Journal article Open Access

Controlled size reduction of rare earth doped nanoparticles for optical quantum technologies

Liu, Shuping; Serrano, Diana; Fossati, Alexandre; Tallaire, Alexandre; Ferrier, Alban; Goldner, Philippe


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/1483585</identifier>
  <creators>
    <creator>
      <creatorName>Liu, Shuping</creatorName>
      <givenName>Shuping</givenName>
      <familyName>Liu</familyName>
      <affiliation>IRCP, PSL Univeristy</affiliation>
    </creator>
    <creator>
      <creatorName>Serrano, Diana</creatorName>
      <givenName>Diana</givenName>
      <familyName>Serrano</familyName>
      <affiliation>IRCP, PSL Univeristy</affiliation>
    </creator>
    <creator>
      <creatorName>Fossati, Alexandre</creatorName>
      <givenName>Alexandre</givenName>
      <familyName>Fossati</familyName>
      <affiliation>IRCP, PSL Univeristy</affiliation>
    </creator>
    <creator>
      <creatorName>Tallaire, Alexandre</creatorName>
      <givenName>Alexandre</givenName>
      <familyName>Tallaire</familyName>
      <affiliation>IRCP, PSL Univeristy</affiliation>
    </creator>
    <creator>
      <creatorName>Ferrier, Alban</creatorName>
      <givenName>Alban</givenName>
      <familyName>Ferrier</familyName>
      <affiliation>IRCP, PSL Univeristy; Sorbonne Université</affiliation>
    </creator>
    <creator>
      <creatorName>Goldner, Philippe</creatorName>
      <givenName>Philippe</givenName>
      <familyName>Goldner</familyName>
      <affiliation>, PSL Univeristy</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Controlled size reduction of rare earth doped nanoparticles for optical quantum technologies</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Rare earth</subject>
    <subject>Quantum technologies</subject>
    <subject>NanOQTech</subject>
    <subject>Nanoparticles</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-10-19</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1483585</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1039/c8ra07246a</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/nanoqtech-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <version>1</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Rare earth doped nanoparticles with sub-wavelength size can be coupled to optical micro- or nano-cavities to enable efficient single ion readout and control, a key requirement for quantum processors and high-fidelity single-ion quantum memories. However, producing small nanoparticles with good dispersion and exploitable optical coherence properties, another key aspect for these applications, is highly challenging by most synthesis and nano-fabrication methods. We report here on the wet chemical etching of Eu&lt;sup&gt;3+&lt;/sup&gt;:Y&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; nanoparticles and demonstrate that a controlled size reduction down to 150 nm, well below the wavelength of interest, 580 nm, can be achieved. The etching mechanism is found to proceed by reaction with grain boundaries and isolated grains, based on obtained particles size, morphology and polycrystalline structure. Furthermore, this method allows maintaining long optical coherence lifetimes (&lt;em&gt;T&lt;/em&gt;&lt;sub&gt;2&lt;/sub&gt;): the 12.5 &amp;mu;s and 9.3 &amp;mu;s values obtained for 430 nm initial particles and 150 nm etched particles respectively, revealing a broadening of only 10 kHz after etching. These values are the longest &lt;em&gt;T&lt;/em&gt;&lt;sub&gt;2&lt;/sub&gt; values reported for any nanoparticles, opening the way to new rare-earth based nanoscale quantum technologies.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/712721/">712721</awardNumber>
      <awardTitle>Nanoscale Systems for Optical Quantum Technologies</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
69
70
views
downloads
Views 69
Downloads 70
Data volume 58.4 MB
Unique views 59
Unique downloads 68

Share

Cite as