
Vol.:(0123456789)1 3

J Ambient Intell Human Comput
DOI 10.1007/s12652-017-0542-0

ORIGINAL RESEARCH

Orchestration of use-case driven analytics in 5G scenarios

Lorena Isabel Barona López1 · Jorge Maestre Vidal1 · Luis Javier García Villalba1 

Received: 13 February 2017 / Accepted: 30 June 2017
© Springer-Verlag GmbH Germany 2017

Keywords  5G · Situational awareness · SDN/NFV · Data
analysis · Orchestration

1  Introduction

The amount and complexity of cyber threats have risen
alarmingly in recent years (ENISA 2015). Because of
this, the information security management plays a very
important role in the strategies of large organizations. Sev-
eral guidelines and platforms for its implementation have
been published [ISO/IEC 27000 (ISO 2005), NIST-SP
800 (NIST 2007), CVSS-SIG-First (CVSS 2015), etc.],
but despite its effectiveness in conventional scenarios,
it has been shown that they do not adequately operate in
dynamic monitoring environments (Webb et al. 2014). This
is the case of complex use cases, where the circumstances
in which observations are made directly affect the ability
of decision-making. In this context, examples of common
issues when identifying the best mitigation/optimization
actions are: inadequate asset assessment, fluctuations at
data sources, difficulties when configuring new uses cases,
and lack of scalability or interoperability.

In order to tackle these problems, there is a tendency to
assume more cognitive methodologies, thereby facilitating
understanding the environment through contextual analy-
sis. High among those is the development of the Situational
Awareness (SA) of the protected environment by applying
the Endsley’s model (Endsley 1988). In accordance with
this method, the perception, comprehension and projec-
tion of the system status must be taken into account. As
defined by Endsley, the term situational awareness refers to
“the perception of the elements in the environment within
a volume of time and space, comprehension of their mean-
ing and the projection of their status in the near future”,

Abstract  The SELFNET project provides an autonomic
network management framework for 5G networks with a
high degree of automation, self-healing and self-optimi-
zation. These capabilities are achieved through a layered
architecture and a use-case driven approach. A differenti-
ating feature on SELFNET is its competence when creat-
ing and customizing new use cases and their related vir-
tual functions. In this way, the use case operators are able
to introduce new rules and parameters that will be taken
into account in the analysis and decision-making tasks.
Due these characteristics, the orchestration of its analytical
functions poses an important challenge in terms of config-
urability, synchronization and management of resources. In
order to contribute to their resolution, this paper aims to lay
the groundwork for implement the design and specification
of the SELFNET Analyzer orchestration. To this end, sev-
eral key issues related with the internal coordination of the
analytics are introduced, among them initial assumptions,
design principles, limitations, partitioning of the analysis
process, data persistency and optimization. The proposed
orchestration strategy has been implemented with different
uses cases within the SELFNET Project.

 *	 Luis Javier García Villalba
	 javiergv@fdi.ucm.es

	 Lorena Isabel Barona López
	 lorebaro@ucm.es

	 Jorge Maestre Vidal
	 jmaestre@ucm.es

1	 Group of Analysis, Security and Systems (GASS),
Department of Software Engineering and Artificial
Intelligence (DISIA), Faculty of Computer Science
and Engineering, Office 431, Universidad Complutense de
Madrid (UCM), Calle Profesor José García Santesmases, 9,
Ciudad Universitaria, 28040 Madrid, Spain

http://orcid.org/0000-0001-7573-6272
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-017-0542-0&domain=pdf

	 L. I. Barona López et al.

1 3

implicitly stressing how important the context is. As a
result of the enormous complexity that entails managing
the security of current networks, the Endsley’s model has
been specifically adapted to these scenarios, which has led
to coining the term Network Security Situational Aware-
ness (NSSA) (Leau et al. 2015).

Bearing this in mind, 5G networks, as clear examples
of complex and dynamic monitoring environments are the
focus of the research proposed in this paper. These tech-
nologies try to meet the requirements that are expected
to be demanded by the current communication schemes
in the short and long terms. As stated by Osseiran et al.
(2014), they may be summarized in three great challenges:
(1) enhancement of latency and reliability by supporting
use-case dependent capabilities, such as the deployment
of specific purpose applications, among them health-care,
logistics, security or incidence response tools; (2) 5G must
support a wide range of data rates with very high avail-
ability and reliability; (3) finally, in order to facilitate the
inclusion of a large number of devices, networks must
be scalable and flexible. Note that these endpoints must
be simple enough to do not pose high battery consump-
tion. In general terms, advances towards 5G technologies
are based on combining and integrating a large number of
emerging technologies, such as Network Function Virtu-
alization (NFV) (Mijumbi et al. 2016), Software Defined

Networking (SDN) (Xia et al. 2015), Device to Device
Communications (D2D) (Qiao et al. 2015); and analytic
tools for network awareness, among them Artificial Intel-
ligence (AI), Big Data or Self-Organized Networks (SON)
(Baldo et al. 2014).

At present, there are different projects aimed at facilitat-
ing the integration of these technologies into 5G scenarios.
Significant efforts have been done by the European Com-
mission under 5G-PPP and Horizon H2020 programs in
order to support the new generation of mobile networks.
It has led to the foundation of the 5G-PPP partnerships,
which is committed to foster 5G advances in different
strands such as cognitive network management or 5G Net-
work Security (5G-PPP 2017). Table 1 summarizes some
of the projects involved in this association. Their differ-
ences and similarities are discussed in depth by Barona
López et al. (2016). Notable among them is the SELFNET
approach (SELFNET 2014), where an autonomic manage-
ment framework to provide network intelligence and self-
organizing capability for 5G mobile network infrastructures
is provided.

SELFNET includes the widest variety of cutting-edge
technologies and adapts the Endsley’s model (Endsley
1988), as well as the NSSA paradigm, to the 5G scene,
as it is described by Barona López et al. (2017a, b). The
latest effort toward providing SELFNET of an analytical

Table 1   Research projects on mobile networks

Project Related technologies Use cases

MCN (2013) SDN, Cloud Computing (1) Cloud Computing for mobile network operations, (2) end-to-end mobile
Cloud

T-NOVA (2013) SDN, NFV High-level scenario, (2) VNFs, (3) service chaining
UNIFY (2013) SDN, NFV (1) Infrastructure virtualization, (2) flexible service chaining, (3) network

service chain invocation for providers
CROWD (2013) SDN, SON General purpose
5G-NORMA (2014) SDN, NFV (1) Multi-service, (2) multi-tenancy
CHARISMA (2014) SDN, NFV General purpose
SELFNET (2014) SDN, NFV, SON, Cloud Computing (1) Self-healing, (2) self-optimization, (3) self-protection
COGNET (Xu et al. 2016) SDN, NFV, machine learning (1) Situational context, (2) just-in-time services, (3) user-centric services,

(4) optimized services, (5) SLA enforcement, (6) collaborative resource
management

5G-Ensure Project (2014) SDN, NFV, security models 11 Use case clusters: (1–4) identities, authentication, authorization and pri-
vacy, (5) software-defined networks, virtualization and monitoring, (6–10)
availability, reliability and integrity and (11) lawful interception

SONATA (2014) SDN, NFV, cloud (1) Internet of things, (2) virtual CDN, (3) guaranteed, resilient and secure
service delivery in industrial networks, (4) vEPC, (5) personal security
applications, (6) client and hosting service providers

5G-NOW (2013) MTC, CoMP, M2M (1) PRACH scenario, (2) GFDM, (3) uplink CoMP with joint reception, (4)
multiuser uplink on fragmented spectrum with FBMC, (5) downlink CoMP
with FBMC

METIS (METIS-II 2014) SDN, Multi-RAT, D2D, M2M Five scenarios: (1) amazingly fast, (2) great service in a crowd, (3) ubiquitous
things communicating, (4) best experience follows you, (5) super real-time
and reliable connections

Orchestration of use-case driven analytics in 5G scenarios﻿	

1 3

component capable of meeting the 5G requirements in
a use-case driven approach is summarized by Barona
López et al. (2017b), where the design principles, architec-
ture and the formalization of how new use cases must be
onboarded are detailed. But it does not explicitly indicate
how all this information is organized, as well as how the
analytical process is performed. The sophistication of these
tasks results on the need of develop a novel orchestration
of analytics (SELFNET Analyzer Orchestrator), adapted
to the 5G monitoring environment and the use-case driven
politics derived from the SELFNET project, which is the
main contribution of this paper. Other contributions are
the specification and implementation of the dataflows in
the SELFNET Analyzer Framework, the proposal of strat-
egies for their execution and optimization, and a battery
of comprehensive examples which facilitates understand-
ing the approach, and serves as a guide for the design and
deployment of similar components at future projects. This
paper is organized into eight sections, being the first of
them the present introduction; Sect. 2 describes the essen-
tial elements of the SELFNET project, where the Analyzer
and the specification of the onboarded data is emphasized;
Sect. 3 introduces the initial assumption of the SELFNET
orchestrator; Sect. 4 explains its design principles; Sect. 5
details its workflow; Sect. 6 discusses the execution and
optimization strategies; Sect. 7 illustrates a battery of prac-
tical examples; Finally, Sect. 8 concludes this work.

2 � Background

This section describes in detail the key points of SELFNET
necessary for understanding the Analyzer and its orchestra-
tion. In particular, the SELFNET architecture and its adap-
tation to the NSSA, the design of its Analyzer Module and
the descriptors of the use cases are reviewed.

2.1 � SELFNET and the situational awareness on 5G
scenarios

SELFNET H2020 Project provides a smart autonomic
network management framework for 5G mobile networks
based on the combination of 5G key-enabled technologies:
SDN, SON, NFV, Artificial Intelligence and cloud comput-
ing. SELFNET enables the autonomic deployment of vir-
tual network functions and the reconfiguration of network
parameters in order to mitigate existing or potential prob-
lems, while maintaining the Quality of Experience (QoE)
of end users (Selfnet 2014). These capabilities are pro-
vided by means a layered architecture and a use-case driven
approach. On the one hand, three use cases were defined:
(1) self-protection capabilities to mitigate or prevent secu-
rity problems such as a cyber-attack, (2) self-healing

capabilities to prevent or correct network failures and (3)
self-optimization to dynamically improve the service and
network performance. For this purpose, SELFNET pro-
poses two kind of advanced network functions: (1) sensors
to monitor specific network information and (2) actuators to
perform countermeasures to fix or mitigate possible prob-
lems. On the other hand, SELFNET architecture is based
on six layers (Fig. 1): Infrastructure Layer, Data Network
Layer, SON Control Layer, SON Autonomic Layer, NFV
Orchestration and Management Layer and SON Access
Layer, as is described by Neves et al. (2016).

•	 Infrastructure Layer It provides the physical resources
required for the instantiation of virtual functions. The
Physical Sublayer, Virtualization Sublayer and Cloud
Computing Sublayer enable the virtualization of com-
pute, network and storage resources.

•	 Data Network Layer The network functions (NFs) are
instantiated and interconnected in a designed topology.
It includes the NF required for normal operation and
SON functionalities.

•	 Control Layer It includes the SON sensors and actua-
tors. The SON sensors collect data from different
sources and the SON actuators execute response actions
into the network. These elements are controlled by the
SON Autonomic Layer (intelligence).

•	 SON Autonomic Layer This layer is responsible for pro-
viding the network intelligence. For this purpose, the
system monitors and analyse the incoming information
in order to diagnosis network problems. Then, it uses
the available network functions to decide the best reac-
tion strategy. Taken decisions are sent to NFV orches-
tration and Management Layer.

•	 NFV Orchestration and Management Layer It controls
the deployment and instantiation of the different NFs in
the infrastructure. This layer follows the ETSI MANO
recommendations.

•	 SON Access Layer It provides the interface used by
external actors like Business Support Systems (BSS)
or Operational Support Systems (OSS). Similarly, the
network administrator also can stop, verify and enforce
actions on SELFNET.

In turn, SON Autonomic Layer is responsible to provide
the network intelligence by means Monitor and Analyzer
sublayer and Autonomic Management sublayer. In particu-
lar, the Situational Awareness of SELFNET is achieved
through the application of Endsley model (Endsley 1988),
which define three main phases: Perception (Monitor),
Comprehension (Aggregation) and Projection (Analysis
and Diagnosis) as is shown in Fig. 2.

This approach supposes a high challenge because the
information is gathered from different sources (monitoring

	 L. I. Barona López et al.

1 3

task) and then the raw data is aggregated and correlated
in order to provide high level metrics (aggregation and
correlation task). In the next step, suspicious conditions
are inferred or detected (analyzer task) and then they are
sent to Diagnosis sublayer. Finally, this sublayer applies
advanced intelligent techniques to perform proactive and
reactive actions.

2.2 � SELFNET analyzer: design principles
and architecture

The general assumptions, requirements and the first items
to consider related with the design principles of the Ana-
lyzer were previously introduced by Barona López et al.
(2017b). In accordance with this publication, it must be (1)

Fig. 1   SELFNET architecture

Fig. 2   Situational awareness in
SELFNET project

Orchestration of use-case driven analytics in 5G scenarios﻿	

1 3

scalable, extensible and multi-level by design; (2) use-case
driven, where the use-case operators are able to specify
the inclusion/modification of its functionality; (3) the use
case knowledge-bases required for the analytics are pro-
vided by skilled operators or by accurate machine learning
algorithms; (4) user-friendly in terms of use case declara-
tion and composition of knowledge inference rules; (5) the
management of knowledge considers uncertainty and sto-
chastic events; (6) the data sources do the filtering of the
input data, hence removing inconsistencies, ambiguity and
repetition on the crisp data (i.e. the SELFNET Analyzer
does not perform filtering actions). All these assumptions
and limitations are inherited by the orchestrator, and there-
fore they are considered in this proposal.

The SELFNET Analyzer relationship with the rest of
the project components is summarized in Fig. 3, where
a view of their main data sources is illustrated as a black
box model. There two main information sources as facts
Fa, were identified: Aggregation [Events Fa(Ev), Thresh-
olds Fa(TH) and Key Performance Indicators Fa(KPI)]
and internal analytic elements [pattern recognition Fa(PR)
, forecasts Fa(Ft) and adaptive thresholds Fa(ATh)]. The
final conclusions that compose the SELFNET Situational
Awareness are sent to Diagnosis module labeled as symp-
toms, via reports.

The SELFNET Analyzer architecture is shown in Fig. 4.
It is centralized and their components are divided into eight
main elements: Pattern Recognition (no. 1), Prediction (no.
2), Adaptive Thresholding (no. 3), Knowledge-base (no. 4),
Inference Engine (no. 5), Memory (no. 6), User Interface

(no. 7) and Uncertainty Estimation (no. 8). Where Pattern
Recognition infers new facts related with patterns and regu-
larities found in the aggregated data, Prediction discovers
facts related with forecasting aggregated data or previ-
ously known facts, and Adaptive Thresholding establishes
the limitations to be taken into account when inferring
new knowledge. The core of the SELFNET Analyzer is a
rule base engine composed by the Knowledge-base, Infer-
ence Engine and Memory. It applies use-case driven rules
for deducting conclusions from the previously identified
facts. If some of them match with situations of interest for
the Diagnosis module, they are adapted by the Uncertainty
Estimation component, which allows them to be interpreted
as symptoms by the SELFNET upper layers. Note that the
configuration of the use cases is performed at the User
Interface.

2.3 � Specification of the use cases

When initiated, the SELFNET Analyzer is a tabula rasa
without actions nor reasoning to be orchestrated. It requires
the onboard of use cases, which provides the script with
the activities that may be performed. If a new use case is
onboarded, the information that it is able to manage, as well
as the analytic actions which might be executed, are speci-
fied according to the descriptors summarized in Table 2.

The objects O describe the nature of the data to be ana-
lyzed and the elements from which the rule-based expert
systems infers knowledge. Operations Op establish binary
relationships between facts. Thresholds Th are delimitations

Fig. 3   Inputs and outputs on
SELFNET analyzer

	 L. I. Barona López et al.

1 3

calculated at the Aggregation layer. Facts Fa are basic ele-
ments of the SELFNET reasoning which describe how the
Analyzer Module acquires new knowledge via its rule-
based expert system. Rules Ru indicate how the SELFNET
Analyzer infers new facts at the rule-based expert systems.
Note that they are propositional logic expressions in modus
ponens where the implications deduce the new knowledge.
Forecast Ft, pattern recognition PR and adaptive thresh-
olds ATh specify the basic analytical operations, for which
the datasets D provide additional collections of reference
samples. Finally, conclusions C state facts related with
symptoms.

3 � Assumptions

The orchestration of the Analyzer accepts the assump-
tions and limitations established by Barona López et al.
(2017b), which were described in the previous section.
In order to satisfy the needs of the previously agreed
design, as well as to be able to provide the functionalities
expected by the rest of the SELFNET tasks, it addition-
ally identifies the following new specific constraints to be
considered.

Fig. 4   SELFNET analyzer
architecture (Barona López
et al. 2017b)

Orchestration of use-case driven analytics in 5G scenarios﻿	

1 3

3.1 � Symptoms and events

The Diagnosis layer of SELFNET (Neves et al. 2016) dis-
tinguishes two groups of reports: symptoms and events
(Barona López et al. 2017a, b). The first one contains
conclusions generated through analytics. On the other
hand, events are signals on which it is not necessary to
carry out actions related to Artificial Intelligence, such as
pattern recognition, prediction or logical inference. Note
that in Barona López et al. (2017b), events were managed
as facts [in particular Fa(Ev)]. In the same way as the rest
of the metrics extracted from the aggregated information
(see Fig. 4), events were included in the working mem-
ory, and hence they could be considered for acquiring
knowledge via rule-based expert system, forecasted or
studied by pattern recognition techniques. Obviously this
was a potential contradiction that must be clarified. In the
remainder of this paper, it is assumed that the expression
Fa(Ev) strictly refers to aggregated metrics extracted from
the monitored events, instead of the event themselves. For
example, alerts issued by the IDS involved in the use case
Self-Protection are, by definition, events. Given their rel-
evance, they must be directly addressed to the Diagnosis
layer, so it is not possible to assume the cost in time that
involves the execution of complex analytical calculations
on them. However, it is possible to generate metrics that
facilitate the making of future decisions or even foresee
the issuance of new alerts. For example, the Aggregation
layer may provide information about the number of alerts
per observation, mean, variance, emission intervals, and
its distribution, among others. From which stronger con-
clusions could be inferred. Unlike when dealing with
events, these metrics are not processed with enough effi-
ciency to deliver real-time results.

3.2 � Rule based inference

Given the SELFNET framework and the nature of the
monitored data, the decision to implement a rule-based
inference engine as a symptom discovery tool brings many
benefits, among them: (1) rule engines allow to use case
administrators decide “What to do”, not “How to do it”.
Because of this, it makes it easy to express solutions to dif-
ficult problems and specify the onboard of future use cases.
(2) It brings logic and data separation, where data is in the
domain of objects, and the logic is in the rules Ru. (3) It
provides centralization of the knowledge required for infer
symptoms. (4) Rule-based systems are fast and scalable:
some algorithms (ex. RETE, Leaps, Treat, etc.) (Bassilia-
des and Vlahavas 1997) and their optimizations (Guillaume
and Charnomordic 2012) provide very efficient ways of
matching rule patterns to the use cases domain object data.
These are especially efficient when facts change in small
portions as the rule engine can remember past matches.
For example, this happens with the information periodi-
cally provided by a particular SELFNET sensor. But rule-
based systems also pose drawbacks: the first of them is high
dependency of the rule set. If the rules are not consistent,
coherent or reasonably specific, the results obtained will
be probably not as expected (Lunardhi and Passino 1995).
On the other hand, they are susceptible to bad practices.
For example, rule-based systems allow storing, managing
and updating rules as data. It is common that they are mis-
takenly used to generate new rules or even update them at
runtime, which is out of the scope of these technologies.
Finally, it is important to bear in mind that the scalability
of rule-based systems has a negative impact in terms of
resource consumption. In this regard, it is worth mention-
ing the consequences of their two most frequent ways to

Table 2   Summary of use case data specification

Data Category Provider Destination Format

Object (simple) O Specification Use case Analyzer Oi:{object name|weight|noValues|range of values Va}
Object (mult) O Specification Use case Analyzer Oi:{Object name|weight|noValues|

[
Va1

][
Va2

]
…[VaK]}

Operation Op Specification Use case Analyzer Opi:{name|symbol|priority|operands|description}
Facts Fa Assessment Aggregation

analyzer
Analyzer Fai:{expression|eight|uncertainty|timestamp|location}

Rule Ru Specification Use case Analyzer Rui:{rule|priority|use case}
Forecast (ts) Ft Specification Use case Analyzer Fti:{timeSeries|object|domain|lenght}
Forecast (G) Ft Specification Use case Analyzer Fti:{graph|object|noVertex|domain|lenght}
Threshold Th Specification Use case Analyzer Thi:{Th name|object}
A. Threshold ATh Specification Use case Analyzer Fti:{ATh name| data structure|CI|forecast}
Datasets D Specification Use case Analyzer Di:{D name|object|type|source}
Pattern recognition Specification Use case Analyzer PRi:{PR name|objectIn|objectOut|action|reference data}
Conclusion C Specification Use case Analyzer Sti:{C name|use case|fact}
Report Re Report Analyzer Diagnosis Rei:{C name|use case|fact|uncertainty|trigger}

	 L. I. Barona López et al.

1 3

scale (Wang and Hanson 1992): firstly, if the number of
facts is acceptable, but the number of rules is very high,
there will be an important increase in the computation time
of their processing. On the opposite, if the number of facts
is very high, but the number of rules is acceptable, a larger
amount of memory is required for storage. Note that if the
number of inputs and rules are large, then both, memory
and efficiency are penalized. In the context of SELFNET
it is expected to receive a large number of facts, but oper-
ate on small rule sets. Consequently, it is expected that the
scalability of the expert rule-based system will lead to the
use of a greater amount of storage space.

3.3 � Data granularity

SELFNET is a complex monitoring scenario where a large
amount of sensors collect information about the state of the
network in real time. This information is processed in the
aggregation layer, which provides the necessary metrics to
acquire knowledge. For this purpose, the Analyzer must
perform complex calculations. As will be described in the
later sections, aggregated data will not be raw processed.
Instead, it will be packed as Aggregated Data Bundles
(ADB) which will periodically be loaded by the Analyzer
and converted into facts. Each ADB is the summary of all
the system information observed over a time period T . It
can therefore be stated that ADB may be abstracted as an
observation on a time series of records that facilitate the
network awareness. It is assumed that the effectiveness and
performance of the analytics depends on the T , and how
representative is the information on the ADB.

4 � Design principles

The following design principles and limitations lay the
foundation of the Analyzer orchestrator, as well as the

implementation of its internal components, data flows and
synchronization.

4.1 � Aggregated data bundles

The information required for the analytics is obtained
from the Aggregation layer packaged as Aggregated Data
Bundles (ADB). An ADB is the summary of the aggre-
gated metrics calculated in a time interval P translated
into facts Fa. Note that a priori, the data within an ADB
does not overlap the metrics on other ADBs (this aspect
could be revised later for future optimizations). For exam-
ple, let the time series Y = {Yt:t ∈ T} where Y1, Y2,… , Yk,
k = 7, assuming the construction of ADBs on P = 1, the
SELFNET Analyzer will sequentially deal with seven
ADBs, i.e. ADB1,ADB2,… ,ADBk (see Fig. 5). Through
the use of this strategy a massive and continuous input of
information is avoided, which facilitate the initialization
of the implemented data mining algorithms. Likewise, the
information is managed and processed in an orderly man-
ner, which also reduces the number of inconsistencies
between the new facts and the data stored in the working
memory. Finally, as is illustrated at the next section, the
deployment of optimization method based on the exploita-
tion of concurrence is facilitated.

4.2 � Persistence

The SELFNET Analyzer does not provide persistence
of the data loaded as ADBs. The monitored raw data and
aggregated metrics are conveniently stored in the Big Data
platform located at the Aggregation layer. Facts Fa not
implicated in prediction/pattern recognition are discarded
once their ADB is completely processed and the conclu-
sions are inferred. This means that, in this case, facts Fa
are temporally stored in a local short-term memory only for
the duration of their analysis. On the other hand, facts Fa

Fig. 5   Communication by
ADBs

Orchestration of use-case driven analytics in 5G scenarios﻿	

1 3

required for prediction/pattern recognition may temporally
persist throughout the analysis of various ADBs. This is
because they compose the time series and graphs needed
to build models/regressions. Note that these data structures
have limited size, which once reached involves eliminating
the more obsolete observations via First In First Out (FIFO)
policies (Finkel et al. 2003). Once an ADB is completely
analyzed and the conclusions are reported to the Diagnosis
layer as symptoms, the working memory of the rule-based
expert systems is restarted. Only the necessary facts for the
construction of the time series and graphs are temporarily
conserved, but this is outside the working memory. When
loading a new ADB, facts on time series and graphs are
again, added to the working memory as Fa (Ft), Fa (Ath)
and Fa(PR).

4.3 � Analytic pipelining

Analytics are executed as a linear pipeline of sets of data
processing elements connected in series, where the out-
put of an input is the input of the next one (Zou et al.
2014). When an ADB reach the SELFNET Analyzer, a

sequence of processing elements is executed, where intel-
ligence actions (i.e. logic inference, pattern recognition,
prediction) and preprocessing steps (load ADBs, data
encapsulation, generation of reports) are chronologically
separated, and their inputs/outputs are shared by buffer
storage structures. So it is possible to state that this first
approach considers a buffered-synchronous pipeline ana-
lytic architecture. Its main advantages are: great organi-
zation of information to process, mitigation of inconsist-
encies between the new facts and the data being analyzed,
easy of design and modularity. The latter allows manag-
ing every set of actions independently, which facilitates
debugging, troubleshooting tasks and provide a more
accurate assessment of the performance of their ana-
lytic actions. But it is important to keep in mind that this
scheme also poses several challenges, among them try to
define sets of actions of similar complexity in order to
enable optimization strategies based on parallelism, the
fact that the delay in a task may slow down the execution
of those that depend on it, and in the case of implement
parallelism, the best suited politics of temporal memory
sharing must be identified.

Fig. 6   Sets of actions on the analyzer

	 L. I. Barona López et al.

1 3

5 � Workflow

The SELFNET Analyzer orchestration is separated into
seven main steps: use case Onboarding (O), Discovery
(DIS), Patter Recognition (PR), Prediction (FT), Adaptive
Thresholding (ATH), Knowledge inference (KI) and Noti-
fication (N). They are illustrated in Fig. 6 and described in
detail below.

•	 Onboarding [O] The onboarding step is executed only
once per use case. It corresponds to the component User
Interface in Barona López et al. (2017b), and allows
updating the knowledge-base by inserting, modifying
or deleting data associated with every use case, such as
objects O, rules Ru operations Op or prediction metrics
Ft. When a new use case is onboarded, the input data
is normalized, and in order to avoid runtime errors, the
coherence of the new specification is validated. Then
the Analyzer is prepared to accommodate the new oper-
ations, hence including the specified information on the
existing data structures, memory allocation and syn-
chronization of the onboarded actions with the previous
loaded configurations.

•	 Discovery [DIS] The discovery step is the link between
the SELFNET Aggregation and Analyzer layers. These
tasks periodically receive ADBs which summarize the
SELFNET aggregated observations. From the loaded
KPI, events and thresholds, the Analyzer build facts
(Fa(KPI), Fa(Ev) and Fa(Th)). If they are required for
prediction, patter recognition or adaptive thresholding,
the Analyzer includes these observations in the tempo-
rally stored time series or graphs. Note that independent
facts are removed at the end of the ADB processing, as
well as the new knowledge acquired from them.

•	 Pattern recognition [PR] The set of actions related
with pattern recognition implies the access to the data-
sets with models, sample collection or signatures, and
the detection of matches or outliers. The acquired facts
may be considered by prediction, pattern recognition or
adaptive thresholding, as well as to infer knowledge on
the rule-based expert system.

•	 Prediction [FT] The set of actions related with predic-
tion includes the construction of forecasting models/
regression, the decision of the best suited algorithms by
considering the nature of the input data, and the estima-
tion of its evolution. As is the case on the pattern recog-
nition activities, the generated facts may be considered
to infer knowledge on the rule-based expert system, and
also to identify adaptive thresholds.

•	 Adaptive thresholding [ATH] This set of operations
establishes measures to approximate when the forecast-
ing errors must be taken into account when identifying
symptoms. In order to enhance the information reported

to the Diagnosis layer, the new facts are provided to
the rule-based expert system, hence contributing to the
inference of new knowledge.

•	 Knowledge inference [KI] This step executes the tasks
related with the rule-based expert system. It considers
the data provided by the sources of information men-
tioned above, among them facts directly built from
aggregated data, pattern recognition, prediction and
adaptive thresholding steps. The acquired knowledge is
included in the SELFNET Analyzer working memory.
Conclusions are transmitted to the notification capabili-
ties as potential symptoms.

•	 Notification [N] The set of actions on Notification cor-
responds to those on the component Uncertainty Esti-
mation at the original SELFNET Analyzer architecture.
They are the link between the SELFNET Diagnosis
layer and the knowledge acquired by the Analyzer. This
step performs two main groups of tasks: accommoda-
tion and formatting. The first one filter redundant and
low representative information. Once the ADB is com-
pletely analyzed, these actions erase and restart the aux-
iliary functionalities on the analytics and the several
data structures; only the information required for build
time series and graphs from data included in future
ADBs is temporally persistent. On the other hand,
the group of actions related with formatting, trans-
lates internal information of the analyzer to crisp data
required by Diagnosis. Then it is reported.

6 � Execution and optimization

When no optimization measures are implemented, the exe-
cution of the sets of actions determined in the previous sec-
tion can be summarized in Fig. 7. There the onboard of a
new use case and the completion of its different task are
illustrated. Note that in accordance with this basic specifi-
cation, the Analyzer only is able to load a new ADB if the
previously loaded ADB is completely processed. Obviously
this is not the most efficient way to carry out their study.
Assuming separately the computational costs of every set
of actions: O(DIS), O(PR), O(FT), O(ATH), O(FT), O(KI)
and O(N); and ignoring the penalty of onboarding use cases
O(Onboard), the average cost of analyze an ADB is:

OADB = O(DIS + PR + FT + ATH + KI + N)

Where given the complexity of the pattern recognition
and prediction methods, O(FT) and O(ATH) will con-
centrate most of the resource penalty. This approach is
cheap in terms of memory, because once a set of actions
is completed, most of their auxiliary data structures can be
released. In addition, not managing different ADBs in par-
allel prevents the replication of such containers. Because of

Orchestration of use-case driven analytics in 5G scenarios﻿	

1 3

its simplicity and easy debugging, this is the first version of
the Analyzer orchestrator that was implemented.

However, this scheme can be optimized easily by con-
sidering pipelining solutions. They allow overlapping
execution of multiple actions with the same memory
space by exploiting parallelism (Gordon et al. 2006).
Figure 8 illustrates an example of these kinds of meth-
ods, where six ADBs can be processed at the same time
period.

Two sets of similar actions cannot be processed in con-
currency, but it is possible with different sets. This means
that, for example Patter Recognition on the analysis of
ADB1 cannot overlap with Pattern Recognition on the fol-
lowing ADB2, since all the resources for this task are being
used to analyze the first information package. But it could
be executed in concurrency with the Discovery stage of
ADB2, where resources and memory are not shared. If the

Fig. 7   Basic execution of the analyzer sets of actions

Fig. 8   Example of optimal analysis of multiple ADBs in concurrency

	 L. I. Barona López et al.

1 3

initialization cost related with processing the first ADB is
ignored, it can be formalized as follows:

Oinit = O(DIS + PR + FT + ATH + KI + N)

Then the cost of analyze ADBs at init + 5 is summarized as

OADB = O(MAX{DIS,PR,FT ,ATH,KI,N})

This implies an important improvement over the origi-
nal proposal. But the implementation of this scheme leads
to several restrictions. Firstly, it requires a greater amount
of memory; the system must support up to six times more
storage space to facilitate the analysis of six ADBs at a
time. On the other hand, in order to allow the communi-
cation between sets of actions, the SELFNET Analyzer
must provide temporal storage buffers and synchroniza-
tion mechanism. This requires managing shared memory
between tasks, and adds complexity to the execution thread.
Furthermore, it has to be borne in mind that under optimal
circumstances, all sets of actions must take the same time
to complete. Obviously this does not happen in reality,
since pattern recognition and prediction actions often imply
a higher cost than those relate with the rule-based infer-
ence. Consequently, it is possible that certain sets of actions
must remain on hold until others are finished, before giving
way to new analysis processes. This problem is illustrated
in Fig. 9, where the different sets of actions display une-
qual time consumption. If there are no waits, the different
tasks will overlap leading to memory-sharing conflicts and
inconsistencies between facts. For example, ADB3 predic-
tion actions require the pattern recognition facts of the same

processing thread. But if such overlapping occurs, predic-
tion on ADB3 may also receive facts derived from pattern
recognition at ADB2, which would lead to inference errone-
ous knowledge. Note that it is also possible that none of the
use cases require the execution of some sets of actions (in
Fig. 9 this occurs with adaptive thresholding tasks). In both
circumstances there will be moments of waiting.

Another clear example of inequality between execu-
tion costs of sets of actions is shown in Fig. 10, when the
same task, in this case prediction, becomes more and more
expensive over time. This entails an accumulative delay in
the previous actions (pattern recognition).

The Analyzer orchestrator deals with these problems by
adjusting the granularity of the information provided by the
ADBs, and by limiting the observation sliding windows
and the amount of information considered for initializing
the pattern recognition and prediction algorithms. Accord-
ing to these circumstances, the cost of executing an ADBs
at init + 5 once the sequencing is initialized is expressed as
follows:

OADB = O(MAX{DIS,PR,FT ,ATH,KI,N}) + delayt

Where the cumulative penalization is decomposed as:

delayt = O
(
WaitDIS +WaitPR +WaitFT +WaitATH +WaitKI

+Wait
N

)

Alternatively, each set of actions is also able to exploit
concurrency at thread level in order to improve its perfor-
mance. Due to the characteristics of the monitoring envi-
ronment, it is possible to deduce that frequently, the same

Fig. 9   Example of computational time penalization because of unequal set of actions

Orchestration of use-case driven analytics in 5G scenarios﻿	

1 3

metric (ex. temperature, congestion, etc.) may be reported
from different sources. The analysis of similar information,
but provided from different data sources, is enhanced by
CPU/GPU multithreading (Su et al. 2016) as it is illustrated

in Fig. 11, which improves their consumption of computa-
tional resources in terms of storage and efficiency.

7 � Illustrative examples

This section describes several examples of the analytic pro-
cess according with the aforementioned Analyzer Orches-
tration scheme.

7.1 � UC 1: device packet loss

7.1.1 � Description

The illustrative use case called Self—packet loss prevention
(SLP) reports symptoms related with huge packet loss rates
on SELFNET devices. Where if the packet loss rate of cer-
tain SELFNET device exceeds a specific threshold, a new
fact that represents such situation is acquired. This is a very

Fig. 10   Example of computational time penalization because of incremental resource consumption

Fig. 11   Example of concurrency exploitation

Table 3   SLP onboarding specification

Item Descriptor

Object O1:{Packetloss|1|1|ℝ}
Threshold Th1:{maxPacketLoss|O1}

Operator Op1:{Equal| = | 1 |(Fa,O,Va) = (Fa,O,Va)|equal}
Operator Op2:{LGT| ⩾ | 1 |(Fa,O,Va) ⩾ (Fa,O,Va)|left is GE}
Conclusion C1:{excessive packet loss|SLP|Fa(O1) ⩾ Fa(Th1)}

Rule Ru1:{Fa(O1) ⩾ Fa(Th1) → Fa(C1)|1|SLP}

	 L. I. Barona López et al.

1 3

basic example where concurrency pipelining is not applied,
and where prediction and adaptive thresholding are not
considered. Therefore the decision thresholds are static and
were built at Aggregation. Table 3 shows its onboarding
descriptors according with the specification summarized in
Table 2.

7.1.2 � Step‑by‑step

The following illustrates and example of runtime in Self—
packet loss prevention, where different ADBs are loaded
and analyzed according to the aforementioned indications.
Figure 12 displays every step in a sequence diagram, which
are described step-by-step below:

	 1.	 The SLP use case descriptors are loaded by the
SELFNET Analyzer. Then, the memory for storing
temporal containers of objects O1, thresholds Th1 and
facts Fa is allocated. Pattern recognition, prediction
and adaptive thresholding are not required, so neither
data structures to support time series nor graphs are
considered.

	 2.	 The ADB1 with aggregated instances of O1 and Th1 is
requested to the Aggregation layer and then it is pro-
cessed. The SELFNET Analyzer build the following
facts from the information gathered by the network
elements (NodeA, NodeB, NodeC, NodeD):

Fa(O)[idO1]: {O1 = 0.35|1|1|Today 12:22:15|NodeA}
Fa(O)[idO2]: {O1 = 0.34|1|1|Today 12:22:15|NodeB}
Fa(O)[idO3]: {O1 = 0.33|1|1|Today 12:22:15|NodeC}
Fa(O)[idO4]: {O1 = 0.35|1|1|Today 12:22:15|NodeD}

And by the data Aggregation:

	 3.	 Given that pattern recognition, prediction and adap-
tive thresholding are not required, the Analyzer
bypasses those steps (i.e. new facts are not inferred by
them).

	 4.	 The rule-based inference engine processes the dis-
covered facts by applying the rule Ru1. Given that
the condition Fa(O1) ⩾ Fa(Th1) is not satisfied by
any of the facts, conclusions related with SLP are not
inferred.

	 5.	 All the temporal data related with objects O1, thresh-
olds Th1 and facts Fa is cleaned.

	 6.	 The ADB2 with aggregated instances of O1 and Th1 is
requested to the Aggregation layer and processed. The
SELFNET Analyzer build the following facts from
the information gathered by the network elements
(NodeA, NodeB, NodeC, NodeD):

And by the data Aggregation:

	 7.	 The Analyzer bypasses pattern recognition, prediction
and adaptive thresholding.

	 8.	 The rule-based inference engine processes the dis-
covered facts by applying the rule Ru1. Given that the
condition Fa(O1) ⩾ Fa(Th1) is satisfied for the data
gathered by NodeC, The following fact related with
Self − packet loss prevention is inferred.

Fa(Th)[idTh1]: {Th1 = 0.7|1|1|Today 12:22:15|All}

Fa(O)[idO5]: {O1 = 0.36|1|1|Today 12:23:15|NodeA}
Fa(O)[idO6]: {O1 = 0.34|1|1|Today 12:23:15|NodeB}
Fa(O)[idO7]: {O1 = 0.81|1|1|Today 12:23:15|NodeC}
Fa(O)[idO8]: {O1 = 0.31|1|1|Today 12:23:15|NodeD}

Fa(Th)[idTh2]: {Th1 = 0.79|1|1|Today 12:23:15|All}

Fig. 12   Example of runtime in
self-packet loss prevention

Orchestration of use-case driven analytics in 5G scenarios﻿	

1 3

Which describes the conclusion C1:

	 9.	 The following symptom is reported to the Diagnosis
layer:

All the temporal data related with objects O2, thresh-
olds Th2 and facts Fa is cleaned.

	10.	 The ADB3 with aggregated instances of O1 and Th1 is
requested to the Aggregation layer and processed. The
SELFNET Analyzer builds the following facts from
the information gathered by the network elements
(NodeA, NodeB, NodeC, NodeD):

And by the data Aggregation:

	11.	 The Analyzer bypasses pattern recognition, prediction
and adaptive thresholding.

	12.	 The rule-based inference engine processes the dis-
covered facts by applying the rule Ru1. Given that
the condition Fa(O1) ⩾ Fa(Th1) is not satisfied by
any of the facts, conclusions related with SLP are not
inferred.

	13.	 All the temporal data related with objects O1, thresh-
olds Th1 and facts Fa is cleaned.

7.2 � UC 2: quality of service analysis

7.2.1 � Description

The illustrative use case to be managed Self—QoSOver‑
watch (SQoS) report symptoms related with suspicious
QoS decreasing, In particular, if a significantly decrement
considering the latest observations is detected, a new fact

Fa[idF1]: {Fa(idO7) ⩾ Fa(idTh2)|1|1|Today 12:23:15|NodeC}.

C1[idC1]:{excessive packet loss|SLP|Fa(idO7) ⩾ Fa(idTh2)}

Re1[idRe1]:{
excessive packet loss|SLP|idF1|1|idO7, idTh2,Ru1

}

Fa(O)[idO09]: {O1 = 0.36|1|1|Today 12:24:15|NodeA}
Fa(O)[idO10]: {O1 = 0.34|1|1|Today 12:24:15|NodeB}
Fa(O)[idO11]: {O1 = 0.33|1|1|Today 12:24:15|NodeC}
Fa(O)[idO12]: {O1 = 0.31|1|1|Today 12:24:15|NodeD}

Fa(Th)[idTh3]: {Th1 = 0.77|1|1|Today 12:24:15|All}

related with relevant QoS variation is acquired. In this con-
text, concurrency at pipelining is not applied, prediction
and adaptive thresholding are considered, and it is assumed
that the forecasting algorithm requires at least n = 8 obser-
vations for building the prediction model. Table 4 shows
its onboarding descriptors according with the specification
summarized in Table 2.

7.2.2 � Step‑by‑step

The following illustrates and example of runtime in Self—
QoSOverwatch, where different ADBs are loaded and ana-
lyzed according to the aforementioned indications. Fig-
ure 13 displays every step in a sequence diagram, which are
described step-by-step below:

1.	 The descriptors of the SQoS use case are loaded by the
SELFNET Analyzer. Then, the memory for storing
temporal containers of objects O1, forecasts Ft1, adap-
tive tresholds ATh1 and facts Fa is allocated. Predic-
tion capabilities on time series are required, so the data
structures to support time series are initiated.

2.	 The ADB1 with aggregated instances of O1 is requested
to the Aggregation layer and then it is processed. The
SELFNET Analyzer built the following facts from the
information gathered by the network elements (NodeA,
NodeB, NodeC, NodeD):

3.	 Given that the Analyzer does not dispose of time
series of n = 8 facts per sensor, prediction is not pos-
sible. Hence, adaptive thresholding is not performed.
Because there are not facts related with adaptive thresh-
olds, the rule Ru1 where Fa(O1) ⩾ Fa(ATh1) → Fa(C1)
cannot be triggered. So conclusions related with symp-
toms are not notified to the diagnosis layer. On the
other hand, given that the acquired facts are related
with time series analysis (i.e. prediction and adaptive
thresholding), they cannot be deleted before load-

Fa(O)[idO1]: {O1 = 0.60|1|1|Today 12:22:15|NodeA}
Fa(O)[idO2]: {O1 = 0.65|1|1|Today 12:22:15|NodeB}
Fa(O)[idO3]: {O1 = 0.61|1|1|Today 12:22:15|NodeC}
Fa(O)[idO4]: {O1 = 0.62|1|1|Today 12:22:15|NodeD}

Table 4   Self—QoSOverwatch
specification

Item Descriptor

Object O1:{QoS decrement|1|1|[0, 1]}
Forecast Ft1:{timeSeries|O1|obs|t + 1}

Adaptive threshold ATh1:{maxQoS decrement|timeSeries|0.95|Ft1}
Operator Op1:{Equal| = | 1 |(Fa,O,Va) = (Fa,O,Va)|equal}
Operator Op2:{LGT| ⩾ | 1 |(Fa,O,Va) ⩾ (Fa,O,Va)|left is GE}
Conclusion C1:{Suspicious QoS variation|SQoS|Fa(O1) ⩾ Fa(ATh1)}

Rule Ru1:{Fa(O1) ⩾ Fa(ATh1) → Fa(C1)|1|SC}

	 L. I. Barona López et al.

1 3

ing the following ADBs, but the rule-based inference
engine is reinitiated.

4.	 The Analyzer performs the same actions (Steps 2 and
3) from ADB2 until ADB7. Table 5 shows the facts built
for these set of ADBs.

5.	 The ADB8 with aggregated instances of O1 is requested
to the Aggregation layer and then it is processed. The

SELFNET Analyzer built the following facts from the
information gathered by the network elements:

6.	 A this point, there are n = 8 facts per sensor in the time
series to be predicted, so the forecasting method are
able to estimate the next observation (t + 1) as specified
in the use case definition. The temporally stored data is
summarized in Table 6.

	 The following facts related with prediction are
acquired:

Fa(Ft)[idF2]:{Ft1 = 0.72|1|1|Today 12:29:15|NodeB}
Fa(Ft)[idF3]:{Ft1 = 0.72|1|1|Today 12:29:15|NodeC}
Fa(Ft)[idF4]{Ft1 = 0.63|1|1|Today 12:29:15|NodeD}

Fa(O)[idO29]: {O1 = 0.60|1|1|Today 12:29:15|NodeA}
Fa(O)[idO30]: {O1 = 0.73|1|1|Today 12:29:15|NodeB}
Fa(O)[idO31]: {O1 = 0.72|1|1|Today 12:29:15|NodeC}
Fa(O)[idO32]: {O1 = 0.64|1|1|Today 12:29:15|NodeD}

Fa(Ft)[idF1]: {Ft1 = 0.61|1|1|Today 12:29:15|NodeA}

Fig. 13   Example of runtime in
Self-QoSOverwatch

Table 5   Facts ADB2 to ADB7

ADB Facts

ADB2 Fa(O)[idO5]{O1 = 0.63|1|1|Today 12:23:15|NodeA}
Fa(O)[idO6]{O1 = 0.64|1|1|Today 12:23:15|NodeB}
Fa(O)[idO7]{O1 = 0.65|1|1|Today 12:23:15|NodeC}
Fa(O)[idO8]{O1 = 0.66|1|1|Today 12:23:15|NodeD}

ADB3 Fa(O)[idO9]{O1 = 0.62|1|1|Today 12:24:15|NodeA}
Fa(O)[idO10]{O1 = 0.70|1|1|Today 12:24:15|NodeB}
Fa(O)[idO11]{O1 = 0.72|1|1|Today 12:24:15|NodeC}
Fa(O)[idO12]{O1 = 0.63|1|1|Today 12:24:15|NodeD}

ADB4 Fa(O)[idO13]{O1 = 0.60|1|1|Today 12:25:15|NodeA}
Fa(O)[idO14]{O1 = 0.72|1|1|Today 12:25:15|NodeB}
Fa(O)[idO15]{O1 = 0.73|1|1|Today 12:25:15|NodeC}
Fa(O)[idO16]{O1 = 0.65|1|1|Today 12:25:15|NodeD}

ADB5 Fa(O)[idO17]{O1 = 0.62|1|1|Today 12:26:15|NodeA}
Fa(O)[idO18]{O1 = 0.71|1|1|Today 12:26:15|NodeB}
Fa(O)[idO19]{O1 = 0.76|1|1|Today 12:26:15|NodeC}
Fa(O)[idO20]{O1 = 0.63|1|1|Today 12:26:15|NodeD

ADB6 Fa(O)[idO21]{O1 = 0.63|1|1|Today 12:27:15|NodeA}
Fa(O)[idO22]{O1 = 0.70|1|1|Today 12:27:15|NodeB}
Fa(O)[idO23]{O1 = 0.71|1|1|Today 12:27:15|NodeC}
Fa(O)[idO24]{O1 = 0.60|1|1|Today 12:27:15|NodeD}

ADB7 Fa(O)[idO25]{O1 = 0.61|1|1|Today 12:28:15|NodeA}
Fa(O)[idO26]{O1 = 0.72|1|1|Today 12:28:15|NodeB}
Fa(O)[idO27]{O1 = 0.73|1|1|Today 12:28:15|NodeC}
Fa(O)[idO28]{O1 = 0.62|1|1|Today 12:28:15|NodeD}

Table 6   Summary of information on time series at SQoS

Time N NodeA NodeB NodeC NodeD

12:22:15 1 0.60 0.65 0.61 0.62
12:23:15 2 0.63 0.64 0.65 0.66
12:24:15 3 0.62 0.70 0.72 0.63
12:25:15 4 0.6 0.72 0.73 0.65
12:26:15 5 0.62 0.71 0.76 0.63
12:27:15 6 0.63 0.7 0.71 0.6
12:28:15 7 0.61 0.72 0.73 0.62
12:29:15 8 0.6 0.73 0.72 0.64
Forecast n + 1 0.61 0.72 0.72 0.63

Orchestration of use-case driven analytics in 5G scenarios﻿	

1 3

	 7.	 The following facts related with the adaptive thresh-
olds built from the predictions are acquired:

	 8.	 The recent calculated thresholds are not appli-
cable to the current observations, so the rule Ru1
where Fa(O1) ⩾ Fa(ATh1) → Fa(C1) cannot be trig-
gered. Conclusions related with symptoms are not
noEq210tified to the diagnosis layer.

		 Note that for the observation i only the predictions
and adaptive thresholds calculated at 0,… , i − 1 can
be considered; stated in another way: predictions and
adaptive thresholds calculated at i are only valid for
the next i + 1 observations, when it can be verified
whether they have been fulfilled.

	 9.	 The ADB9 with aggregated instances of O1 is
requested to the Aggregation layer and then it is pro-
cessed. The SELFNET Analyzer built the following
facts from the information gathered by the network
elements (NodeA, NodeB, NodeC, NodeD):

	10.	 Not pattern recognition actions are declared.
	11.	 The following facts about predictions for the next

observations are calculated:

Fa(Ft)[idF6]:{Ft1 = 0.75|1|1|Today 12:30:15|NodeB}
Fa(Ft)[idF7]:{Ft1 = 0.72|1|1|Today 12:30:15|NodeC}
Fa(Ft)[idF8]: {Ft1 = 0.62|1|1|Today 12:30:15|NodeD}

	12.	 New facts related with adaptive thresholds are calcu-
lated:

	13.	 The rule-based inference engine processes the dis-
covered facts by applying the rule Ru1. Given that the
condition Fa(O1) ⩾ Fa(ATh1) is satisfied for the data
gathered by NodeB, The following fact related with
Self − QoSOverwatch is inferred.

. Which describes the conclusion C1:

Fa(Ath)[idA1]: {Ath1 = 0.62|1|1|Today 12:29:15|NodeA}
Fa(Ath)[idA2]:{Ath1 = 0.73|1|1|Today 12:29:15|NodeB}
Fa(Ath)[idA4]{Ath1 = 0.64|1|1|Today 12:29:15|NodeD}

Fa(O)[idO33]: {O1 = 0.60|1|1|Today 12:30:15|NodeA}
Fa(O)[idO34]: {O1 = 0.82|1|1|Today 12:30:15|NodeB}
Fa(O)[idO35]: {O1 = 0.62|1|1|Today 12:30:15|NodeC}
Fa(O)[idO36]: {O1 = 0.60|1|1|Today 12:30:15|NodeD}

Fa(Ft)[idF5]: {Ft1 = 0.60|1|1|Today 12:30:15|NodeA}

Fa(Ath)[idA5]: {Ath1 = 0.61|1|1|Today 12:30:15|NodeA}
Fa(Ath)[idA6]:{Ath1 = 0.76|1|1|Today 12:30:15|NodeB}
Fa(Ath)[idA7]:{Ath1 = 0.73|1|1|Today 12:30:15|NodeC}
Fa(Ath)[idA8]{Ath1 = 0.63|1|1|Today 12:30:15|NodeD}

Fa[idF1]:{Fa(idO34) ⩾ Fa(idA2)|1|1|Today 12:30:15|NodeB}

C1[idC1]:{Suspicious QoS variation|SQoS|Fa(idO34) ⩾ Fa(idA2)}

	14.	 The following symptom is reported to the Diagnosis
layer:

8 � UC 3: Botnet detection

8.1 � Description

The use case called Self—BotnetMitigation (SZombie)
report symptoms related with Suspicious Command and
Control (C&C) communications (Wang et al. 2017). In
this case concurrency at pipelining is not applied, pat-
tern recognition actions are considered, but prediction
and adaptive thresholding are not required. Note that
the external repositories (Rep1, Rep2) provide collec-
tions of legitimate (Rep1) and malicious (Rep2) traffic
pattern observations on SELFNET. When a new discov-
ered patter seems much more significantly to the collec-
tion of malicious patterns than the legitimate, a new fact
that indicates this suspicious feature is acquired. Table 7
shows its onboarding descriptors according with the
specification summarized in Table 2.

8.1.1 � Step‑by‑step

The following illustrates and example of runtime in Self—
BotnetMitigation, where different ADBs are loaded and
analyzed according to the aforementioned indications.
Figure 14 displays every step in a sequence diagram.

	 1.	 The descriptors of the use case Self—BotnetMitiga‑
tion are loaded by the SELFNET Analyzer. Then, the
memory for storing temporal containers of objects O1,
pattern recognition PR and facts Fa is allocated. The
accessibility of the declared datasets D is verified.

	 2.	 The ADB1 with aggregated instances of O1 is
requested to the Aggregation layer and then it is pro-
cessed. The SELFNET Analyzer built the following
facts from the information gathered by the network
elements (NodeA, NodeB, NodeC, NodeD):

	 3.	 The two pattern recognition actions declared are exe-
cuted. First, every Fa

(
O1

)
 is correlated with the data-

Re1[idR1]:

{
Suspicious QoS variation|SQoS|idF1|1|idF1, idA2, idO34, Ru1

}

Fa
(
O1

)
[idO1]: {O1 = FF217|1|1|Today 12:22:17|NodeA}

Fa
(
O1

)
[idO2]: {O1 = 00DE8|1|1|Today 12:22:17|NodeB}

Fa
(
O1

)
[idO3]: {O1 = F00FF|1|1|Today 12:22:17|NodeC}

Fa
(
O1

)
[idO4]: {O1 = A4F09|1|1|Today 12:22:17|NodeD}

	 L. I. Barona López et al.

1 3

set Dlegi looking for anomalies. The obtained anomaly
scores O2 allow acquiring the following facts:

On the other hand, every Fa
(
O1

)
 is correlated with

the dataset Dmali looking for anomalies. The obtained
anomaly scores O3 allow acquiring the following
facts:

	 4.	 There are not predictions or adaptive thresholding
actions to execute.

Fa(PR)[idL1]:
{
O2 = 0.9|1|1|Today 12:22:17|NodeA

}

Fa(PR)[idL2]: {O2 = 0.9|1|1|Today 12:22:17|NodeB}
Fa(PR)[idL3]:

{
O2 = 0.8|1|1|Today 12:22:17|NodeC

}

Fa(PR)[idL4]: {O2 = 0.9|1|1|Today 12:22:17|NodeD}

Fa(PR)[idM1]:
{
O3 = 0.2|1|1|Today 12:22:17|NodeA

}

Fa(PR)[idM2]: {O3 = 0.1|1|1|Today 12:22:17|NodeB}
Fa(PR)[idM3]:

{
O3 = 0.1|1|1|Today 12:22:17|NodeC

}

Fa(PR)[idM4]: {O3 = 0.1|1|1|Today 12:22:17|NodeD}

	 5.	 The rule-based inference engine processes the dis-
covered facts by applying the rule Ru1. Given that
the condition Fa

(
O2

)
< Fa(O3) is not satisfied, con-

clusions related with Self—BotnetMitigation are not
inferred.

	 6.	 There are not symptoms to report. All the temporal
facts are removed and the rule-based expert system is
restarted.

	 7.	 The ADB2 with aggregated instances of O1 is
requested to the Aggregation layer and then it is pro-
cessed. The SELFNET Analyzer built the following
facts from the information gathered by the network
elements (NodeA, NodeB, NodeC, NodeD):

Fa
(
O1

)
[idO5]: {O1 = F2217|1|1|Today 12:23:17|NodeA}

Fa
(
O1

)
[idO6]: {O1 = 012E8|1|1|Today 12:23:17|NodeB}

Fa
(
O1

)
[idO7]: {O1 = F0211|1|1|Today 12:23:17|NodeC}

Fa
(
O1

)
[idO8]: {O1 = A2F18|1|1|Today 12:23:17|NodeD}

Table 7   Self—
BotnetMitigation specification

Item Descriptor

Object O1:{pattern|1|1|hexadecimal}
Object O2:{simLegi|1|1|{0..1}}
Object O3:{simMal|1|1|{0..1}}
Operator Op1:{Equal| = | 1 |(Fa,O,Va) = (Fa,O,Va)|equal}
Operator Op2:{LT| > | 1 |(Fa,O,Va) > (Fa,O,Va)|left is G}
Dataset Dlegi:{legitimatePatern|O(pattern)|collection|Rep1}
Dataset Dmal:{maliciousPatern|O(pattern)|collection|Rep2}
Pattern recognition PR1:{legMeasure||O1

||O2|anomaly|D(Dlegi)}

Pattern recognition PR2:{malMeasure||O1
||O3|anomaly|D(Dmal)}

Conclusion C1:{malicious communication|SZombie|Fa(O2) < Fa(O3)}

Rule Ru1:{Fa(O2) < Fa(O3) → Fa(C1)|1|SZombie}

Fig. 14   Example of runtime in
Self—BotnetMitigation 

Orchestration of use-case driven analytics in 5G scenarios﻿	

1 3

	 8.	 The two pattern recognition actions declared are exe-
cuted. The following facts related with O2 and O3 are
acquired:

	 9.	 There are not predictions or adaptive thresholding
actions toexecute.

	10.	 The rule-basedinference engine processes the discov-
ered facts by applying the rule Ru1. Given that the
condition Fa

(
O2

)
< Fa(O3)is satisfied for the data

gathered by NodeA, conclusions related with Self—
BotnetMitigation are inferred. The following fact
related with Self—BotnetMitigation is included to the
working memory.

Which describes the conclusion C1: C1[idC1]:

{malicious communication|SZombie|Fa(idL5) < Fa

(idM5)}

	11.	 The following symptom is reported to the Diagnosis
layer:

	12.	 The ADB3 with aggregated instances of O1 is
requested to the Aggregation layer and then it is pro-
cessed. The SELFNET Analyzer built the following
facts from the information gathered by the network
elements (NodeA, NodeB, NodeC, NodeD):

	13.	 The two pattern recognition actions declared are exe-
cuted. The following facts related with O2 and O3 are
acquired:

Fa(PR)[idL5]:
{
O2 = 0.5|1|1|Today 12:23:17|NodeA

}

Fa(PR)[idL6]: {O2 = 0.8|1|1|Today 12:23:17|NodeB}
Fa(PR)[idL7]:

{
O2 = 0.7|1|1|Today 12:23:17|NodeC

}

Fa(PR)[idL8]: {O2 = 0.9|1|1|Today 12:23:17|NodeD}

Fa(PR)[idM5]:
{
O3 = 0.6|1|1|Today 12:23:17|NodeA

}

Fa(PR)[idM7]: {O3 = 0.2|1|1|Today 12:23:17|NodeB}
Fa(PR)[idM8]:

{
O3 = 0.2|1|1|Today 12:23:17|NodeC

}

Fa(PR)[idM9]: {O3 = 0.3|1|1|Today 12:23:17|NodeD}

Fa[idF1]: {Fa(idL5) < Fa(idM5)|1|1|Today 12:23:17|NodeA}.

Re1[idR1]: {mmalicious communication|SZombie|
idF1|1|idF1, idL5, idM5, Ru1

}

Fa
(
O1

)
[idO9]: {O1 = F1110|1|1|Today 12:24:17|NodeA}

Fa
(
O1

)
[idOA]: {O1 = F2E80|1|1|Today 12:24:17|NodeB}

Fa
(
O1

)
[idOB]: {O1 = 11310|1|1|Today 12:24:17|NodeC}

Fa
(
O1

)
[idOC]: {O1 = AF42C|1|1|Today 12:24:17|NodeD}

Fa(PR)[idL9]:
{
O2 = 0.4|1|1|Today 12:24:17|NodeA

}

Fa(PR)[idLA]: {O2 = 0.3|1|1|Today 12:24:17|NodeB}
Fa(PR)[idLB]:

{
O2 = 0.2|1|1|Today 12:24:17|NodeC

}

Fa(PR)[idLC]: {O2 = 0.9|1|1|Today 12:24:17|NodeD}

	14.	 There are not predictions or adaptive thresholding
actions to execute.

	15.	 The rule-based inference engine processes the dis-
covered facts by applying the rule Ru1. Given that the
condition Fa

(
O2

)
< Fa(O3)is satisfied for the data

gathered by NodeA, NodeBand NodeC, conclusions
related with Self—BotnetMitigation are inferred. The
following facts related with Self—BotnetMitigation
are included to the working memory.

 Which describes the conclusion

	16.	 The following symptoms are reported to the Diagno-
sis layer:

9 � Conclusions

This paper described the key elements of the SELFNET
Analyzer Orchestrator, including the initial assumptions,
design principles, workflows, sets of actions, execution
strategies, and several examples of their application. These
were properly deployed in the SELFNET project, where
their effectiveness, configurability and extensibility were
verified at different use cases (in particular, when applied
to self-protection, self-optimization and self-healing capa-
bilities). But even though our approach has proved to
meet its design objectives, throughout the document has

Fa(PR)[idM9]:
{
O3 = 0.6|1|1|Today 12:24:17|NodeA

}

Fa(PR)[idMA]: {O3 = 0.5|1|1|Today 12:24:17|NodeB}
Fa(PR)[idMB]:

{
O3 = 0.4|1|1|Today 12:24:17|NodeC

}

Fa(PR)[idMC]: {O3 = 0.2|1|1|Today 12:24:17|NodeD}

Fa[idF2]: {Fa(idL9) < Fa(idM9)|1|1|Today 12:24:17|NodeA}

Fa[idF3]: {Fa(idLA) < Fa(idMA)|1|1|Today 12:24:17|NodeB}

Fa[idF4]: {Fa(idLB) < Fa(idMB)|1|1|Today 12:24:17|NodeC}

C1:C1[idC2]:{malicious communication|SZombie|
Fa(idL9) < Fa(idM9)}

C1[idC3]:{malicious communication|SZombie|
Fa(idLA) < Fa(idMA)}

C1[idC4]:{malicious communication|SZombie|
Fa(idLB) < Fa(idMB)}

Re2[idR2]: {malicious communication|SZombie|
idF2|1|idF2, idL9, idM9, Ru1

}

Re3[idR3]: {malicious communication|SZombie|
idF3|1|idF3, idLA, idMA, Ru1

}

Re4[idR4]: {malicious communication|SZombie|
idF4|1|idF4, idLB, idMB, Ru1

}

	 L. I. Barona López et al.

1 3

remained several aspects without covering, which depend
directly on the implementation. For instance, some alter-
natives have been described for their optimization, but at
the moment, only the basic task sequencing approach was
being implemented on real uses cases. It brings support to
the most basic requirements of the system, and allows the
verification of the analyzed communication channels. But
it is clear that there are many other ways to exploit paral-
lelism at thread level, and therefore, to take more advan-
tage of the analytic pipelining. On the other hand, the pro-
posed scheme forces the most complex sets of actions to be
executed in a certain way: pattern recognition, prediction,
adaptive threshold construction and knowledge inference.
But it is possible that future uses cases demand variations
in their order; for example, that pattern recognition is being
carried considering facts related with prediction and adap-
tive thresholds, or that once the knowledge inference tasks
are completed, an additional step of predictions is required.
At the moment, easy modifications on the SELFNET use
case descriptors are able to overcome this inconvenience,
but it is obvious that deepen in this problem is one of the
main tasks of future work. Another aspect of interest is
identifying quality indicators related with the granular-
ity of the information contained in the ADBs. From them
it is possible to improve the effectiveness of the analytic
actions.

Acknowledgements  This work is supported by the European Com-
mission Horizon 2020 Programme under grant agreement number
H2020-ICT-2014-2/671672 - SELFNET (Framework for Self-Organ-
ized Network Management in Virtualized and Software Defined Net-
works). Lorena Isabel Barona López is supported by the Secretaría
Nacional de Educación Superior, Ciencia, Tecnología e Innovación
SENESCYT (Quito, Ecuador) under Convocatoria Abierta 2013
Scholarship Program.

References

Baldo N, Giupponi L, Mangues-Bafalluy J (2014) Big data empow-
ered self organized networks. In: Proceedings of 20th European
wireless conference, Barcelona, pp 1–8

Barona López LI, Valdivieso Caraguay AL, Sotelo Monge MA,
García Villalba LJ (2016) Key technologies in the context of
future networks: operational and management requirements.
Future Internet 9(1):1. doi:10.3390/fi9010001

Barona López LI, Valdivieso Caraguay AL, Maestre Vidal J, Sotelo
Monge MA, García Villalba LJ (2017a) Towards incidence man-
agement in 5G based on situational awareness. Future Internet
9(1):3. doi:10.3390/fi9010003

Barona López LI, Maestre Vidal J, García Villalba LJ (2017b) An
approach to data analysis in 5G networks. MDPI Entropy 9(2):1–
23. doi:10.3390/e19020074

Bassiliades N, Vlahavas I, (1997) Processing production rules in
DEVICE, an active knowledge base system. Data Knowl Eng
24(2):117–155. doi:10.1016/S0169-023X(97)00006-2

CHARISMA Project (2014) Converged heterogeneous advanced 5G
cloud-RAN architecture for intelligent and secure media access.

Funded under H2020-ICT-2014-2. Project Reference 671704.
http://www.charisma5g.eu/. Accessed 11 Apr 2017

CROWD Project (2013) Connectivity management for energy opti-
mised wireless dense networks. Funded under FP7-ICT. Project
Reference 318115. http://www.ict-crowd.eu/. Accessed 11 Apr
2017

CVSS Forum of Incident Response and Security Teams (2015)
CVSS: common vulnerability scoring system. https://www.first.
org/cvss/specification-document. Accessed 11 Apr 2017

Endsley NR (1988) Design and evaluation for situation awareness
enhancement. In: Proceedings of the human factors and ergo-
nomics society annual meeting, Anaheim, 32(2):97–101

ENISA (2015) ENISA Threat Landscape 2015. https://www.enisa.
europa.eu/publications/etl2015. Accessed 11 Apr 2017

Finkel A, Iyer SP, Sutre G (2003) Well-abstracted transition sys-
tems: application to FIFO automata. Inf Comput 181(1):1–31.
doi:10.1016/S0890-5401(02)00027-5

5G-Ensure Project (2014) Enablers for network and system security
and resilience. Funded under H2020-ICT-2014-2. Project Refer-
ence 671562. http://www.5gensure.eu/. Accessed 11 Apr 2017

5G-NORMA Project (2014) 5G NOvel radio multiservice adaptive
network architecture. Funded under H2020-ICT-2014-2. Project
Reference 671584. https://5gnorma.5g-ppp.eu/. Accessed 11 Apr
2017

5G-NOW Project (2013) 5th generation non-orthogonal waveforms
for asynchronous signalling. Funded under FP7-ICT. Project
Reference 318555. http://www.5gnow.eu/. Accessed 11 Apr
2017

Gordon MI, Thies W, Amarasinghe S (2006) Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs,
In: Proceedings of the 12th international conference on architec-
tural support for programming languages and operating systems,
San Jose, pp 151–162

5G-PPP (2017) 5G infrastructure public private partnership.
https://5g-ppp.eu. Accessed 11 Apr 2017

Guillaume S, Charnomordic B, (2012) Fuzzy inference systems: an
integrated modeling environment for collaboration between
expert knowledge and data using FisPro. Expert Syst Appl
39(10):8744–8755. doi:10.1016/j.eswa.2012.01.206

ISO International Organization for Standardization and the Inter-
national Electrotechnical Commission (2005) ISO/IEC 27002:
information technology, security techniques, code of practice
for information security management. http://www.iso.org/iso/
catalogue_detail?csnumber=54533. Accessed 11 Apr 2017

Leau YB, Ahmad A, Manickam S (2015) Network security situa-
tion prediction: a review and discussion. In: Proceedings of the
4th international conference on soft computing, intelligent sys-
tems, and information technology, Bali, pp 424–435

Lunardhi AD, Passino KM (1995) Verification of qualitative prop-
erties of rule-based expert systems. Int J Appl Artif Intell
9(6):587–621. doi:10.1080/08839519508945490

MCN Project (2013) Mobile cloud networking. Funded under FP7-
ICT. Project Reference 318109. http://www.mobile-cloud-net-
working.eu/site/. Accessed 11 Apr 2017

METIS-II Project (2014) Mobile and wireless communications
enablers for twenty-twenty (2020) information society-II.
Funded under H2020-ICT-2014-2. Project Reference 671680.
https://5g-ppp.eu/metis-ii/. Accessed 11 Apr 2017

Mijumbi R, Serrat J, Gorricho JL, Bouten N, Turck F, Boutaba R
(2016) Network function virtualization: state-of-the-art and
research challenges. IEEE Commun Surv Tuts 18(1):236–262.
doi:10.1109/comst.2015.2477041

Neves P, Calé R et al (2016) The SELFNET approach for auto-
nomic management in an NFV/SDN networking paradigm. Int
J Distrib Sens Netw 12(2):1–17. doi:10.1155/2016/2897479

http://dx.doi.org/10.3390/fi9010001
http://dx.doi.org/10.3390/fi9010003
http://dx.doi.org/10.3390/e19020074
http://dx.doi.org/10.1016/S0169-023X(97)00006-2
http://www.charisma5g.eu/
http://www.ict-crowd.eu/
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://www.enisa.europa.eu/publications/etl2015
https://www.enisa.europa.eu/publications/etl2015
http://dx.doi.org/10.1016/S0890-5401(02)00027-5
http://www.5gensure.eu/
https://5gnorma.5g-ppp.eu/
http://www.5gnow.eu/
https://5g-ppp.eu
http://dx.doi.org/10.1016/j.eswa.2012.01.206
http://www.iso.org/iso/catalogue_detail?csnumber=54533
http://www.iso.org/iso/catalogue_detail?csnumber=54533
http://dx.doi.org/10.1080/08839519508945490
http://www.mobile-cloud-networking.eu/site/
http://www.mobile-cloud-networking.eu/site/
https://5g-ppp.eu/metis-ii/
http://dx.doi.org/10.1109/comst.2015.2477041
http://dx.doi.org/10.1155/2016/2897479

Orchestration of use-case driven analytics in 5G scenarios﻿	

1 3

NIST National Institute of Standards and Technology (2007) NIST-
SP800 series special publications on computer security. http://
csrc.nist.gov/publications/PubsSPs.html#SP800. Accessed 11
Apr 2017

Osseiran A, Boccardi F et al (2014) Scenarios for 5G mobile
and wireless communications: the vision of the METIS
project. IEEE Commun Mag 52(5):26–35. doi:10.1109/
mcom.2014.6815890

Qiao J, Shen XS, Mark JW, Shen Q, He Y, Lei L (2015) Ena-
bling device-to-device communications in millimeter-wave
5G cellular networks. IEEE Commun Mag 53(1):209–215.
doi:10.1109/MCOM.2015.7010536

SELFNET Project (2014) Framework for self-organized network
management in virtualized and software defined networks.
Funded under H2020-ICT-2014-2. Project Reference 671672.
https://SELFNET-5g.eu/. Accessed 11 Apr 2017

SONATA Project (2014) Service programing and orchestration
for virtualized software networks. Funded under H2020-
ICT-2014-2. Project Reference 671517. http://www.sonata-nfv.
eu/. Accessed 11 Apr 2017

Su J, Xu C, Chenung SC, Xi W, Jiang Y, Cao C, Ma X, Lu J (2016)
Hybrid CPU–GPU constraint checking: Towards efficient con-
text consistency. Inf Softw Tech 74:230–242. doi:10.1016/j.
infsof.2015.10.003

T-NOVA Project (2013) Network functions as-a-service over vir-
tualised infrastructures. Funded under FP7-ICT. Project Ref-
erence 619520. http://www.t-nova.eu/. Accessed 11 Apr 2017

UNIFY Project (2013) Unifying cloud and carrier networks.
Funded under FP7-ICT. Project Reference 619609. http://
www.fp7-unify.eu/. Accessed 11 Apr 2017

Wang YW, Hanson EN (1992) A performance comparison of the
Rete and TREAT algorithms for testing database rule condi-
tions. In: Proceedings of the 8th international conference on
data engineering, Tempe, pp 88–97

Wang TS, Lin HT, Cheng WT, Chen CY (2017) DBod: clustering
and detecting DGA-based botnets using DNS traffic analysis.
Comput Secur 64:1–15. doi:10.1016/j.cose.2016.10.001

Webb J, Ahmad A, Maynard SB, Shanks G, Popovski P (2014) A
situation awareness model for information security risk manage-
ment. Comput Secur 44:1–15. doi:10.1016/j.cose.2014.04.005

Xia W, Wen Y, Foh CH, Niyato D, Xie H (2015) A survey on soft-
ware-defined networking. IEEE Commun Surv Tuts. 17(1):27–
51. doi:10.1109/comst.2014.2330903

Xu L, Assem H, Yahia IGB, Buda TS et al (2016) CogNet: a network
management architecture featuring cognitive capabilities. In:
Proceedings of the European conference on networks and com-
munications, Athens, pp 325–329

Zou H, Yu Y, Tang W, Chen HWM (2014) FlexAnalytics: a flexible
data analytics framework for big data applications with I/O per-
formance improvement. Big Data Res 1:4–13. doi:10.1016/j.
bdr.2014.07.001

http://csrc.nist.gov/publications/PubsSPs.html#SP800
http://csrc.nist.gov/publications/PubsSPs.html#SP800
http://dx.doi.org/10.1109/mcom.2014.6815890
http://dx.doi.org/10.1109/mcom.2014.6815890
http://dx.doi.org/10.1109/MCOM.2015.7010536
https://SELFNET-5g.eu/
http://www.sonata-nfv.eu/
http://www.sonata-nfv.eu/
http://dx.doi.org/10.1016/j.infsof.2015.10.003
http://dx.doi.org/10.1016/j.infsof.2015.10.003
http://www.t-nova.eu/
http://www.fp7-unify.eu/
http://www.fp7-unify.eu/
http://dx.doi.org/10.1016/j.cose.2016.10.001
http://dx.doi.org/10.1016/j.cose.2014.04.005
http://dx.doi.org/10.1109/comst.2014.2330903
http://dx.doi.org/10.1016/j.bdr.2014.07.001
http://dx.doi.org/10.1016/j.bdr.2014.07.001

	Orchestration of use-case driven analytics in 5G scenarios
	Abstract
	1 Introduction
	2 Background
	2.1 SELFNET and the situational awareness on 5G scenarios
	2.2 SELFNET analyzer: design principles and architecture
	2.3 Specification of the use cases

	3 Assumptions
	3.1 Symptoms and events
	3.2 Rule based inference
	3.3 Data granularity

	4 Design principles
	4.1 Aggregated data bundles
	4.2 Persistence
	4.3 Analytic pipelining

	5 Workflow
	6 Execution and optimization
	7 Illustrative examples
	7.1 UC 1: device packet loss
	7.1.1 Description
	7.1.2 Step-by-step

	7.2 UC 2: quality of service analysis
	7.2.1 Description
	7.2.2 Step-by-step

	8 UC 3: Botnet detection
	8.1 Description
	8.1.1 Step-by-step

	9 Conclusions
	Acknowledgements
	References

