An Automated System for Frequency Response Measurement Based on Free Software Tools

Predrag Pejović

introduction

- we need frequency response ... $\underline{H}(j\omega)$, $\underline{Z}(j\omega)$, $\underline{Y}(j\omega)$
- ▶ transmittance and immittance, total of 6, we cover 3 ...
- ▶ important ... communications, control systems, ...
- ▶ Bode plot, Nyquist plot . . .
- ► measure manually?
- ▶ tedious, prone to error, people tend to avoid ...
- ▶ automation?
- general purpose equipment
- exclusive use of free software
- ▶ equipment and software budget: $0\$ = 0 \pounds = 0 € = 0 \dots$
- relied only upon what we already had ...

the system

- ▶ waveform generator Agilent 33220A
- ▶ digital oscilloscope Tektronix TBS 1052B-EDU
- both instruments connectable, with SCPI commands!
- personal computer under Ubuntu or Mint
- ▶ Python and appropriate modules

transmittance ...

$$\underline{H}(j\omega) = \frac{\underline{V}_2}{\underline{V}_1}$$

immittance ...

the setup

manual, measurement of the amplitude

manual, measurement of the period

manual, measurement of the time delay

manual, measurement of the time delay

real life ...

Plato, "Theory of Forms," versus oscilloscope

- ▶ Plato's waveforms:
 - 1. two samples to measure amplitude (twice, two signals to measure amplitude)
 - 2. two samples to measure period (in the case it is not already known)
 - 3. two samples to measure time delay
- ▶ in Plato's world of ideal (wave)forms we need the total of 8 samples to determine transmittance or immitance, or 6 samples if we already knew the frequency!
- but in the real life we have noise ...
- ▶ ... and 2500 samples per waveform per frame!
- ▶ filtering the noise out?
- ▶ good luck: we knew the frequency, we set it!

the algorithm

input data: frequency range, number of points per diagram, amplitude of the waveform generator voltage

- 1. set the frequency
- 2. select the horizontal axis scale
- 3. select the vertical axes scale, autorange when needed, maximize resolution
- 4. select the number of samples to cover a whole number of periods, 1 or 2
- 5. get the samples
- 6. process the data point
- 7. loop back to the next data point

output data: transfer function diagram and the data used to plot the diagram

the algorithm: selecting the number of samples

already obsolete: a step forward ...

already obsolete: a step forward ...

data processing

- $k \in \{0, \dots n_S 1\}$
- $c_k = 2 \cos \left(2 \pi n_{per} \frac{k}{n_S} \right)$
- $X_C = \frac{1}{n_S} \sum_{k=0}^{n_S 1} x_k \, c_k$
- $X_S = \frac{1}{n_S} \sum_{k=0}^{n_S 1} x_k \, s_k$
- $X_m = \sqrt{X_C^2 + X_S^2}$
- \triangleright the same for y_k sequence

computing the transfer function

$$\blacktriangleright |H(j\,\omega_0)| = \frac{Y_m}{X_m}$$

$$\blacktriangleright$$
 but $-\pi < \varphi_x, \, \varphi_y \leq \pi$

- ▶ defined this way $-2\pi < \varphi_H \leq 2\pi$
- reduction to $-\pi < \varphi_H \le \pi$, phase adjustment?

- ▶ and we are done! one point is done, at least ...
- ▶ iterrate ...

Python modules needed ...

- ▶ usbtmc, to communicate with the oscilloscope and the waveform generator
- ▶ numpy, to perform computations and to store the data
- ▶ matplotlib, to do the plots
- ► maybe os and sys ...

a little bit arranged, though ...

- pylab, just as an environment
- oscusb, available at http://tnt.etf.bg.ac.rs/~oe2em/oscusb.py

everything available at:

 $http://tnt.etf.bg.ac.rs/\sim oe2em/freqresp.zip$

experimental results: capacitor impedance

experimental results: capacitor, $C = 1 \,\mathrm{nF}$

experimental results: capacitor, $C = 10 \,\mathrm{nF}$

experimental results: inductor impedance

experimental results: inductor, $L = 10 \,\mathrm{mH}$

experimental results: inductor, $L = 100 \,\mathrm{mH}$

experimental results: inductor, ring core

experimental results: low-pass filter

experimental results: low-pass filter

experimental results: high-pass filter

experimental results: high-pass filter

experimental results: band-pass filter

experimental results: band-pass filter

experimental results: band-pass, Wien bridge

experimental results: RLC bandpass filter

experimental results: RLC bandpass filter

experimental results: impedance demonstration

electrolytic capacitor, $470 \,\mu\text{F}$, electrolytic movie, about 300 times speed up, yellow — voltage, red — current

experimental results: transfer function movie

$$R_1 = R_2 = 1 \,\mathrm{k}\Omega,\, C = 10 \,\mathrm{nF}$$

experimental results: transfer function movie

scaled movie, not scaled movie yellow — output, cyan — input

experimental results: loudspeaker #1

experimental results: loudspeaker #2

experimental results: loudspeaker #2

- ▶ 401 frequency points, 401 figures
- ▶ about 5000 samples per figure
- ▶ about 2 million of measurements!
- ▶ about 4 million of multiplications!
- ▶ and at least that many additions . . .
- ▶ about million sin, cos
- ▶ about 800 arctan, atan2
- would you ever do that manually?
- ▶ this IS a new quality: a method that could not be used before!

open transmission line, logarithmic

open transmission line, linear

properly terminated transmission line, linear

conclusions

- ▶ an automated system to measure frequency response . . .
- **b** both transmittance and immitance
- ▶ based upon 1st harmonic Fourier analysis
- ▶ quite different than manual measurements . . .
- ▶ taking all the samples into account ...
- ▶ the algorithm presented ...
- ▶ illustrated in examples . . .
- ▶ useful to analyze parasitics . . .
- entirely based on free software . . .
- ▶ available: http://tnt.etf.bg.ac.rs/~oe2em/freqresp.zip
- ▶ in use: http://tnt.etf.bg.ac.rs/~oe2em/vezba-6.pdf