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1 Introduction

The amount and complexity of cyber threats have risen 
alarmingly in recent years (ENISA 2015). Because of 
this, the information security management plays a very 
important role in the strategies of large organizations. Sev-
eral guidelines and platforms for its implementation have 
been published [ISO/IEC 27000 (ISO 2005), NIST-SP 
800 (NIST 2007), CVSS-SIG-First (CVSS 2015), etc.], 
but despite its effectiveness in conventional scenarios, 
it has been shown that they do not adequately operate in 
dynamic monitoring environments (Webb et al. 2014). This 
is the case of complex use cases, where the circumstances 
in which observations are made directly affect the ability 
of decision-making. In this context, examples of common 
issues when identifying the best mitigation/optimization 
actions are: inadequate asset assessment, fluctuations at 
data sources, difficulties when configuring new uses cases, 
and lack of scalability or interoperability.

In order to tackle these problems, there is a tendency to 
assume more cognitive methodologies, thereby facilitating 
understanding the environment through contextual analy-
sis. High among those is the development of the Situational 
Awareness (SA) of the protected environment by applying 
the Endsley’s model (Endsley 1988). In accordance with 
this method, the perception, comprehension and projec-
tion of the system status must be taken into account. As 
defined by Endsley, the term situational awareness refers to 
“the perception of the elements in the environment within 
a volume of time and space, comprehension of their mean-
ing and the projection of their status in the near future”, 
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implicitly stressing how important the context is. As a 
result of the enormous complexity that entails managing 
the security of current networks, the Endsley’s model has 
been specifically adapted to these scenarios, which has led 
to coining the term Network Security Situational Aware-
ness (NSSA) (Leau et al. 2015).

Bearing this in mind, 5G networks, as clear examples 
of complex and dynamic monitoring environments are the 
focus of the research proposed in this paper. These tech-
nologies try to meet the requirements that are expected 
to be demanded by the current communication schemes 
in the short and long terms. As stated by Osseiran et  al. 
(2014), they may be summarized in three great challenges: 
(1) enhancement of latency and reliability by supporting 
use-case dependent capabilities, such as the deployment 
of specific purpose applications, among them health-care, 
logistics, security or incidence response tools; (2) 5G must 
support a wide range of data rates with very high avail-
ability and reliability; (3) finally, in order to facilitate the 
inclusion of a large number of devices, networks must 
be scalable and flexible. Note that these endpoints must 
be simple enough to do not pose high battery consump-
tion. In general terms, advances towards 5G technologies 
are based on combining and integrating a large number of 
emerging technologies, such as Network Function Virtu-
alization (NFV) (Mijumbi et  al. 2016), Software Defined 

Networking (SDN) (Xia et  al. 2015), Device to Device 
Communications (D2D) (Qiao et  al. 2015); and analytic 
tools for network awareness, among them Artificial Intel-
ligence (AI), Big Data or Self-Organized Networks (SON) 
(Baldo et al. 2014).

At present, there are different projects aimed at facilitat-
ing the integration of these technologies into 5G scenarios. 
Significant efforts have been done by the European Com-
mission under 5G-PPP and Horizon H2020 programs in 
order to support the new generation of mobile networks. 
It has led to the foundation of the 5G-PPP partnerships, 
which is committed to foster 5G advances in different 
strands such as cognitive network management or 5G Net-
work Security (5G-PPP 2017). Table  1 summarizes some 
of the projects involved in this association. Their differ-
ences and similarities are discussed in depth by Barona 
López et al. (2016). Notable among them is the SELFNET 
approach (SELFNET 2014), where an autonomic manage-
ment framework to provide network intelligence and self-
organizing capability for 5G mobile network infrastructures 
is provided.

SELFNET includes the widest variety of cutting-edge 
technologies and adapts the Endsley’s model (Endsley 
1988), as well as the NSSA paradigm, to the 5G scene, 
as it is described by Barona López et  al. (2017a, b). The 
latest effort toward providing SELFNET of an analytical 

Table 1  Research projects on mobile networks

Project Related technologies Use cases

MCN (2013) SDN, Cloud Computing (1) Cloud Computing for mobile network operations, (2) end-to-end mobile 
Cloud

T-NOVA (2013) SDN, NFV High-level scenario, (2) VNFs, (3) service chaining
UNIFY (2013) SDN, NFV (1) Infrastructure virtualization, (2) flexible service chaining, (3) network 

service chain invocation for providers
CROWD (2013) SDN, SON General purpose
5G-NORMA (2014) SDN, NFV (1) Multi-service, (2) multi-tenancy
CHARISMA (2014) SDN, NFV General purpose
SELFNET (2014) SDN, NFV, SON, Cloud Computing (1) Self-healing, (2) self-optimization, (3) self-protection
COGNET (Xu et al. 2016) SDN, NFV, machine learning (1) Situational context, (2) just-in-time services, (3) user-centric services, 

(4) optimized services, (5) SLA enforcement, (6) collaborative resource 
management

5G-Ensure Project (2014) SDN, NFV, security models 11 Use case clusters: (1–4) identities, authentication, authorization and pri-
vacy, (5) software-defined networks, virtualization and monitoring, (6–10) 
availability, reliability and integrity and (11) lawful interception

SONATA (2014) SDN, NFV, cloud (1) Internet of things, (2) virtual CDN, (3) guaranteed, resilient and secure 
service delivery in industrial networks, (4) vEPC, (5) personal security 
applications, (6) client and hosting service providers

5G-NOW (2013) MTC, CoMP, M2M (1) PRACH scenario, (2) GFDM, (3) uplink CoMP with joint reception, (4) 
multiuser uplink on fragmented spectrum with FBMC, (5) downlink CoMP 
with FBMC

METIS (METIS-II 2014) SDN, Multi-RAT, D2D, M2M Five scenarios: (1) amazingly fast, (2) great service in a crowd, (3) ubiquitous 
things communicating, (4) best experience follows you, (5) super real-time 
and reliable connections
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component capable of meeting the 5G requirements in 
a use-case driven approach is summarized by Barona 
López et al. (2017b), where the design principles, architec-
ture and the formalization of how new use cases must be 
onboarded are detailed. But it does not explicitly indicate 
how all this information is organized, as well as how the 
analytical process is performed. The sophistication of these 
tasks results on the need of develop a novel orchestration 
of analytics (SELFNET Analyzer Orchestrator), adapted 
to the 5G monitoring environment and the use-case driven 
politics derived from the SELFNET project, which is the 
main contribution of this paper. Other contributions are 
the specification and implementation of the dataflows in 
the SELFNET Analyzer Framework, the proposal of strat-
egies for their execution and optimization, and a battery 
of comprehensive examples which facilitates understand-
ing the approach, and serves as a guide for the design and 
deployment of similar components at future projects. This 
paper is organized into eight sections, being the first of 
them the present introduction; Sect. 2 describes the essen-
tial elements of the SELFNET project, where the Analyzer 
and the specification of the onboarded data is emphasized; 
Sect. 3 introduces the initial assumption of the SELFNET 
orchestrator; Sect. 4 explains its design principles; Sect. 5 
details its workflow; Sect.  6 discusses the execution and 
optimization strategies; Sect. 7 illustrates a battery of prac-
tical examples; Finally, Sect. 8 concludes this work.

2  Background

This section describes in detail the key points of SELFNET 
necessary for understanding the Analyzer and its orchestra-
tion. In particular, the SELFNET architecture and its adap-
tation to the NSSA, the design of its Analyzer Module and 
the descriptors of the use cases are reviewed.

2.1  SELFNET and the situational awareness on 5G 
scenarios

SELFNET H2020 Project provides a smart autonomic 
network management framework for 5G mobile networks 
based on the combination of 5G key-enabled technologies: 
SDN, SON, NFV, Artificial Intelligence and cloud comput-
ing. SELFNET enables the autonomic deployment of vir-
tual network functions and the reconfiguration of network 
parameters in order to mitigate existing or potential prob-
lems, while maintaining the Quality of Experience (QoE) 
of end users (Selfnet 2014). These capabilities are pro-
vided by means a layered architecture and a use-case driven 
approach. On the one hand, three use cases were defined: 
(1) self-protection capabilities to mitigate or prevent secu-
rity problems such as a cyber-attack, (2) self-healing 

capabilities to prevent or correct network failures and (3) 
self-optimization to dynamically improve the service and 
network performance. For this purpose, SELFNET pro-
poses two kind of advanced network functions: (1) sensors 
to monitor specific network information and (2) actuators to 
perform countermeasures to fix or mitigate possible prob-
lems. On the other hand, SELFNET architecture is based 
on six layers (Fig.  1): Infrastructure Layer, Data Network 
Layer, SON Control Layer, SON Autonomic Layer, NFV 
Orchestration and Management Layer and SON Access 
Layer, as is described by Neves et al. (2016).

• Infrastructure Layer It provides the physical resources 
required for the instantiation of virtual functions. The 
Physical Sublayer, Virtualization Sublayer and Cloud 
Computing Sublayer enable the virtualization of com-
pute, network and storage resources.

• Data Network Layer The network functions (NFs) are 
instantiated and interconnected in a designed topology. 
It includes the NF required for normal operation and 
SON functionalities.

• Control Layer It includes the SON sensors and actua-
tors. The SON sensors collect data from different 
sources and the SON actuators execute response actions 
into the network. These elements are controlled by the 
SON Autonomic Layer (intelligence).

• SON Autonomic Layer This layer is responsible for pro-
viding the network intelligence. For this purpose, the 
system monitors and analyse the incoming information 
in order to diagnosis network problems. Then, it uses 
the available network functions to decide the best reac-
tion strategy. Taken decisions are sent to NFV orches-
tration and Management Layer.

• NFV Orchestration and Management Layer It controls 
the deployment and instantiation of the different NFs in 
the infrastructure. This layer follows the ETSI MANO 
recommendations.

• SON Access Layer It provides the interface used by 
external actors like Business Support Systems (BSS) 
or Operational Support Systems (OSS). Similarly, the 
network administrator also can stop, verify and enforce 
actions on SELFNET.

In turn, SON Autonomic Layer is responsible to provide 
the network intelligence by means Monitor and Analyzer 
sublayer and Autonomic Management sublayer. In particu-
lar, the Situational Awareness of SELFNET is achieved 
through the application of Endsley model (Endsley 1988), 
which define three main phases: Perception (Monitor), 
Comprehension (Aggregation) and Projection (Analysis 
and Diagnosis) as is shown in Fig. 2.

This approach supposes a high challenge because the 
information is gathered from different sources (monitoring 
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task) and then the raw data is aggregated and correlated 
in order to provide high level metrics (aggregation and 
correlation task). In the next step, suspicious conditions 
are inferred or detected (analyzer task) and then they are 
sent to Diagnosis sublayer. Finally, this sublayer applies 
advanced intelligent techniques to perform proactive and 
reactive actions.

2.2  SELFNET analyzer: design principles 
and architecture

The general assumptions, requirements and the first items 
to consider related with the design principles of the Ana-
lyzer were previously introduced by Barona López et  al. 
(2017b). In accordance with this publication, it must be (1) 

Fig. 1  SELFNET architecture

Fig. 2  Situational awareness in 
SELFNET project
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scalable, extensible and multi-level by design; (2) use-case 
driven, where the use-case operators are able to specify 
the inclusion/modification of its functionality; (3) the use 
case knowledge-bases required for the analytics are pro-
vided by skilled operators or by accurate machine learning 
algorithms; (4) user-friendly in terms of use case declara-
tion and composition of knowledge inference rules; (5) the 
management of knowledge considers uncertainty and sto-
chastic events; (6) the data sources do the filtering of the 
input data, hence removing inconsistencies, ambiguity and 
repetition on the crisp data (i.e. the SELFNET Analyzer 
does not perform filtering actions). All these assumptions 
and limitations are inherited by the orchestrator, and there-
fore they are considered in this proposal.

The SELFNET Analyzer relationship with the rest of 
the project components is summarized in Fig.  3, where 
a view of their main data sources is illustrated as a black 
box model. There two main information sources as facts 
Fa, were identified: Aggregation [Events Fa(Ev), Thresh-
olds Fa(TH) and Key Performance Indicators Fa(KPI)] 
and internal analytic elements [pattern recognition Fa(PR)
, forecasts Fa(Ft) and adaptive thresholds Fa(ATh)]. The 
final conclusions that compose the SELFNET Situational 
Awareness are sent to Diagnosis module labeled as symp-
toms, via reports.

The SELFNET Analyzer architecture is shown in Fig. 4. 
It is centralized and their components are divided into eight 
main elements: Pattern Recognition (no. 1), Prediction (no. 
2), Adaptive Thresholding (no. 3), Knowledge-base (no. 4), 
Inference Engine (no. 5), Memory (no. 6), User Interface 

(no. 7) and Uncertainty Estimation (no. 8). Where Pattern 
Recognition infers new facts related with patterns and regu-
larities found in the aggregated data, Prediction discovers 
facts related with forecasting aggregated data or previ-
ously known facts, and Adaptive Thresholding establishes 
the limitations to be taken into account when inferring 
new knowledge. The core of the SELFNET Analyzer is a 
rule base engine composed by the Knowledge-base, Infer-
ence Engine and Memory. It applies use-case driven rules 
for deducting conclusions from the previously identified 
facts. If some of them match with situations of interest for 
the Diagnosis module, they are adapted by the Uncertainty 
Estimation component, which allows them to be interpreted 
as symptoms by the SELFNET upper layers. Note that the 
configuration of the use cases is performed at the User 
Interface.

2.3  Specification of the use cases

When initiated, the SELFNET Analyzer is a tabula rasa 
without actions nor reasoning to be orchestrated. It requires 
the onboard of use cases, which provides the script with 
the activities that may be performed. If a new use case is 
onboarded, the information that it is able to manage, as well 
as the analytic actions which might be executed, are speci-
fied according to the descriptors summarized in Table 2.

The objects O describe the nature of the data to be ana-
lyzed and the elements from which the rule-based expert 
systems infers knowledge. Operations Op establish binary 
relationships between facts. Thresholds Th are delimitations 

Fig. 3  Inputs and outputs on 
SELFNET analyzer
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calculated at the Aggregation layer. Facts Fa are basic ele-
ments of the SELFNET reasoning which describe how the 
Analyzer Module acquires new knowledge via its rule-
based expert system. Rules Ru indicate how the SELFNET 
Analyzer infers new facts at the rule-based expert systems. 
Note that they are propositional logic expressions in modus 
ponens where the implications deduce the new knowledge. 
Forecast Ft, pattern recognition PR and adaptive thresh-
olds ATh specify the basic analytical operations, for which 
the datasets D provide additional collections of reference 
samples. Finally, conclusions C state facts related with 
symptoms.

3  Assumptions

The orchestration of the Analyzer accepts the assump-
tions and limitations established by Barona López et  al. 
(2017b), which were described in the previous section. 
In order to satisfy the needs of the previously agreed 
design, as well as to be able to provide the functionalities 
expected by the rest of the SELFNET tasks, it addition-
ally identifies the following new specific constraints to be 
considered.

Fig. 4  SELFNET analyzer 
architecture (Barona López 
et al. 2017b)
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3.1  Symptoms and events

The Diagnosis layer of SELFNET (Neves et al. 2016) dis-
tinguishes two groups of reports: symptoms and events 
(Barona López et  al. 2017a, b). The first one contains 
conclusions generated through analytics. On the other 
hand, events are signals on which it is not necessary to 
carry out actions related to Artificial Intelligence, such as 
pattern recognition, prediction or logical inference. Note 
that in Barona López et al. (2017b), events were managed 
as facts [in particular Fa(Ev)]. In the same way as the rest 
of the metrics extracted from the aggregated information 
(see Fig.  4), events were included in the working mem-
ory, and hence they could be considered for acquiring 
knowledge via rule-based expert system, forecasted or 
studied by pattern recognition techniques. Obviously this 
was a potential contradiction that must be clarified. In the 
remainder of this paper, it is assumed that the expression 
Fa(Ev) strictly refers to aggregated metrics extracted from 
the monitored events, instead of the event themselves. For 
example, alerts issued by the IDS involved in the use case 
Self-Protection are, by definition, events. Given their rel-
evance, they must be directly addressed to the Diagnosis 
layer, so it is not possible to assume the cost in time that 
involves the execution of complex analytical calculations 
on them. However, it is possible to generate metrics that 
facilitate the making of future decisions or even foresee 
the issuance of new alerts. For example, the Aggregation 
layer may provide information about the number of alerts 
per observation, mean, variance, emission intervals, and 
its distribution, among others. From which stronger con-
clusions could be inferred. Unlike when dealing with 
events, these metrics are not processed with enough effi-
ciency to deliver real-time results.

3.2  Rule based inference

Given the SELFNET framework and the nature of the 
monitored data, the decision to implement a rule-based 
inference engine as a symptom discovery tool brings many 
benefits, among them: (1) rule engines allow to use case 
administrators decide “What to do”, not “How to do it”. 
Because of this, it makes it easy to express solutions to dif-
ficult problems and specify the onboard of future use cases. 
(2) It brings logic and data separation, where data is in the 
domain of objects, and the logic is in the rules Ru. (3) It 
provides centralization of the knowledge required for infer 
symptoms. (4) Rule-based systems are fast and scalable: 
some algorithms (ex. RETE, Leaps, Treat, etc.) (Bassilia-
des and Vlahavas 1997) and their optimizations (Guillaume 
and Charnomordic 2012) provide very efficient ways of 
matching rule patterns to the use cases domain object data. 
These are especially efficient when facts change in small 
portions as the rule engine can remember past matches. 
For example, this happens with the information periodi-
cally provided by a particular SELFNET sensor. But rule-
based systems also pose drawbacks: the first of them is high 
dependency of the rule set. If the rules are not consistent, 
coherent or reasonably specific, the results obtained will 
be probably not as expected (Lunardhi and Passino 1995). 
On the other hand, they are susceptible to bad practices. 
For example, rule-based systems allow storing, managing 
and updating rules as data. It is common that they are mis-
takenly used to generate new rules or even update them at 
runtime, which is out of the scope of these technologies. 
Finally, it is important to bear in mind that the scalability 
of rule-based systems has a negative impact in terms of 
resource consumption. In this regard, it is worth mention-
ing the consequences of their two most frequent ways to 

Table 2  Summary of use case data specification

Data Category Provider Destination Format

Object (simple) O Specification Use case Analyzer Oi:{object name|weight|noValues|range of values Va}
Object (mult) O Specification Use case Analyzer Oi:{Object name|weight|noValues|

[
Va1

][
Va2

]
…[VaK]}

Operation Op Specification Use case Analyzer Opi:{name|symbol|priority|operands|description}
Facts Fa Assessment Aggregation 

analyzer
Analyzer Fai:{expression|eight|uncertainty|timestamp|location}

Rule Ru Specification Use case Analyzer Rui:{rule|priority|use case}
Forecast (ts) Ft Specification Use case Analyzer Fti:{timeSeries|object|domain|lenght}
Forecast (G) Ft Specification Use case Analyzer Fti:{graph|object|noVertex|domain|lenght}
Threshold Th Specification Use case Analyzer Thi:{Th name|object}
A. Threshold ATh Specification Use case Analyzer Fti:{ATh name| data structure|CI|forecast}
Datasets D Specification Use case Analyzer Di:{D name|object|type|source}
Pattern recognition Specification Use case Analyzer PRi:{PR name|objectIn|objectOut|action|reference data}
Conclusion C Specification Use case Analyzer Sti:{C name|use case|fact}
Report Re Report Analyzer Diagnosis Rei:{C name|use case|fact|uncertainty|trigger}
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scale (Wang and Hanson 1992): firstly, if the number of 
facts is acceptable, but the number of rules is very high, 
there will be an important increase in the computation time 
of their processing. On the opposite, if the number of facts 
is very high, but the number of rules is acceptable, a larger 
amount of memory is required for storage. Note that if the 
number of inputs and rules are large, then both, memory 
and efficiency are penalized. In the context of SELFNET 
it is expected to receive a large number of facts, but oper-
ate on small rule sets. Consequently, it is expected that the 
scalability of the expert rule-based system will lead to the 
use of a greater amount of storage space.

3.3  Data granularity

SELFNET is a complex monitoring scenario where a large 
amount of sensors collect information about the state of the 
network in real time. This information is processed in the 
aggregation layer, which provides the necessary metrics to 
acquire knowledge. For this purpose, the Analyzer must 
perform complex calculations. As will be described in the 
later sections, aggregated data will not be raw processed. 
Instead, it will be packed as Aggregated Data Bundles 
(ADB) which will periodically be loaded by the Analyzer 
and converted into facts. Each ADB is the summary of all 
the system information observed over a time period T . It 
can therefore be stated that ADB may be abstracted as an 
observation on a time series of records that facilitate the 
network awareness. It is assumed that the effectiveness and 
performance of the analytics depends on the T , and how 
representative is the information on the ADB.

4  Design principles

The following design principles and limitations lay the 
foundation of the Analyzer orchestrator, as well as the 

implementation of its internal components, data flows and 
synchronization.

4.1  Aggregated data bundles

The information required for the analytics is obtained 
from the Aggregation layer packaged as Aggregated Data 
Bundles (ADB). An ADB is the summary of the aggre-
gated metrics calculated in a time interval P translated 
into facts Fa. Note that a priori, the data within an ADB 
does not overlap the metrics on other ADBs (this aspect 
could be revised later for future optimizations). For exam-
ple, let the time series Y = {Yt:t ∈ T} where Y1, Y2,… , Yk, 
k = 7, assuming the construction of ADBs on P = 1, the 
SELFNET Analyzer will sequentially deal with seven 
ADBs, i.e. ADB1,ADB2,… ,ADBk (see Fig.  5). Through 
the use of this strategy a massive and continuous input of 
information is avoided, which facilitate the initialization 
of the implemented data mining algorithms. Likewise, the 
information is managed and processed in an orderly man-
ner, which also reduces the number of inconsistencies 
between the new facts and the data stored in the working 
memory. Finally, as is illustrated at the next section, the 
deployment of optimization method based on the exploita-
tion of concurrence is facilitated.

4.2  Persistence

The SELFNET Analyzer does not provide persistence 
of the data loaded as ADBs. The monitored raw data and 
aggregated metrics are conveniently stored in the Big Data 
platform located at the Aggregation layer. Facts Fa not 
implicated in prediction/pattern recognition are discarded 
once their ADB is completely processed and the conclu-
sions are inferred. This means that, in this case, facts Fa 
are temporally stored in a local short-term memory only for 
the duration of their analysis. On the other hand, facts Fa 

Fig. 5  Communication by 
ADBs
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required for prediction/pattern recognition may temporally 
persist throughout the analysis of various ADBs. This is 
because they compose the time series and graphs needed 
to build models/regressions. Note that these data structures 
have limited size, which once reached involves eliminating 
the more obsolete observations via First In First Out (FIFO) 
policies (Finkel et  al. 2003). Once an ADB is completely 
analyzed and the conclusions are reported to the Diagnosis 
layer as symptoms, the working memory of the rule-based 
expert systems is restarted. Only the necessary facts for the 
construction of the time series and graphs are temporarily 
conserved, but this is outside the working memory. When 
loading a new ADB, facts on time series and graphs are 
again, added to the working memory as Fa (Ft), Fa (Ath) 
and Fa(PR).

4.3  Analytic pipelining

Analytics are executed as a linear pipeline of sets of data 
processing elements connected in series, where the out-
put of an input is the input of the next one (Zou et  al. 
2014). When an ADB reach the SELFNET Analyzer, a 

sequence of processing elements is executed, where intel-
ligence actions (i.e. logic inference, pattern recognition, 
prediction) and preprocessing steps (load ADBs, data 
encapsulation, generation of reports) are chronologically 
separated, and their inputs/outputs are shared by buffer 
storage structures. So it is possible to state that this first 
approach considers a buffered-synchronous pipeline ana-
lytic architecture. Its main advantages are: great organi-
zation of information to process, mitigation of inconsist-
encies between the new facts and the data being analyzed, 
easy of design and modularity. The latter allows manag-
ing every set of actions independently, which facilitates 
debugging, troubleshooting tasks and provide a more 
accurate assessment of the performance of their ana-
lytic actions. But it is important to keep in mind that this 
scheme also poses several challenges, among them try to 
define sets of actions of similar complexity in order to 
enable optimization strategies based on parallelism, the 
fact that the delay in a task may slow down the execution 
of those that depend on it, and in the case of implement 
parallelism, the best suited politics of temporal memory 
sharing must be identified.

Fig. 6  Sets of actions on the analyzer
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5  Workflow

The SELFNET Analyzer orchestration is separated into 
seven main steps: use case Onboarding (O), Discovery 
(DIS), Patter Recognition (PR), Prediction (FT), Adaptive 
Thresholding (ATH), Knowledge inference (KI) and Noti-
fication (N). They are illustrated in Fig. 6 and described in 
detail below.

• Onboarding [O] The onboarding step is executed only 
once per use case. It corresponds to the component User 
Interface in Barona López et  al. (2017b), and allows 
updating the knowledge-base by inserting, modifying 
or deleting data associated with every use case, such as 
objects O, rules Ru operations Op or prediction metrics 
Ft. When a new use case is onboarded, the input data 
is normalized, and in order to avoid runtime errors, the 
coherence of the new specification is validated. Then 
the Analyzer is prepared to accommodate the new oper-
ations, hence including the specified information on the 
existing data structures, memory allocation and syn-
chronization of the onboarded actions with the previous 
loaded configurations.

• Discovery [DIS] The discovery step is the link between 
the SELFNET Aggregation and Analyzer layers. These 
tasks periodically receive ADBs which summarize the 
SELFNET aggregated observations. From the loaded 
KPI, events and thresholds, the Analyzer build facts 
(Fa(KPI), Fa(Ev) and Fa(Th)). If they are required for 
prediction, patter recognition or adaptive thresholding, 
the Analyzer includes these observations in the tempo-
rally stored time series or graphs. Note that independent 
facts are removed at the end of the ADB processing, as 
well as the new knowledge acquired from them.

• Pattern recognition [PR] The set of actions related 
with pattern recognition implies the access to the data-
sets with models, sample collection or signatures, and 
the detection of matches or outliers. The acquired facts 
may be considered by prediction, pattern recognition or 
adaptive thresholding, as well as to infer knowledge on 
the rule-based expert system.

• Prediction [FT] The set of actions related with predic-
tion includes the construction of forecasting models/
regression, the decision of the best suited algorithms by 
considering the nature of the input data, and the estima-
tion of its evolution. As is the case on the pattern recog-
nition activities, the generated facts may be considered 
to infer knowledge on the rule-based expert system, and 
also to identify adaptive thresholds.

• Adaptive thresholding [ATH] This set of operations 
establishes measures to approximate when the forecast-
ing errors must be taken into account when identifying 
symptoms. In order to enhance the information reported 

to the Diagnosis layer, the new facts are provided to 
the rule-based expert system, hence contributing to the 
inference of new knowledge.

• Knowledge inference [KI] This step executes the tasks 
related with the rule-based expert system. It considers 
the data provided by the sources of information men-
tioned above, among them facts directly built from 
aggregated data, pattern recognition, prediction and 
adaptive thresholding steps. The acquired knowledge is 
included in the SELFNET Analyzer working memory. 
Conclusions are transmitted to the notification capabili-
ties as potential symptoms.

• Notification [N] The set of actions on Notification cor-
responds to those on the component Uncertainty Esti-
mation at the original SELFNET Analyzer architecture. 
They are the link between the SELFNET Diagnosis 
layer and the knowledge acquired by the Analyzer. This 
step performs two main groups of tasks: accommoda-
tion and formatting. The first one filter redundant and 
low representative information. Once the ADB is com-
pletely analyzed, these actions erase and restart the aux-
iliary functionalities on the analytics and the several 
data structures; only the information required for build 
time series and graphs from data included in future 
ADBs is temporally persistent. On the other hand, 
the group of actions related with formatting, trans-
lates internal information of the analyzer to crisp data 
required by Diagnosis. Then it is reported.

6  Execution and optimization

When no optimization measures are implemented, the exe-
cution of the sets of actions determined in the previous sec-
tion can be summarized in Fig. 7. There the onboard of a 
new use case and the completion of its different task are 
illustrated. Note that in accordance with this basic specifi-
cation, the Analyzer only is able to load a new ADB if the 
previously loaded ADB is completely processed. Obviously 
this is not the most efficient way to carry out their study. 
Assuming separately the computational costs of every set 
of actions: O(DIS), O(PR), O(FT), O(ATH), O(FT), O(KI) 
and O(N); and ignoring the penalty of onboarding use cases 
O(Onboard), the average cost of analyze an ADB is:

OADB = O(DIS + PR + FT + ATH + KI + N)

Where given the complexity of the pattern recognition 
and prediction methods, O(FT) and O(ATH) will con-
centrate most of the resource penalty. This approach is 
cheap in terms of memory, because once a set of actions 
is completed, most of their auxiliary data structures can be 
released. In addition, not managing different ADBs in par-
allel prevents the replication of such containers. Because of 
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its simplicity and easy debugging, this is the first version of 
the Analyzer orchestrator that was implemented.

However, this scheme can be optimized easily by con-
sidering pipelining solutions. They allow overlapping 
execution of multiple actions with the same memory 
space by exploiting parallelism (Gordon et  al. 2006). 
Figure  8 illustrates an example of these kinds of meth-
ods, where six ADBs can be processed at the same time 
period.

Two sets of similar actions cannot be processed in con-
currency, but it is possible with different sets. This means 
that, for example Patter Recognition on the analysis of 
ADB1 cannot overlap with Pattern Recognition on the fol-
lowing ADB2, since all the resources for this task are being 
used to analyze the first information package. But it could 
be executed in concurrency with the Discovery stage of 
ADB2, where resources and memory are not shared. If the 

Fig. 7  Basic execution of the analyzer sets of actions

Fig. 8  Example of optimal analysis of multiple ADBs in concurrency
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initialization cost related with processing the first ADB is 
ignored, it can be formalized as follows:

Oinit = O(DIS + PR + FT + ATH + KI + N)

Then the cost of analyze ADBs at init + 5 is summarized as

OADB = O(MAX{DIS,PR,FT ,ATH,KI,N})

This implies an important improvement over the origi-
nal proposal. But the implementation of this scheme leads 
to several restrictions. Firstly, it requires a greater amount 
of memory; the system must support up to six times more 
storage space to facilitate the analysis of six ADBs at a 
time. On the other hand, in order to allow the communi-
cation between sets of actions, the SELFNET Analyzer 
must provide temporal storage buffers and synchroniza-
tion mechanism. This requires managing shared memory 
between tasks, and adds complexity to the execution thread. 
Furthermore, it has to be borne in mind that under optimal 
circumstances, all sets of actions must take the same time 
to complete. Obviously this does not happen in reality, 
since pattern recognition and prediction actions often imply 
a higher cost than those relate with the rule-based infer-
ence. Consequently, it is possible that certain sets of actions 
must remain on hold until others are finished, before giving 
way to new analysis processes. This problem is illustrated 
in Fig.  9, where the different sets of actions display une-
qual time consumption. If there are no waits, the different 
tasks will overlap leading to memory-sharing conflicts and 
inconsistencies between facts. For example, ADB3 predic-
tion actions require the pattern recognition facts of the same 

processing thread. But if such overlapping occurs, predic-
tion on ADB3 may also receive facts derived from pattern 
recognition at ADB2, which would lead to inference errone-
ous knowledge. Note that it is also possible that none of the 
use cases require the execution of some sets of actions (in 
Fig. 9 this occurs with adaptive thresholding tasks). In both 
circumstances there will be moments of waiting.

Another clear example of inequality between execu-
tion costs of sets of actions is shown in Fig. 10, when the 
same task, in this case prediction, becomes more and more 
expensive over time. This entails an accumulative delay in 
the previous actions (pattern recognition).

The Analyzer orchestrator deals with these problems by 
adjusting the granularity of the information provided by the 
ADBs, and by limiting the observation sliding windows 
and the amount of information considered for initializing 
the pattern recognition and prediction algorithms. Accord-
ing to these circumstances, the cost of executing an ADBs 
at init + 5 once the sequencing is initialized is expressed as 
follows:

OADB = O(MAX{DIS,PR,FT ,ATH,KI,N}) + delayt

Where the cumulative penalization is decomposed as:

delayt = O
(
WaitDIS +WaitPR +WaitFT +WaitATH +WaitKI

+Wait
N

)

Alternatively, each set of actions is also able to exploit 
concurrency at thread level in order to improve its perfor-
mance. Due to the characteristics of the monitoring envi-
ronment, it is possible to deduce that frequently, the same 

Fig. 9  Example of computational time penalization because of unequal set of actions
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metric (ex. temperature, congestion, etc.) may be reported 
from different sources. The analysis of similar information, 
but provided from different data sources, is enhanced by 
CPU/GPU multithreading (Su et al. 2016) as it is illustrated 

in Fig. 11, which improves their consumption of computa-
tional resources in terms of storage and efficiency.

7  Illustrative examples

This section describes several examples of the analytic pro-
cess according with the aforementioned Analyzer Orches-
tration scheme.

7.1  UC 1: device packet loss

7.1.1  Description

The illustrative use case called Self—packet loss prevention 
(SLP) reports symptoms related with huge packet loss rates 
on SELFNET devices. Where if the packet loss rate of cer-
tain SELFNET device exceeds a specific threshold, a new 
fact that represents such situation is acquired. This is a very 

Fig. 10  Example of computational time penalization because of incremental resource consumption

Fig. 11  Example of concurrency exploitation

Table 3  SLP onboarding specification

Item Descriptor

Object O1:{Packetloss|1|1|ℝ}
Threshold Th1:{maxPacketLoss|O1}

Operator Op1:{Equal| = | 1 |(Fa,O,Va) = (Fa,O,Va)|equal}
Operator Op2:{LGT| ⩾ | 1 |(Fa,O,Va) ⩾ (Fa,O,Va)|left is GE}
Conclusion C1:{excessive packet loss|SLP|Fa(O1) ⩾ Fa(Th1)}

Rule Ru1:{Fa(O1) ⩾ Fa(Th1) → Fa(C1)|1|SLP}
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basic example where concurrency pipelining is not applied, 
and where prediction and adaptive thresholding are not 
considered. Therefore the decision thresholds are static and 
were built at Aggregation. Table  3 shows its onboarding 
descriptors according with the specification summarized in 
Table 2.

7.1.2  Step‑by‑step

The following illustrates and example of runtime in Self—
packet loss prevention, where different ADBs are loaded 
and analyzed according to the aforementioned indications. 
Figure 12 displays every step in a sequence diagram, which 
are described step-by-step below:

 1. The SLP use case descriptors are loaded by the 
SELFNET Analyzer. Then, the memory for storing 
temporal containers of objects O1, thresholds Th1 and 
facts Fa is allocated. Pattern recognition, prediction 
and adaptive thresholding are not required, so neither 
data structures to support time series nor graphs are 
considered.

 2. The ADB1 with aggregated instances of O1 and Th1 is 
requested to the Aggregation layer and then it is pro-
cessed. The SELFNET Analyzer build the following 
facts from the information gathered by the network 
elements (NodeA, NodeB, NodeC, NodeD):

Fa(O)[idO1]: {O1 = 0.35|1|1|Today 12:22:15|NodeA}
Fa(O)[idO2]: {O1 = 0.34|1|1|Today 12:22:15|NodeB}
Fa(O)[idO3]: {O1 = 0.33|1|1|Today 12:22:15|NodeC}
Fa(O)[idO4]: {O1 = 0.35|1|1|Today 12:22:15|NodeD}

And by the data Aggregation:

 3. Given that pattern recognition, prediction and adap-
tive thresholding are not required, the Analyzer 
bypasses those steps (i.e. new facts are not inferred by 
them).

 4. The rule-based inference engine processes the dis-
covered facts by applying the rule Ru1. Given that 
the condition Fa(O1) ⩾ Fa(Th1) is not satisfied by 
any of the facts, conclusions related with SLP are not 
inferred.

 5. All the temporal data related with objects O1, thresh-
olds Th1 and facts Fa is cleaned.

 6. The ADB2 with aggregated instances of O1 and Th1 is 
requested to the Aggregation layer and processed. The 
SELFNET Analyzer build the following facts from 
the information gathered by the network elements 
(NodeA, NodeB, NodeC, NodeD):

And by the data Aggregation:

 7. The Analyzer bypasses pattern recognition, prediction 
and adaptive thresholding.

 8. The rule-based inference engine processes the dis-
covered facts by applying the rule Ru1. Given that the 
condition Fa(O1) ⩾ Fa(Th1) is satisfied for the data 
gathered by NodeC, The following fact related with 
Self − packet loss prevention is inferred.

Fa(Th)[idTh1]: {Th1 = 0.7|1|1|Today 12:22:15|All}

Fa(O)[idO5]: {O1 = 0.36|1|1|Today 12:23:15|NodeA}
Fa(O)[idO6]: {O1 = 0.34|1|1|Today 12:23:15|NodeB}
Fa(O)[idO7]: {O1 = 0.81|1|1|Today 12:23:15|NodeC}
Fa(O)[idO8]: {O1 = 0.31|1|1|Today 12:23:15|NodeD}

Fa(Th)[idTh2]: {Th1 = 0.79|1|1|Today 12:23:15|All}

Fig. 12  Example of runtime in 
self-packet loss prevention
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Which describes the conclusion C1:

 9. The following symptom is reported to the Diagnosis 
layer:

All the temporal data related with objects O2, thresh-
olds Th2 and facts Fa is cleaned.

 10. The ADB3 with aggregated instances of O1 and Th1 is 
requested to the Aggregation layer and processed. The 
SELFNET Analyzer builds the following facts from 
the information gathered by the network elements 
(NodeA, NodeB, NodeC, NodeD):

And by the data Aggregation:

 11. The Analyzer bypasses pattern recognition, prediction 
and adaptive thresholding.

 12. The rule-based inference engine processes the dis-
covered facts by applying the rule Ru1. Given that 
the condition Fa(O1) ⩾ Fa(Th1) is not satisfied by 
any of the facts, conclusions related with SLP are not 
inferred.

 13. All the temporal data related with objects O1, thresh-
olds Th1 and facts Fa is cleaned.

7.2  UC 2: quality of service analysis

7.2.1  Description

The illustrative use case to be managed Self—QoSOver‑
watch (SQoS) report symptoms related with suspicious 
QoS decreasing, In particular, if a significantly decrement 
considering the latest observations is detected, a new fact 

Fa[idF1]: {Fa(idO7) ⩾ Fa(idTh2)|1|1|Today 12:23:15|NodeC}.

C1[idC1]:{excessive packet loss|SLP|Fa(idO7) ⩾ Fa(idTh2)}

Re1[idRe1]:{
excessive packet loss|SLP|idF1|1|idO7, idTh2,Ru1

}

Fa(O)[idO09]: {O1 = 0.36|1|1|Today 12:24:15|NodeA}
Fa(O)[idO10]: {O1 = 0.34|1|1|Today 12:24:15|NodeB}
Fa(O)[idO11]: {O1 = 0.33|1|1|Today 12:24:15|NodeC}
Fa(O)[idO12]: {O1 = 0.31|1|1|Today 12:24:15|NodeD}

Fa(Th)[idTh3]: {Th1 = 0.77|1|1|Today 12:24:15|All}

related with relevant QoS variation is acquired. In this con-
text, concurrency at pipelining is not applied, prediction 
and adaptive thresholding are considered, and it is assumed 
that the forecasting algorithm requires at least n = 8 obser-
vations for building the prediction model. Table  4 shows 
its onboarding descriptors according with the specification 
summarized in Table 2.

7.2.2  Step‑by‑step

The following illustrates and example of runtime in Self—
QoSOverwatch, where different ADBs are loaded and ana-
lyzed according to the aforementioned indications. Fig-
ure 13 displays every step in a sequence diagram, which are 
described step-by-step below:

1. The descriptors of the SQoS use case are loaded by the 
SELFNET Analyzer. Then, the memory for storing 
temporal containers of objects O1, forecasts Ft1, adap-
tive tresholds ATh1 and facts Fa is allocated. Predic-
tion capabilities on time series are required, so the data 
structures to support time series are initiated.

2. The ADB1 with aggregated instances of O1 is requested 
to the Aggregation layer and then it is processed. The 
SELFNET Analyzer built the following facts from the 
information gathered by the network elements (NodeA, 
NodeB, NodeC, NodeD):

3. Given that the Analyzer does not dispose of time 
series of n = 8 facts per sensor, prediction is not pos-
sible. Hence, adaptive thresholding is not performed. 
Because there are not facts related with adaptive thresh-
olds, the rule Ru1 where Fa(O1) ⩾ Fa(ATh1) → Fa(C1) 
cannot be triggered. So conclusions related with symp-
toms are not notified to the diagnosis layer. On the 
other hand, given that the acquired facts are related 
with time series analysis (i.e. prediction and adaptive 
thresholding), they cannot be deleted before load-

Fa(O)[idO1]: {O1 = 0.60|1|1|Today 12:22:15|NodeA}
Fa(O)[idO2]: {O1 = 0.65|1|1|Today 12:22:15|NodeB}
Fa(O)[idO3]: {O1 = 0.61|1|1|Today 12:22:15|NodeC}
Fa(O)[idO4]: {O1 = 0.62|1|1|Today 12:22:15|NodeD}

Table 4  Self—QoSOverwatch 
specification

Item Descriptor

Object O1:{QoS decrement|1|1|[0, 1]}
Forecast Ft1:{timeSeries|O1|obs|t + 1}

Adaptive threshold ATh1:{maxQoS decrement|timeSeries|0.95|Ft1}
Operator Op1:{Equal| = | 1 |(Fa,O,Va) = (Fa,O,Va)|equal}
Operator Op2:{LGT| ⩾ | 1 |(Fa,O,Va) ⩾ (Fa,O,Va)|left is GE}
Conclusion C1:{Suspicious QoS variation|SQoS|Fa(O1) ⩾ Fa(ATh1)}

Rule Ru1:{Fa(O1) ⩾ Fa(ATh1) → Fa(C1)|1|SC}
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ing the following ADBs, but the rule-based inference 
engine is reinitiated.

4. The Analyzer performs the same actions (Steps 2 and 
3) from ADB2 until ADB7. Table 5 shows the facts built 
for these set of ADBs.

5. The ADB8 with aggregated instances of O1 is requested 
to the Aggregation layer and then it is processed. The 

SELFNET Analyzer built the following facts from the 
information gathered by the network elements:

6. A this point, there are n = 8 facts per sensor in the time 
series to be predicted, so the forecasting method are 
able to estimate the next observation (t + 1) as specified 
in the use case definition. The temporally stored data is 
summarized in Table 6.

 The following facts related with prediction are 
acquired:

Fa(Ft)[idF2]:{Ft1 = 0.72|1|1|Today 12:29:15|NodeB}
Fa(Ft)[idF3]:{Ft1 = 0.72|1|1|Today 12:29:15|NodeC} 
Fa(Ft)[idF4]{Ft1 = 0.63|1|1|Today 12:29:15|NodeD}

Fa(O)[idO29]: {O1 = 0.60|1|1|Today 12:29:15|NodeA}
Fa(O)[idO30]: {O1 = 0.73|1|1|Today 12:29:15|NodeB}
Fa(O)[idO31]: {O1 = 0.72|1|1|Today 12:29:15|NodeC}
Fa(O)[idO32]: {O1 = 0.64|1|1|Today 12:29:15|NodeD}

Fa(Ft)[idF1]: {Ft1 = 0.61|1|1|Today 12:29:15|NodeA}

Fig. 13  Example of runtime in 
Self-QoSOverwatch

Table 5  Facts ADB2 to ADB7

ADB Facts

ADB2 Fa(O)[idO5]{O1 = 0.63|1|1|Today 12:23:15|NodeA}
Fa(O)[idO6]{O1 = 0.64|1|1|Today 12:23:15|NodeB}
Fa(O)[idO7]{O1 = 0.65|1|1|Today 12:23:15|NodeC}
Fa(O)[idO8]{O1 = 0.66|1|1|Today 12:23:15|NodeD}

ADB3 Fa(O)[idO9]{O1 = 0.62|1|1|Today 12:24:15|NodeA}
Fa(O)[idO10]{O1 = 0.70|1|1|Today 12:24:15|NodeB}
Fa(O)[idO11]{O1 = 0.72|1|1|Today 12:24:15|NodeC}
Fa(O)[idO12]{O1 = 0.63|1|1|Today 12:24:15|NodeD}

ADB4 Fa(O)[idO13]{O1 = 0.60|1|1|Today 12:25:15|NodeA}
Fa(O)[idO14]{O1 = 0.72|1|1|Today 12:25:15|NodeB}
Fa(O)[idO15]{O1 = 0.73|1|1|Today 12:25:15|NodeC}
Fa(O)[idO16]{O1 = 0.65|1|1|Today 12:25:15|NodeD}

ADB5 Fa(O)[idO17]{O1 = 0.62|1|1|Today 12:26:15|NodeA}
Fa(O)[idO18]{O1 = 0.71|1|1|Today 12:26:15|NodeB}
Fa(O)[idO19]{O1 = 0.76|1|1|Today 12:26:15|NodeC}
Fa(O)[idO20]{O1 = 0.63|1|1|Today 12:26:15|NodeD

ADB6 Fa(O)[idO21]{O1 = 0.63|1|1|Today 12:27:15|NodeA}
Fa(O)[idO22]{O1 = 0.70|1|1|Today 12:27:15|NodeB}
Fa(O)[idO23]{O1 = 0.71|1|1|Today 12:27:15|NodeC}
Fa(O)[idO24]{O1 = 0.60|1|1|Today 12:27:15|NodeD}

ADB7 Fa(O)[idO25]{O1 = 0.61|1|1|Today 12:28:15|NodeA}
Fa(O)[idO26]{O1 = 0.72|1|1|Today 12:28:15|NodeB}
Fa(O)[idO27]{O1 = 0.73|1|1|Today 12:28:15|NodeC}
Fa(O)[idO28]{O1 = 0.62|1|1|Today 12:28:15|NodeD}

Table 6  Summary of information on time series at SQoS

Time N NodeA NodeB NodeC NodeD

12:22:15 1 0.60 0.65 0.61 0.62
12:23:15 2 0.63 0.64 0.65 0.66
12:24:15 3 0.62 0.70 0.72 0.63
12:25:15 4 0.6 0.72 0.73 0.65
12:26:15 5 0.62 0.71 0.76 0.63
12:27:15 6 0.63 0.7 0.71 0.6
12:28:15 7 0.61 0.72 0.73 0.62
12:29:15 8 0.6 0.73 0.72 0.64
Forecast n + 1 0.61 0.72 0.72 0.63
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 7. The following facts related with the adaptive thresh-
olds built from the predictions are acquired:

 8. The recent calculated thresholds are not appli-
cable to the current observations, so the rule Ru1
where Fa(O1) ⩾ Fa(ATh1) → Fa(C1) cannot be trig-
gered. Conclusions related with symptoms are not 
noEq210tified to the diagnosis layer.

  Note that for the observation i only the predictions 
and adaptive thresholds calculated at 0,… , i − 1 can 
be considered; stated in another way: predictions and 
adaptive thresholds calculated at i are only valid for 
the next i + 1 observations, when it can be verified 
whether they have been fulfilled.

 9. The ADB9 with aggregated instances of O1 is 
requested to the Aggregation layer and then it is pro-
cessed. The SELFNET Analyzer built the following 
facts from the information gathered by the network 
elements (NodeA, NodeB, NodeC, NodeD):

 10. Not pattern recognition actions are declared.
 11. The following facts about predictions for the next 

observations are calculated:

Fa(Ft)[idF6]:{Ft1 = 0.75|1|1|Today 12:30:15|NodeB} 
Fa(Ft)[idF7]:{Ft1 = 0.72|1|1|Today 12:30:15|NodeC} 
Fa(Ft)[idF8]: {Ft1 = 0.62|1|1|Today 12:30:15|NodeD}

 12. New facts related with adaptive thresholds are calcu-
lated:

 13. The rule-based inference engine processes the dis-
covered facts by applying the rule Ru1. Given that the 
condition Fa(O1) ⩾ Fa(ATh1) is satisfied for the data 
gathered by NodeB, The following fact related with 
Self − QoSOverwatch is inferred.

. Which describes the conclusion C1:

Fa(Ath)[idA1]: {Ath1 = 0.62|1|1|Today 12:29:15|NodeA}
Fa(Ath)[idA2]:{Ath1 = 0.73|1|1|Today 12:29:15|NodeB}
Fa(Ath)[idA4]{Ath1 = 0.64|1|1|Today 12:29:15|NodeD}

Fa(O)[idO33]: {O1 = 0.60|1|1|Today 12:30:15|NodeA}
Fa(O)[idO34]: {O1 = 0.82|1|1|Today 12:30:15|NodeB}
Fa(O)[idO35]: {O1 = 0.62|1|1|Today 12:30:15|NodeC}
Fa(O)[idO36]: {O1 = 0.60|1|1|Today 12:30:15|NodeD}

Fa(Ft)[idF5]: {Ft1 = 0.60|1|1|Today 12:30:15|NodeA}

Fa(Ath)[idA5]: {Ath1 = 0.61|1|1|Today 12:30:15|NodeA}
Fa(Ath)[idA6]:{Ath1 = 0.76|1|1|Today 12:30:15|NodeB}
Fa(Ath)[idA7]:{Ath1 = 0.73|1|1|Today 12:30:15|NodeC}
Fa(Ath)[idA8]{Ath1 = 0.63|1|1|Today 12:30:15|NodeD}

Fa[idF1]:{Fa(idO34) ⩾ Fa(idA2)|1|1|Today 12:30:15|NodeB}

C1[idC1]:{Suspicious QoS variation|SQoS|Fa(idO34) ⩾ Fa(idA2)}

 14. The following symptom is reported to the Diagnosis 
layer:

8  UC 3: Botnet detection

8.1  Description

The use case called Self—BotnetMitigation (SZombie) 
report symptoms related with Suspicious Command and 
Control (C&C) communications (Wang et  al. 2017). In 
this case concurrency at pipelining is not applied, pat-
tern recognition actions are considered, but prediction 
and adaptive thresholding are not required. Note that 
the external repositories (Rep1, Rep2) provide collec-
tions of legitimate (Rep1) and malicious (Rep2) traffic 
pattern observations on SELFNET. When a new discov-
ered patter seems much more significantly to the collec-
tion of malicious patterns than the legitimate, a new fact 
that indicates this suspicious feature is acquired. Table 7 
shows its onboarding descriptors according with the 
specification summarized in Table 2.

8.1.1  Step‑by‑step

The following illustrates and example of runtime in Self—
BotnetMitigation, where different ADBs are loaded and 
analyzed according to the aforementioned indications. 
Figure 14 displays every step in a sequence diagram.

 1. The descriptors of the use case Self—BotnetMitiga‑
tion are loaded by the SELFNET Analyzer. Then, the 
memory for storing temporal containers of objects O1, 
pattern recognition PR and facts Fa is allocated. The 
accessibility of the declared datasets D is verified.

 2. The ADB1 with aggregated instances of O1 is 
requested to the Aggregation layer and then it is pro-
cessed. The SELFNET Analyzer built the following 
facts from the information gathered by the network 
elements (NodeA, NodeB, NodeC, NodeD):

 3. The two pattern recognition actions declared are exe-
cuted. First, every Fa

(
O1

)
 is correlated with the data-

Re1[idR1]:

{
Suspicious QoS variation|SQoS|idF1|1|idF1, idA2, idO34, Ru1

}

Fa
(
O1

)
[idO1]: {O1 = FF217|1|1|Today 12:22:17|NodeA}

Fa
(
O1

)
[idO2]: {O1 = 00DE8|1|1|Today 12:22:17|NodeB}

Fa
(
O1

)
[idO3]: {O1 = F00FF|1|1|Today 12:22:17|NodeC}

Fa
(
O1

)
[idO4]: {O1 = A4F09|1|1|Today 12:22:17|NodeD}
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set Dlegi looking for anomalies. The obtained anomaly 
scores O2 allow acquiring the following facts:

On the other hand, every Fa
(
O1

)
 is correlated with 

the dataset Dmali looking for anomalies. The obtained 
anomaly scores O3 allow acquiring the following 
facts:

 4. There are not predictions or adaptive thresholding 
actions to execute.

Fa(PR)[idL1]:
{
O2 = 0.9|1|1|Today 12:22:17|NodeA

}

Fa(PR)[idL2]: {O2 = 0.9|1|1|Today 12:22:17|NodeB}
Fa(PR)[idL3]:

{
O2 = 0.8|1|1|Today 12:22:17|NodeC

}

Fa(PR)[idL4]: {O2 = 0.9|1|1|Today 12:22:17|NodeD}

Fa(PR)[idM1]:
{
O3 = 0.2|1|1|Today 12:22:17|NodeA

}

Fa(PR)[idM2]: {O3 = 0.1|1|1|Today 12:22:17|NodeB}
Fa(PR)[idM3]:

{
O3 = 0.1|1|1|Today 12:22:17|NodeC

}

Fa(PR)[idM4]: {O3 = 0.1|1|1|Today 12:22:17|NodeD}

 5. The rule-based inference engine processes the dis-
covered facts by applying the rule Ru1. Given that 
the condition Fa

(
O2

)
< Fa(O3) is not satisfied, con-

clusions related with Self—BotnetMitigation are not 
inferred.

 6. There are not symptoms to report. All the temporal 
facts are removed and the rule-based expert system is 
restarted.

 7. The ADB2 with aggregated instances of O1 is 
requested to the Aggregation layer and then it is pro-
cessed. The SELFNET Analyzer built the following 
facts from the information gathered by the network 
elements (NodeA, NodeB, NodeC, NodeD):

Fa
(
O1

)
[idO5]: {O1 = F2217|1|1|Today 12:23:17|NodeA}

Fa
(
O1

)
[idO6]: {O1 = 012E8|1|1|Today 12:23:17|NodeB}

Fa
(
O1

)
[idO7]: {O1 = F0211|1|1|Today 12:23:17|NodeC}

Fa
(
O1

)
[idO8]: {O1 = A2F18|1|1|Today 12:23:17|NodeD}

Table 7  Self—
BotnetMitigation specification

Item Descriptor

Object O1:{pattern|1|1|hexadecimal}
Object O2:{simLegi|1|1|{0..1}}
Object O3:{simMal|1|1|{0..1}}
Operator Op1:{Equal| = | 1 |(Fa,O,Va) = (Fa,O,Va)|equal}
Operator Op2:{LT| > | 1 |(Fa,O,Va) > (Fa,O,Va)|left is G}
Dataset Dlegi:{legitimatePatern|O(pattern)|collection|Rep1}
Dataset Dmal:{maliciousPatern|O(pattern)|collection|Rep2}
Pattern recognition PR1:{legMeasure||O1

||O2|anomaly|D(Dlegi)}

Pattern recognition PR2:{malMeasure||O1
||O3|anomaly|D(Dmal)}

Conclusion C1:{malicious communication|SZombie|Fa(O2) < Fa(O3)}

Rule Ru1:{Fa(O2) < Fa(O3) → Fa(C1)|1|SZombie}

Fig. 14  Example of runtime in 
Self—BotnetMitigation 
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 8. The two pattern recognition actions declared are exe-
cuted. The following facts related with O2 and O3 are 
acquired:

 9. There are not predictions or adaptive thresholding 
actions toexecute.

 10. The rule-basedinference engine processes the discov-
ered facts by applying the rule Ru1. Given that the 
condition Fa

(
O2

)
< Fa(O3)is satisfied for the data 

gathered by NodeA, conclusions related with Self—
BotnetMitigation are inferred. The following fact 
related with Self—BotnetMitigation is included to the 
working memory.

Which describes the conclusion C1: C1[idC1]:

{malicious communication|SZombie|Fa(idL5) < Fa

(idM5)}

 11. The following symptom is reported to the Diagnosis 
layer:

 12. The ADB3 with aggregated instances of O1 is 
requested to the Aggregation layer and then it is pro-
cessed. The SELFNET Analyzer built the following 
facts from the information gathered by the network 
elements (NodeA, NodeB, NodeC, NodeD):

 13. The two pattern recognition actions declared are exe-
cuted. The following facts related with O2 and O3 are 
acquired:

Fa(PR)[idL5]:
{
O2 = 0.5|1|1|Today 12:23:17|NodeA

}

Fa(PR)[idL6]: {O2 = 0.8|1|1|Today 12:23:17|NodeB}
Fa(PR)[idL7]:

{
O2 = 0.7|1|1|Today 12:23:17|NodeC

}

Fa(PR)[idL8]: {O2 = 0.9|1|1|Today 12:23:17|NodeD}

Fa(PR)[idM5]:
{
O3 = 0.6|1|1|Today 12:23:17|NodeA

}

Fa(PR)[idM7]: {O3 = 0.2|1|1|Today 12:23:17|NodeB}
Fa(PR)[idM8]:

{
O3 = 0.2|1|1|Today 12:23:17|NodeC

}

Fa(PR)[idM9]: {O3 = 0.3|1|1|Today 12:23:17|NodeD}

Fa[idF1]: {Fa(idL5) < Fa(idM5)|1|1|Today 12:23:17|NodeA}.

Re1[idR1]: {mmalicious communication|SZombie|
idF1|1|idF1, idL5, idM5, Ru1

}

Fa
(
O1

)
[idO9]: {O1 = F1110|1|1|Today 12:24:17|NodeA}

Fa
(
O1

)
[idOA]: {O1 = F2E80|1|1|Today 12:24:17|NodeB}

Fa
(
O1

)
[idOB]: {O1 = 11310|1|1|Today 12:24:17|NodeC}

Fa
(
O1

)
[idOC]: {O1 = AF42C|1|1|Today 12:24:17|NodeD}

Fa(PR)[idL9]:
{
O2 = 0.4|1|1|Today 12:24:17|NodeA

}

Fa(PR)[idLA]: {O2 = 0.3|1|1|Today 12:24:17|NodeB}
Fa(PR)[idLB]:

{
O2 = 0.2|1|1|Today 12:24:17|NodeC

}

Fa(PR)[idLC]: {O2 = 0.9|1|1|Today 12:24:17|NodeD}

 14. There are not predictions or adaptive thresholding 
actions to execute.

 15. The rule-based inference engine processes the dis-
covered facts by applying the rule Ru1. Given that the 
condition Fa

(
O2

)
< Fa(O3)is satisfied for the data 

gathered by NodeA, NodeBand NodeC, conclusions 
related with Self—BotnetMitigation are inferred. The 
following facts related with Self—BotnetMitigation 
are included to the working memory.

 Which describes the conclusion 

 16. The following symptoms are reported to the Diagno-
sis layer:

9  Conclusions

This paper described the key elements of the SELFNET 
Analyzer Orchestrator, including the initial assumptions, 
design principles, workflows, sets of actions, execution 
strategies, and several examples of their application. These 
were properly deployed in the SELFNET project, where 
their effectiveness, configurability and extensibility were 
verified at different use cases (in particular, when applied 
to self-protection, self-optimization and self-healing capa-
bilities). But even though our approach has proved to 
meet its design objectives, throughout the document has 

Fa(PR)[idM9]:
{
O3 = 0.6|1|1|Today 12:24:17|NodeA

}

Fa(PR)[idMA]: {O3 = 0.5|1|1|Today 12:24:17|NodeB}
Fa(PR)[idMB]:

{
O3 = 0.4|1|1|Today 12:24:17|NodeC

}

Fa(PR)[idMC]: {O3 = 0.2|1|1|Today 12:24:17|NodeD}

Fa[idF2]: {Fa(idL9) < Fa(idM9)|1|1|Today 12:24:17|NodeA}

Fa[idF3]: {Fa(idLA) < Fa(idMA)|1|1|Today 12:24:17|NodeB}

Fa[idF4]: {Fa(idLB) < Fa(idMB)|1|1|Today 12:24:17|NodeC}

C1:C1[idC2]:{malicious communication|SZombie|
Fa(idL9) < Fa(idM9)}

C1[idC3]:{malicious communication|SZombie|
Fa(idLA) < Fa(idMA)}

C1[idC4]:{malicious communication|SZombie|
Fa(idLB) < Fa(idMB)}

Re2[idR2]: {malicious communication|SZombie|
idF2|1|idF2, idL9, idM9, Ru1

}

Re3[idR3]: {malicious communication|SZombie|
idF3|1|idF3, idLA, idMA, Ru1

}

Re4[idR4]: {malicious communication|SZombie|
idF4|1|idF4, idLB, idMB, Ru1

}
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remained several aspects without covering, which depend 
directly on the implementation. For instance, some alter-
natives have been described for their optimization, but at 
the moment, only the basic task sequencing approach was 
being implemented on real uses cases. It brings support to 
the most basic requirements of the system, and allows the 
verification of the analyzed communication channels. But 
it is clear that there are many other ways to exploit paral-
lelism at thread level, and therefore, to take more advan-
tage of the analytic pipelining. On the other hand, the pro-
posed scheme forces the most complex sets of actions to be 
executed in a certain way: pattern recognition, prediction, 
adaptive threshold construction and knowledge inference. 
But it is possible that future uses cases demand variations 
in their order; for example, that pattern recognition is being 
carried considering facts related with prediction and adap-
tive thresholds, or that once the knowledge inference tasks 
are completed, an additional step of predictions is required. 
At the moment, easy modifications on the SELFNET use 
case descriptors are able to overcome this inconvenience, 
but it is obvious that deepen in this problem is one of the 
main tasks of future work. Another aspect of interest is 
identifying quality indicators related with the granular-
ity of the information contained in the ADBs. From them 
it is possible to improve the effectiveness of the analytic 
actions.
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