essential, as we think that correcting the existing commonly

used datasets, and producing new annotated data for under-

represented genres is a crucial step for further development.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

967



6. ACKNOWLEDGEMENTS

This work was supported by the European Research Council

(ERC) under the EU’s Horizon 2020 research & innovation

programme, grant agreement No. 101019375 (Whither Mu-

sic?), and the Federal State of Upper Austria (LIT AI Lab).

The computational results presented were achieved in part

using the Vienna Scientific Cluster (VSC).

7. REFERENCES

[1] T. Cheng and M. Goto, “Transformer-based beat track-

ing with low-resolution encoder and high-resolution

decoder,” in Proceedings of the International Society

for Music Information Retrieval Conference (ISMIR),

2023.

[2] T.-P. Chen and L. Su, “Toward postprocessing-free neu-

ral networks for joint beat and downbeat estimation,”

in Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), 2022.

[3] J. Zhao, G. G. Xia, and Y. Wang, “Beat transformer:

Demixed beat and downbeat tracking with dilated self-

attention,” in Proceedings of the International Society

for Music Information Retrieval Conference (ISMIR),

2022.

[4] T. Kim and J. Nam, “All-in-one metrical and func-

tional structure analysis with neighborhood attentions

on demixed audio,” in Workshop on Applications of

Signal Processing to Audio and Acoustics (WASPAA),

2023.

[5] C.-Y. Chiu, M. Müller, M. E. Davies, A. W.-Y. Su,

and Y.-H. Yang, “Local periodicity-based beat tracking

for expressive classical piano music,” Transactions on

Audio, Speech, and Language Processing, vol. 31, pp.

2922–2934, 2023.

[6] L. Maia, M. Rocamora, L. W. P. Biscainho, and

M. Fuentes, “Adapting meter tracking models to latin

american music,” in Proceedings of the International

Society for Music Information Retrieval Conference (IS-

MIR), 2023.

[7] A. S. Pinto and G. Bernardes, “Bridging the rhythmic

gap: A user-centric approach to beat tracking in chal-

lenging music signals,” in Proceedings of the Interna-

tional Symposium on Computer Music Interdisciplinary

Research (CMMR), 2023.

[8] D. Desblancs, V. Lostanlen, and R. Hennequin, “Zero-

note samba: Self-supervised beat tracking,” Transac-

tions on Audio, Speech, and Language Processing,

vol. 31, pp. 2922–2934, 2023.

[9] S. Böck, F. Krebs, and G. Widmer, “Joint beat and

downbeat tracking with recurrent neural networks.” in

Proceedings of the International Society for Music In-

formation Retrieval Conference (ISMIR), 2016.

[10] Y.-N. Hung, J.-C. Wang, X. Song, W.-T. Lu, and

M. Won, “Modeling beats and downbeats with a time-

frequency transformer,” in Proceedings of the Inter-

national Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2022.

[11] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu,

“RoFormer: Enhanced transformer with rotary position

embedding,” Neurocomputing, vol. 568, 2024.

[12] W.-T. Lu, J.-C. Wang, Q. Kong, and Y.-N. Hung, “Music

source separation with band-split RoPE transformer,” in

Proceedings of the International Conference on Acous-

tics, Speech and Signal Processing (ICASSP). IEEE,

2024.

[13] U. Marchand and G. Peeters, “Swing ratio estimation,”

in Digital Audio Effects (Dafx), 2015.

[14] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “FlashAt-

tention: Fast and memory-efficient exact attention with

IO-awareness,” Advances in Neural Information Pro-

cessing Systems, vol. 35, 2022.

[15] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully

convolutional neural networks for volumetric medical

image segmentation,” in Proceedings of the Interna-

tional Conference on 3D vision (3DV), 2016.

[16] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár,

“Focal loss for dense object detection,” in Proceedings

of the International Conference on 3D vision (3DV),

2017.

[17] N. Abraham and N. M. Khan, “A novel focal Tversky

loss function with improved attention U-Net for lesion

segmentation,” in Proceedings of the International Sym-

posium on Biomedical Imaging (ISBI), 2019.

[18] T. Oyama, R. Ishizuka, and K. Yoshii, “Phase-aware

joint beat and downbeat estimation based on periodicity

of metrical structure.” in Proceedings of the Interna-

tional Society for Music Information Retrieval Confer-

ence (ISMIR), 2021.

[19] S. Böck and M. E. Davies, “Deconstruct, analyse, re-

construct: How to improve tempo, beat, and downbeat

estimation.” in Proceedings of the International Society

for Music Information Retrieval Conference (ISMIR),

2020.

[20] C.-C. Chang and L. Su, “BEAST: Online joint beat and

downbeat tracking based on streaming transformer,” in

Proceedings of the International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), 2024.

[21] Y. Bondarenko, M. Nagel, and T. Blankevoort, “Quanti-

zable transformers: Removing outliers by helping atten-

tion heads do nothing,” Advances in Neural Information

Processing Systems, vol. 36, 2023.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

968



[22] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph,

E. D. Cubuk, and Q. V. Le, “SpecAugment: A simple

data augmentation method for automatic speech recog-

nition,” in Proocedings of the Interspeech Conference,

2019.

[23] P. Sobot, “Pedalboard,” 2021. [Online]. Available:

https://doi.org/10.5281/zenodo.7817838

[24] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Ni-

eto, D. Liang, D. P. Ellis, and C. C. Raffel, “mir_eval:

A transparent implementation of common MIR metrics,”

in Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), 2014.

[25] M. E. Davies, S. Böck, and M. Fuentes, Tempo,

Beat and Downbeat Estimation, 2021. [Online]. Avail-

able: https://tempobeatdownbeat.github.io/tutorial/intro.

html

[26] F. Gouyon, “A computational approach to rhythm de-

scription — Audio features for the computation of

rhythm periodicity functions and their use in tempo

induction and music content processing,” Ph.D. disser-

tation, Universitat Pompeu Fabra, 2006.

[27] A. Holzapfel, M. E. Davies, J. R. Zapata, J. L. Oliveira,

and F. Gouyon, “Selective sampling for beat tracking

evaluation,” Transactions on Audio, Speech, and Lan-

guage Processing, vol. 20, no. 9, pp. 2539–2548, 2012.

[28] S. W. Hainsworth and M. D. Macleod, “Particle filtering

applied to musical tempo tracking,” EURASIP Journal

on Advances in Signal Processing, vol. 2004, pp. 1–11,

2004.

[29] F. Krebs, S. Böck, and G. Widmer, “Rhythmic pattern

modeling for beat and downbeat tracking in musical

audio,” in Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR), 2013.

[30] J. Hockman, M. E. Davies, and I. Fujinaga, “One in

the jungle: Downbeat detection in hardcore, jungle, and

drum and bass.” in Proceedings of the International

Society for Music Information Retrieval Conference

(ISMIR), 2012.

[31] M. E. Davies, N. Degara, and M. D. Plumbley, “Eval-

uation methods for musical audio beat tracking algo-

rithms,” Queen Mary University of London, Centre for

Digital Music, Tech. Rep. C4DM-TR-09-06, 2009.

[32] O. Nieto, M. C. McCallum, M. E. Davies, A. Robertson,

A. M. Stark, and E. Egozy, “The Harmonix set: Beats,

downbeats, and functional segment annotations of west-

ern popular music.” in Proceedings of the International

Society for Music Information Retrieval Conference (IS-

MIR), 2019.

[33] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka,

“RWC music database: Popular, classical and jazz music

databases,” in Proceedings of the International Society

for Music Information Retrieval Conference (ISMIR),

2002.

[34] M. Goto, “AIST annotation for the RWC music

database,” in Proceedings of the International Society

for Music Information Retrieval Conference (ISMIR),

2006.

[35] J. Driedger, H. Schreiber, W. B. de Haas, and M. Müller,

“Towards automatically correcting tapped beat anno-

tations for music recordings.” in Proceedings of the

International Society for Music Information Retrieval

Conference (ISMIR), 2019.

[36] V. Eremenko, E. Demirel, B. Bozkurt, and X. Serra,

“Audio-aligned jazz harmony dataset for automatic

chord transcription and corpus-based research,” in Pro-

ceedings of the International Society for Music Infor-

mation Retrieval Conference (ISMIR), 2018.

[37] D. Foster and S. Dixon, “Filosax: A dataset of anno-

tated jazz saxophone recordings,” in Proceedings of the

International Society for Music Information Retrieval

Conference (ISMIR), 2021.

[38] F. Foscarin, A. Mcleod, P. Rigaux, F. Jacquemard, and

M. Sakai, “ASAP: a dataset of aligned scores and perfor-

mances for piano transcription,” in Proceedings of the

International Society for Music Information Retrieval

Conference (ISMIR), 2020.

[39] J. Gillick, A. Roberts, J. Engel, D. Eck, and D. Bamman,

“Learning to groove with inverse sequence transforma-

tions,” in Proceedings of the International Conference

on Machine Learning (ICML), 2019.

[40] Q. Xi, R. M. Bittner, J. Pauwels, X. Ye, and J. P. Bello,

“GuitarSet: A dataset for guitar transcription.” in Pro-

ceedings of the International Society for Music Infor-

mation Retrieval Conference (ISMIR), 2018.

[41] M. Rocamora, L. Jure, B. Marenco, M. Fuentes, F. Lan-

zaro, and A. Gómez, “An audio-visual database of Can-

dombe performances for computational musicological

studies,” in Congreso Internacional de Ciencia y Tec-

nología Musical (CICTeM), 2015.

[42] I. Loshchilov and F. Hutter, “Decoupled weight decay

regularization,” in International Conference on Learn-

ing Representations (ICLR), 2019.

[43] X. S. Huang, F. Perez, J. Ba, and M. Volkovs, “Improv-

ing transformer optimization through better initializa-

tion,” in Proceedings of the International Conference

on Machine Learning (ICML), 2020.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

969





Papers – Session VII





SCORING TIME INTERVALS USING NON-HIERARCHICAL
TRANSFORMER FOR AUTOMATIC PIANO TRANSCRIPTION

Yujia Yan, Zhiyao Duan

University of Rochester, Rochester, New York, USA,

yujia.yan@rochester.edu, zhiyao.duan@rochester.edu

ABSTRACT

The neural semi-Markov Conditional Random Field (semi-

CRF) framework has demonstrated promise for event-based

piano transcription. In this framework, all events (notes or

pedals) are represented as closed time intervals tied to spe-

cific event types. The neural semi-CRF approach requires

an interval scoring matrix that assigns a score for every

candidate interval. However, designing an efficient and

expressive architecture for scoring intervals is not trivial.

This paper introduces a simple method for scoring inter-

vals using scaled inner product operations that resemble

how attention scoring is done in transformers. We show

theoretically that, due to the special structure from encod-

ing the non-overlapping intervals, under a mild condition,

the inner product operations are expressive enough to rep-

resent an ideal scoring matrix that can yield the correct

transcription result. We then demonstrate that an encoder-

only non-hierarchical transformer backbone, operating only

on a low-time-resolution feature map, is capable of tran-

scribing piano notes and pedals with high accuracy and

time precision. The experiment shows that our approach

achieves the new state-of-the-art performance across all

subtasks in terms of the F1 measure on the Maestro dataset.

See appendix for post-camera-ready updates.

1 Introduction

Automatic Music Transcription (AMT) transforms the au-

dio signal of music performances into symbolic represen-

tations [1]. In this work, we focus on transcribing piano

performance audio into its piano roll representation. 1 The

piano roll representation, as formulated in [2], can be ab-

stracted as consisting of sets of non-overlapping time inter-

vals of the form [onset, offset], with each set corresponding

to one particular event type, e.g., a specific note or pedal.

Recent strategies to handle the problem of outputting this

structured representation fall into three main categories: 1)

Keypoint detection and assembly: This approach involves

identifying the onsets, offsets, and frame-wise activations

of notes and then assembling these elements together with a

handcrafted post-processing step. Examples include [3–5];

1 Code: https://github.com/Yujia-Yan/Transkun

© Y. Yan, and Z. Duan. Licensed under a Creative Commons

Attribution 4.0 International License (CC BY 4.0). Attribution: Y. Yan,

and Z. Duan, “Scoring Time Intervals using Non-Hierarchical Transformer

for Automatic Piano Transcription”, in Proc. of the 25th Int. Society for

Music Information Retrieval Conf., San Francisco, United States, 2024.

2) Structured prediction with a probabilistic model: Models

in this category use a probabilistic model to ensure the struc-

ture of the output to be sets of non-overlapping intervals,

e.g., [2, 6, 7]; 3) Sequence-to-sequence (Seq2Seq) meth-

ods 2 : These methods, such as [8], treat music transcription

as a machine translation problem, which translates audio to

tokens that encode the target symbolic representation.

Our study focuses on the neural semi-Markov Condi-

tional Random Field (semi-CRF) framework [2] from the

second category, which directly models each music event

(note or pedal) as a closed time interval associated with a

specific event type. The approach employs a neural network

to score interval candidates and uses dynamic programming

to decode non-overlapping intervals. This framework elimi-

nates the need for separate keypoint detection and assembly

steps in the first category but outputs the events (intervals)

in a single stage. Compared to other methods in the second

category, e.g. [6, 7], it does not need hand-crafted state defi-

nitions and state transitions. Additionally, it benefits from

optimal decoding in a non-autoregressive fashion as op-

posed to the slow autoregressive and suboptimal decoding

in Seq2Seq methods (the third category).

This paper builds upon, simplifies, and improves the neu-

ral semi-CRF framework [2] for piano transcription. Our

major contributions are as follows. First, we replace the

original scoring module that assigns a score for every pos-

sible interval with a simpler and more efficient pairwise

inner product operation. Specifically, we prove that due

to the special structure of encoding non-overlapping inter-

vals, under a mild condition, the inner product operation

is expressive enough to represent an ideal scoring matrix

that can yield the correct transcription decoding. Second,

inspired by the resemblance between the proposed inner

product operation and the attention mechanism in the trans-

former [9], we use the transformer architecture to produce

the interval representation for inner product scoring. We

demonstrate that an encoder-only non-hierarchical trans-

former backbone, operating only on a low-time-resolution

feature map, is capable of transcribing notes with high ac-

curacy and time precision. Third, we compare our method

against state-of-the-art piano transcription systems on the

Maestro v3 dataset, showing that our method establishes

the new state of the art across all subtasks in terms of the

F1 score.

2 Strictly speaking, the Seq2Seq approach can also be categorized as
a probabilistic model for structrued prediction. We isolate it here for
simplifying the discussion.
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2 Related Work

2.1 Neural Semi-CRF for Piano Transcription

Previous work of [2] introduced a neural semi-Markov Con-

ditional Random Field (semi-CRF) framework for event-

based piano transcription, where each event (note or pedal)

is represented as a closed interval associated with a spe-

cific event type. The approach employs a neural network to

score interval candidates and uses dynamic programming to

decode non-overlapping intervals. After interval decoding,

interval-based features are used to estimate event attributes,

such as MIDI velocity and refined onset/offset positions 3 .

The neural semi-CRF can be viewed as a general output

layer, similar to a softmax layer, but tailored for handling

non-overlapping intervals. For a sequence of T frames, let

Y denote a set of non-overlapping closed intervals. The

semi-CRF layer for Y takes two inputs for each event type:

1. score(i, j): A T × T triangular matrix that scores

every candidate interval [i, j] for inclusion in Y . The

diagonal values score(i, i) represent single-frame

events.

2. scoreϵ(i− 1, i): A (T − 1)-dimensional vector that

assigns a score to every interval [i− 1, i] not covered

by any interval in Y , serving as an inactivity score.

Both score(i, j) and scoreϵ(i−1, i) are computed using

a neural network from the audio input X . The total score

for Y , given X , is:

Φ(Y|X ) =
∑

[i,j]∈Y

score(i, j) +
∑

[i−1,i]
not covered

in Y

scoreϵ(i− 1, i).

(1)

For inference, maximum a posteriori (MAP) is used to infer

the optimal set of non-overlapping intervals Y∗:

Y∗ = argmax
Y

Φ(Y|X ). (2)

For training, the maximum likelihood approach is used,

with the conditional log-likelihood defined as:

log p(Y|X ) = Φ(Y|X )− log
∑

Y′

expΦ(Y ′|X ). (3)

Here, argmax in Eq. (2), and the summation in the second

term in Eq. (3) are over all possible sets of non-overlapping

intervals. We refer the readers to [2] for algorithmic details.

To make predictions for all event types (88 keys + ped-

als), multiple instances of semi-CRF are used in parallel,

each corresponding to a specific event type.

2.2 Vision Transformer and YOLOS

The Vision Transformer (ViT) [10] introduced a significant

shift in computer vision, offering an alternative to traditional

CNN models. ViT processes images as sequences of fixed-

size patches using transformer layers [9], proving success-

ful across various tasks. For end-to-end object detection,

YOLOS [11] demonstrated a minimal, non-hierarchical

encoder-only design that appends [DET] tokens (represent-

ing object slots) directly to image patch tokens as input to

the transformer encoder. Our architecture adopts a similar

encoder-only design for event-based music transcription.

3 For dequantizing onset/offset positions from quantized positions.

3 Revisiting Interval Scoring for Semi-CRFs

The neural semi-CRF framework crucially relies on model-

ing the interval scoring matrix, score(i, j), which assigns

a score to each candidate interval. The size of the matrix,

which grows quadratically with the sequence length, poses

a challenge to designing an efficient and expressive model

architecture. For this discussion, scoreϵ will be excluded

due to its minimal impact on model performance from our

observation and negligible modeling challenges.

3.1 Interval Scoring in [2]

In [2], a backbone model first transforms the input sequence

X = [x0, . . . ,xT−1] into a sequence of feature vectors

[h0, . . . ,hT−1]. Each interval [i, j] is scored by applying

an MLP to features computed from the interval, with the

output dimension being the number of event types. For

simplicity, assuming only one event type to predict, the

score is computed as

score(i, j) = MLP([hi,hj ,hi ⊙hj ,m1,m2,m3]), (4)

where hi and hj are feature vectors corresponding to the

interval’s onset and offset, ⊙ denotes element-wise multi-

plication, and m1,m2,m3 are the first, second, and third

statistical moments over the interval [i, j].
After producing the initial interval scoring matrices for

all event types, a shallow CNN is applied, treating the in-

terval endpoints as spatial coordinates and event types as

channels. This refinement step slightly improves the result.

Directly computing Eq. (4) and the subsequent refine-

ment step are memory intensive. The official implementa-

tion processes the scoring matrix in segments and applies

gradient checkpointing during training, reducing peak mem-

ory usage at the cost of increased computational time. Con-

sequently, the MLP and CNN layers’ depth and width are

constrained, potentially limiting the model’s capacity and

increasing susceptibility to local pattern overfitting.

3.2 Interval Scoring with Inner Product

We propose to use the following method for interval scoring:

score(i, j) =
|j − i|√

D
⟨qi,kj⟩+ biδ(i, j), (5)

where δ(i, j) is the Kronecker delta, which is 1 if i = j and

0 otherwise. qi ∈ R
D, ki ∈ R

D and bi ∈ R are computed

from the embedding vector hi using a linear layer f :

[qi,ki, bi] = f(hi). (6)

The interval scoring matrix computed from Eq. (5) takes

a low-rank plus diagonal structure. This method, termed

Scaled Inner Product Interval Scoring, computes the

score of an event as the scaled inner product between vec-

tors qi and kj representing the start and the end of the

interval.

Despite its simplicity and resemblance to the attention

mechanism in transformers, one question arises about the

expressiveness of the inner product for capturing the tran-

scription result. We answer this question by constructing a

family of interval scoring matrices that can yield the correct

decoded result, and then show that this family of matrices

can be represented in the form of pairwise inner product

under certain conditions.
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Without loss of generality, we ignore the intervals of

form [i, i], which correspond to the diagonal values in the

interval scoring matrix; they can be added back as diagonals

as in Eq. (5). Additionally, since only the upper triangular

part of the interval scoring matrix is used, we use the nota-

tion for a full matrix to simplify the derivation. We begin

by defining a set of nonoverlapping closed intervals.

Definition 3.1. Let Y be a set of closed intervals defined on

N ∩ [0, T − 1], i.e., T steps. It is a set of non-overlapping

intervals if for any two intervals [i0, j0] ∈ Y and [i1, j1] ∈
Y , i0 ≥ j1 or i1 ≥ j0, and, additionally, ∀[i, j] ∈ Y, i < j.

Definition 3.2. An ideal interval scoring matrix for Y over

T steps, i.e., SY ∈ R
T×T , is a matrix such that

SY(i, j) > 0, ∀[i, j] ∈ Y,

SY(i, j) = −ϵ, otherwise

where ϵ > 0.

With an ideal scoring matrix SY , it is clear that the MAP

decoding will yield Y , since the exclusion of ∀[i, j] ∈ Y or

the inclusion of ∀[i, j] /∈ Y will decrease the total score.

Lemma 3.1. The rank of an ideal interval scoring matrix

SY for a set of non-overlapping intervals, Y , is M + 1,

where M = |Y|, which is the number of intervals.

Proof. By definition, the first column is −ϵ1, that is,

∀i,SY(i, 0) = −ϵ. Subtracting the first column from all

columns gives S′
Y such that

S′
Y(i, j) > ϵ, ∀[i, j] ∈ Y,

S′
Y(i, j) = 0, otherwise

Given that no two non-zero entries in S′
Y share a row or

column (as per the definition of set of non-overlapping

intervals), and there are M non-zero entries, the rank of

S′
Y is M . Since there are at most T − 1 non-overlapping

intervals across T frames, we have M ≤ T − 1, and the

number of nonzero entries in S′
Y is smaller than or equal to

T−1. As a result, −ϵ1 (T non-zeros) cannot be represented

by a linear combination of other nonzero columns in S′
Y ,

therefore rank(SY) = rank(S′
Y) + 1 = M + 1.

Theorem 3.2. Let Y be a set of non-overlapping closed

intervals over T steps, with cardinality M . An ideal in-

terval scoring matrix SY can be represented as pairwise

inner products between two 1d sequences (ki)i and (qi)i
of vectors:

SY(i, j) = ⟨qi,kj⟩, (7)

provided that rank(QY) > M and rank(KY) > M
where QY = [q0, . . . , qT−1], and KY = [k0, . . . ,kT−1].

Proof. By Lemma 3.1, the rank of SY is M + 1. Then it

directly follows the rank factorization of a matrix.

Theorem 3.2 establishes a minimum rank requirement

for QY and KY to represent an ideal scoring matrix. This

leads to two key observations:

1. The vector dimensions D of ki and qi must exceed

the total number of intervals, |Y|.

2. Consider a linear upsampling operator uc, which is a

special case of a 1-d transposed convolutional layer.

It works by dividing each step of a vector sequence

into c equal parts when the sequence is upsampled

c times. Suppose we want to represent QY and KY

using low-resolution 1-d vector sequences: Q′
Y =

[q′
0, . . . , q

′
T ′−1] and K ′

Y = [k′
0, . . . ,k

′
T ′−1] where

T ′ < T , and this representation is achieved by apply-

ing uc to Q′
Y and K ′

Y , resulting in QY = uc(Q
′
Y),

and KY = uc(K
′
Y), where c = T/T ′ represents

the upsampling factor. For this representation to be

valid, the vector dimension D′ for the low-resolution

sequence, i.e., q′
i and k′

i should exceed c|Y|.
These observations highlight that the dimensionality re-

quirement depends solely on the count of intervals in Y
and the downsampling (upsampling) factor c = T/T ′ along

the time axis. This analysis reveals sufficient conditions to

guarantee the expressiveness of the inner product interval

scoring method. From Theorem 3.2, by applying a scaling

factor 4 and reintegrating diagonal terms, we can recover

Eq. (5).

3.3 Comparison with Attention Mechanism

Comparing the neural semi-CRF with the inner product

scoring to the attention mechanism reveals interesting par-

allels. Both of them have quadratic time complexity in the

length of the input. The original score module, as in [2],

resembles an additive attention mechanism, as introduced

by [12]. However, attention mechanisms based on inner

products [13] have become preferred for their simplicity

and computational efficiency. Similarly, the proposed inner

product scoring for neural semi-CRFs efficiently scores in-

tervals. However, in contrast to attention mechanisms that

score sequence positions and normalize posteriors for each

position, neural semi-CRFs score intervals and normalize

posteriors globally over sets of non-overlapping intervals.

The Transformer architecture can be viewed as inher-

ently refining a sequential representation for inner product

scoring. Inspired by these similarities, we utilize the trans-

former architecture to produce the 1-d sequence representa-

tions (heventType
i ) for each event type, termed event tracks,

which will be used for inner product interval scoring.

4 Proposed System

Figure 1 summarizes the proposed system. The input is

an oversampled log-mel spectrogram, as in [2]. The spec-

trogram is downsampled using 2-d strided convolutional

layers, followed by the addition of spatial position embed-

dings (Section 4.2). Event tracks for all event types (notes

and pedals) are initialized with their own spatial position

embeddings and concatenated with the downsampled spec-

trogram representations. The concatenated features are

processed by a transformer encoder. Subsequently, only the

event track embeddings are upsampled using one 1-d trans-

posed convolutional layer. The upsampled event tracks are

used for inner product interval scoring (Eq. (5)) to generate

4 Note that applying a length-dependent scaling on the ideal scoring
matrix does not change the decoded result.
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Figure 1: Overview of the proposed system. Inner product

scoring follows Eq. (5).

interval scoring matrices, which are then fed to the neural

semi-CRF layer for log-likelihood calculation or inference.

4.1 Rethinking Downsampling

Existing studies on Vision Transformers (ViTs) demon-

strate the effectiveness of a non-hierarchical design that uses

highly downsampled, low-resolution feature maps even for

tasks requiring dense predictions, e.g., [14], challenging the

dominance of hierarchical models like UNET [15]. How-

ever, state-of-the-art (SOTA) piano transcription systems,

including [2, 4, 5, 8], retain full resolution along the time

axis. These approaches preserve the temporal detail of the

input frames, but at the cost of increased training time and

reduced model scalability.

This choice might be explained by concerns over losing

temporal precision when locating events. However, we

argue that the high dimensionality of the embeddings makes

the low temporal resolution feature map still capable of

processing with enough information.

In our approach, we use strided convolutional layers to

downsample the input spectrogram, along both the time

and frequency axes, transforming it from its original spatial

dimensions (T, F ) to a low-resolution feature map with

dimensions (T ′, F ′) = ( T
cT

, F
cF

). In line with the ViT

literature, we refer to this reduced feature map as patch

embeddings for cT × cF patches. The choice of patch size

(cT , cF ) may present a trade-off between computational

efficiency and the model’s capacity to capture dense events

in the input spectrogram. As an initial exploration, we use

a patch size of 8 × 4 to keep the training time within our

expected range.

To upsample event tracks to the original temporal res-

olution of frames, we utilize a single transposed 1-d con-

volutional layer. We found that this simple upsampling

layer efficiently prepares representations for inner product

scoring at the desired resolution.

4.2 Transformer Encoder Architecture

RMSNorm
FFN

  

RMSNorm
Self-Attn

  

(a) Transformer Block.

TransformerBlock  
 On Freq/Event

axis

TransformerBlock 
On Time axis

 

(b) Encoder Layers

Figure 2: Building Blocks for the Transformer Encoder

Spatial Position Embedding. We use learnable

Fourier features for spatial position embeddings [16]

for both time-frequency representations with coordinates

(frameIdx, freqIdx), and event tracks with coordinates

(frameIdx, eventTypeIdx). This position embedding is cho-

sen for its simplicity and broad compatibility with trans-

former architectures. Our formula differs slightly from [16]

as we follow the formula in the original random Fourier

features paper [17]. We compute the position embedding

y ∈ R
E from a multidimensional coordinate x ∈ R

C as:

y = g(

√

2

B
cos(Wrx+ b)), (8)

where Wr is a learnable matrix R
B×C , initialized from

N (0, γ−2); B is the dimension for the Fourier features; γ
is a hyperparameter; b ∈ R

B is the learnable bias term,

initialized from U(−π,+π); g : RB → R
E is a two-layer

perceptron. This position embedding functions like an MLP

that takes coordinates as input, with the first nonlinearity

being a scaled cosine function.

The Transformer Encoder Layer. Figure 2a illustrates

the basic transformer block. This block first applies RM-

SNorm [18] before the self-attention and feed-forward lay-

ers. To enhance training stability, we use ReZero [19]

which applies a learnable scaling factor λ, initially set to

0.01, before adding to the skip connection. As in Fig-

ure 2b, for reducing computational cost, we alternate at-

tention within each transformer block along the time and

frequency/eventType axes; similar ideas are often used for

efficient transformer architectures [20–22].

4.3 Segment-Wise Processing

Longer audio is transcribed using segments with 50% over-

lap. Unlike [2], which discards events that exceed the seg-

ment boundary during training, we truncate such events to

fit within the segment. We introduce two binary attributes,

hasOnset and hasOffset, to indicate whether an event’s on-

set or offset has been truncated.

For each event type within a segment, decoding starts

from either: (1) the current segment’s boundary, or (2) the

offset of the last event in the result set with hasOffset =
true, whichever is later. Events decoded in the current
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segment are then processed as follows: (1) non-overlapping

events with hasOnset = true are directly added to the result

set; (2) for events overlapping with the last event of the same

type in the result set: if the current event has hasOnset =
true, it replaces the last event 5 ; otherwise, the two events

are merged.

4.4 Attribute Prediction

Attributes associated with each event include velocity, re-

fined onset/offset positions (for dequantizing frame posi-

tions), and the binary flags hasOnset and hasOffset. To

predict these attributes for an event extracted from the event

track (heventType
i )T−1

i=0 , e.g., [a, b], we use a two-layer MLP

that takes h
eventType
a and h

eventType

b as input. The MLP out-

puts the parameters of the probability distributions for each

attribute. Specifically, velocity ∈ {0 . . . , 127} is modeled

as a categorical distribution, refined onset/offset positions

∈ (−0.5, 0.5) are modeled as continuous Bernoulli distri-

butions [23] shifted by −0.5, and hasOnset/hasOffset ∈
{0, 1} are modeled as Bernoulli distributions.

5 Experiment

5.1 Dataset

Maestro v3.0.0 [24]. This dataset contains about 200 hours

of piano performances, including audio recordings and cor-

responding MIDI files captured using Yamaha Disklavier

pianos. We use the standard train/validation/test splits.

MAPS [25]. The MAPS dataset includes both synthesized

and real piano recordings, with the real recordings captured

by MIDI playback on Yamaha Disklavier. We evaluate our

model on the Disklavier subset (ENSTDkAm/MUS and

ENSTDkCl/MUS) of the MAPS dataset, which consists

of 60 recordings and is commonly used for cross-dataset

evaluation. However, we discovered systematic alignment

issues in the ground-truth annotations for both notes and

pedals, affecting both onset and offset locations. Onset

alignment issues have been previously reported in [26] but

are not widely known in the community 6 .

SMD [27]. Similar to Maestro dataset, the SMD dataset

was created by recording human performance on a Yamaha

Disklavier. We use SMD version 2. The dataset contains

50 recordings. We found that both the onset and offset

annotations in SMD are better aligned compared to MAPS.

5.2 Model Specification

The key model specifications are summarized in Table 1.

Training takes about 6 days on 2 NVIDIA RTX 4090.

5 For overlapping events between segments: (1) The first event must
have hasOffset = false. (2) A continuing second event must have
hasOnset = false. (3) If the second event’s hasOnset = true, the first
event is replaced by the second event as it’s not supported by the second.

6 A piece-dependent onset latency around 15 ms has been previously
discussed in [26]. Due to the electro-mechanical playback mechanism,
this latency could also be note/pedal dependent. Offset deviation (up to
approximately 70 ms) appears more complex and may be influenced by
pedal-/note-dependent mechanical latency or undocumented specific piano
model’s response to non-binary pedal values.

Input Mel Spectrogram sr: 44100 Hz, hop: 1024, window size: 4096, subwin-

dows:5, mels: 229, freq: 30-8000 Hz, segment: 16s,

Patch shape: 8 × 4, embeding size: 256

Strided Conv. Layers initial proj. size: 64, added with freq. embeddings.

for Downsampling out channels: [128, 256, 256, 256], kernel size: 3,

strides: [(2,1), (2,2), (2,2), (1,1)], Each followed by

GroupNorm, groups = 4, and GELU (except for the

last conv.)

Position Embedding γ = 1, |B| = 256, MLP hidden size 1024

Transformer Encoder 8 heads, 6 layers (=12 blocks), FNN size: 1024

Upsampling 1d. transposed conv, out: 128, kernel size:8, stride:8

Attribute Prediction two layer MLP, hidden size: 512, dropout 0.1

Batch Size 12

Optimizer Adabelief [28], maximum learning rate: 4e−4
Weight Decay 1e−2, excluding bias, norm., and pos. embedding

Learning Rate Schedule 500k iterations, 5% warm-up phase, cosine anneal.

Gradient Clipping Clipping norms at 80% quantile of past 10,000 itera-

tions

Table 1: Model Specification.

5.3 Evaluation Metrics

We compute precision, recall, and f1 score averaged over

recordings for both activation level (from [2], equivalent

to frame level with infinitesimal hop size), and note level

metrics (Note Onset, Note w/Offset, and Note w/Offset &

Vel., using mir_eval [29], default settings). All metrics

are directly computed from transcribed MIDIs. For details

on these metrics, readers can refer to the supplementary

material of [2], and the documentation of mir_eval [30].

Due to the ground-truth alignment issues discussed in

Section 5.1 and space constraints, we only report activation-

level and onset-only note-level metrics for MAPS and SMD.

5.4 Results

Our results on the Maestro v3 test set are presented in

Table 2. The proposed model achieves state-of-the-art per-

formance across all metrics in terms of f1 score, surpassing

previous methods by a significant margin. We also report

results for soft pedal transcription which has not been pre-

viously explored. The low event-level metrics suggest that

accurately determining soft pedal onset and offset times is

more challenging than for notes and sustain pedals. We

conjecture this is because soft pedals are typically engaged

for longer durations and appear significantly less frequently

in the dataset than sustain pedals.

Scoring Methods Comparison. We conducted an ablation

study to compare our proposed inner product scoring with

the more complex scoring method from [2]. We trained

a model with an identical architecture but replaced the in-

ner product scoring with the scoring module from [2]. To

ensure a fair comparison, we adjusted the hidden sizes of

the scoring module to keep the training time for a single

iteration within a factor of two of our proposed system.

Specifically, all event tracks were projected to a single se-

quence with a dimension of 512, and the hidden size of the

scoring module was set to 512. As shown in Table 2, our in-

ner product scoring outperforms the more complex scoring

method, demonstrating its effectiveness and efficiency.

Furthermore, we compared two variants of the inner

product scoring: a linear layer and an MLP for computing

the k/q/b vectors (f in Eq. (6)). The results demonstrate

that the linear layer yields better performance than the MLP.
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Method # Param Activation Note Onset Note w/ Offset Note w/ Offset & Vel.

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Notes

SemiCRF [2] 9.8M 93.79 88.36 90.75 98.69 93.96 96.11 90.79 86.46 88.42 89.78 85.51 87.44

hFT, reported in [5] 5.5M 92.82 93.66 93.24 99.64 95.44 97.44 92.52 88.69 90.53 91.43 87.67 89.48

hFT [5] 8 . 5.5M 95.37 90.82 92.93 99.62 95.41 97.43 92.22 88.40 90.23 91.21 87.44 89.24

Ours with scoring method in [2] 11.0M 93.79 92.40 93.06 98.61 95.92 97.23 91.69 89.23 90.43 91.08 88.64 89.83

Ours with MLP kqb mapping 13.0M 95.66 94.79 95.20 99.54 96.91 98.19 94.39 91.92 93.12 93.84 91.40 92.59

Ours w/o incomplete events 12.9M 93.76 94.46 95.07 99.56 97.10 98.30 94.66 92.36 93.48 94.12 91.83 92.95

Ours 12.9M 95.75 95.01 95.35 99.53 97.16 98.32 94.61 92.39 93.48 94.07 91.87 92.94

Sustain Pedals

Kong et al., reported in [4] 20.2M 94.30 94.42 94.25 91.59 92.41 91.86 86.36 87.02 86.58 - - -

Kong et al. [4]8 9 20.2M 94.14 94.29 94.11 77.43 78.19 77.71 73.56 74.21 73.81 - - -

SemiCRF [2] 9.8M 95.17 88.33 90.98 82.18 75.81 78.52 78.75 72.74 75.30 - - -

Ours w/o incomplete events 12.9M 96.69 92.92 94.47 89.10 83.96 86.28 86.33 81.40 83.63 - - -

Ours 12.9M 96.67 94.46 95.40 88.96 84.22 86.37 86.19 81.66 83.71 - - -

Soft Pedals

Ours w/o incomplete events 12.9M 74.41 28.77 36.54 20.24 9.08 11.69 17.19 7.51 9.76 - - -

Ours 12.9M 86.42 83.12 84.09 24.32 17.39 19.46 18.51 13.40 15.06 - - -

Table 2: Transcription Result on Maestro v3.0.0 Dataset Test Split.

Interestingly, this aligns with how k and q are computed in

transformers.

Effect of omitting incomplete events. We found that

omitting steps of handling incomplete events at segment

boundaries (Section 4.3) only cause noticeable performance

impact for pedals, particularly the soft pedal (Table 2). This

can be explained by the fact that pedal events, especially soft

pedals, can often exceed the segment length, while notes

are normally shorter than the segment length we choose.

Results on MAPS/SMD. We evaluated our model on the

MAPS dataset using three different ground-truth annota-

tions: (1) Original, (2) Ad hoc Align, where the median

deviation from the initial evaluation is subtracted from all

notes for each piece and then re-evaluated, and (3) Cogliati,

which subtracted a latency value per recording for ENST-

DkCL as provided by [26]. For the SMD dataset, only the

original annotation is used. Table 3 presents the results.

All methods exhibit low activation-level F1 scores on

MAPS. Using the onset-corrected annotation (Cogliati)

on MAPS increases the onset F1 score but degrades the

activation-level F1 score due to the uncorrected offset bi-

ases. In fact, the Cogliati annotation achieves similar or

lower activation-level F1 scores compared to all listed meth-

ods when evaluated against the original annotation.

All methods achieve F1 scores on SMD that are more

comparable to those evaluated on Maestro. However, per-

formance decreases significantly on MAPS, even with cor-

rected annotations. This suggests that the dataset issue may

be more complex than a simple piece-depedent timing shift.

Notably, the corrected annotations can lead to different

conclusions compared to the original annotation. For ex-

ample, while the data-augmented Onsets&Frames model

achieves a higher note onset F1 score than hFT using the

original annotation, it scores lower than hFT when evalu-

ated using the ad hoc correction and the Cogliati annotation.

These observations highlight the need for caution when

evaluating models on datasets created using mechanisms

that may involve systematic biases, e.g., electromechani-

cal playback. Despite these complications, our proposed

system, with or without data augmentation 7 , achieves the

highest note onset F1 score among the compared methods

on both SMD and MAPS with Ad hoc/Cogliati correction.

7 Data augmentation: pitch shifting ±20 cents, adding noise from [31],

Activation Note Onset

Method Dataset Groudtruth P(%) R(%) F1(%) P(%) R(%) F1(%)

Onsets MAPS Original 90.27 80.33 84.87 87.40 85.56 86.41

&Frames [24] MAPS Ad hoc Align 90.50 80.53 85.08 88.79 86.93 87.78

w. Data Aug.8 MAPS Cogliati 64.75 82.83 71.60 87.57 84.97 86.19

hFT [5].8 MAPS Original 91.53 71.03 79.81 84.63 85.75 85.13

MAPS Ad hoc Align 91.77 71.25 80.04 87.32 88.48 87.84

MAPS Cogliati 68.83 74.07 70.24 89.94 90.10 89.97

SMD Original 93.18 89.82 91.35 98.71 95.58 97.09

Ours MAPS Original 88.41 82.29 85.08 84.31 88.10 86.10

MAPS Ad hoc Align 88.69 82.57 85.36 86.63 90.53 88.47

MAPS Cogliati 65.74 84.69 72.78 89.60 91.39 90.44

SMD Original 92.36 95.24 93.73 98.16 97.65 97.89

Ours MAPS Original 94.11 84.63 89.00 92.11 88.78 90.38

w. Data Aug. MAPS Ad hoc Align 94.35 84.84 89.22 94.21 90.76 92.41

MAPS Cogliati 67.77 87.39 75.03 94.66 91.43 92.98

SMD Original 93.38 95.91 94.57 99.77 97.68 98.70

Between Ground Truths

Cogliati [26] MAPS Original 98.86 69.22 80.17 100 100 100

Table 3: Transcription Result on MAPS and SMD. See

Text for discussion of dataset issues.

6 Conclusion

This paper introduces a simple and efficient method for

scoring time intervals using scaled inner product operations

for the neural semi-CRF framework for piano transcription.

We demonstrate that the proposed scoring method is not

only simple and efficient but also theoretically expressive

for yielding the correct transcription result. Inspired by

the similarity between the proposed scoring method and

the attention mechanism, we employ a non-hierarchical,

encoder-only transformer backbone to produce event track

representations. Our method achieves state-of-the-art per-

formance on the Maestro dataset across all subtasks. Due

to resource constraints, we have not evaluated the effect of

patch and embedding sizes, which is left for future work.

Additionally, future research could explore more advanced

transformer architectures, investigate the interaction be-

tween transformer architecture and the neural semi-CRF

layer, and extend the approach to other instruments and

multi-instrument music transcription tasks.

applying randomized 8 band EQ and impulse response from [32].
8 Use their provided code and pretrained weights. Recomputed from

transcribed MIDIs.
9 Previous SOTA for sustain pedals. Their released code indicates a

200 ms onset tolerance for pedal evaluation, contrary to the reported 50
ms in their paper. Here, we use a 50 ms onset tolerance, which explains
the large discrepancy between the numbers here and their reported results.
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ABSTRACT

We introduce Cadenza, a new multi-stage generative

framework for predicting expressive variations of symbolic

musical ideas as well as unconditional generations. To ac-

complish this we propose a novel MIDI encoding method,

PerTok (Performance Tokenizer) that captures minute ex-

pressive details whilst reducing sequence length up to 59%

and vocabulary size up to 95% for polyphonic, mono-

phonic and rhythmic tasks. The proposed framework com-

prises of two sequential stages: 1) Composer and 2) Per-

former. The Composer model is a transformer-based Vari-

ational Autoencoder (VAE), with Rotary Positional Em-

beddings (RoPE) [1] and an autoregressive decoder mod-

ified to more effectively integrate the latent codes of the

input musical idea. The Performer model is a bidirectional

transformer encoder that is separately trained to predict

velocities and microtimings on MIDI sequences. Objec-

tive and human evaluations demonstrate Cadenza’s versa-

tile capability in 1) matching other unconditional state-of-

the-art symbolic models in musical quality whilst sounding

more expressive, and 2) composing new, expressive ideas

that are both stylistically related to the input whilst pro-

viding novel ideas to the user. Our framework is designed,

researched and implemented with the objective of ethically

providing inspiration for musicians.

1. INTRODUCTION

The creative endeavor in present-day music production is

inherently complex and multifaceted. However, it can be

broadly categorized into distinct phases that include 1) ini-

tiation, 2) evolution and development, and 3) completion

of musical ideas into a finished musical outcome. Mod-

ern generative models have had a major impact in every

creative domain, none the least in music creation. MIDI,

and therefore Symbolic AI research approaches for single-

track MIDI generation are especially applicable to the con-

temporary music producer. The motivation behind our

investigation arises from a gap in this current landscape

to facilitate the crucial middle phase of the creative pro-

© Julian Lenz, and Anirudh Mani. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-

bution: Julian Lenz, and Anirudh Mani, “PerTok: Expressive Encoding

and Modeling of Symbolic Musical Ideas and Variations”, in Proc. of the

25th Int. Society for Music Information Retrieval Conf., San Francisco,

United States, 2024.

cess: absence of a comprehensive, adaptable modeling

framework specifically engineered for generating expres-

sion variations from a given MIDI file input. Our pro-

posed solution, Cadenza, addresses this by focusing on the

’development’ phase of music creation while unveiling a

framework that is designed for flexibility and efficiency.

Cadenza utilises a multi-stage generative process, the com-

poser and the performer, to create novel ideas and varia-

tions while emulating the nuanced performance character-

istics that can define a given musical style. We choose to

call our framework ’Cadenza’, inspired by the improvised

musical passage played by soloists, creating new and ex-

citing variations of the original motifs of the piece being

performed.

1.1 Encoding Symbolic Music

Alongside transformer-based architectures a number of

methods have been proposed to encode, or tokenize MIDI

files into a discrete sequence of tokens. As transformers

suffer from quadratic memory complexity in relation to se-

quence lengths [2], particular focus is placed on captur-

ing relevant MIDI information whilst minimizing the total

number of tokens. Popular tokenizers include REMI [3],

TSD [4] and Structured [5], amongst many others. How-

ever, these approaches suffer from a common drawback:

they rely on singular tokens to denote the position of each

note event on an evenly-spaced temporal grid. In com-

parison to MIDI files, which typically utilise a time res-

olution of 220 or 440 ticks-per-quarter [note], these tok-

enizers are typically employed with just four intervals per

quarter note. This has two negative effects: first, note-

values outside this range are immediately quantized, such

as quarter-triplets, eighth-triplets, quintuplets, and thirty-

second notes. In addition, any rhythmic performance at-

tributes, expressed as subtle deviations from the fixed-grid,

are immediately lost. As a result, the current state-of-the-

art in MIDI tokenizers are unable to accurately capture the

full range of rhythmic values and expressive performances.

1.2 Expressive Modeling

In both digital and physical contexts, it is common to di-

vide the act of composing music and performing it. The

composition (or score) contains the raw musical idea,

whereas the performance will typically embellish it with

additional details, such as varying volumes (velocities in

MIDI) and subtle timing deviations. Symbolic datasets can
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be categorized broadly as:

• Score: The sequences contain quantized rhythmic

values and minimal/no volume information.

• Time-Performance: Dynamics and expressive tim-

ing are captured. The performer(s) play without a

fixed tempo, resulting in a time-based encoding (typ-

ically milliseconds), such as [6].

• Beat-Performance: Dynamics and expressive tim-

ing are captured. The notes are recorded in relation

to a fixed tempo, with rhythmic expressivity occur-

ring as deviations from the quantized beats.

Although a substantial quantity of score datasets exist,

there are significantly fewer in both performance cate-

gories. As a result, systems such as that proposed in [7],

wherein both composition and performance elements are

jointly trained and predicted, are limited by this inequality.

A number of recent models have been proposed to

exclusively add performance elements, such as Render-

ingRNN [8] and ScorePerformer [9]. However, they rely

on the prediction of tempo tokens in alignment with the

Time-Performance standard. This results in MIDI files

that are still rhythmically quantized, albeit with varying

tempos. We posit that this approach is incompatible with

the common production standards of many modern genres

that instead rely on fixed tempos.

The framework in Compose & Embellish [10] proposed

a system of jointly training Lead-Sheet (score) and Per-

formance models. With a modified REMI [3] tokeniza-

tion they demonstrated that the lead-sheet model could be

pre-trained on a greater quantity of score data, and subse-

quently fine-tuned with the performer, on a smaller per-

formance dataset. Similar to prior systems, they quan-

tize rhythms to the nearest 16th position, and instead pre-

dict [Tempo] for expressive timing. Furthermore, due to

the joint-conditioning training method, the compose model

can lose certain capabilities from the fine-tuning process as

it fits to the smaller performance dataset.

1.3 Generating Variations

A number of models have been proposed to solve

variations-adjacent tasks. ThemeTransformer [11] utilises

contrastive representation learning in a sequence-to-

sequence framework to generate a melody and accompani-

ment that recurrently incorporates the original theme. The

authors of Music FaderNets [12] instead propose a style-

transfer task, wherein a number of high-level attributes

can be applied to transform a polyphonic sequence. Our

work most notably builds off of the model proposed in

MuseMorphose [13], which uses a novel in-attention

mechanism in a transformer-based VAE for generating

attribute-controlled variations on symbolic data. However,

these models are designed to predict long-form sequences

(16+ bars) that do not contain any expressive information.

Overall, our key contributions to the field through this

work are two-fold. Firstly, in section 2.2 we introduce

PerTok, a novel MIDI encoding method that captures ex-

pressive details with required granularity while maintain-

ing compact sequence lengths and manageable vocabulary

sizes. PerTok is implemented with the MidiTok [4] li-

brary, released open source and is compatible with any

token-based sequential generation model. Secondly, the

Cadenza framework itself represents a significant leap for-

ward as presented in section 3, integrating the ’Composer’

and ’Performer’ models into a cohesive architecture that

is researched and designed for the domain of AI-assisted

music creation. Our framework offers a natural and intu-

itive way for musicians to create and modify music, which

can be tailored to specific stylistic goals. Human evalu-

ations showcase how Cadenza matches other state-of-the-

art MIDI models in unconditional score generation quality,

creates dynamic variations on input ideas, and sets a new

standard for human-like expressive articulations.

2. SYMBOLIC DATA ENCODING

We aim to encode MIDI data in a manner that is both

1) aligned with common audio production use-cases and

2) efficient in the context of transformer-based generative

models. While a number of state-of-the-art models such as

Anticipatory Music Transformer (AMT) [14], Figaro [15]

and Multi-Track Music Machine (MMM) [16] have fo-

cused on long-form, multi-track generation, we have ob-

served from our experiences in designing products for con-

temporary music producers that they more commonly in-

teract with short, single-track files. Furthermore, we ob-

serve that a number of tokenization methods such as [9]

rely on tempo tokens to create a sense of expressive per-

formance, whereas music producers often keep a singu-

lar, consistent tempo throughout their composition. Thus,

our proposed encoding method is focused on single-track

MIDI files in which the expressivity is calculated in rela-

tion to a fixed tempo.

2.1 Score & Performance Encoding

To address this, we create separate tokens to model the

composition and performance timing elements. More

specifically, the macro timeshift tokens represent the quan-

tized note locations within a score. Separately, the mi-

croshift events denote a small adjustment from the quan-

tized location, similar to the subtle timing deviations used

by human performers. By separating these events, we are

able to maintain reasonable balance between vocabulary

size and total sequence length. Furthermore, the differen-

tiation allows for models to be separately trained on the

composition and performance tasks respectively. As there

is a significant difference in the availability between quan-

tized and performed symbolic datasets, this enables us to

feed a far greater quantity of data into the composition-

only model.

Initial tests revealed that the common convention of

quantizing the composition-level timeshift tokens to 16th

notes was leading to a number of musical issues. For ex-

ample, when quarter- or eighth-note triplets were present
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Figure 1. Example of PerTok tokenization on a 2-bar excerpt of a MIDI file. Composition tokens are highlighted in yellow,

and performance tokens in blue.

in the input MIDI file, the quantization process was con-

sidering them to be 16th notes with large degrees of mi-

croshift. We addressed this by providing the ability to

specify multiple, overlapping quantization grids, such as

16th, quarter-triplets, and 8th-triplets. Thus, the PerTok

tokenizer is more adept at capturing the wide variety of

rhythmic values that are commonly found in genres such

as hip-hop, jazz and salsa (among many others).

2.2 PerTok

Score Tokens: Similar to the MIDI-Like [7] and Struc-

tured [5] encoding methods we represent macro time

changes between notes with Timeshift tokens. As MIDI

time data is typically expressed as ticks-per-quarter, Per-

Tok allows for multiple overlapping granularities to model

a variety of rhythmic values. When encoding the MIDI

data, PerTok matches each note’s position to the closest

possible timeshift value. Pitch is denoted as a MIDI pitch

value between 0-127, with the capability to limit this range

when musically appropriate. Duration tokens are used

after each new note, to indicate the length of time be-

fore a MIDI note-off message is triggered. Notably, Per-

Tok allows for the removal of duration tokens altogether,

which helps further reduce sequence lengths when model-

ing rhythmic instruments.

Performance Tokens: With the addition of perfor-

mance tokens, we aim to capture the musical subtleties that

transform a written score into an expressive performance.

Velocity tokens denote the strength of the note’s attack, a

property that is typically used in DAWs to augment tim-

bre and volume characteristics. Although MIDI provides a

range of 0 - 127 for velocity values, we allow for a bucket-

ing approach to reduce a given velocity into one of n pos-

sible values. Microshift tokens provide a granular shift

from the quantized rhythmic note value. PerTok is pro-

vided a maximum microshift value (e.g. 30 MIDI ticks)

and a discrete number of possible microshift buckets. For

example, Microshift 15 represents a placement of 15 ticks

after the quantized note position, and Microshift 0 results

in the initial quantized value.

In Table 1 we provide a benchmark of our proposed

PerTok encoding against a number of popular MIDI tok-

enizers. We sampled from 2,000 polyphonic 4- and 8-bar

Tokenizer Vocab. Size Seq. Length

REMI 273 195
REMI-p 5505 199
Structured 289 216
Structured-p 7265 216
TSD 288 188
TSD-p 7264 192
PerTok 196 134
PerTok-p 259 243
PerTok no-duration 164 80

Table 1. Vocabulary sizes and average sequence lengths

for popular tokenizers and our proposed PerTok encoding.

MIDI files that are used in modern audio production envi-

ronments. For each tokenizer, we use 32 possible velocity

buckets. To demonstrate the tradeoff between composition

and performance, we initialize one version with 16th-note

quantization (thus removing any performance characteris-

tics), and a second (denoted with a -p) version with 440

timeshifts per quarter note. REMI and Structured method-

ologies use evenly spaced temporal grids to encode the lo-

cation of each event, whereas PerTok uses a mixture of

macro and micro timeshift tokens leading to a 95% reduc-

tion in vocabulary size when encoding expressive rhythmic

details. We additionally provide a visualization of our en-

coding method with a sample 2-bar melody in Figure 1.

3. MODEL

With the objective of generating expressive, beat-

structured variations on an input MIDI file, we present Ca-

denza, a multi-stage VAE with transformer-based compo-

nents. The framework is designed upon a principle that the

composition task requires a significant quantity of data and

benefits from auto-regressive generation, whereas the pat-

terns of expressive performance tokens can be learned with

smaller datasets and predicted in a bi-directional manner.

3.1 The Composer

Given an input sequence of tokens {x1, x2, ..., xt} in

which xt represents a single token x at index t the

composer model is designed to auto-regressively predict

{y1, y2, ..., yt}, an output sequence that is musically re-

lated yet distinct from the input. We utilise a sequence-to-
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Figure 2. An overview of the multi-stage Cadenza architecture.

sequence VAE architecture with in-attention conditioning

similar to MuseMorphose [13], enabling the model to learn

a compressed, latent representation of short musical ideas

within a regularized space. Within each attention mecha-

nism, the query q and key k vectors at timesteps m,n are

obtained with RoPE [1] for enhanced positional context:

q⊤mkn = (Rd
Θ,mW qxm)⊤(Rd

Θ,nW
kxn) (1)

Wherein Rd
Θ,m and Rd

Θ,n are the rotary matrices for po-

sitions for embedding positional information, W q and W k

are learnable weight matrices transforming inputs xm and

xn into the query and key vectors. For additional context

we encourage readers to refer the original paper. As music

is a deeply temporal phenomenon, the composer benefits

from the increased token spatial modelling that is provided

by the rotary embeddings.

The encoder is designed to create a latent vector z of

the input musical idea which serves as an anchor through-

out the decoding process. In alignment with the original

transformer [2] we first project the input sequence with a

learned embedding space, transforming it into X ∈ R
d×t

where d is the hidden dimension size. This is then pro-

cessed through several multi-head self-attention layers.

Following a similar approach to [13] we extract the first

timestep of the final attention layer output to obtain hidden

vector h ∈ R
d, a contextual representation of the full input

sequence.

Following standard VAE methodology [17], the output

vector is then processed through two learnable weight ma-

trices Wµ ∈ R
d×dz and Wσ ∈ R

d×dz , wherein dz denotes

the size of the latent dimension. This process yields the

mean µ and standard deviation σ vectors, encapsulating the

latent space distribution parameters. Using the reparame-

terization trick, we sample ϵ from the Gaussian distribution

to obtain z ∈ R
dz from our encoder:

z = hWµ + hWσ ⊙ ϵ (2)

The encoder’s output distribution q(z|X) is aligned to a

Gaussian prior N (0, 1) by the traditional Kullback-Leibler

(KL) divergence loss term:

DKL(q(z|X)∥p(z)) = −
1

2

dz
∑

k=1

(

1 + log(σ2

k)− µ2

k − σ2

k

)

(3)

We further modify the equation utilising free bits as pro-

posed by [18], allowing the encoder a degree of unpenal-

ized space defined by λ to learn musical attributes without

regularization.

LKL =

dz
∑

k=1

max(λ,DKL(q(zk|X)||p(zk))) (4)

The decoder is trained to autoregressively predict an

output sequence of tokens whilst maintaining a recogniz-

able connection with the input musical idea. Initially, the

latent vector z is expanded to the decoder’s hidden dimen-

sion d via a learnable matrix Wpre ∈ R
dz×d. We sepa-

rately expand the input tokens v1, v2, ..., vk with the same

embedding layer used by the encoder.

In the context of the autoregressive VAEs it has been

noted that posterior collapse is a common issue [19–21],

in which a sufficiently powerful decoder can simply ig-

nore the encoder’s regularized information, instead relying

purely on the previous tokens. We utilise the methodol-

ogy of Skip-VAE [22] and MuseMorphose [13], integrat-

ing the proposed in-attention mechanism. Prior to each

attention layer, we sum expanded latent vector zpre with

every timestep of the previous hidden state, thus reinforc-

ing its information throughout every stage of the decoding

process. Therefor hidden state H ∈ R
t×d at layer i is cal-

culated as:

Hi = SelfAttention(Hi−1 + xpre) (5)

The final hidden state is then passed through a feed-

forward layer, which has weights tied to the embedding

layers as first proposed in [23]. The decoder minimizes the

negative log likelihood (NLL) of the output sequence yt
when given prior tokens:

Lrecon =
T
∑

t=1

logpθ(yt|y<t, z) (6)

Thus, the composer is optimized with the NLL recon-

struction loss as well as the β-scaled regularization KL

loss:

Lcomposer = Lrecon + βLKL (7)
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3.2 The Performer

The Performer is separately tasked with computing tokens

for velocity and microshift time values. Thus, it is able

to transform a quantized MIDI score into one with expres-

sive characteristics, rendering it more suitable for a variety

of music production tasks. Whereas the composition task

generally benefits from an autoregressive setup wherein

each token is predicted sequentially, it has been demon-

strated in [24, 25] that performance attributes can be pre-

dicted in a bi-directional manner.

We utilise a framework comparable to the masked to-

ken prediction task of BERT [26]. During training and

inference, we replace the input performance tokens denot-

ing velocity and microtiming with a single [MASK] to-

ken. The tokens related to pitch, timeshift, and duration

are left unmodified. The model is a standard transformer

encoder as per [2], with sinusoidal positional embeddings,

layer normalization and a final feedforward layer that has

weights tied to the initial embedding layer.

During training the model is tasked to replace each

[MASK] token with an appropriate velocity and microshift

value, with cross-entropy loss used exclusively on the

masked tokens. We perform the masking operation on

100% of performance tokens. At inference time, we man-

ually mix tokens between the original source and model

predictions, thus ensuring the original pitch, timeshift and

duration values are maintained.

4. EXPERIMENTAL SETUP

4.1 Composer Ablations

By training several composer models, we aim to under-

stand the relationship between various degrees of KL reg-

ularization and the decoded sequence’s similarity to the in-

put. Each model is trained on 4-bar segments of the full

Lakh-MIDI dataset [27]. The models all have 12 layers

and 8 heads in both the encoder and decoder, with a la-

tent dimensionality dz of 128 and hidden dimension d of

512. The Full-KL model was trained with a KL regularizer

β = 1.0 and free bit λ = 0.15. The Balanced-KL model

was trained with β = 0.3 and λ = 0.25. In both instances

the KL regularization was applied with cosine cyclical an-

nealing [28] every 10,000 steps. We initially keep β = 0.0
for the first 25,000 steps, and then linearly raise it to the

maximum value over the proceeding 25,000 steps. Finally,

the No-KL model had a β = 0.0 (no regularization), thus

allowing the encoder to exclusively optimize against re-

construction quality.

Objective Evaluations : We generate a single varia-

tion for 500 files from the test set for each model, utilising

greedy decoding to remove any sampling logic from the

evaluation framework. For each sample, we calculate the

similarity in pitch distribution, onset locations and du-

rations:

similarity(xa, xb) = 100
⟨xa, xb⟩

||xa||||xb||
(8)

wherein x ∈ Z
t is a discrete vector of t attributes; in the

case of pitch we set t = 128 to capture the full MIDI note

range, and for both onset location and duration t = 64,

representing the nearest 16th value in a 4-bar pattern. Fi-

nally, we report Absolute Similarity, the percentage of

notes that have identical characteristics (pitch, onset, du-

ration) between both sequences.

4.2 Performer Fidelity

Two performer models are trained with separate datasets

to measure their capacity to model the unique expressive

characteristics of a given training set. Both models are

trained with 12 layers and heads, a hidden dimensional-

ity of 768, and a dropout of 10%. One model is trained

on the classical MusicNet dataset [29], and the other (re-

ferred to as HipHop) is trained on a proprietary hip-hop

dataset. In both cases, we train on approximately 10,000

4-bar excerpts. Each dataset contains polyphonic data with

differing expressive patterns of velocities and microtiming.

We randomly extract 2,000 polyphonic 4-bar patterns

from the Lakh-MIDI dataset [27] and generate expressive

tokens from both models. We subsequently measure the

velocity and microtiming distributions of both the genera-

tions as well as the two original training datasets. Velocity

distribution is represented as v ∈ Z
128, a vector represent-

ing the number of occurences of each velocity value. For

each note, microtiming is calculated as a percentage devi-

ation from the nearest 16th note, with +/-50% denoting the

halfway point to/from the adjacent 16th time index. The

total distribution of microtiming deviations in a given se-

quence is thus represented with vector mt ∈ Z
100.

For both velocity and microtiming, we compare the dis-

tributions of both model’s predictions against the Music-

Net and HipHop datasets. In Table 4 we report the KL di-

vergence, as well as the absolute difference in the mean and

standard deviation for these distributions. In each metric, a

lower value indicates higher degree of similarity between

the model’s predictions and the original dataset’s expres-

sive characteristics.

4.3 User Study

We conduct a thorough user study to achieve a qualita-

tive understanding of our model’s performance, compar-

ing to different external baselines and versions due to hy-

perparameter settings. All the audio samples that users

heard were 4 bar MIDI files voiced through the same Pi-

ano VST. In Part A of the user study, 25 human evaluators

listened to 5 seed melodies and 4 alternative variations for

each of them, coming from the No-KL, Balanced-KL and

Full-KL versions of our proposed model, and additionally

a Placebo melody which was randomly selected to be in

the same key and scale as the input but had no relation to

it. This was done to confidently ground the musical un-

derstanding of our human evaluators. Overall, 44% of our

evaluators identified themselves as "Novice : I have little

to no experience making music", 32% as "Amateur : I love

making music for fun", and 24% as "Professional : I regu-

larly make music in a professional capacity".
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Model Pitch Sim.(%) Onset Sim.(%) Duration Sim.(%) Absolute Sim.(%) Human Eval(1-5)

Full-KL 71.01 77.99 88.65 9.44 1.94

No-KL 95.64 83.04 98.40 20.05 2.84

Balanced-KL 92.06 80.80 96.95 16.46 2.71

Placebo - - - - 1.22

Table 2. Objective and human-evaluation results from the

ablation studies. Higher values indicate more similarity to

the input’s musical characteristics.

In Part B, the same 25 human evaluators also rated 3 un-

conditional generations from Cadenza, Anticipatory Mu-

sic Transformer (AMT) [14] 1 and Figaro [15] models,

which broadly represent the state-of-the-art in symbolic

polyphonic generation. We randomly sampled 3 genera-

tions from publicly-available checkpoints of each model,

all of which were trained on identical versions of the Lakh

MIDI dataset [27], and present the results in Table 3. As

Cadenza’s composer requires a latent vector, we randomly

sample from a Gaussian distribution for unconditional gen-

erations. For each sample, the evaluator was asked to rate

between how musically appealing it sounded to them with

1 being the lowest and 4 being the highest score. In ad-

dition, they were also asked to select, in a binary choice,

whether they thought the performance was generated by a

human or computer.

Model (Params) Musical Appeal Score ↑ (1-4) ‘Human-like’ Score ↑ (1-2)

AMT (360M) 3.33 1.57 (57.3%)

Figaro (87M) 2.73 1.57 (57.3%)

Cadenza (142M) 2.91 1.72 (72.0%)

Table 3. Human Evaluation Results for Model Quality.

Percentages represent the fraction of modeling outputs that

were selected by human evaluators when asked if it could

have been created by a human.

5. RESULTS AND DISCUSSION

We discuss our experimental results to answer three high

level questions - 1) provided an input MIDI sequence,

how musically related are the Cadenza variations; 2) can

the performer model tangibly improve expressivity; and

3) how appealing are the novel generations. We analyze

our proposed scientific approach through quantitative and

qualitative measures.

Both human and objective evaluations demonstrate in

Table 2 that training the composer with varying degrees

of KL regularization has noticeable impacts on the balance

between between recall and variety. Provided a musical

idea as input, the No-KL model will produce outputs nearly

identical to the input melody. Alternatively, the Balanced-

KL model will produce outputs that are related, yet altered

enough to provide new sources of inspiration. In many

cases, the Full-KL model will produce entirely unrelated

outputs, as a result of the encoder’s heavy focus on regu-

larizing the latent vectors. Since a score of 4.0 for a gen-

eration would be considered identical we can infer that the

1 Specifically, the music-medium-800k checkpoint

Model (Metric) KL Mean ∆ Std Dev ∆

Train Opposite Train Opposite Train Opposite

HipHop (Velocity) 1.68 3.63 1.81 16.83 1.74 9.04

HipHop (Microtiming) 0.66 2.64 0.05 0.05 0.00 0.14

MusicNet (Velocity) 3.17 11.57 1.95 13.06 1.20 12.00

MusicNet (Microtiming) 0.07 3.17 0.02 0.13 0.01 0.15

Table 4. Objective results on the Performer fidelity evalu-

ations.

ideas generated by No-KL and Balanced-KL are roughly

70% related to the input. This aligns with the quantita-

tive results, which consistently show a negative correlation

between the KL regularization and input/generation simi-

larity metrics. As such, our framework is demonstrated to

consistently generate variations that are perceptually rele-

vant to, yet distinct from, the input musical idea.

In Table 4, we report results from the Performer Fi-

delity quantitative study. In both MusicNet and HipHop

models, the distributions of predicted velocities and mi-

crotimings are consistently closer to that of their respective

training datasets. We can therefore infer that the performer

model, in conjunction with our newly proposed PerTok

tokenizer, is capable of accurately learning the patterns

of expressive characteristics from a comparatively small

dataset.

In Table 3 we compare Cadenza to AMT [14] and Fi-

garo [15] on the task of novel generations. Our model, al-

though comparable to its competitors on musical appeal,

comes in second to the AMT. However, Cadenza com-

prehensively outperforms other models by 14.7% in the

human-like expressivity ratings. We note that our frame-

work is highly adaptable, in that both composer and per-

former models could be replaced with any type of sequen-

tial network. Theoretically, one could further improve the

unconditional generation quality by replacing our VAE-

based composer model with a decoder-only model, similar

to that of AMT.

6. CONCLUSION

We introduced a multi-stage generative framework which

allows for both variation and novel generation tasks, main-

taining a competitive quality of composition and setting

a new state-of-the-art of expressive characteristics. Our

proposed tokenizer is used to create expressive symbolic

sequences while effectively reducing vocabulary size and

sequence length. We invite readers to our model page 2

where we showcase its fidelity in generating outputs for

polyphonic, monophonic, bass and drum instruments.

In particular, our performer model in conjunction with

the new tokenization method led to a quantifiable increase

in listener’s perceptions of the expressivity in the gener-

ations. These results were achieved with relatively tiny

datasets, paving the way for further collaborations with

artistic communities. Future research directions include

exploring controllability, as well as further improvements

in the domain of novel generation.

2 Access code and demonstrations on our model page here. PerTok
tokenizer is available as part of MidiTok library here.
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7. ETHICS STATEMENT

As generative AI technology advances rapidly, it is cru-

cial to address the implications of these developments in

the generative domain. Concerns such as perpetuating cul-

tural biases, undermining artists’ financial opportunities,

and using data without proper consent require urgent at-

tention and dialogue within research communities. When

developing new models, we must carefully consider both

their intended applications and potential impacts.

Our research involves deep collaboration with artists to

understand their motivations and needs, ensuring our ef-

forts benefit the creative communities we serve. For in-

stance, our new framework, designed for the MIDI sym-

bolic domain, focuses on enhancing artists’ tools with fea-

tures that inspire creativity rather than replacing the artists.

We also deliberately chose to work with smaller models,

which helps minimize data requirements. This strategy

promotes fair data agreements and increases the chances of

fairly compensating musicians, thus fostering sustainabil-

ity in creative industries and prioritizing ethical responsi-

bility, especially in creative domains.
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ABSTRACT

Musical rhythm and meter are characterized by simple

proportional relationships between event durations within

pieces, making comparison of rhythms between different

musical pieces a nebulous practice, especially at different

tempos. Though the “main tempo,” or tactus, of a piece

serves as an important cognitive reference point, it is dif-

ficult to identify objectively. In this paper, I investigate

how statistical regularities in rhythmic patterns can be used

to determine how to compare pieces at different tempos,

speculating that these regularities could relate to the per-

ception of tactus. Using a Bayesian statistical approach,

I model first-order (two-gram) rhythmic event transitions

in a symbolic dataset of rap transcriptions (MCFlow), al-

lowing the model to renotate the rhythmic values of each

transcription as needed to optimize fit. The resulting model

predicts makes “renotations” which match a priori predic-

tions from the original dataset’s transcriber. I then demon-

strate that the model can be used to rhythmically align new

data, giving an objective basis for rhythmic annotation de-

cisions.

1. INTRODUCTION

Symbolic representations of music generally encode

rhythm using integer-related note-value categories—

whether expressed as durations or inter-onset-intervals

(ioi). Absolute timing is encoded indirectly (if at all) as

the tempo of a reference note-value, conventionally the

quarter-note. The musical and psychological validity of

this approach is well established, as the schematic syntax

of musical rhythm is primarily determined by proportional

relationships, not absolute (clock-time) durations [1]. 1

However, this approach also presents a problem: If only

proportional relationships within a piece are rhythmically

relevant, on what basis can relationships or comparisons be

made across pieces? Can we be confident that a “quarter-

note” in one piece is the same as a “quarter-note” in an-

other? For example, consider three expert transcriptions of

1 In fact, human perception tends to normalize ioi ratios that are not

simple ratios to the nearest simple-ratio category [2].

© F. Author, S. Author, and T. Author. Licensed under a
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Attribution: F. Author, S. Author, and T. Author, “Looking for Tactus in
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songs by Johnny Cash from the RS200 dataset [3]: “Fol-

som Prison Blues” (1955) and “Ring Of Fire” (1963) are

transcribed with quarter-notes at 110bpm and 104bpm re-

spectively, while “I Walk The Line” (1956) is transcribed

at 210bpm. 2 These three songs share many idiomatic mu-

sical features, including backbeat strikes in between bass-

notes at a 105–110bpm pulse. Given these similarities, per-

haps the quarter-notes in “I Walk the Line” ought to be

compared to the eighth-notes in “Ring of Fire.”

The quarter-note is more than a default reference unit

for rhythmic encoding: It is also associated with the cogni-

tive phenomenon of the “main beat” or tactus, and thus the

“true” tempo of metric music [1, 4–6]. Other metric levels

may be related to the tactus, both in notation and in human

perception [1, 5, 6]. Thus, rhythmic comparison (in metric

music) might be, essentially, a question of tactus compari-

son between two or more pieces. Which metric level in, for

example, “Ring of Fire” or “I Walk the Line” is the tactus?

This is essentially another perspective on the classic issue

of “tempo octaves” in tempo-estimation research.

1.1 Background

Listeners must infer metric structure from music as they

hear it [7], including the tactus level [5]. Though listen-

ers’ metric interpretations often agree [8], disagreement

is also common, especially regarding tactus [4, 5, 8–11].

This suggests that tactus inference is constrained, but not

determined, by features of music’s objective organization.

Which features constrain our perception of tactus? The

obvious feature to consider is absolute (clock) time. In-

deed, listeners tend to subdivide slower pulses or group

faster pulses into beats in a preferred timing range, ap-

proximately corresponding to a tempo octave (2/1 ratio) of

160–80bpm [5,10,12]. However, empirical measures of op-

timal tempo ranges have often covered larger ratios—from
2.25/1 [12] to 2.5/1 [13]—and a non-trivial number of obser-

vations spread across even more extreme tempos [4, 10].

Tempos from 200–60bpm will feel somewhat familiar to

most musicians, creating an “apparent contradiction be-

tween the narrow range of preferred tempi and the wide

range of (absolute) tempi found in real music” [14]. These

findings demonstrate that tactus perception is not deter-

mined by absolute timing in a trivial manner. Even if

a strict tempo-octave were used for comparison, this still

requires an arbitrary choice of the cutoff between tempo-

octaves [10].

2 “Ring of Fire” was transcribed by Temperley, the other two songs by
de Clercq.
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Relative rhythmic features also contribute to tactus per-

ception [4, 13–15]. In particular, the density and consis-

tency of attacks at particular metric levels—what Martens

[4] calls “pulse consistency”—serve as a important cue

[6, 10]. Music theorists have also noted specific rhythmic

patterns or aspects of the music’s feel 3 that relate to tac-

tus. A notable example is the backbeat pattern evident in

the Johnny Cash examples above, which is often regarded

as tactus defining [5, 17, 18]. However, De Clercq [17] has

argued that absolute speed overwhelms the backbeat norm

in many cases, and musical features must be balanced with

absolute speed when inferring the tactus.

In traditions that rely on notated music, composers’ ex-

plicit choice of note values and time signature might be

regarded as the “correct” tactus; However, many scholars

have noted that classical time signatures leave room for

ambiguity regarding the true tactus [4,10,17,19,20]. Music

from vernacular traditions pose an even more acute prob-

lem for research, as rhythm values must be chosen by a

scribe [17]. If theory, convention, and intuition serve, we

might hope that homogeneous collections of scores are co-

herently aligned. Unfortunately, representing metric align-

ment across pieces is not necessarily an important goal in

traditions of music notation, and there are no clear stan-

dards for composers, transcribers, or arrangers to follow.

1.2 Hypothesis

If metric orientation is essential to the syntactic organi-

zation of music, then proper metric alignment of pieces

is necessary to reveal structural similarities and gener-

alize about rhythmic syntax in a body of music [17].

Conversely, any “misaligned” pieces—like “I Walk the

Line,” perhaps—add noise to empirical distributions and

hinder musicological analysis. In this paper, I explore

a novel statistical approach to aligning and comparing

rhythmic patterns across pieces within stylistically homo-

geneous musical corpora. I hypothesize that regularities

in proportionally-encoded rhythmic patterns can serve as

consistent cues of metric alignment of pieces, independent

of absolute speed. In other words, that specific rhythmic

patterns or features (notably, pulse saliency) will be sta-

tistically associated with particular metric levels, and that

these patterns can then be used as the basis to align and

compare pieces. To achieve this, we can systematically

rescale note values of transcriptions—either in augmenta-

tion (longer values) or diminution (shorter values)—so as

to optimize the fit of statistics related to syntactic rhythm

relationships. For example, we could renotate “I Walk the

Line” in diminution, and then confirm if the resulting tabu-

lation of the overall RS200 collection is less noisy, “ex-

pos[ing] connections that would be otherwise hidden or

obscured” [17]. My argument is that these connections,

should they be revealed, may relate to listeners’ perceptual

3 Another plausible area where musical organization might influence
metric alignment is sub-syntactic micro-timing: small discrepancies be-
tween actual rhythmic timing and their perceived rational categories.
Micro-timing is often related to the “feel” of music, and can be used to
emphasize particular beat levels [16].

experience of the tactus, though I cannot directly demon-

strate that here.

A central premise of my hypothesis, is that metric align-

ment can be done based on proportional rhythmic data,

without absolute timing information. This does not pre-

clude that absolute timing plays an important role in musi-

cal alignment, but if the hypothesis is supported, it would

demonstrate that rhythmic syntax is at least partly inde-

pendent of tempo, and help explain why tempos are used

outside a preferred tempo octave.

2. METHODOLOGY

With no ground truth available, I can only attempt to op-

timize fit to my data in an unsupervised way. My ap-

proach is to characterize empirical probability distributions

of rhythmic data conditioned on different interpretations of

the metric alignment of pieces.

2.1 Data

For this project, I use my own Musical Corpus of Flow

(MCFlow) [18], in which I transcribed the rapped part of

124 popular hip-hop songs, all in 4
4 time. Rap flow is suit-

able for this task for several reasons: Rap flow is satu-

rated with the rhythmic features of American popular mu-

sic more broadly, with lots of rhythmic variation within

songs. Rap also tends to exhibit a rhythmically dense, fast

pace, with few long iois, which makes relatively simple

ngram-like analyses (described below) more plausible. I

parsed the MCFlow dataset using humdrumR [21]—a R

package for analyzing data encoded in the humdrum syn-

tax (as MCFlow is). I restrict my analysis to inter-stress-

intervals because rap scholars agree that most useful rhyth-

mic information is in the stressed syllables of rap [18, 22].

MCFlow divides each of its 124 songs into verses. In

some cases, different artists perform different verses, occa-

sionally even at different tempos. I thus regard each verse

as a separate rhythmic passage to analyze. To isolate only

“pure” duple rhythmic data, I remove 155 measures of mu-

sic, in 44 unique verses, which contain at least one triplet.

I then removed 16 verses with fewer than eight measures

remaining. This leaves a total of 376 verses, containing

36,553 stressed syllables; the shortest remaining verse has

only 21 stressed syllables, with the longest containing 314

and a median length of 98.

In my MCFlow transcriptions, I used the backbeat in

the rap’s accompaniment to determine the quarter-note

value [18]. However, one of the most important reasons

I use MCFlow is because I [23] originally noted thirty-

five verses (in eleven 4 songs) which are clear outliers in

tempo annotation (Table 1), and speculated that they might

be better notated at a different tempo. This gives us a set

of a priori predictions about metric alignment in the data.

Figure 1 illustrates the distribution of quarter- and eighth-

note iois in MCFlow, as notated (above) and incorporat-

ing my speculated renotations (below). Interestingly, the

4 I also identified two other outlier verses which I exclude because they
contained fewer than eight measures of non-triplet bars.
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Song Verse(s) BPM

Dead and Gone (T.I., 2009) 1–2 68
Niggas in Paris (Jay Z and Kanye West, 2011) 1–3 70
Mercy (Kanye West, at al., 2012) 1,2,4 70
What’s Your Fantasy (Ludacris, 2000) 1–3 70
Holy Grail (Jay Z, 2013) 1–2 72
How Low (Ludacris, 2009) 1–2 72
Woof (Snoop Dogg, 1998) 1–3 83
Pray (M.C. Hammer, 1990) 1–5 122
It’s Tricky (Run-D.M.C., 1987) 1–4 128
You Be Illin’ (Run-D.M.C., 1986) 1–4 128
Fight for Your Right (the Beastie Boys, 1987) 1–3 134
Mercy (Kanye West, at al., 2012) 3 140

Table 1. List of verses in MCFlow which Condit-Schultz

[18] identified as tempo outliers. BPM = quarter-notes per

minute.
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Figure 1. Distribution of notated quarter- and eighth-note

inter-stress-intervals in MCFlow, by absolute duration.

raw, backbeat-based notation covers an tempo range only

slightly greater than one tempo octave, similar to observed

listener preferences [12, 13]. In contrast, following my

speculated renotations results in a few verses being moved

into more extreme absolute tempos.

2.2 Meter

Meter is an organizational structure in music, wherein mul-

tiple phase-aligned beats with integer-related periods form

a nested hierarchical pattern [5]. These beats can be sorted

from fastest (“lowest”) to slowest (“highest”), each con-

sidered one metric level, notated here as [l1, . . . , lk]. The

highest metric level (lk) defines the overall period of the

meter, a measure; the lowest metric level (l1) is known as

the tatum. In a musical passage, each note onset is asso-

ciated with a tatum pulse [24], and thus a unique metric

position within each measure—e.g., “beat 4.” Metric po-

sitions may also coincide with one or more higher-metric

levels, with the highest level defining the “level” of that

position. For example, the downbeat of each measure is

the unique position at level lk.

In this paper, I consider only simple duple meter, with

each metric level having twice the period of the level be-

low it [1]: essentially a 4
4 meter with strictly no triplets.

The standard 4
4 generally presumes at least three central

levels [5, 20]. However, music often evinces hyper-metric

pulses above the measure level [20] and, conversely, faster

levels well below the ostensbile tactus (e.g., 16th- and

32nd-notes). Thus, I proceed with a slightly expansive

k = 6: six metric levels with 32 metric positions. This

could be interpreted as one measure of 32nd-notes, two

measures of sixteenth-notes, or four measures of eighth-

notes. Throughout this paper, I will take l1 as 32nd-notes,

putting quarter-notes in l4.

Regardless of notation, the fastest metric level (tatum)

can always be identified in any transcription. However,

some musical passages may have implicit subdivisions,

that would be felt by a listener, but are never articulated

in the music. Thus, the true tatum l1 may be different than

the observed tatum l1̄. For any given musical transcrip-

tion, we can postulate one or more implicit subdivisions,

effectively “shifting” the observed metric positions up one

level—equivalent to renotating the music in augmentation.

2.2.1 Modeling Meter

To characterize the rhythms of music in metric terms, I

use a first-order (two-gram) model, considering the joint

probability of the metric positions of sequential pairs

(antecedent-consequent) of note events. Given 32 posi-

tions, a full transition matrix would require 1,024 param-

eters, many of which would be close to zero or simply re-

dundant, as rhythmic patterns in different parts of the mea-

sure can be closely related. To work with less sparse and

more interpretable parameters, I explored ways of reducing

the full 32x32 parameters space to a smaller number of pa-

rameters while maintaining predictive power. My final ap-

proach is to bin each antecedent note according to its met-

ric level lk and each consequent into one of nine categories

defined relative to the antecedent position. My nine metric

consequent types, illustrated in Figure 2, are able to dif-

ferentiate between shorter and longer iois, weak-to-strong

versus strong-to-weak beat transitions, and different sorts

of syncopations. These forty-seven parameters are repre-

sented in a vector p, with components pl.m corresponding

to the probability of each metric transition (Table 2). In the

raw MCFlow data, the full 32X32 metric transition matrix

has a joint entropy of 6.19 bits (10 being the maximum

theoretical value). My antecedent-consequent parameteri-

zation, with only 47 parameters, achieves a cross-entropy

with the same data of 7.44 bits, gaining only 1.25 bits 5 by

removing 977 parameters. Figure 3 illustrates the distri-

bution of my antecedent-consequent parameters, using the

raw MCFlow note-values.

2.3 Statistical Model

The statistical model I employ mirrors the thought process

we explored with Johnny Cash songs above, “renotating”

5 This difference in bits is equivalent to the Kullback–Leibler diver-
gence.
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Figure 2. Illustration of nine metric consequent types at

the l4 level. Arrows point to exact points; shaded areas

indicate points binned together.

Drop Step Dot Straight Drop Straight Dot Up Long
sync. sync. sync. sync.

l6 p6.1 p6.2 p6.3 p6.4 p6.5 p6.7 p6.9
l5 p5.1 p5.2 p5.3 p5.4 p5.5 p5.6 p5.7 p5.8 p5.9
l4 p4.1 p4.2 p4.3 p4.4 p4.5 p4.6 p4.7 p4.8 p4.9
l3 p3.1 p3.2 p3.3 p3.4 p3.5 p3.6 p3.7 p3.8 p3.9
l2 p2.1 p2.2 p2.3 p2.4 p2.5 p2.6 p2.7 p2.8 p2.9
l1 p1.4 p1.6 p1.8 p1.9

Table 2. Forty-Seven metric coefficients (p). Empty slots

are logically impossible given the definitions. sync. = syn-

copation.
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Figure 3. Raw empirical estimates for pl.m. Both sides

of the figure show the same information in two different

formats: the left side shows the conditional probability of

each metric consequent, given the metric level of an an-

tecedent syllable; the right side shows the joint probability

of the same antecedent-consequent pairings.

verses in the MCFlow corpus to find a good fit. With each

iteration of the model’s Monte Carlo algorithm, the model

finds estimates of the metric coefficients (explained below)

using the dataset as currently encoded. The model then es-

timates parameters which represent the “scaling” of each

individual verse, by retabulating the music assuming one

or two unobserved sub-divisions—equivalent to renotating

the music in augmentation. The process repeats, reestimat-

ing the meter parameters using the new scaling parameters,

etc., until a complete picture of the posterior distribution

emerges, as guaranteed by the Metropolis-Hasting algo-

rithm [25]. Ultimately, I find the scalings of each verse

that result in the best fit to the overall metric distribution.

In each verse, I count instances of 47 metric transition

bins, indexed l.m as defined above for p. Let the counts

in the nth verse be labeled Cn = [cnl.m, . . .]. I then model

each set of counts as an independent draw from a multino-

mial distribution Cn ∼ M(
∑

Cn,p). The core purpose

of the project, however, is to estimate a set of indicator,

“shift,” parameters, one for each verse: s = [s1, . . . , sn],
where sn ∈ {0, 1, 2}. There are thus actually three dif-

ferent counts (Cn(s∈{0,1,2]}) for each verse, one for each

possible shift parameter: When Cn(s=0), the metric pa-

rameters are counted assuming the observed tatum is the

true tatum l1̄ = l1. When Cn(s=1), count assuming

that there is one implicit level of duple subdivision in the

meter, l1̄ = l2, “shifting” the metric parameters up one

level. When Cn(s=2), counted assuming two subdivisions,

lbar1 = l3. I assume also that the values of s ∼ M(n,S),
where S = [S0, S1, S2] is another discrete probability dis-

tribution (though this ultimately had little impact on my

results).

2.3.1 Model Estimation

Given the assumed distributions above, I use a Bayesian

Markov Chain Monte Carlo (MCMC) algorithm to calcu-

late posterior distributions for p, s, and S. Since objec-

tive estimates for the s shifting parameters are my main

goal, I specify no prior distribution for s, letting the model

believe (initially) that all values of s are equally proba-

ble. For p and S, I specify minimally informed Dirich-

let prior distributions: prior(p) ∼ Dir(αl.m = 5) and

prior(S) ∼ Dir(αS = 5). These minimal priors—

equivalent to observing 235 prior note transitions and 15

prior verse shifts respectively—mainly serve to (weakly)

discourage the model from assigning values close to zero.

Note that the Bayesian approach here does not only find

the optimal point-estimate for each parameter, but a com-

plete prior distribution of belief regarding each parameter.

This will allow the model to express degrees of certainty

about each sn, rather than finding only one optimal choice.

I estimate the posterior distribution using a custom

MCMC implementation in R, with three Gibbs-sampler

steps (for s, S, and p) in each iteration, i. In each Gibbs

step, I sample new parameter estimates for one parameter

from the conditional distribution of that parameter given

the current values of the other parameters. The result

is a sequence of estimates for each parameter, forming a
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Figure 4. MCMC trace for four selected parameters.

Dashed lines indicate boundaries between independent

chains.

Markov chain which converges on the true posterior distri-

bution.

For the s scaling parameters, new estimates for all

[s1...n] parameters are sampled in a single step. For each

verse, the probability of observing Cn(s) for all three val-

ues of s, conditioned on pi and Si, is computed.

sni+1 ∼ P (Cn(s)|M(
n∑

1

C
n(s)
i ,pi)) ∗ Si

For the p metric coefficient parameters, new estimates

for all parameters were sampled in a single step, condi-

tional only on si. Taking advantage of the conjugate re-

lationship between the multinomial and Dirichlet distribu-

tions, I can sample from the conditional distribution of p

directly using the Dirichlet distribution:

pi+1 ∼ Dir(α =
N∑

n=1

Cn(si)i + priorα(p))

Updates for S are similar but even simpler, using only

the current (estimated) counts of s: Si+1 ∼ Dir(α =
counts(si) + priorα(S)).

To minimize the effect of initial values, I initialized

forty independent markov chains on different random

draws from the prior distributions of p and S, and a uni-

form random sample of s parameters. Each chain ran for

11,000 samples, with an initial “burn in” of 1,000 iterations

removed from each chain, though each chain appeared to

reach its stationary distribution well before the 1,000th it-

eration. All forty chains converged on the same final dis-

tributions for all parameters (see Figure 4 for a few exam-

ples). As is usually the case with MCMC models, several

parameter chains evinced moderate autocorrelation values

(the largest being 0.287), so I thinned the chain by tak-

ing every tenth sample, cutting the absolute autocorrelation

values down to r ≤ 0.115. The result is a chain of 40,000

samples for each parameter. Figure 4 shows the MCMC

traces for four of the p parameters; the other parameter

traces look essentially identical.

3. RESULTS

The main parameters I am interested in are the estimates

of s, the “shift” parameters for each verse. Despite the

fairly long MCMC trace (40,000 samples), in 372 of 376

verses the model selected the same shift parameter in ev-

ery sample; evidently, most verses fit in one, and only

one, interpretation. In only three verses—none of which

were a priori tempo outliers—did the model find signifi-

cant uncertainty, with the non-modal choice sampled be-

tween 12.6% and 43.9% of the time (these appear midway

between shift levels in Figure 5). The important question is

whether these highly confident shift parameters match my

a priori expectations. If we take the posterior modal value

for each sn, we observe 37 shifts of 0, 318 of 1, and 21 of 2.

Figure 5 shows these average posterior s values normalized

relative to the original empirical l1̄ of each verse, such that

0 indicates the original notated quarter-note. The model

correctly identifies the predicted renotation for 27 of the

35 a priori outliers. The model also identifies four unan-

ticipated verses that need shifting, and fails to shift eight

verses—if we view this as a binary classification task, the

model achieves an F-score of .818. Note that the model

was not provided any information about absolute timing,

so this accuracy is achieved purely by looking at metric

transitions. Close investigation of the false positives re-

veals that, though I didn’t originally identify these verses

as outliers [18], each features flow that could make sense

renotated. The false negatives are not as easy to interpret;

However, in no case did the model falsely reject all outlier

verses in a song: for example, the model correctly shifts

four of the five verses in MC Hammer’s “Pray,” but fails to

shift the fourth verse (for no obvious reason).

To visualize the posterior distribution of p, the metric

coefficients, I show the average posterior value for each

pl.m parameter in Figure 6. If we compare this to Figure

3, there are no dramatic differences, except at l1, where

the model places considerably less probability mass. The

average entropy of the p posterior is 3.339 bits, slightly

lower than the joint distribution of the raw-notation counts

at 3.409 bits, demonstrating that model has improved the

overall fit of the data. Finally, I can also use the posterior

parameters to evaluate unseen data. For example, if I apply

the posterior p to our three Johnny Cash songs, we find

that the model shows (with total confidence) that the three

songs should be aligned at the same backbeat level, as I

speculated at the outset.

4. DISCUSSION AND CONCLUSION

Though it appears that my statistical approach both im-

proves fit and matches (my) expert judgments [18], this ini-

tial foray is not a decisive demonstration that this approach

can help us generalize about metric syntax. It appears

that my model is learning, or at least observing, something

about the organization of metric syntax across metric lev-

els, but future work is needed to elucidate what is going

on, and determine how robust this methodology can be.

It may seem that my full Bayesian treatment is overkill:
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Both sides of the figure show the same information in two

different formats: the left side shows the conditional prob-

ability of each metric consequent, given the metric level of

an antecedent syllable; the right side shows the joint prob-

ability of the same antecedent-consequent pairings. Bars

indicate the Bayesian 95% credible interval for each pa-

rameter.

My parameter estimates are tightly packed around their

mean and not dramatically different than the simple counts

derived from the raw data; my posterior estimates of s

also show little variability. This suggests that a simpler

approach could probably achieve similar results on this

dataset. My results are also strongly fitted to this particular

dataset—for this initial attempt I specified uninformative

priors on all parameters, allowing the model to fit the data

at hand very closely. However, I believe this full Bayesian

approach will prove robust if extended to other datasets

which might be less rhythmically uniform than MCFlow,

and the results here could be used as the basis for more

informative priors for future work.

Finally, though I have argued that this task is theoret-

ically connected to perceptual and musicological ideas of

tactus and tempo, future work with human participants will

be necessary to establish direct connections between my

findings and human perception. For example, my p es-

timates could be used to generate rhythmic stimuli with

different (predicted) tactus interpretations. For course, as

discussed above, there is plenty of evidence that tactus is

never fully determined by musical features [4, 5, 8–11].

Listeners’ perception might be shaped previous context,

personal experience, their own personal state, or by con-

scious effort. My analysis of “syntactic regularities,” even

if valid, isn’t necessarily connected to tactus at all: in-

deed, at least one prominent psychomusicological theory

of rhythm, London’s [20] (p. 95) tempo-metrical types,

“is [explicitly not] defined in terms of the level heard as

the tactus.” It’s possible that the statistical regularities

found by my model represent tempo-metrical types, or

other rhythmic structural principles, but not tactus.

Basing psychological conclusions on statistical evi-

dence requires a match between the musical corpora and

the listening experience of people. Different musical ex-

posure (and thus statistical experience) might explain dis-

agreements about tactus. Stepping back further, it is pos-

sible that syntactic relationships in music involve relation-

ships between various rhythms and beats without assum-

ing any privileged reference level at all. My results here

make this final possibility appear unlikely, but much work

remains to be done.
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ABSTRACT

Recent progress in text-based Large Language Models
(LLMs) and their extended ability to process multi-modal
sensory data have led us to explore their applicability in
addressing music information retrieval (MIR) challenges.
In this paper, we use a systematic prompt engineering ap-
proach for LLMs to solve MIR problems. We convert the
music data to symbolic inputs and evaluate LLMs’ abil-
ity in detecting annotation errors in three key MIR tasks:
beat tracking, chord extraction, and key estimation. A con-

cept augmentation method is proposed to evaluate LLMs’
music reasoning consistency with the provided music con-
cepts in the prompts. Our experiments tested the MIR ca-
pabilities of Generative Pre-trained Transformers (GPT).
Results show that GPT has an error detection accuracy of
65.20%, 64.80%, and 59.72% in beat tracking, chord ex-
traction, and key estimation tasks, respectively, all exceed-
ing the random baseline. Moreover, we observe a positive
correlation between GPT’s error finding accuracy and the
amount of concept information provided. The current find-
ings based on symbolic music input provide a solid ground
for future LLM-based MIR research. 1

1. INTRODUCTION

Recent advancements in text-based Large Language Mod-
els (LLMs) have showcased their significant reasoning and
knowledge retrieval capabilities across various domains,
including music understanding. For instance, the standard
GPT-4 model performs better than random on music theory
questions [1]. This success raises the question of whether
such text-based reasoning abilities could enhance Music
Information Retrieval (MIR) tasks. From a psychological
perspective, we are interested in how a cognition module,
typically represented by a text-based LLM, can possibly

1 Code repository: https://github.com/kunfang98927/

gpt-eval-mir

© K. Fang, Z. Wang, G. Xia, and I. Fujinaga. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: K. Fang, Z. Wang, G. Xia, and I. Fujinaga, “Exploring
GPT’s Ability as a Judge in Music Understanding”, in Proc. of the 25th

Int. Society for Music Information Retrieval Conf., San Francisco, United
States, 2024.

interplay with a perception module, typically represented
by an MIR network, to improve music understanding.

A key challenge in achieving this goal is the inherent
difference between music and text modality, which typ-
ically requires aligning data in other modalities to text.
Common strategies include either transforming all inputs
into a unified modality [1, 2], or developing adapters
tailored to other domains, such as MiniGPT-5 [3] and
NextGPT [4]. Given the substantial data requirements and
training costs involved in addressing cross-modality issues,
we believe a practical initial step for LLM-based MIR re-
search is to translate sensory inputs into symbolic repre-
sentations and investigate the performance of text-based
LLMs in a training-free way (e.g., prompt engineering [5]).
This methodology allows us to assess how much cognition
alone, without additional auditory perception, can enhance
MIR tasks.

To this end, we propose a systematic prompt engineer-
ing method to assess the music understanding capabilities
of text-based LLMs, focusing specifically on their ability
to detect errors in MIR annotations. Each task input in-
cludes: 1) a music segment converted into MIDI or higher-
level musical features, 2) a corresponding MIR annotation
with deliberately inserted errors, and 3) a text prompt that
introduces the MIR problem and outlines relevant musical
concepts. The LLM’s role is to pinpoint errors within the
musical annotations, effectively acting as an MIR judge.
In all the tasks, annotation errors are randomly applied at
controlled rates, and prompts are crafted using common
prompt engineering techniques. Additionally, we propose
a concept augmentation strategy to evaluate the LLM’s be-
havioral consistency in response to the musical concepts
provided. This involves adjusting the occurrence of certain
musical concepts in the prompt, such as replacing a mu-
sical term (e.g., pitch sequence) with a more general term
(e.g., time series) to obscure a concept, or vice versa, to
explore whether these changes influence the LLM’s per-
formance in predictable ways.

We carried out experiments using the GPT-3.5 model
(hereafter, GPT), targeting three MIR tasks: beat track-
ing, chord extraction, and key estimation. The experiment
results indicate that the error detection rates are higher
than random, achieving scores of 65.20%, 64.80%, and
59.72%, respectively. Furthermore, the concept augmen-
tation experiments show that GPT’s performance broadly
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correlates with the amount of musical concepts introduced
in the prompts. These findings suggest that GPT exhibits
measurable music understanding capability, which sets a
foundational baseline for future LLM-based MIR research.
In sum, the contributions of the paper are as follows:

1. We pioneer the integration of MIR problems with

text-based LLMs. Our approach utilizes prompt-
engineering techniques for MIR error detection and
adopts the symbolic music format to unify music and
text modality, which does not require additional train-
ing.

2. We perform a systematic study on GPT’s abilities

as a judge in beat tracking, chord extraction, and key
estimation tasks, demonstrating GPT’s capability in
solving MIR problems.

3. We provide a solid ground for LLM-based MIR

research. The proposed methodology sets a baseline
for future studies.

2. RELATED WORK

Recently, the advancements of text-based LLMs [6–8]
have expanded beyond textual data, incorporating capabili-
ties to interpret information from various other modalities.
In the computer music domain, the research to combine
text and audio LLMs is also popular. For example, Chat-
Musician is a text-based LLM, which focuses mainly on
generating symbolic music in ABC notation [1]; Music-
Gen [9] and Coco-Mulla [10] are audio-based LLMs al-
lowing text and symbolic music control; and MU-LLaMA
is an audio-to-text model for caption generation [11]. De-
spite all these achievements, the current cross-modal re-
search of text-based LLMs is restricted to generative tasks;
and their ability to reason about cross-domain data is still
under-researched. The focus of this paper is to evaluate
whether LLMs can be used for music understanding and
solving MIR problems.

In most cross-modal LLM studies, extensive training
is required to align cross-modal information. These ap-
proaches involve training separate adapters to align the pre-
trained model with other-domain data [3,4,12], fine-tuning
an LLM on symbolic cross-domain data [1], or learning a
trainable autoencoder to convert other-domain data to text
tokens [2]. In the music domain, since music can be natu-
rally represented as readable symbolic representations, we
propose using prompt engineering methods to connect the
music and text domains to avoid extra training.

The cross-domain prompt engineering methods used in
this paper originate from the text domain. These strategies
involve chain-of-thought [5], few-shot prompting [13],
least-to-most prompting [14], and many others [15–17].
These methods show that the more organized the prompt is,
the better the LLM will be able to reason. To the best of our
knowledge, we present the first attempt of using prompt
engineering to teach LLMs to reason about music. We aim
to explore to what extent music reasoning alone can help
MIR.

3. METHODOLOGY

In this study, we use prompt engineering to evaluate the ca-
pabilities of text-based LLMs through three MIR error de-
tection tasks: beat tracking, chord extraction, and key esti-
mation (as shown in Figure 1). In Section 3.1, we introduce
the task definition and data representations for each task.
In Section 3.2, we discuss the structure and main compo-
nents of the prompts. Finally, Section 3.3 introduces the
proposed concept augmentation methods to test the LLMs’
music reasoning ability with respect to the music concepts
included in prompts.

3.1 Task Definition and Data Representation

For symbolic MIR tasks, beat tracking determines the pre-
cise timing of beats in a MIDI-like music representation,
chord extraction assigns a chord label to each segment, and
key estimation identifies the musical key of each segment.
Building on these tasks, we introduce a novel task: MIR er-
ror detection. This task involves identifying errors specific
to each of the three traditional MIR tasks. The following
subsections define the error detection tasks for beat track-
ing, chord extraction, and key estimation.

3.1.1 Beat Tracking Error Detection

We deliberately introduce a certain proportion of errors to
the ground-truth beat annotations and ask the LLM to out-
put the beat index range containing beat errors based on the
music performance data in the symbolic music format. We
introduce three types of error on beat annotations: 1) insert
an extra beat between adjacent beats; 2) delete a beat; and
3) offset the timing of one beat, where the offset should be
greater than a 70ms tolerance [18]. In beat tracking tasks,
error detection is not a binary classification problem per
detected beat, because there are false negative predictions
(i.e., missed beats error). Therefore, it is crucial to return
the beat index range so that both false positive beats and
missed beats can be captured.

As shown in Figure 1 (left), the music segment and the
beat annotations with errors are provided in the JSON for-
mat. The notes and beats are sorted by the temporal posi-
tions (i.e., onsets or beat locations).

3.1.2 Chord Extraction Error Detection

We deliberately introduce chord annotation errors and ask
the LLM to output the indices of incorrect chords based
on the music performance data in the symbolic music for-
mat. The chord errors are applied to the root, chord quality,
and chord inversion attributes independently at a controlled
rate.

As shown in Figure 1 (middle), we use the JSON for-
mat to represent the music segment and the chord annota-
tions. The notes and chords are sorted by their temporal
positions, and chords are notated as chord symbols in the
conventional format [19].

3.1.3 Key Estimation Error Detection

We deliberately introduce key annotation errors and ask
the LLM to output “correct” or “incorrect” based on the
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Now I will give you a list of MIDI notes and 

chord prediction for every beat interval. 

Please tell me where the wrong chord 

predictions are? Your final answer should be

a list of chord indices.

The chord labels are represented as strings in 

the format of "root:quality/inversion".

1. Chord Root: indicates the fundamental pitch upon which the chord is built…2. Quality: indicates the tonal quality…3. Inversion: indicates the inversion…
Let's look at some examples:

1. C:maj/3 - This notation represents…
The input music and chords are as follows:{“start”: …, “end”: …, “chord_id”: …, “chord_label”: …, “notes”:[{“onset”: …, “duration”: …, “pitch”: …, “velocity”: …}, …]},…{“start”: …, “end”: …, “chord_id”: …, “chord_label”: …, “notes”:[{“onset”: …, “duration”: …, “pitch”: …, “velocity”: …}, …]},…
Here's a general approach you can take:

1. Identify Pitch Classes: This involves 

disregarding octave information and focusing only on the pitch names (e.g., C, D, E…
2. Determine Chord Quality: Based on the 

pitch classes present in each segment, 

determine the quality of theet chord (e.g., major, minor, dominant seventh…
3. Find Bass Note: ...

4. Consider Context: ...…
The final answer should be in this format:[<CHORD_ID>, <CHORD_ID>, …]
Here is the given MIDI notes and chord 

predictions for your analysis:…

Now I will give you a list of performance MIDI 

notes and beat locations. Please tell me where 

the wrong beats locate? Your final answer 

should be a list of beat index ranges.

Beat location refers to the specific points in 

time within a musical piece where beats occur. 

Beat location plays a fundamental role in 

defining the rhythmic structure and feel of a 

piece of music…
The input music and beats are as follows:{“beat_id”: …, “beat_location”:…},{“onset”:…, “duration”: …, “pitch”: …, “velocity: …”},{“onset”:…, “duration”: …, “pitch”: …, “velocity: …”},…{“beat_id”: …, “beat_location”:…},{“onset”:…, “duration”: …, “pitch”: …, “velocity: …”},{“onset”:…, “duration”: …, “pitch”: …, “velocity: …”},…{“beat_id”: …, “beat_location”:…},…
In classical piano music analysis, accurate 

beat tracking is crucial for understanding the 

rhythmic structure. Given a real performance 

MIDI and estimated beat locations, this 

documentation provides approaches to 

identify incorrect beats, considering 

principles from music theory and techniques.1. Rhythmic Stability and Metric Hierarchy: …2. Expressive Nuances and Tempo Analysis: …3. Harmonic and Melodic Context: ……
The final answer should be in this format:

[{"start_id": <BEAT ID>, "end_id": <BEAT ID>},…]
Here is the list of performance MIDI notes, 

beat locations, and their indices:…
(Analysis by the model)…
Based on the analysis above, the incorrect beat 

index ranges are: [{“start_id”: 127, “end_id”: 143}].
(Analysis by the model)…
Based on the analysis above, the incorrect chord 

indices are: [168, 173, 180, 184].

(Analysis by the model)…
Based on the analysis above, the key estimation is: 

[{“correctness”: “incorrect”}].

Model Input

Model Output

Beat Tracking Error Detection

Model Input

Chord Extraction Error Detection

Model Output

Key Estimation Error Detection

Now I will give you a list of MIDI notes within 

several measures. An estimated key label for 

the music segment will be given. Please tell 

me whether the estimated key is wrong? Your 

final answer should be “correct” or 
“incorrect”.

In music, key refers to the central pitch or 

tonic note around which a piece of music 

revolves. It determines the tonal center and 

provides a framework for harmonies and 

melodies within a musical composition…
The input music and key estimation are as 

follows:key prediction: …
The measures you can use:{“measure_id”: …, “start”: …, “end”: …, “notes”: [{“onset”:…, “duration”: …, “pitch”: …, “velocity”: …}, …]},{“measure_id”: …, “start”: …, “end”: …, “notes”: [{“onset”:…, “duration”: …, “pitch”: …, “velocity”: …}, …]}…
Here's a step-by-step guide to recognizing 

the key. Please think step by step to analyze 

the key prediction.

1. Calculate Pitch Distribution: Calculate the 

pitch distribution for all measures. Count the 

occurrences of each pitch class (C, C#, D, etc.) 

and determine their relative frequencies...

2. Identify Dominant Pitch Classes: ...

3. Determine Tonic Note: ...

4. Analyze Context: ... …
The final answer should be in this format:[{“correctness”: “correct” or “incorrect”}]
Here is the given MIDI notes and key 

prediction for you to analyze:…

Model Input

Model Output

Background & 

Task Definition

Music Concepts

Description

Input 

Representation

Explanation 

Techniques & 

Steps

Output Format 

Specification

Data Input

Figure 1: The example prompts and model outputs for the three error detection MIR tasks: beat tracking, chord extraction,
and key estimation. Some keywords are highlighted in red in this figure for better readability. Orange texts indicate omitted
content. The prompt structure is shown on the left.

music performance data in symbolic format. The errors are
introduced by selecting an incorrect key out of the other 23
major and minor keys randomly at a controlled rate.

As shown in Figure 1 (right), we use the JSON format
to represent the music segment and key annotations, where
the key annotation is given at the beginning. The predicted
key is represented by a formatted string of tonic and mode
(e.g., “A:min”).

3.2 Prompt Structure

Our investigation of prompt engineering methods indicates
that a well-organized prompt structure is essential for suc-
cessful MIR error detection. As shown in Figure 1, the
prompt of the three MIR tasks all consists of six compo-
nents as follows:

• Background and Task Definition introduces the MIR
task and music domain background, and specifies the

role of the LLM as a judge in assessing the correctness
of MIR results.

• Music Concepts Description introduces relevant music
concepts about beat, chord, or key, together with exam-
ples of those concepts. For example, we show examples
of chord root, quality, and inversion for chord extraction,
to guide the LLM to better parse the chord labels such
as C:maj/3.

• Input Representation Explanation specifies the data
structure and format of the input music data.

• Techniques and Steps provides reference steps to en-
courage the LLM to apply “chain-of-thought” in the er-
ror detection process. For example, we provide clear
steps in the chord extraction task: 1) Identify Pitch
Classes; 2) Determine Chord Quality; 3) Find Bass
Note; 4) Consider Music Context; and etc.

• Output Format Specification defines the JSON-like
output format, ensuring consistency for post-processing.
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• Data Input provides the subject music piece and the
MIR results to be judged, following the format defined
in input representation explanation section.

3.3 Concept Augmentation

The prompts defined in Section 3.2 contain extensive mu-
sic concepts for each of the three tasks, which we regard
as Basic Concepts. Based on these, we apply concept aug-

mentation by either introducing new concepts or masking
basic concepts in order to compare the LLM performance
under varying amounts of music knowledge provided.

In Concept Introduction, we add new concepts that are
supposedly helpful for doing MIR tasks. For example, for
beat tracking, we introduce “rhythm” to the LLM: we pro-
vide a brief description of on-beat notes and off-beat notes,
and how to compute their density percentages. We explain
how such concepts contribute to better judgments.

Conversely, we also define the Concept Masking opera-
tion, which eliminates or blurs music concepts at different
levels. Such operations are used to examine the innate rea-
soning ability of LLMs as a reference:

• Music Attribute Masking: removes explanations about
music concepts pertaining to the musical objects un-
der operations. For example, in chord extraction, “root
note”, “chord quality”, and “inversion” are replaced by
an abstract generic expression, “a chord feature”.

• Task Masking: on top of Music Attribute Masking,
removes explanations about all concepts related to the
MIR task, so that the LLM is required to reason about
the correctness for a novel abstract task. For example,
for beat tracking, the task becomes “Please read a se-
quence of MIDI notes and music labels to determine the
correctness of each label.” All expressions that imply
beat tracking will be deleted, including “tempo”, “fast”,
“slow”, etc., to ensure that the task information is not
implied in any form.

• Domain Masking: on top of Task Masking, eliminates
explanations about all concepts related to the music do-
main to the greatest extent, leaving the LLM with an
abstract logic-domain reasoning problem. For example,
the LLM is told: “You will be given some labels and the
corresponding raw data. Your task is to tell me where
the wrong labels are located?”

4. EXPERIMENTS

We conduct our LLM-based MIR tasks with GPT-3.5. We
introduce the datasets in Section 4.1 and the evaluation
metrics in Section 4.2. The evaluation results are provided
in Section 4.3.

4.1 Datasets

We use symbolic performance MIDI dataset for the three
proposed tasks. For beat tracking error detection, we
use classical piano recordings from the MAPS database
[20], specifically from the “ENSTDkCl” subset (29 pieces)
which has been commonly used as a beat tracking test

set. We also use the corresponding metrical annotations
from [21]. We randomly create beat errors by inserting
(9%), deleting (12%), or offsetting (9%) beats, resulting in
an emulated MIR prediction with an F-score of 0.8370.

For both chord extraction and key estimation error de-
tection, we use MIDI for Chinese pop songs on a sub-
set of the POP909 dataset [22]. For chord extraction, we
randomly introduce errors in root, quality, or inversion
with a ratio of 30%, resulting in an “MIR” accuracy of
0.7327. We choose 50 songs and divide each song into
segments with 32 chord labels. For key estimation, we test
on 757 songs in the dataset whose ground-truth key is un-
changed throughout the piece. We randomly select three
four-measure segments for each song and modify 30% of
the key labels at random. A summary of the data statistics
is shown in Table 1.

Beat Tracking Chord Extraction Key Estimation
#Notes 70,607 48,919 177,535
#Labels 14,194 9,200 2,271

#Tokens (per call) 6065.31 9256.80 3214.63

Table 1: Statistics of the music data used for evaluation.
The row #Notes represents the total number of MIDI notes
processed for each task. The row #Labels indicates the
number of labels used in the evaluation of each task. The
row #Tokens (per call) shows the average number of tokens
per call fed into the GPT-3.5 model for each task.

4.2 Evaluation Metrics

We design metrics to evaluate the performance of LLMs in
identifying errors in MIR annotations. Since our approach
does not directly predict MIR annotations, our metrics dif-
fer from existing MIR evaluation metrics. For chord ex-
traction and key estimation tasks, we regard error detection
as a binary classification task in which each chord or key
label is classified as correct or incorrect. We use weighted
precision, recall, and F1-score to evaluate GPT’s perfor-
mance on both correct and incorrect classes [23].

In beat tracking error detection, the beat sequence with
potential errors is typically not one-to-one aligned with the
ground truth beats. We consider three types of beat loca-
tions: 1) correctly identified beats, 2) additional beats, and
3) missing beats, which are also referred to as true posi-
tives, false positives, and false negatives, respectively, in
conventional beat tracking tasks [18]. We use TP, FP, and
FN to denote these sets of beat positions and I to denote
the union of time intervals predicted by an LLM error de-
tector. We consider the following metrics:

• CPR (Correct Pass Rate on TP) is defined as |TP−I|
|TP| ,

which measures the proportion of true positives that are
correctly identified (by GPT) as “correct beats”.

• EDRP (Error Detection Rate on FP) is defined as
|I∩FP|
|FP| , which evaluates the proportion of false posi-

tives that are correctly identified (by GPT) as “incorrect
beats”.

• EDRN (Error Detection Rate on FN) is defined as:
|I∩FN|
|FN| , which evaluates the proportion of false nega-

tives that are correctly identified (by GPT) as “incorrect
beats”.
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In classical piano music analysis, accurate beat 

tracking is crucial for understanding the 

rhythmic structure and performance nuances. 

Given a real performance MIDI and estimated 

beat locations, this documentation provides a 

systematic approach to identify incorrect 

estimated beats, considering principles from 

music theory and techniques tailored to classical piano music…

+ Concepts - Concepts
Model Input

- Concept Introduction: Rhythm Feature

- The estimated rhythm feature is a beat-

level feature. It indicates that for each beat 

interval, how many notes are played on the 

beat, and how many notes are out of the 

beat…
- The rhythm feature includes:

- "on_beat_ratio": How many notes 

are played on the beat (percentage).

- "out_of_beat_ratio": How many 

notes are out of the beat (percentage)

Model Input

Now I will give you a list of labels of data 

sample. For each label, you will be given the 

corresponding raw data. However, some of the 

labels may be wrong. Your task is to tell me 

where the wrong labels locate? Please give me 

the wrong label_id. You should give your 

analysis on why you think the label is not 

correct based on the context of the data. At 

the end, you should give me your final answer 

of a list of index ranges in JSON format.…

Model Input

Looking at the data, we can observe that some 

of the entries labeled as "label" do not follow…
The incorrect label_id entries are as follows…
7. The entry at index 213 is incorrect as it has 

data features instead of a "label_id" and 

"label_value".

8. The entry at index 214 is incorrect as it has 

data features instead of a "label_id" and 

"label_value".

9. The entry at index 215 is incorrect as it has 

data features instead of a “label_id” and 

“label_value’’…

Model Output

Now, let's start the analysis.

**Step 1: Extract Rhythm Feature**

To calculate the rhythm feature, we need to…
| Beat ID | Beat Location | On Beat Notes | Off Beat Notes | On Beat 

Ratio | Off Beat Ratio |

|-------|--------------|-----|-----|-------------|--------------|…
| 212 | 125.715 | 0 | 0 | 0.00% | 0.00%  |

| 213 | 126.047  | 2  | 1 | 66.67% | 33.33% |

| 214 | 126.616 | 2  | 1 | 66.67% | 33.33% |

| 215 | 127.224 | 2 | 1 | 66.67% | 33.33% |

| 216 | 127.849 | 0 | 1 | 0.00% | 100.00% |…

Model Output

Based on the provided performance MIDI notes and 

beat locations, I will analyze… Here is the analysis:
7. Beat at beat_id 213 (beat_location 126.047):

- The note at onset 126.048 (pitch 69) starts after 

this beat, indicating a potential misalignment…
- The beat_location of 126.047 seems incorrect 

based on the timing of the surrounding notes.

8. Beat at beat_id 214 (beat_location 126.616):

- The beat_location of 126.616 seems incorrect 

based on...

9. Beat at beat_id 215 (beat_location 127.224):

- The beat_location of 127.224 seems incorrect based on…

Model Output

### Analysis of Chord Predictions…
#### Chord ID: 152

- Chord Label: D:min/b3

- Analysis: The notes in this segment contain 

pitches 77, 62, 65, 50, and 53. The chord label 

predicts a D minor chord with the flat third (F) 

in the bass. However, the presence of pitch 77 

(F#) in the chord conflicts with the D minor 

quality. Pitch 77 is not part of the D minor 

chord, indicating an incorrect prediction.

- Correctness: Incorrect…

### Analysis of Chord Predictions

Let's analyze each chord prediction based on 

the provided performance MIDI notes:…
9. **Chord ID: 152**

- **Chord Label: D:min/b3**

- **Chroma Feature: {'D': 1, 'F': 1, 'A': 1}**

- **Analysis: The chroma feature corresponds 

to a D minor chord. The chord prediction is 

incorrect as the bass note is not consistent with 

the label.**

- **Correctness: Incorrect**…

Model Output

Let's analyze the labels provided in the data 

and identify any incorrect predictions. We will 

go through each label prediction and provide an analysis…
### Label Analysis:…
9. **Label ID: 152**

- **Label: D:min/b3**

- **Analysis:** The label might be incorrect as 

the feature values do not strongly suggest the 

presence of the "/b3" component in the label.

- **Correctness: Incorrect**…

Now I will give you a list of performance MIDI 

notes (start, end, pitch, velocity) and chord 

prediction for every beat interval; some of the 

chord predictions may be wrong. Please tell 

me where the wrong chord predictions are? 

Please give me the wrong chord_id. …
The chord labels are represented as strings in 

the format of “root:quality/inversion” ……

### Concept Introduction - Chroma Feature

1. **Chroma Feature**: Chroma feature 

represents the distribution of pitch classes in music, disregarding octave…
2. **Calculation**:

- Extract MIDI note data.

- Map MIDI notes to pitch classes.

- Count occurrences of each pitch class to 

create a chroma vector. For example, {'C': 1, 

'C#': 0, 'D': 1, 'D#': 0, 'E': 1, 'F': 1, 'F#': 0, 'G': 1, 

'G#': 0, 'A': 1, 'A#': 0, 'B': 1} means …

…
Now I will give you a list of features with the 

corresponding label for every row, some of the 

predictions may be wrong. Please tell me where 

the wrong predictions are? Please give me the 

wrong label_id. You should give your analysis 

on why you think this label is not correct based 

on the context of the data.

The labels are represented in the format of

"{label_part_0}:{label_part_1}/{label_part_2}

"…

+ Concepts - Concepts

Model OutputModel Output

Model Input Model Input Model Input

Now I will give you a list of performance MIDI 

notes quantized to every measure. Also, I will 

provide you with key prediction for the entire 

music. Please tell me whether the key prediction is correct or incorrect based on…

+ Concepts - Concepts
Model Input

1. **Calculate Pitch Distribution**: Count the 

occurrences of each pitch class (C, C#, D, etc.) 

and determine their relative frequencies…
2. **Identify Dominant Pitch Classes**: 

Identify the pitch classes with the highest 

frequencies in the pitch distribution…

Model Input

Now I will give you a list of data. Also, I will 

provide you with a label for the entire data. 

Please tell me whether the label prediction is 

correct or incorrect based on the context of 

the data…
Model Input

### Analysis:

- The key prediction is Eb:min…
- Looking at the MIDI notes in the measures, 

we can observe the presence of pitches such as 

Eb (pitch 61), Gb (pitch 66), Bb (pitch 70), and 

Db (pitch 75). The notes align with the key 

prediction of Eb:min.

Model Output

### Analysis Steps:

1. **Calculate Pitch Distribution**: 

- Measure 1: C# (58), F (54), G# (42)…
2. **Identify Dominant Pitch Classes**: F# (20), 

D# (17), G (16), F (16)

3. **Determine Tonic Note**: F# appears most frequently and consistently…

Model Output

The provided data consists of four rows, each 

with various features denoted as 'feature_0',

'feature_1', and 'feature_2’… Based on the 
provided data, it appears that the label 

prediction "Eb:min" is incorrect. It seems to 

represent numerical measurements or 

observations of various features.

Model Output

✓

✓✓ ✓



 ✓✓

Beat Tracking 

Error Detection

Chord Extraction 

Error Detection

Key Estimation 

Error Detection

Figure 2: The impact of concept augmentation on GPT’s behavior in three MIR error detection tasks: 1) Basic Concepts

(left), 2) Concept Introduction (middle), and 3) Concept Masking: all music domain concepts removed (right). Red color
indicates the basic concepts. Pink color indicates the introduced concepts. Purple color represents the expression after
masking all music-related concepts. Underlines denote reasoning process. The checkmark indicates a correct judgment
made by GPT, while the cross indicates an incorrect judgment by GPT.
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Concept Augmentation CPR↑ EDRP ↑ EDRN↑ WS↑
Basic Concepts 0.6681 0.3728 0.1794 0.5607

+ “Rhythm” 0.8533 0.1496 0.0968 0.6520
- “Beat Location”(Music Attribute Masking) 0.6898 0.3720 0.2008 0.5792
- “Beat Tracking”(Task Masking) 0.5998 0.4010 0.2862 0.5296
- “Music”(Domain Masking) 0.2418 0.7657 0.7061 0.3785

Random 0.513 ± 0.0586 0.4891 ± 0.0564 0.3238 ± 0.0608 0.4843 ± 0.0274
(a) Evaluation results on beat tracking error detection

Concept Augmentation p ↑ r ↑ f ↑

Basic Concepts 0.6345 0.6948 0.6207
+ “Chroma” 0.6996 0.7174 0.6290
- “Root”; “Quality”; “Inversion”(Music Attribute Masking) 0.6503 0.6992 0.6376
- “Chord Extraction”(Task Masking) 0.6497 0.6947 0.6362
- “Music”(Domain Masking) 0.6848 0.7144 0.6480

Random 0.5812 ± 0.0032 0.5003 ± 0.0034 0.5213 ± 0.0033
(b) Evaluation results on chord extraction error detection

Concept Augmentation p ↑ r ↑ f ↑

Basic Concepts 0.5789 0.6513 0.5965
+ “Scale” 0.5847 0.6169 0.5972
- “Tonic”; “Mode”(Music Attribute Masking) 0.5754 0.5812 0.5782
- “Key Estimation”(Task Masking) 0.5840 0.6143 0.5960
- “Music”(Domain Masking) 0.5927 0.4161 0.4085

Random 0.5779 ± 0.0086 0.4977 ± 0.0093 0.5186 ± 0.0089
(c) Evaluation results on key estimation error detection

Table 2: The evaluation results of GPT on three MIR error detection tasks: beat tracking, chord extraction, and key
estimation. Each task is assessed under different concept augmentation. “+” denotes Concept Introduction. “–” denotes
Concept Masking. ↑ indicates that higher values are better. p, r, and f stand for precision, recall, and F-score, respectively.

Finally, we compute a weighted average of these metrics,
denoted by WS:

WS =
CPR × |TP|+ EDRP × |FP|+ EDRN × |FN|

|TP|+ |FP|+ |FN|
.

(1)

4.3 Evaluation Results

We evaluate the performance of GPT on three MIR er-
ror detection tasks. We first use the prompt with Basic
Concepts and compare it with a random baseline, as well
as prompts under different concept augmentation methods
(see Section 3.3). The results are summarized in Table 2.

The results of beat tracking error detection task are
shown in Table 2a. The random baseline is implemented
by first randomly selecting k beat labels and joining con-
secutively selected beats into time intervals serving as de-
tected error ranges. In Concept Introduction, we guide the
GPT to compute the number of on-beat and off-beat note
percentages, and in Concept Masking, we apply music at-
tribute, task, and domain masking incrementally. Results
show the basic prompt outperforms the random baseline in
all prompt settings. Moreover, as the number of concepts
decreases, the performance of GPT in judging the correct-
ness of beat labels shows an overall downward trend.

The results of chord extraction error detection task are
shown in Table 2b. The random baseline detects incor-
rectness with a probability of 50%. In Concept Introduc-
tion, we show GPT the chord chroma concept and encour-
age GPT to deduce the pitch distribution from input music.
Results show that all GPT settings far exceed the random
baseline. There remains a downward trend as the number
concepts decreases except in the Domain Masking setting.

The results of key estimation error detection task are
shown in Table 2c. The random baseline and concept aug-

mentation are implemented similarly to those of chord ex-
traction. In Concept Introduction, we show GPT the scale
concept. Results show that GPT performs slightly better
than the random baseline in F-score and recall, and sim-
ilar to the baseline in precision. The downward trend of
concept augmentation is less salient.

Finally, we provide a case study (Figure 2) to illustrate
GPT’s behavior under different settings of concept aug-
mentation. In all tasks, GPT exhibits general time series
analysis abilities even when music concepts are all masked,
and the introduced music concepts help GPT to reason
in a more musical fashion, particularly in beat tracking.
However, we also observe limitations, including high ran-
domness in output, sensitivity to prompts, and hallucina-
tion [24]. These issues make it challenging to empirically
summarize or conjecture GPT’s reasoning abilities in solv-
ing MIR problems in general.

5. CONCLUSION AND FUTURE WORK

In conclusion, we have proposed a methodology to solve
MIR problems with text-based LLMs with prompt engi-
neering. We evaluate the performance of GPT-3.5 in er-
ror detection across three MIR tasks and find out that
GPT’s music reasoning ability in MIR tasks can be en-
hanced when provided with well-structured prompts with
music concepts. Across all three MIR error detection tasks,
GPT consistently outperforms random baseline methods
and demonstrates improved performance when prompted
with additional music knowledge. In this study, we estab-
lish a baseline for assessing LLMs’ ability to understand
music solely through reasoning, paving the way for future
LLM-based MIR research. In the future, we will consider
evaluating LLMs’ judging ability on real MIR errors in-
stead of synthetic ones and using fine-tuning techniques to
better explore LLM-based MIR study.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

1001



6. ACKNOWLEDGMENTS

This research has been supported by the Social Sciences
and Humanities Research Council of Canada (SSHRC
895-2022-1004) and the China Scholarship Council.

7. REFERENCES

[1] R. Yuan, H. Lin, Y. Wang, Z. Tian, S. Wu, T. Shen,
G. Zhang, Y. Wu, C. Liu, Z. Zhou et al., “Chatmusi-
cian: Understanding and generating music intrinsically
with llm,” arXiv preprint arXiv:2402.16153, 2024.

[2] L. Yu, Y. Cheng, Z. Wang, V. Kumar, W. Macherey,
Y. Huang, D. Ross, I. Essa, Y. Bisk, M.-H. Yang et al.,
“Spae: Semantic pyramid autoencoder for multimodal
generation with frozen llms,” Advances in Neural In-

formation Processing Systems, vol. 36, 2024.

[3] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny,
“Minigpt-4: Enhancing vision-language understanding
with advanced large language models,” arXiv preprint

arXiv:2304.10592, 2023.

[4] S. Wu, H. Fei, L. Qu, W. Ji, and T.-S. Chua, “Next-
gpt: Any-to-any multimodal llm,” arXiv preprint

arXiv:2309.05519, 2023.

[5] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia,
E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-thought
prompting elicits reasoning in large language models,”
Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[6] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,
F. L. Aleman, D. Almeida, J. Altenschmidt, S. Alt-
man, S. Anadkat et al., “Gpt-4 technical report,” arXiv

preprint arXiv:2303.08774, 2023.

[7] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu,
H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E.
Gonzalez et al., “Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality,” See

https://vicuna. lmsys. org (accessed 14 April 2023),
vol. 2, no. 3, p. 6, 2023.

[8] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,
F. Azhar et al., “Llama: Open and efficient foundation
language models,” arXiv preprint arXiv:2302.13971,
2023.

[9] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Syn-
naeve, Y. Adi, and A. Défossez, “Simple and control-
lable music generation,” in Advances in Neural Infor-

mation Processing Systems 36: Annual Conference on

Neural Information Processing Systems 2023, NeurIPS

2023, New Orleans, LA, USA, December 10 - 16,

2023, A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, Eds., 2023.

[10] L. Lin, G. Xia, J. Jiang, and Y. Zhang, “Content-based
controls for music large language modeling,” arXiv

preprint arXiv:2310.17162, 2023.

[11] S. Liu, A. S. Hussain, C. Sun, and Y. Shan,
“Music understanding llama: Advancing text-to-music
generation with question answering and captioning,”
CoRR, vol. abs/2308.11276, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2308.11276

[12] H. Zhang, X. Li, and L. Bing, “Video-llama:
An instruction-tuned audio-visual language
model for video understanding,” arXiv preprint

arXiv:2306.02858, 2023.

[13] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell et al., “Language models are few-shot
learners,” Advances in neural information processing

systems, vol. 33, pp. 1877–1901, 2020.

[14] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales,
X. Wang, D. Schuurmans, C. Cui, O. Bousquet, Q. Le
et al., “Least-to-most prompting enables complex rea-
soning in large language models,” arXiv preprint

arXiv:2205.10625, 2022.

[15] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi,
S. Narang, A. Chowdhery, and D. Zhou, “Self-
consistency improves chain of thought reasoning in
language models,” arXiv preprint arXiv:2203.11171,
2022.

[16] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster,
S. Pitis, H. Chan, and J. Ba, “Large language mod-
els are human-level prompt engineers,” arXiv preprint

arXiv:2211.01910, 2022.

[17] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran,
K. Narasimhan, and Y. Cao, “React: Synergizing rea-
soning and acting in language models,” arXiv preprint

arXiv:2210.03629, 2022.

[18] M. E. Davies, N. Degara, and M. D. Plumbley, “Eval-
uation methods for musical audio beat tracking algo-
rithms,” Queen Mary University of London, Centre for

Digital Music, Tech. Rep. C4DM-TR-09-06, 2009.

[19] C. Harte, M. B. Sandler, S. A. Abdallah, and E. Gómez,
“Symbolic representation of musical chords: A pro-
posed syntax for text annotations.” in ISMIR, vol. 5,
2005, pp. 66–71.

[20] V. Emiya, R. Badeau, and B. David, “Multipitch esti-
mation of piano sounds using a new probabilistic spec-
tral smoothness principle,” IEEE Transactions on Au-

dio, Speech, and Language Processing, vol. 18, no. 6,
pp. 1643–1654, 2009.

[21] A. Ycart, E. Benetos et al., “A-maps: Augmented maps
dataset with rhythm and key annotations,” 2018.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

1002



[22] Z. Wang, K. Chen, J. Jiang, Y. Zhang, M. Xu, S. Dai,
X. Gu, and G. Xia, “Pop909: A pop-song dataset
for music arrangement generation,” arXiv preprint

arXiv:2008.07142, 2020.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
Édouard Duchesnay, “Scikit-learn: Machine learning
in python,” Journal of Machine Learning Research,
vol. 12, no. 85, pp. 2825–2830, 2011. [Online]. Avail-
able: http://jmlr.org/papers/v12/pedregosa11a.html

[24] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii,
Y. J. Bang, A. Madotto, and P. Fung, “Survey of
hallucination in natural language generation,” ACM

Comput. Surv., vol. 55, no. 12, mar 2023. [Online].
Available: https://doi.org/10.1145/3571730

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

1003



TOWARDS ASSESSING DATA REPLICATION IN MUSIC GENERATION
WITH MUSIC SIMILARITY METRICS ON RAW AUDIO

Roser Batlle-Roca1 Wei-Hsiang Liao2 Xavier Serra1

Yuki Mitsufuji3 Emilia Gómez1,4

1 Music Technology Group, Universitat Pompeu Fabra, Spain 2 Sony AI, Japan 3 Sony AI, USA
4 Joint Research Centre, European Commission, Spain

roser.batlle@upf.edu

ABSTRACT

Recent advancements in music generation are raising mul-

tiple concerns about the implications of AI in creative mu-

sic processes, current business models and impacts related

to intellectual property management. A relevant discus-

sion and related technical challenge is the potential repli-

cation and plagiarism of the training set in AI-generated

music, which could lead to misuse of data and intellectual

property rights violations. To tackle this issue, we present

the Music Replication Assessment (MiRA) tool: a model-

independent open evaluation method based on diverse au-

dio music similarity metrics to assess data replication. We

evaluate the ability of five metrics to identify exact repli-

cation by conducting a controlled replication experiment in

different music genres using synthetic samples. Our results

show that the proposed methodology can estimate exact

data replication with a proportion higher than 10%. By in-

troducing the MiRA tool, we intend to encourage the open

evaluation of music-generative models by researchers, de-

velopers, and users concerning data replication, highlight-

ing the importance of the ethical, social, legal, and eco-

nomic consequences. Code and examples are available for

reproducibility purposes. 1

1. INTRODUCTION

Significant advancements in generative algorithms for dig-

ital art creation are challenging the role of artificial intel-

ligence (AI) in artistic practices. Regarding generative AI

in the music domain, there is an increasing discussion re-

lated to the use of computational tools in music creative

processes [1], the effects on artists’ work, existing listen-

ing experiences and business models, and the impacts on

intellectual property (IP) management [2,3]. A key point is

the potential replication and plagiarism of the training set

in AI-generated music [3,4], which can lead to data misuse

and IP violations.

1 https://github.com/roserbatlleroca/mira

© R. Batlle-Roca, W. Liao, X. Serra, Y. Mitsufuji and E.

Gómez. Licensed under a Creative Commons Attribution 4.0 Interna-

tional License (CC BY 4.0). Attribution: R. Batlle-Roca, W. Liao, X.

Serra, Y. Mitsufuji and E. Gómez, “Towards Assessing Data Replication

in Music Generation with Music Similarity Metrics on Raw Audio”, in

Proc. of the 25th Int. Society for Music Information Retrieval Conf., San

Francisco, United States, 2024.

The inherent opaque nature of music generation mod-

els complicates tracing replications or references to train-

ing set samples in AI-generated music, limiting the inter-

pretation of whether generated samples contain replicated

fragments. In addition, diffusion models, one of the most

popular generative AI architectures, tend to memorise and

replicate training data [5–7]. Understanding the behaviour

of these models has become critical to address legal is-

sues [8], especially when dealing with data protected by IP

rights. This is significant in the music domain as the vast

majority of music is protected by authorship and copyright.

Despite multiple claims emphasising the importance of

assessing music-generative algorithms, there is a lack of

evaluation tools directly focused on detecting data replica-

tion based on raw audio. Considering this research gap, the

present investigation is motivated by two main questions:

• Are audio-based music similarity metrics suitable to

assess data replication in AI-generated music?

• Can we propose an open model-agnostic evaluation

method and tool found on diverse audio-based music

similarity metrics?

Thus, this work proposes assessing the effectiveness

of five music similarity metrics 2 (four state-of-the-art

widely-used and a novel one) in estimating exact data repli-

cation in music. We review the implications of poten-

tial data replication in AI-generated music (Section 2) and

present our experimental setup, including the selected mu-

sic similarity metrics and specific methodology to control

and estimate exact data replication (Section 3). We anal-

yse metrics’ behaviour in different music materials (Sec-

tion 4.1), aiming to assess later their data replication detec-

tion sensitivity (Section 4.2). The proposed methodology

is implemented in tool MiRA (Music Replication Assess-

ment), which computes music similarity between reference

and target samples to obtain global and per-pair distances

(Section 5). Finally, we discuss our research’s insights,

limitations and future perspectives (Section 6).

By introducing MiRA tool, we advance towards the as-

sessment of data replication in AI-generated music using

similarity metrics, contributing to open evaluation meth-

ods for accessibility for researchers, developers and users.

We strive to raise awareness, detect and prevent misappro-

priation of training sets, and hope to motivate research on

these issues.

2 Hereafter, music similarity metrics refer to audio-based metrics.
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2. BACKGROUND AND RELATED WORK

2.1 Implications of potential data replication in

AI-generated music

Music-generative AI is advancing rapidly with novel high-

quality models driven by a strong push from the indus-

try, which is encouraging a suitable environment for real-

world deployment. Yet, music generation algorithms bring

significant concerns regarding their ethical, social, legal

and economic implications. A key challenge is the po-

tential data replication in AI-generated music—inquiring

whether a generative model extracts and copies fragments

from the training data and whether AI-generated music can

be considered novel and original [3, 4]. This issue is fur-

ther complicated by the implications derived concerning

data misuse and IP violations such as copyright infringe-

ment. Moreover, diffusion models, one of the most pop-

ular architectures for generative AI, present high risks of

data replication as they have shown a tendency to mem-

orise their training data [5–7]. In the image generation

domain, Somepalli et al. [9] demonstrate instances where

generated images with diffusion models contain object-

level copies of their training data. Based on image retrieval

frameworks, they compare generated images with training

samples and detect when content has been replicated. Sim-

ilarly, Carlini et al. [5] demonstrate that diffusion models

memorize and reproduce images from their training data.

Memorising training data and potential IP violations is

highly under-discussed in music generative models lit-

erature, despite being one of generative AI’s main nega-

tive ethical implications in the music domain [10]. How-

ever, the recently proposed music generative model Musi-

cLM [11] has been refrained from releasing due to the eth-

ical risks and potential work replication. In addition, Mu-

sicLDM [12] acknowledges potential issues linked to data

replication and plagiarism and, to address them, proposes

two beat-synchronous mix-up strategies for data augmen-

tation. The exemplified initiatives underscore the relevance

of considering and addressing the ethical implications of

these algorithms.

2.2 Evaluation methodologies in music generation

Xiong et al. [13] present a survey on music generation

evaluation methodologies divided into objective, subjec-

tive and combined approaches. They highlight a cur-

rent claim in finding a standardised proper method that

aligns with all stakeholders, from developers to musicians

and music listeners. However, even if multiple evaluation

methodologies exist for music generation models, the lit-

erature highlights a lack of evaluation methodologies fo-

cused on assessing data replication and the originality of

AI-generated music [4,14]. In the symbolic domain, Yin et

al. [4] introduce the originality score to measure the extent

to which an algorithm might be copying from the train-

ing set. Nonetheless, there is a growing interest in models

outputting directly audio music instead of symbolic repre-

sentations. Thus, a research gap exists in detecting data

replication in AI-generated music based on raw audio.

A recent work by Barnett et al. [15] proposes a frame-

work based on two music audio embeddings to assess the

similarity between the training data and AI-generated sam-

ples for understanding training data attribution. Their ap-

proach, based on VampNet [16], computes cosine distance

on embeddings obtained from CLMR (Contrastive Learn-

ing of Musical Representations) [17] and CLAP (Con-

trastive Language-Audio Pretraining) [18].

Our perspective is that combining metrics based on au-

dio embeddings, acoustic qualities, and features capturing

music characteristics, such as chord progression or tonal

similarity, provides a comprehensive assessment of poten-

tial data replication in AI-generated music. In this study,

we aim to validate the effectiveness of five music similarity

metrics and build an open tool to assess exact data replica-

tion in AI-generated music using these metrics.

3. FORCED-REPLICATION EXPERIMENT

3.1 Audio Music Similarity Metrics

For this study, we consider five music similarly metrics:

four state-of-the-art approaches and a novel one, covering

a diversity of characteristics. We here describe the metrics

(summarised in Table 1) and methods used to implement

them. 3

Cover Song Identification (CoverID) [19–21]: Cover

song identification is a task aiming to detect whether two

music recordings are based on the same composition, ac-

counting for variations in tempo, structure, and instrumen-

tation while keeping a similar melodic or harmonic line.

CoverID relies on pitch-content features and local align-

ment. To obtain CoverID distance, we use the implemen-

tation available in Essentia. 4 A low CoverID value sug-

gests substantial composition similarity between the two

analysed music samples.

Kullback-Leibler (KL) divergence: This metric pro-

vides a non-symmetric statistical measurement between

reference and target probability distributions relative to

their entropy. KL divergence has been employed in the

literature to estimate similarity in music (e.g. [22, 23]),

and more recently, to assess automatic music generation

prompt adherence (e.g. [24]). We aim to explore its capa-

bilities to estimate data replication in music samples. To

obtain probability distributions, we use the PaSST audio

classifier proposed in Koutini et al. [25], trained on Au-

dioset. This methodology aligns with common practice in

the literature, such as in AudioGen [26] and MusicGen [27]

to obtain the probabilities of the labels in their audio and

music samples. To avoid the non-symmetry of KL diver-

gence, we compute reference to target and target to ref-

erence KL divergence and, subsequently, average both re-

sults to obtain symmetric KL divergence. Low KL diver-

gence indicates a closer similarity between distributions.

3 Two of the metrics rely on Essentia implementation. Essentia is an
open-source library and tools for audio and music analysis, description
and synthesis, developed in the Music Technology Group at Universitat
Pompeu Fabra: https://essentia.upf.edu.

4 https://essentia.upf.edu/reference/std_

CoverSongSimilarity.html
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Table 1: Summary of the considered music similarity met-

rics, indicating whether values correspond to higher or

lower similarity (↓/↑).

Metric Description

CoverID (↓)
Musical composition similarity

based on music-specific

characteristics.

KL divergence (↓) Differences in distributions from

an audio classifier.

CLAP (↑) Distance between embeddings

from a music pre-trained model.

DEfNet (↑)
Novel metric based on distance

between embeddings from a

contrastive learning model for

music similarity.

FAD (↓) Distance between embeddings

based on CLAP music model.

Contrastive Language-Audio Pretraining (CLAP)

score [18]: CLAP embeddings 5 allow to obtain latent rep-

resentations of audio or text by conditioning information.

For instance, MusicLDM [12] uses this metric to assess

the novelty in text-to-music generations. To compute the

CLAP score between two music samples, we extract the

audio embeddings from the pre-trained music model 6 for

each one and compute the cosine distance between them.

A high CLAP score indicates a high similarity between the

two music samples.

Discogs-EffNet (DEfNet) score: In addition to state-

of-the-art distances between audio embeddings, we incor-

porate a novel approach based on Essentia models [28].

Essentia’s Discogs-EffNet model 7 provides music au-

dio embeddings trained on Discogs metadata with con-

trastive learning purposes for music similarity. We con-

sider DEfNet score to observe the effectiveness of embed-

dings of a model trained for a music-related task on es-

timating data replication. Embeddings are extracted based

on track self-supervised annotations 8 and compute the co-

sine distance between reference and target samples. A high

DEfNet score reveals high track similarity.

Fréchet Audio Distance (FAD) [29, 30]: FAD is an

adaptation of Fréchet Inception Distance (FID) for music,

comparing embedding distributions of a reference and a

target set, based on the ViGGish model [31]. Nonetheless,

a recent study by Gui et al. [30] questions whether VG-

Gish is the optimal model for FAD computation for music

generation evaluation. They propose a tool kit 9 with mul-

tiple models to obtain more accurate embeddings to assess

AI-generated music when calculating FAD. Consequently,

we implement the adapted version of FAD using the CLAP

audio music pre-trained model. A low FAD score indicates

a high resemblance between the compared music samples.

5 https://github.com/LAION-AI/CLAP
6 Checkpoints: music_audioset_epoch_15_esc_90.14.pt.
7 https://essentia.upf.edu/models.html#

discogs-effnet
8 Embeddings extracted with weights discogs_track_

embeddings-effnet-bs64-1.pb.
9 https://github.com/microsoft/fadtk

3.2 Experimental Approach

To validate the effectiveness of the selected music similar-

ity metrics in detecting exact data replication, we carried

out a controlled forced-replication experiment with syn-

thetic data, i.e. replicating music excerpts into another

song under controlled conditions. Synthetic data guaran-

teed that the analysed music samples contained copied in-

stances, limiting our scope to exact data replication.

For this experiment, we use an in-house dataset of 30-

second audio previews from the Spotify API 10 , composed

of over 18,000 samples and 24 music genre classes. We

focus on six music genre classes defined by Spotify API

internal class labels: heavy metal, afrobeats, techno, dub,

cumbia and bolero. These genres were chosen for their di-

verse musical compositions and elements, allowing us to

examine the metrics across multiple scenarios. This se-

lection was supported using ChatGPT, which affirmed that

these genres have distinct musical characteristics.

We divide data into three groups: (1) reference set: act-

ing as training data, (2) target set: composed of synthetic

data, representing AI-generated music, and (3) mixture

set: containing different songs from the reference set but

from the same music genre to build synthetic data. Syn-

thetic data with replication contains a controlled percent-

age of copy from a song in our reference set: 5% (1.5s),

10% (3s), 15% (4.5s), 25% (7.5s) and 50% (15s). A syn-

thetic sample is created by introducing the copied propor-

tion at a random point of a music sample in the mixture

set. We create 10 samples with a proportion of replication

per song in the reference set. Figure 1 illustrates the pro-

cedure to build synthetic data with 5% of replication. For

each music genre, the reference and mixture sets are com-

posed of 400 songs each. Thus, the target set comprises

4,000 (400 x 10) songs per percentage of replication for

each genre. Music samples are 30 seconds long as cur-

rently it is the common length in full song composition

music generative models.

We assess each metric for all the songs within the ref-

erence set against themselves to establish a baseline (400

x 400 = 160,000 per-pair evaluations). Then, we compute

them for each reference song and its copied instances to

only consider cases with exact data replication (4,000 per-

pair evaluations). Our experiment considers 120,000 sam-

ples of synthetic data (approximately 167h of music with a

proportion of data replication).

Figure 1: Synthetic data procedure with 5% of replication.

10 https://developer.spotify.com/documentation/

web-api
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4. RESULTS

4.1 Analysing metric behaviour

Figures 2, 3, 4, 5 and 6 depict the average µ and standard

deviations σ of the different metrics per degree of repli-

cation and music genre. We observe a steady and similar

behaviour by three metrics (CoverID, CLAP and DEfNet)

through all studied music genres, showing higher simi-

larity values for cases with higher replication levels (i.e.,

50%). Standard deviation decreases with increasing repli-

cation level, which suggests less disparity within the anal-

ysed pairs. These three metrics show the sensitivity 11 to

estimate data replication.

Instead, KL divergence presents a different behaviour

with very similar values of µ and σ for all degrees of repli-

cation. Some sensitivity is observed in all music genres,

except for dub, where the baseline mean µb is smaller

than in replication cases µr, despite the standard deviation

being higher (µb=0.757, σb=0.511; µr=0.862, σr=0.462).

Thus, KL divergence demonstrates the capability of detect-

ing replication but is ineffective in distinguishing between

degrees of replication.

Contrasting with the other metrics, FAD based on

CLAP music embeddings completely differs from them.

On the one side, its behaviour is inconsistent as it exhibits

fluctuating trends for the different examined cases. On the

other side, it fails to detect data replication. A higher sim-

ilarity value (low FAD) is always obtained for the base-

line. Instead, for the different degrees of replication, higher

FAD is achieved. Consequently, FAD based on CLAP mu-

sic embeddings does not appear to be a suitable metric to

assess exact data replication in music samples.

By analysing the metrics’ behaviour, we could directly

conclude that CoverID, KL divergence, CLAP and DEfNet

are suitable for our posed research aim. However, further

exploration is required before determining their ability to

detect replication and degree of replication. We delve into

this analysis in the next subsection.

4.2 Assessing data replication detection sensitivity

In this section, we complement the previous analysis with

an assessment of statistical differences. Because our data

is not normally distributed and variance is heterogeneous,

the Kruskal-Wallis test [32] is the most adequate statistical

analysis to examine our results, as is non-parametric, does

not rely on normality and handles unequal sample sizes.

We perform the Kruskal-Wallis test on CoverID, KL di-

vergence, CLAP and DEfNet. Significant statistical differ-

ences (p < 0.05) are observed across all music genres and

degrees of replication, consistent with our earlier findings.

Nonetheless, the insight of this analysis relies on the

pairwise comparisons between the baseline and different

degrees of replication. CoverID pairwise comparison re-

veals a statistically significant difference between the base-

line and the 5% replication degree for afrobeat, cumbia

and techno. For the three other music genres, this happens

11 Sensitivity is understood as the capability to differentiate between
degrees of replication.

Figure 2: CoverID (↓)

Figure 3: KL divergence (↓)

Figure 4: CLAP (↑)
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Figure 5: DEfNet (↑)

Figure 6: FAD (↓)

for a 10% replication degree. Then, statistical significance

also appears in pairwise comparisons of different degrees

of replication. We can derive that CoverID is sensible for

10% of replication, and in some cases at 5%. When consid-

ering KL divergence, pairwise comparison depicts a statis-

tically significant difference between the baseline and the

5% replication degree. Between degrees of replication, no

statistical significance is revealed for any pairwise com-

parison, except for heavy metal between 5% and the other

replication degrees. Regarding the CLAP and DEfNet, a

significant difference already appears when comparing the

baseline against the samples with 5% replication, indicat-

ing that these metrics are sensitive to 1.5 seconds of repli-

cation. In all cases, a notable difference emerges among

the levels of replication, enhancing the sensitivity of these

metrics’ detection capabilities. They demonstrate sensitiv-

ity to varying replication degrees.

Withal, this statistical analysis sustains the validity of

these four metrics to assess exact data replication in the

training set and determines their degree of sensitivity.

5. MUSIC REPLICATION ASSESSMENT TOOL

Derived from the presented experiment, we implement the

proposed methodology into an evaluation tool. We intro-

duce the Music Replication Assessment (MiRA) tool: an

open evaluation method based on four diverse raw audio

music similarity metrics.

MiRA computes music similarity between reference

and target samples to obtain global and per-pair distances,

based on CoverID, KL divergence, CLAP and DEfNet. It

can estimate data replication with a proportion higher than

10% (3 seconds), but in most of the examined scenarios,

it is sensible to 5% of replication. Per-pair distances are

highly beneficial for detecting close pairs, outliers and sus-

picious cases with potential data replication. Considering

that replication detection requirements may vary depend-

ing on the evaluation, users are left to set their replication

threshold. In addition, MiRA is model-independent as no

information about the model architecture or its characteris-

tics is necessary. The evaluation is conducted directly with

the training (reference) and generated samples (target) of

the analysed generative model.

However, designating a baseline value is encouraged to

accurately interpret the music similarity between the refer-

ence and target samples. We propose a third comparison

group of samples (control) based on songs related to the

reference songs but unseen by the model (e.g. shared mu-

sic genre). Again, this is a decision for the users condi-

tioned to their evaluation scope. Note that using a control

group allows us to understand and interpret the results ob-

tained by acting as the baseline similarity level of indepen-

dent songs with a shared characteristic.

The complete structure of the implemented system is

depicted in Figure 7. We release MiRA as an open-source

tool, built into a PyPI package 12 . Together with the code,

we provide examples and best practice recommendations

for using this methodology. With the release of MiRA, we

hope to enhance transparency in music generation models

and data replication assessment.

Figure 7: MiRA’s structure scheme.

12 https://pypi.org/project/mira-sim/
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6. DISCUSSION AND CONCLUSIONS

This work focused on validating the use of music similar-

ity metrics for assessing data replication in AI-generated

music. We hypothesise that similarity metrics are effec-

tive in estimating data replication. Therefore, we framed

the scope of our study to exact data replication in music

samples, while conducting a controlled forced-replication

experiment with synthetic data.

We examined five diverse audio-based metrics: four

standard metrics (CoverID, KL divergence, CLAP and

FAD) and a novel one (DEfNet). Our results indicate that

four of the five studied metrics can detect data replication

to a certain extent. Instead, FAD based on CLAP music

embeddings presented an opposite behaviour compared to

the other metrics. Higher similarity is obtained for the

baseline group and FAD shows unstable trends throughout

the diverse music genres. Thus, we do not find it suitable

for our case study. However, it must be acknowledged that

the recent publication by Gui et al. [30] offered multiple

classifiers to compute FAD. There is the possibility that

we did not consider the appropriate classifier for our task.

Thus, we should consider exploring other classifiers before

determining the validity of FAD in detecting replication in

music.

Regarding the other four metrics, our results show in-

teresting insights. First, we find CoverID to be sensible to

different replication degrees, establishing a robust thresh-

old level at 10% of replication. Furthermore, in some of

the studied cases, replication sensitivity is lowered to 5%

of replication. This is a substantial finding to validate the

suitability of metrics oriented to specific music character-

istics, such as tempo, structure and composition.

Next, we observe that KL divergence can be sensitive to

replication as pairwise comparison between baseline and

degrees of replication is statistically significant. Neverthe-

less, the other pairwise results reveal that KL divergence is

ineffective for differentiating between replication degrees.

We consider this an unexpected turnout in our analysis.

Considering CLAP and DEfNet scores, both

embedding-based metrics, our experiment validates

their suitability to detect data replication. Not only do

they show robustness by increasing their similarity value

parallel to the replication degrees (i.e. higher similarity

for higher level of replication), but they also show high

sensitivity for different degrees of replication. All results

suggest their sensitivity might be higher than we envi-

sioned and might be able to detect replication in smaller

samples (i.e. < 1.5 seconds).

As a result of these findings, we achieve our second goal

within the scope of this research: to build an open model-

agnostic tool based on music similarity metrics on raw au-

dio. In this article, we have introduced the MiRA tool,

leveraging the four validated similarity metrics, which can

be used to evaluate any music-generative model with au-

dio output. MiRA does not require any information about

the model architecture or its characteristics. Instead, sim-

ilarity evaluation relies on comparing reference and target

samples.

By introducing the MiRA tool, we are contributing to

the research gap of lack of evaluation methodologies di-

rectly assessing potential data replication in AI-generated

music. Our study validates the use of similarity metrics

to estimate training data replication. We intend to encour-

age the open evaluation of music generation models by re-

searchers, developers and users concerning data replica-

tion. In addition, our research strives for the importance of

ethical, social, legal and economic consequences of gen-

erative AI in the music domain, together with the need to

address their risks and issues.

6.1 Limitations and Future Work

Despite our contribution to advance towards data replica-

tion assessment with music similarity metrics, there are

multiple opportunities to complement our investigation.

First, we limited the scope of our experimental ap-

proach to assessing the use of different music similarity

metrics for exact data replication, consequently reducing

the definition of plagiarism to exact replication of frag-

ments in the training set. We followed such an approach to

validate our hypothesis and ensure an attainable method to

address this issue. While this reduced scope could poten-

tially be solved using audio fingerprinting strategies [33],

we believe that by employing a diverse range of metrics

we can provide a more comprehensive assessment of data

replication.

Framing our aim to exact data replication also intro-

duced a limitation in considering typical perturbations that

music samples experience when training the model or dur-

ing the model procedure to generate a music sample. Thus,

it would be a key point for future work to validate the ro-

bustness of these metrics towards typical data augmenta-

tion techniques, such as pitch shifting and reverberation.

Proving them to be robust would also enhance the capa-

bilities of MiRA for detecting potential replication in AI-

generated music. At the same time, we intend to expand

the abilities of MiRA for data replication by incorporating

complementary metrics, if necessary.

In addition, our experimental process was limited to the

high computational costs of some of the metrics. In partic-

ular, we faced significantly large amounts of time to com-

pute FAD and KL divergence. This is a relevant concern as

we want MiRA to be an open tool that can be used by any

researcher or user. Thus, considering the computational

capacity required to compute the integrated metrics within

is a relevant issue in our research.

Another limitation is the type of data that we use. We

base our experiment on synthetic data despite our goal be-

ing oriented to AI-generated music. We must use synthetic

data with a controlled percentage of replication to guaran-

tee and assess the capabilities of detection and sensitivity

of music similarity metrics. However, we would like to test

the validity of the introduced tool when used in a genera-

tion context. To do so, we require not only a generative

model but its details on training data and generation sam-

ples. We plan to expand our research in with AI-generated

content in upcoming studies.
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music domain brings significant ethical implications. The

main challenges are linked to the role of AI within mu-

sic creative processes, such as composition, potential mis-

appropriation of data in AI-generated music, inquiries on

the novelty of generations, derived authorship attribution,

effects on intellectual property rights and sustainability of

current business models. In addition, there are notable con-

cerns about the cultural bias in these systems and their en-

vironmental impact.

Our research focused on the issue of assessing potential

data replication in AI-generated music. We observed a lack

of evaluation methodologies to examine replication in raw

audio. We contributed to this issue by proposing a method-

ology based on audio-based music similarity metrics. We

demonstrated its effectiveness and provided an open tool

to evaluate AI-generated music. Our introduced approach

is contributing to the transparency of music generation al-

gorithms.

Despite the positive contribution of our investigation,

we must be critical of some methodological aspects of our

work. Our principal ethical concern falls under the type

of data used to conduct our forced-replication experiment.

In particular, we employ an internal dataset created with

Spotify previews (30-second samples of music). Even if

these practices are common in the ISMIR community, we

see the need for guidelines for the legal assessment of MIR

data included in datasets, incorporating country dependen-

cies, origin and intended use, personal data involved (from

artists and listeners) and potential future consequences 13 .
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ABSTRACT

In this paper, we propose and investigate the use of neural

audio codec language models for the automatic generation

of sample-based musical instruments based on text or ref-

erence audio prompts. Our approach extends a generative

audio framework to condition on pitch across an 88-key

spectrum, velocity, and a combined text/audio embedding.

We identify maintaining timbral consistency within the

generated instruments as a major challenge. To tackle this

issue, we introduce three distinct conditioning schemes.

We analyze our methods through objective metrics and hu-

man listening tests, demonstrating that our approach can

produce compelling musical instruments. Specifically, we

introduce a new objective metric to evaluate the timbral

consistency of the generated instruments and adapt the

average Contrastive Language-Audio Pretraining (CLAP)

score for the text-to-instrument case, noting that its naive

application is unsuitable for assessing this task. Our find-

ings reveal a complex interplay between timbral consis-

tency, the quality of generated samples, and their corre-

spondence to the input prompt.

1. INTRODUCTION

The exploration of sound synthesis and the development of

interfaces to manipulate timbre are fundamental topics in

audio research [1]. With the evolution of sound synthesis

in the digital realm, musicians have unprecedented means

to manifest their artistic visions. Meanwhile, generative

models for images and text have shown disruptive abilities

in creating novel samples from learned distributions [2].

It becomes only natural to consider implications of such

technologies when applied to a music production context.

Several generative models for neural audio synthesis

have been put forth, including NSynth [3], which uses a

WaveNet [4] autoencoder to create samples of pitched in-

struments, and GANSynth [5], which models signal phase

through an instantaneous frequency representation. Fur-

thermore, Differentiable Digital Signal Processing (DDSP)

© S. Nercessian, J. Imort, N. Devis, and F. Blang. Licensed

under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: S. Nercessian, J. Imort, N. Devis, and F. Blang, “Gen-

erating Sample-Based Musical Instruments Using Neural Audio Codec

Language Models”, in Proc. of the 25th Int. Society for Music Informa-

tion Retrieval Conf., San Francisco, United States, 2024.

[6] and its related works [7] introduce autoencoders with

differentiable synthesizers for improved controllability,

while a novel approach via a real-time variational autoen-

coder is presented in [8]. Additionally, GANstrument [1]

leverages a feature descriptor obtained through adversarial

domain confusion, highlighting the diverse methodologies

employed to advance the field of audio synthesis. These

models lack an interface for controlling audio generation

via text input. Accordingly, we have witnessed a surge

in text-to-audio systems generating convincing audio ex-

amples from text prompts [9]. One family of approaches

rely on neural audio codecs [10, 11] representing audio as

a set of discrete codes whose sequence can be learned us-

ing transformer-based language models. While initial ap-

proaches targeted speech [12,13] and ambient sounds [14],

follow-on works adapt methods for text-to-music generat-

ing full musical passages from text [15, 16].

Though compelling, seminal text-to-music works tar-

get generation of entire musical arrangements or otherwise

lack fine-grained control over their outputs, and might not

integrate well into musicians’ workflows. Consequently,

efforts have been made to adapt these models to sit closer

in the creative process. These include StemGen [17], pre-

dicting instrument track layers from a given musical con-

text, and VampNet [18], generating musical variations via

generative filling. We align with this philosophy, intending

to enable new sounds to inspire musical creativity.

In this paper, we introduce the application of neural au-

dio codec language models for the automated creation of

sample-based musical instruments using both text and au-

dio prompts as input, building upon our preliminary work

in progress in [19]. We model a musical instrument as a

set of waveforms sampling the instrument’s time-domain

response across the dimensions of pitch (the fundamental

frequency of a note) and velocity (the intensity with which

a note is played). Under this paradigm, we move beyond

the constraints of any one parametric synthesizer, avoid-

ing expressivity limitations tied to its implementation. As

in [1], we note that injecting inductive bias into the gen-

erative process via DDSP is interesting but complemen-

tary to our work, as such methods constrain the manifold

that outputs can live on [20]. Unlike text-to-music sys-

tems, which typically generate a single audio example for a

given text prompt during inference, prompt-to-instrument

systems must generate an ensemble of audio samples from

a fixed prompt, which must be pitch-accurate and timbrally
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consistent with one another to allow for the assembly of a

playable instrument. Our contributions are as follows:

• We introduce the text-to-instrument (T2I) task, in

which waveforms comprising a sample-based musical in-

strument are generated from a user text prompt.

• We propose neural audio codec language models as

solutions for both text- and audio-prompted sample-based

instrument generation, expanding on a state-of-the-art gen-

erative audio model that is conditioned on a Contrastive

Language-Audio Pretraining (CLAP) embedding [21], as

well as pitch across the 88-key range of a standard full-

length piano keyboard, velocity, instrument family and

source type.

• We develop an objective metric to assess the timbral

consistency (TC) of sample-based instruments.

• We propose an adaptation to the average CLAP score

to be suitable for objectively assessing T2I.

• We propose and analyze three CLAP conditioning

schemes through qualitative and quantitative means.

• We demonstrate the compatibility of our approach

with both autoregressive (AR) and non-AR audio trans-

formers like MAGNeT [22].

The remainder of this paper is organized as follows:

Section 2 describes our proposed method, Section 3 out-

lines quantitative metrics for assessing performance, in-

cluding the ones that we have developed, Section 4 reports

our experimental results, and Section 5 draws conclusions.

2. PROPOSED METHOD

Figure 1 illustrates our proposed method, which is based

on MusicGen [16] as a foundation, consisting of a neural

audio codec and a language model to predict acoustic to-

kens from conditioning signals. We replace EnCodec [23]

used in MusicGen with the Descript Audio Codec (DAC)

[11], addressing codebook collapse in previous models

while achieving higher audio fidelity. We also introduce a

set of new conditioning signals including pitch and veloc-

ity, alongside a CLAP embedding [21]. Our conditioning

signals reflect global cues θ for steering generation, which

are fused with the language model via cross-attention. Us-

ing CLAP allows instrument samples to be inferred from

either audio or text prompts, and we denote their tasks as

sample-to-instrument (S2I) and T2I, respectively. The aim

of S2I may be considered one of pitch/velocity shifting,

whereby the model transforms an audio prompt in ways

transcending conventional signal processing. In T2I, text

acts as a semantic interface to generate instruments whose

timbres may otherwise not exist. To ensure the repro-

ducibility of our findings, we use pretrained sub-networks

without modification, training our core language models

from random initialization on the standard research dataset

NSynth [3]. We acknowledge that fine-tuning sub-modules

within a generative model can improve a composite sys-

tem, but consider this to be outside the scope of this work.

2.1 Compressed audio representation

We use the DAC encoder to create an intermediate repre-

sentation of a monophonic waveform x, resulting in the

discrete codes c, while the DAC decoder synthesizes an

audio waveform x̂ from a predicted code sequence ĉ. The

DAC is trained on a broad spectrum of audio types, so we

deem it suitable for generating tonal one-shot instrumental

sounds. We model our task at a sample rate of 44.1 kHz, as

this would be a minimum requirement for real-world mu-

sic production use cases. We employ the corresponding

pretrained model with fixed weights during training.

2.2 Language model

To model the discrete audio tokens of single-shot sam-

ples, we consider a smaller, 60M parameter variant of the

transformer decoder in [16], in order to prevent overfitting,

speed up inference, and conceptually demonstrate our ap-

proach. The model consists of 12 layers with 16 atten-

tion heads per layer and a transformer dimension d = 512.

We consider scaling our models to larger sizes to be out of

scope for this work. As in MusicGen [16], we predict au-

dio from tokens of the 4 most significant [11] codebooks

at each frame (of the 9 supported by DAC), selecting to-

kens from codebooks of size 1024. At inference time, we

consider next-token prediction using AR sampling with de-

layed pattern interleaving [16], as well as the iterative de-

coding scheme proposed in [22] reporting a 7× inference
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speed-up. For MAGNeT-style inference, we use 20 decod-

ing steps for the first codebook, and 10 for the remaining

codebooks, respectively (compared to 345 steps for the AR

scheme). As is customary, we can leverage classifier-free

guidance at inference time in both cases [16, 17]. We ex-

pect AR priors to provide higher fidelity, considering the

importance of onsets to perception [24] for the single-shot

samples that we generate: earlier audio token predictions

are likely to be perceptually more relevant than later ones.

2.3 Categorical conditioning

We use a categorical conditioning scheme for pitch p, ve-

locity v, broad instrument family f , and source type s,

that consists of a lookup table (LUT) and a fully con-

nected layer that maps the dimension of the categorical

feature space to the dimension d of the language model.

For pitch, we model the dp = 88 range of notes spanned

by a full-length keyboard, corresponding to Musical In-

strument Digital Interface (MIDI) note numbers 21-108,

and note this to be a significant expansion relative to the

chroma feature used in [16]. We consider dv = 5 velocity

layers, according to MIDI velocities 25, 50, 75, 100, and

127 within our training dataset. The instrument family (i.e.

bass, brass, etc.) and source type (i.e., acoustic, electronic,

etc.) attributes in our dataset serve as metadata-driven tim-

bral cues that could optionally guide training [25], but we

do not expect them to be specified at inference. We choose

to include them for models trained in this work, subjecting

them to dropout with 30% probability, noting that dropout

can generalize their complete inclusion or exclusion.

2.4 Joint text and audio conditioning

We use the CLAP model [21], employing encoders to gen-

erate a common fixed-dimensional representation for au-

dio/text pairs of size dz = 512. This model was pretrained

on musical signals, utilizing a contrastive loss to align re-

spective audio and text embeddings, ultimately enabling

the use of either modality as input to our system. The audio

encoder Ea uses HTS-AT [26], while the text encoder Et is

based on RoBERTa [27]. Given an audio dataset of instru-

mental samples, this strategy allows for leveraging only the

audio head during language model training, without requir-

ing rich text captions in the dataset. We quantize resulting

CLAP embeddings through Residual Vector Quantization

(RVQ) with learned codes [16], yielding θCLAP.

A distinction between generating music and creating

sample-based instruments from prompts is that the in-

ference scenario for instrument generation utilizes a sin-

gle fixed representation as input for generating a cohe-

sive set of waveforms comprising an instrument. Con-

sequently, we present three CLAP conditioning schemes

specifically to train language models for sample-based in-

strument creation. These techniques amount to assigning

pairs of zCLAP,a and codes c as input and target training

examples in various ways, where zCLAP,a is the output of

the CLAP audio encoder Ea. Hence, the target codes and

CLAP embedding within a training example need not be

derived from the same waveform, so long as they come

from the same instrument. Excluding θf and θs for clarity,

the forward pass observed during the training of a language

model Θ is

ĉ = Θ(zCLAP,a,θp,θv), (1)

where zCLAP,a = Ea(xk(ρ, ν)). Here, k, ρ, and ν denote

the timbre (i.e. instrument), pitch, and velocity exhibited

in an underlying audio example, respectively, which we

assume to be readily selectable from our training set. This

xk(ρ, ν) is the input to Ea, and need not be identical to

xk(p, v) which is used to derive the target codes c.

2.4.1 Baseline CLAP

By design, the CLAP audio encoder Ea will inevitably

yield distinct numerical representations for instrumental

samples of the same instrument but varying in pitch or ve-

locity. During training, the following equation applies:

zCLAP,a = Ea(xk(p, v)), (2)

While this suffices for creating a music track from a sin-

gular representation, the scenario diverges significantly for

sample-based instrument creation. Specifically, pitch and

velocity are represented through both the CLAP represen-

tation as well as their respective categorical conditioners,

which can reduce the overall effectiveness of the latter.

We consider this adaptation of existing prompt-to-audio

methodologies to serve as a baseline in this work, noting

its application to this task is still novel.

2.4.2 Random CLAP

In order to disentangle the aforementioned pitch/velocity

effect, we consider a randomization technique defined by

zCLAP,a = Ea(xk(ρ̃, ν̃)), (3)

with ρ̃∼U{21, ..., 108}, and ν̃ ∼U{25, 50, 75, 100, 127}.
Random selection with replacement is performed through-

out training. This method resembles the nearest neighbor

data augmentation in [1], where we consider samples to be

neighbors if they originate from the same instrument.

2.4.3 Fixed CLAP

Lastly, we consider a conditioning scheme where we use a

fixed, predefined CLAP embedding for each instrument as

zCLAP,a = Ea(xk(ρ0,f , ν0)), (4)

where ρ0,f is defined for each instrument family f (see Ta-

ble 1) such that fixed representations are sampled within

the natural range of each instrument (i.e. we make

Instrument families Note name

Bass C2

Brass, String, Synth lead C3

Guitar, Keyboard, Organ, Reed, Vocal C4

Flute, Mallet C5

Table 1. Pitch values used for fixed CLAP conditioning.
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lower-pitched selections for bass sounds). The categor-

ical velocity ν0 is fixed across the training set at veloc-

ity 100, conveying an instrument’s timbre played with a

medium/strong intensity. If a sample matching a ρ0,f and

ν0 query is not available within an instrument, we opt for

its nearest available pitch, followed by its nearest velocity.

Other fixed CLAP conditioning forms could also have

been devised, e.g. using average per-instrument CLAP em-

beddings. We opt for our described approach as it ensures

that each CLAP embedding used in model training origi-

nates from exactly one audio example. We assert that this

fixed variant most closely aligns training to the scenario at

inference. In fact, we posit that both the baseline and ran-

dom CLAP approaches are data augmentation alternatives

relative to this method, that increase the number of con-

ditioning signal/target code pairs observed during training,

while potentially introducing domain mismatches.

3. OBJECTIVE EVALUATION CRITERIA

We assess models across several objective criteria for S2I

and T2I. Alongside the widely used Fréchet audio distance

(FAD) [28] score, we introduce a novel metric to evalu-

ate the TC of generated sample-based instruments. We

also propose an adaptation of the average CLAP score to

fairly evaluate text correspondence for T2I. Unless oth-

erwise specified, we base instrument generation-specific

metrics on the assumption that they are represented by

Nk = dpdv = 440 audio samples. In practice, care is taken

to properly aggregate/mask instrument statistics based on

which samples are present.

3.1 FAD score

The FAD score allows a common framework for evaluat-

ing generative audio models using almost any audio fea-

ture descriptor [28]. We utilize a FAD metric formulated

using VGGish, as in related works [15, 17]. We also re-

port FAD scores using CLAP (audio) embeddings, since

they form a pivotal component to our system, allow anal-

ysis for higher-sample rate audio (48 kHz), and have been

shown to have increased correlation to perception relative

to VGGish [29]. The FAD score is generically defined as

FAD(Z1,Z2) = ∥µ1 − µ2∥
2

2

+ Tr
(

A1 +A2 + (A1A2)
1

2

)

, (5)

where Zi ∈ R
dz×TN is a collection of T dz-dimensional

embeddings extracted by a given audio descriptor, across

N samples from a population i ∈ [1, 2]. Considering the

4-second long audio segments generated in this work and

the strides of various models, T = 4 and 1 when using

VGGish and CLAP, respectively. We reserve subscripts 1
and 2 to denote ground truth/test populations, respectively.

Accordingly, each Zi has mean µi ∈ R
dz and covariance

Ai ∝ ZiZ
⊤

i ∈ R
dz×dz . The first and second terms in

Equation 5 quantify mean correspondence and similarities

in the spread between distributions, respectively. The FAD

score possesses a property allowing unpaired populations

to be compared, which we use as a criterion to assess "in-

the-wild" T2I in lieu of ground truth audio.

3.2 TC score

Our system should generate timbrally consistent samples

in order for them to triggered harmoniously as a sample-

based instrument, and we aim to characterize this quan-

titatively. An apt definition for TC may seem ill-posed,

since we want instrument samples to be fundamentally

consistent with one another, but also expect them to exhibit

some timbral variations as functions of pitch/velocity. This

is particularly sought-after in high-quality virtual instru-

ments, motivating the modeling approach in [6]. To con-

tend with these potentially conflicting aspirations, we learn

statistics from existing sample-based instruments serving

as prototypes for realistic TC, and build metrics around

them. We use CLAP embeddings as a basis to create an

elegant embodiment in this work. To do so, we forego the

mean subtraction step standard to covariance matrix com-

putations, noting that samples are practically close to zero-

mean in this respect. Hereafter, we use the terms covari-

ance, affinity, and cosine similarity interchangeably.

We define per-instrument covariance matrices as

Aij,k =
1

Nk

Z
⊤

i,kZj,k, (6)

where Aij,k ∈ R
Nk×Nk is the affinity between embed-

dings Zi,k and Zj,k ∈ R
dz×Nk representing the subset of

CLAP embeddings of the kth instrument within each popu-

lation. Here, we compute statistics emphasizing variations

across samples instead of feature dimensions. Referring

to Equation 5, the L2-normalized quality CLAP embed-

dings will ensure us that Tr (Aii,k) = 1 ∀ i ∈ [1, 2] and

k ∈ [1, . . . ,K]. Accordingly, we can define

TCCLAP (Z1,Z2) =
1

K

K
∑

k

Tr
(

(A11,kA22,k)
1

2

)

, (7)

which is bounded in [0, 1] and aggregates the similar-

ity in covariations across instruments within each popu-

lation. Instead of using A11,k for making comparisons be-

tween populations on a per-instrument basis, we consider

A11,∗ = 1

K

∑K

k A11,k, averaging per-instrument affinity

matrices across a ground truth evaluation set. This pro-

vides richer statistics for improved stability, and a unified

method to assess TC for S2I and T2I. The TC score is then

TCCLAP∗ (Z1,Z2) =
1

K

K
∑

k

Tr
(

(A11,∗A22,k)
1

2

)

.

(8)

We compute A11,∗ using all of the samples from the

NSynth validation and test sets that are within our desired

88-key pitch range, reflecting a total of 53 instruments.

The resulting covariance matrix is illustrated in Figure 2c,

in which samples are ordered primarily by pitch and sec-

ondarily by velocity. Note how A11,∗ deviates from "ideal

TC," whereby all embeddings would be correlated with

unity similarity (see Figure 2a). Moreover, a 5× 5 texture
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Figure 2. Covariance matrices for the text prompt tk = aggressive synth lead, computed using (a) naive replica-

tion, (b) translation, (c) coloration (matching the ground truth covariance A11,∗ learned over the 53 instruments reflected in

the NSynth validation/test sets), (d) cosine similarities relative to estimated ρ̂k/ν̂k, corresponding to note E5/velocity 100.

emerges in A11,∗, indicative of variations in cosine simi-

larity amongst samples of the same pitch but differing ve-

locities. Lastly, one may question the suitability of CLAP

as a feature descriptor within this context, given its vari-

ability concerning pitch/velocity discussed in Section 2.4.

Its improved correlation to perception aside [29], we assert

that learning statistics over data effectively embeds poten-

tial measurement deficiencies that effectively neutralizes

when we compare new population statistics against it.

3.3 Average CLAP score

3.3.1 Sample-to-instrument (S2I)

Given N =
∑K

k Nk and a cross-population covariance

Aij = 1

N
Z

⊤

i Zj ∈ R
N×N , the average CLAP score com-

puted on a per-sample basis can be expressed concisely as

sCLAP (Z1,Z2) = Tr (A12) =
1

N

K
∑

k

NkTr (A12,k) .

(9)

It can also be computed on a per-instrument basis by

sCLAP∗ (Z1,Z2) =
1

K

K
∑

k

Tr (A12,k) . (10)

We opt for this version in our work, noting that the two

measures are equivalent when N1 = N2 = · · · = NK .

3.3.2 Text-to-instrument (T2I)

The average CLAP score sCLAP∗ is suitable for cases with

a one-to-one match between ground truth prompts and

their corresponding audio examples. However, it can de-

teriorate for T2I, where a single CLAP text embedding

must be related to an ensemble of CLAP audio embed-

dings Z2,k. A naive adaptation involves comparing each

audio embedding within the generated instrument to the

same target text embedding. This amounts to creating Z1,k

by replicating the CLAP text embedding Nk times (whose

resulting covariance is the "ideal TC" one in Figure 2a),

and using it as input to Equation 10. Hence, we set out to

synthesize a realistic ensemble of CLAP embeddings Z1,k

from a single CLAP text embedding zCLAP,t = Et(tk),
derived from the kth text prompt tk. Again, we accomplish

this by leveraging statistics from available instrument data.

We construct M1,∗ ∈ R
dz×dpdv as the mean CLAP au-

dio embeddings at each pitch/velocity pair across all in-

struments in our evaluation data, re-normalizing them upon

averaging. We posit that a text prompt implies a specific

pitch/velocity (e.g., "softly plucked upright bass" suggests

a low pitch/velocity). To estimate the corresponding pitch

ρ̂k and velocity ν̂k for a given prompt, and to identify its

closest template µ̂1,k, we use M1,∗ as a template matching-

based classifier onto zCLAP,t. Accordingly, we can define

M1,k = M1,∗ + (µ̂1,k − zCLAP,t) (11)

such that M1,k is aligned to zCLAP,t at ρ̂k/ν̂k. Re-

normalizing, we have Z1,k = M1,k/||M1,k||. Figure

2b illustrates a covariance matrix derived from this ap-

proach for a given text prompt. This translation method

improves upon naive replication, but contains higher cross-

correlations than in A11,∗. Finally, we derive a coloration

transformation Z1,k ← Y (Z1,k,A11,∗) through standard

Eigendecomposition techniques, resulting in a Z1,k with

covariance A11,∗, as in Figure 2c.

4. EXPERIMENTAL RESULTS

We train models on the NSynth dataset [3], pruning it

according to our specified 88-key pitch range. We re-

sample the 16 kHz dataset to 44.1 kHz, viewing it as a

proxy in lieu of an equally comprehensive full-band alter-

native. Models are trained to minimize the cross-entropy

Lce between predicted codes ĉ and ground truth c, over

1M training steps with AdamW optimizer, a batch size

of 48, and a cosine-annealed schedule as in [16] with an

initial learning rate of 10−3. We primarily analyze the

impact of the proposed CLAP conditioning training vari-

ants with AR inference. Additionally, we train a baseline

CLAP model with MAGNeT-style iterative decoding to

compare its relative performance. To promote consistency

in generated samples used for evaluation, we fix the ran-

dom seed of our categorical samplers, ensuring that gener-

ations undergo the same random sampling trajectory. We

refer readers to our supplementary materials available at

https://gen-inst.netlify.app/.

We evaluate and analyze the models through several

means. We liken S2I to a reconstruction of the NSynth test

set [1] adapted to our inference condition, as a user can

provide a sample at any pitch/velocity available to them

and models must render its timbre over all pitch/velocity

queries. We simulate this by randomly selecting a single

query CLAP audio embedding for each instrument, using

it to generate all other samples within the instrument. For
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Model Inference FADV GGish ↓ FADCLAP ↓ sCLAP∗ ↑ TCCLAP∗ ↑

Baseline CLAP AR 1.781 0.214 0.626 0.937

Random CLAP AR 1.558 0.196 0.656 0.929

Fixed CLAP AR 1.951 0.225 0.637 0.951

Baseline CLAP MAGNeT 1.974 0.263 0.561 0.931

Table 2. Objective S2I evaluation over the NSynth test set.

Model FADV GGish ↓ FADCLAP ↓ TCCLAP∗ ↑ Naive Translation Coloration

Baseline CLAP 3.060 0.402 0.908 0.225 0.239 0.359

Random CLAP 2.416 0.315 0.883 0.168 0.224 0.361

Fixed CLAP 3.668 0.427 0.932 0.171 0.204 0.333

Table 3. Objective T2I evaluation over a curated set of text prompts (left), and using sCLAP∗ ↑ comparing naive application

of CLAP text embeddings against the proposed translation and coloration methods for synthesizing Z1,k (right).

T2I, we curate 25 text prompts of varying complexity, gen-

erating instruments accordingly.

4.1 Objective evaluation

We analyze generations across S2I and T2I, using FAD (for

overall expressivity and fidelity), sCLAP∗ (for prompt cor-

respondence), and TCCLAP∗ (for TC) to evaluate models

quantitatively. To compute FAD scores for T2I, we relate

generated instruments to the NSynth test set in the absence

of the ground truth audio. Lastly, we compare the different

sCLAP∗ versions for T2I introduced in Section 3.3.2.

Quantitative results for S2I and T2I are summarized in

Tables 2 and 3, respectively. For S2I, the random CLAP

variant outperforms other models in terms of FAD and

sCLAP∗ at the expense of reduced TC. The converse is

true for the fixed CLAP variant, which outperforms in TC.

While we do not prescribe which factor is most crucial

to overall instrument quality, we do assert that TC is an

important element for overall playability. The baseline

CLAP approach slots itself in the middle with regards to

all criteria. Its MAGNeT variant exhibits degraded per-

formance, but generates samples with 7× fewer inference

steps. These findings are largely mirrored in the T2I case.

Interestingly, the baseline CLAP variant seemingly outper-

forms models in terms of sCLAP∗ using a naively adapted

measure. The translation method increases scores across

all models. Lastly, we see that the random CLAP model

(marginally) outperforms other variants when using the

coloration method, in line with S2I. Note that this ver-

sion of the measure significantly bolsters sCLAP∗ across

all models relative to naive replication and translation, so

we argue that it is best-suited for computing T2I sCLAP∗.

4.2 Subjective evaluation

We used the MUltiple Stimuli with Hidden Reference and

Anchor (MUSHRA) and Mean Opinion Scores (MOS)

methods [30] to evaluate model variants subjectively. The

MUSHRA test was catered to S2I, and involved partici-

pants rating the quality of individual samples generated by

different models against a hidden reference (i.e. a ground

truth sample) and an anchor (i.e. a sample generated by a

randomly initialized model). We performed a 1-5 Likert

scale MOS test for T2I scenarios, where participants eval-

uated the audio outputs generated from text prompts based

on overall playability and TC. Our accompanying website

demonstrates the nature of trials used in our evaluation.

In total, 62 participants took part in our two-phase eval-

uation, with results summarized in Table 4. Note that most

participants possess expert listening skills and have been

involved in virtual instrument creation for several years,

contributing to slightly lower absolute results than antici-

pated. Listening test results were consistent with our ob-

jective evaluation, confirming the two assertions of our

work: (1) random CLAP improves expressivity over base-

line CLAP by virtue of its data augmentation, and (2) fixed

CLAP improves TC over baseline CLAP because its train-

ing more closely resembles the inference condition.

Model MUSHRA MOS

Baseline CLAP 56.08 2.290

Random CLAP 63.35 2.661

Fixed CLAP 57.96 2.820

Ground truth 98.45 –

Anchor 0.442 –

Table 4. Summary of our subjective listening tests.

5. CONCLUSIONS

In this work, we proposed methods for generating sample-

based musical instruments from text or audio prompts us-

ing neural audio codec language models. We consid-

ered different CLAP conditioning variants based on the

unique challenge of our task, whereby a set of samples

that are timbrally consistent must be generated from a sin-

gle prompt. We proposed metrics to assess sample-based

instruments through various means. Extensive evaluations

showcased the effectiveness of our methods, underscoring

a compromise between expressivity and TC. Future work

will enable deeper control for sample generation, where

adapters could be used to augment a base model [31]. We

would also like to improve system fidelity, scaling models

to larger sizes with fine-tuned modules [9].
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6. ETHICS STATEMENT

We have intentionally pursued this task as a topic for

scientific research as an alternative to more conventional

prompt-to-media systems. The spirit of this work is specif-

ically to expand sound synthesis possibilities for music

creators in order to realize their artistic visions. Moreover,

we feel that our resulting system and its intents pose far

less risk to personal attack/misrepresentation as well as the

livelihood of creatives, and is less susceptible to incrimina-

tion/impersonation attempts relative to the forms of gener-

ative models that have caused increased levels of concern

within the general population [32].

Beyond our primary ethical concerns, we also recog-

nize the environmental implications of our computational

practices. Our experiments were carried out using Amazon

Web Services in the us-gov-east-1 region, with a carbon

efficiency of 0.57 kgCO2eq per kilowatt-hour. One train-

ing of our model entailed approximately 96 hours of com-

putation on Intel Xeon E5-2686 v4 (Broadwell) hardware

using a single V100 GPU, culminating in an estimated to-

tal emission of 7.93 kgCO2eq. This estimation was facili-

tated by the Machine Learning Impact calculator [33]. In

acknowledging our environmental impact, we underscore

the importance of integrating sustainability considerations

into the research process, reflecting on the imperative to

balance innovation with ecological responsibility.
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ABSTRACT

Hindustani music is a performance-driven oral tradition
that exhibits the rendition of rich melodic patterns. In this
paper, we focus on generative modeling of singers’ vocal
melodies extracted from audio recordings, as the voice is
musically prominent within the tradition. Prior generative
work in Hindustani music models melodies as coarse dis-
crete symbols which fails to capture the rich expressive
melodic intricacies of singing. Thus, we propose to use
a finely quantized pitch contour, as an intermediate rep-
resentation for hierarchical audio modeling. We propose
GaMaDHaNi, a modular two-level hierarchy, consisting
of a generative model on pitch contours, and a pitch con-
tour to audio synthesis model. We compare our approach
to non-hierarchical audio models and hierarchical mod-
els that use a self-supervised intermediate representation,
through a listening test and qualitative analysis. We also
evaluate audio model’s ability to faithfully represent the
pitch contour input using Pearson correlation coefficient.
By using pitch contours as an intermediate representation,
we show that our model may be better equipped to listen
and respond to musicians in a human-AI collaborative set-
ting by highlighting two potential interaction use cases (1)
primed generation, and (2) coarse pitch conditioning.

1. INTRODUCTION

Hindustani music is a performance-driven music tradition
that has a high level of melodic intricacy [1]. Despite the
recent advances in generative modeling for music [2, 3],
this genre remains difficult to model for several reasons
including (1) a lack of a readily available and widely ac-
cepted abstract representation reflecting the genre faith-
fully (like Western symbolic notation), (2) as a niche mu-
sical form, the scarcity of available datasets restricts the
ability to model the raw waveform directly.

© N. Shikarpur, K. M. Dendukuri, Y. Wu, A. Caillon and
C. Z. A. Huang. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: N. Shikarpur, K. M.
Dendukuri, Y. Wu, A. Caillon and C. Z. A. Huang, “Hierarchical Genera-
tive Modeling of Melodic Vocal Contours in Hindustani Classical Music”,
in Proc. of the 25th Int. Society for Music Information Retrieval Conf.,

San Francisco, United States, 2024.

Figure 1. Extracted pitch from Hindustani vocal audio
highlighting the melodic intricacies involved. Solfege no-
tation is highlighted as a horizontal grid.

Symbolic notation is a well-defined discrete representa-
tion of music including lead sheet, MIDI, piano roll, text,
and markup language. Musical notation used in Hindustani
pedagogy uses a similar discrete representation by high-
lighting the prominent notes which fails to faithfully cap-
ture the fine melodic intricacies connecting these notes as
seen in Fig. 1. Previous work on generative modeling
for Hindustani music has side-stepped the lack of well-
defined abstract representations with two methods: (1) us-
ing musical notation from textbooks or music theory [4–6],
(2) leveraging MIDI extracted from audio [7, 8]. How-
ever, both methods ignore the rich melodic ornamentation
present in this music. Computational analyses for the genre
have addressed the difficulty in data representation by us-
ing the fundamental frequency contour, hereby referred
to as ‘pitch’, as an intermediate representation for sev-
eral melodic tasks including music style classification [9],
motif discovery and matching [10–12] and raga recogni-
tion [13–15]. With evidence that pitch faithfully represents
the melody for computational tasks, we are motivated to
incorporate it in the context of generative modeling.

In this work, we present GaMaDHaNi 1 (Generative
Modular Design of Hierarchical Networks), a modular hi-
erarchical generative model for Hindustani singing. We
employ a two-level hierarchy of data representation in-

1 Listen to audio samples and access code here: https://

snnithya.github.io/gamadhani-samples/
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Figure 2. The overall hierarchical generation structure of
GaMaDHaNi comprising of the Pitch Generator, the Spec-
trogram Generator and a vocoder. During inference, given
an optional short melodic input, i.e. ‘prime’, each of the
generators produce a pitch continuation and a spectrogram
conditioned on the resulting pitch respectively.

cluding pitch and spectrogram. The Pitch Generator and
Spectrogram Generator are trained to generate these re-
spectively, with the generated spectrogram converted to
audio using a vocoder. Fig. 2 highlights the model’s high-
level structure. We choose a finely quantized pitch con-
tour as an intermediate representation due to its close re-
lation to melodic content, strongly established in prior lit-
erature [9–15]. We model pitch under two paradigms: as
discrete tokens using an autoregressive transformer and as
continuous values using a diffusion model. In addition,
with a relatively small dataset of 120 hours, we find that
the pitch intermediate representation is effective at learn-
ing melodically diverse ideas (Sec. 4.4). As possible use
cases for interaction, (1) we explore using the model to
continue a given melodic prompt, termed ‘prime’, as seen
in Fig. 2, and (2) we extend the hierarchy upwards to in-
clude a coarse pitch target, thereby enabling user-driven
steering of the generation process.

We note that our current generation pipeline lacks in-
corporation of several key elements crucial to Hindustani
music, specifically tonic frequency, and raga and tala, i.e.
melodic and rhythmic frameworks. This work establishes
a preliminary foundation for exploring the potential of gen-
erating music within this form while maintaining its char-
acteristic melodic intricacies.

A summary of our core contributions include:

• We propose GaMaDHaNi, the first model capable
of generating Hindustani vocal contours while main-
taining the rich melodic complexity in the music.

• We present a hierarchical approach to modeling a
waveform using an intermediate pitch representation

that works on a small dataset (120 hours).

• Through listening tests and qualitative observations,
we show that our hierarchical approach performs
better than baselines.

2. RELATED WORK

2.1 Music Representations in Indian Art Music

Past work on melody-based computational tasks for In-
dian Art Music include music style classification [9], mo-
tif discovery and matching [10–12], and raga recognition
[14–16]. Previous work shows that fine quantization out-
performs coarse quantization in pitch contours for tasks in-
cluding raga recognition [16, 17] and motif matching [11].
Thus motivated by their ability to capture melodic infor-
mation we use finely quantized pitch as an intermediate
representation. Additionally, for Carnatic music, previ-
ous work on compact representations for Gamakas (type of
note ornamentation) [18], and non-uniform pitch quantiza-
tion schemes that can preserve raga-characteristics [19,20]
present forms of representation that are more condensed
than the pitch contour while being adequately detailed
which could be an interesting inclusion for future work.

2.2 Generative Modeling for Hindustani Music

Hindustani music is an improvised form of music where
melodic movements are guided by a melodic framework
(raga) [1]. Past work on the generation of this music is of
two types: rule-based and data-driven models. AI-Raga [4]
is a rule-based AI system developed to generate musical
notation of compositions and improvisations that adhere to
raga grammar based on an elaborate set of rules termed
‘generative theory of music’ [21]. Another work develops
a Finite State Machine (FSM) to generate improvisations
based on raga-specific melodic movements situated in the-
ory [5]. An initial attempt at data-driven models learned
from the musical notation of alaps, i.e. slow improvisation,
in textbooks using bigrams in an FSM [6]. RMMM [7] ex-
plores the use of LSTM [22] and transformer-based [23]
architectures to generate MIDI extracted from a corpus of
Hindustani music. Other work also proposes generating
MIDI with GANs [8,24]. All models discussed in this sec-
tion approach modeling data as solfege notation. While
doing so, one gives up on the transitory melodic regions
between notes of the melody, which is inherent to Hindus-
tani music. AI-Raga [4] partially addresses this by using
domain-informed tuning systems, and a simulation of tran-
sitory glides between notes. We propose to address this
problem by incorporating a fine pitch data representation.
Additionally, in contrast to previous work, we propose to
generate audio waveform rather than symbolic data.

2.3 Hierarchical Audio Generation

Within the domain of music generation, hierarchical learn-
ing offers two distinct advantages: enhanced learning abil-
ities on data-constrained tasks and multi-level controllabil-
ity. MIDI-DDSP [25] takes advantage of the hierarchy in
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the process of creating realistic audio of instrument per-
formance given a sequence of MIDI data including notes,
high-level performance attributes and low-level synthesis
attributes. Our approach leverages a different hierarchy
based on pitch as opposed to MIDI notes, and we gener-
ate pitch from scratch without relying on any symbolic in-
put. Moreover, we choose to directly generate audio spec-
trograms instead of DDSP synthesis parameters since the
latter is designed mainly for instrumental sound.

Another approach to hierarchical models for audio in-
cludes the generation of pre-trained compressed represen-
tations of audio, i.e. neural audio codecs [26, 27], framed
as a language modeling task as seen in MusicLM [28] and
MusicGen [3]. We study the effectiveness of this approach
as a baseline in our experiments in Sec. 4.3, by comparing
Encodec [26] and pitch as intermediate representations.

The use of fundamental frequency contours as an inter-
mediate representation has been widely adopted in the con-
text of Text To Speech synthesis (TTS) and Singing Voice
Synthesis (SVS). Both fields follow a hierarchy including
an input-conditioned acoustic model which mainly gener-
ates a subset of pitch, duration, and spectral features fol-
lowed by a vocoder. The input could be text in the case
of TTS [29–31] and musical score for SVS [32, 33]. C-
DAR [34] is a TTS model that seeks to control the prosody
of generated speech by allowing users to edit parts of the
spoken pitch contour while maintaining the realism of the
prosody. We thus choose to adopt pitch as an intermedi-
ate representation with a strong precedence for its use and
controllability in speech and singing applications.

3. METHOD

In this work, we seek a generative model for Hindustani
vocal music by learning the joint distribution of amplitude
mel-spectrograms s and pitch f following

p(s, f) = pϕ(s|f)pθ(f), (1)

where pϕ and pθ are parameterized with neural networks
called Spectrogram and Pitch Generators respectively.
The generated spectrogram is converted to audio using a
vocoder. Pitch conditioning f to pϕ is taken from our
dataset for training and sampled from pθ for inference.

3.1 Pitch Generator

We study the modeling of vocal pitch as the primary com-
ponent in our hierarchical generation pipeline. Vocal pitch
f are represented as integer-valued sequences sampled at
100Hz, with 90% of the values ranging from 86Hz to
899Hz, quantized with a fine resolution of 10 cents. To
model such sequences, we investigate two distinct meth-
ods. The first employs an autoregressive, language-like
model to predict the discrete pitch sequence, whereas the
second leverages recent advancements in diffusion-based
modeling for iterative generation of the entire sequence.

3.1.1 Discrete autoregressive model

We use a vanilla decoder-only transformer, to autoregres-
sively predict the next token of a pitch sequence. In this

task, the pitch values f are considered to be discrete tokens
in a vocabulary V , each mapped to an embedding vector
of size d through an embedding matrix E ∈ R|V |×d. The
model is trained with cross-entropy loss.

3.1.2 Continuous diffusion model

We use a simple yet effective diffusion variant, Iterative
α-Deblending (IADB) [35] as the training objective of our
model that generates finely quantized pitch f . IADB de-
fines a simplified diffusion process that is a linear inter-
polation between noise x0 ∼ X0 = N (0, 1) and data
x1 ∼ X1 = Xdata :

xα = (1− α)x0 + αx1. (2)

We leverage a deterministic iterative deblending pro-
cess proposed in [35] to sample a data point x1 ∼ X1 from
noise x0 ∼ X0. With the total number of iterations in the
process as T , and given a time step t ∈ {0, 1, 2, . . . , T},
we define the blending parameter αt = t

T
and an α-

blended point xαt
. Thus, the iterative deblending is de-

fined as:

xαt+1
= (1− αt+1) x̄0 + αt+1x̄1, (3)

where (x̄0, x̄1) = E(X0×X1)|xαt
,αt

is the expected value
of the posterior samples given xαt

, αt. Heitz et. al. [35]
show that using expected posteriors x̄0, x̄1 in the deblend-
ing process (Eq. 3) instead of x0, x1 converges to the same
point, while making the sampling process deterministic.

Taking the derivative of xαt
with respect to the blending

parameter αt, the training objective becomes,

Dθ(xαt
|αt) ≈

dxαt

dαt

= (x̄1 − x̄0), (4)

Taking a trained model Dθ, we perform an iterative sam-
pling procedure to generate outputs:

xαt+1
= xαt

+ (αt+1 − αt)Dθ(xαt
, αt), (5)

3.2 Spectrogram Generator

On the next level of the hierarchy, we train a model to gen-
erate a spectrogram conditioned on pitch, which is then
converted to an audio signal using a vocoder. This method
uses IADB as described in Sec. 3.1.2, while additionally
conditioned on singer and pitch. Each singer ID is embed-
ded as a discrete vector, and the processed pitch is time-
downsampled to match the spectrogram’s time axis. Both
conditioning signals are concatenated as additional chan-
nels to the mel-spectrogram input. Thus given a condition-
ing signal c, the training objective Dϕ(xαt

|αt, c) is similar
to Eq. 4 but is additionally conditioned on c.

The singer and pitch values are conditioned using
classifier-free guidance (CFG) [36]. Given a conditioning
strength w, CFG is implemented such that Dϕ(xαt

|c) is
used during the iterative sampling, defined as,

Dϕ(xαt
|αt, c) = (1−w)Dϕ(xαt

|αt)+wDϕ(xαt
|αt, c)

(6)
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4. EXPERIMENTS

In this paper, we consider the Spectrogram Generator as
a tool to convert melodic ideas from the Pitch Generator
into perceivable audio. As a result, we evaluate both the
Generators with a focus on quality of pitch generation and
the spectrogram’s fidelity in representing that pitch.

Through our experiments, we aim to motivate our
choices for (1) a hierarchical approach to generation, (2)
the use of pitch as an intermediate representation, through
listening tests. We also qualitatively evaluate the overall
melodic quality of generations. Additionally, we assess
the Spectrogram Generator by testing pitch adherence: the
ability of the model to reliably reproduce the pitch condi-
tioning through quantitative and qualitative analyses. We
leave evaluation of other aspects of the Spectrogram Gen-
erator such as audio quality, singer adherence to future
work. Readers are encouraged to listen to relevant supple-
mentary audio samples on our project website while going
through this and the following sections.

4.1 Dataset

We use a combination of the Saraga and Hindustani Raga
Recognition datasets [37, 38]. Audio files in the combined
dataset contain audio of vocal performances including the
tanpura, i.e. a drone, along with the melodic and rhythmic
accompaniment across 56 unique singers. It spans about
120 hours across 362 audio files, where the files range from
88 seconds (s) to 1.2 hours with a median duration of 20
minutes. The dataset is randomly split into training and
validation sets at a 90:10 ratio. Furthermore, each audio
file is split into 60 s segments resulting in 7174 and 719
segments in the training and validation sets respectively.
Due to different inductive biases in the models used, they
all have different receptive fields and are thus trained on
sequences with lengths varying from 8.2 s-12 s, randomly
sampled from the 60 s segments during training.

The vocals are isolated using 2-stem source separation
with HT Demucs [39] and further, the pitch is extracted
using CREPE [40] and is sampled at 100 Hz. We algorith-
mically reduce the number of pitch detection errors using
a loudness-based pitch filtering approach; using a sliding
window to calculate area under the loudness curve, we re-
tain only corresponding pitch values exceeding an empiri-
cally set threshold. We normalize the pitch to a logarithmic
scale such that an arbitrarily chosen frequency, 440Hz is 0
on this scale, and quantize it into 10-cent bins. Addition-
ally, during training, the pitch is transposed by a random
multiple of 10 cents within a range of [−400, 400] cents.

Artifacts in the dataset Our source separation model,
HT Demucs [39], allows some leakage from other instru-
ments including mainly the sarangi (stringed melodic ac-
companiment) and the tabla (rhythmic accompaniment) as
artifacts in the vocal stem due to the out of distribution
nature of Hindustani music data for the model. These
‘leaked’ sounds are generated in our models too (both our
proposed model and the baselines established). Addition-
ally, instances of speech are found in some generated sam-
ples as it is present in our dataset. The Carnatic FTA-Net

[41], presents a domain-informed model trained to extract
pitch contours from Carnatic vocal audio. Owing to the
similarities between Carnatic and Hindustani music, an in-
teresting direction for future work would be to adopt their
methodologies in our data processing pipeline.

4.2 Model Architectures

Below we present model specific architectures and data
preprocessing for the Pitch Generators (Autoregressive and
Diffusion) and the Spectrogram Generator.

Pitch Generator (Discrete Autoregressive) This
model was trained on 12s (1200 token) sequences. The
quantized pitch f is converted into a sequence of discrete
embedding vectors e, using an embedding space E ∈
R|V |×d where effective vocabulary size is |V | = 796 and
embedding dimension is d = 512. The model is a decoder-
only transformer [23] with 8 layers, with each layer having
an output dimension of 512. AliBi positional method [42]
is used to encode the position of tokens in the sequence.
A cosine learning schedule with linear warm-up is used.
Samples are generated with a temperature of 0.99 and us-
ing top k sampling with k=40.

Pitch Generator (Continuous Diffusion) This model
was trained on 10.24s (1024 elements) sequences. The
quantized pitch contour is limited to a range of 400 inte-
gers. This distribution is converted into a continuous Gaus-
sian using the quantile function which maps a variable’s
probability distribution to another probability distribution.
This model is implemented as a U-Net with three down-
sampling and upsampling layers each with a stride of 4, 2
and 2 respectively. Each layer is made of four 1-D con-
volution layers with weight normalization [43] and Mish
non-linearity [44]. The bottleneck involves 4 attention lay-
ers with 8 heads each.

Spectrogram Generator This model is trained on 8.2s
(512 elements) of mel-spectrogram sequences. The rele-
vant pitch conditioning is linearly interpolated and down-
sampled to match the sequence length of the spectral data.
The spectral data is produced with 192 mels and a hop size
of 256 (0.016 s) given 16 kHz audio and is converted to a
continuous Gaussian distribution using the quantile trans-
form function as well. Apart from additional channels for
singer and pitch conditioning, the architecture is the same
as that used by the Pitch Generator (Continuous Diffusion)
(Sec 4.2). For simplicity, spectrograms are converted to
audio using the Griffin-Lim algorithm [45]. Future work
could harness the power of recent developments in neural
vocoders including HiFi-GAN [46].

4.2.1 Conditioning signals

In addition to pitch, the Spectrogram Generator utilizes
singer conditioning to help maintain the consistency of the
voice in generated audio as seen in the supplementary au-
dio samples. Each singer is assigned a unique ID and
mapped to an embedding vector of size dsinger = 128.
Conditioning was implemented with CFG as discussed in
Sec. 3.2 with a strength of w = 3 for pitch and singer con-
ditioning. This value was determined based on empirical
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studies as an optimal balance between fidelity to pitch and
minimizing artifacts due to incorrect pitch extraction.

4.3 Baseline Models

Through our baseline models, we aim to motivate two ma-
jor architectural choices: (1) hierarchy in the model and (2)
an intermediate pitch representation. These models thus
include a non-hierarchical baseline, a hierarchical baseline
with a self-supervised intermediate representation (hierar-
chical Encodec baseline), and the ground truth.

Non-hierarchical Baseline In this baseline, we high-
light a naive approach of modeling audio directly with no
hierarchy. We train a diffusion model with the IADB ob-
jective directly on processed audio mel-spectrograms. The
model architecture is similar to other diffusion models used
in this paper (Sec. 4.2) and was trained on the same dataset
as our model with sequences of length 8.2s.

Hierarchical Encodec Baseline We train a hierarchi-
cal autoregressive baseline on a self-supervised intermedi-
ate representation, Encodec [26]. Through this model, we
aim to compare the effect of self-supervised and pitch in-
termediate representations. To this end, we train MSPrior
[47, 48], a decoder-only transformer adapted for real-time
use, on Encodec tokens [26] extracted using the 24 kHz
Encodec model with a target bandwidth of 3 kbps (4 chan-
nels per token). This model was trained on only the Hin-
dustani Raga Recognition Dataset (which constitutes about
5
6 th of our dataset) with a sequence length of 900 (12 s).
We use a temperature of 0.99 for sampling.

Ground Truth To set the gold standard of melodic
quality, we use ground truth pitch for comparison. As
the listening test focuses on evaluating the Pitch Genera-
tor, we standardize audio quality across all models (except
the hierarchical Encodec baseline which already generates
waveform) by synthesizing the ground truth pitch with our
Spectrogram Generator. We use five singers (3 low and
2 high voice range) with reasonable representation in the
dataset as singer conditioning. Depending on the range of
the generated pitch, we randomly select from the appropri-
ate set of singers to generate audio for the contour.

4.4 Human Evaluation on Melodic Quality

To evaluate the musical quality and characteristics of gen-
erated samples, we conduct a listening study and offer
qualitative observations supported by audio examples in
our supplementary material.

Listening study We compare five systems: non-
hierarchical baseline, hierarchical Encodec baseline, au-
toregressive and diffusion variants of our method, and
ground truth. Participants were presented with 8.2 s audio
samples, from two random systems and asked to rate which
one is more musically interesting, on a 5-point Likert scale.
We recruited 15 participants who are trained in Hindustani
or Carnatic music. Although Carnatic music is stylistically
different from Hindustani music, the two share the context
of raga and tala giving participants enough context to eval-
uate samples for this study. Participants’ primary instru-
ments were the voice or other melodic instruments includ-

0 20 40 60
Human preference (number of wins)

Ground Truth

GaMaDHaNi
(Autoregressive variant)

GaMaDHaNi
(Diffusion variant)

Hierarchical Encodec Baseline

Non-hierarchical Baseline

Figure 3. Results from the listening study, showing how
many times each system was preferred.

ing the harmonium, sarangi, sarod, sitar, flute, or violin.
We collected 240 ratings, with each system involved in 96
comparisons.

Results Fig. 3 shows the number of wins in each
system. We ran a Kruskal-Wallis H test and confirmed
that there are statistically significant pairs among the
combinations. According to a post-hoc analysis using
the Wilcoxon signed-rank test with Bonferroni correction
(with p < 0.05/10), we find that our hierarchical model
with an autoregressive Pitch Generator outperforms the
non-hierarchical baseline. Given the small sample size,
we also compare all systems against each other by aggre-
gating ratings and considering them as independent sam-
ples. Using the Independent (Mann-Whitney U) test with
Bonferroni correction, we find that both our models, dis-
crete autoregressive and continuous diffusion outperform
the non-hierarchical baseline significantly. Through these
experiments, we establish that our model outperforms the
non-hierarchical baseline.

Diversity in Generation Participants did not prefer our
methods significantly more than the hierarchical Encodec
baseline. This baseline tends to hold a single note or move
through a few stable notes without much dynamism. This
understandably was preferred by participants as vilambit

alap or slower improvisation, a common way to establish a
raga in Hindustani music, involves the use of such long and
stable notes. With only 8.2 s duration audio samples, the
listeners do not have enough time to notice the lack of dy-
namic movement. In contrast, our proposed methods can
render both slow and fast movements, resulting in more
variety as seen in generated samples. We hypothesize that
this could be due to the different intermediate representa-
tions of both models, i.e. due to the importance of intricate
melodic movements, a model trained to explicitly generate
fine pitch would be able to capture melodic complexity.

Consistency of vocal timbre We note that generations
from the hierarchical model, which includes singer condi-
tioning, display more consistency in the timbre of voice;
the baseline models sometimes abruptly switch vocal tim-
bre in the middle of generation.

4.5 Pitch Adherence in Spectrogram Generator

Although the Spectrogram Generator loss lacks an explicit
term for pitch adherence, we evaluate it by calculating the
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Figure 4. Examples of ground truth pitch (blue) and ex-
tracted pitch contour from the generated sample (orange)
to highlight pitch adherence with low and high correlation,
r (top to bottom). Low correlation: Audio 0 (r = 0.1)
and 1 (r = 0.11) are examples of errors in pitch detection.
High correlation: Audio 2 (r = 0.94) and 3 (r = 0.99)

Pearson correlation coefficient between the conditioning
pitch and the pitch extracted from the generated audio. For
this, we choose four singers (two male and two female) to
generate audio conditioned on 32 random contours from
the validation set resulting in a total of 128 contours to
evaluate. We achieve a mean correlation of 0.71 between
input and loudness-filtered extracted pitch.

Visual inspection reveals that differences between the
input and extracted pitch sequences are pronounced when
artifacts due to errors in pitch detection, source separa-
tion, or ground truth are present in either sequence. We
present instances of samples with high and low correlation
in Fig. 4. In addition, we note an inconsistent difference in
timing between the ground truth and generated contour in
Fig. 4. Future work could investigate pitch-specific train-
ing objectives and alternative conditioning representations
to improve the precision of the generated audio’s pitch in
time. Overall, based on visual analysis, we note that our
model faithfully reconstructs the pitch conditioning shape.

5. INTERACTION USE CASES

We show two interactive use cases of GaMaDHaNi: (1)
continuing an input melodic sequence or ‘prime’, and (2)
guiding generation with coarse solfege-like notation.

5.1 Primed Generation

We investigate using our model for melodic sequence con-
tinuation. To this end, we input a four-second pitch se-
quence from our dataset termed ‘prime’ into our Pitch Gen-
erator, and ask the model to continue the sequence. The
model can generate realistic-sounding continuations with
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Figure 5. A staircase descending scale (in blue) as a coarse
input. This input is then processed as described in Sec. 5.2
and fed into the model. The generated fine-grain contour
(in orange) has glides (mindh) and fast jerky movement
(gamak) characteristic to Hindustani music.

interesting patterns, as seen in Fig. 2 and in our audio
samples. Future work could involve creating an interactive
pipeline that would allow our model to directly take input
from the user allowing a human-machine collaboration.

5.2 Coarse Pitch Conditioning

To explore further possibilities for interaction, we evaluate
the model’s ability to adhere to solfege-like conditioning
given to the Pitch Generator. To this end, a ‘coarse pitch’
signal is inferred by calculating a moving average of the
pitch with a window size of 1s and a hop size of 0.01s. The
Pearson correlation coefficient between the input and gen-
erated coarse pitch is 0.97, and between the ground truth
and generated pitch is 0.79. Both values are averaged over
64 random samples from the validation set. Thus solfege
input, once converted into a similar coarse pitch signal, can
be used to guide the model’s generation as seen in Fig. 5,
where the model renders a solfege-based descending scale
into realistic-sounding audio. Although simple, this is an
interesting avenue for interactive generation that we plan
to explore in the future.

6. CONCLUSION

We present a modular hierarchical system to generate
melodically rich Hindustani vocal audio using a relatively
small dataset. Our model has comparable or better perfor-
mance than established baselines while including an inter-
pretable intermediate pitch representation. We present in-
teresting forms of interaction including primed generations
and coarse pitch conditioning that could be developed fur-
ther to achieve interactive human-machine music making.

There are interesting future directions such as the use of
tonic, raga and rhythmic aspects as conditioning for gen-
eration. Additionally, the Spectrogram Generator could
adopt more advanced vocoders and conditioning signals
such as loudness and phoneme features for better results.
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7. ETHICS STATEMENT

This work, to our knowledge, is the first model trained
to explicitly generate Hindustani vocal music and thus we
find it important to emphasize that this work is intended to
foster human-AI collaboration, creating a more accessible
environment for creative exploration and is by no means
intended to replace music teachers or musicians. While
we acknowledge the ethical concerns involved in modeling
singing voices, we include singer conditioning in our ap-
proach with the sole intention of maintaining voice consis-
tency in the generated samples. Additionally, we note that
this work utilizes datasets contributed by artists or insti-
tutes holding distribution rights to ensure responsible use
with informed consent. These datasets were released with
appropriate permissions to process audio recordings for re-
search purposes. However, despite our current model’s
limited scope, future enhancements may pose a risk of
mimicking the identities of existing singers, necessitating
the establishment of protective guidelines for artists.
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recognition,” in Proc. of the International Society for

Music Information Retrieval (ISMIR), 2016.

[39] S. Rouard, F. Massa, and A. Défossez, “Hybrid trans-
formers for music source separation,” in Proc. of the

IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2023.

[40] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “Crepe:
A convolutional representation for pitch estimation,” in
Proc. of the IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), 2018.

[41] G. Plaja-Roglans, T. Nuttall, L. Pearson, X. Serra, and
M. Miron, “Repertoire-specific vocal pitch data gener-
ation for improved melodic analysis of carnatic music,”
Transactions of the International Society for Music In-

formation Retrieval, vol. 6, no. 1, pp. 13–26, 2023.

[42] O. Press, N. A. Smith, and M. Lewis, “Train short, test
long: Attention with linear biases enables input length
extrapolation,” in Proc. of the International Conference

on Learning Representations, 2021.

[43] T. Salimans and D. P. Kingma, “Weight normalization:
A simple reparameterization to accelerate training of
deep neural networks,” in Proc. of the Advances in

Neural Information Processing Systems, 2016.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

1027



[44] D. Misra, “Mish: A self regularized non-monotonic ac-
tivation function,” in Proc. of the British Machine Vi-

sion Conference, 2020.

[45] D. Griffin and J. Lim, “Signal estimation from modi-
fied short-time fourier transform,” IEEE Transactions

on acoustics, speech, and signal processing, vol. 32,
no. 2, pp. 236–243, 1984.

[46] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative ad-
versarial networks for efficient and high fidelity speech
synthesis,” in Proc. of the Advances in neural informa-

tion processing systems, 2020.

[47] A. Caillon, “Msprior,” https://github.com/
caillonantoine/msprior, 2023.

[48] ——, “Hierarchical temporal learning for multi-
instrument and orchestral audio synthesis,” Ph.D. dis-
sertation, Sorbonne université, 2023.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

1028



SYMPAC: SCALABLE SYMBOLIC MUSIC GENERATION WITH
PROMPTS AND CONSTRAINTS

Haonan Chen1 Jordan B. L. Smith2 Janne Spijkervet1 Ju-Chiang Wang1

Pei Zou1 Bochen Li1 Qiuqiang Kong3 Xingjian Du1

1 ByteDance Inc. San Jose, USA
2 Queen Mary University of London

3 Department of Electronic Engineering, The Chinese University of Hong Kong

haonanchen@bytedance.com

ABSTRACT

Progress in the task of symbolic music generation may be

lagging behind other tasks like audio and text generation,

in part because of the scarcity of symbolic training data.

In this paper, we leverage the greater scale of audio music

data by applying pre-trained MIR models (for transcrip-

tion, beat tracking, structure analysis, etc.) to extract sym-

bolic events and encode them into token sequences. To

the best of our knowledge, this work is the first to demon-

strate the feasibility of training symbolic generation mod-

els solely from auto-transcribed audio data. Furthermore,

to enhance the controllability of the trained model, we in-

troduce SymPAC (Symbolic Music Language Model with

Prompting and Constrained Generation), which is distin-

guished by using (a) prompt bars in encoding and (b) a

technique called Constrained Generation via Finite State

Machines (FSMs) during inference time. We show the flex-

ibility and controllability of this approach, which may be

critical in making music AI useful to creators and users.

1. INTRODUCTION

The success of language models — especially large ones

— has demonstrated that with more data and larger mod-

els, using a simple language model objective can endow

a model with powerful natural language generation capa-

bilities. On the other hand, although symbolic music and

natural language share many similarities, no music model

has yet seemed to match the capabilities of generative text

models. One reason for this gap is the insufficient amount

of symbolic music data.

To address this, previous efforts in symbolic mu-

sic generation have involved combining limited man-

ually annotated data with data obtained by automatic

transcription [1], or collecting private symbolic training

datasets [2]. By contrast, in this work, we demonstrate

© H. Chen, J. BL Smith, J. Spijkervet, J.-C. Wang, P. Zou,

B. Li, Q. Kong, and X. Du. Licensed under a Creative Commons Attri-

bution 4.0 International License (CC BY 4.0). Attribution: H. Chen, J.

BL Smith, J. Spijkervet, J.-C. Wang, P. Zou, B. Li, Q. Kong, and X. Du,

“SymPAC: Scalable Symbolic Music Generation With Prompts And Con-

straints”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

that a high-quality, multi-track symbolic music generation

model can be trained just using results from running Mu-

sic Information Retrieval (MIR) models on audio music

data. In this way, our framework eliminates the need for

manually annotated symbolic music data, allowing for ex-

pansion purely through audio datasets.

On the other hand, there has been a recent surge of ef-

forts that directly generate the auditory modality of mu-

sic [3–5]. This is useful for some applications, but typ-

ically precludes fine-grained control and editing the out-

come, which is crucial for composers who wish to shape

their musical ideas precisely. In contrast, outputting sym-

bolic data gives composers the ability to interactively shape

and modify their musical ideas.

Considering such advantages, the problem of how to in-

tegrate user input to control the generation of symbolic mu-

sic has been a popular research topic. In previous works,

two methods for incorporating control signals are usually

used. The first approach is based on a Variational Autoen-

coder (VAE) [6, 7], wherein the control is exerted within

the VAE’s latent space. The second approach is to embed

control information directly into the encoding of symbolic

music and implant control inputs during inference [8–11].

In this work, we introduce the SymPAC framework

(Symbolic Music Language Model with Prompting And

Constrained Generation), designed to work with decoder-

only language models to enable user input controls. The

SymPAC framework consists of the following two parts.

First, inspired by the prompting mechanism used in the

natural language domain [12, 13], we introduce prompt

bars in our symbolic music encoding, which consolidates

all control signals into a separate prompt section before en-

coding the actual musical notes. This design is essential for

a decoder-only language model to have the full context of

control signals during the generation of music. Second, in

the controlled symbolic music generation setting, the gen-

erated tokens should not only comply with the encoding

grammar but also adhere to user inputs. Thus we propose

to use Constrained Generation via Finite State Machines

(FSMs), which constrains the sampling of tokens at each

time step to a subspace. We will discuss the advantages of

SymPAC over previous methods in Section 2, and provide

more details of how SymPAC can be used for various types

of user inputs in Sections 3 and 4.

1029



We collected roughly one million in-house audio sam-

ples and extracted MIR information for each, using pre-

trained models for beat tracking [14], chord detection [15],

section detection [16, 17], multi-track transcription [18],

and music tagging [19]. The MIR results were transformed

into various tokens, and then integrated into an extended

REMI [10, 20] encoding to train a language model based

on Llama [21] architecture. To summarize, our main con-

tributions are:

Scalability: We demonstrate that a high-quality symbolic

music generation model can be trained solely with tran-

scribed data, without the need of manually annotated sym-

bolic music, and can be scaled by amassing more audios.

Controllability: We propose the SymPAC framework,

which enables flexible user input controls on a decoder-

only language model while retaining good quality.

2. RELATED WORK

2.1 Training Data For Symbolic Music

In Table 1, we summarize some popular music datasets

in the symbolic and audio domains, together with our in-

house audio dataset, and compare their sizes. The Lakh

MIDI Dataset [24] is one of the biggest public datasets,

containing 170K multitrack pieces in MIDI format. Many

researchers use publicly available symbolic music datasets

for training, but some collect and use large-scale ones that

are not disclosed; e.g., MusicBERT [2] was trained on the

Million-MIDI Dataset (MMD).

Although the combined size of the public datasets in Ta-

ble 1 is large, combining them is not straightforward since

they vary in format. For example, the Maestro dataset

consists of transcriptions of piano performances where

note timings reflect actual performance timings, whereas

datasets like Lakh are quantized to metrical time with

alignment to beats. The inclusion of instrument tracks and

additional information (e.g., chords, sections) also differs

between datasets. To expand the scale of training data by

combining these datasets, it is necessary to unify their for-

mats first, which may be tedious and introduce errors.

On the other hand, publicly available audio datasets are

much larger in scale. The Million Song Dataset (MSD)

[26], for example, contains 1M songs, or 709M notes in

total after being run through a 5-track transcription model

[18]. The recently published DISCO-10M [27] is of an

even larger scale. Furthermore, by using a single set of

MIR models to annotate all the audio data, we do not need

to be concerned about the issue of inconsistent data for-

mats. This makes it easier to scale up the training dataset.

2.2 Encoding For Symbolic Music

Since the introduction of the Music Transformer [28], lan-

guage models based on the transformer architecture have

become a popular choice for symbolic music generation.

One of the most critical research questions has been how

to encode symbolic music that is amenable to processing

by such a model, which, in the context of language models,

involves converting the piece into a sequence of tokens.

Early transformer-based models for symbolic music

predominantly employed a MIDI-like encoding scheme,

by treating MIDI event sequences almost identically as

input token sequences [8, 9, 29]. Later, the Revamped

MIDI (REMI) encoding [20] was proposed, which mod-

ified the MIDI encoding by replacing time shift events

with duration events for each note and introducing bar and

beat concepts to adopt metrical time instead of absolute

time. These modifications facilitated the model’s learning

of rhythmic patterns within the music, improving the qual-

ity of the output. Building upon REMI, several extensions

have been proposed to support encoding multitrack [9] and

various control tokens [10]. Our work is based on the

multitrack REMI encoding, and given the MIR models we

have, it incorporates control tokens such as genre, chord,

and section tokens to the encoding.

2.3 Controllable Symbolic Music Generation

Previous methods for controlling symbolic music genera-

tion have typically fallen into two categories. The first is

based on Variational Autoencoders (VAEs) [6, 7]. VAEs

aim to find a latent space for representing music that en-

codes distinct musical attributes in independent dimen-

sions. This disentanglement allows for specific attributes

of generated music (e.g., rhythm, genre, or timbre) to be

individually manipulated by altering corresponding dimen-

sions in the latent space without affecting other attributes,

thereby enhancing the controllability of music generation.

The second approach is to include control tokens in the

encoding of symbolic music. For example, MMM [9] in-

cludes instruments and note density tokens in the encod-

ing, which can be specified at inference. Similarly, FI-

GARO [10] uses “expert descriptions” indicating time sig-

nature, note density, mean pitch, mean velocity and mean

duration as well as instruments and chords. It then uses an

encoder-decoder model to learn a mapping from descrip-

tions to sequences of a piece of music. Driven by the devel-

opment of Large Language Models (LLMs), recent work

has also explored using natural language to control sym-

bolic music generation [30–33]. Natural language text can

also be treated as control tokens, with the key distinction

that it usually requires pre-training the LLM on text.

In our work, the proposed SymPAC framework is de-

signed to work with a decoder-only language model. In

a controlled generation setting, prompt bars that conform

with user input control signals are generated first. The

generation of musical part comes after that, in which the

model will have full context of control signals from prompt

bars. These two generation stages are both controlled by an

FSM, which takes into consideration the grammar of the

encoding and user inputs. There are two main differences

between SymPAC and previous works

1. We encode control signals as tokens and use FSM to

enforce input control signals during inference. In con-

trast, for VAE-based control methods, control signals

are converted into latent embeddings, and the model is

not guaranteed to follow these control signals.

2. Since we use a decoder-only language model, the to-
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Dataset #Songs #Notes Format Multitrack Public

Maestro [22] 1.1K 6M MIDI N Y

GiantMIDI-Piano [23] 10.9K 39M MIDI N Y

Lakh [24] 170K 910M MIDI Y Y

MMD [2] 1.5M 2,075M MIDI Y N

FMA [25] 100K N/A * Audio Y Y

MSD [26] 1M 709M Audio Y Y

DISCO-10M [27] 15M N/A * Audio Y Y

In-House Dataset (IHD) 1M 3,688M Audio Y N

Table 1: Comparison of different symbolic and audio music datasets. * Since we did not run transcription on FMA or

DISCO-10M, we don’t have the number of notes information for them.

kens in prompt bars are also learned simultaneously.

Consequently, the user is only required to input a por-

tion of the control information, with the model being

able to automatically generate missing controls. In

contrast, an encoder-decoder framework like the one

described in [10] would require a complete encoder

input during inference, which lacks flexibility.

3. METHOD

3.1 Symbolic Music Encoding And Prompt Bars

Our data representation is based on the REMI+ [10] rep-

resentation, an extension of REMI [20] that supports mul-

titrack data. An illustration of our encoding is shown in

Fig. 1. The fundamental unit of our encoding is a bar, of

which there are two types: prompt bar and song bar. The

token sequence of a song bar can be divided into four parts:

• The meta part includes four tokens for the

bar, genre, sec (for section type name), and

bpm_level (which indicates the tempo range).

• The chord part consists of alternating position and

chord tokens.

• Each instrument track part consists of a track to-

ken, followed by one or more groups of position,

duration and pitch tokens.

• The drum track part consists of a track<drum> to-

ken, followed by one or more groups of position

and drum (drum MIDI) tokens.

Here are further explanations of position,

duration and track tokens 1 :

• position: Represents the starting position of sub-

sequent chord, pitch or drum token within a bar.

Each bar is divided into 16 steps, so that position ranges

from 0/16 to 15/16.

• duration: Ranges from the minimum time division

of 1/16 bar to a maximum of 2 bars, or 32/16.

• track: A track token will only exist if there is at least

one note in the bar for the corresponding instrument.

This allows the user to control which instruments are

used within a bar.

1 Details of all token types are provided in supplementary materials

Prompt bars contain a subset of tokens in song bars,

retaining only tokens that represent control signals. In

our case, these include genre, section, tempo, chords and

tracks. As future work, this encoding could be extended

to include more control signals (e.g. note density for

a track). The encoding of a full piece of music will

consist of: all prompt bars in the piece; then, a special

end_of_prompt token; then, all song bars in the piece;

and finally a special end_of_song token.

During training stage, the model is trained to predict to-

kens in prompt bars as well, not distinguishing them from

tokens in song bars. As mentioned previously, this design

enables the user to input partial control signals (or no input

at all), and the model is able to infer the missing ones.

Algorithm 1 Constrained Generation via FSM

1: procedure CONSTRAINEDSAMPLING(M, V ,R)

2: s0 ← x0 start token (bar in our encoding)

3: q0 ← initial state

4: t← 0
5: while not end of sequence do

6: Vt+1 ← GETSUBVOCAB(R, qt, xt)
7: qt+1 ← UPDATESTATE(R, qt, xt)
8: xt+1 ← SAMPLE(M,Vt+1)
9: st+1 ← st ◦ xt+1

10: t← t+ 1
11: end while

12: return st

13: end procedure

3.2 Constrained Generation via FSM

In the controlled symbolic music generation setting, there

are two types of constraints:

Grammar constraint: The encoding of symbolic music

follows a specific format. For example, for our proposed

encoding shown in Fig. 1, a bar token will always be fol-

lowed by a genre token.

User input constraint: Generated token sequence should

conform with user inputs. For example, if the user wants

to generate “rock” style music, the genre token can only

be genre<rock>.

Since we are already aware of these constraints in ad-

vance, there is no need to sample from the entire vocabu-

lary space during inference. Instead, we can sample from
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Figure 1: Illustration of our symbolic music encoding.

a subspace that is in accordance with the constraints.

To achieve this, we employ a Finite State Machine

(FSM) to interact with the language modelM during infer-

ence. Let xt denote the token generated byM at time step

t. The FSM takes xt, the current state qt and the predeter-

mined rule set R, and outputs a subset of the vocabulary

Vt+1, from which the language model M can sample at

time t + 1. We call this procedure Constrained Genera-

tion via FSM, which is formally defined in Algorithm 1.

This algorithm is analogous to regular expression match-

ing, where it checks if a given input string conforms to

a specified pattern. Here the pattern and input string are

equivalent to rule setR and token sequence st respectively.

4. EXPERIMENTS AND RESULTS

To validate our contributions, we conduct experiments to

assess whether the system is scalable (i.e., improves when

scaling up training data) and controllable (i.e., there is con-

sistency between generation output and user inputs).

In Sec. 4.3, we conduct a quantitative analysis to com-

pare models trained on different amounts of training data,

in order to assess scalability. In Sec. 4.4, we examine two

common types of control inputs: chord progression and

section structure. The impact of these control inputs is

tested through both quantitative metrics and qualitative ex-

amples. Lastly, in Sec. 4.5, we compare our models trained

on different datasets with other baseline symbolic music

generation systems through subjective evaluation.

4.1 Datasets

We use three datasets in our experiments. We always use

each dataset individually; i.e., we never merge the datasets

to train a single model. The datasets are:

Lakh MIDI Dataset (LMD) [24]. A dataset in MIDI for-

mat, containing around 170K songs. We use this to com-

pare with models trained on transcribed audio data.

Million Song Dataset (MSD) [26]. A public dataset used

extensively by MIR researchers. We use the 30–60s pre-

view audio clips, representing the highlight of the song.

In-House Dataset (IHD). We use a licensed internal col-

lection with about 1M full songs in audio format, covering

a wide range of Western modern genres.

4.2 Training Settings

We train a decoder language model with the Llama [21]

architecture. We set the number of layers, number of atten-

tion heads and embedding dimensions to be 12, 12 and 768

respectively, resulting in a model with about 86M train-

able parameters. We concatenate token sequences of all

pieces into a 1-D array, and randomly pick a window of

size 10,240 as one training sample. As the average se-

quence lengths of LMD, MSD and IHD are 900, 1500 and

8000 respectively, this window size would contain 11.4,

6.8 and 1.3 pieces on average for each dataset.

When training data are limited, data augmentation and

data filtering (to ensure that unusual data do not pollute the

training) are commonly used. However, we adopt neither

approach, for two reasons. First, since we have a large

dataset of audio samples, the training data are likely to

cover a broad spectrum of examples already, reducing the

need to filter out unusual data points. Second, augmenta-

tion may alter the training data in unwanted ways. For ex-

ample, a common augmentation approach is to transpose

all the pitches in a piece [11, 28]. However, this may dis-

tort the pitch ranges of each instrument: e.g., if the input

bass parts are transposed up and down, the model will not

learn the correct range of realistic bass notes.

Metric Class IHD 100% IHD 10% IHD 1%

Chord 0.112 0.119 0.347

Structure 0.348 0.220 0.786

Vocal Note 0.416 0.892 1.086

Guitar Note 0.222 0.257 0.397

Piano Note 0.178 0.403 0.686

Bass Note 0.180 0.867 1.038

Drum Note 0.650 2.902 1.248

Table 2: Average Kullback-Leibler Divergence (KLD) of

metrics in different metric classes for models trained on

different dataset against a held-out validation set.
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4.3 Unconditioned Generation

Intuitively, increasing the amount of data should enhance

the performance of the model. In this experiment, we use

objective metrics to validate this. Designing objective met-

rics to evaluate symbolic music remains an open question.

A common approach is to prepare a reference dataset, cal-

culate embeddings or metrics of the generated samples and

reference set, and then compare these using distance met-

rics such as the Fréchet Distance or Kullback-Leibler Di-

vergence (KLD). For a detailed review on evaluation meth-

ods for symbolic music, see [34, 35].

In our experiment, we prepare a held-out validation set

with 3000 samples. We use a range of metrics that can

be categorized into the following classes: chord, structure,

instrument note (including vocals, guitar, piano and bass)

and drum note. Detailed definitions are provided in supple-

ments. In general, the metrics in each class are as follows:

• Chord: chord label, chord root, chord transition;

• Structure: section label, section label bigram, instru-

ment labels per bar;

• Instrument Note: note pitch, note duration, pitch

class, min/max pitch per bar, max number of notes per

bar, uniformity of number of notes per bar;

• Drum Note: drum key, max number of notes per bar,

uniformity of number of notes per bar, and unique

drums per bar.

We compare models trained on 100%, 10% and 1% of

the IHD data, and do generation in an unconditioned set-

ting. For each model, we generate 800 samples to compute

metric distributions. KLD values are then computed be-

tween distributions of generated samples and distribution

of the validation set for each metric. Lower KLD indicates

that two distributions are closer, suggesting the generated

samples sound more similar to the validation set. We report

the average KLD values for the same class, and provide a

full list of KLDs for each metric in supplements.

The results are shown in Table 2. We can see that the

model trained with 100% IHD data has the lowest KLD

against the validation set on 6 out of 7 classes, and the

model trained on only 1% data has the highest KLD on 6

out of 7 classes. The results confirm that a model trained

on more data can generate samples closer to the training

data. Furthermore, we observed that the benefit of using

more data is greater for the ’Note’ metrics than for the

’Chord’ or ’Structure’ ones. This is likely because note to-

kens are more numerous and have complex distributions,

which needs larger scale of data to learn. Counterintu-

itively, the KLD for ’Structure’ was better when using 10%

of the data instead of 100%. We speculate that since the

structure tokens are scarcest, this could be the result of a

lucky alignment between the validation set at the 10% of

the data used, but this deserves more study.

4.4 Controlled Generation

The SymPAC framework aims to give users flexible control

over the music generation process. However, we need to

verify that this control is effective: do the notes generated

agree with the control inputs? To this end, we conduct

controlled generation experiments on two input scenarios:

chord progression inputs and section structure inputs.

Chord Progression Inputs. In this experiment, we ran-

domly pick 20 top trending chord progressions from Hook-

Theory 2 as the chord progression inputs. We only include

major and minor triad chords. We then let the model gen-

erate 64 bars of music by looping the chord progressions.

To evaluate the match between the input chord progres-

sion and the output, we apply a symbolic chord detec-

tion method on the generated samples. Details about the

method can be referred in the supplementary materials.

The accuracy of detected chord from the input chord

progression is shown in Table 4. As shown in the result,

the models trained on MSD, IHD 100% and IHD 10%

all have similar overall accuracy, with MSD slightly out-

performing the others. But the model trained on IHD 1%

(just 10K songs) is much worse than the other three. This

suggests that a dataset at the scale of 100K songs is suffi-

cient to model low-level control signals like chord, given

the model and encoding we are using here. We also pro-

vide examples in supplementary audios of outputs when

given unusual chord progressions.

Section Structure Inputs. In this experiment, we take 10

typical section sequences as inputs (listed in supplements),

ranging in length from 4 to 13 sections (16 to 68 bars),

and use each model to generate 100 outputs per prompt.

We compare the same 4 models from the previous section.

For each generated output, we leverage a Music Structure

Analysis (MSA) algorithm [36] to predict its structure, and

compare this to the input structure. The MSA algorithm’s

predictions may be inaccurate, but we still expect that a

greater match between the intended and estimated struc-

ture indicates more success at controlling the structure.

We use Foote’s algorithm [37] for segmentation and the

2D-Fourier magnitude algorithm [38] for section labeling,

with a beat-wise feature embedding that averages the pitch-

wise MIDI piano rolls within a beat interval. We evaluate

the results using mir_eval [39], and report three met-

rics: boundary prediction f -measure with a 3-second tol-

erance (HR3F); pairwise clustering f -measure (PWF); and

the normalized entropy score f -measure (Sf). To test di-

rectly how similar the repeated sections are, we also report

PWF and Sf when the ground-truth segmentation is used.

We find that all metrics are worse (lower) when the sys-

tem is trained on MSD or IHD 1%, and improve substan-

tially when at least 10% of the data are used (Table 5). This

is expected, since the audio clips in MSD are only excerpts

and thus not instructive for modelling full-song structure.

Fig. 2 shows the piano roll of a typical output, where the

match between the intended and predicted structure was

average (Sf = 0.508). Even so, the match between the in-

tended and realized structure is evident in the piano roll:

the chorus sections are similar but not identical to each

other, and so are the verse sections.

In both controlled generation experiments, the gap be-

2 https://www.hooktheory.com
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Model Coherence Richness Arrangement Structure Overall

FIGARO 3.12 ± 0.82 2.73 ± 0.92 2.85 ± 0.96 2.62 ± 0.80 2.74 ± 0.89

MMT 2.37 ± 0.35 2.27 ± 0.36 2.37 ± 0.34 2.08 ± 0.30 2.16 ± 0.35

Ours (IHD) 3.55 ± 0.53 3.58 ± 0.38 3.45 ± 0.49 3.73 ± 0.32 3.60 ± 0.39

Ours (LMD) 3.25 ± 0.34 3.25 ± 0.35 3.28 ± 0.30 3.20 ± 0.61 3.25 ± 0.46

Ours (MSD) 3.16 ± 0.27 3.17 ± 0.33 3.09 ± 0.32 3.15 ± 0.29 3.07 ± 0.28

Table 3: Results of subjective evaluation, mean opinion score (MOS)

Training Dataset Accuracy

IHD 100% 87.2%

IHD 10% 86.9%

IHD 1% 74.0%

MSD 87.6%

Table 4: Accuracy of chord progressions in controlled

generation with chord input.

Regular Oracle

Dataset HR3F PWF Sf PWF Sf

IHD 100% 0.60 0.50 0.50 0.72 0.80

IHD 10% 0.60 0.49 0.49 0.70 0.79

IHD 1% 0.54 0.47 0.47 0.62 0.73

MSD 0.57 0.47 0.47 0.63 0.74

Table 5: Accuracy of structure predicted from generated

songs with no guidance (left) and with ground truth seg-

mentation (right).

tween 100% and 10% IHD is very small, indicating that

10% IHD data combined with SymPAC is sufficient for

achieving good adherence to control inputs. However, it

is important to remember that the metrics of these two ex-

periments only reflect whether the control signals are well-

followed, not the overall quality of the generated pieces.

4.5 Subjective Evaluation

The models tested so far were all trained on transcribed

audio data, so it is worth comparing with models trained

directly on MIDI data. In this experiment, we compare our

model trained on LMD, MSD and IHD, and also two base-

lines, FIGARO [10] and MMT [11], in a subjective listen-

ing test. We recruited 12 participants with the background

of MIR researchers or music producers. Similar to [11], we

asked each participant to rate 10 audio samples generated

by each model on a 5-point Likert scale on five criteria:

coherence, richness, arrangement, structure and overall 3 .

The result is summarized in Table 3. All of our pro-

posed models outperform the baselines in all dimensions.

Our model trained on IHD has higher performance than

the other two training data setups, which attests to the vi-

ability of leveraging audio data by running MIR models

3 These criteria are described as: (1) Coherence: The rhythm is sta-
ble; The chord progression develops logically; Dissonant notes are not
excessive. (2) Richness: The melody and acccompaniment are interest-
ing and diverse. (3) Arrangement: Collaboration among multiple instru-
ments is harmonious and natural; Arrangements for different instruments
are diverse and reasonable. (4) Structure: The piece includes a clear and
engaging structure with appropriate repetitions and variations; The piece
has obvious connections and reasonable developments between sections.
(5) Overall: I like this piece in general.

verse chorus inst verse chorus inst chorus outro

Structure tokens

vocal

piano

guitar

bass

drums

Simplified piano roll

Figure 2: Constrained generation output with user-defined

structure using IHD 100% model. The simplified piano

roll gives beat-averaged values and excludes empty lines.

at scale. The result using LMD was better than MSD, de-

spite having fewer songs; this could be due to LSD having

more notes than MSD (see Tab 1), or due to it containing

full songs instead of only excerpts. We only compare FI-

GARO and Ours (LMD) with a statistical test, since these

were trained on the same dataset. Mann-Whitney U tests

found significant differences in Richness (p = .005), Struc-

ture (p = .0005), and Overall (p = .027) ratings, but not in

Coherence (p = .85) or Arrangement (p = .122).

5. CONCLUSIONS AND FUTURE WORK

We trained a language model for symbolic music gen-

eration leveraging audio data and pre-trained MIR mod-

els. We proposed the SymPAC framework, which includes

prompt bars in encoding and Constrained Generation via

FSM during inference time. We showed how combining

these two components enables a user to control the gener-

ation process, and we evaluated the results through quanti-

tative and qualitative analysis.

Future work could improve at least two aspects of this

system: (1) We quantified position and duration to 1/16 per

bar, which does not support 3/4 or 6/8 time signatures well.

Also, the chord detection model we used only supports

12 major and minor chords, limiting the user input op-

tions. We can expand the encoding to support finer-grained

quantization and more advanced chords. (2) Our token se-

quence length is long: 8000 on average for samples in IHD.

We could use tokenization methods such as Byte Pair En-

coding [40] or use compound word tokens [41] to com-

press sequences and improve training efficiency.
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ABSTRACT

Current generative models are able to generate high-

quality artefacts but have been shown to struggle with com-

positional reasoning, which can be defined as the ability

to generate complex structures from simpler elements. In

this paper, we focus on the problem of compositional rep-

resentation learning for music data, specifically targeting

the fully-unsupervised setting. We propose a simple and

extensible framework that leverages an explicit composi-

tional inductive bias, defined by a flexible auto-encoding

objective that can leverage any of the current state-of-art

generative models. We demonstrate that our framework,

used with diffusion models, naturally addresses the task

of unsupervised audio source separation, showing that our

model is able to perform high-quality separation. Our find-

ings reveal that our proposal achieves comparable or supe-

rior performance with respect to other blind source sepa-

ration methods and, furthermore, it even surpasses current

state-of-art supervised baselines on signal-to-interference

ratio metrics. Additionally, by learning an a-posteriori

masking diffusion model in the space of composable rep-

resentations, we achieve a system capable of seamlessly

performing unsupervised source separation, unconditional

generation, and variation generation. Finally, as our pro-

posal works in the latent space of pre-trained neural audio

codecs, it also provides a lower computational cost with

respect to other neural baselines.

1. INTRODUCTION

Generative models recently became one of the most im-

portant topic in machine learning research. Their goal is

to learn the underlying probability distribution of a given

dataset in order to accomplish a variety of downstream

tasks, such as sampling or density estimation. These mod-

els, relying on deep neural networks as their core architec-

ture, have demonstrated unprecedented capabilities in cap-

turing intricate patterns and generating complex and real-

istic data [1]. Although these systems are able to generate

impressive results that go beyond the replication of training

data, some doubts have recently been raised about their ac-

© G. Bindi, and P. Esling. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution:

G. Bindi, and P. Esling, “Unsupervised Composable Representations for

Audio”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

tual reasoning and extrapolation abilities [2, 3]. Notably, a

critical question remains on their capacity to perform com-

positional reasoning. The principle of compositionality

states that the meaning of a complex expression is depen-

dent on the meanings of its individual components and the

rules employed to combine them [4, 5]. This concept also

plays a significant role in machine learning [6], with a par-

ticular emphasis in the fields of NLP and vision. Indeed,

compositionality holds a strong significance in the inter-

pretability of machine learning algorithms [7], ultimately

providing a better understanding of the behaviour of such

complex systems. In line with recent studies on composi-

tional inductive biases [8, 9], taking a compositional ap-

proach would allow to build better representation learn-

ing and more effective generative models, but research on

compositional learning for audio is still lacking.

In this work, we specifically focus on the problem of

compositional representation learning for audio and pro-

pose a generic and simple framework that explicitly targets

the learning of composable representations in a fully unsu-

pervised way. Our idea is to learn a set of low-dimensional

latent variables that encode semantic information which

are then used by a generative model to reconstruct the in-

put. While we build our approach upon recent diffusion

models, we highlight that our framework can be imple-

mented with any state-of-the-art generative system. There-

fore, our proposal effectively combines diffusion models

and auto-encoders and represents, to the best of our knowl-

edge, one of the first contributions that explicitly target the

learning of unsupervised compositional semantic represen-

tations for audio. Although being intrinsically modality-

agnostic, we show that our system can be used to per-

form unsupervised source separation and we validate this

claim by performing experiments on standard benchmarks,

comparing against both unsupervised and supervised base-

lines. We show that our proposal outperforms all unsu-

pervised methods, and even supervised methods on some

metrics. Moreover, as we are able to effectively perform

latent source separation, we complement our decompo-

sition system with a prior model that performs uncondi-

tional generation and variation generation [10]. Hence,

our method is able to take an audio mixture as input, and

generate several high-quality variations for one of the in-

strumental part only, effectively allowing to control regen-

eration of a source audio material in multi-instrument se-

tups. Furthermore, we train a masking diffusion model in

the latent space of composable representation and show
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that our framework is able to handle both decomposition

and generation in an effective way without any supervi-

sion. We provide audio examples, additional experiments

and source code on a supporting webpage 1

2. BACKGROUND

In this section, we review the fundamental components of

our methodology. Hence, we briefly introduce the prin-

ciples underlying diffusion models and a recent variation

rooted in autoencoders, referred to as Diffusion Autoen-

coder [11], which serves as the basis for our formulation.

Notation. Throughout this paper, we suppose a dataset

D = {xi}ni=1 of i.i.d. data points xi ∈ R
d coming from

an unknown distribution p∗(x). We denote θ ∈ Θ ⊆ R
p,

ϕ ∈ Φ ⊆ R
q and ψ ∈ Ψ ⊆ R

r as the set of parameters

learned through back-propagation [12].

2.1 Diffusion models

Diffusion models (DMs) are a recent class of generative

models that can synthesize high-quality samples by learn-

ing to reverse a stochastic process that gradually adds noise

to the data. DMs have been successfully applied across

diverse domains, including computer vision [13], natural

language processing [14], audio [15] and video genera-

tion [16]. These applications span tasks such as uncondi-

tional and conditional generation, editing, super-resolution

and inpainting, often yielding state of the art results.

This model family has been introduced by [17] and has

its roots in statistical physics, but there now exist many

derivations with different formalisms that generalise the

original formulation. At their core, DMs are composed of

a forward and reverse Markov chain that respectively adds

and removes Gaussian noise from data. Recently, [18] es-

tablished a connection between DM and denoising score

matching [19, 20], introducing simplifications to the origi-

nal training objective and demonstrating strong experimen-

tal results. Intuitively, the authors propose to learn a func-

tion ϵθ that takes a noise-corrupted version of the input and

predicts the noise ϵ used to corrupt the data. Specifically,

the forward process gradually adds Gaussian noise to the

data x → xt according to an increasing noise variance

schedule β1, . . . , βT , following the distribution

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

with T ∈ N and t ∈ {1, . . . , T}. Following the nota-

tion αt = 1 − βt and ᾱt =
∏t

s=1 αs, diffusion mod-

els approximate the reverse process by learning a function

ϵθ : R
d × R→ R

d that predicts ϵ ∼ N (ϵ,0, I) by

min
θ∈Θ

Et,x0,ϵ

[

∥ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵ∥

]

, (2)

with ϵθ usually implemented as a U-Net [21] and the step

t ∼ U [0, T ].
Deterministic diffusion. More recently, [22] intro-

duced Denoising Diffusion Implicit Models (DDIM), ex-

tending the diffusion formulation with non-Markovian

1 https://github.com/ismir-24-sub/unsupervised_

compositional_representations

modifications, thus enabling deterministic diffusion mod-

els and substantially increasing their sampling speed. They

also established an equivalence between their objective

function and the one from [18], highlighting the generality

of their formulation. Finally, [23] further generalized this

approach and proposed Iterative α−(de)Blending (IADB),

simplifying the theory of DDIM while removing the con-

straint for the target distribution to be Gaussian. In fact,

given a base distribution 2 pn(x0), we corrupt the input

data by linear interpolation xα = (1 − α)x0 + αx with

x0 ∼ pn(x0) and learn a U-Net ϵθ by optimizing, e.g.,

min
θ∈Θ

Eα,x,x0

[

∥ϵθ(xα, α)− x∥22
]

, (3)

with α ∼ U [0, 1]. This is known as the c variant of IADB,

which is the closest formulation to DDIM. In our imple-

mentation, we instead use the d variant of IADB, which

has a slightly different formulation that we do not report

for brevity. We experimented with both variants and did

not find significant discrepancies in performances.

Diffusion Autoencoders. All the methods described in

the preceding paragraph specifically target unconditional

generation. However, in this work we are interested in

conditional generation and, more specifically, in a condi-

tional encoder-decoder architecture. For this reason, we

build upon the recent work by [11] named Diffusion Au-

toencoder (DiffAE). The central concept in this approach

involves employing a learnable encoder to discover high-

level semantic information, while using a DM as the de-

coder to model the remaining stochastic variations. There-

fore, the authors equip a DDIM model ϵϕ with a semantic

encoder Eθ : Rd → R
s with s ≪ d that is responsible for

compressing the high-level semantic information 3 into a

latent variable z ∈ R
s as z = Eθ(x). The DDIM model

is, therefore, conditioned on such semantic representation

and trained to reconstruct the data via

min
θ∈Θ,ϕ∈Φ

Et,x0,ϵ

[

∥ϵϕ(
√
αx0+

√
1− αϵ, z, t)−ϵ∥

]

(4)

with α =
∏t

s=1(1 − βs) and βi being the variance at the

i−th step. Since the DiffAE represents the state of the art

for encoder-decoder models based on diffusion, we build

our compositional diffusion framework upon this formula-

tion, which we describe in the following section.

3. PROPOSED APPROACH

In compositional representation learning, we hypothesize

that the information can be deconstructed into specific,

identifiable parts that collectively makes up the whole in-

put. In this work, we posit these parts to be distinct instru-

ments in music but we highlight that this choice is uniquely

dependent on the target application. Due to the lack of a

widely-accepted description of compositional representa-

tions, we formulate a simple yet comprehensive definition

that can subsequently be specialized to address particular

2 For simplicity we assume pn(x0) = N (x0;0, I).
3 In the domain of vision this could be the identity of a person or the

type of objects represented in an image.
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Figure 1. The overall architecture of our decomposition model. We first mix the sources, map the data x to the latent space

through a frozen, pre-trained EnCodec model, and then decompose it into a set of latent variables (two shown here). These

variables then condition a parameter-sharing diffusion model whose generation are then recomposed by an operator C.

cases [24, 25]. Specifically, we start from the assumption

that observations x ∈ R
d are realizations of an underlying

latent variable model and that each concept is described by

a corresponding latent zi ∈ Zi, where i ∈ {1, . . . , N}
with N being the total number of possible entities that

compose our data. Then, we define a compositional rep-

resentation of x as

x = C(ẑ1, . . . , ẑN ) = C(f1(z1), . . . , fN (zN )), (5)

where C : Ẑ1 × Ẑ2 × . . . ẐN → R
d is a composition op-

erator and each fi : Zi → Ẑi is a processing function that

maps each latent variable to another intermediate space.

By being intentionally broad, this definition does not im-

pose any strong specific constraints a priori, such as the

requirement for each subspace to be identical or the alge-

braic structure of the latent space itself. Hence, to imple-

ment this model, we rather need to consider careful inten-

tional design choices and inductive biases. In this work,

we constrain the intermediate space to be the data space

itself, i.e. Ẑi = R
d for all i = 1, . . . , N and we focus

on the learning of the latent variables and the processing

functions. Finally, we set the composition operator to be

a pre-defined function such as mean or max and leave its

learning to further investigations.

3.1 Decomposition

In this section, we detail our proposed model, as depicted

in Figure 1. Globally, we follow an encoder-decoder

paradigm, where we encode the data x ∈ R
d into a set

of latent representations Z = {z1, . . . , zN}, where zi ∈
Z ⊆ R

h for each i = 1, . . . , N . This is done through an

encoder network Eθ : R
d → Z×· · ·×Z that maps the in-

put x to the set of variables Z, i.e. [z1, . . . , zN ] = Eθ(x).
Each latent variable is then decoded separately through a

parameter-shared diffusion model, which implements the

processing function f : Z → R
d in Equation 5, mapping

the latents to the data space. Finally, we reconstruct the

input data x through the application of a composition op-

erator C and train the system end-to-end through a vanilla

iterative α−(de)Blending (IADB) loss. Specifically, we

learn a U-Net network gϕ : Rd × R × R
h → R

d and a

semantic encoder Eθ via the following objective

min
θ∈Θ,ϕ∈Φ

Eα,x,x0

[

∥ĝϕ(xα, α)− x∥22
]

, (6)

with α ∼ U [0, 1], x0 ∼ N (x0;0, I) and

ĝϕ(xα, α) = C(gϕ(xα, α, z1), . . . , gϕ(xα, α, zN )), (7)

with xα = (1−α)x0+αx and [z1, . . . , zN ] = Eθ(x). We

chose the IADB paradigm due to its simplicity in imple-

mentation and intuitive nature, requiring minimal hyper-

parameter tuning.

At inference time, we reconstruct the input by progres-

sively denoising an initial random sample coming from the

prior distribution, conditioned on the components obtained

through the semantic encoder.

A note on complexity. We found that using a single

diffusion model proves effective instead of training N sep-

arate models for N latent variables. Consequently, we

opt for training a parameter-sharing neural network gϕ.

Nonetheless, the computational complexity of our frame-

work is therefore N times that of a single DiffAE.

3.2 Recomposition

One of our primary objectives is to endow models with

compositional generation, a concept we define as the abil-

ity to generate novel data examples by coherently re-

composing distinct parts extracted from separate origins.

This definition aligns with numerous related studies that

posit compositional generalization as an essential require-

ment to bridge the gap between human reasoning and com-

putational learning systems [26]. In this work, we allow

for compositional generation by learning a prior model in

the components’ space. Specifically, once we have a well-

trained decomposition model Dθ,ϕ = (Eθ, gϕ) we learn a

diffusion model in Z in order to obtain a full generative

system. We define z = [z1, . . . , zN ] = Eθ(x) and train

a IADB model to recover z from a masked view z̃. At

training time, with probability pmask, we mask each latent

variable zi with a mask mi ∈ {0, 1}dim(Z) and optimize

the diffusion model ϵψ by solving

min
ψ∈Ψ

Eα,z,z0,m[∥z− ϵψ(zα, α,m)∥2], (8)
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Algorithm 1 Training prior model

Input: dataset D, U-Net ϵψ , pre-trained semantic en-

coder Eθ, masking probability pmask, learning rate γ.

while not converged do

for x in D do

z = [z1, . . . , zN ] = Eθ(x).
Sample α ∼ U [0, 1] and z0 ∼ N (0, I).
z̃α = (1− α)z0 + αz

Draw m ∈ {0, 1}dim(Z)×···×dim(Z)

zα = z̃α ⊙m+ (1−m)⊙ z

L(ψ, z, α,m) = ∥z− ϵψ(zα, α,m)∥2
Update ψ ← ψ − γ∇ψL(ψ, z, α,m)

end for

end while

Return: ϵψ

where zα = z̃α⊙m+(1−m)⊙z and z̃α = (1−α)z0+αz.

Here, z0 ∼ N (z0;0, I) and z̃α denotes the α-blended

source z. At each training iteration we randomly mask

z̃α via m and train the diffusion model ϵψ to recover the

masked elements given the unmasked view z. Our mask-

ing strategy allows for dropping each latent separately as

well as all the latents simultaneously, effectively leading

to a model that is able to perform both conditional and

unconditional generation at the same time. In our appli-

cation case, the conditional generation task reduces to the

problem of generating variations. As our decomposition

model proves to be effective in separating the stems of a

given mixture, we obtain a system that is able to generate

missing stems given the masked elements. Hence, this also

addresses the accompaniment generation task. Algorithm

1 resumes the training process of the prior model.

4. EXPERIMENTS AND RESULTS

This section provides an overview of the experiments

aimed at assessing the performance of our proposal in

both decomposition (section 4.1) and recomposition (sec-

tion 4.2) scenarios. Prior to diving into the specifics of each

experiment, we provide a brief overview of the shared el-

ements across our experiments, including data, evaluation

metrics, and neural network architectures.

Data. We rely on the Slakh2100 dataset [27], a widely

recognized benchmark in source separation, comprising

2100 tracks automatically mixed with separate stems. We

selected this dataset because of its large-scale nature and

the availability of ground truth separated tracks. Follow-

ing recent approaches in generative models [28, 29], we

rely on a pre-trained neural codec to map the audio data to

an intermediate latent space, where we apply our approach.

Specifically, we employ the EnCodec model [30], a Vector

Quantized-VAE (VQ-VAE) model [31] that incorporates

Residual Vector Quantization [32] to achieve state-of-the-

art performances in neural audio encoding. We take 24
kHz mixtures from the Slakh2100 dataset, which we then

feed to the pre-trained EnCodec model to extract the con-

tinuous representation obtained by decoding the discrete

codes. EnCodec maps raw audio to latent trajectories with

MS-STFT FAD (LC-A) FAD (LC-M)

4.7 0.05 0.04

Table 1. EnCodec reconstruction quality, measured in

terms of MS-STFT and FAD and computed following the

procedure descried in section 4.

a sampling rate of 75 Hz. Specifically, we take audio crops

of approximately 7s (6.82s), which are mapped via En-

Codec to a latent code x ∈ R
128×512.

Evaluation metrics. Throughout this section, we report

quantitative reconstruction metrics in terms of both Mean

Squared Error (MSE) and Multi-Scale Short-Time Fourier

Transform (MS-STFT) [33, 34] for latent and audio data,

respectively. We perform the MS-STFT evaluation using

five STFT with window sizes {2048, 1024, 512, 256, 128}
following the implementation of [34]. In order to evalu-

ate the quality of the generated samples and the adherence

to the training distribution, we also compute Fréchet Au-

dio Distance (FAD) [35, 36] scores. Specifically, we ob-

tain the FAD scores via the fadtk library [36], employ-

ing both the LAION-CLAP-Audio (LC-A) and LAION-

CLAP-Music (LC-M) models [37], as it was shown in [36]

that these embedding models correlate well with percep-

tual tests measuring subjective quality of pop music. In

assessing FAD scores, we utilize the complete test set of

Slakh2100, while for MSE and MS-STFT values, we ran-

domly select 512 samples of 7s (∼ 1 hour) from the same

test set and report their mean and standard deviation. Fi-

nally, in order to provide the reader a reference value, we

report in Table 1 the reconstruction metrics for the pre-

trained EnCodec.

When assessing the effectiveness of source separation

models, we adhere to common practice by relying on the

museval Python library [38] to compute standard separa-

tion metrics: Source-to-Interference Ratio (SIR), Source-

to-Artifact Ratio (SAR), and Source-to-Distortion Ratio

(SDR) [39]. These metrics are widely accepted for evalu-

ating source separation models, where SDR reflects sound

quality, SIR indicates the presence of other sources, and

SAR evaluates the presence of artifacts in a source. Specif-

ically, following [39] we compute their scale-invariant (SI)

versions and, hence, provide our results in terms of SI-

SDR, SI-SIR and SI-SAR. The values shown are expressed

in terms of mean µ and standard deviation σ computed on

512 samples of ∼ 7s from the Slakh2100 test set.

Architectures. We use a standard U-Net [21] with 1D

convolution and an encoder-decoder architecture with skip

connections. Each processing unit is a ResNet block [40]

with group normalization [41]. Following [42], we feed the

noise level information through Positional Encoding [43],

conditioning each layer with the AdaGN mechanism. We

also add multi-head self-attention [43] in the bottleneck

layers of the U-Net. The semantic encoder mirrors the U-

Net encoder block without the attention mechanism and

maps the data x ∈ R
128×512 to a set of variables z =

[z1 . . . zi . . . zN ] whose dimensionality is zi ∈ R
1×512.
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Finally, these univariate latent variables condition the U-

Net via a simple concatenation, which proved to be a suffi-

ciently effective conditioning mechanism for the model to

converge. We use the same U-Net architecture for both the

decomposition and recomposition diffusion models.

4.1 Decomposition

In order to show the effectiveness of our decomposition

method described in section 3.1, we perform multiple ex-

periments on Slakh2100. Throughout this section, we fix

the number of training epochs to 250 and use the AdamW

optimizer [44] with a fixed learning rate of 10−4 as our

optimization strategy. The U-Net and semantic encoder

have 13 and 8 million trainable parameters, respectively.

Finally, we use 100 sampling steps at inference time.

First, we show in Table 2 that our model can be used

to perform unsupervised latent source separation and com-

pare it against several non-neural baselines [45–49], as

well as a recent study that explicitly targets neural latent

blind source separation [50]. We also report the results

obtained by Demucs [51], which is the current top per-

forming fully-supervised state-of-the-art method in audio

source separation. As the only non-neural baseline, LASS,

has been trained and evaluated on the Drums + Bass sub-

set, we perform our analysis on this split and subsequently

perform an ablation study over the other sources.

Model SI-SDR (↑) SI-SIR (↑) SI-SAR (↑)
rPCA [45] -2.8 (4.8) 5.2 (7.3) 5.6 (4.6)

REPET [48] -0.5 (4.8) 6.8 (7.0) 3.0 (5.2)

FT2D [49] -0.2 (4.7) 5.1 (7.0) 3.1 (4.7)

NMF [46] 1.4 (5.0) 8.9 (7.6) 2.9 (4.5)

HPSS [47] 2.3 (4.8) 9.9 (7.5) 5.1 (4.6)

LASS [50] -3.3 (10.8) 17.7 (11.6) -1.6 (11.2)

Ours 5.5 (4.6) 41.7 (9.3) 5.6 (4.6)

Demucs [51] 11.9 (5.0) 37.6 (8.7) 12.0 (5.0)

Table 2. Blind source separation results for the Drums +

Bass subset. Our model is trained with the mean composi-

tion operator. The results are expressed in dB as the mean

(standard deviation) across 512 elements randomly sam-

pled from the test set of Slakh2100.

As we can see, our model outperforms the other base-

lines in terms of SI-SDR and SI-SIR and performs on par

with respect to SI-SAR. Interestingly, our model outper-

forms the Demucs supervised baseline in terms of SI-SIR,

which is usually interpreted as the amount of other sources

that can be heard in a source estimate. In order to test

LASS performances, we used their open source check-

point which is trained on the Slakh2100 dataset, and fol-

lowed their evaluation strategy. Unfortunately, we were

not able to reproduce their results in terms of SDR but we

found that their model performs well in terms of SI-SIR,

which they did not measure in the original paper. More-

over, as LASS comprises training one transformer model

per source, we found their inference phase to be more com-

Operator MSE (↓) ×104 MS-STFT (↓)
Sum 1.87820 (0.13418) 3.6 (0.1)

Mean 1.87020 (0.13183) 3.6 (0.1)

Min 2.54182 (0.17714) 4.5 (0.1)

Max 2.43302 (0.17510) 4.3 (0.1)

Table 3. Reconstruction quality in latent space (MSE) and

audio (MS-STFT) of our decomposition-recomposition

model for different recomposition operators for the Drums

+ Bass subset.

putationally demanding than ours. Finally, among non-

neural baselines, we see that the HPSS model outperforms

the others. This seems reasonable as HPSS is specifically

built for separating percussive and harmonic sources and

hence naturally fits this evaluation context.

Moreover, in order to show the robustness of our ap-

proach against different sources and number of latent vari-

ables, we train multiple models on different subset of the

Slakh2100 dataset, namely Drums + Bass, Piano + Bass

and Drums + Bass + Piano. The interested reader can refer

to our supplementary material and listen to the separation

results.

Subsequently, we show that our objective in Equation

6 is robust across different composition operators. We

show that, for simple functions such as sum, min, max

and mean our model is able to effectively converge and

provide accurate reconstructions. Again, we provide this

analysis by training our model on the Drums + Bass subset

of Slakh2100, fixing the number of components to 2. We

report quantitative results in terms of two reconstruction

metrics, the Mean Squared Error (MSE) and Multi-Scale

STFT distance (MS-STFT) in Table 3. As we can see, sum

and mean operators provided the best results, while min

and max proved to be less effective. Nonetheless, the au-

dio reconstruction quality measured in terms of MS-STFT

provided reconstruction scores that are lower or compara-

ble with respect to those obtained by evaluating EnCodec

performances.

4.2 Recomposition

As detailed in section 3.2, once we are able to decom-

pose our data into a set of composable representations we

can then learn a prior model for generation from this new

space. Since our decomposition model is able to compress

meaningful information through the semantic encoder, we

can learn a second latent diffusion model on this com-

pressed representation to obtain a full generative model

able to both decompose and generate data.

Here, we validate our claims by training a masked dif-

fusion model for the Drums + Bass split of the Slakh2100

dataset. In Table 4, we show that our model can indeed

produce good-quality unconditional generations by com-

paring it against a fully unconditional model. We mea-

sure the generation quality in terms of FAD scores com-

puted against both the original as well as the encoded test

data. Here, by original data we mean the audio coming
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Original Encoded

FAD (LC-A) (↓) FAD (LC-M) (↓) FAD (LC-A) (↓) FAD (LC-M) (↓)
Unconditional 0.09 0.09 0.06 0.06

pmask = 0.8 0.12 0.11 0.08 0.07

Bass 0.03 0.03 0.01 0.01

Drums 0.09 0.08 0.05 0.05

Table 4. Audio quality of unconditional generations by our generative model. We demonstrate that we can jointly learn

an unconditional and conditional model by showing that the FAD scores of pmask = 0.8 are comparable to those of an

unconditional latent diffusion model.

Type MSE ×103 MS-STFT

R
ea

l Drums 2.3259 (0.1287) 13.6 (0.4)

Bass 1.4393 (0.0874) 9.38 (0.2)

R
a
n

d Drums 4.8170 (0.1136) 20.5 (0.6)

Bass 4.8814 (0.1157) 21.7 (0.7)

Table 5. Diversity of variations generated by our prior

model, measured via the MSE and MS-STFT distances

against ground truth and random components.

from the test split of Slakh2100, while the encoded data

represents the same elements reconstructed with our de-

composition algorithm. As we train on the representations

obtained through the semantic encoder, the natural bench-

mark for the unconditional generation is given by the re-

constructions that we can obtain through our decomposi-

tion model, which represents the bottleneck in terms of

quality. Nonetheless, we show that the FAD scores do not

drop substantially when comparing against the original au-

dio, showing that we can indeed achieve a good generation

quality. In the same table, we report the partial genera-

tion FAD scores. Instead of generating both components

unconditionally, we generate the Bass (Drums) given the

Drums (Bass), and measure the FAD against the original

and the encoded test data, as done for the unconditional

case. Given the presence of a ground-truth element, the

FAD scores are lower, which is to be expected. Specifi-

cally, we can see that the drums generation is a more com-

plex task with respect to the bass generation, as the model

needs to synthesize more elements such as the kick, snare

and hi-hats, matching the timing of a given bassline.

Lastly, as we strive for high-quality generations, we also

aim to enhance diversity within our generations. Table 5

shows the diversity scores for partial generations obtained

with our model. We measure diversity in terms of MSE and

MS-STFT scores computed, respectively, in the latent and

audio space. We compare our partial generations against

real and random components, in order to provide the lower

and upper bound for generation diversity. Specifically,

given the Drums (Bass) we generate the Bass (Drums) and

we compute both MSE and MS-STFT scores against the

ground truth (Real) and random elements (Rand) coming

from the test set of Slakh2100. From the values reported

in Table 5, we can deduce that our model produces mean-

ingful variations. We invite the interested readers to listen

to our results on our support website.

5. DISCUSSION AND FURTHER WORKS

While our model proves to be effective for compositional

representation learning, it still has shortcomings. Here, we

briefly list the weaknesses of our proposal and highlight

potential avenues for future investigations.

Factors of convergence. In this paper, we used En-

Codec which already provides some disentanglement and

acts as a sort of initialization strategy for our method. We

argue that this property, jointly with the low dimensional-

ity of the latent space enforced by our encoder leads our

decomposition model to converge efficiently, not requiring

further inductive biases towards source separation.

Limitations. First, there is no theoretical guarantee that

the learned latent variables are bound to encode meaning-

ful information. Exploring more refined approaches, as

proposed by [52], could be interesting in order to incorpo-

rate a more principled method for learning disentangled la-

tent representations. Furthermore, we observed that the di-

mensionality of the latent space significantly influences the

representation content. A larger dimensionality allows the

model to encode all the information in each latent, hinder-

ing the learning of distinct factors. Conversely, a smaller

dimensionality may lead to under-performance, preventing

the model to correctly converge. It could be interesting to

investigate strategies such as Information Bottleneck [53]

to introduce a mechanism to explicitly trade off expressiv-

ity with compression. Finally, using more complex func-

tions as well as learnable operators is an interesting re-

search direction for studying the interpretability of learned

representations.

6. CONCLUSIONS

In this work, we focus on the problem of learning unsuper-

vised compositional representations for audio. We build

upon recent state-of-the-art diffusion generative models to

design an encoder-decoder framework with an explicit in-

ductive bias towards compositionality. We validate our ap-

proach on audio data, showing that our method can be used

to perform latent source separation. Despite the theoretical

shortcomings, we believe that our proposal can serve as a

useful framework for conducting research on the topics of

unsupervised compositional representation learning.
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ABSTRACT

Lyrics play a crucial role in affecting and reinforcing emo-

tional states by providing meaning and emotional connota-

tions that interact with the acoustic properties of the music.

Specific lyrical themes and emotions may intensify exist-

ing negative states in listeners and may lead to undesirable

outcomes, especially in listeners with mood disorders such

as depression. Hence, it is important for such individuals

to be mindful of their listening strategies. In this study, we

examine online music consumption of individuals at risk of

depression in light of lyrical themes and emotions. Lyrics

obtained from the listening histories of 541 Last.fm users,

divided into At-Risk and No-Risk based on their mental

well-being scores, were analyzed using natural language

processing techniques. Statistical analyses of the results

revealed that individuals at risk for depression prefer songs

with lyrics associated with low valence and low arousal.

Additionally, lyrics associated with themes of denial, self-

reference and blame were preferred. This study opens up

the possibility of an approach to assessing depression risk

from the digital footprint of individuals and potentially de-

veloping personalized recommendation systems.

Keywords: depression, lyrics, lastfm, emotions,

themes

1. INTRODUCTION

Depression is one of the leading causes of disability in

young adults globally, according to the World Health Or-

ganization [1]. It has the potential to hinder and curb de-

velopment in personal and social avenues of life, making

it a debilitating condition. This underscores the imperative

to identify and address it in the early stages.

Music plays an important role in regulating mood and

emotions [2]. Musical preferences and music listening

habits are known to invoke and reinforce moods and emo-

tions and satisfy psychological needs [3, 4]. Emotionally

vulnerable young adults were found to have more intense

© P. Chowdary, B. Singh, R. Agarwal and V. Alluri. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: P. Chowdary, B. Singh, R. Agarwal and V.

Alluri, “Lyrically Speaking: Exploring the Link Between Lyrical Emo-

tions, Themes and Depression Risk”, in Proc. of the 25th Int. Society for

Music Information Retrieval Conf., San Francisco, United States, 2024.

relationships with music [5]. An increased emotional re-

liance on music was also observed in such individuals [6].

However, certain music engagement behaviors and strate-

gies are associated with indicators of poor mental health

and do not always lead to the alleviation of existing de-

pressive symptoms [7]. Individuals who are depressed or

at risk of depression are often unconscious of using mu-

sic as a tool to improve emotional states [8], which might

lead to adverse outcomes. This highlights the importance

of addressing and studying music listening behaviors of

individuals prone to depression risk for developing inter-

vention methods to come up with listening strategies that

may lead to positive outcomes.

Online music streaming platforms such as Spotify 1 ,

Last.fm 2 , and Apple Music 3 offer their users a large va-

riety of songs across genres and make it possible to study

the musical digital footprints of their users. Last.fm al-

lows the extraction of the listening histories of its users and

the corresponding metadata, which prompted several stud-

ies that utilized Last.fm to study naturally occurring user

listening behaviors in light of depression risk [9, 10, 11].

However, the relationship between lyrics, specifically the

semantics and emotional connotations of lyrics, and de-

pression has received little to no attention in the literature,

while lyrics were found to play a crucial role in affecting

emotional states [12]. Lyrics were also found to be essen-

tial for depicting sadness in music [13]. This study seeks

to address this gap by examining the relationship between

lyrical emotions and themes extracted from user listening

histories and depression risk.

2. BACKGROUND AND RELATED WORK

We highlight previous studies that used online music lis-

tening histories from Last.fm and preferences to identify

different trends and characteristics in music listening be-

haviors of individuals at risk of depression. Surana et

al. [9] was the first such study, which used user-annotated

tags from Last.fm, to identify emotion- and genre-tag pref-

erences of individuals at risk of depression. The results of

this study revealed that At-Risk individuals consume music

that is tagged with emotions representing sadness, such as

sad, depressed, dead, low and miserable, and belonging to

1 www.spotify.com
2 www.last.fm
3 music.apple.com
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Figure 1: Methodology

genres such as neo-psychedelic, dream-pop and indiepop.

In a later study, Surana et al. [10] studied emotions in re-

lation to acoustic features of music as dynamic measures

across the span of six months by dividing the listening his-

tory into sessions based on periods of inactivity to observe

any dynamic patterns in music listening behaviors of At-

Risk individuals. This study found that individuals at risk

of depression rely more heavily on music and tend to listen

to the same songs repeatedly. It was also found that they

tend to listen to sad music for longer periods.

Shriram et al. [11] were the first to study lyrics in this

context in terms of lyrical repetitiveness and compressibil-

ity. The results revealed that At-Risk individuals prefer

music with lower lyrical simplicity (lower compressibil-

ity) and greater information content, especially for music

that is characterized as sad.

However, no study to date has explored the link between

lyrical emotions and themes extracted from online listen-

ing histories and depression risk, to the best of our knowl-

edge. This link is crucial to investigate because lyrics re-

inforce negative states and, in dire situations, lead to mal-

adaptive outcomes. The only study that has looked into

lyrical themes associated with maladaptive listening strate-

gies, which is known to be a proxy for depression risk [14],

was done by Singh et al. [15]. They explored the link be-

tween lyrical themes extracted using DICTION 4 and un-

healthy music engagement strategies characterized by the

Unhealthy-Healthy music scale (HUMS) [14], which indi-

rectly indicates depression risk. This study revealed that

individuals who engage in unhealthy and maladaptive lis-

tening strategies listen to music with lyrical themes repre-

senting self-reference and blame. However, this has been

done in the context of online discourse surrounding depres-

sion on Reddit. This raises the question of whether simi-

lar behavior can be observed in the lyrical content derived

from the listening histories of individuals at risk on music

4 www.dictionsoftware.com

streaming platforms. In this study, we investigated the rela-

tionship between individuals’ online listening histories and

their risk of depression in the context of lyrical emotions

and themes.

Based on previous research in the field [9, 10, 11, 15],

we hypothesize the following:

• Building on prior research demonstrating a pref-

erence for sad music among At-Risk individuals

[9,10], we hypothesize that these individuals exhibit

a greater preference for music with lyrics associated

with low valence and low arousal.

• In line with the established link between lyrical

themes and unhealthy music engagement behaviors

shown by Singh et al. [15], we hypothesize that At-

Risk individuals consume music that is higher in

terms of themes such as self-reference, and blame.

3. METHODOLOGY

Figure 1 summarizes the procedure used in our study,

which is described as follows.

3.1 Dataset

We used the dataset from Surana et al. [9, 10] for our anal-

ysis. The dataset consists of the six-month music listening

history of 541 Last.fm users (Mean Age = 25.4, SD = 7.3),

of which 444 were male, 82 were female, and 15 identi-

fied as other. This data was acquired by means of a survey

that was posted on Reddit 5 and Facebook 6 Last.fm pages.

Informed consent was taken from the participants and par-

ticipation was completely voluntary. They were informed

that the study posed no risks and that their confidential-

ity would be maintained. The analysis was performed at a
group level, ensuring no individuals could be identified.

5 www.reddit.com
6 www.facebook.com
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3.1.1 Measure of Depression Risk

To assess mental well-being, Kessler’s Psychological Dis-

tress Scale (K10) questionnaire [16] is utilized, which

measures psychological distress with a focus on symp-

toms of anxiety and depression. Following the approach

of Surana et al. [9], participants scoring 29 or higher on

the K10 questionnaire were classified as being in the “At-

Risk” group for depression, while those scoring below 20

constitute the “No-Risk” group. Out of the total users, 193

individuals were in the No-Risk group, and 142 were in the

At-Risk group.

3.1.2 Listening History and Lyrics

Lyrics for the tracks in the listening histories are extracted

from Genius.com and MetroLyrics.com. Lyrics for ap-

proximately 76% of the entire repository of songs were

obtained. Songs with no lyrics comprised around 4% of

the dataset.

3.2 Lyrics Processing

3.2.1 Lyrics-Emotion Mapping

Figure 2: Two-dimensional Valence-Arousal space

Lyrics were projected onto the Russell’s Complex

Model of Affect [17], which is used to organize emo-

tions along two orthogonal dimensions: Valence, which

represents pleasantness and Arousal, which represents en-

ergy. As can be seen in Figure 2, The first quadrant repre-

sents high valence and high arousal (happiness), the second

quadrant represents low valence and high arousal (anger),

the third quadrant represents low valence and low arousal

(sadness), and the fourth quadrant represents high valence

and low arousal (tenderness). We employed a model pro-

posed in Agarwal et al. [18] to map each song’s lyrical

content to a quadrant in the VA space. The architecture of

the model is a deep neural network architecture that em-

ploys XLNet [19], an advanced bidirectional transformer,

to perform multitask learning for emotional classification

based on song lyrics. The model is trained on the Moody-

Lyrics [20] and MER [21] datasets, which consist of songs

uniformly distributed across the four quadrants of the Rus-

sell’s Valence-Arousal circumplex model. The model was

used to return a single quadrant label for each song by map-

ping the song’s lyrical content to the 2D Valence-Arousal

space, which was used to categorize the tracks into one of

the four quadrants.

To quantify user preferences for quadrant categories,

we computed a quadrant prevalence (QPS) score for each

quadrant, which is determined by the proportion of tracks

from each user’s listening history, within the respective

quadrants, as shown in Equation 1. The top 100 most

frequently listened songs were identified and assigned

weights based on listening frequency. The QPS for each

user and quadrant was then calculated as the average

weighted frequency of songs belonging to that specific

quadrant in their listening history.

QP S(uj , qk) =

∑
si∈L(uj)

w(si) · I(q(si) = qk)
∑

si∈L(uj)
w(si)

(1)

where,

QP S(uj , qk) : QPS of quadrant qk for user uj

si : a song in the top 100 songs of the user’s listening his-

tory L(uj)
w(si) : the weight (listening frequency) of song si.

q(si) : quadrant assigned to song si
I(.) : indicator function that equals 1 if the condition inside

is true (song si belongs to quadrant qk) and 0 otherwise.

3.2.2 Lyrics-Semantic Themes Mapping

Following a similar approach to Singh et al. [15], we used

DICTION to analyze the lyrics and identify underlying se-

mantic themes. DICTION operates through the use of dic-

tionaries that contain lists of words associated with specific

linguistic, emotional and cognitive contexts. There are 5
themes and 35 sub-themes in total. We chose the themes

Self-reference, Blame, Optimism, Hardship, Satisfaction,

Inspiration, Exclusion and Denial. The frequency scores

corresponding to all the themes and sub-themes for each

song were obtained, based on the occurrence of the words

from the lyrics in the dictionary lists. Similar to the quad-

rant prevalence scores, mean frequency scores (MFS) were

computed for all the themes per user, as shown in Equation

2.

M F S(uj , tk) =

∑
si∈L(uj)

w(si) · Tk(si)
∑

si∈L(uj)
w(si)

(2)

where,

M F S(uj , tk) : MFS of theme tk for user uj

si : a song in the top 100 songs of listening history L(uj)
w(si) : the weight (listening frequency) of song si.

Tk(si) : the frequency score assigned to song si for theme

tk.
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3.3 Statistical Testing

We divided the users into At-Risk and No-Risk groups

based on their K10 scores, as mentioned before. For each

quadrant, we performed a two-tailed Mann-Whitney U

(MWU) test on the quadrant prevalence score between the

At-Risk and No-Risk groups. Similarly, a MWU test was

performed for the mean frequency score between At-Risk

and No-Risk groups, for each theme selected.

4. STATISTICAL TESTING AND RESULTS

4.1 Lyrical Emotion-Based Results

A statistically significant difference (p < 0.05) was ob-

served for the QPS corresponding to Q3, which is repre-

sentative of low valence and low arousal values (U-statistic

= 15727.5, p = 0.02), with a higher median for the At-Risk

group, as can be seen in 3. We observed no significant

differences between the distributions of the At-Risk and

No-Risk groups for the other quadrants. The same trend

was observed when the top 250 songs were considered.

Figure 3: Violin plots of mean QPS per quadrant for At-

Risk and No-Risk groups

4.2 Lyrical Theme-based Results

We found significant differences (p<0.05) between At-

Risk and No-Risk groups in the case of denial, self-

reference and blame. As can be inferred from Table 1, The

median for the At-Risk group is higher in the cases of the

themes denial, self-reference and blame.

At-Risk >
No-Risk

Theme U-statistic p-value

Denial 15950.0 0.010

Self-reference 15968.0 0.009

Blame 15691.5 0.023

Table 1: MWU Test results for the Mean Frequency Scores

between the At-Risk and No-Risk groups; Here At-Risk >

No-Risk refers to the themes where the median is greater

in the case of the At-Risk group

5. DISCUSSION

This study is the first of its kind to explore the associa-

tion between risk for depression and the emotional and the-

matic connotations of the lyrical content of the music in-

dividuals engage with online, as opposed to studies in lab

settings or self-reported data. Our results are in concor-

dance with our initial hypotheses, in addition to revealing

novel findings.

The At-Risk group exhibited a higher median score for

Q3 (low valence, low arousal) than the No-Risk group.

This finding suggests a greater prevalence of sadness-

related lyrical content in the music listened to by the At-

Risk group. The stronger association of the At-Risk group

with sadness aligns with the results of past research studies

on the topic. These results suggest that At-Risk individuals

tend to consume music with lyrics that reflect their nega-

tive emotional states.

As hypothesized, the themes self-reference and blame

were more prevalent in the At-Risk group. Additionally,

the themes denial was also shown to be preferred by At-

Risk individuals. Since the themes of blame and self-

reference in lyrics were found to be associated with un-

healthy listening strategies [15], listening to music asso-

ciated with these themes would not be beneficial to indi-

viduals at risk of depression, and in some cases may lead

to negative outcomes. This highlights the importance of

mindful consumption strategies for music for people at risk

of depression.

In conclusion, our results show that certain music en-

gagement strategies are maladaptive in nature and should

be avoided to prevent the worsening of mood, building on

top of previous studies in the area. These results can po-

tentially aid in developing intervention strategies based on

lyrical content that should be avoided for better outcomes

from music listening.

5.1 Limitations

A limitation of this study is the exclusive focus on lyri-

cal emotions and themes. The interaction of these with

the acoustic properties of music and lyrical complexity, as

well as in the context of depression risk, could be explored,

which could possibly yield a better understanding. The in-

teraction between lyrical themes and emotional connota-

tions is also something that is yet to be studied. Another

limitation is that this study exclusively focuses on music

with English lyrics. We have also used a predetermined set

of themes offered by DICTION, which may not be enough

to capture several lyrical themes. An approach to solve this

would be to use Large Language Models (LLMs) to gener-

ate themes from a repository of songs and then using them

for the scoring.

5.2 Future Work

The results from this paper can be used in building mu-

sic recommendation systems for depressed individuals that

tailor the recommendations, keeping in mind the emotions

and themes that are associated with mood worsening and

maladaptive behaviors to maximize the positive outcomes

through music listening. These results could be combined

with other measures associated with such behaviors. This

work also opens up the possibility of early depression risk
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prediction from online music listening behaviors, in terms

of lyrics, by cementing lyrical emotions and themes as in-

dicators for depression risk. These measures, in addition

to acoustic features [10] and other indicators such as lyri-

cal complexity and social tags [11, 9], could potentially be

used to develop a multi-modal depression risk prediction

system.
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ABSTRACT

Despite significant recent progress across multiple sub-

tasks of audio source separation, few music source sep-

aration systems support separation beyond the four-stem

vocals, drums, bass, and other (VDBO) setup. Of the very

few current systems that support source separation beyond

this setup, most continue to rely on an inflexible decoder

setup that can only support a fixed pre-defined set of stems.

Increasing stem support in these inflexible systems corre-

spondingly requires increasing computational complexity,

rendering extensions of these systems computationally in-

feasible for long-tail instruments. We propose Banquet, a

system that allows source separation of multiple stems us-

ing just one decoder. A bandsplit source separation model

is extended to work in a query-based setup in tandem with

a music instrument recognition PaSST model. On the Moi-

sesDB dataset, Banquet — at only 24.9 M trainable param-

eters — performed on par with or better than the signifi-

cantly more complex 6-stem Hybrid Transformer Demucs.

The query-based setup allows for the separation of narrow

instrument classes such as clean acoustic guitars, and can

be successfully applied to the extraction of less common

stems such as reeds and organs.

1. INTRODUCTION

Music Source Separation (MSS) is the task of separat-

ing a musical audio mixture into its constituent compo-

nents, commonly referred to as stems. The releases of

DSD100 [1] and MUSDB18 [2, 3], both being four-stem

MSS datasets, have defined a de-facto standard, with

nearly every major work since relying on the four-stem vo-

cals, bass, drum, and others (VDBO) setup [4–19]. While

this has significantly improved the comparability and re-

producibility of the task, it has also disproportionately fa-

vored the VDBO setup. Very few works have tackled MSS

beyond the VDBO setup, each relying on datasets with sig-

nificant limitations: Wang et al. [20] relied on MedleyDB

[21, 22], whose stem ontology is somewhat unfriendly to

source separation, Manilow et al. [23] relied on the syn-

© K. N. Watcharasupat, and A. Lerch. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: K. N. Watcharasupat, and A. Lerch, “A Stem-Agnostic

Single-Decoder System for Music Source Separation Beyond Four

Stems”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

thetically generated Slakh dataset [24], and others relied

on proprietary data inaccessible to other research groups

[11, 18], limiting reproducibility. The recently released

MoisesDB [25], a multitrack source separation dataset, at-

tempts to address these limitations, particularly in terms

of stem availability and taxonomy. This aims at broad-

ening the task beyond VDBO based on publicly available

data. However, to the best of our knowledge, while Moi-

sesDB was used in the 2023 Sound Demixing Challenge

(SDX) [26], no published system has utilized MoisesDB

for source separation beyond VDBO yet.

In this work, we propose Banquet, 1 a query-based

source separation model that can separate an arbitrary

number of stems using just one set of stem-agnostic en-

coder and decoder, and a pre-trained feature extractor

[27]. Our model was adapted from the cinematic audio

source separation Bandit model [28], which was in turn

adapted from the music source separation Bandsplit RNN

model [17]. Bandit significantly reduces the complexity of

Bandsplit RNN by adopting a common-encoder approach

with stem-specific decoders. In this work, we take the

complexity reduction further by switching to a query-based

setup, using only one decoder shared amongst all possi-

ble stems. Performance evaluation on MoisesDB demon-

strated separation performance above oracle for drum and

bass, state-of-the-art for guitar and piano, and at least

7.4 dB SNR for vocals. Our system additionally provided

support for fine-level stem extraction currently available

only in a few MSS systems.

2. RELATED WORK

Nearly every major MSS works since 2017 have relied on

the VDBO setup. Early systems [4, 6, 29], including Open-

Unmix [8], were usually Time-Frequency (TF) masking

models with LSTM forming the core of the systems,

with some experimenting with densely-connected convo-

lutional systems [5, 12]. Beginning with Wave-U-Net

[7], the U-Net architecture became a popular choice for

MSS, with notable models such as Demucs [9, 10, 14, 18],

Spleeter [11], ByteSep [13], and KUIELab-MDX-Net [15]

all being some variations of a U-Net. More recently, Band-

split RNN [17] became one of the few state-of-the-art sys-

tems to not rely on a U-Net setup. This was followed by

the Bandsplit RoPE Transformer model [19] topping the

1 Banquet is a portmanteau of Query-based Bandit. Code available at
github.com/kwatcharasupat/query-bandit. Last accessed 24 July 2024.
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leaderboard of SDX 2023 [26]. Of existing open-source

systems, very few offer separation functionality beyond the

VDBO setup. Spleeter [11] supports 5-stem separation with

VDBO and piano. HT-Demucs [18] supports a 6-stem setup

with VDBO, piano, and guitar.

2.1 Conditional source separation

The systems mentioned above were mostly designed with

either stem-specific models, stem-specific decoders, or a

shared decoder with predetermined outputs. As a result,

these systems are not particularly amenable to the addition

of new stems, especially if these new stems have limited

data availability. Below we review some of the common

approaches for conditional source separation that may be

useful for extending existing systems beyond VDBO.

Meseguer-Brocal and Peeters [30] were likely amongst

the first to attempt a conditioned U-Net for source separa-

tion using a single decoder. They used multiple feature-

wise linear modulation (FiLM) [31] layers within the en-

coder to perform MSS in a VDBO setup. Slizovskaia

et al. [32] used a similar setup with FiLMs either through-

out the encoder, at the bottleneck layer, or at the final de-

coder layer. The systems in [32] were tested on the 13-

instrument URMP dataset [33], with up to 4 active instru-

ments in any recording, but all performed poorly in terms

of mean signal-to-distortion ratio (SDR). Lin et al. [34]

proposed a joint separation-transcription U-Net system,

which performed well for string and brass instruments in

URMP, but struggled on woodwind instruments. The sys-

tem in [34] used FiLMs throughout the encoder with a

query embedding from another convolutional model, and

across all skip connections with transcription embeddings.

Lee et al. [35] proposed a U-Net with two methods of

less aggressive conditioning with examples beyond VDBO,

but only provided objective results for a VDBO setup on

MUSDB18. Wang et al. [20] also proposed a U-Net,

with FiLM conditioning only at the bottleneck layer. The

system in [20] was able to support a substantial num-

ber of stems beyond VDBO with the caveat that its re-

ported performance is significantly below contemporary

models for VDBO stems. Gfeller et al. [36] utilized a

FiLM-conditioned wave-to-wave U-Net to perform one-

shot conditional audio filtering. Similar approaches were

also adopted in Choi et al. [37] and Jeong et al. [38] for

MSS, in Chen et al. [39] for source activity-queried sepa-

ration, in Kong et al. [40] for universal source separation,

and in Liu et al. [41, 42] for language-queried source sep-

aration. These works [36–42] applied FiLM or generaliza-

tions thereof to nearly every single layer of the network,

significantly increasing the computational complexity of

the system. We surmise that the apparent need for mul-

tiple conditioning in a U-Net is probably due to the nature

of its information flow [43], which may require a signif-

icant number of information streams to be conditioned to

achieve acceptable performance.

In a different direction, source separation systems rely-

ing on audio embedding “distances” have also been devel-

oped, notably with Le Roux et al. in [23, 44, 45]. In 2018,
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Figure 1. Overview of the Banquet System.

Kumar et al. [46] presented an early work using Euclidean

audio embedding distance from a “query” embedding to

inform music source separation. A similar system using a

Gaussian mixture model posterior in lieu of standard dis-

tance was proposed in [44]. Hierarchical masking [23]

was later utilized to allow the extraction of stems at multi-

ple levels of specificity. More recently, source separation

systems with audio embedding in a low-dimensional hy-

perbolic space have been developed to allow music [45]

and speech [47] source separation with some degrees of

control on the specificity of the extraction. Uniquely,

Samuel et al. [48] proposed a network-generating network

approach for instrument-conditioned source separation.

3. PROPOSED SYSTEM

The overview of the proposed Banquet system is shown

in Fig. 1. The system is a single-encoder single-decoder

adaptation of Bandit [28], that takes in a mixture signal x

and a query signal q, and extracts a stem estimate ŝ from

the mixture signal of the “same” stem type as the query

signal using a complex-valued TF mask. This is done by

(i) encoding the mixture into a subband-level time-varying

embedding tensor Υ, (ii) encoding the query into a single-

vector representation z̃, (iii) adapting the mixture embed-

ding, conditioned on the query, into a stem-specific embed-

ding Λ “ QpΥ; z̃q, then (iv) decoding the Λ to a TF mask

M that is used to obtain the source estimate.

3.1 Bandit encoder

The encoder module of the system used in this work is the

musical variant of the Bandit encoder, with B “ 64 bands.

Specifically, given an input mixture x P R
CˆN with C

channels and N samples, a short-time Fourier transform

(STFT) of x is computed to obtain X P C
CˆFˆT with a

frame size of NFFT “ 2pF ´ 1q “ 2048 and 75 % over-

lap. The STFT is then split into overlapping subbands as

detailed in [28]. Each of the subbands is then viewed as

a real-valued tensor in R
2CFˆT , passed through a layer

norm and an affine transformation with D “ 128 neurons

to obtain Vb P R
DˆT . These tensors are then stacked to
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obtain V P R
DˆBˆT . TF modeling is then applied on V

to obtain Υ using 8 pairs of residual gated recurrent units

(GRUs), the first of each pair operating along the time axis

and the second along the band axis.

Note that this TF modeling is the only part of the model

that is recurrent across either the time or the subband

axes. The rest of the encoder and the decoder operate in

a subband-wise manner identically for any time frame.

3.2 Query encoding

To obtain the query embedding, a PaSST model [27]

trained on the OpenMIC-2018 dataset [49] is used. The

20 instruments in OpenMIC span all coarse-level classes

of MoisesDB, except other. For compatibility, each query

signal is downmixed to mono and downsampled to 32 kHz

before being fed to PaSST. Although the query feature ex-

tractor could, in theory, be jointly trained with the rest of

the system, preliminary experiments showed that this can

result in considerable instability during training, especially

if the query feature extractor is not at least pretrained. Due

to the size and complexity of PaSST, the query feature ex-

tractor is fully frozen in this work. The embedding from

the PaSST variant used is a time series with a feature di-

mension of D̃ “ 784. The embedding is averaged over

time and linearly down-projected to obtain z̃ P R
D.

3.3 Query-based adaptation

In the original Bandit system [28], each stem was esti-

mated through a dedicated decoder. As a result, Υ typi-

cally contains information from all stems, with most of the

“separation” occurring within each of the decoders. This

is evident in the fact that the encoder of a Bandit system

trained on the cinematic audio Divide and Remaster (DnR)

dataset [?] could be successfully used in a 4-stem MSS on

the MUSDB18-HQ dataset [2] with separation quality on

par with Open-Unmix [28].

In this work, only a single decoder is responsible for

mask estimation for any stem. As a result, the query-based

adaptation Q : pRDˆBˆT ,RDq ÞÑ R
DˆBˆT has an im-

portant role in filtering out irrelevant information from Υ,

or at least “hinting” to the decoder the nature of the target

stem. A single FiLM layer is used to map from the mixture

embedding to the stem-specific embedding, that is,

Λrd, b, ts “ γrds ¨ Υrd, b, ts ` βrds, @d, b, t, (1)

where modulating variables γ,β P R
D are obtained from

a two-layer nonlinear affine map of z̃. This is similar to the

conditioning method used in [20].

Crucially, note that the modulating variables are not

subband-specific. Due to the nature of the TF model-

ing module within the encoder, features of Υ are al-

ready aligned across subbands and time frames. More-

over, BSRNN-like models only contain one stream of in-

formation flow, with a clear bottleneck, thus lending itself

to the global conditioning mechanism significantly more

than, for example, U-Net-style models in [20, 41, 42].

The use of embedding-based query, as opposed to one-

hot class-based query, provides significant practical flex-

ibility in adding new instruments as data become avail-

able or in adjusting the level of specificity in the querying,

as these can be done via finetuning with no architectural

changes to the model. Moreover, class-based query can be

emulated in an embedding-based system but not vice versa.

3.4 Bandit decoder

The decoder used is identical in structure to that in [28].

The major difference is that there is only one stem-agnostic

decoder. Given a conditioned embedding tensor Λ, the

embedding tensor is split into subband-level representation

Λb “ Λr : , b, : s. Each Λb is passed through a layer norm

and a gated linear unit (GLU) to obtain a real-valued tensor

R
2CFbˆT which is then viewed as a complex-valued tensor

Mb P C
CˆFbˆT . Frequency-domain overlap-add is then

applied to obtain the full-band mask using

Mrc, f, ts “
B´1
ÿ

b“0

Wrb, f s ¨ Mbrc, f ´ minFb, ts
řB´1

k“0
Wrk, f s

(2)

Finally, the source estimates are then obtained using ele-

mentwise masking Ŝ “ X ˝ M.

3.5 Loss function

The loss function used in this work is the multichannel ver-

sion of the L1SNR loss proposed in [28]. The contribution

for each sample of the loss function is given by

Lpŝ; sq “ Dpŝ; sq ` DpℜŜ;ℜSq ` DpℑŜ;Sq, (3)

Dpŷ;yq “ 10 log
10

} vecpŷ ´ yq}1 ` ϵ

} vecpyq}1 ` ϵ
, (4)

where ŝ “ iSTFTpŜq, s and S are defined similarly for

the ground truth, vecp¨q is the vectorization operator, and

ϵ “ 10´3 for stability.

4. DATA AND EXPERIMENTAL SETUP

This work utilizes the MoisesDB dataset [25], which con-

sists of 240 songs from 47 artists, in stereo format at

44.1 kHz. MoisesDB defined their stem ontology with

more than 30 fine-level classes, which are then grouped

into 11 coarse-level classes [25, Table 2]. Due to the lack

of official splits for MoisesDB, we performed a five-fold

split 2 on the dataset stratified by genres. The first three

splits are used as the training set, the fourth as the valida-

tion set, and the last as the test set.

4.1 Query extraction

For each possible stem of each song, a 10-second chunk of

the clean audio of the same stem is extracted as the query

signal. This is done by computing a time series of onset

strength for each stem and then aggregating the mean onset

2 The splits are available in the repository. Note that not all stems con-
tain a sufficient number of data points to be split into a five-fold validation
setup. As a result, some stems are only present in a subset of folds.
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strength for each 10-second sliding window with a hop size

of 512 samples. The 10-second window with the strongest

average onset is taken as the query signal. A t-SNE plot

of the query embedding is shown in Fig.2. While clusters

can be clearly seen amongst related stems, it can also be

seen that there are varying degrees of non-separability of

the embedding between fine-level stems.

4.2 Training

Each model was trained using an NVIDIA H100 GPU (80

GB) for up to 150 epochs, unless otherwise stated. A train-

ing epoch consists of 8192 mixture-query pairs, with a

batch size of 4. We used Adam optimizer with an initial

learning rate of 10−3 and a decay factor of 0.98 per epoch.

In the default sampling strategy, a random song is cho-

sen, a random trainable stem for that song is chosen as the

target stem, then a random chunk of 6 s is chosen. If the

current target chunk has an RMS below −36 dBFS, a new

random chunk is chosen for up to 10 more trials. Other-

wise, the threshold is dropped to −48 dBFS for another 10

trials. If a suitable chunk is still not found, the next ran-

dom chunk is chosen regardless of RMS. A pre-extracted

query of the same stem is then randomly chosen from the

available pool of songs, including the song of the mixture.

4.3 Testing and inference

During testing and inference, each track is split into 6-s

segments with a hop size of 0.5 s, as per [17]. The esti-

mated stems were then reconstructed into a full track using

time-domain overlap-add with a Hann window. The Ban-

quet models are tested in two scenarios: one using a query

from a different song, and another using a query from the

same song (SSQ). In different-song querying, the query

song for each stem is randomly chosen from another song

within the test split that contains the stem. When possible,

the query song is chosen so that it is from the same genre

as the mixture song but from a different artist. Otherwise,

a song from any genre with a different artist is chosen.

4.4 Evaluation metric

In this work, we report the full-track multichannel signal-

to-noise ratio (SNR) 3 as the main metric. Specifically, for

a test signal ŝ and a reference signal s, both in R
CˆN , the

SNR is computed by

SNRpŷ;yq “ 10 log
10

`

}s}2F {}ŝ ´ s}2F
˘

. (5)

5. RESULTS AND DISCUSSION

In this section, we provide the results and discussion of

our experiments. Section 5.1 discusses pretraining of the

Bandit/Banquet encoder. Section 5.2 trials the use of the

query-based setup on a subset of vocals, drums, and bass

3 Signal-to-interference ratio (SIR) and signal-to-artifact ratio (SAR)
were not computed as the number of the constituent stems can be large,
making the required subspace projection intractable and/or unreliable.
It is also unclear if coarse-level ground truth or fine-level ground truth
should be used for such a projection. See [50–52] for background.
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Figure 2. A t-SNE plot of the PaSST embeddings of the

query signals. Stems from the same coarse-level grouping,

as defined by [25], share the same symbol.

stems. Section 5.3 extends the system to include fine-level

stems from guitar and piano families. Finally, Section 5.4

attempts to perform extraction on all possible fine-level

stems with sufficient data.

5.1 Encoder pretraining

Preliminary experiments indicated that encoder pretraining

is an important step to stabilize the training of the query-

based model, especially as the number of query stems

grows. The encoder pretraining is done with a common-

encoder multi-decoder setup similar to [28] with a VDBO

setup for 100 epochs. The VDBO decoders were discarded

and the encoder was used for subsequent experiments. The

performance of the pretrained model is shown in Table 1,

with performance above oracle ideal ratio mask (IRM) for

drums and bass, and on par with HT-Demucs for vocals. 4

5.2 Learning to separate from queries

As a first step to verify the query-based ability of the

model, a Banquet model is trained to extract only lead fe-

male singer, lead male singer, drums, and bass stems, re-

ferred to as the Q:VDB setup. We experimented with train-

ing from scratch, using a frozen pretrained encoder (FE),

and using a trainable pretrained encoder (TE). While the

frozen-encoder setup did not demonstrate any sign of over-

fitting during the training, the trainable-encoder system

demonstrated (very slight) overfitting. As a result, an ad-

ditional setup with data augmentation (DA) was attempted

with the trainable encoder setup, using simple stem-wise

within-song random gain (up to ˘6 dB), random time shift-

ing, polarity inversion, and channel swapping.

The results are shown in Table 2. All three variants

with pretrained encoder provided better performance than

the model trained from scratch, except for drums in the

trainable-encoder model without DA being 0.1 dB lower.

Thus, for all subsequent experiments, the encoder is al-

ways pretrained. Without DA, there was no clear bene-

fit to unfreezing the encoder. However, in a trainable en-

4 All coarse-level results for oracle methods, HT-Demucs, and Spleeter
were recomputed only on the test set using song-wise results from
github.com/moises-ai/moises-db. The song-wise results were missing for
five of the songs (as of 6 April 2024), two of these belong in the test set,
thus the aggregates were computed over 46 songs instead of 48 songs.
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Table 1. Median SNR of the models trained on the VDBO

setup, evaluated on the test set of MoisesDB.

Model Median SNR (dB): Vocals Drums Bass Other

Bandit [28] 9.1 9.9 10.6 6.4
HT-Demucs [18] 9.1 11.0 12.2 7.3
Spleeter [11] 7.4 6.6 6.8 5.0

Oracle IRM 10.3 9.2 8.8 7.6

Table 2. Median SNR of Banquet models on the Q:VDB

setup, evaluated with different-song queries. 6

Pretrained Enc. FE DA Female Vox Male Vox Drums Bass

N N N 8.3 7.2 9.4 9.4
Y Y N 9.8 7.6 9.9 10.2
Y N N 9.8 8.0 9.3 9.8
Y N Y 10.2 8.0 10.1 10.8

coder system with DA, slight to moderate improvements

were observed across all but the male vocal stem. Note,

however, that allowing full-model training significantly in-

creases the number of trainable parameters from 13.5 M

to 24.9 M thus the computational cost and training time

also increases accordingly. The performances of the drums

and bass stems are on par or better than the dedicated-stem

setup in Table 1. Generally, the models perform better on

female vocals than on male vocals.

5.3 Extending to guitar and piano

Amongst systems that tackled MSS beyond four stems, the

next two stems beyond VDBO are usually guitar and piano,

due to their high prevalence within pop/rock music. The

set of possible queries is thus extended from Q:VDB to also

include acoustic guitar, clean electric guitar, distorted

electric guitar, grand piano, and electric piano. This is

referred to as the Q:VDBGP setup. Due to the significantly

lower number of available training data for guitar and pi-

ano stems, we also experimented with a balanced sampling

(BS) strategy. In this strategy, a random stem is first cho-

sen as the target stem, then a random song containing that

stem is chosen. The remainder of the sampling process is

the same as the default. This strategy ensures that every

stem has a similar number of training pairs, but distorts the

“natural” distribution of stem occurrences.

For comparability with existing systems, the inference

outputs of fine-level stems in this setup were added to-

gether to form their respective coarse-level predictions. 7

Coarse-level results are shown in Table 3. Fine-level re-

sults for trainable-encoder models are shown in Table 4.

At the coarse level, most variants of Banquet continue

to perform above the oracle IRM for drums and bass. With

the default-sampling trainable encoder systems, the Ban-

quet performed better than HT-Demucs on guitar and pi-

ano. Without DA, balanced sampling generally did not

lead to consistent improvements for guitar and piano. With

balanced sampling and DA on a trainable-encoder model,

6 Median results for the same-song query and different-song query are
within 0.2 dB of each other.

7 The ground truth signals for are the full coarse-level tracks, e.g. vo-

cals ground truth include contributions from background vocals even if
we do not have background vocals in the predictions.

Table 3. Coarse-level performance of the Banquet models

with different-song queries on the Q:VDBGP setup

Model FE DA BS Vox Lead Vox Drums Bass Guitar Piano

Banquet Y N N 8.0 7.9 9.8 10.5 2.3 0.8
Y 7.9 7.7 9.6 10.5 2.2 0.9

N N N 7.4 8.0 9.6 10.6 3.0 2.3
Y 7.6 7.7 9.3 10.2 2.9 2.5

Y N 7.8 7.9 10.1 10.9 3.2 2.2
Y 7.6 7.9 9.5 11.0 3.3 2.5

HT-Demucs (VDBGPO) 8.9 — 11.6 12.4 2.4 1.7
Spleeter (VDBPO) 7.0 — 6.9 6.7 — 0.7

Oracle IRM 10.0 — 9.6 7.8 5.2 5.0

Bold: best Banquet model and/or best non-oracle model.

however, slight gains in median SNRs of guitar and piano

were observed, albeit at the cost of vocals and drum SNRs.

At the fine level, the model performance follows a sim-

ilar trend to that of the coarse level. Drums and bass con-

tinue to perform above the oracle IRM, while both lead vo-

cals performed close to the IRM. Guitar and piano perfor-

mances are still well below IRM. Interestingly, it appears

that querying with excerpts from the same or different track

did not affect the model performance for most stems except

for electric piano. This is likely due to both the small sam-

ple size of electric piano limiting generalizability, and the

highly diverse set of possible timbres thus the intertwined

nature of both the query embedding and the target audio

with other keyboard instruments. The ability of the model

to query with stems from different tracks is a double-edged

sword, however, since this also means that the model is

somewhat insensitive to fine differences in timbre between

different renditions of the “same” instruments. This could

potentially limit its usefulness when applied to a scenario

where multiple target stems have very similar timbres.

5.4 Extending beyond guitar and piano

The results for the Q:VDBGP setup demonstrated that the

model is able to learn to extract 5 additional stems. In

this experiment, we extend the set of possible queries to

include all remaining stems with at least one data point

per fold: effects, pitched percussion, organs & electronic

organs, synth pad, synth lead, string section, brass, and

reeds. Additionally, bass is now broken up into bass gui-

tar and bass synth. This is referred to as the Q:ALL setup.

Although these are all fine-level stems as defined by Moi-

sesDB, some of these classes are more specific than others.

For example, brass is a fine-level stem despite possibly in-

cluding trumpets, trombones, horns, and tuba. The experi-

mental setups are similar to that of Setup B. 8

The same-song query results 9 for the models trained in

8 BS and DA models for Q:ALL were significantly more unstable dur-
ing training than for the Q:VDBGP setup, despite being identical architec-
turally. When this happens, we discard the collapsed model and restart
the training from scratch until we have a model that completes the entire
training run with nonsilent output for most stems. No TE+DA+BS system
was stable enough to finish the training run without collapse.

9 Note that when the FE and the TE+DA systems have SNR concen-
trated at 0 dB for the long-tail stems, these are indicators of the model
outputting very soft, practically silent output. In general, a model yield-
ing negative SNR for a particular stem might be more desirable than a
model that has collapsed for a particular stem.
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Table 4. Model performance on the Q:VDBGP setup fine-level stems.

Female Vox Male Vox Drums Bass Acoust. Gtr. Clean E. Gtr. Dist. E. Gtr. Grand Piano E. Piano

FE DA BS SSQ Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

N N N N 5.5 9.6 13.2 6.7 7.9 10.0 8.0 9.6 11.6 7.9 9.9 12.0 0.9 1.8 3.6 0.2 0.7 2.4 0.9 2.4 5.3 0.7 2.3 2.9 0.0 0.6 0.7
Y 5.6 9.6 13.2 6.7 7.9 10.0 8.0 9.6 11.6 7.9 9.9 12.0 0.9 1.8 3.7 0.2 0.9 2.6 0.9 2.4 5.3 0.7 2.2 3.0 0.0 0.8 1.5

Y N 6.1 9.6 13.1 6.8 7.7 9.7 7.8 9.3 11.3 7.6 10.0 11.5 0.8 1.8 3.6 0.2 0.8 2.5 1.0 2.5 5.4 0.8 2.5 3.1 −0.1 0.7 0.8
Y 6.1 9.6 13.1 6.8 7.7 9.7 7.8 9.3 11.3 7.6 10.0 11.5 0.8 1.8 3.7 0.0 0.9 2.7 1.2 2.5 5.4 0.8 2.5 3.1 −0.6 0.8 1.8

Y N N 5.5 10.1 13.0 6.9 7.9 10.2 8.5 10.1 12.3 8.4 10.7 13.2 1.2 1.7 4.5 0.2 0.9 3.0 0.9 2.8 4.7 0.8 2.8 3.2 0.1 0.5 0.9
Y 5.5 10.1 13.1 6.9 7.9 10.2 8.5 10.1 12.3 8.4 10.7 13.2 1.2 1.7 4.6 0.2 1.1 2.7 0.9 2.8 4.7 0.8 2.4 3.1 −0.1 0.6 0.9

Y N 5.5 10.1 13.5 6.5 7.8 10.0 8.3 9.5 11.8 8.4 10.3 12.1 1.1 1.7 3.9 0.0 0.4 2.7 0.9 3.0 4.9 0.8 2.6 3.2 0.2 0.5 0.9
Y 5.5 10.1 13.5 6.5 7.8 10.0 8.3 9.5 11.8 7.8 10.3 12.1 1.0 1.7 3.9 0.3 0.6 2.7 0.6 3.0 4.8 0.8 2.5 3.2 0.6 0.9 2.1

FE: frozen encoder, DA: data augmentation, BS: balanced sampling, SSQ: same-song query, Q1: lower quartile, Q2: median, Q3: upper quartile

8 6 4 2 0 2 4 6 8
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Figure 3. Performance of the Banquet models with same-

song queries on Q:ALL fine-level stems

Q:ALL are shown in Fig.3. The performances of the model

trained on Q:ALL on the stems from the Q:VDBGP setup

are similar to those in Table 4, with the exception of the

significant drop in performance for the balanced-sampled

trainable-encoder model. Amongst the newly added stems,

there are significant variations in performance, but they are

all still very weak in terms of SNR, with no sample per-

forming above 5 dB SNR. For organs, background vocals,

and both synth stems, the trainable-encoder model yielded

the better upper quartile and maximum performance, but is

also very unreliable. Unfortunately, balanced sampling on

a trainable encoder model only worsened the performance.

DA on a trainable-encoder model with default sampling

slightly improved the lower quartile performance, but is

also accompanied by lower maximum and upper quartile

performance. Frozen-encoder system collapsed for most

long-tail stems in default sampling, but balanced sampling

interestingly was more stable and performed the best for

bass synth, pitched percussion, reeds, and brass. Evi-

dently, the classical tradeoffs are at play here; allowing

the model more flexibility with a trainable encoder also

comes with a higher risk of model collapse or unreliable

performance. More surprisingly, the fact that even a frozen

encoder trained on a VDBO setup was able to function at

all beyond Q:VDB indicates that the embedding space of

a Bandit encoder already contains information that is par-

tially generalizable beyond VDBO, as also observed in [28].

The results of the long-tail stems are somewhat un-

surprising given that the genre distribution in MoisesDB

skewed heavily toward pop, rock, and singer-songwriter.

In addition to the low track counts, these long-tail instru-

ments also tend to have infrequent active segments and rel-

atively softer levels within a song. In fact, of the long-tail

stems, reeds and pitched percussion are the only ones with

median RMS above −35 dBFS. Analysis of the SNR dis-

tribution shows that the model performance is quite cor-

related to the track-level RMS of the target signal (Spear-

man’s ρ between 0.78 and 0.81). This is likely due to a

combination of low data availability and the inherent diffi-

culty associated with cleanly extracting these “supporting”

stems when there are significant spectral overlaps from

more prominent co-occurring stems. In light of the re-

cently published analysis in [53], we may have been too

conservative with our DA setup. In particular, we made a

conscious choice to only perform gain augmentation close

to the original levels, instead of significantly amplifying

softer stems. Whether the latter may improve the result at

all will have to be addressed in future work. Moreover,

given that [34] saw partial success with the predominantly

classical instrumentation of URMP, there may also be an

opportunity for a much more aggressive cross-dataset DA.

6. CONCLUSION

In this work, Banquet, a stem-agnostic single-decoder

query-based source separation system was proposed to ad-

dress MSS beyond the VDBO stems. At 24.9 M trainable

parameters, this highly modularized model with a single

stream of information flow provided strong performance

for vocals, drums, and bass; outperformed significantly

more complex HT-Demucs on guitar and piano; and pro-

vided a proof-of-concept for extractions of additional long-

tail and/or fine-grained stems at no additional complexity.

While there remains room for improvements for long-tail

stems with low data availability, this work demonstrated

the opportunity for further research on single-decoder sys-

tems toward supporting a large and diverse set of stems.
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ABSTRACT

The importance of automatic drum transcription lies in

the potential to extract useful information from a musical

track; however, the low reliability of the models for this

task represents a limiting factor. Indeed, even though in

the recent literature the quality of the generated transcrip-

tion has improved thanks to the curation of large training

datasets via crowdsourcing, there is still a large margin of

improvement for this task to be considered solved. Aiming

to steer the development of future models, we identify the

most common errors from training and testing on the afore-

mentioned crowdsourced datasets. We perform this study

in three steps: First, we detail the quality of the transcrip-

tion for each class of interest; second, we employ a new

metric and a pseudo confusion matrix to quantify different

mistakes in the estimations; last, we compute the agree-

ment between different annotators of the same track to es-

timate the accuracy of the ground-truth. Our findings are

twofold: On the one hand, we observe that the previously

reported issue that less represented instruments (e.g., toms)

are less reliably transcribed is mostly solved now. On the

other hand, cymbal instruments have unprecedented rel-

ative low performance. We provide intuitive explanations

as to why cymbal instruments are difficult to transcribe and

we identify that they represent the main source of disagree-

ment among annotators.

1. INTRODUCTION

Automatic Music Transcription (AMT) is a particularly

important task in music information retrieval because it

provides access to many high-level features of a musical

track, such as its structure, melody, and rhythm. A subtask

of AMT is automatic drum transcription in the presence of

melodic instruments (DTM), which focuses on the estima-

tion of the onsets of drum sounds and the identification of

what drum instruments play them. In this article, we focus

on DTM and specifically on the transcription of drum and

cymbal sounds.

© M. Zehren, M. Alunno, and P. Bientinesi. Licensed un-

der a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: M. Zehren, M. Alunno, and P. Bientinesi, “In-depth

performance analysis of the ADTOF-based algorithm for automatic drum

transcription”, in Proc. of the 25th Int. Society for Music Information

Retrieval Conf., San Francisco, United States, 2024.

Recently, Zehren et al. presented a DTM algorithm,

which we refer to as “ADTOF-based” algorithm, based on

supervised learning from abundant crowdsourced annota-

tions [1]. Thanks to the size and diversity of the datasets,

the algorithm surpasses the accuracy of the previous state-

of-the-art [2]. However, the resulting models are still not

perfect, as their estimations contain mistakes. In this work,

we carefully investigate these state-of-the-art algorithms,

aiming to identify the most common sources of errors.

We evaluated the models in two distinct conditions: (i)

when the training and the testing take place on different

datasets (out-of-domain), and (ii) when they take place on

the same dataset (on-domain). In the first case, the model

is not expected to achieve perfect accuracy because of gen-

eralization errors that can be attributed to differences be-

tween testing and training data. In the second case, testing

on-domain, the errors are more concerning as they suggest

flaws in the algorithm; in fact, if the dataset were large

enough, the model would be expected to learn the data

distribution and therefore achieve nearly perfect accuracy.

Thus, in this study we focus specifically on the most com-

mon errors that arise in the latter case. This was done in

three steps, as described in the following.

First, in order to identify the most difficult instruments

to transcribe, we independently evaluated the performance

of the models on the different instrument classes. When

trained and evaluated on (a different split of) the crowd-

sourced datasets, we observed that the models can reliably

transcribe those instruments that play less often, some-

thing that in previous studies was arguably problematic to

achieve. On the flip side, we also observed that the models

do not transcribe cymbals as precisely as drums.

Second, to understand why cymbals are problematic,

we employed both a new metric, which we named "octave

F-measure", and a pseudo confusion matrix. Through the

new metric, we identified that the models often mistook the

beat subdivision at which cymbals are played. Specifically,

the rhythm estimated is often half or double the speed of

the ground truth (e.g., eighth notes are estimated instead of

quarter notes). Through the pseudo confusion matrix, we

showed that different kinds of cymbals are hard to discern.

Finally, we assessed how much the quality of crowd-

sourced annotations affected the evaluated performance of

the models. Due to discrepancies in the labels, some of

the correct estimations from the models could have been

mistakenly reported as errors. To estimate the accuracy of

the ground truth itself, we quantified the agreement among
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different annotators of the same tracks. Any difference in

the annotations of two or more annotators indicates that at

least one of them made a mistake; this, in turn, leads to a

harsher evaluation of the models than needed.

The remainder of this article is organized as follows:

Previous works on the evaluation of DTM algorithms is

presented in Sec. 2; in Sec. 3 the transcription accuracy

of each class is evaluated, and in Sec. 4 different sources

of errors are quantified; finally, the accuracy of the anno-

tations is estimated in Sec. 5, conclusions are drawn in

Sec. 6.

2. RELATED WORKS

Automatic drum transcription has evolved from a single,

complex task into a series of intermediary steps of in-

creasing difficulty. This evolution facilitated the devel-

opment of new and more efficient algorithms [3]. Pre-

viously, the transcription was limited to simplified audio

tracks or constrained vocabulary sizes. However, recent

progress made through approaches based on supervised

deep learning (DL) has been so significant that it becomes

realistic to tackle such a complex task as the non-simplified

DTM. The development of DL algorithms focused on two

aspects: First, better and more complex architectures are

exploited to improve the capabilities of the models, most

recently with the introduction of the self-attention mech-

anism by Vaswani et al. [4] which has been adapted for

DTM (e.g., [1, 5]). Second, better training procedures are

employed to tune the models, e.g., with the creation of new

datasets [1, 2, 6–9].

The de facto method to measure the accuracy of these

DTM algorithms, as suggested by the Music Informa-

tion Retrieval Evaluation eXchange (Mirex) [10], is the F-

measure (also known as F1 score). This metric is computed

with the harmonic mean between precision and recall of

the drum onsets: An onset is considered correct when its

estimation is within a small distance from the ground truth.

A distance between 20 ms to 50 ms is what is generally

used, but it can be tuned depending on the precision of

the ground truth [1, 11]. Moreover, the F-measure can be

computed at different levels of granularity: from a single

class and track to the overall result for a whole dataset. To

average multiple tracks and classes, the F-measure can be

either computed as the mean value (mean F-measure) or

by joining tracks and classes as if they were part of the

same file and instrument (sum F-measure). In this study,

we rely on the latter because it is more robust to rare edge

cases (e.g., a track or class with very few onsets) [12, p.23].

However, since the F-measure gives the same importance

to all onsets regardless of their position (i.e., strong or

weak beats) or dynamics (loudness), this metric does not

necessarily capture the opinion of human listeners [6].

Besides the F-measure, other tools are also used to as-

sess a transcription. For example, Callender et al. used lis-

tening tests “where raters compared synthesized transcrip-

tions to original recordings” to estimate the perceived qual-

ity of the transcriptions [6]. Vogl et al. relied on confusion

matrices adapted to multi-label classification to identify the

errors performed by their model [2]. Ishizuka et al. pro-

posed a “tatum-level error rate based on the Levenshtein

distance” [5].

Besides questions related to metric issues, the results

of an evaluation are also heavily impacted by the datasets

used for testing. There are a handful of datasets suitable

for DTM which we group into the following three cate-

gories. A thorough description of the datasets is provided

by Zehren et al. [13].

• Small but accurate datasets, which have been

mostly annotated by hand by their creators, such as

RBMA [14], ENST [15], or MDB [16].

• Large but synthetic datasets, synthesized from MIDI

files to generate the input audio, such as TMIDT [2].

• Large but inaccurate datasets, which have been an-

notated by a crowd of people and refined algorithmi-

cally, such as ADTOF-RGW [17], ADTOF-YT [1],

or A2MD [9].

To choose which datasets to use for testing, we singled

out two criteria: First, the characteristics of the datasets

(their data distribution) constitute the distribution in which

the model is evaluated and should ideally be representative

of a real-world situation. For example, testing can be done

on different musical genres [1,2], real-world or synthesized

audio [5], or different mixtures of instruments (e.g., audio

containing four or five sound sources) [18,19]. Second, the

test dataset may be part of the training dataset or be a new

one, never used during training. The latter is known as an

out-of-domain evaluation and, although more challenging,

gives a better approximation of the true performances of

the model (i.e., its generalization capabilities) [1, 20].

3. CLASS-SPECIFIC RESULTS

In this section, we compare the F-measures for different

classes (set of instruments), to identify the most difficult

instruments to transcribe for a model when trained in dif-

ferent ways. For this purpose, we selected the “Frame

self-att” deep-learning architecture, as it has been recently

employed for drum transcription [1], and compared three

existing training procedures: 1) training on TMIDT with

refinement on ENST, MDB, and RBMA [2]; 2) training on

ADTOF-RGW [17]; and 3) training on ADTOF-RGW and

ADTOF-YT [1]. 1

We evaluated the resulting models on a set of

five datasets (RBMA, ENST, MDB, ADTOF-RGW, and

ADTOF-YT), to be representative of a real-world situ-

ation and to include both on-domain and out-of-domain

evaluations. These datasets were carefully mapped to a

common vocabulary containing five classes: bass drum

(BD), snare drum (SD), toms (TT), open and closed hi-

hat (HH), and other cymbals (CY). For the sake of brevity,

in Fig. 1 we only present the results of the tests on ENST

and ADTOF-YT, as these are representative of the tests on

all five datasets.

1 The models are available at github.com/MZehren/ADTOF
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Trained on ADTOF-RGW and ADTOF-YT

Octave F
Previous work

Figure 1: F-measure for the individual classes when testing on ENST (top) and ADTOF-YT (bottom).

First, we analyzed the results on ENST (top) to assess

if and to what extent our results are close to those of the

original authors of the three existing training procedures.

Notably, our reproduction of pre-training on TMIDT with

refinement on the non-crowdsourced datasets by Vogl et

al. (blue bars) is slightly ahead when compared to their

original work (whose results are indicated by the dotted

lines inside the blue bars) [2, p.6]. Due to the fact that

the evaluation was performed on a vocabulary larger than

what we used in our test, a comparison for all instruments

was not possible. The little improvement of our model in

transcribing the instruments that can be directly compared

(BD, SD, TT, and HH) is an indication that we were suc-

cessful in reproducing the original algorithm. The repro-

duction of training on only ADTOF-RGW (orange bars) is

also slightly better than the results reported [17, p.823] (in-

dicated by the dotted lines inside the orange bars). We at-

tribute this improvement to adopting a more random sam-

pling procedure, something that helped train the models;

indeed, compared to the previous work where consecu-

tive (back to back) sequences were drawn between mul-

tiple occurrences of the same track, we sampled randomly

the datasets (i.e., random track and position, without re-

placement), thus creating a more homogeneous training.

Finally, although the reproduction of training on ADTOF-

RGW and ADTOF-YT (green bars) cannot be compared

on the class-specific results since they were not previ-

ously reported, our model achieved virtually the same sum

F-Measure. Namely, when testing on ENST, the model

trained on the two ADTOF datasets matches the perfor-

mance of the model trained on ENST. Thus, ADTOF-based

training, as it allows generalization towards ENST, does

not overfit models.

Second, we analyzed the results achieved on ADTOF-

YT (bottom) to highlight the potential of this dataset. The

model achieved a very high F-measure on ADTOF-YT

when training on both ADTOF datasets [1] (green bars),

and almost a perfect score for BD, which is surprising

considering that this dataset includes the fastest tempi and

the densest sequences of onsets, which intuitively are fea-

tures that hinder transcription. However, we noted that

such a high performance is achieved only when ADTOF-

YT is part of the training data, which means that the other

datasets generalize poorly to it. The fact that only ADTOF-

YT attains such a high accuracy both on-domain and out-

of-domain may be explained by its large size and the ho-

mogeneity of its acoustic and drum patterns (due to the bias

toward the metal music genre).

Third, although training and testing on ADTOF-YT

yields the highest on-domain performance, we observed

that the model has an atypical distribution of performance.

In contrast to the usual result where the less represented in-

struments are less reliably transcribed (e.g., TT when train-

ing and testing on ENST), which is due to a lack of training

examples, here, the model performs worse on frequently

playing instruments. In fact, most of the mistakes of the

model concern the transcription of cymbals (HH and CY).

4. ERRORS IN THE ESTIMATIONS

To identify why the transcription of cymbals is prone to

mistakes, we quantified the errors made by the model when

training and testing on ADTOF-YT. Note that this part of

the study is not interested in the generalization capabili-

ties of the model, but in assessing how well it can learn

the target data distribution when training on it. We analyze

the errors of the model with two tools: First, we approxi-

mated the number of errors due to quiet notes, also known

as ghost notes, in the dataset with the octave F-measure.

Second, we quantified the confusion between the instru-

ments with a pseudo confusion matrix.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

1062



4.1 Octave F-measure

We attribute the low performance for cymbals, after con-

ducting a preliminary inspection of the estimations, to both

a specific characteristic of their timbre —long sustain that

may mask the next onset and the presence of many quiet

notes. 2 Both features make cymbals very challenging to

transcribe and their transcription suffers from false nega-

tives and false positives.

As a first step toward solving this problem, we created

a new metric meant to quantify how often the presence of

quiet notes leads to transcription mistakes. Unfortunately,

because ADTOF-YT does not contain reliable velocity in-

formation in the annotations, we could not estimate the

presence of quiet notes through velocity. Therefore, we

started with an assumption from the expert knowledge ac-

cording to which, in many music genres, cymbals are com-

monly played in alternation between loud (accentuated)

and quiet notes. 3 This insight is in agreement with our

observation that errors in the estimations are often rhythms

that are half or double the speed of the ground truth, so that

the algorithm would transcribe a sequence of quarter notes

where it should be an eighth note or vice versa. Assum-

ing that this mismatch is due to quiet notes, we created the

octave F-measure to allow rhythms that are exactly half or

double the speed of the annotations (white bars in Fig. 1).

A parallel can be drawn with tempo estimation that uses

the “accuracy2” metric which is defined to accept estima-

tions that have a double or triple relationship with ground

truth, disregarding ipso facto the so-called octave tempo er-

rors [21]. The octave F-measure gives us an upper bound

of the performance of the models if these mistakes were not

present in the estimation and the ground truth, and helps us

quantify the issues yet to be solved in the algorithms.

When looking at the octave F-measure on ADTOF-YT,

we confirm the presence of undetected annotations exactly

at the middle point between two estimations, and the pres-

ence of extra estimations exactly at the middle point be-

tween two annotations. This phenomenon is more com-

mon in cymbals than in any other instrument of the drum

kit and it is observed in most of the datasets. In other

words, the models are mistaking the beat subdivision at

which cymbals occur, a problem we attribute to their spe-

cific timbre and alternation between loud and quiet notes.

4.2 Confusion Between Classes

To identify typical errors made by the model on ADTOF-

YT, we employed the pseudo confusion matrix represented

in Fig. 2. Compared to a standard confusion matrix, ours

differs in two aspects: First, since in AMT any time po-

sition may contain multiple labels—different instruments

play simultaneously—the possible sets of labels, instead

of each single class, are uniquely listed in the rows and

2 SD also contains many quiet notes, but not to the same extent as HH
and CY in this dataset.

3 An illustration of this phenomenon can be viewed in the ENST
dataset: Notice how every second HH onsets sounds quieter in
the example video "Drummer 3, Angle 1" https://perso.

telecom-paristech.fr/grichard/ENST-drums/
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Figure 2: Pseudo confusion matrix on ADTOF-YT. The

numbers represent a percentage of the ground truth.

columns of the matrix. 4 As uniquely identifying sets of

labels leads to a large matrix (25 columns and rows with

five classes), we truncated the figure for readability to show

only the most frequent columns and rows. Second, to re-

move the imbalance between classes, we normalized the

rows (i.e., the rows sum up to 100%). Thus, rather than

displaying the count of each set of labels, we represented

their proportion relative to the number of occurrences of

the ground truth.

We categorize the errors (i.e., the cells outside of the

diagonal) in three types following Vogl’s approach [2]: i)

confusion, when the onset is detected but the label is wrong

(false positives with false negatives); ii) masking, when

an onset is missing, presumably because of another one,

correctly detected, hides it (false negatives with true posi-

tives); iii) excitement where an extra onset is detected, pre-

sumably because another one, correctly detected, generates

excitement (false positives with true positives). Addition-

ally, another cause of mistakes, which we do not consider

in this study, might be related to the low number of occur-

rences of some combinations of labels (e.g., BD and SD

played at the same time), which makes them more difficult

to estimate for the model. In Fig. 2, we identified three

trends.

First, the left-most column shows that CY, HH, and SD

are missing ≈ 30% of the time when they play alone; at the

same time, the bottom row highlights that they are incor-

rectly estimated 10 − 20% of the time when there should

be no instrument playing. Surprisingly, this common is-

sue cannot be categorized as due to confusion, masking, or

4 In practice, since onsets that slightly deviate from the correct position
are considered simultaneous, the confusion matrix was created by using
an agglomerative clustering that group onsets with a tolerance of 50 ms.
As a side effect, we do not count the true negatives (i.e., positions without
onsets: ∅ in the ground truth and estimation).
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excitement. Instead, we attribute these two phenomena to

the presence of quiet notes for those three instruments, as

already commented in Section 4.1.

Second, when looking at the intersection of the rows

containing HH with the equivalent columns containing

CY, such as the cell in the row “BD, HH” and column

“BD, CY”, we notice that HH is often confused with CY.

Similarly for the intersection of the rows containing CY

with the equivalent columns containing HH, we observe

that CY is often confused with HH. Again, this highlights

that similar-sounding instruments are misinterpreted, as al-

ready identified by Vogl [2]. However, looking specifically

at the rows “CY” and “HH”, we notice that CY and HH are

less often confused with each other when they occur in iso-

lation. Thus, we conclude that confusion is exacerbated by

the presence of other instruments, likely because of their

masking effects.

Lastly, the second column highlights that TT and SD

are both missed ≈ 30% of the time when they appear with

BD. Presumably because BD’s wide spectral range masks

the other instruments’ spectra, this illustrates that masking

seems to be very prevalent on ADTOF-YT. Excitation, on

the other hand, is not a common issue compared to mask-

ing or confusion. We only notice the presence of an extra

CY onset 9% of the times that “BD, SD” occurs.

In addition to the Octave F-measure that illustrates how

the model misjudges the beat subdivision at which cymbals

are played, the confusion matrix shows that the model does

not differentiate well the cymbals. However, one might

wonder why these issues are prevalent on ADTOF-YT and

not the other datasets.

5. ANNOTATIONS ACCURACY

To understand why the model is prone to make mistakes

specifically with ADTOF-YT, we took a closer look at the

accuracy of its annotations. Both the datasets ADTOF-

RGW and ADTOF-YT are crowdsourced; since human

annotations are not perfect and annotators do not always

agree with each other, we expect mistakes in the datasets.

While a cleansing/cleaning procedure was employed to im-

prove the time position of the annotations and to remove la-

bel ambiguity [1, p.784], it is not realistic to expect that all

mistakes will be corrected. Although DL is generally ro-

bust to label noise [22], incorrect labeling might affect the

models during training and testing, especially with crowd-

sourced datasets that likely contain more mistakes than

non-crowdsourced ones. Specifically during testing, any

error in the annotations is indistinguishable from wrong

estimations of the models and impacts their evaluation.

Therefore, by assessing the accuracy of the annotations, it

is possible to estimate an upper bound of the performance

of the models tested on the dataset. As this bound corre-

sponds to the score achieved by a perfect classifier, it can

show how far the current models are from this ideal.

To estimate the annotations’ accuracy on a dataset and

create a ground truth of high confidence, it is common to

compare labels provided by independent annotators on the

same data and measure the confidence of the annotations,

SUM BD SD TT HH CY
0.00

0.25

0.50

0.75

1.00

F

0.87 0.9 0.95 0.89
0.73

0.83

Duplicated tracks between ADTOF-RGW and ADTOF-YT

SUM BD SD TT HH CY
0.00

0.25

0.50

0.75

1.00

F

0.98 1.0 1.0 0.99 0.95 0.98
Duplicated tracks in ADTOF-YT

Figure 3: Box plots representing the distribution of the

F-measure on tracks present both in ADTOF-RGW and

ADTOF-YT (top) and on duplicated tracks in ADTOF-YT

(bottom).

for example by grouping multiple independent annotations

into a single set (e.g., [23, p.7], [24], [25, p.255]). Fur-

ther, by comparing this ground truth with a new (group of)

annotator(s), one can estimate either the ground truth accu-

racy or the human-level accuracy depending on how much

one trusts the reference group (e.g., [23, p.7 and 31], [26]).

In our context, similarly to what Flexer and Grill [27] did

in their work, we aim to estimate an upper limit of the

score achievable on the datasets by assessing the agree-

ment among human annotators.

To do so, we rely on the tracks that appear multiple

times and are annotated by different persons in the datasets.

After aligning two instances of the same track according to

their annotations, we were able to compute the agreement

between the annotators the same way we evaluate any al-

gorithmic estimation: By taking either set of annotations

as the reference and the other one as the estimation, we

can then compute the F-measure. Note that the results do

not depend on which annotator is used as the reference:

By switching the annotator used as the reference, preci-

sion and recall are also switched, without impacting the

F-measure. The distribution of the F-measure for all the

tracks found both in ADTOF-RGW and ADTOF-YT (34

couples, 4h28min) and duplicated in ADTOF-YT (7 cou-

ples, 34min) is shown in Fig. 3. There are no duplicated

tracks within ADTOF-RGW.

On the one hand, the annotations in duplicated tracks

of ADTOF-YT are almost identical, whereas they differ

between ADTOF-RGW and ADTOF-YT. This is an indi-

cation that the annotators of ADTOF-YT agree more of-

ten with themselves than with the annotators of ADTOF-

RGW. In turn, this is a sign that the annotations of ADTOF-

YT are very accurate. If that is the case, then the models

we evaluated on ADTOF-YT are far from perfect, as they

do not achieve results close to the inter-rater agreement.

However, we acknowledge that this trend is only supported

by seven couples of tracks and further investigation is re-

quired to claim that this dataset contains so few errors.
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On the other hand, the median agreement between an-

notators of ADTOF-RGW and ADTOF-YT is very similar

to the best model’s sum F measure on ADOTF-YT (0.87

for the annotators Fig. 3 compared to 0.85 for the model

Fig. 1). This suggests that the model performs as well

as the annotators of ADTOF-RGW on ADTOF-YT. More-

over, this trend holds for the majority of the classes. Most

notably, both the annotators and the model manifest diffi-

culties with the discrimination between HH and CY (low-

est agreement and performance). Similarly to the models

in the previous sections, we attribute these human errors

both to the fact that one instrument is mistaken for the

other because of their similar timbre, and to the use of dif-

ferent rhythms because of the presence of quiet notes. See

Fig. 4 (top) showing the disagreement between two anno-

tators as an illustration of both phenomena. Although it is

not clear if these discrepancies are part of ADTOF-RGW,

ADTOF-YT, or both, they impact negatively the measure

of the model performance. However, we noticed that the

agreement between annotators is much lower than the per-

formance of the model on BD (0.90 for the annotators com-

pared to 0.97 for the model). This is due to the presence of

simplified annotations in ADTOF-RGW. As represented in

Fig. 4 (bottom), these simplifications are meant to ease the

gameplay when a double bass drum technique is required

(i.e., bass drum notes played with both feet) by omitting

the notes played by the left foot. Despite such simplifica-

tions, the model still manages to achieve a high F-measure

when testing on ADTOF-YT, which does not contain sim-

plified annotations.

Although data is not enough to determine accurately an

upper limit to the performance of the models, we believe

that the agreement we measured among annotators is a rea-

sonably good guess. Because it is not possible to know

which of the annotators made a mistake (possibly both),

the discrepancies between them do not always impact the

measure of the model’s performance, making this estima-

tion pessimistic. 5 However, considering that the best per-

formance we achieve on ADTOF-YT is close to the agree-

ment among humans, it is intuitive that any improvement

of the model beyond this point will not be easily measur-

able. In other words, this model is not far from a perfect

classifier on this dataset.

6. CONCLUSIONS

In this work, we analyzed the performance of a state-of-

the-art model for automatic drum transcription [1]. First,

through the F-measure for the individual classes, we iden-

tified that ADTOF-YT is the only dataset able to train a

model to such a high level of accuracy on its data distribu-

tion. In this context, when training and testing on ADTOF-

YT, the transcription is: almost perfect for the bass drum

(BD), better than previous methods for the sparse class of

tom-toms (TT), but less reliable for cymbals. Second, to

understand why cymbals are more difficult to transcribe,

5 In the hypothetical scenario where each disagreement is caused by
only one of the annotator making a mistake, the discrepancies will affect
the evaluation only 50% of the cases.
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Figure 4: Spectrograms and annotations from ADTOF-

RGW and ADTOF-YT for the first 10s of two tracks. No-

tice the confusion and the use of different subdivisions be-

tween CY and HH (top), as well as the simplification of

the BD for fast rhythms (bottom).

we used a new metric we named Octave F-measure as

well as a pseudo confusion matrix. We then concluded

that what hinders the cymbals’ transcription is their typical

accentuated-note/quiet-note pattern and their similar tim-

bre to each other. Last, because the test data has been an-

notated by many people with different levels of expertise,

we aimed to quantify the errors due to discrepancies in the

ground truth rather than to mistakes made by the model.

By estimating the accuracy of the annotations through the

agreement between multiple annotators of the same tracks,

we identified that the human-level accuracy is on par with

the performance of the model. Thus, it is not clear whether

the differences between the estimations and annotations

originate from the model or the annotators, even though

their causes are the same.

With this study, we quantified the main difficulties faced

by the model or the annotators. The errors caused by the

cymbals could be the focus of future research in ADT,

which we believe could be tackled in one of two ways: Ei-

ther existing annotations could be verified, possibly via a

semi-automatic method relying on the estimation of a pre-

trained model to detect likely errors, or complementary

training data could be generated, possibly in a synthetic

way, to ensure a perfect ground truth.
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ABSTRACT

Automatic piano transcription models are typically evalu-

ated using simple frame- or note-wise information retrieval

(IR) metrics. Such benchmark metrics do not provide in-

sights into the transcription quality of specific musical as-

pects such as articulation, dynamics, or rhythmic precision

of the output, which are essential in the context of expres-

sive performance analysis. Furthermore, in recent years,

MAESTRO has become the de-facto training and evalua-

tion dataset for such models. However, inference perfor-

mance has been observed to deteriorate substantially when

applied on out-of-distribution data, thereby questioning the

suitability and reliability of transcribed outputs from such

models for specific MIR tasks. In this work, we investi-

gate the performance of three state-of-the-art piano tran-

scription models in two experiments. In the first one, we

propose a variety of musically informed evaluation metrics

which, in contrast to the IR metrics, offer more detailed in-

sight into the musical quality of the transcriptions. In the

second experiment, we compare inference performance on

real-world and perturbed audio recordings, and highlight

musical dimensions which our metrics can help explain.

Our experimental results highlight the weaknesses of ex-

isting piano transcription metrics and contribute to a more

musically sound error analysis of transcription outputs.

1. INTRODUCTION

Automatic Music Transcription (AMT) refers to the task

of converting audio signals into symbolic music represen-

tations. The target output format can be a full symbolic

score including quantized rhythm, time signature and pitch

spelling information, or a mid-level physical MIDI(-like)

representation, describing notes in terms of their onset and

offset times, pitch and velocity [1–3].

AMT methods are typically evaluated using informa-

tion retrieval (IR) metrics like precision, recall and F1

score [4]. These IR metrics can be computed at the level of

frames, by comparing binary piano roll-like matrices, or at

© P. Hu, L. Marták, C. Cancino-Chacón and G. Widmer. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: P. Hu, L. Marták, C. Cancino-Chacón and G.

Widmer, “Towards Musically Informed Evaluation of Piano Transcription

Models”, in Proc. of the 25th Int. Society for Music Information Retrieval

Conf., San Francisco, United States, 2024.

the level of note lists, by comparing notes in terms of their

onset, offset, pitch and/or velocity attributes. Each error

(i.e. misplaced frame or note activity) has equal weight, re-

sulting in limited explanatory power of these metrics with

respect to the underlying musical material [1, 5].

As in many other areas in MIR, the current state of the

art is defined by deep neural networks [2,3,6,7]. To a large

extent, this progress has been enabled by the release of the

MAESTRO dataset [8], which made well-aligned audio-

MIDI piano performance data available on a large scale.

The most up-to-date version of the MAESTRO dataset 1

contains close to 200 hours of performance data from

close to 1300 recordings of Western classical piano reper-

toire. State-of-the-art piano transcription systems achieve

beyond 90% frame-level, or 80% note-level F1 scores on

its test split [2, 3, 8, 9], and have led to the release of large-

scale transcribed solo piano performance datasets [10, 11].

Although these results are impressive, we believe that

two important aspects have been largely overlooked: first,

the validity and (lack of) explanatory power of the stan-

dard evaluation metrics with respect to musically relevant

information, and second, the reliability of these transcrip-

tion models on out-of-distribution data. In this work, we

address the first problem by proposing a set of musically

informed evaluation metrics that support a more nuanced

understanding of piano transcription errors. The metrics

are intended to be used in the context of computational

performance studies, and therefore focus on musical di-

mensions that are commonly studied in the context of ex-

pressive piano performance analysis and generation. We

demonstrate our metrics on a subset of the MAESTRO

dataset, which we transcribe using three state-of-the-art

transcription models. In particular, we contrast the per-

formance of these models, as evaluated with the standard

IR metrics, with their performance on musical dimensions

such as timing, articulation and dynamics which we can

evaluate using our set of musically informed metrics.

Then, to elucidate the second problem, we re-record a

subset of the MAESTRO dataset on a Yamaha Disklavier

grand piano and further manipulate the audio recordings

by adding different levels of noise and reverberation. An

analysis of the outputs of these trained transcription mod-

els on these recordings provides some detailed insights

into the lack of generalization on out-of-distribution data.

1 https://magenta.tensorflow.org/datasets/maestro
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We make our set of metrics, data and all experimental

results available at https://github.com/CPJKU/

mpteval.

2. RELATED WORK

This section briefly reviews the standard IR evaluation

metrics along with criticism related to these, followed by

a description of the benchmark datasets typically used for

evaluating transcription methods.

Precision, recall and F1 score are the standard eval-

uation metrics used in AMT [1–4]. They can be com-

puted either at the level of frames or at the level of notes.

For frame-level evaluation, two binary piano roll matrices

M, M̂ ∈ {0, 1}P×T are compared, where p = 1, ..., P
defines the pitch range and t = 1, ..., T the time step (typ-

ically with a resolution of 10ms [4]). Both M and M̂ are

sparse matrices where 1 at a given index p, t indicates that

a note with pitch p is active at time frame t.

Note-level metrics are computed by comparing lists of

notes, in which each note is described by a tuple describ-

ing the onset, offset, pitch, and (where predicted) veloc-

ity. Note-based metrics can be based on onset information

only, onset and offset information (i.e., note durations), or

on predicted onset, offset and velocity. In onset-only note

evaluation, a note is considered correct if its onset falls

within a ±50 ms threshold of its respective target onset.

For onset-and-offset note-level evaluation, the note offset

must fall within the greater of either an offset tolerance

threshold of ±50 ms, or a duration threshold 20% of the

ground truth duration [4]. If velocity is included in the

evaluation, an estimated note is considered correct if its ve-

locity (after some normalization and rescaling operations)

falls within a 0.1 tolerance threshold of the velocity of the

corresponding reference note [1].

The need for better (i.e., musically or perceptually

sound) transcription metrics has been expressed by vari-

ous researchers before. Hawthorne et al. [1] point out that

frame- and onset-only note-level evaluation does not suffi-

ciently capture musically relevant information. Similarly,

Ycart et al. [5] and Daniel et al. [12] focus on the problem

of perceptual saliency of different kinds of transcription

errors and each propose a new, perceptually (more) valid

transcription metric. Finally, McLeod and Steedman [13]

focus on the problem of audio-to-score transcription and

propose a new metric that jointly evaluates voice sepa-

ration, metrical alignment, note value detection and har-

monic analysis along with multi-pitch detection.

With respect to training and evaluation data for solo pi-

ano transcription, until the introduction of MAESTRO [8],

MAPS [14] was used as the standard dataset. Apart from

size, the biggest difference between the two is the diver-

sity of the captured recording environments: while MAE-

STRO exclusively contains Disklavier recordings from the

Yamaha International Piano e-Competition 2 , MAPS con-

tains Disklavier recordings and synthesized audio simulat-

ing various recording environments. The prevailing trend

2 http://piano-e-competition.com/

in evaluating current piano transcription models centers

around the MAESTRO dataset [2, 3, 6], and most models

that do include MAPS in their evaluation [1,3] use the split

proposed in [15], which only includes Disklavier record-

ings in the test split. Both frame- and note-level metrics

are usually computed for each piece in a given test set,

and their mean is subsequently reported as the inference

performance for a given model and dataset/split. Frame-

level metrics are typically higher than note-level ones due

to common known transcription errors such as merged or

segmented notes.

3. MUSICALLY INFORMED METRICS

In this section we describe our proposed metrics that are

meant to capture different musical dimensions commonly

studied in the context of expressive performance. Each

metric compares a ground truth to a predicted MIDI per-

formance by measuring the Pearson correlation between

a performance parameter computed from the ground truth

and from the predicted MIDI, respectively. We choose

a correlational measure to ensure all metrics fall into the

same range. The goal is to quantify dimensions of mu-

sical quality of transcriptions that are otherwise obscured

by standard IR metrics. In particular, we wish to capture

dimensions that are important for computational perfor-

mance studies that make use of automatically transcribed

piano performances.

3.1 Timing

Timing can be described as expressive deviations from the

metrical grid. A common measure of expressive timing

in computational performance analysis is the inter-onset-

interval (IOI), that is, the amount of time passed between

two consecutive notes belonging to the same stream. 3

To evaluate how well a transcription preserves the micro

onset deviations, we predict a monophonic melody line and

the accompaniment part (i.e., all notes not belonging to the

melody line) in a given MIDI using the skyline algorithm

for melody identification [17]. 4

Then we compute the IOIs of these streams both on the

ground truth and predicted performance, and measure their

correlation. Note that for non-strictly monophonic streams

(like the accompaniment part), the IOI between notes that

belong to the same onset (i.e., chords) is zero. The result of

this process gives us two measures, which we call Melody

IOI and Accompaniment IOI.

3.2 Articulation

Articulation in expressive piano performance refers to how

(adjacent) notes are played in terms of their duration, in-

tensity, and clarity, resulting in expressive strategies such

3 We use the term stream as a generalization of the concept of a voice
in polyphonic music [16].

4 The skyline algorithm has been shown to be very competitive in iden-
tifying melody lines in Western classical piano music, even when com-
pared to more recent machine learning-based algorithms. (e.g., see Figure
5 in [18]).
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as legato, staccato or marcato. Computationally, articula-

tion is measured as the ratio between the time interval from

the offset of the current note to the onset of the next note,

and the time between the onsets of the two notes. [19–21].

We use the skyline algorithm [17] to extract mono-

phonic melody and bass lines within a performance, and

compute a sequence of KOR values, for each pair of suc-

cessive note events, for both the target and the predicted

performance MIDI for both streams, and their ratio. We

define three metrics for capturing articulation:

1. Melody KOR: the correlation between the KOR se-

quences of the melody lines of the ground truth and

the predicted performance MIDI.

2. Bass KOR: the correlation between the KOR se-

quences of the bass lines of the ground truth and the

predicted performance MIDI.

3. Ratio KOR: for this metric, we consider the ratio of

KOR sequences of the melody to the bass line. A

ratio KOR greater than 1 indicates that the melody

voice is played more legato than the bass voice. The

Ratio KOR metric is computed as correlation of this

ratio between the ground truth and the predicted per-

formance MIDI.

3.3 Harmony

Aspects such as harmonic tension have been shown to

be determining factors for various performance decisions

(particularly relating to expressive tempo and dynam-

ics [22, 23]). To quantify how well harmonic tension is

preserved in a transcription, we use two features proposed

by Herremans and Chew [24] based on Chew’s spiral array

model [25]. This model is a three dimensional representa-

tion of pitch classes, chords and keys constructed in such a

way that spatial proximity represents close tonal relation-

ships. 5 We use two metrics to capture the preservation of

harmonic tension:

1. Cloud Diameter: this metric measures the maximal

tonal distance as the maximum dispersion between

notes in a musical segment

2. Cloud Momentum: this metric captures the harmonic

movement in a segment as the tonal distance be-

tween consecutive sections.

For both metrics, we compute the respective feature on

overlapping windows for both the ground truth and tran-

scribed MIDI, and measure their correlation.

3.4 Dynamics

For comparing the performance of transcription models re-

garding expressive dynamics, we use the loudness ratio of

the melody and bass lines as a proxy to identify how well

a transcription preserves the dynamics of the performance.

5 We chose this model for its simplicity and music-theoretical ground-
ing. Note that these features were designed for Western tonal music and
may be less effective in capturing tension in other types of music.

composer pieces performances duration (min)

Bach 1 7 23.36
Beethoven 5 28 285.54
Chopin 4 15 150.28
Debussy 2 3 32.06
Glinka 1 2 10.35
Haydn 3 9 90.23
Liszt 3 12 58.98
Mozart 2 4 29.02
Rachmaninoff 2 3 11.87
Schubert 3 17 107.27
Scriabin 1 5 55.05

Total 27 105 854.01

Table 1: Overview of chosen composers, pieces, and perfor-

mances in the MAESTRO subset in our evaluation set.

We estimate the loudness as the “energy” of a stream (i.e.,

melody or bass line), which is computed using the MIDI

velocity following a model proposed by Dannenberg [26].

The loudness ratio is then computed as follows (cf. Equa-

tion 8 in [26]):

R(t) = log

(

m · velmel(t) + b

m · velbass(t) + b

)

(1)

where velmel(t) and velbass(t) are the MIDI velocities of

the melody and bass lines at time t, respectively, and m

and b are constant parameters that depend on the dynamic

range of the audio signal. We compute the loudness ratio

for both the ground truth and estimated performance MIDI,

and compute the correlation between these ratios as our

metric for dynamics. 6

4. DATA

For our experiments, we create an evaluation set with three

subsets:

1. MAESTRO: We select audio recordings from the

MAESTRO dataset, covering a diverse range of mu-

sical repertoire, composers, and performers, using

all (train, validation, and test) splits as provided

by the authors [3]. This choice tests whether the

split category affects model generalization. 7 An

overview of the selected subset is shown in Table 1.

2. Disklavier: We re-record our MAESTRO subset on

a Yamaha Disklavier Enspire ST C1X using the Fo-

cusrite Scarlett 18i8 and a pair of AKG P420 mi-

crophones in a moderately bright, fully carpeted

room with asymmetric geometry and low back-

ground noise level.

3. revnoise: To simulate more challenging real-world

environments, we further add perturbations using

6 Dannenberg’s model was chosen for its simplicity, relying only on
MIDI velocity and dynamic range (note that parameters m and b cancel
each other out when computing the correlation of the loudness ratio).

7 The official MAESTRO splits [8] ensure a unique piece-to-split map-
ping.
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different levels of reverberation and noise (see Sec-

tion 6) on selected recordings from both the MAE-

STRO and Disklavier subsets.

We compare three state-of-the-art piano transcription

models: Onsets and Frames [8] and the Transformer tran-

scription model [3] by Google/Magenta (which we will re-

fer to as OaF and T5 respectively, in the following), and

the high-resolution onset and offset regression model by

Bytedance [2] (referred to as Kong).

We transcribe all the recordings in our MAESTRO,

Disklavier, and revnoise subsets using the (officially pro-

vided) trained models, and these transcriptions then form

our evaluation set. Note that all audio recordings from the

Disklavier and revnoise subsets are only used for testing;

we use the MAESTRO-trained models as they are provided

by the respective authors via their repositories.

5. DEMONSTRATION OF MUSICALLY

INFORMED METRICS

We now discuss the experimental results obtained with the

three systems and explain the relation between our metrics

and the standard IR metrics as computed on transcriptions

of the MAESTRO subset of our evaluation set. We focus

in particular on the musical dimensions that can be better

understood through our metrics. For the standard evalua-

tion, we include the frame-level score, and all note-level F1

scores other than the onset-only one as it does not capture

offset and velocity information. We compute the note-level

metrics with the official mir_eval python implementa-

tion [27].

We start our discussion with Table 2, which summarizes

the evaluation results per model and metric. For compara-

tive reasons, we also include a perceptually informed piano

transcription metric, PEAMT [5].

Generally, it can be observed that the Kong model per-

forms the best across most metrics. This implies that most

of our metrics, overall, correlate with the performance

ranking as measured on the standard metrics. Furthermore,

Metric OaF Kong T5

Frame F1 0.8710 0.9138 0.7048

Note Offset F1 0.6167 0.8736 0.6358

Note Offset Velocity F1 0.5917 0.8587 0.6309

Melody IOI 0.2377 0.5481 0.2217

Accompaniment IOI 0.2168 0.3679 0.4329

Melody KOR 0.4057 0.7415 0.2825

Bass KOR 0.2638 0.6967 0.2672

Ratio KOR 0.4247 0.6938 0.3094

Cloud Diameter 0.7240 0.8301 0.7472

Cloud Momentum 0.2461 0.2250 0.1671

Dynamics 0.5501 0.6503 0.6355

PEAMT [5] 0.6570 0.6241 0.5789

Table 2: Model performance measured by standard

metrics, our musically informed metrics, and PEAMT

[5] on the MAESTRO subset of our evaluation set

it can be seen that the two Magenta models perform con-

siderably different when measured against frame-level F1

score, yet this difference becomes less pronounced when

evaluated on note-level metrics, which would suggest su-

perior performance of the T5 model. Comparing these re-

sults to the model performance as evaluated on our set of

metrics, however, reveals that while both models perform

similarly on onset time prediction, the T5 model is worse at

adequately capturing note durations, particularly in lower

voices/frequency ranges, but superior in estimating MIDI

velocity and the overall loudness ratio between voices than

the OaF model. Lastly, we can observe that the percep-

tually informed PEAMT metric correlates most with the

frame-level and harmony metric Cloud Momentum, which

might suggest (if PEAMT is indeed a veridical listening

model) that listeners place relatively high importance on

harmonic context.

We continue our discussion in Figure 1, which com-

pares the note-offset F1 score per composer (averaged over

pieces and performers) and model to our musically in-
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Figure 1: Model performance comparison as evaluated on note-offset F1 score and our proposed musical metrics, by

composer.
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Figure 2: Relationship between model performance

evaluated on note-offset-velocity F1 score and our pro-

posed dynamics measure.

formed timing, articulation and harmony metrics. We can

see again that the Kong model performs best across all

composers and metrics except for the Accompaniment IOI

timing and the Cloud Momentum harmony metrics. The

fact that it performs better on the Bass KOR articulation

metric, but poorly on those timing accompaniment and har-

mony metrics might suggest that this model detects many

out-of-key extra notes that both erroneously influence the

IOI sequence on the accompaniment part, and the estima-

tion of the tonal context. Interestingly, we can can also

observe, as a general trend, that the F1 score somewhat

deteriorates with increasing virtuoso and challenging mu-

sical repertoire. This general deterioration with increasing

musical difficulty is not reflected correspondingly by our

metrics, which show more variation with respect to differ-

ent composers and aspects of the underlying music: While

the F1 score for Bach, Mozart, Haydn and Schubert all

suggest a near-perfect transcription, our metrics indicate

more diverse results, and e.g., suggest poor(er) accuracy

(and therefore reliability in a performance study context)

in the Melody IOI and Melody KOR metrics. Another illus-

trative example can be found in the case of Chopin: here

again the F1 score (particularly of the Kong model) would

suggest a highly accurate transcription output, while our

metrics reveal that the expressive dimension of articulation

is not well captured. Lastly, we can observe again that

the PEAMT and harmony metric Cloud Momentum show

a similar trend for most composers, suggesting a greater

weight of the harmonic context in that trained metric.

We conclude our discussion by examining the dynam-

ics aspect. Figure 2 illustrates the relationship between the

note-offset-velocity F1 score and our proposed Dynamics

metric. While both metrics show a weak correlation (Pear-

son r = 0.21), the figure also indicates that our metric

evaluates dynamics in a more differentiated way and leads

to a wider range of evaluation results than the standard

metric. Note that our metric only evaluates the dynamics

aspect, in particular how well the overall balance in loud-

ness between different voice streams is preserved in a tran-

scription. It does not account for onset, offset and pitch

information, which also explains the results in the very left

part of the figure that score low on F1 score but high on our

metric.

6. OUT-OF-DISTRIBUTION INFERENCE

In this section we illustrate the problem of out-of-

distribution performance of the models analysed. We be-

lieve that this is an important aspect to emphasize, as tran-

scription models are ultimately intended to be (and have

been) used on real-world audio performances [10, 11].

We approach the problem in two stages: First, we elu-

cidate the problem by performing a short evaluation of

the three analysed models on real-world recordings using

only the standard IR metrics. Second, we simulate more

challenging real-world environments using different lev-

els of noise and reverberation, and evaluate the analysed

models again using the standard and our proposed metrics,

where we highlight how our musically informed metrics

can reveal aspects that the standard metrics would other-

wise have missed.

6.1 Generalization on real-world recordings

Table 3 shows the mean frame- and note-level F1 scores

per model and per piano/acoustic recording environment

on the three splits of the MAESTRO dataset (as they are

officially defined). 8

8 We note that for the two Magenta models, OaF and T5, our evalu-
ation results do not come close to the reported ones in [8] and [3]. The

frame noteoff noteoff−vel

split model/audio OaF Kong T5 OaF Kong T5 OaF Kong T5

train MAESTRO 0.8807 0.9207 0.7262 0.6183 0.8899 0.6350 0.5929 0.8756 0.6308

Disklavier 0.8185 0.8508 0.6157 0.5269 0.7384 0.5132 0.4853 0.6660 0.4663

validation MAESTRO 0.8404 0.8936 0.6546 0.6492 0.8617 0.7117 0.6236 0.8471 0.7063

Disklavier 0.7696 0.8678 0.6093 0.5539 0.8142 0.6570 0.5161 0.7480 0.6031

test MAESTRO 0.8527 0.9002 0.6552 0.5931 0.8215 0.5968 0.5695 0.8041 0.5896

Disklavier 0.8049 0.8530 0.6048 0.4989 0.6979 0.5135 0.4607 0.6304 0.4624

Table 3: Frame-, note-offset, and note-offset-velocity F1 score results computed on our evaluation set, grouped per

data set split, evaluated model and piano / audio environment.
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We group the results per split to test whether the anal-

ysed models would perform worse on out-of-distribution

recordings of performances (pieces) from the test set com-

pared to those from the train/validation sets. Next we

conduct a Kruskal Wallis ANOVA [28] to test for differ-

ences between frame-, note-offset and note-offset-velocity

F1 scores, grouping the evaluation scores each by split and

by audio environment and comparing each model sepa-

rately. For each ANOVA we use a significance threshold of

α = 0.05. The ANOVA on the audio environment dimen-

sion show a statistically significant difference (p < 0.05)

between the MAESTRO and Disklavier audio recordings

for all three analysed models.

The ANOVA on the split dimension yields more differ-

entiated results: For all models, the frame-level F1 scores

are significantly different, and there are no statistically sig-

nificant differences in the note-offset-velocity F1 scores.

For the model by Kong, the note-offset-score is signifi-

cantly different depending on the split, whereas the two

Magenta models show no significant differences. This sug-

gests that the most musically meaningful metric from the

current set of standard metrics [1] does not sufficiently cap-

ture overfitting tendencies.

6.2 Evaluation on perturbed audio recordings

Similar as in Section 5, we again compare our musi-

cally informed metrics to the standard IR and the PEAMT

metrics, however, this time on a set of more challeng-

ing audio recordings. To this end, we choose six (MAE-

STRO and Disklavier) audio recordings which we artifi-

cially perturb by introducing reverberation and synthetic

noise. We use three Impulse-Response filters, modelling

short, medium and long reverberation times (RT60@1kHz

∈ {0.19, 1.85, 10.5} seconds) and sourced from the Ope-

nAIR 9 database. We further add white noise into the

recordings at three different Signal-to-Noise Ratio levels

(SNRdB ∈ {24, 12, 6}). Following a factorial design with

these two independent variables, each with four levels, we

first perturb the audio recordings on all conditions, and

transcribe these recordings using all three analysed mod-

els. Following this procedure, we obtain 284 transcribed

MIDI performances. 10

Each grid cell in Figure 3 compares the mean note-

offset F1 scores per model to the Melody IOI timing metric

and Cloud Momentum harmony metric, where grid rows

represent increasing reverb levels, and grid columns repre-

sent increasing noise levels. Generally, it can be observed

that the performance range of models as measured by the

F1 score is notably reduced compared to our metrics, in-

dicating that our metrics possess higher discriminative ca-

pacity than the standard ones.

As expected, the inference performance of all three

differences are particularly pronounced in the note-level F1 scores.
9 https://www.openair.hosted.york.ac.uk

10 Note that 6 pieces x 4 noise levels x 4 reverberation levels x 3 models
yield 288 transcriptions, but 4 recordings (each at the two higher most of
either reverberation and/or noise levels) resulted in empty transcriptions
(zero predicted note events) by the T5 model, and are therefore excluded
from the evaluation.
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Figure 3: Performance degradation measured by note-

offset F1, Melody IOI and Cloud Momentum metrics.

analysed models deteriorates with increasing noise and

reverberation levels, though the deterioration is less pro-

nounced on the noise than on the reverberation axis.

Furthermore, analysing the results on the timing metric

Melody IOI suggests that the model by Kong predicts onset

times worse with increasing noise levels, while the onset

times prediction by OaF seems to be more resistant to this

form of perturbation. Finally, the results measured on the

harmony metric Cloud Momentum suggest that the overall

harmonic context is relatively well preserved at higher per-

turbation levels by the OaF and Kong models, and less so

by the T5 model.

7. CONCLUSION

In this study, we investigated two aspects that are com-

monly neglected in the evaluation of transcription models:

(i) limited explanatory power of the standard IR evalua-

tion metrics with respect to the underlying musical mate-

rial, and (ii) poor inference on out-of-distribution data. We

study both problems in the context of solo piano transcrip-

tion, and, in addressing the first aspect, propose a set of

musically informed metrics designed to capture more mu-

sically relevant information, particularly for the context of

computational studies of expressive performance.

We demonstrated our metrics on transcriptions obtained

by three state-of-the-art piano transcription models on a

subset of the MAESTRO dataset, the de-facto standard

train and test set for current transcription models, and high-

lighted musical dimensions for which they provide more

informative value than the standard information retrieval

metrics. We have further illustrated the lack of general-

ization with respect to the acoustic environment, both on

real-world and perturbed audio recordings.

Future work in this direction may include an extension

and further validation of our new musically informed met-

rics, in order to capture additional qualities of expressive

performance, potentially by making use of score alignment

information. Additionally, a listening study with human

experts could help further investigate the perceptual valid-

ity of our proposed metrics.
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ABSTRACT

Human music annotation is one of the most important tasks

in music information retrieval (MIR) research. Results of

labeling, tagging, assessment, and evaluation can be used

as training data for machine learning models that estimate

them automatically. For such machine learning purposes,

a single target (e.g., song) is usually annotated by multiple

human annotators, and the results are aggregated by major-

ity voting or averaging. Majority voting, however, requires

the number of annotators to be an odd number, which is

not always possible. And averaging is sensitive to differ-

ences in the judgmental characteristics of each annotator

and cannot be used for ordinal scales. This paper there-

fore proposes that the item response theory (IRT) be used

to aggregate the music annotation results of multiple anno-

tators. IRT-based models can jointly estimate annotators’

characteristics and latent scores (i.e., aggregations of anno-

tation results) of the targets, and they are also applicable to

ordinal scales. We evaluated the IRT-based models in two

actual cases of music annotation — semantic tagging of

music and Likert scale-based evaluation of singing skill —

and compared those models with their simplified models

that do not consider the characteristics of each annotator.

1. INTRODUCTION

Various annotations of music, such as song structure, beat

timing, emotion, genre, singing phoneme, tempo, F0,

singing skill, and preference, play essential roles in music

information retrieval (MIR). The results of these annota-

tions can be used not only for training machine learning

models, such as deep learning models, but also for ana-

lyzing music characteristics. The results of annotations by

different annotators, however, are not necessarily the same

due to the ambiguity in music interpretation as well as to

differences in annotators’ characteristics that are individual

biases stemming from factors like the experience, ability,

and situation of each annotator.

Therefore, in music annotation, multiple annotators are

usually assigned to the same target (e.g., a song or part

© T. Nakano and M. Goto. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution: T.

Nakano and M. Goto, “Using Item Response Theory to Aggregate Music
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Figure 1. Examples of music annotation results of three

annotators. Results of music tagging (binary rating) are ag-

gregated by majority voting. Results of singing skill eval-

uation (7-point Likert rating) are aggregated by averaging.

of a song). Many studies have used multiple annotators

in annotations such as singing semantic tag [1], singing

ability/quality [2, 3], absolute valence-arousal annotation

[4], relative valence-arousal annotation [5], song structure

[6, 7], beat timing [8, 9], music semantic tag [10], and mu-

sical concept [11].

Figure 1 shows two annotation examples by multiple

annotators. The first example, of music tagging, shows that

annotation results of three annotators are aggregated using

majority voting. Each annotator judges whether or not the

semantic tag (music genre tag) “Pop” is applicable to each

of the three target songs. The second example, of singing

skill evaluation, shows that annotation results of three an-

notators are aggregated using averaging. Each annotator

assigns a 7-point Likert rating to assess the singing skill

in each of the three target songs. Multiple music annota-

tion results are thus usually aggregated by two methods,

majority voting [1, 5, 8, 10] and averaging [2–4].

The majority voting method requires an odd number

of annotators, which is not possible in all situations. For

example, if equal numbers of male and female annotators

are required, the total number of annotators will be even.

The binarization caused by majority voting lose informa-

tion, and the averaging method cannot be used for ordinal

scale values. Moreover, the two aggregation methods can-

not take into account the differences in annotators’ charac-

teristics. One example of differences in annotators’ char-
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Figure 2. Examples of aggregation with two different IRT-

based models, the 2PLM and the GRM. Latent scores θ can

be used as aggregated results.

acteristics is that there are differences in the threshold for

determining whether to tag a song in music tagging, and

another is that the level of proficiency considered deserv-

ing of a perfect score in singing skill evaluation can vary

depending on the annotator.

We therefore propose an aggregation method based on

the item response theory (IRT) [12, 13] for music annota-

tions. The IRT can take into account the differences in

annotators’ characteristics and aggregate annotations into

latent continuous values. The first advantage of IRT is that

it can be used with any number of annotators. There is

no need for the number of annotators to be odd, as in ma-

jority voting, since it can estimate latent annotation scores

(i.e., aggregated results) for each piece of music as contin-

uous values. The second advantage is that, when used for

ordinal-scale ratings like Likert scales, it can estimate, for

each annotator, different actual intervals between integer

values of the rating scale.

Figure 2 shows examples of annotation aggregation by

using IRT-based models. Although detailed definitions of

the variables are given later in Section 3, θi is the latent

score of a song si for that tag. bj represents the annotator

qj’s characteristic, meaning the rating threshold. In the bi-

nary rating example on the left side of Figure 2, three item

response functions of music tagging based on the param-

eters of annotators q1, q2, and q3 are shown at the bottom

of the figure. Since the song s3 was tagged by the annota-

tor q2 but not by the annotator q3, the latent score θ3 was

higher than b2 and lower than b3. On the other hand, in the

singing skill evaluation example (i.e., graded/polytomous

rating) on the right side of Figure 2, seven functions for

two annotators q1 and q2 are shown at the bottom of the

figure as the probability that the annotators assigned each

rating point based on a 7-point Likert-based rating. In this

example, a song s2 with the latent score of θ2 has a proba-

bility of being given scores of 3 and 2 by the annotator q1
and q2, respectively. Seven such functions for each anno-

tator represent each of these characteristics.

To show the usefulness of these IRT-based aggregation

methods, we focus on two annotation tasks: music tagging

as an example of binary rating and singing skill evalua-

tion as an example of Likert scale rating. To aggregate the

multiple annotation results, we use the two-parameter lo-

gistic model (2PLM) [13] and the graded response model

(GRM) [14] as well-known IRT-based models. These are

simple and basic models that assume unidimensionality of

latent scores. These models, however, have more parame-

ters (e.g., rating thresholds and intervals) than majority vot-

ing and averaging, and cannot be properly estimated when

the number of data is small [15]. This paper therefore pro-

poses simplified versions of these models, which do not

take into account the differences in annotators’ character-

istics, and then compares them and evaluates which model

is more appropriate according to the information criterion.

2. RELATED WORK

This section describes previous research on music anno-

tation by multiple annotators and the aggregation of their

results. In addition, this section also describes applications

of IRT to annotation cases.

2.1 Music Annotation Results Aggregation

There have been many cases of multiple annotators an-

notating the same songs in music annotation. Studies

on annotators’ agreement have been conducted for mu-

sic genre classification [16, 17], music emotion recogni-

tion [5, 18, 19], music similarity [20], chord [21], and se-

mantic tagging [1,10]. The degree of inter-annotator agree-

ment can be measured by Krippendorff’s α, which is usu-

ally much smaller than 1.0 (perfect agreement) in music

annotation [1,5,18,19,21], meaning that there are disagree-

ments. Since it is only useful for evaluating agreement, not

for aggregating multiple annotations, other methods such

as majority voting are needed [1, 5, 10]. Even though the

numbers of annotators (i.e., frequencies) before majority

voting were used to show the appropriateness of annota-

tions [1,22], they were not utilized as training data for ma-

chine learning despite their potential utility.

Music tagging or labeling is the task of binary anno-

tation, whether tags and labels are assigned or not. Kim

et al. [1] assigned three annotators for semantic tagging of

singing voices and aggregated the results by majority vot-

ing. On the other hand, non-binary values have also been

tagged. Turnbull et al. [10] asked annotators to vote on a

3-point scale of −1 (negative), 0 (unsure), and 1 (positive)

whether the tag indicated the song. To aggregate the votes,

the negative votes were subtracted from the positive votes,

and the result was divided by the number of annotators.

As a polytomous annotation of ordinal scales by multi-

ple annotators, Bogdanov et al. [5] performed relative an-

notation by three annotators and aggregated the results by
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majority voting. Gupta et al. [2] and Sun et al. [3] ag-

gregated singing quality scores on a 5-point Likert scale

by averaging them. Yang et al. [4] assigned more than 10

annotators per song to label valence-arousal values on an

11-point scale and aggregated the results by averaging.

To overcome the limitations discussed in Section 1, we

propose to use IRT for music annotation, which to the best

of our knowledge has not been reported.

2.2 IRT Applications to Annotation

Although IRT has not been used in the MIR field, it has

been used in the research field of natural language pro-

cessing (NLP) [23]. Lalor et al. [24] proposed a method to

generate a gold standard using IRT’s 3PLM to account for

differences in item difficulty in the NLP test set. Martínez-

Plumed et al. [25] also proposed a method to evaluate

the estimation results of multiple machine learning mod-

els using 3PLM, taking into account the item difficulty

of the test set. Otani et al. [26] proposed a framework

for comparative evaluation of translation systems, utiliz-

ing an extension of the GRM. Amidei et al. [27] applied

the IRT-based model to annotator responses and proposed

a method to detect biased annotators through visualization.

As a python package that can handle IRT models, py-irt by

Lalor et al. [28] has been used in NLP research [29, 30].

In crowd sourcing-based annotation not limited to mu-

sic, a strategy of aggregation while estimating the reliabil-

ity of crowd workers has been adopted [31] and referred

to as “learning from crowds” [32]. Khattak et al. [33]

proposed and used an IRT-based model for label estima-

tion in crowd labeling. They showed that the binarized

labels based on the estimated latent scores yield better per-

formance than conventional methods such as majority vot-

ing. Paun et al. [34] evaluated six Bayesian item-response

models that can estimate the “true” response by aggregat-

ing multiple annotations. Several of them can estimate an-

notator characteristics and item difficulty. Irene Martín-

Morató et al. [35] extended the multiple annotator com-

petence estimation (MACE) model [36] and applied it to

the sound event detection task, estimating annotator com-

petence and excluding results from less competent annota-

tors. Cartwright proposed a model using annotator features

for crowdsourced audio quality evaluation [37].

Most closely related to this paper, Uto et al. [38] uti-

lized an IRT-based model to generate training data for a

deep learning model for automatic essay evaluation and to

remove rater bias. This paper contributes differently from

Uto et al. [38] not only by targeting music annotation but

also by using an information criterion to compare two ag-

gregation models and their nine simplified models.

3. IRT-BASED MUSIC ANNOTATION

AGGREGATION

Item response theory (IRT) [12] is a mathematical model-

ing technique for testing and evaluation that was originally

developed in the field of psychometrics. It models mul-

tiple responses (e.g., responses by multiple examinees) to

multiple items (e.g., questions in an exam). In our case, it

models responses to multiple songs by multiple annotators.

In the example in Figure 2, a probability model defines the

relationship between the latent variable θ representing the

latent song score and the parameters a, b representing the

characteristics of the annotators. This allows, for example,

music annotated with the same scores to have different la-

tent scores θ depending on the annotators’ characteristics.

3.1 Model for binary response data

An item response model for binary response data intro-

duces a latent score θi for a song i and represents the prob-

ability that the song is tagged by annotator j as follows:

p
(2PLM)
i,j = [1 + exp(−aj(θi − bj))]

−1, (1)

where we used the 2PLM [13] in which the item response

function is represented by a logistic function. In this equa-

tion, bj is called difficulty because the tag is assigned when

the score θi is higher than its value as shown in Figure 2.

aj is the slope of the logistic function and is called dis-

crimination because it is easier to distinguish whether θi is

higher than bj (whether a tag is assigned) if aj is higher.

3.2 Model for graded response (polytomous) data

The GRM [14] is a model that extends the 2PLM to re-

sponse data with ordinal relationships such as those indi-

cated by different values on a K-point Likert scale. Let

pi,j,k be the probability that an annotator j responds to

song i as category k ∈ 1, ....,K as follows:

pi,j,k = p
∗(GRM)
i,j,k−1 − p

∗(GRM)
i,j,k , (2)

p
∗(GRM)
i,j,k = [1 + exp(−aj(θi − bj,k))]

−1, (3)

where k means the order of the categories. p∗i,j,0 = 1, and

p∗i,j,K = 0. The bj,k represents the difficulty in responding

to categories greater than k in annotator j.

3.3 Nine originally simplified models

To evaluate usefulness of the above 2PLM and GRM in

music annotation, we compare the simpler 1PLM [13]

in which the parameter aj is removed from the 2PLM

(i.e., the slope is not considered) as follows:

p
(1PLM)
i,j = [1 + exp(−(θi − bj))]

−1. (4)

Moreover, we here propose two further simpler models

with reduced parameters, in which the parameters aj and

bj are replaced by a and b (i.e., the characteristics of the

annotator are not considered), as follows:

p
(2PLM′)
i,j = [1 + exp(−a(θi − b))]−1, (5)

p
(1PLM′)
i,j = [1 + exp(−(θi − b))]−1. (6)

Regarding the GRM, we also propose the following

three simplified models based on the same idea:

p
∗(GRM-a)
i,j,k = [1 + exp(−(θi − bj,k))]

−1, (7)

p
∗(GRM′)
i,j,k = [1 + exp(−a(θi − bk))]

−1, (8)

p
∗(GRM-a′)
i,j,k = [1 + exp(−(θi − bk))]

−1. (9)
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Although the GRM is designed for ordinal scales, we fur-

ther propose four simplified models that assume that anno-

tators’ responses are on interval scales (i.e., the intervals

between the (cut) points are equally spaced) as follows.

p
∗(GRMi)
i,j,k = [1 + exp(−aj(θi − (oj + k′bj)))]

−1, (10)

p
∗(GRMi-a)
i,j,k = [1 + exp(−(θi − (oj + k′bj)))]

−1, (11)

p
∗(GRMi′)
i,j,k = [1 + exp(−a(θi − (o+ k′b)))]−1, (12)

p
∗(GRMi-a′)
i,j,k = [1 + exp(−(θi − (o+ k′b)))]−1, (13)

where oj and bj denote the annotator-dependent origins

and intervals, respectively, and o and b are annotator-

independent origin and interval, respectively. We set k′ =
k − 1 in our current implementation.

4. EXPERIMENT

Using the IRT-based models described in the previous sec-

tions, we report the results of aggregating annotation re-

sults from multiple annotators in two real cases (Figure 1):

music tagging (binary response) and singing skill evalua-

tion based on 7-point Likert rating (polytomous response).

4.1 Aggregation of music tagging results

As an actual example of the aggregation of music annota-

tion using the 2PLM, we targeted Japanese lyrics songs in

our in-house database and music tags assigned to them.

4.1.1 Data (songs and annotations)

We prepared 120 songs with Japanese lyrics. However, as

we only aim to demonstrate the effectiveness of the pro-

posed models, any dataset of annotated songs will suffice.

Annotators were six music experts whose native language

was Japanese (three males, referred to as M1-M3, and three

females, referred to as F1-F3). Each annotator tagged 60

songs, half of the 120 songs. To avoid gender distribution

bias, the annotators were divided into two groups of three:

“M1, F1, F3” (Group 1) and “M2, M3, F2” (Group 2), and

the annotators in the same group tagged the same songs.

The annotators were instructed to annotate one or more

of each of 15 genres, 38 subgenres, and 28 semantics.

They tagged genres first, then subgenres and semantics.

The 15 music genres are based on Discogs 1 , which is a

large open database of music genres and has been the tar-

get of research on metadata analysis [39] and music genre

embedding [40, 41]. The 38 subgenres and 28 semantics

(emotions, moods, and themes) were based on previous

works [10, 42–46] using well-known datasets: MagnaTa-

gATune (MTAT) [47], Million Song Dataset (MSD) [48],

MTG-Jamendo [45], and CAL500exp [46]. In total, 81

tags were thus annotated.

4.1.2 Model

As described in Section 3.1, the 2PLM shown in Equation

(hereafter Eqn) (1) and its simplified models (Eqns (4, 5,

6)) are used to model music tagging. For each tag t, we

1 https://www.discogs.com/ja/

Table 1. Pairwise comparison of the four models. The

columns represent the reference models, and the rows rep-

resent the models being compared. Bolded numbers indi-

cate the number of tags with higher ELPD than those of

the model being compared.

Annotator independent Annotator dependent
b a, b bj aj , bj

Model Eqn (6) Eqn (5) Eqn (4) Eqn (1)

b – 15 + 17 54+ 55 21 + 32

a, b 66+ 64 – 61+ 59 46+ 46

bj 27 + 26 20 + 22 – 4 + 4

aj , bj 60+ 49 35 + 35 77+ 77 –

jointly estimate parameters, θti , a
t
j , and btj using binary re-

sponse data U t = {ut
i,j}(i = 1 · · ·N t

s , j = 1 · · ·N t
a).

Here θti represents the latent score of t for song i. atj and

btj represent a characteristic of annotator j. N t
s is the num-

ber of songs and N t
a is the number of annotators.

In this paper we assume the following prior distribu-

tions for the parameters of the 2PLM.

θti ∼ Normal(0.0, 1.0), i = 1 · · ·N t
s , (14)

atj ∼ HalfNormal(1.0), j = 1 · · ·N t
a, (15)

btj ∼ Normal(0.0, 1.0), j = 1 · · ·N t
a. (16)

Here atj is not used when using the 1PLM, and at and bt

are used for the simplified models.

In this paper, since there is no overlap between the

songs annotated by the two groups, we estimate θi by treat-

ing the results for “M1, F1, F3” and “M2, M3, F2” sep-

arately. Thus, the number of songs N t
s = 60 and the

number of annotators N t
a = 3. The model parameters

θ, a, b were estimated directly using the No-U-Turn Sam-

pler (NUTS) [49], a type of Markov chain Monte Carlo

(MCMC) method. We used a python package PyMC5 [50]

to implement it. The number of burn-in samples was set

to 5000, the number of draws to 10000, and the number

of chains to 4. In other words, 40000 posterior samples

were used and their posterior mean was used as the esti-

mation result. Convergence was confirmed using the con-

vergence diagnostic R̂ < 1.01 and effective sample size

(ESS) > 400 as proposed by Vehtari et al. [51].

4.1.3 Results

To evaluate the proposed models, we used expected log

pointwise predictive density (ELPD) values [52] as an in-

formation criterion. To estimate ELPD, we employed the

leave-one-out (LOO) cross-validation estimate with Pareto

smoothed importance sampling (PSIS) [52]. The higher

the ELPD, the better the model. We conducted a pairwise

comparison of the four models to evaluate the 81 tags an-

notated by the two groups. Table 1 shows, for each model

in a column, the number of tagging evaluations that had

a higher ELPD than the model in the corresponding row.

For example, b denotes the model in Eqn (6). Here, the

number of tags with higher ELPD is 66 + 64 = 130 when

compared to the a, b model in Eqn (5). The left side of the

“+” sign indicates the number in Group 1, and the right

side indicates the number in Group 2.

The results in Table 1 show that 1PLM (Eqn (4)) was
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Figure 3. Examples of annotator characteristic curves for

groups of three annotators each, annotating different 60

songs, for the music tag “Pop”. Parameter estimation re-

sults obtained by using annotator-dependent (Eqn (1)) and

annotator-independent (Eqn (5)) models are shown.

most often the best IRT-based model for aggregating music

tagging results. Table 1 also shows that in many cases the

model that does not take into account the characteristics of

annotators (Eqn (6)), was also better. Estimation results for

the annotator-dependent and annotator-independent mod-

els are shown in Figure 3. When the annotators have dif-

ferent characteristics in annotating the tag “Pop” as shown

in Group 2, the annotator-dependent 2PLM model has

higher ELPD value to the simplified annotator-independent

model as expected. Conversely, since the characteristics of

Group 1 annotators are similar, the simplified annotator-

independent model is superior in this case.

4.2 Aggregation of Likert scale evaluation results

As an actual example of the aggregation of music annota-

tion using the GRM and its simplified models, we targeted

the singing of Japanese lyrics in our in-house database and

the results of singing skill evaluation annotated to them.

4.2.1 Data (songs and annotations)

We prepared another database comprising a total of 140

solo singing renditions with Japanese lyrics. This contains

20 songs of RWC-MDB [53], as well as 120 cover ver-

sions in which each of the 20 songs was sung by six addi-

tional singers. Ten songs were sung by male singers, while

the remaining ten songs were sung by female singers. For

120 cover versions, there are a total of 40 singers, 20 male

and 20 female, with a wide variety of singing experience

(i.e., each additional singer sung 3 songs).

These songs were annotated with detailed singing eval-

uations by 10 annotators who are experts for music and

singing: 5 males (M4 to M8) and 5 females (F4 to F8).

Singing evaluations were conducted on the singing voices

mixed with the accompaniments (karaoke). Annotators

conducted a 7-point evaluation from six evaluation per-

spectives: pitch, rhythm, pronunciation, expression, vocal

projection, and overall performance. In order to control

Table 2. 7-point criteria for singing skill evaluation

Score Criteria

7 Professional singer
6 Semi-professional (can receive a reward)
5 Amateur taking lessons to become a pro
4 Good at karaoke
3 Not so good at karaoke, but not so bad
2 Goes to karaoke, but is not very good at it
1 Poor singer and does not go to karaoke

Table 3. Results of the singing evaluation for a female

singer song (evaluation perspective: overall performance).

The singer ID “−” means the original singer.

ID M4 M5 M6 M7 M8 F4 F5 F6 F7 F8

− 6 4 7 5 6 5 6 5 5 6
23 6 5 6 6 7 6 6 6 6 7
26 4 4 5 4 5 3 4 4 5 3
31 3 3 4 4 4 3 4 4 3 3
34 4 3 3 3 3 3 3 3 3 3
37 2 2 2 2 2 2 2 2 2 2
40 1 1 1 1 1 1 1 1 1 1

the evaluation criteria for each annotator, we specified the

criteria shown in Table 2 and presented actual singing ex-

amples for each of the seven scores in advance.

4.2.2 Example of data

Table 3 shows the results of the 7-point evaluation of the

singing skill for an example (RWC-MDB-P No.7) out of

the 20 songs for “overall performance”. Although only

the results of one evaluation perspective for one song are

shown here, these evaluation results were actually obtained

for each of the 140 songs, with the 6 different perspectives.

From Table 3 it can be seen that the evaluation scores

differed among the annotators, and that there were cases

where the evaluation values differed as much as 3 out of 7

points among the annotators (ID “−”). On the other hand,

there were cases where all annotators had the same evalu-

ation value of 1, as in the case of ID 40 for this song.

4.2.3 Model

As described in Section 3.2, the GRM is used to model

the Likert scale in the singing skill evaluation. For each

perspective p, we jointly estimate parameters, θ
p
i , a

p
j , and

b
p
j,k using polytomous response data Xp = {xp

i,j}(i =
1 · · ·Np

s , j = 1 · · ·Np
a ), where Np

s = 140 is the number of

songs, Np
a = 10 is the number of annotators, and K = 7.

In this paper we assume the following prior distribu-

tions for the parameters of the GRM.

θ
p
i ∼ Normal(0.0, 1.0), i = 1 · · ·Np

s , (17)

a
p
j ∼ HalfNormal(1.0), j = 1 · · ·Np

a , (18)

b
p
j,k ∼ Normal(µk, 1.0), k = 1 · · ·K − 1, (19)

where µk is equally spaced from µ1 = −0.1 to µK−1 =
0.1. The models in Eqns (7, 9, 11, 13) do not use a

p
j , and

the models without j use ap and b
p
k.

The prior distributions in the simplified GRM-based

models that assume an interval scale are as follows:

o
p
j ∼ Normal(−4.0, 3.0), j = 1 · · ·Np

a , (20)

b
p
j ∼ HalfNormal(3.0), j = 1 · · ·Np

a . (21)

The MCMC setting was same as in Section 4.1.2.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

1080



Table 4. PSIS-LOO estimates (values of the expected log pointwise predictive density (ELPD)). The higher, the better. The

highest value in each perspective is bolded and underlined, and the second highest value is underlined.

Annotator independent Annotator dependent
o+ k′b bk oj + k′bj bj,k

– a – a – aj – aj
Perspective Eqn (13) Eqn (12) Eqn (9) Eqn (8) Eqn (11) Eqn (10) Eqn (7) Eqn (3)

Expression −1864.0 −1720.8 −1857.3 −1699.8 −1864.1 −1685.3 −1871.9 −1706.7

Overall performance −1729.6 −1496.4 −1726.9 −1456.4 −1729.5 −1414.6 −1759.1 −1528.5

Pitch −1871.2 −1712.3 −1853.8 −1658.8 −1870.9 −1569.6 −1796.9 −1600.8

Pronunciation −1887.3 −1773.9 −1870.8 −1747.5 −1887.2 −1741.3 −1885.6 −1763.9

Rhythm −1903.3 −1794.1 −1868.1 −1746.4 −1903.5 −1698.0 −1825.0 −1702.2

Vocal projection −1828.1 −1671.3 −1807.4 −1630.1 −1828.1 −1608.6 −1832.3 −1667.7
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Annotator-dependent interval scale
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Annotator-dependent ordinal scale

M5

F4
1
2
3

5
6
7

4

4-4 0
0

1
0

1

θ

θ

p

Eqn (8)

Annotator-independent ordinal scale

Figure 4. Item response category characteristic curves based on estimates of the parameters of annotators M5 and F4 for

“overall performance”. The leftmost curves are for a simplified model (Eqn (10)) with interval scales. The center curves

are for a simplified annotator-independent GRM-based model (Eqn (8)). The rightmost are for the GRM model (Eqn (3)).

4.2.4 Results

Table 4 shows the results of the model comparison. The

model assuming annotator-dependent and interval mea-

sures (Eqn (10)) always performed the best. The second-

best performing model was the annotator-independent one

with variable intervals between cut points (Eqn (8)), or one

that is the GRM (Eqn (3)).

Figure 4 visualizes the characteristics of two annotators,

M5 and F4, by the three models that obtained the best eval-

uation results in Table 4. It can be seen that, given the same

annotation data, the best simplified model in Eqn (10) esti-

mates an equal interval scale for each annotator. While the

GRM model in Eqn (3) can estimate the intervals that vary

depending on both the seven categories and the two annota-

tors, the simplified GRM-based model of Eqn (8) estimates

the intervals that are shared by the ten annotators. These

results suggest that evaluation scores tend to vary in in-

tervals between annotators and/or within annotators. This

means that these models potentially outperform conven-

tional averaging-based methods, which assume annotator-

independence and interval scales.

5. DISCUSSION

In the task of estimating music tags by using deep learn-

ing, binary labels are used to indicate whether the tag is as-

signed (1) or not (0), and are learned using the binary cross

entropy loss [54]. Thus a continuous value of 0 to 1 is ob-

tained during prediction, but the training data did not have

such a continuum. In actual music tagging, however, the

lack of perfect agreement among annotators means that it

would be useful to represent each tag as a continuous value

θ obtained by IRT when preparing the ground-truth train-

ing data for each tag. In fact, there are studies that have an-

alyzed the degree of such agreement based on the annota-

tion results of multiple annotators in the annotation of seg-

ment boundaries of music structure in a musical piece [22].

In addition, if Likert scale-based ratings are used as

machine learning data, they are typically averaged to ob-

tain aggregated values. However, our experimental results

show that these intervals can indeed differ among anno-

tators. Thus, the proposed IRT-based aggregation has the

advantage of dealing with ordinal scales.

In deep learning, there are methods to output discrete

categories with ordinal relations by replacing the ordinal

regression problem with binary classification subproblems

and aggregating them [55, 56]. The IRT-based aggregation

can replace ordinal regression as a regression problem and

treat it with continuous values, which has the potential to

improve machine learning performance even more.

6. CONCLUSION

This paper proposes the use of IRT for aggregating mu-

sic annotation results from multiple annotators. Among

the diverse types of music annotation, we targeted tagging

and Likert scale-based evaluation, both of which have high

practical potential. Specifically, we focused on aggregating

results of music semantic tagging and singing skill evalu-

ation using IRT’s 2PLM and GRM, respectively. We also

proposed nine simplified models and verified the effective-

ness of the proposed IRT-based models.

In the future, we plan to evaluate the effectiveness of

IRT-based models on various datasets and annotations. De-

pending on the dataset, there may be new challenges to

consider, such as introducing models to estimate the reli-

ability and competence of the annotators [34–36]. More-

over, we will verify the effectiveness of using θ as training

data in machine learning.
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ABSTRACT

We propose an efficient workflow for high-quality of-

fline alignment of in-the-wild performance audio and cor-

responding sheet music scans (images). 1 Recent work

on audio-to-score alignment extends dynamic time warp-

ing (DTW) to be theoretically able to handle jumps in

sheet music induced by repeat signs—this method requires

no human annotations, but we show that it often yields

low-quality alignments. As an alternative, we propose a

workflow and interface that allows users to quickly anno-

tate jumps (by clicking on repeat signs), requiring a small

amount of human supervision but yielding much higher

quality alignments on average. Additionally, we refine au-

dio and score feature representations to improve alignment

quality by: (1) integrating measure detection into the score

feature representation, and (2) using raw onset prediction

probabilities from a music transcription model instead of

piano roll. We propose an evaluation protocol for audio-

to-score alignment that computes the distance between the

estimated and ground truth alignment in units of measures.

Under this evaluation, we find that our proposed jump an-

notation workflow and improved feature representations

together improve alignment accuracy by 150% relative to

prior work (33% → 82%).

1. INTRODUCTION

Sheet music has been used as a primary means of commu-

nicating musical ideas for centuries. Accordingly, sheet

music is a profoundly important modality for MIR, not

only because of the breadth of musical knowledge and his-

tory contained within, but also because sheet music consti-

tutes a vital interface between MIR systems and musicians.

However, while multimodal MIR systems are rapidly im-

proving at tasks like music transcription [3–6] and control-

lable generation [7–9], these systems typically operate on

MIDI as a symbolic music format. This may be less use-

ful to musicians, e.g., a musician might prefer transcription

systems to output sheet music instead of MIDI.

1 Video examples: https://bit.ly/jltr-ismir2024
Code: https://github.com/irmakbky/jltr-alignment
Corresponding author: Irmak Bukey <ibukey@cs.cmu.edu>
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We conjecture that the scarcity of fine-grained align-

ment data linking sheet music to corresponding perfor-

mance audio is a key bottleneck to incorporating sheet mu-

sic into multimodal MIR systems. Alignments allow multi-

modal MIR data to be segmented into input-output chunks

of tractable length for training models, and the lack of sheet

music alignments may partially explain why sheet music

is mostly overlooked. Moreover, alignments have practical

utility outside of multimodal MIR, e.g., they may be used

by musicians to practice along with pre-recorded accom-

paniments. Unfortunately, collecting alignments is decep-

tively tricky. For example, one could have a musician use a

touch screen to point to the current location in sheet music

while listening to a recording in real time. However, their

tracking may be imprecise (due to expressive performance

timing) and lack non-obvious details that are essential for

segmentation (bar line locations, number of active staves).

In this work, we investigate the task of alignment of

offline in-the-wild performance audio and corresponding

sheet music scans (images), with a long-term goal of

aligning large corpora of sheet music and performance

recordings at scale. Much of the past work on audio-

to-score alignment make at least one of several common

assumptions that inhibit their practicality for collecting

aligned data at scale: (i) the presumed availability of dig-

ital scores like MIDI or MusicXML as opposed to sheet

music images [10–14], (ii) the alignment of MIDI perfor-

mances or synthesized audio instead of real audio record-

ings [12, 15, 16], (iii) limitations in instrument diversity,

commonly piano only [10, 16, 17], or (iv) dependence on

time-consuming human annotation [18, 19].

Here we propose an audio-to-score alignment proce-

dure that makes none of these assumptions, potentially of-

fering a path forward for large-scale data collection. Most

closely related to our approach is that of Shan et al. [16,17],

who examine offline alignment of in-the-wild piano sheet

music images and performance recordings by aligning fea-

ture representations derived from the score and audio via

MIR methods. In addition to operating on more diverse

ensembles, our work has two primary distinctions: (1) we

take a different approach to handling jumps in scores, and

(2) we modify their feature representations.

A key challenge in audio-to-score alignment is handling

inter-measure jumps in scores induced by repeat signs.

Shan et al. [16,17] propose extensions to DTW that are ca-

pable of automatically handling jumps. Here we propose a

pragmatic alternative: a workflow and interface that allows

humans to quickly annotate jumps, and a system that incor-

1085



1

21 3

2

3 4

21 3 4

Score 

(PDF)

Audio 

(MP3)

Repeat 

Labels

Make Bootleg Score

Transcription

DTW Alignment

Measure 

Detection Bounding boxes

Bootleg score

Note onset probabilities

Proposed

system

Proposed systemTask of audio-to-score alignment

Input:

Score, Repeats, Audio

Output:

Alignment

4

Figure 1. An overview of the task of audio-to-score alignment and our proposed approach. Given a score image (as a PDF)

and corresponding performance audio (e.g., an MP3) as input, the task involves outputting an alignment between time in the

recording and playheads in the score image. A key challenge in this task is handling jumps in the score, e.g., those created

by repeat signs. In lieu of robust automatic methods for detecting or handling jumps, we propose a pragmatic approach of

having experts simply label the repeats, which can be done quickly and greatly improves task performance. Our proposed

system combines the repeat labels with score feature representations inspired by past work on bootleg scores [1]. This score

representation is aligned with audio feature representations inspired by [2] using ordinary DTW.

porates these jump labels. We find that this approach can

yield much higher-quality alignments than the automatic

one, costing only seconds of annotator time.

We additionally extend the bootleg score feature rep-

resentations used by Shan et al. [17], first proposed by

Yang et al. [1]. Creating a bootleg score involves detect-

ing noteheads and staff lines to produce a simple binary

representation of a score that is conducive to alignment.

We find that the use of measure bounding box detection

as a preprocessing step improves the quality of underlying

notehead and staff line detection algorithms. Additionally,

motivated by findings in [2], we find that using raw on-

set probabilities predicted by a music transcription model

as the audio feature representation produces higher quality

alignments than using the MIDI transcriptions—see Fig-

ure 1 for a summary.

Motivated by our long-term goals of bringing sheet mu-

sic into multimodal MIR, we also propose a new measure-

aware evaluation scheme for comparing alignments. We

speculate that measure-level alignment granularity is nec-

essary for tractable training of multimodal MIR systems

in the short term and that human perception of alignment

quality is tied to measures. Accordingly, we prescribe

new measure-aware alignment metrics for this task, such

as an accuracy metric which reports the proportion of time

where the estimated alignment is within a half measure ra-

dius of the ground truth alignment. On a small but diverse

dataset of in-the-wild sheet music and aligned audio [18],

we observe that our proposed system achieves an accuracy

of 120% relative to that of Shan et al. (33% → 72%). By

providing repeat labels, we improve the absolute accuracy

of our system from 20% → 83% on a subset of pieces that

have repeats. Our work makes the following contributions:

• A system capable of high-quality in-the-wild align-

ment of sheet music images and performance audio.

• A pragmatic workflow we call Just Label The Re-

peats that further improves alignment accuracy.

• An interface that enables rapid jump annotation.

2. TASK DESCRIPTION

Motivated by Thickstun et al. [20], here we formalize

both the task of in-the-wild audio-to-score alignment and

our proposed measure-aware evaluation. For a sheet mu-

sic image with P pages (henceforth, a score), we de-

fine a score playhead (aligned position marker) as a tuple

(p, y, h, x) ∈ S = {0, . . . , P − 1} × [0, 1]3, where p is the

page number, y and h are the offset and height of the cur-

rent system (collection of staves) relative to the top edge

and height of the page, and x is the playhead offset relative

to the left edge of the page (see Figure 2). An analogous

audio playhead is comparatively straightforward: a times-

tamp t ∈ [0, T ), where T is the audio length in seconds.

An alignment is a mapping from audio to score playheads,

i.e., [0, T ) → S .

Figure 2. A score playhead (blue line), the output of an

audio-to-score alignment, is characterized by its vertical

offset (y), horizontal offset (x), and height (h), all rela-

tive to the page. A measure-aware alignment is indexed by

m, a fractional measure, that can be converted to a score

playhead by lookup and interpolation in a list of bound-

ing boxes (brown outlines). Our measure-aware evaluation

compares estimated playheads m′ to ground truth m∗.
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2.1 Measure-aware alignment

The above task definition is intended to be broad enough

to encompass both past and future work on this task. Here

we define a more specific form of alignment based around

the location and ordering of measures in the score.

In this setting, measures are characterized by an ordered

list of M bounding boxes M = [b0, . . . , bM−1], where

bi = (bpi , b
y
i , b

h
i , b

x
i , b

w
i ). Respectively, this tuple defines

for each bounding box its page number, vertical offset,

height, horizontal offset, and width. The ordering of this

list is defined as the logical order that an expert would tra-

verse when performing the piece—all jumps (repeat signs,

Dal segno, etc.) are unrolled. For example, a score with 4
measures and a repeat implies that M = 8 and bi = bi+4.

Given a list of bounding boxes, a measure-aware score

playhead can be characterized by a single continuous value

m ∈ [0,M), where b⌊m⌋ is the bounding box of the cur-

rent measure and fractional residual m − ⌊m⌋ represents

the offset from the left edge of the bounding box relative

to its width. To convert a measure-aware score playhead

in [0,M) to an ordinary score playhead in S , we define

hM : m 7→ (bp⌊m⌋, b
y

⌊m⌋, b
h
⌊m⌋, b

x
⌊m⌋ + bw⌊m⌋(m− ⌊m⌋)).

Given M, a measure-aware alignment is a function

g : [0, T ) → [0,M). Because outputs of g index logi-

cal order (where jumps are unrolled), a measure-aware

alignment g is a monotonically increasing function, i.e.,

g(ta) ≤ g(tb) ⇐⇒ ta ≤ tb. Furthermore, we can com-

pose hM and g to induce an alignment that outputs score

playheads, i.e., hM ◦ g : [0, T ) → S .

2.2 Measure-aware evaluation

Here we propose three measure-aware metrics for evaluat-

ing estimated alignments. Our primary evaluation met-

ric, MAcc, is defined as the proportion of time where

the estimated score playhead is within a half measure

radius of the ground truth score playhead, which we

posit is sufficiently precise for broader goals of multimodal

MIR systems. MErr and MDev are the mean and standard

deviation (across time) of the absolute error between the

estimated and ground truth playheads in units of ground

truth measures.

More formally, given a ground truth measure-aware

alignment g∗ characterized by measures M
∗, and an es-

timated alignment g′ characterized by M
′, we define:

MDiff(t) = Reindex(g′(t),M′,M∗)− g∗(t),

MAcc ≡
1

N

N−1
∑

i=0

{

1 if |MDiff(Ti
N
)| ≤ 1

2

0 otherwise.

MErr ≡
1

N

N−1
∑

i=0

∣

∣

∣

∣

MDiff

(

T i

N

)
∣

∣

∣

∣

,

MDev ≡

√

√

√

√

1

N

N−1
∑

i=0

MDiff

(

T i

N

)2

We set N = 100T , i.e., we compute all metrics at a res-

olution of 100 comparisons per second. As an example,

Figure 2 shows a single comparison where MDiff = 0.25.

The Reindex procedure ensures that the evaluation is

based in units of ground truth measure indices, despite po-

tential discrepancies between M
′ and M

∗. Informally, this

procedure matches each box in M
′ to the box in M

∗ that it

is closest to in terms of Euclidean distance between mid-

points, using the ordering from M
∗ to break ties that occur

for repeated measures.

3. SYSTEM DESCRIPTION

In this section, we detail our proposed system for in-the-

wild audio-to-score alignment. At a high level, our method

uses DTW to align piano roll-like feature representations

extracted independently from the audio and score (Fig-

ure 1). Both representations are matrices where one axis

corresponds to time (either in units of seconds or mea-

sures) and the other corresponds to 88 MIDI pitches from

A0 to C8 (piano range). Specifically, score feature repre-

sentations are matrices in {0, 1}48M×88 (binary) where M

is the number of measures in the score, and audio feature

representations are matrices in [0, 1]Tfk×88 (continuous)

for performance length T and frame rate fk = 31Hz.

3.1 Score feature representation

Our proposed score feature representation is an extension

of bootleg scores proposed by Yang et al. [1]. Extracting

bootleg scores involves detecting noteheads and staff lines,

and then combining this information into a binary matrix

where a 1 encodes the presence of a notehead at a par-

ticular horizontal position on a particular staff line. Our

system extends this representation in two ways: (1) we use

measure detection as a preprocessing step and run note-

head detection algorithms on segmented measure images

instead of full pages, and (2) we translate notehead posi-

tions on staff lines into MIDI pitches before alignment.

Measure, notehead and staff line detection. We use

the methods from [1] to detect noteheads and staff lines

from score images. Instead of operating on full page im-

ages, we first segment pages into measures using the mea-

sure detection model from [21], and detect noteheads and

staff lines on individual measure images resized to fixed

dimensions. In preliminary experiments, we found that

measure segmentation improved detection consistency—

our intuition is that these methods are sensitive to absolute

pixel sizes of noteheads and stafflines, and resizing individ-

ual measures to uniform size reduces variance in the sizes

of these attributes across measures and pieces. Here we

resize measures by resizing the smaller of their height and

width to 900 pixels, preserving aspect ratio for the larger of

the two. For each notehead, we retain its bootleg location,

defined as its raw (pixel-wise) horizontal location within

the measure, and its semantic (discrete) vertical position

within the detected staff lines (e.g., an F and G natural in

treble clef are one apart in their staff positions).

Piano rolls. We create a binary piano roll-like repre-

sentation of the score using the bootleg locations of note-

heads. Specifically, for each logical measure image index

k ∈ {0, . . . ,M − 1}, we construct a binary matrix Sk ∈
{0, 1}48×88, where a 1 at row i and column j corresponds

to a notehead with horizontal location i
48

relative to the
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measure width, and its staff position converted to a pitch j.

We pick a measure representation to have 48 rows to give

sufficient resolution to a variety of rhythmic patterns and

note durations. We concatenate [S0, . . . , SM−1] together

to form our final representation S ∈ {0, 1}48M×88.

Converting staff position to pitch. A key obstacle is

that, without key signature and clef information, the map-

ping from staff positions to MIDI pitches is ambiguous. If

we had these attributes, we could simply look up the pitch

associated with each staff line. However, we found existing

OMR systems to have brittle support for detecting this in-

formation for in-the-wild sheet music—hence, our method

does not assume that we have access to this information.

Accordingly, we convert bootleg scores into piano rolls by

simply assuming treble and bass clefs respectively when

two staves are detected—if more or fewer staves are de-

tected, we default to the treble clef— and the key of C ma-

jor. Surprisingly, perhaps because of the global optimality

of DTW, these assumptions lead to reasonable alignments

even when they are incorrect. We note that ground truth

key signature and clef information for each measure can

be fed into our method to facilitate and improve this con-

version, but we do not require it.

3.2 Audio feature representation

Our audio feature representation pipeline is comparatively

simple. To compute it, we simply pass the audio through

the Onsets and Frames piano transcription model [3]. Mo-

tivated by [2], we use the raw onset prediction probabilities

from this model as our audio feature representation, which

is a matrix in [0, 1]Tfk×88. Despite this transcription model

being trained on piano, we find that its onset probabilities

can yield reasonable alignments even for non-piano audio.

3.3 Alignment

Finally, we align the score representations in {0, 1}48M×88

and audio representations in R
Tfk×88. We use the imple-

mentation of standard DTW from librosa [22] with de-

fault parameters: equal-weighted transitions (1, 1), (0, 1),
and (1, 0), and Euclidean distance to compute costs.

4. EXPERIMENTS

Here we detail our experiments, which center around com-

paring our proposed method to that of Shan et al. [17] on

the MeSA-13 [18] and SMR [1] datasets using our pro-

posed measure-level evaluation (see Section 2.2).

4.1 Datasets

We evaluate our approach and relevant baselines on two

different datasets. The first is MeSA-13 [18], a dataset of

13 sheet music scans and corresponding real (i.e., not syn-

thesized) performance audio. This dataset contains expert

annotations of measure bounding boxes in logical order

(M∗) and the timestamp of every measure in the perfor-

mance audio (we linearly interpolate between timestamps

to get a continuous ground truth mapping g∗). While small,

MeSA-13 has reasonable diversity in score typesetting,

performance acoustics (two pieces feature instruments be-

sides piano), and jumps (two pieces have repeats).

The second dataset is a subset of the Sheet MIDI Re-

trieval v1.0 (SMR) dataset [1]. The full dataset contains

scanned scores from IMSLP for 100 solo piano pieces

(none of which have jumps), corresponding MIDI perfor-

mances synthesized as audio, and human annotations of

measures per line and measure timestamps. Of notable ab-

sence are annotations of measure bounding boxes, which

are required for our proposed evaluation. Accordingly, we

detect measures [21] and discard pieces where the detec-

tions do not agree with annotations of measures per line—

this leaves us with a subset of 60 pieces for evaluation.

Henceforth, SMR refers to this subset.

4.2 Access to additional annotations

We primarily evaluate systems in an automatic setting

where systems are only given the score and audio as input.

Because our system can incorporate additional score anno-

tations when available, we also evaluate in settings where

our system has access to additional annotations from the

ground truth, simulating workflows where experts are in

the loop during alignment. Specifically, we explore set-

tings where our method has access to ground truth repeat

annotations (R), measure bounding boxes (M), and staff in-

formation (S)—clef and key signatures. We only evaluate

in these settings on MeSA-13 where we have these labels.

4.3 Baselines

We compare the performance of our system, composed of

our feature extraction pipeline and vanilla DTW, to that

of [17]. In the latter system, the feature extraction pipeline

uses bootleg scores and staff line detection on the score im-

ages to extract staff lines (referred to as segments). For au-

dio features, a transcribed MIDI representation is obtained

from the Onsets and Frames piano transcription model [3]

which is then used to compute bootleg scores. Finally, Hi-

erarchical DTW performs a segment-level alignment be-

tween score features and audio features while handling

jumps and repeats that occur at segment boundaries, but

not those within segments. Thus, we opt to evaluate this

baseline approach at the measure level instead of the seg-

ment level (which also allows for comparison with our

system) by converting the segment-level alignment to a

measure-level one via an algorithm with several key steps.

We first use measure detection [21] to locate measures

in each segment. Then, we map segment indices to mea-

sure indices based on the positions of detected measures.

Finally, we turn the given alignment between audio times-

tamps and segment indices to one between audio times-

tamps and measure indices via linear interpolation.

We compare these two systems as proposed instead of

comparing their components for two reasons. First, in [17]

it is claimed the system performs segment-level alignment

on pieces without repeat info; we aim to test this. Sec-

ond, while Hierarchical DTW allows backwards jumps to

prior segments, it only allows forward jumps to one seg-

ment past the last one seen. Using Hierarchical DTW at

the measure level would limit possible forward jumps to

only one measure past the last one observed, which is in-

sufficient for realistic alignment tasks.
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Dataset Given System MAcc MErr MDev

M13 - [17] 0.33 10.9 11.6

- Ours 0.72 1.9 3.7

R† Ours 0.82 0.4 0.2

R,M Ours 0.86 0.4 0.2

R,M,S Ours 0.88 0.3 0.2

M13R - [17] 0.17 23.6 10.2

- Ours 0.20 10.0 3.0

R† Ours 0.83 0.3 0.0

R,M Ours 0.93 0.2 0.0

R,M,S Ours 0.95 0.2 0.0

M13NR - [17] 0.36 8.6 10.2

- Ours 0.82 0.4 0.2

R† Ours 0.82 0.4 0.2

R,M Ours 0.85 0.4 0.3

R,M,S Ours 0.87 0.3 0.2

SMR - [17] 0.36 14.2 18.7

- Ours 0.82 2.9 18.8

Table 1. Evaluation on MeSA-13 (including subsets with

Repeats and No Repeats) and SMR. Our method outper-

forms that of [17] across all datasets except the subset of

MeSA-13 with no repeats. R† is our recommended setting

where our method is given access to ground truth Repeats

that require little time for humans to annotate—we observe

limited gains from more time-consuming annotations of

Measure bounding boxes and Staff metadata.

4.4 Results and discussion

In Table 1, we report the measure-level alignment met-

rics (Section 2.2) of our system in all four settings and

the system of [17] across the MeSA-13 (M13) and SMR

datasets. To emphasize the effect of jumps on alignment

performance, we separately report performance on the sub-

set of MeSA-13 pieces with and without repeats (M13R

and M13NR, respectively).

We observe that our system outperforms that of [17] in

the automatic setting across all datasets. The superior per-

formance of our system over that of [17] is likely due to

our refinements to feature representations. We also note

here that the system of [17] is designed to work on line-

level, therefore evaluating it using our measure-level met-

ric yields lower accuracy than what was reported in [17].

Additionally, we observe that given repeats and ground

truth measure annotations, our system’s performance im-

proves by 22% relative (MAcc 0.72 → 0.88) on M13.

However, we also observe a relative performance improve-

ment of 14% (MAcc 0.72 → 0.82) using our system on

the same dataset when we only pass in repeats. Given that

repeats are much easier for humans to annotate than mea-

sure bounding boxes, we propose to have humans just la-

bel the repeats as a recommended tradeoff between align-

ment quality and annotator time. We also explore provid-

ing our system with measure-level key signature and clef

Representation M13 SMR

Onset probabilities 0.88 0.82

Onset predictions 0.86 0.82

Frame probabilities 0.70 0.53

Frame predictions 0.66 0.51

MIDI 0.46 0.20

Table 2. Evaluation of measure-aware alignment accura-

cies (MAcc) achieved by different audio feature represen-

tations obtained from the Onsets and Frames piano tran-

scription model [3] on MeSA-13 and SMR.

information, finding that this information only marginally

improves performance relative to the default key and clef

assumptions described in Section 3.1.

4.5 Different audio feature representations

Here we compare alternative audio feature representations

by evaluating MAcc on M13 given all additional infor-

mation (i.e., the R,M,S setting described in Section 4.2).

While we primarily use raw onset prediction probabilities

(Section 3.2), the Onsets and Frames model [3] provides

other possibilities including onset predictions (thresholded

probabilities), frame probabilities and predictions, and the

postprocessed MIDI transcription converted to piano roll

(see [3] for details). Table 2 shows that onsets consistently

outperform frames as an alignment representation—our in-

tuition is that onsets are more appropriate for our setting as

the bootleg score representation does not encode note dura-

tions. Additionally, while transcribed MIDI is a common

feature representation for music alignment, in our setting

we find it to be the worst choice.

5. LABELING INTERFACE

Here we describe a web-based interface that we built to en-

able experts to quickly annotate jumps in scores (induced

by repeat signs, D.S. al coda, etc.). Our experiments show

large improvements in alignment quality given jump la-

bels. Accordingly, we designed an interface to make this

process efficient—experts can label jumps in a matter of

seconds. We include videos demonstrating the end-to-end

process and qualitative results of our proposed workflow

for pieces outside our evaluation data. 2 In these videos,

labeling jumps takes less than 6s per page on average.

Our interface features a unified workflow for jump an-

notation based on clicking the starting and ending measure

of a jump (Figure 3). To enable this workflow, we first

run measure detection [21] on the backend and visualize

detected measures on the frontend as a user hovers over

the score. Then, users can simply click on two different

measures to set a jump—this simple unified workflow ac-

commodates a long tail of jump glyphs. The interface also

visualizes the logical order of the measures induced by the

measure bounding boxes and any jumps the user has set

(M from Section 2.1). Finally, a user can download the

2 Video examples: https://bit.ly/jltr-ismir2024
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Figure 3. Illustration of our web-based interface for la-

beling jumps (e.g. repeats) in scores. Our interface en-

ables rapid jump annotation (just seconds per page after

training), which we find to dramatically improve alignment

quality on pieces with jumps.

logical-order measures as a simple JSON file, which can

then be loaded into our Python-based alignment package.

6. RELATED WORK

Our work relates to prior work in offline audio-to-score

alignment, score following, and score annotation tools.

6.1 Offline alignment

Offline alignment entails building a correspondence be-

tween sheet music and performance recording of the con-

tained music. As described previously, our work is inspired

by the bootleg score line of research [1, 16, 17, 23, 24] as

well as the usage of raw audio prediction scores in [2].

Our contributions stem from combining these approaches

with minimal human annotations to outperform prior base-

lines. Other prior work in this area includes [15,25], which

use MIDI events as an intermediate representation between

scores and audio, and [26–31], which use chroma vec-

tors (where components correspond to the 12 pitch types

in Western music). We perform a similar procedure to

the methods used in these works except that we use boot-

leg scores as our intermediate representation. We diverge

from [14], which uses MusicXML as an intermediate rep-

resentation, and from [32], which uses LilyPond represen-

tations, but we mention them here as related approaches.

We also incorporate reasoning from [20] regarding evalua-

tion metrics.

6.2 Score following

In contrast to offline alignment, score following involves

building a real-time alignment between sheet music and

live performance audio. Initial solutions to this problem

include [33,34], with later works addressing jumps and re-

peats [35, 36]; for more on related work in past decades,

see survey papers [37, 38]. Unlike most other research in

score following which often assumes that a digital score

representation (like MIDI) is available, our emphasis is on

solely using score images with an aim to perform align-

ment at scale. This said, some recent work does attempt

to solve this problem in images. For instance, works such

as [39–42] map audio snippets to corresponding places in

score images using neural networks, but they are limited to

piano music. We diverge from them by considering a range

of different types of raw score images and audio (such as

ones with instrumentation beyond solo piano) and leverag-

ing bootleg scores [1,16,17,23,24] for mapping, but these

are still related to our work.

6.3 Sheet music annotation interfaces

Our work also relates to past work on designing interfaces

to assist in the annotation of sheet music. Most directly

related is that of Feffer et al. [18] which attempts to facili-

tate interactive annotation of sheet music and audio align-

ment via a workflow based on aligning detected beat times-

tamps [43] to detected measures [21]. This interface was

used to compile the MeSA-13 dataset of aligned audio and

scores, which we use to evaluate our work, though we note

that their interface required 20 hours of expert time to col-

lect less than an hour of aligned data. In contrast, our inter-

face is designed to be used for a matter of seconds to anno-

tate repeats. Other interfaces focus on facilitating measure

bounding box annotations [44, 45], which is complemen-

tary to our workflow that focuses on repeat annotation us-

ing predicted bounding boxes. Lastly, Soundslice [19] is

a commercial product that offers an interactive alignment

workflow based on stronger notions of OMR, but its im-

plementation details are proprietary.

7. CONCLUSION

In summary, we introduce a workflow for efficiently align-

ing sheet music images to performance audio. The key

insight we leverage is that while automated alignment al-

gorithms are currently not robust to repeats in scores, hu-

mans can quickly label these repeats, thereby improving

alignment performance. We validate this approach on a

dataset of in-the-wild sheet music scans and real perfor-

mance recordings, showing that we outperform existing

baselines that only use automated approaches.

Given these results, one future project we aim to un-

dertake is to collect jump annotations at scale to create

large aligned datasets. We acknowledge that the datasets

we used to evaluate our approach are small, but the in-

sights gained from them can help scale up data for future

evaluations. For instance, we could extend the interface

from Section 5 to allow annotators to quickly audit and ad-

just alignments to collect more data, as in [18]. Moreover,

other future work could revisit the creation of a fully au-

tomated alignment algorithm with insights from our work,

namely that such an algorithm that leverages OMR to iden-

tify jumps and repeats may be more successful than one

that does not. Collecting more data would therefore be

helpful for developing and evaluating future approaches.

Lastly, as described in the start of our paper, large aligned

datasets could be used to derive multimodal MIR systems

for music students and professionals alike.
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8. ETHICS STATEMENT

As described previously, advancements in audio-to-score

alignment can result in new multimodal datasets derived

from existing repositories of sheet music and audio (such

as IMSLP [46]) and new interactive music systems tailored

for performance. Our motivation for pursuing this direc-

tion is to unlock multimodal MIR systems that (1) sup-

plement music education by helping performers rehearse,

(2) understand or generate sheet music to unlock seam-

less communication with human musicians, and (3) re-

duce reliance on copyrighted material for bulding music AI

(i.e., by leveraging public domain scores and recordings).

We also recognize several potential ethical concerns

stemming from our work. Firstly, our method is firmly

rooted in conventions of Western music. Accordingly,

downstream systems and data derived from our method

may reflect a Western bias that does not generalize well

to other musical traditions, especially those with differ-

ent notation or tuning systems. Secondly, though our goal

is to lessen the amounts of copyright infringement taking

place to build generative music AI, multimodal MIR sys-

tems could be used to circumvent data protections, e.g., by

transcribing copyrighted recordings as less-protected sheet

music. Lastly, increased ability to understand sheet music

could lead to deepfakes or misinformation, e.g., scores that

could be falsely attributed to Beethoven, or ragtime record-

ings that could be falsely attributed to Joplin. In response

to these concerns, we recommend that future work mitigate

these risks by, for example, developing analogous systems

capable of improving understanding of non-Western music

notation. We also recommend that MIR researchers should

be mindful of data protections, copyright violations, and

artistic mimicry that, if subverted, could threaten the liveli-

hood of musicians.
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ABSTRACT

We introduce a series of transdisciplinary corpus stud-

ies aimed at investigating cross-cultural trends in time-

line-based music traditions. Our analyses concentrate

on a compilation of field recordings from the Centre de

Recherche en Ethnomusicologie (CREM) sound archive.

To demonstrate the value of an interdisciplinary approach

combining ethnomusicology and music information re-

search to rhythmic analysis, we propose a case study on the

bell patterns used in the musical practices of Candomblé,

an Afro-Brazilian religion. After removing vocals from

the recordings with a deep learning source separation tech-

nique, we further process the instrumental segments us-

ing non-negative matrix factorization and select the bell

components. Then, we compute a tempo-agnostic rhyth-

mic feature from the bell track and use it to cluster the

data. Finally, we use synthesized patterns from the musi-

cological literature about Candomblé as references to prop-

agate labels to the rhythmic clusters in our data. This semi-

supervised approach to pattern analysis precludes the need

for downbeat and cycle annotations, making it particularly

suited for extensive archive investigations. Lastly, by com-

paring bell patterns in Candomblé and a West African mu-

sic tradition, we lay the foundation for our future cross-

cultural research and observe the potential application of

this methodology to other time-line-based music.

1. INTRODUCTION

Over the years, the music information retrieval/research

(MIR) community has embraced more culturally-inclusive

research geared towards the analysis of non-Western mu-

sic [1]. Many of these studies have done extensive work

to increase the representation of certain musical styles

© L. S. Maia, R. Namballa, M. Rocamora, M. Fuentes and

C. Guedes. Licensed under a Creative Commons Attribution 4.0 Interna-

tional License (CC BY 4.0). Attribution: L. S. Maia, R. Namballa, M.

Rocamora, M. Fuentes and C. Guedes, “Investigating Time-Line-Based

Music Traditions with Field Recordings: A Case Study of Candomblé

Bell Patterns”, in Proc. of the 25th Int. Society for Music Information

Retrieval Conf., San Francisco, United States, 2024.

from specific cultures [2]. However, few MIR initia-

tives have attempted to investigate multiple musical cul-

tures simultaneously at a larger scale due to the level of

difficulty and lack of data. These hardships reinforce a

cycle of under-representation of various populations and

risk further emphasizing the perspective of MIR through a

Western-centric lens.

In this paper, we propose one of several studies aimed

at a more global, inclusive, and transdisciplinary approach

to MIR that puts humanistic (ethnomusicological and an-

thropological) and computational approaches in dialogue

within a framework defined as Sonic Digital Humani-

ties [3]. Our work centers on a substantial corpus of

data from the Centre de Recherche en Ethnomusicologie

(CREM). While we will explore only a part of this archive

in this paper, we discuss its contents and their importance

in Section 3. In Sections 4-7, we introduce a preliminary

investigation on a subset of the archive analyzing bell pat-

terns in Brazilian Candomblé and music from West Africa

to demonstrate the potential this data has for future cross-

cultural research on time-line-based acoustic traditions.

2. RELATED WORK

Ethnomusicology and MIR are often associated in a way

that one is viewed as the source discipline while the other is

the target [4]. However, researchers have suggested treat-

ing them as partners rather than as a hierarchy [5, 6]. With

this approach, the MIR community can develop new com-

putational methodologies which incorporate external infor-

mation, such as cultural context, to better understand audio

signals [1]. Specifically, we apply a framework known as

the Sonic Digital Humanities (SDH) to our investigation.

SDH is a branch of the Digital Humanities concerned with

digital collections of music and other forms of sonic cul-

ture. It provides a space in which computational means to

the analysis of sound culture may be developed and carried

out in a productive dialogue with humanistic modes of data

collection and critical inquiry [3].

By analyzing collections from an SDH perspective,

we intend to ask questions about the cross-cultural re-

lationships of different musical styles on a global scale.

While engaging in data-driven analyses of these musical
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styles, we attempt to understand (1) whether these find-

ings support evidence collected from ethnomusicological

studies about cross-cultural influences and (2) how these

large-scale computational investigations can provide fur-

ther insights into comparing music cross-culturally. In

the case of (1), validating (or not) musicological evidence

about cross-cultural relationships can improve MIR ap-

proaches to provide more reliable large-scale studies of

lesser-known styles in the digital world. With (2), these

methods can yield new findings of what characterizes a

musical style born out of cross-cultural influence.

The first steps in expanding MIR beyond the exclu-

sive sphere of Western music involved improving cultural

representation in datasets. As a result, several culture-

or style-specific corpora have been published for studies

on music such as American ragtime, Beijing opera, and

more [7, 8]. These advancements have improved access to

a variety of data, but have yet to make a dent in the domi-

nance of Western methodologies in MIR. A recent push by

Huang et al. [9] for the MIR community to go beyond the

collection of diverse data, collaborate with musicologists,

and reflect on the way we engage with music serves as an

appropriate objective for our studies of the CREM archive.

Despite the variety and richness of the information

available in the CREM archive, very few studies have

been published about this data. One MIR study uti-

lizes the database to evaluate a proposed timbre classifi-

cation method on a diverse set of musical instruments with

the intent of allowing the indexing of ethnomusicological

databases [10]. This sparseness of research presents ma-

jor opportunities to explore the CREM archive in greater

detail over a series of long-term, novel studies.

Our first investigation concerns the analysis of time

lines, also known as bell patterns, in large collections of

music. Time lines are short, cyclic patterns played in

ostinato, often with a bell, castanet, or sticks [11, 12],

that are used as a “controlling structural concept” [13,

p. 1] in African music. This type of organization ex-

tends beyond geographical boundaries and can be heard

in Afro-diasporic musical styles from the Caribbean or

South America, for example. A key aspect of time lines

is that they are qualitatively different from the concept

of meter, as they originate from the movement of feet in

dance [11], and denote a circularity that is characteristic of

African music traditions [13]. This distinguishing factor

calls for computational pattern recognition strategies that

go beyond traditional methods of meter detection.

Toussaint proposed several mathematical methods, in-

cluding geometric and graphical ones, for the analysis of

clave-bell rhythm time lines [14]. Despite not being origi-

nally automated, they served as foundational work for fu-

ture research concerning rhythmic complexity. Soon after,

Toussaint continued their work on clave-bell time lines by

comparing metrics for rhythmic similarity, such as Ham-

ming distance and Euclidean interval vector distance [15].

All of the methods described in [14] and [15] require man-

ual annotations, which are time-consuming and not scal-

able to a corpus as vast as the CREM archive.

Consequently, our proposed pipeline for time line pat-

tern analysis is semi-supervised, with the majority of fea-

ture extraction and similarity computations automated. We

draw inspiration from [16], who used template matching

to track tempi of Afro-Cuban clave rhythms. However,

their method has the drawback of requiring an exhaustive

search for matching every tempo at each onset. Addition-

ally, we consider the approach by [17], who inferred me-

ter from Candombe recordings using rhythmic templates

learned with the help of annotations. We improve upon

these methodologies by using reference tracks to compute

similarity measures based on [18]. The scale transform

magnitudes (STM) [18] operate on the autocorrelation of

the signal’s onset strength. They are robust to tempo varia-

tion, which facilitates the transfer of labels from the refer-

ences to the tracks under study.

In this paper, we use Candomblé as a case study of

time-line-based music. Candomblé is an Afro-Brazilian

religion known for syncretically combining elements from

many cultures, most notably Yoruba, Bantu, and Fon —

which were brought to Brazil by enslaved West African

populations [19]. Music plays a crucial role in the reli-

gious practices of Candomblé. Antiphonal songs are per-

formed throughout the entire ceremony, accompanied by

a drumming ensemble, always with the intent of allowing

the participants and certain deities (orixás) to communi-

cate [20]. Different rhythmic patterns, in both singing and

drumming, are associated with different orixás. There are

a few historical collections of Candomblé field recordings

in the CREM archive, serving as a valuable resource of au-

dio data for our investigation.

3. CREM-NYUAD COLLECTION

The CREM database is an extensive archive of digitized

audio recordings from cultures around the world. Span-

ning from the beginning of the 20th century to today, the

archive contains over 48,000 field recordings and more

than 17,000 published commercial recordings representing

over 1300 ethnic groups across 199 countries. The pub-

lic has access to rich metadata cataloguing the database as

well as thousands of recordings available to listen to for

free on the archive’s website. 1

Through a partnership with the Centre National de

la Recherche Scientifique (CNRS), New York University

Abu Dhabi (NYUAD) has acquired a subset of the CREM

archive for the purpose of analyzing the sound recordings.

Henceforth, we call this subset the CREM-NYUAD col-

lection. The CREM-NYUAD collection consists of 14,379

records from 129 countries, with a majority coming from

Africa, Asia, and South America. In particular, Vietnam,

Nepal, Madagascar, Gabon, and Algeria are among the

countries with the most records in the dataset. Each item

consists of audio features, such as spectrograms and tem-

pograms, extracted during a prior collaboration between

CREM and NYU. The associated metadata for each record

contains basic data about the item, such as the collec-

1 https://archives.crem-cnrs.fr
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tion name and date, but also includes valuable information

about the location, language, instrumentation, and ethno-

graphic context of the recording. This information pro-

vides a significant advantage in our pilot study of Can-

domblé bell patterns, as we will see in Sections 4-7.

An important feature of our collection, which distin-

guishes it from many other datasets used in MIR research,

is the prevalence of field recordings in the corpus. Field

recordings provide important cultural context through the

settings in which the traditions are recorded, such as in

the terreiros (places of worship) of Candomblé [21]. In

contrast to commercial studio tracks, field recordings are

often taken in natural conditions where there are various

social and environmental sounds, as well as noise, in the

final recording [22, 23]. Furthermore, the time span over

which these field recordings are collected often reflects the

technological progress of the time period with more recent

recordings producing higher quality audio. The acoustic

diversity of the collection poses additional challenges to

our computational methods in the form of silence, noise,

and artifacts (e.g., clicks). We attempt to overcome some

of these obstacles to the analysis in our pipeline, but save

any audio restoration endeavors for future work.

4. BELL PATTERNS IN CANDOMBLÉ

The drumming ensemble in Candomblé typically consists

of three differently-sized drums called atabaques, a dried

gourd covered in beads known as xequerê, and a single

or double clapperless bell called gan or agogô. Figure 1

shows ten essential Candomblé bell patterns as notated

in [24]. These motifs were identified as the main patterns

utilized by the Ketu nation, the largest branch of the Can-

domblé religion today. For example, pattern 1 represents

the bell part in vassi, which is a common pattern in many

different rhythms of Candomblé and is performed by bells

with two accompanying drums. Pattern 2 is the same as

the Son clave [14]. Pattern 3, known as ijexá, gained pop-

ularity in not only religious contexts, but also in the festive

Carnaval parades held in Salvador, Bahia.

Pattern 1

Pattern 2

Pattern 3

Pattern 4

Pattern 5

Pattern 6

Pattern 7

Pattern 8

Pattern 9

Pattern 10

Figure 1: Examples of Candomblé bell patterns in time

unit box system (TUBS) notation [24]. Open and closed

dots indicate the use of high- and low-pitched bells.

5. METHODOLOGY

The process we employ to extract rhythmic features asso-

ciated with bell patterns in field recordings is encapsulated

in Figure 2, and explained further in this section.
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Figure 2: Workflow for extracting rhythmic features for

bell patterns: (a) spectrogram of the original track (vocals

and instruments); (b) the isolated instrumental part, from

650 to 4000 Hz; (c) NMF-learned templates and activa-

tions (highlighting those selected via the spectral crest);

(d) reconstructed spectrogram of the bell part; (e) smooth

bell activation function; and (f) frame-wise STM.

5.1 Source Separation

In order to analyze the bell patterns in greater detail, we

need to isolate them from the remainder of the audio track.

To do so, we first remove the vocals from each track due

to their potential obstruction of the bells’ frequency band.

Using the pre-trained state-of-the-art hybrid transformer

source separation model, Demucs [25], we preserve the in-

strumentals by separating the vocal stem.

To further abstract the bell patterns from the rest of the

rhythm sections, we decompose the non-vocal track with
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non-negative matrix factorization (NMF) [26]. First, we

resample the non-vocal signal to 8000 Hz. Then, we com-

pute its short-time Fourier transform (STFT) with a 64-ms

window and a hop size of 20 ms. We restrict the NMF

analysis from 650 to 4000 Hz, which discards the main fre-

quencies from low-pitched drums. At this time, we assume

that the signal contains primarily the bell tones (sometimes

in two distinct pitches, when both bells of the agogô are

used) and noise-like components emanating from the xe-

querê or the other drums’ attacks. For this reason, we run

the NMF algorithm with n = 6 components. After the

algorithm converges, we use the spectral crest [27] to iden-

tify sources corresponding to the bells by selecting com-

ponents whose templates are more tonal in nature. The

geometric mean of all crest factors serves as a threshold.

Finally, we reconstruct the separated spectrogram of the

bell part with the dot product of the matrices composed by

the selected template–activation pairs.

5.2 Feature Extraction

The next step in our workflow is computing a rhythmic

feature based on the scale transform magnitudes [18]. We

first compute the time derivative of the log-compressed re-

constructed source spectrogram, using a factor of compres-

sion C = 1000 as in [28]. All of the bins are summed up,

and we apply half-wave rectification to keep only positive

peaks. To smooth this accent signal, we use a lag of 3

frames in the computation of the time-difference [29] and

further process the signal by convolving it with a Gaus-

sian kernel (σ = 20 ms). Finally, we follow the procedure

of [18] and determine the local autocorrelation of the ac-

cent signal with an 8-second moving rectangular window

(hop size of 0.5 s). The direct scale transform [30] con-

verts the autocorrelation at each frame into the scale do-

main, such that tempo is not encoded in the representation,

and we keep only the first 150 scale coefficients. We dis-

card all frames at the start of the signal whose energy lies

below a threshold of −60 dB. Feature vectors can be com-

pared using cosine similarity or Euclidean distance [18],

with the former being better suited for handling changes in

level between the recordings.

5.3 Label Propagation

We follow a semi-supervised procedure to classify patterns

in the dataset. For this purpose, we create synthetic ver-

sions of the patterns in Figure 1 with no accents or timing

deviations. We extract the rhythmic patterns of these syn-

thesized reference tracks using the same pipeline as before.

The only differences are that we use all n = 3 NMF com-

ponents to generate a single activation and that we summa-

rize the STM feature by taking the average along the time

axis. Lastly, we propagate labels to the original (unlabeled)

dataset in the following fashion:

1. For each track i in the dataset, we measure the max-

imum pairwise distance, σi, between STM frames;

2. For each frame j of track i, we find the closest data

point, rk, from the reference set, such that the dis-

tance d(xij , rk) is minimal;

3. If d(xij , rk) ≤ σi, xij receives the same label as rk,

else it receives a “null” label;

4. “Winner-take-all”: we perform plurality voting

among all labels for xi where the most prevalent la-

bel is used to represent the entire track.

While the labels can be propagated within the feature

space, this process can also be intuitively performed in a

lower-dimension embedding space.

6. EXPERIMENTS AND RESULTS

We select a specific set of tracks from the CREM-NYUAD

collection on which to run our entire pipeline. We rely on

the metadata described in Section 3 to identify which files

contain bell sounds. Table 1 shows the countries in West

Africa (and Brazil) with these bell patterns and the number

of recordings from each country.

Country # Records

Congo-Brazzaville 98
Brazil 71
Benin 42
Angola 30
Gabon 27
Mali 24
Côte d’Ivoire 11

Table 1: Number of records with bell patterns per country.

In this initial experiment, we further restrict our scope

by selecting, from those files recorded in Brazil, a set

of recordings by ethnographer (and Candomblé initiate)

Pierre Verger. 2 Moreover, with the assumption that bells

mostly establish a cyclic pattern, we consider only the first

60 s of each recording. Next, we proceed with the analysis

from Section 5; i.e., after our pre-processing steps, we ex-

tract the rhythmic features for all tracks in the subset and in

the reference set. We then perform label propagation from

the reference set to the subset. Using UMAP [31], a mani-

fold learning technique, we present the results in Figure 3.

With regards to structure, our pipeline clearly extracts

meaningful information from the rhythmic patterns in the

subset, as many distinct clusters are visible. Interestingly,

we observe that the reference patterns are well distributed

among these clusters.

The label propagation procedure also reveals important

aspects of the data distribution. For instance, we notice

that the approach labels a large portion of the frames as

belonging to the “pattern 1” archetype. Furthermore, note

how closely patterns 7 and 9 are represented in the embed-

ding. This proximity is easily explained by them differing

on only a single beat (see again Figure 1). The families of

patterns 2 and 5 also appear near each other in the mani-

fold, but this time their pattern lengths are unequal. How-

ever, by “interpolating” pattern 5 and cyclically rotating

2 https://archives.crem-cnrs.fr/archives/

collections/CNRSMH_I_2007_011/
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Track _002_01

Track _002_01

Pattern 2 Pattern 6

Pattern 8

Pattern 9

Pattern 10 Pattern 3

Pattern 4

Pattern 1

Pattern 5

Pattern 7

Figure 3: UMAP projection of the Candomblé bell patterns and reference patterns (cosine metric, n-neighbors = 70, min-

dist = 0.1). The same color coding of Figure 1 is used here. Circled: the frames corresponding to track _002_01.

pattern 2 (Figure 4), we see that they are more alike than

they appear at the surface level, especially considering that

the STM feature is independent of tempo. A similar argu-

ment explains the close proximity of clusters for patterns 5

and 6.

Pattern 2
*

Pattern 5
*

Figure 4: Interpolation and cyclical rotation of patterns 5

and 2 reinforce the similarities found in the embedding.

Three of the five onsets match, and the remaining two are

a slight shift away from their counterparts.

We can also assess the label propagation method’s

performance by investigating some information from the

metadata. For example, recordings _002_01, _004_03,

_005_04, and _005_05 contain the indication “ijexá

rhythm” (“rhythme ijexá”) in their titles, so presumably

they correspond to the same type of bell pattern as pat-

tern 3. Consequently, in the embedding, their frames are

clustered and labeled together as part of the “pattern 3”

archetype. The only exception is recording _002_01 (cir-

cled), which was incorrectly classified as pattern 10 and di-

vided into two sections: the majority of frames are situated

in the easternmost region of the large 1–4–8–10 cluster,

while a handful of remaining frames are found near pattern

3. In this case, the misclassification could be attributed to

the crest selection procedure’s inability to retrieve the main

component of the highest-pitched bell.

Figure 5 showcases selected examples of the onset acti-

vations from the subset, juxtaposed with their correspond-

ing reference activations. To ensure alignment, we manu-

ally adjusted the references’ timing to match the excerpts.

Differences between the references and audio realizations,

such as additional or missing notes, can be ascribed to

recording conditions or introduced by the pipeline. De-

spite these discrepancies, the workflow demonstrates ro-

bustness, as evidenced by the confirmation of the auto-

matic classification through listening tests. Pattern varia-

tions can also originate from the player, who may miss a

note or add embellishments (flams). Another type of dis-

crepancy we have identified, resulting from small scale de-

viations, is illustrated with recording _004_09.

Lastly, we conduct another analysis which uses a larger

number of recordings with bell patterns from the Republic

of the Congo (see Table 1). We follow the same procedure

as before, but lower the minimum frequency for the NMF

decomposition from 650 to 300 Hz, since West African

bells are typically larger and lower pitched. Figure 6 dis-

plays the embedding of both the Brazilian and Congolese

patterns from our subset. This visualization shows similar-

ities between some of the patterns; these potential cross-

cultural intersections require further investigation. In par-

ticular, with a “plurality voting” procedure similar to our

label propagation scheme, we can detect that recording

_030_03 from collection CNRSMH_I_1974_013 3 is

the most akin to the patterns of the Brazilian recordings.

A short listening test confirms that the bell in this record-

ing performs a rhythmic pattern similar to that of pattern 1

(the most common one in the Brazil subset).

7. DISCUSSION

We emphasize two important consequences of our study.

Both observations emerge from our attempt to balance

3 https://archives.crem-cnrs.fr/archives/items/

CNRSMH_I_1974_013_030_03/
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Figure 6: Embedding of rhythmic features from Brazilian

and Congolese bell patterns in the subset.

data-driven methodologies with more humanistic perspec-

tives using the SDH framework.

Firstly, the non-negative matrix factorization presents a

significant bottleneck in our analysis. Ideally, we would

use source separation to isolate the bells from the track

directly. However, the out-of-the-box Demucs model is

trained only to separate 4-6 stems of specific Western in-

struments. A blind application of this model often results

in an unpredictable placement of the bell patterns, as they

may end up in the drum stem for one track, but in the

“other” category for another. This inconsistency under-

scores the need for a more culturally-inclusive, tailored

approach, such as the few-shot source separation model

proposed in [32], or even a new perspective on source sep-

aration as a task. Improvements such as these could offer

a more accurate and consistent separation of the bells, en-

hancing the rhythmic salience.

Secondly, despite the technical challenges produced by

field recordings, our feature extraction pipeline has proven

to be remarkably robust. Most importantly, it respects the

unique characteristics of West African and Afro-diasporic

music, particularly the concept of rhythmic cycles. Time

lines are qualitatively different from the concept of meter

as a temporal hierarchical grouping mechanism and serve

culture-specific purposes depending on the context of their

use. While they can be mapped into meters due to their

cyclic or recurrent nature, they often play “against” their

metrical grid [12]. Anku [13] suggests that they should be

perceived as a “circular concept” rather than a linear one,

allowing performers to seamlessly enter and exit the per-

formance with little inhibition. Our pipeline, which makes

no assumptions regarding the notions of meter or down-

beat and uses no annotations, was designed to respect these

unique characteristics. The only attribute we infer is the

cyclic nature of the rhythmic patterns to ease our compu-

tational load. Our minimal suppositions demonstrate the

capacity of our methodology to expand to other styles of

cyclic music, beyond what is studied in this paper.

8. CONCLUSION

We presented a pilot study investigating bell patterns in

Candomblé from historical field recordings in a subset of

the CREM archive, the CREM-NYUAD collection. Our

approach is a preliminary venture in following the Sonic

Digital Humanities (SDH) framework, to address the in-

herent challenges and complexities of applying computa-

tional methods to musical traditions which have been un-

derrepresented in MIR. SDH aims to combine computa-

tional and ethnographic approaches in a dialogue on the

same plane, while embracing any tensions which may en-

tail in an agonistic fashion to push the traditional bound-

aries of interdisciplinarity [6].

Our study was influenced by the distinct characteris-

tics of West African and Afro-diasporic music. With-

out requiring meter annotations, we could detect and clas-

sify patterns from the collection using a robust and adapt-

able pipeline, despite encountering challenging recording

conditions and unique rhythmic structures. Our code is

available at https://github.com/nyuad-masc/

crem-time-lines. Future work will focus on address-

ing shortcomings and further refining our methods (e.g.,

source separation) to improve the analysis of time-line-

based music traditions and allow the study of cross-cultural

influences.
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