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Abstract	
Freshwater ecosystems constitute only a small fraction of the planet's water resources, 
yet support much of its diversity, with freshwater fish accounting for more species 
than birds, mammals, amphibians, or reptiles.  Freshwaters are, however, particularly 
vulnerable to anthropogenic impacts, including habitat loss, climate and land use 
change, nutrient enrichment, and biological invasions. This environmental 
degradation, combined with unprecedented rates of biodiversity change, highlights the 
importance of robust and replicable programmes to monitor freshwater fish 
assemblages. Such monitoring programmes can have diverse aims, including 
confirming the presence of a single species (e.g. early detection of alien species), 
tracking changes in the abundance of threatened species, or documenting long-term 
temporal changes in entire communities. Irrespective of its motivation, monitoring 
programmes are only fit for purpose if they have clearly articulated aims and collect 
data that can meet those aims. This review, therefore, highlights the importance of 
identifying the key aims in monitoring programmes, and outlines the different 
methods of sampling freshwater fish that can be used to meet these aims. We 
emphasise that investigators must address issues around sampling design, statistical 
power, species’ detectability, taxonomy, and ethics in their monitoring programmes. 
Additionally, programmes must ensure that high-quality monitoring data are properly 
curated and deposited in repositories that will endure. Through fostering improved 
practice in freshwater fish monitoring, this review will help programmes improve 
understanding processes that shape the Earth's freshwater ecosystems, and help 
protect these systems in face of rapid environmental change. 
 
 
Keywords: Biodiversity Targets; Ecological Monitoring; Environmental Assessment; 
Environmental Management; Rivers; Sampling Design 
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1. Introduction	
Human-driven environmental changes continue to raise substantial concerns for 

biodiversity conservation and have led to the development and implementation of 
many ecological monitoring programmes around the world (Nichols & Williams, 
2006). These programmes generally aim to understand and manage the interactions of 
environmental change with biodiversity (Fölster et al., 2014). Given the increasing 
seriousness of environmental degradation, the need for effective ecological and 
biodiversity monitoring programmes has never been higher (Lindenmayer & Likens, 
2010). Freshwater ecosystems are particularly imperilled by anthropogenic activities 
worldwide. Although freshwaters cover less than 1% of the earth’s surface, they 
support high levels of biodiversity (Dudgeon et al., 2006; Strayer & Dudgeon, 2010). 
Yet extinction rates of freshwater taxa are considerably higher than terrestrial species 
(Sala et al., 2000), due to issues including habitat loss, climate and land use change, 
pollution, and biological invasions (Ormerod et al., 2010; Stendera et al., 2012). At 
approximately 13,000 species, freshwater fish represent 40-45% of global fish 
diversity (Lévêque et al., 2008), but this highly diverse group includes some of the 
most imperilled animals on the planet (Cooke et al., 2012).  

Freshwater fishes also provide ecosystem services of major economic, 
nutritional, scientific, historical, and cultural importance (IUCN FFSG, 2015). For 
example, freshwater and marine fisheries jointly constitute the largest extractive use 
of wildlife in the world and contribute to overall economic wellbeing by means of 
export commodity trade, tourism, and recreation (Santhanam, 2015). Freshwater fish 
provide a major source of protein for humans and support the livelihoods of many 
people (Holmlund & Hammer, 1999), particularly in the Global South. However, 
there are serious threats to this valuable resource related to over-exploitation and 
other anthropogenic stressors (Allan et al., 2005; de Kerckhove et al., 2015). 

The wide range of responses of freshwater fishes to anthropogenic stressors, 
make fish valuable indicators for assessing the biological and ecological integrity of 
freshwaters and their catchments (Fausch, Karr, & Yant, 1984; Schiemer, 2000, but 
also see Magurran et al., 2018). The breadth of fundamental information on ecology 
and taxonomy, combined their higher societal importance compared to other 
freshwater taxa (Simon & Evans, 2017), makes freshwater fish a popular target taxon 
in assessments of ecological integrity. Correspondingly, freshwater fishes are 
commonly used for evaluating the functioning and status of freshwater ecosystems 
and habitat quality. These assessments, however, are only as good as the data that 
underpin them. For this reason, effective monitoring of fish populations and 
communities in freshwater habitats and understanding the rate and direction of 
biodiversity change over time is essential. 

Although the need for effective monitoring in ecological research is well-
recognized, there is a long history of monitoring programmes that have been poorly 
planned and lack focus, resulting in ineffective programmes that rarely meet their 
aims (Lindenmayer & Likens, 2009, 2010; Marsh & Trenham, 2008; Nichols & 
Williams, 2006). In fact, there remains a series of issues and knowledge gaps with 



EFFECTIVE MONITORING OF FRESHWATER FISH RADINGER ET AL. 2018 

4 
 

how these programmes are designed and implemented. For example, there is 
considerable disparity in their implementation between developed and developing 
regions. This is an acute problem, as developing regions are often characterised by 
high levels of fish diversity but limited resources for research (e.g. Vörösmarty et al., 
2010). Where monitoring programmes are in place, there are almost inevitably trade-
offs in temporal and spatial scales of measurement that must be explicit (Pollock et 
al., 2002), but these are often poorly quantified, or justified, resulting in long-term 
data lacking statistical power. There are inherent issues over programmes being either 
question driven or mandated, with the latter often lacking rigour in design resulting in 
their provision of only coarse-level summaries of change (Lindenmayer & Likens, 
2010).  

In this review, we examine these issues and knowledge gaps, and make 
recommendations about how they can be addressed within monitoring programmes. 
Our focus is primarily on riverine fishes, as the majority of long-term freshwater fish 
monitoring programmes are river-based. Our aim is to foster improved practices by: 
a) summarizing key questions that monitoring can address when aims are clear and 
the approach is rigorous (Section 3); b) synthesising issues with sampling design and 
statistical power, and indicating how they might be overcome (Section 4); c) 
reviewing different monitoring and sampling approaches (Section 5); d) considering 
challenges related to species’ detectability, taxonomy, economical costs, and ethics 
(Section 6);  and, e) discussing the importance of the appropriate management of 
monitoring data (Section 7). We start by providing some key definitions and 
background information (Section 2). 
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2. Definitions	and	background	
There are a number of definitions of monitoring in conservation, ecological 

and aquatic contexts (Supporting Information Table S1.1). Here, we define 
freshwater fish monitoring as repeated, field-based measurements of fish that 
are collected in a systematic manner, allowing the potential detection of 
important shifts at population or community levels. 

2.1. History	of	fish	monitoring	
There is a long history of monitoring programmes that have provided important 

scientific advances and crucial information for environmental policy (Lovett et al., 
2007), which has also been increasingly reflected in the scientific literature (Fig. 
S1.1). Very early, though presumably less systematic, efforts in freshwater fish 
monitoring recorded temporal changes in fisheries, such as reports of Atlantic salmon 
Salmo salar declines in a central European river that date back to the 18th century 
(reviewed by Wolter, 2015). The majority of fish monitoring programmes were 
established before 1979 (Mihoub et al., 2017). Despite this and in contrast to other 
taxonomic groups such as birds, mammals, and many plants, freshwater fish are 
generally under-represented in contemporary biodiversity studies and monitoring 
programmes (Mihoub et al., 2017; Troudet et al., 2017). This underrepresentation of 
fish, despite their high diversity, might be explained partly by the fact that fish occur 
in aquatic environments. Thus, in contrast to many terrestrial biota, that can be 
monitored by visual observations and where citizen scientists can be more easily 
recruited (Thomas, 1996), fish require more specialized sampling methods. However, 
one feature shared with other taxa is that the spatial extent of fish monitoring is highly 
biased, being concentrated in the Global North (Fig. 1). Freshwater ecosystems (e.g. 
lacustrine and fluvial habitats) are also generally neglected in fish monitoring 
programmes, compared to marine environments (Fig. 1). A further issue is that even 
when freshwater fish are monitored, the resulting data are often not published or 
electronically archived, and thus are often inaccessible to the broader scientific 
community (Lindenmayer & Likens, 2009; Revenga et al., 2005).  
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Fig. 1. Overview of fish monitoring programmes across global regions (A), taxonomic orders 
(B), and biotope types (C) based on records of the taxonomic order Osteichthyes (n = 543) in 
the Global Population Dynamics Database (GPDD, version 2.0, released 2010, 
www.imperial.ac.uk/cpb/gpdd2, NERC Centre for Population Biology, Imperial College, 
2010). 

3. Different	questions	lead	to	different	monitoring	
approaches	

3.1. Key	questions	
As it is now widely recognised, ecological communities experience 

continuous temporal turnover, i.e. change in species composition and abundances 
(e.g. Darwin, 1859; MacArthur & Wilson, 1967). Some degree of temporal turnover 
is necessary to maintain ecosystem functions and properties. However, the rate of 
temporal turnover in contemporary assemblages exceeds the baseline predicted by 
ecological theory (Dornelas et al., 2014). The overall goal in monitoring freshwater 
fish is thus not to document change per se, but rather to understand how much of the 
observed change is due to anthropogenic impacts. In particular, effective monitoring 
should facilitate the identification of drivers of systemic change (Dornelas et al., 
2012). Linked to the overall goal of detecting systemic changes, the key questions of 
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freshwater fish monitoring relate to detecting significant changes at the (i) community 
level (multi-species), such as quantifying trends in species richness, temporal α- and 
β-diversity, functional diversity, food web structure, and/or at the (ii) population level 
(single species), such as quantifying trends in population size and dynamics, 
abundance of keystone, threatened or non-native species, genetic diversity, species 
ranges, fisheries stocks, size and age structure, behaviour, phenology, growth, shape, 
and/or condition.  

The diverse questions that can be addressed via monitoring necessitate 
different sampling designs. For example, some questions can be addressed with 
presence-only data, while other questions require sampling of an entire community 
(Table 1). Depending on the entity being measured, this might involve various fish 
capture techniques (see Zale et al., 2012), methods to assess fish spatial behaviour 
(see Lucas & Baras, 2000), genetic methods (Lundqvist et al., 2010), or more recent 
approaches such as citizen science and the use of social media (Section 5). For 
example, by monitoring fish communities (presence/absence of multiple species) in 
two rivers in the south-eastern of the U.S.A. over 20 years, Freeman et al. (2017) 
revealed important temporal declines in species’ occupancies and overall species 
richness. By comparison, Hansen et al. (1986) monitored reported catches (i.e., rough 
abundance estimates) of Atlantic salmon in a Norwegian river to track changes in 
stock sizes over 100 years. In Table 1, we summarize the data needs associated with a 
suite of key monitoring questions. We also stress the importance of clearly 
articulating the question that needs to be answered, and of ensuring that the data 
provided by the monitoring are suitable for answering it. These points are developed 
in the next section. 
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Table 1. Overview of key questions in fish monitoring programs, associated data needs and applicable sampling methods. 
Sampling method: 1 electrofishing, 2 netting, 3 trapping, 4 telemetry (e.g. acoustic, radio or passive integrated transponder tags), 5 mark-recapture, 6 
environmental DNA, 7 hydro-acoustic assessment, 8 angler catch statistics, 9 data-mining, 10 citizen science. -/orange = no, yellow = maybe, green = yes, na 
not applicable. 
 

 Key questions in freshwater fish monitoring 
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Population / single-species 

Occupancy (presence only) 1-3,6,8-10 1-3,6,8-10 1-3,6,8-10 1-3,6,8 na 1-3 na na na - - - - - - - 

Presence / Absence 1-3,6 1-3,6 1-3,7 1-3,6 na 1-3 na na na - - - - - - - 

Counts, uncorrected for effort 1-3,7,8 1-3,8 1-3,7,8 1-3,7,8 na 1-3 na na na 1-3,5,7,8 1-3,5,7,8 1-3,7 - - - - 

Abundance estimate 1,2,5,7 1,2 1,2,5,7 1,2,5,7 na 1,2,5 na na na 1,2,5,7 1,2,5,7 1,2,7 - - - - 

Individual attributes 1-5 1-3 1-5 1-5 na 1-5 na na na 1-3,5 1-3,5 1-3 1-3 1-3 1-3 1-3,5 

Community / multi-species 

Occupancy (presence only) 1-3,6 1-3,6 1-3 1-3,6 1-3,6 1-3 1,2,6 1,2,6 - - - - - - - - 

Presence / Absence 1-3,6 1-3,6 1-3 1-3,6 1-3,6 1-3 1,2,6 1,2,6 1,2,6 - - - - - - - 

Counts, uncorrected for effort 1-3 1-3 1-3 1-3 1-3 1-3 1,2 1,2 1,2 1-3,5,7,8 1-3,5,7,8 1-3,7 - - - - 

Abundance estimate 1,2 1,2 1,2 1,2 1,2 1,2,5 1,2 1,2 1,2 1,2,5,7 1,2,5,7 1,2,7 - - - - 

Individual attributes 1-5 1-3 1-5 1-5 1-3 1-5 1,2 1,2 1,2 1-3,5 1-3,5 1-3 1-3 1-3 1-3 1-3,5 
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3.2. Aims	of	monitoring	
Effective monitoring (also termed ‘target’ or ‘focused’ monitoring) requires a 

clear set of specific objectives linked to the overall goal of detecting important shifts 
in fish populations or communities over time and space. Monitoring may additionally 
be guided by a priori hypotheses (Nichols & Williams, 2006). In particular, question-
driven monitoring programmes need a rigorous study design and collection of data 
over a sufficiently long period to ensure sufficient statistical power to detect trends or 
changes and to enable the answering of the motivating questions (Lindenmayer & 
Likens, 2010; Nichols & Williams, 2006). In mandated monitoring programmes, the 
data might be compared against predetermined standards (Alexander, 2008; 
Hellawell, 1991; Hurford, 2010), such as in the Water Framework Directive of the 
European Union (Birk et al., 2012). Whilst each fish monitoring programme is unique 
to a given system and its overall aim, there are several commonalities across systems 
and studies (see Supporting Information S2). Here, we focus on question-driven 
monitoring of freshwater fishes, and we use the term ‘monitoring’ in this more narrow 
sense in the following discussion.  

Clear articulation of the monitoring aim(s) is essential (Bisbal, 2001; 
Lindenmayer & Likens, 2009). At a minimum, these aims should: define what should 
be monitored (e.g. fish abundance, fish attributes); define the spatial and temporal 
scope (e.g. duration, scale; cf. Dixon & Chiswell, 1996); establish criteria for 
reliability (e.g. precision, power); and identify practical constraints (e.g. human 
resources, costs, social conflicts). 

4. Sampling	design,	network	design	and	statistical	power	
The sampling and network design, and statistical power, of monitoring 

programmes are crucial to their success and effectiveness. In this context, the 
sampling design relates to the temporal frequency of sampling within a designed 
network comprising a series of spatially segregated sites. Consequently, to answer the 
monitoring question requires a priori decisions regarding how to allocate effort within 
and among years, and across sites (Larsen et al., 2001).  

Although often difficult to implement in large-scale ecological studies, the 
basic principles of experimental design (e.g. Quinn & Keough, 2002) are generally 
also applicable to monitoring (Conroy & Carroll, 2009). These principles include 
replication (to ensure representativeness and assess variability), control (to identify 
and allow comparisons with baselines), and randomization (to enhance the 
independence of errors, García-Berthou et al., 2009). However, as fish monitoring 
programmes are typically undertaken to detect temporal or spatial changes in 
populations (Cowx et al., 2009), statistical controls and replication are often 
unfeasible (Carpenter et al., 1989; Hargrove & Pickering, 1992; Schindler, 1998; 
Turner et al., 2001). Instead, other statistical techniques, such as regression analysis 
(García-Berthou et al., 2009; Hurlbert, 2004; Osenberg et al., 2006) or before-after 
control-impact designs (Osenberg et al., 2006; Stewart-Oaten & Bence, 2001; Thiault 
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et al., 2017), are frequently used to estimate effects in cases without spatial 
replication. Moreover, descriptive statistics or exploratory multivariate techniques 
have less rigorous assumptions, and often might be appropriate for analysing 
monitoring data where formal hypothesis testing is not required (Økland, 2007). 

The spatial distribution of the sampling sites should match the monitoring 
aim(s) (Dixon & Chiswell, 1996). Two major principles, the avoidance of bias in the 
selection procedure and achievement of high precision, should underlie all sampling 
designs (Crawford, 1997). A sampling design can be based on probabilistic or non-
probabilistic methods (Fig. 2, for details see Supporting Information S3). Probabilistic 
designs include simple random sampling, systematic sampling, and stratified random 
sampling, with the latter two being more appropriate for heterogeneous, 
hierarchically-structured aquatic environments, such as river drainages (Lowe et al., 
2006; Thorp et al., 2006). However, in fish monitoring, sampling sites are frequently 
selected non-probabilistically, often based on judgment or convenience (Pope et al., 
2010; Wilde & Fisher, 1996). The adaptive approach (Larsen et al., 2001) argues that 
the sampling design should be re-evaluated and re-designed as necessary as data are 
gathered and their variability analysed (Box 1). This ensures that changes in the 
chemical, physical, or biological conditions are accounted for in the sampling design 
(Buckland et al., 2012; Strobl & Robillard, 2008). 

 
 

 
Fig. 2. Overview of possible sampling designs in freshwater fish monitoring (see also 
Supporting Information S3). 
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Box 1. Adaptive monitoring 

There is often high uncertainty and complexity in the drivers of fish 
community change that can range from global environmental change (e.g. climate 
change; Graham & Harrod, 2009; Radinger et al., 2016) to more local issues (e.g. 
altered flow regimes; Harby et al., 2007). Thus, monitoring programmes must be 
capable of providing data suitable for the continued management of the resources 
(Polasky et al., 2011). Given on-going environmental change, the decision-making 
approach of adaptive management, based on ‘learning by doing’, is generally a 
preferred option to integrate scientific knowledge into the policy-making process 
(Ludwig et al., 2001). Within the framework of adaptive management, adaptive 
monitoring tends to be presented as a new paradigm, which views long-term 
monitoring as a management activity closely related to scientific research. The 
ultimate aim of any adaptive monitoring programme is to demonstrate that new 
insights gained through its application will improve management practices 
(Lindenmayer et al., 2011). Adaptive management requires the integration of long-
term monitoring programmes and cause/effect-based experimentation, allied with 
modelling frameworks that prioritize strategies that shift the ecosystem towards 
ecological and socioeconomic stable states. Adaptive monitoring thus has the 
potential to significantly improve the poor record of high-quality, long-term 
ecological research and monitoring.  

An example of adaptive monitoring is outlined by Fölster et al. (2014) for 
Swedish freshwaters. Starting with the work of early naturalists measuring rather 
specific and localized natural phenomena, the scope of the freshwater monitoring 
programme in Sweden and the number of monitored sites increased along with the 
emergence of new challenges related to, for example, eutrophication in the 1960s, 
acid rain in the 1970s, and the demands related the EU Water Framework Directive in 
2000. Today, the program consists of regular long-term monitoring of water 
chemistry and biodiversity (including freshwater fish) in 114 streams and 110 lakes 
(Fölster et al., 2014). This example, not only illustrates the value of adaptive 
monitoring by providing long-term data to understand and overcome many of the 
emerging environmental problems, but also emphasizes its potential to investigate 
future challenges, e.g. related to climate change, test resilience theory, or predict 
regime shifts and tipping points. 
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Adequate sampling frequency depends on the aim of the monitoring 
programme, the relative importance of a sampling location, and the expected data 
variability (Canter, 1985; Strobl & Robillard, 2008). The latter is particularly 
important, as fish monitoring programmes strive to detect ‘real’ trends and changes, 
as opposed to stochastic variation (e.g. resulting from inter-annual variation in 
recruitment) and baseline turnover (Dornelas et al., 2014). Here, analysis of statistical 
power should avoid Type II errors, i.e. the probability of not detecting a trend, when 
in fact there is one (Fairweather, 1991; Miller et al., 2009). 

Power analyses should be considered a priori during the planning of the 
monitoring programme (Legg & Nagy, 2006; Marsh & Trenham, 2008; Maxwell & 
Jennings, 2005; Peterman, 1990). They can guide the development of an effective 
sampling and network design, as well as the estimation of the minimum number of 
samples needed to detect a certain effect size (or minimum detectable difference) 
according to a desired level of significance over time and/or space (Peterman, 1990; 
Steidl et al., 1997). A posteriori power analyses are more controversial (Hayes & 
Steidl, 1997; Hoenig & Heisey, 2001; Thomas, 1997). These compute the statistical 
power of a study after it has been conducted and a non-significant result (i.e. failure to 
reject the null hypothesis) obtained (Peterman, 1990; Thomas, 1997). There are some 
examples that have applied a priori power analysis in freshwater fish monitoring (e.g. 
Liermann & Roni, 2008; Maxell, 1999). Several other studies have highlighted the 
low statistical power of many programmes (Maxwell & Jennings, 2005; Wagner et 
al., 2013) or the failure to consider statistical power (Marsh & Trenham, 2008). 
Critical design errors can be problematic and ‘no amount of statistical “magic” will 
remedy a faulty study design’ (Conroy & Carroll, 2009).  

Consequently, the final sampling design should establish the temporal 
frequency of sampling across a spatial network of sites, with these determined 
according to a priori statistical power analysis. The next step is then selecting the 
sampling methods required to collect the monitoring data needed to address the 
programme’s aims (Section 5.1). 

5. Approaches	to	fish	monitoring	

5.1. Monitoring	aims	versus	sampling	methods	
Among the sampling methods that can be utilised for fish monitoring, 

distinctions can be made between capture and non-capture techniques. Capture 
methods involve the physical removal of fish from the water to enable species 
identification, and the collection of biometric data (e.g. length, weight) and hard 
structures (e.g. scales) for ageing the fish to determine population demographics and 
dynamics. The most common methods available for capturing freshwater fish include 
electrofishing, netting, and trapping (Casselman et al., 1990). Non-capture methods 
(e.g. hydro-acoustic surveys) can provide data complementary to capture techniques. 
They can also be used where capture methods lack sufficient power to provide robust 
estimates of population abundances (Hughes, 1998; Lyons, 1998). However, a feature 
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of some non-capture methods is their taxonomic ambiguity due to either their lack of 
fish capture (Boswell et al., 2007) (Section 5.4) or through erroneous identification of 
specimens (Section 6.2).  

The application of a sampling method in monitoring might differ markedly 
according to the programme’s aims. For example, electrofishing can be applied within 
point abundance sampling designs that can be effective for monitoring the diel 
activity of larval fishes (Copp, 2010) and the status of the critically endangered 
European eel Anguilla anguilla (Laffaille et al., 2005). However, capturing fish in 
longer river reaches using electrofishing or trawling might be more suitable where the 
monitoring aim is to assess biological/ecological integrity, as the indices require data 
at multiple organization levels, from size structure to assemblage richness (e.g. Noble 
et al., 2007; Pont et al., 2007; Schmutz et al., 2000), often in conjunction with data on 
habitat quality (e.g. Van Liefferinge et al., 2010; Milner et al., 1998). 

5.2. Capture	techniques	and	application	within	monitoring	programmes	
The application of capture methods requires determination of the sampling 

effort required for accurately estimating the composition of the assemblage (details in 
Box 2). The applicability of the different capture techniques available to monitoring 
programmes (e.g. Zale et al., 2012) has resulted in a series of standardised protocols 
being made available for sampling inland fish populations in many areas of the world, 
including Europe, North America, and New Zealand (Table S4.1), and so these are 
not discussed further here. However, two fundamental concepts have emerged in 
relation to the application of these techniques and protocols to river fish monitoring: 
the importance of sampling design (already discussed in Section 4) and response 
design (Stevens & Urquhart, 2000). 

Response design incorporates decisions about how to measure the fish 
community and population metrics with accuracy and precision (Pollock et al., 2002). 
For example, where assessments of age structure, growth rates, and recruitment are 
required, then decisions are needed on the ageing method, such as whether to rely on 
length-frequency analyses or collect hard structures, such as scales, from captured 
fishes (e.g. Hamidan & Britton, 2015). If scales are collected, then decisions are 
needed regarding how many individual fish need to be sampled and over what size 
range (Busst & Britton, 2014). In addition, where hard structures are being used for 
ageing, the frequency of annulus formation might need validating to maximise 
accuracy (Beamish & McFarlane, 1983), requiring regular sampling throughout the 
year or mark-recapture methods (Britton et al., 2010; Chisnall & Kalish, 1993). Scale 
samples for fish ageing, and tissue samples for genetic and stable isotope analyses, 
can be collected from fish captured by anglers to complement on-going monitoring 
(Gutmann Roberts et al., 2017).  
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Box 2: Sampling effort and biodiversity estimation 
Decisions about the spatial extent and duration of sampling have important 

implications. If the goal is to quantify an attribute of a population of interest, then, all 
other things being equal, estimates of abundance will scale predictably with effort. 
There are a range of statistical techniques, such as removal sampling (Southwood & 
Henderson, 2000), that can be used to estimate population size, and/or to ensure that 
effort is adequate for the intended purpose. It is relatively straightforward, therefore, 
to compute trends for single populations.  

If, on the other hand, the aim is to quantify compositional turnover (temporal 
β diversity), or to calculate a metric of α diversity, such as assemblage richness, it is 
essential that any temporal or spatial comparisons take account of the inherent 
unevenness of ecological assemblages. Although the number of individuals (across all 
species) will typically increase linearly if an assemblage is sampled over a longer time 
period, or the area sampled is increased, the species accumulation curve will 
gradually flatten (Fig. 3). As a result, any metrics which either explicitly or implicitly 
depend on richness cannot be scaled by simple multiplication or division. Species 
richness is the metric most obviously influenced by this, but most biodiversity 
indices, including, for example, the Berger-Parker dominance metric (Magurran, 
2004, 2011; Magurran & McGill, 2011) and Jaccard similarity (Baselga, 2010), are 
also affected. 

Fortunately, there are statistical solutions to this problem. Rarefaction is the 
traditional way of making fair comparisons across assemblages or of community 
diversity over space or time (Gotelli & Colwell, 2001, 2011). In essence, the samples 
(or assemblages) are rarefied to the smallest common sampling effort. Rarefaction can 
be computed in relation to the minimum number of individuals sampled, or to the 
smallest number of sampling units. While most rarefaction analyses focus on species 
richness, in principle many different biodiversity metrics can be rarefied. In the case 
of temporal or spatial β diversity comparisons, the investigator should use sample-
based rarefaction as this retains the identity of the species involved. A recent 
innovation is to extrapolate to the largest sample size rather than rarefy to the smallest 
one (Chao et al., 2014; Hsieh et al., 2016). Rarefaction can also be used to make 
informed comparisons about community structure and composition using null model 
approaches (Cayuela et al., 2015; Cayuela & Gotelli, 2014). In summary then, any 
computation of trends in community α diversity or β diversity should either be based 
on sampling that has been rigorously standardized or be based on data that have been 
statistically standardized (by rarefaction or similar) – see Fig. 3 for an example. 
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Fig. 3. Illustration of the variation of the number of species (species richness) and numerical 
abundance with sampling effort. The data are for two river sites in Trinidad (top – (A) Lower 
Aripo, bottom – (B) Maracas, sampled four times annually for five years. The data are 
described in Magurran et al. (2018). In each case the species (and numerical abundance) 
accumulation curves are constructed by randomly shuffling the temporal order of the samples 
a 1000 times. The open points represent the median value of the randomised accumulation 
curves; their 95% confidence limits (0.025 and 0.975 quantiles) are also shown (species 
richness - red lines; numerical abundance - blue lines). 
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5.3. Applications	of	capture	methods	to	monitoring	fish	movement	and	
behaviour	

It is often desirable to release captured fish, unharmed, to the site of capture, 
without further intervention. However, attaching tracking devices or marking fish, 
prior to release, can substantially increase the amount of information obtained. For 
example, biotelemetry using acoustic, radio, or passive integrated transponder tags 
(Cooke et al., 2011; Thiem et al., 2011) can reveal individual variability in 
movements and behaviours within and between populations (Lucas & Batley, 1996), 
elucidate population mixing and gene flow (Huey et al., 2011), assess the effects of 
connectivity and habitat fragmentation on river fishes (Capra et al., 2017; Lin et al., 
2018), and help evaluate management units for fisheries or conservation (Funk et al., 
2012). 

Mark-recapture studies can also strongly complement fish monitoring by 
providing alternative estimates of population size and fish ages (Hamel et al., 2015; 
Sass et al., 2010). They can also reveal the extent of migrations of individual fish 
between habitats within specific populations (Sandlund et al., 2016). 

5.4. Non-capture	monitoring	techniques	
Monitoring programmes can incorporate non-capture methods to complement 

capture data. These methods include environmental DNA, hydro-acoustic 
assessments, angler catch statistics, and data-mining exercises. These methods are 
often applied within monitoring programmes to provide data on different components 
of the community or population, and are especially useful for larger water bodies 
where capture techniques are often difficult to apply or are inefficient. 

Environmental DNA (‘eDNA’ hereafter) is based on the presence DNA of 
fishes in water samples originating from mucus and faeces, the sloughing off of cells 
from their gut lining, and the decomposition of dead individuals (Davison et al., 2016; 
Jerde et al., 2011; Turner et al., 2015). DNA is extracted from water samples, and 
polymerase chain reaction (PCR) used in conjunction with species-specific genetic 
markers to amplify DNA fragments to indicate the presence of target species (Turner 
et al., 2015). The method is increasingly being applied to the monitoring of freshwater 
species (Fig. S1.1), including those of conservation importance (Takahara et al., 2012; 
Thomsen et al., 2012).  

There are two basic ways that eDNA can be applied in a fish monitoring 
programme. Water samples can be analysed to detect the presence/absence of a 
specific species, or can be screened for whole communities of organisms using 
‘eDNA metabarcoding’ (Hänfling et al., 2016; Lawson Handley, 2015). Recent 
refinements have improved reliability of species’ detection (Hänfling et al., 2016), but 
some questions remain on, for example, factors affecting the rate of DNA breakdown 
in the environment (Barnes et al., 2014). However, the non-detection of species-
specific DNA fragments in a sample of river water does not necessarily imply the 
absence of the target species, nor does a positive signal necessarily imply that the 
species is present, as the eDNA could have been transported from upstream areas 
(Roussel et al., 2015). Nevertheless, as refinements in the technique continue, it 
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should increasingly provide a strong complement to capture methods, especially in 
regions where knowledge on the species likely to be present is available. Although 
issues remain over the reliability of eDNA to provide estimates of abundance, these 
are now starting to be overcome (Lacoursière-Roussel et al., 2016). 

Hydro-acoustic assessments involve the application of an acoustic beam from 
a transducer through the water. Any fish within the beam returns a signal, with the 
target strength of the returning signal indicating the relative size of the fish. Whilst the 
method generates data on fish density, there is high taxonomic ambiguity in terms of 
species present, with no biometric data collected (other than conversion of target 
strengths to approximate fish lengths) (Boswell et al., 2007). Nevertheless, hydro-
acoustic assessments have been used extensively for fish monitoring, especially in 
lakes where sampling strategies have been developed (e.g. Guillard & Vergès, 2007), 
with target strengths related to species-specific attributes to increase knowledge on 
community composition (Frouzova et al., 2005). In lowland rivers, such as the River 
Thames and River Trent in England, mobile hydro-acoustic techniques have been 
applied to monitor the spatial and temporal distributions of fish communities 
(Hughes, 1998; Lyons, 1998). The method has also been applied to assessing the 
status of endangered fishes, such as the Chinese paddlefish Psephurus gladius in the 
upper Yangtze River, China (Zhang et al., 2009).  

Statistics on angler catch rates and species composition have been applied to 
the monitoring of fish community composition of large lowland rivers where other 
fish capture methods are either difficult to apply or inefficient (Jones et al., 1995). For 
example, in the River Trent, England, angler catch statistics monitored changes in the 
fish assemblage in relation to improvements in water quality (Cooper & Wheatley, 
1981; Cowx & Broughton, 1986). More recently, catch statistics from individual 
anglers were used to assess the population status of mahseer fishes (Tor spp.) in the 
River Cauvery, India (Pinder et al., 2015a,b). An issue with angler-based data is that 
they tend to be biased for specific species and size ranges (Amat Trigo et al., 2017). 

Data mining, where spatial and temporal data on species are gathered through 
information available from on-line sources is a different non-capture technique for 
monitoring changes in the distribution of species. Databases including the Global 
Biodiversity Information Facility (GBIF; https://www.gbif.org/) and the Global 
Population Dynamics Database (GPDD; https://www.imperial.ac.uk/cpb/ 
gpdd2/secure/login.aspx) enable users to access global distribution records of species 
via directed searches that provide records with location coordinates for use within 
GIS. The GPDD also provides data on population dynamics, rather than just 
distribution data. The FishBase database (Froese & Pauly, 2018) provides species-
level information gathered from the literature, including occurrences and a large 
variety of ecological data.  

An alternative method to using these online databases is monitoring the 
distribution of fishes via citizen science, particularly via social media platforms. 
Indeed, the application of citizen science and crowd sourcing to the collection of 
biological data is increasingly frequent (Fig. S1.1), thanks to many smartphones now 
having GPS, high-resolution cameras, and continuous internet connection (Bik & 
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Goldstein, 2013; Di Minin et al., 2015). For example, for monitoring distributions of 
non-native fish, a number of smartphone ‘apps’ are available, with these generally 
enabling the user to send a geo-referenced image of the species to a specific 
organisation for validation and recording. Current examples include ‘That’s Invasive’ 
(http://www.rinse-europe.eu/resources/smartphone-apps/) and ‘AquaInvaders’ 
(http://naturelocator.org/aquainvaders.html). Both of these ‘apps’ also provide users 
with information and images on specific invaders to facilitate their identification of 
species. Venturelli et al. (2017) have recently reviewed the opportunities and 
challenges associated with angler ‘apps’. 

Data can also be sourced from user-generated content on various social media 
platforms (Di Minin et al., 2015). By data-mining these non-biological sources, such 
as via searches of specific social media sources (e.g. YouTube.com), recreational 
fisheries forums and blogs, and news-media channels, fish distribution and dispersal 
data can be generated. For example, this approach has been applied successfully to 
assessments of non-native fish invasions, such as perch Perca fluviatilis and channel 
catfish Ictalurus punctatus in Portugal (Banha et al., 2015, 2017). Increasingly, these 
searches can be automated through use of computer code. For example, geo-
referenced images and video of specific species within image and video hosting 
websites (e.g. flickr) can be searched, with GIS interfaces enabling distribution maps 
to be constructed (see Fig. 4) and thus temporal and spatial distribution patterns better 
understood (Coding Club, 2018).  
 

 
Fig. 4. The distribution of (A) Northern pike (Esox lucius) and (B) Zander (Sander 
lucioperca) in the UK, between 1986 and 2016, based on data from GBIF (www.gbif.org). 
The R code (R Core Team, 2017) used to construct the figure was adopted from the Coding 
Club (https://ourcodingclub.github.io/2017/03/20/seecc.html). 
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5.5. Complementarity	of	capture	and	non-capture	methods	
Data acquired from capture and non-capture methods within the same 

monitoring programme need to be integrated effectively. For example, fish 
monitoring in Windermere, England, a relatively large and deep glacial lake, has 
recently been complemented by application of eDNA that recorded the presence of 14 
of 16 fish species known to be present, when concomitant gill net surveys only 
captured four fish species (Hänfling et al., 2016). Windermere has also been 
monitored regularly for over 60 years by other methods, including fish traps, gillnets, 
hydro-acoustics, and piscivorous fish diet composition (Langangen et al., 2011; 
Winfield et al., 2008, 2012). The high complementarity of these datasets has 
improved understanding of environmental (e.g. nutrient enrichment, warming) and 
other changes (e.g. invasive fishes), and illustrated their potential for other systems 
(e.g. Vindenes et al., 2014; Winfield et al., 2010). 

6. Major	challenges	in	fish	monitoring	

6.1. Detectability	
Many evaluations of biodiversity, including those of freshwater fishes 

(Magurran, 2004; Southwood & Henderson, 2000), assume that individuals have been 
sampled randomly from the assemblage (Buckland et al., 2011; Pielou, 1975). This is 
rarely achievable in nature (Pielou, 1975). In many cases, the problem arises because 
it is difficult (or impossible) to know if a species that is absent from a site or sample is 
truly absent, or is missing through the ineffectiveness of the sampling method. 
Potential solutions to this problem include modelling occupancy, estimating the 
probability of detection of species (and/or individuals) through mark-recapture or 
distance sampling, and/or demonstrating that the data are sufficiently robust to 
address the question posed without further correction (Buckland et al., 2011; 
Magurran et al., 2018).  

Occupancy methods (MacKenzie et al., 2002, 2003, 2006) draw on 
presence/absence information and necessitate repeated (at least two, but ideally 
substantially more) samples at a site (assuming no underlying change in the 
community between samples). However, it can be challenging to disentangle 
occupancy from detection, with McGill (2014) arguing that 'ignoring detection 
ensures bias', can, under certain conditions, result in a more accurate occupancy 
estimate than one based on detection probabilities (McGill, 2014). In addition, 
occupancy based methods are generally unsuitable when evaluating changes in 
abundance metrics (but see Iknayan et al., 2014). In addition, for freshwater fish, if 
repeated sampling has an adverse impact on the organisms involved (as may happen, 
for example, if the same individual fish are repeatedly electro-fished over a short time 
period (Gatz & Linder, 2008), this sampling may itself lead to shifts in structure and 
diversity of the assemblage being studied. A new generation of occupancy models 
(Iknayan et al., 2014) may provide solutions to some of these concerns, but one of 
their main assumptions – that sites are closed to immigration and local extinction over 
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replicated surveys – makes their application problematic in open habitats (such as 
rivers), and in studies where the quantification of temporal turnover is the aim. 

Detectability can also be estimated using mark-recapture methods and distance 
sampling (Buckland et al., 2011). Mark-recapture (Borchers, Buckland, & Zucchini, 
2002; Borchers et al., 2015; Section 5.3) is widely used and informative although it 
makes a number of assumptions. Distance sampling (Buckland et al., 2001, 2004, 
2011) typically involves the investigator noting the distance of each individual from a 
transect or point. Although distance sampling is an effective method of accounting for 
detectability where the investigator can locate and identify each individual by sight 
(e.g. birds or trees), it is not workable in most freshwater surveys that encompass 
multiple taxa, many of which cannot be identified in-situ. Furthermore, these methods 
fit a detection function to each species in the assemblage and use this information in 
the calculation of diversity statistics. However, detection functions cannot be fitted for 
rare species, which must either be excluded from the analysis or assumed to have the 
same detectability (Buckland et al., 2011). 

As Buckland et al. (2011) note, ‘Ignoring detectability might not be a major 
problem if bias is consistent over time or space’. Adopting the same methodology 
throughout, and comparing sites (e.g. river sections with similar dimensions, water 
depth, and substratum) where biases in capture probabilities can be minimized, may 
be the pragmatic solution to detectability issues in many cases. But it is important that 
investigators are aware that their data sets will contain biases, and to be confident that 
data quality is sufficient to answer the question being posed. Repeat sampling in at 
least some localities, and comparison of different sampling methodologies (Deacon et 
al., 2017; de Paiva Affonso et al., 2016) is helpful in understanding detectability 
issues in the context of a given study system.  

6.2. Taxonomy	
Taxonomic issues can often emerge in biological monitoring programmes, 

with the most obvious one being taxonomic uncertainty and the risk of species 
misidentification in the field or the laboratory. For example, Daan (2001) reported 
extensive species misidentifications in a marine fish database and there are many 
other cases in the freshwater fish literature (e.g. Hänfling et al., 2005; Serrao et al., 
2014; Vidal et al., 2010). Nevertheless, a well-appreciated advantage of fish is that 
their taxonomy is better known and easier than in most other freshwater groups, such 
as invertebrates or algae, and thus fish can often be identified in the field without the 
need of sacrificing individuals. However, this is less likely to be the case in species-
rich regions such as the tropics, where the taxonomy is less well known, compared to 
regions with well-characterised fish faunas. 

The frequency and consequences of species misidentification tends to be 
rarely investigated for freshwater fish when compared to taxonomically more 
challenging groups, such as stream invertebrates. Stribling et al. (2008) compared 
taxonomic identification of stream macro-invertebrates across eight U.S. laboratories 
and found averages of 21% taxonomic disagreement. Similarly, Haase et al. (2006, 
2010) identified considerable errors in species sorting and identification of stream 
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macro-invertebrates among European laboratories. These kinds of errors might also 
occur in fish monitoring, especially in samples with high species richness or in 
samples from regions where taxonomy is poorly described. These studies reinforce 
the importance of adequate training and experience, documentation of standard 
procedures, and routine quality control (Stribling et al., 2003, 2008). Species 
misidentification is even more important when fishers are interviewed to obtain local 
knowledge data, which requires thorough validation procedures (Poizat & Baran, 
1997; Valbo-Jørgensen & Poulsen, 2000). 

A similar problem is when taxonomy changes and it is realised that what was 
previously referred to as a single species comprises actually several cryptic species. 
This problem is increasingly frequent given the increasing power of molecular tools. 
New taxonomic alignments hinder comparison with old samples if no specimens were 
preserved. In addition, the same species may have had different synonyms in the past, 
meaning that databases need to be carefully revised for inconsistencies and errors. 
Erroneous sequences and misidentifications are also frequent in GenBank and similar 
sequence databases (Harris, 2003). It has been estimated that up to 56% of German 
freshwater fish species (Knebelsberger et al., 2015) may be incorrectly identified to 
species level in some databases. It is likely that the frequency of such taxonomic 
problems in data is more prevalent in monitoring of freshwater fish than in research 
(Stribling et al., 2003). It is thus important to fully reference the taxonomic resources 
used in studies, not just as a quality check on methodology, but also to recognize the 
importance of taxonomy and the work of taxonomists (Santos & Branco, 2012; Vink 
et al., 2012; Wägele et al., 2011). 

6.3. Economic	costs	
For a monitoring programme to be effective, successful and sustainable over 

long-term, it must not only be ecologically relevant and statistically credible, but also 
cost efficient, i.e. the perceived benefits of ecological monitoring (e.g. information on 
trends or status changes) must justify its cost (Caughlan & Oakley, 2001; Charles et 
al., 2016; Hinds, 1984). As financial limitations always apply, sustained monitoring 
requires clear aims of what to monitor (Lindenmayer & Likens, 2009, 2010; Section 
3) and a proper selection of relevant variables that need to be measured (Braun & 
Reynolds, 2012; Section 5.1). Often the true costs of monitoring are not recognized 
and likely underestimated (Caughlan & Oakley, 2001), and its benefits depend on the 
value that society gives to the long-term sustainability of freshwater ecosystems. In 
this regard, Caughlan & Oakley (2001) provided a breakdown of monitoring costs, 
comprising of budgetary expenses related to, for example, data collection, data 
management, quality assessment, data analysis, reporting and scientific oversight, 
opportunity costs (i.e. other benefits forgone by allocating resources to monitoring), 
and external costs (i.e. costs not directly covered by the monitoring programme 
budget). The costs for data collection – which are frequently the largest – may vary 
depending on the methods applied. While traditional methods in fish monitoring, such 
as field-based capture methods (e.g. electrofishing, netting, trapping), are commonly 
labour intensive and thus costly, the financial costs of emerging methods can be 
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lower, such as use of eDNA, the automatized collection of data (e.g. hydro-acoustic 
assessments), and the use of citizen science (including use of angler catches), mining 
social media, and managing and analysing big data (Section 5.4). A detailed review of 
the costs associated with ecological monitoring can be found elsewhere (e.g. 
Caughlan & Oakley, 2001). 

6.4. Ethics	
Depending on the aim and sampling method, fish monitoring might involve 

the capture and treatment of fish directly impacting their welfare or might even 
require destructive sampling, such as when individuals require taxonomic 
identification in the laboratory, including where voucher specimens are required 
(Bortolus, 2008; Rocha et al., 2014; Section 6.2). Nevertheless, harming or sacrificing 
fish has strong ethical implications and potential conservation impacts, and should be 
carefully considered and minimized where possible (Bennett et al., 2016; Blessing et 
al., 2010; Costello et al., 2016). This is particularly important, as fish monitoring 
involves repeated sampling of species that can be long-lived (> 20 years) and is often 
targeted for protected or endangered species. Fish surveys and monitoring 
programmes involving capture methods commonly require specific permits from 
responsible authorities, especially when working with protected species or in 
protected areas.  

The impact on fish welfare depends on the sampling method used (Joy et al., 
2013), ranging from low impact (e.g. spotlighting, hand-seining) to moderate (e.g. 
electrofishing) and high (e.g. gillnets, rotenone) impact methods (CCME, 2011; 
Deacon et al., 2017; Joy et al., 2013). The sampling method and design should thus 
consider trade-offs of the potential harm to fish versus the quality of the obtained data 
in relation to sampling efficiency. Many studies and protocols suggest how fish 
should be handled to minimize stress or damage caused by catching, handling, and 
holding (Barbour et al., 1999; Brenkman et al., 2008; CCME, 2011; Cowx et al., 
2009; Cowx & Fraser, 2003; Joy et al., 2013). It is recommended that fish are held in 
the least stressful conditions possible, i.e. in shaded buckets with ambient temperature 
stream water, with supplementary aeration, separating predators from their prey, and 
at low densities. Fish must not be handled with dry hands to minimise damage and the 
use of anaesthetics might be needed for certain procedures (e.g. for marking fish). 
After completing measurements, fish should be released near their point of capture in 
a calm area near the bank. 

Fish sampling can also cause sub-lethal effects. For example, electrofishing 
with alternating current or high-frequency pulsed direct current might harm fish and 
cause internal injuries that are often not externally obvious and possibly fatal (Snyder, 
2003). Potential cumulative sub-lethal effects should be paid specific attention in fish 
monitoring with repeated samplings over time (Benejam et al., 2012). Increasingly, 
many non-capture methods are becoming available such as hydro-acoustics and 
eDNA (Section 5.4). Where capture techniques are needed for obtaining tissues for 
genetic and stable isotope analyses, use of fin biopsies and scales provide non-lethal 
methods (Busst et al., 2015; Busst & Britton, 2018). Gastric evacuation and genetic 
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analyses of faeces for diet studies can also replace the need for stomach contents 
analyses of sacrificed fish (Jo et al., 2014).  

7. Management	of	monitoring	data	
To draw meaningful conclusions from monitoring results and to potentially 

infer future changes, policies and procedures that guarantee the quality of data 
capture, documentation, and preservation for long-term use is required and needs to 
be conceptualized in a data management plan (Michener, 2015; Michener & Jones, 
2012; Rüegg et al., 2014; Sutter et al., 2015). Free online platforms can facilitate the 
elaboration of data management plans such as the DMPTool (https://dmptool.org) or 
DMPonline (https://dmponline.dcc.ac.uk). 

Many practical considerations of data collection, such as the design of field 
forms, are important and should mimic a logical workflow with explicit reminders of 
units, format, measurement precision, and codes with a unique identifier (Borer et al., 
2009; White et al., 2013). Many other data often associated with fish sampling, such 
as geospatial information, multimedia content, voucher specimens, associated 
environmental variables, and other biological data, also need to be managed 
accordingly (Costello & Wieczorek, 2014). In terms of quality assurance and quality 
control, verification, validation, and certification are important to minimize or prevent 
errors in data sets in the field, the laboratory, or at the computer. This might include 
visualizing data, identifying missing values, detecting illogical combinations and 
possible inconsistencies in the data (Sutter et al., 2015). For the correct use and 
interpretation of a dataset, it must be accompanied by metadata, i.e., a detailed 
description of who created the data, when and where the data were collected and 
stored, how and why the data were generated, processed, and analysed (Michener, 
2006). Information standards, such as the Ecological Metadata Language (EML) 
(Fegraus et al., 2005; Michener et al., 1997) facilitate the use and integration of 
ecological data by providing a detailed and machine-readable description of the 
structure of data tables (Jones et al., 2006). The Humboldt core (Guralnick et al., 
2018) is a set of standards and terms that allows to document the sampling data and 
also other environmental characteristics such as dataset information, spatial and 
temporal resolution, habitat, taxonomic coverage, methodology, effort, and 
completeness. 

For the sustainable success of a monitoring programme, it is also important to 
preserve data for a long-term use. For example, Vines et al. (2014) estimated that the 
availability of research data declines with article age, with the probability of finding 
the dataset decreasing by 17% per year. Therefore, data and metadata should be stored 
in non-proprietary formats (e.g. csv, xml, txt, tiff), preferably in a scientific repository 
(e.g. institutional repository, thematic repositories such as GBIF, or others such as 
DataOne, Dryad, Figshare, Mendeley Data, Re3data, or Zenodo) (Hart et al., 2016; 
Sutter et al., 2015). A unique and persistent identifier such as the Digital Object 
Identifier (DOI) is necessary for citation and reuse of data. Another emerging option 
is to publish the data in journals that publish data papers (Chavan & Penev, 2011), 
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which has the additional advantage of peer-review before publication (Costello et al., 
2013; Costello & Wieczorek, 2014; Kratz & Strasser, 2015). Examples of data papers 
on freshwater fish are increasingly available (e.g. Brosse et al., 2013; Rodeles et al., 
2016; Tedesco et al., 2017). 

In summary, there are many recent improvements in data management science 
that could benefit ecological monitoring in general and seem scarcely applied for 
freshwater fish studies (but see Moe et al., 2013; Peterson et al., 2013 for some 
examples). Thoroughly considering data management will demand more time and 
resources to fish monitoring programmes, but could enormously benefit their quality, 
outputs, and re-use to explore larger-scale patterns and trends.  

8. Conclusions	
Given the rapid environmental degradation of the Earth’s freshwater ecosystems and 
associated unprecedented rates of biodiversity change, the importance of robust, 
replicable, and effective programmes to monitor freshwater fish has never been 
higher. Future challenges related to habitat degradation, climate and land use change, 
and biological invasions necessitate monitoring programmes that systematically 
collect quality data allowing the potential detection of systemic shifts of populations 
or communities and thereby improve our understanding of ecosystem responses to 
environmental change. There is a pressing need for effective monitoring to 
comprehensibly quantify biodiversity change and to inform evidence-based 
environmental decision-making. 
At a minimum, when establishing a monitoring programme, a clear articulation of the 
monitoring aim(s) is essential and should include defining: (i) what should be 
monitored and how; (ii) how to allocate effort within time and across sites; (iii) 
establishing criteria for data reliability; and (iv) identifying practical constraints. 
Therefore, effective monitoring necessitates making decisions about the capture 
and/or non-capture sampling methods and the sampling design – both of which are 
explicitly described and discussed in this review – ensuring that the data provided by 
the monitoring are suitable for answering the questions posed.  
Monitoring must also take into account issues related to the detectability of species, 
taxonomy, and animal welfare. Additionally, monitoring programmes must integrate 
data management practices that ensure the quality of data capture, documentation, and 
preservation of information for long-term use and re-use. 
In summary, careful reflection on aims(s) and the extent to which the data collected 
will meet these aims will greatly improve the quality and usefulness of monitoring 
data. Consistently high monitoring standards will improve data comparability within 
and amongst countries and systems. Finally, effective monitoring of freshwater fish 
will advance our overall understanding of freshwater ecosystems and contribute to the 
preservation and management of freshwater fish diversity while helping mitigate 
anthropogenic impacts. 
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