Journal article Open Access

Optimal Energy Storage Sizing in Photovoltaic and Wind Hybrid Power System Meeting Demand-Side Management Program in Viet Nam

Nguyen Minh Cuong; Thai Quang Vinh; Le Tien Phong; Vu Phuong Lan


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/1481244</identifier>
  <creators>
    <creator>
      <creatorName>Nguyen Minh Cuong</creatorName>
      <affiliation>Electrical Faculty, Thai Nguyen University of Technology, Thai Nguyen, Viet Nam</affiliation>
    </creator>
    <creator>
      <creatorName>Thai Quang Vinh</creatorName>
      <affiliation>Institute of Information Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam</affiliation>
    </creator>
    <creator>
      <creatorName>Le Tien Phong</creatorName>
      <affiliation>Electrical Faculty, Thai Nguyen University of Technology, Thai Nguyen, Viet Nam</affiliation>
    </creator>
    <creator>
      <creatorName>Vu Phuong Lan</creatorName>
      <affiliation>Electrical Faculty, Thai Nguyen University of Technology, Thai Nguyen, Viet Nam</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Optimal Energy Storage Sizing in Photovoltaic and Wind Hybrid Power System Meeting Demand-Side Management Program in Viet Nam</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Demand-side management</subject>
    <subject>energy storage</subject>
    <subject>optimal sizing</subject>
    <subject>renewable energy</subject>
    <subject>hybrid power generation system</subject>
    <subject>photovoltaic power generation</subject>
    <subject>wind power generation</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-11-08</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1481244</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsCitedBy">10.21276/ijre.2018.5.9.3</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.21276/ijre.2018.5.9.3</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This paper proposes a new method to determine optimal energy storage sizing in photovoltaic and wind hybrid power generation systems. These generations are placed in a scheme of three blocks to forecast, measure, dispatch/control and distribute power flows in whole system to meet requirements of the demand-side management program in Viet Nam. Data about electric load power, power of solar irradiance, ambient temperature, wind speed and other weather conditions must be forecasted in a high accuracy. An algorithm to determine the optimal sizing is designed basing on forecasting data, constraints, the relation of quantities in whole system and the capability to charge/discharge energy of energy storage. The optimal sizing in this research helps to rearrange load diagrams that compensates deficient energy completely in stages having high and medium price levels. It can be applied at each bus to reduce cost for buying electricity from electric power system. The new proposal is illustrated by simulation results in a case study carried out by MATLAB 2017a.&lt;/p&gt;</description>
    <description descriptionType="Other">https://digital.ijre.org/index.php/int_j_res_eng/article/view/358</description>
  </descriptions>
</resource>
26
47
views
downloads
Views 26
Downloads 47
Data volume 46.9 MB
Unique views 20
Unique downloads 41

Share

Cite as