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Abstract

Currently, most successful source separation techniques use magnitude spectro-

grams as input, and are therefore by default discarding part of the signal: the phase.

In order to avoid discarding potentially useful information, we propose an end-to-end

learning model based on Wavenet for music source separation. As a result, the model

we propose directly operates over the waveform – enabling, in that way, to consider

any information available in the raw audio signal. Provided that the original Wavenet

model operates sequentialy (i.e., is not parallelisable and hence slow), in this work

we make use of a discriminative non-causal adaptation of Wavenet capable to pre-

dict more than one sample at a time – thus permitting to overcome the undesirable

time-complexity that the original Wavenet model has. Further, we investigate several

data augmentation techniques and architectural changes to provide some insights on

which are the most sensitive hyper-parameters for this family of Wavenet-like mod-

els. Our experimental results show that it is possible to approach the problem of

music source separation in a end-to-end learning fashion, since our model performs

on par with DeepConvSep – a state-of-the-art method based on processing magnitude

spectrograms.
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Chapter 1

Introduction

1.1 Motivation

Since the digital revolution, there has been a shift in how people interact with mu-

sic. Nowadays, music is more accessible than ever before and listeners have changed

their preferences. Personalized ways to hear and learn about music are preferred over

traditional ways of listening and discovering it [2]. Furthermore, similarly to paint-

ing or writing, musicians are now able to work directly with sound thanks to digital

technologies. They don’t need to know any symbolic notation (like how notes are

represented in a score) to create music. To continuously satisfy music society needs,

experts from music cognition, perception, engineering, musicology, and computer sci-

ence have worked together to propose algorithmic and methodological solutions to

music technology problems [3].

One topic of great interest within this research community is the sound source sep-

aration problem. It consists in recovering each individual source contribution from

an observed mixture signal – and is motivated by the fact that sounds are gener-

ally composed of several individual sounds coming from different sources. Although

audio source separation is a particularly difficult task [3], it underlies a wide range

of applications such as speech denoising, content-based analysis and processing, au-

dio restoration, or music remixing. In this work we address the problem of music

source separation that, if solved, can be a truly empowering tool for those commu-

nities working in music remixing and music creation. For example, artists will have

the opportunity to separate the singing voice, bass or drums from an existing mixture

recording – enabling such artists to produce different versions of any original piece
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by changing the pitch or rhythm of every separated track. Or, as another example,

properly extracting the vocals from the mixture opens infinite opportunities within

the Mashup style which, in a form of a song, consists on overlaying the vocal track

of one song seamlessly over the instrumental track of another. Not to mention the

commercial potential that an universal karaoke application has.

Since 2008, the Signal Separation Evaluation Campaign (SiSEC) [4] has become a

reference (both in terms of datasets and participation) to compare the performance of

music source separation systems. This year’s SiSEC established a new record of par-

ticipation (with over 30 different competing approaches), what confirms the increasing

interest of the research community for this research area. Over these last years, the

progress made by this community has been enormous – particularly after this first

wave of deep learning based systems, that now define the state-of-the-art.

However, most successful deep learning algorithms participating in this year’s SiSEC

use magnitude spectrograms as input – and are therefore by default omitting part of

the signal: the phase. Provided that via discarding potentially useful information (the

phase) it exists the risk of finding a sub-optimal solution1, in this work we aim to

take advantage of the acoustic modelling capabilities of deep learning to investigate

whether it is possible to approach the problem of music source separation in a end-

to-end learning fashion. As a result, our investigation is centered on studying how to

separate several musical sources (e.g., singing voice, bass or drums) directly from the

raw music mixture – i.e., the waveform of the mixture is fed to the model without any

pre-processing.

Finally, we want to remark that the idea of approaching the music source separation

task directly in the waveform domain has not been actively explored throughout the

years – possibly due to the elevate complexity of dealing with waveforms (that are

unintuitive and high-dimensional). However, interestingly, recent works are starting

to follow this research direction and are reporting promising results [4, 8, 9, 10, 11].

1Specially if the phase of the original mixture is used for reconstructing each of the sources [5, 6, 7].
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Our work aims to keep adding knowledge on top of this (rather scarce) literature, in

order to gain insights in how to approach the problem of music source separation in a

end-to-end learning fashion.

1.2 Contributions

The main contribution of this thesis is to develop a competitive singing voice and

multi-instrument source separation model that operates in a end-to-end learning fash-

ion, that we call: Wavenet for Music Source Separation.

The specific contributions are:

• To review and analyze the main source separation techniques – with a partic-

ular focus on describing which techniques are capable to directly operate over

waveforms.

• The adaptation of a Wavenet based state-of-the-art speech denoising model [8]

for music source separation.

• An extensive evaluation showing how different data augmentation techniques,

architectural changes, and hyper-parameter values affect the performance of the

Wavenet for Music Source Separation.

1.3 Thesis outline

Chapter 1 motivates the problem we address throughout the thesis, and anticipates

which are the main contributions of our work.

In chapter 2 we introduce the required background related to the source separation

problem, and we review the state-of-the-art while we discuss the main approaches to
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that task. Finally, the basics of the proposed approach are presented via discussing

the merits of the model under study: Wavenet.

Chapter 3 presents our experimental results. The results of the proposed source sep-

aration model are outlined and discussed for the tasks of singing voice extraction and

for multi-instrument extraction. Furthermore, we detail how some data augmentation

techniques and architectural changes affect the performance of the model.

Finally, in Chapter 4, conclusions and a variety of future work are discussed.
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Chapter 2

Background

2.1 Problem formulation

When two or more sounds exist at the same place and time, they interfere with each

other resulting in a novel waveform signal where sounds are superposed (and, some-

times, masked). Source separation tackles the problem of recovering each individual

source contribution from the observed mixture signal.

Figure 2.1: Monaural source separation diagram for two source signals

This problem inherently contains huge difficulties because there are more unknown

variables than observed signals (what defines an ill-posed problem), and we estimate

from a set of observations the causal factors that produced them (inverse problem).

Mathematically speaking, the problem was initially formulated as a linear mixing

model where the mixture signal x(t) (recorded by a microphone i) can be expressed

as the weighted sum (via some gains ai,j) of several source’s sj(t):

xi(t) =
J∑

j=1

ai,jsj(t) (2.1)

As we will see in the following section, this formalism has marked the endeavour of

the field – and many approaches are based on the previous formulation.
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2.2 General approaches to source separation

Source Separation problem has been approached in several ways which include

clustering, matrix decomposition, deep learning, or probabilistic methods.

Every method, depending on the amount of information used to achieve the sep-

aration, can be classified from Blind Source Separation (BSS) to Informed Source

Separation (ISS) [12]. BSS techniques do not take into account any information about

the sources nor the mixing process. But, on the other hand, ISS techniques assume

that some aspects of the audio sources and the mixture process are known in advance.

The progressive transition between BSS and ISS is determined by the amount of side

information incorporated in the models. For example: a weakly guided ISS could be

based on knowing how many sources are present in the mixture, or a strongly guided

ISS system can rely on knowing the score of the musical piece to separate.

2.2.1 Computational auditory scene analysis (CASA)

Originally, in order to tackle the source separation problem, it has been essential

to understand how humans separate the individual sounds in natural-world situations.

For example, the Gestalt principles define how humans group sensory data – like au-

dio [13]. These principles are based on the observation that humans naturally perceive

objects as organized patterns and objects. Therefore, one can use these principles to

define rules for dividing (via grouping) an audio stream into sources. The approaches

that follow this idea are mainly based on grouping data that arrives at the same time –

assuming that these are likely to be parts of the same sound stream.

There have been several attempts to built source separation systems based on these

perceptual principles [14, 15] – a field known as Computational Auditory Scene Anal-

ysis (CASA). However, in music source separation there is a high correlation (both in

time and frequency) between the sources [16], which is unfortunate for CASA models
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since these sources become even less groupable when they share harmonics, onsets and

have comparable timbres. For this reason, the vast majority of systems are not solely

based on perceptual models but also use side information.

2.2.2 Matrix decomposition methods

Historically speaking, matrix decomposition methods (relying on the previously

introduced formulation) have shown very promising results. For example, independent

component analysis (ICA) [17], principal component analysis (PCA) [18], and non-

negative matrix factorization (NMF) [19] methods have been widely used throughout

the years. ICA exploits a statistical discriminant to differentiate the sources and

decompose the input into bases. PCA uses an orthogonal transformation to factorize

the data into bases that best explain the data variance. And NMF approximates

the input (in most cases a time-frequency representation) as a linear product of non-

negative basis and some gains. Although NMF has been able to deliver better results

than ICA and PCA [19, 7], it is interesting to note that only ICA and PCA are

appropriate to operate over waveform signals (which is the scope of our work) – since

their basis and gains are not restricted to be non-negative (like waveforms, ranging

from -1 to 1).

These methods manly rely on the formulation we introduced in equation 2.1, which

describes the mixture as a weighted sum of basis functions. The goal is to find the

vector basis that better approximates (linearly) the sound generated by each source.

The way to do so is to estimate both the gains and the basis with an iterative algorithm

that is based on maximizing the quality of the approximation via minimizing a cost

function.

For the NMF case, the most successful matrix decomposition method [19, 7], it

finds the optimized vector of basis that linearly approximates the input data V ∈

R>0,MxN (generally being a time-frequency representation of the audio) with a set of

13



non-negative basis wi (the columns of W ∈ R>0,MxK) and a set of non-negative gains

hi (the rows of H ∈ R>0,KxN):

V ≈
K∑
i=1

wih
T
i = WH

In order to illustrate previous formulation, see Figure 2.2 where we have M fre-

quency bins, N time samples and K decomposed components.

Figure 2.2: NMF applied to the spectrogram of a short piano sequence composed of
four notes [1].

2.2.2.1 Signal representation for matrix decomposition methods

The music representation used as input for these matrix decomposition methodolo-

gies has a significant effect on the final performance. The most popular choices include

the use of the raw waveform signal [20], spectrograms [5] or power spectrograms [7].

Waveform-based representations are straightforward to compute (basically, they do

not require any pre-processing) and preserve all the information available in the raw

signal. However, given the unpredictable behaviour of the phase in real-life sounds, it
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is rare two find identical waveforms produced by the same sound source. As a result

of this variability, a single basis cannot represent a sound source and therefore, an im-

portant amount of components are needed to obtain an accurate approximation [21].

Although several approaches have considered to directly approach the waveform with

matrix decomposition methods (like ICA or PCA) [22, 23, 24, 25, 26], these techniques

have never worked as well as spectrogram or power spectrogram based aproaches – pos-

sibly due to the aforementioned issues. Finally, it is worth mentioning that Abdallah

and Plumbley [25, 26] found that the independent components they analysed, were

similar to wavelet or short-time DFT basis.

Phase related problems disappear when the sound is represented in the time-

frequency domain. Further, different realizations of the same sound are almost iden-

tical in the time-frequency domain – what allows to overcome the variability problem

we found when operating with waveforms.

Many times, after applying the STFT to an audio fragment, the phase of the

complex time-frequency representation is discarded – assuming that the magnitude (or

power) spectrogram already carries meaningful information about the sound sources

to separate. However, if the phases are not taked into consideration, is not equivalent

to add several signals in the time-domain (waveforms) to add two signals represented

in the spectral (or power spectral) domain – only in expectation[21]:

E{|X(k)|2} = |Y1(k)|2 + |Y2(k)|2

Where X(k) = DFT{x(t)}. For this reason, most approaches make use of the

power spectrograms as input to their models. However, one can observe that many

works utilize magnitude spectrograms [7]. Although magnitude spectrograms work

well in practice, it does not exist a similar theoretical justification. Most successful

matrix decomposition methods utilize time-frequency respresentations as input – and

are mostly based on NMF, that is very suitable for this signal because magnitude (or
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power) spectrograms are non-negative signals.

Furthermore, when synthesizing the time domain signals after estimating the spec-

trograms of the sources, the phase has to be generated. Even though some approaches

try to estimate the phase [27, 28], the main practice is to use the phase of the mixture

for reconstruction purposes.

2.2.3 Deep learning methods

In the recent past, deep learning has emerged as a technique to solve complex

problems that were previously unreachable. Source separation is one such problems

where deep learning has had a very strong impact. This technique offers, mainly,

two advantages when compared to matrix decomosition methods: i) provided that the

underlying linear model defining matrix decomposition methods seems not expressive

enough, deep learning models (that are highly expressive due to their capacity to model

non-linearities) are an interesting opportunity to address the challenging task as music

source separation; and ii) provided that during inference time deep learning models

do not require any iterative algorithm to solve the task, deep learning methods are

significantly faster than matrix decomposition ones – that are based on an iterative

algorithm during inference.

Deep learning methods for source separation are generally formulated as a super-

vised regression problem (either via estimating a mask [29] or via directly predicting an

output [8]) – where training data are used to optimize the parameters of the network

given a cost function.

As reported in The 2018 Signal Separation Evaluation Campaign (SiSEC) paper [4],

the community’s methodology has shifted towards using deep learning. This technique

being, by far, the most used during the last SiSEC edition – actually, during that

edition, data-driven methods have clearly outperformed model-based approaches by a

large margin for most targets and metrics [4].
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2.2.3.1 Background

Neural Networks were first proposed by Warren McCullough and Walter Pitts in

1944 with a paper entitled “A Logical Calculus of Ideas Immanent in Nervous Activ-

ity” [30]. It was an attempt to find a mathematical representations of information

processing in biological systems. Since then, and after a lot of research, neural net-

works have become the technique utilized by the best-performing artificial-intelligence

systems using an approach named deep learning.

A neural network can have from a few dozen to millions artificial neurons arranged

in a series of layers classified as input, hidden, and output. The input layer’s function

is to receive information from the outside and to process it. The hidden layers main job

is to transform inputs into something that output layer can use. Finally, the output

layer contains signals that represent how the network responds to the information it

has learned.

Figure 2.3: Example of a neural network. Each circular node represents an artificial
neuron and an arrow represents a connection from the output of one neuron to the
input of another.

The artificial neuron, which is the basis of a neural network, is inspired on a bi-

ological neuron. It contains input variables (xi) that represents external stimulus or

outputs from other neurons. After adding a bias term (b), the mentioned inputs are

multiplied by weights (wi) which are understood to perform as synapses. Then, (xiwi)

are passed through an aggregation function and a nonlinear activation function (h())
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which is presumed to be the cellular body. Finally, it yield an output variable (y)

assumed as the axon.

Figure 2.4: Artificial neuron model

The mathematical expression of the model takes the following form:

y = h(
n∑

i=0

wixi) (2.2)

Note that in equation 2.2 the bias parameter (b) is absorbed into the set of weight

parameters by defining an additional input variable x0 whose value is clamped at

x0 = 1.

To make a neural network useful for a specific task, it has to be trained which

means that weights from layers are transformed until the network’s outputs are close

enough to the desired outputs. Initially, all the weights are set to random values.

Then, the input layer is fed with training data and it passes through all layers. After

being multiplied and added in complex ways it arrives transformed at the output layer

and the difference between the target outputs and the actual outputs is calculated.

During the learning process, this difference is back-propagated to the previous layer

and the weights are normally adjusted using the delta rule. It finishes when the initial

layer is reached.

∆wij = α(tj − yj)h′(zj)xi (2.3)

Equation 2.3 shows the delta rule for weight wji of a neuron j with activation
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function h(x). Where α is the learning rate, h(x) is the neuron’s activation function,

tj is the target output, zj =
∑
xiwji is the weighted sum of the neuron’s inputs,

yj = h(zj) the actual output, and xi is the ith input.

2.2.3.2 Signal representation for deep learning methods

Nowadays, the main practice is to use time-frequency representations, like mag-

nitude spectrograms, as input to the model. As previously explained, most people

tend to use magnitude spectrograms because it allows to reduce the variance and

high-dimensionality present in raw audio signals.

The 2D nature of time-frequency representations makes easy to derive inspiration

from the deep learning architectures coming from the computer vision field – which

are very popular among deep learning practitioners. For example, Takahashi et al.

[31] proposes using the DenseNet architecture, which had shown excellent result on

image classification, for music source separation. Similarly, Jansson et al. [32] adapted

the U-Net architecture, which was initially developed for medical imaging tasks, for

singing voice separation.

Furthermore, music signals do not necessarily need to be mono. Instead, they

can have two channels (stereo) or even more (like 7.1 surround sound). In line with

that, for example, Nugraha et al. [33] proposed using a deep neural network capable

to process time-frequency representations combined with spatial covariance matrices

(that encode the spatial characteristics of the sources).

Chandna et al. [5] proposed DeepConvSep1, an open source model based on process-

ing spectrograms that has been the state-of-the-art during these recent years. Their

model is depicted in Figure 2.5 and can be devided into two parts: a convolutional

encoding stage, and its inverse operation, the deconvolutional decoding stage. By

using vertical and horizontal convolutions, they estimate time-frequency soft masks

1https://github.com/MTG/DeepConvSep
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that are after used for separating the sources. In chapter 3, we set the DeepConvSep

model as baseline for comparing our results against a state-of-the-art model processing

spectrograms.

Figure 2.5: DeepConvSep Network Architecture

However, using magnitude spectograms as front-end comes with the drawbacks we

explained in 2.2.2.1. In addition, there are reasons to think that instead of process-

ing spectrograms it might be interesting to approach the task of source sepatation

directly in the waveform domain. This would enable to, instead of utilizing generic

feature representations like the STFT, learn a specific feature representation for a

given task and data distribution. Or, as another example, it could permit to over-

come the problem of not having a properly defined phase during synthesis (remember

that in many cases the phase of the mixture is used to synthesize each source from

the estimated spectrograms). Interestingly enough, the literature shows that deep

learning models directly working with raw audio waveforms in a end-to-end fashion

can achieve satisfactory results for generative tasks [34, 35], discriminate tasks [8],

and classification tasks [36]. Moreover, recent results also show that it is possible to

approch the problem of source separation directly in the waveform domain. Grais et

al. [20] uses multi-resolution convolutional auto-encoders to determine appropriate

multiresolution features for multi-channel singing-voice separation. Wave-U-Net [37],

the only raw waveform system submitted to SiSEC 2018, uses an adaptation for the U-
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Net architecture to the one-dimensional waveform signal to perform end-to-end audio

source separation (using additional training data than the one provided by the SiSEC

community). Venkataramani et al. [11] propose to learn optimal, real-valued basis

functions directly from the raw waveform for the task of source separation. And Luo

et al. [38] propose the TasNet, an end-to-end model for speech separation that uti-

lizes an encoder-decoder framework to perform the separation on nonnegative encoder

outputs.

As seen, the research community has a great for tackling the problem of source

separation in a end-to-end learning fashion – what would help overcoming some his-

torical challenges the field had to face. In this work, we propose using a Wavenet-like

architecture for music source separation.

2.3 Proposed approach

Throughout our work, we investigate the use of an end-to-end deep learning model

based on Wavenet [39] for the task of music source separation. It works in time domain

(directly over the waveform) for the reasons we exposed above, and it uses a non-

causal discriminative adaptation of Wavenet that (by learning in a supervised fashion

via minimizing a regression loss) is able to overcome the original time-complexity of

Wavenet – that is slow due to its causal generation of sounds. The proposed model for

music source separation preserves Wavenet’s acoustic capabilities, while being capable

to run in real time [8].

The following lines introduce the original Wavenet (section 2.3.1), and the non-

causal adaptation of Wavenet that we use throughout our experiments (section 2.3.1),

that we call a Wavenet for music source separation.
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2.3.1 Wavenet

Wavenet is a deep neural network capable of generating raw audio waveforms –

which was able to outperform the best existing text-to-speech systems [39]. This

model is able to produce individual audio samples at 16kH in 8 bit resolution and

24kHz in 16 bit resolution in its latest version [35]. Some of the Wavenet’s main

characteristics are explained below:

• Sigmoidal gates for Tanh units: Each convolutional block (Figure 2.6.a) of

the model contains a gate that controls the contribution of each activation:

z = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x)

where � and ∗ operators denote element-wise and convolution multiplication,

respectively; k is the layer index, f denote filter, g stand for gate, and W is a

convolution filter.

• Dilated convolutions: convolutional blocks make use of dilated convolutions

that allow the model to have a better global view of the input by exponentially

increasing dilation factors – what increases the receptive field. Each dilated

convolution is contained in a residual layer, controlled by a sigmoidal gate with

an additional 1x1 convolution and a residual connection – see Figure 2.6.

Figure 2.6: a) Residual layer. b) Dilated convolutions
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• Skip Connections: The actual output is fed from skip connections from all

layers. This allows the final prediction to contain different hierarchical level of

extracted features coming from each layer.

• Output of distributions: Wavenet does not make real-valued predictions for

each time step. Instead, it outputs a probability distribution which is sampled

to produce the value of the next sample.

• Computational burden: Original version of Wavenet needs to feed the net-

work with the previous generated samples in order to create the new one. This

is slow during inference, and that is the main reason why we do not adopt the

original Wavenet for our approach to music source separation.

2.3.2 A Wavenet for music source separation

As in Rethage et al. [8], our work makes use of an adaptation of the Wavenet

model that aims to transform the original causal Wavenet model (that is generative

but slow), into a non-causal model (that is discrminiative but parallelizable). The

specificities of the adopted model are described below:

• Non-causality: Some samples from the future are used by the model to predict

the present one. This results in having information about imminent sound events

which are likely to enhance the current sample prediction. Also, in the source

separation field, some milliseconds of latency of the model is affordable in real

time applications.

• Real-valued predictions: The discrete softmax output used by Wavenet re-

sults in output distributions with high variance. For the source separation prob-

lem, real-valued predictions seem to be more suitable.

• Target field prediction Removing the autoregressive causal nature of the orig-

inal Wavenet allows to predict more than one sample at a time. Due to this
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Figure 2.7: Visualization of a stack of non-causal convolutional layers

parallelization, it is possible to overcome Wavenet’s time-complexity and mem-

ory constrains. In order to preserve that each target field has its corresponding

receptive field, the length of the fragment that feeds the model must be equal to:

rf1 + (tf − 1). Where rf1 corresponds to the receptive field required to separate

a single sample and tf is the length of the target field prediction.

Figure 2.8: Target field prediction
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Chapter 3

Experiments

This work develops a study in the deep learning field in how to adapt Wavenet

for the task of music source separation. By discussing the obtained results for both

singing voice and multi-instrument source separation tasks, this work investigates the

possibilities of end-to-end learning for the task of music source separation. In short,

the following experiments were considered:

• Experiment 1: evaluate a Wavenet for monaural singing voice separation.

• Experiment 2: evaluate a Wavenet for monaural music source separation –

basically, we reformulate te task for multi-instrument separation (singing voice,

bass, and drums).

The model’s performance has been assessed using the MUSDB18 dataset consid-

ering BSS Eval evaluation metrics [40] – both explained in the following sections.

Further, in order we compare our model with previous work, our results are compared

against DeepConvSep: a model proposed by Chandna et al. [5] that we introduced in

section 2.2.3.2.

3.0.1 MUSDB18 Dataset

The SiSEC 2018 Challenge dataset MUSDB18 [4] is used for this work. MUSDB18

is a dataset of 150 full-length music tracks with about 10 hours of duration containing

different styles – along with their isolated drums, bass, vocals and others tracks. All

signals are stereophonic and encoded at 44.1kHz. However, for the purposes of this

work only one channel is considered for each source and it is subsampled to 16kHz.
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During the singing voice separation experiment, training data is arranged as follows:

drums, bass, and others are merged into a single audio stream to constitute the ac-

companiment signal. We set our training data into two parts: the train set (100 songs)

and the validation set (which is conformed by 25 songs from the test set). No prepro-

cessing to the audio, such as µ-law quantization [39], is used – allowing the pipeline

to be end-to-end in the strictest sense.

Figure 3.1: Musdb18 dataset multitrack format

3.0.2 Evaluation

Evaluating the results of a music source separation model is a difficult task. Mainly,

due to the subjective hearing of humans. However, several objective metrics were de-

veloped to facilitate evaluating Blind Audio Source Separation (BASS) algorithms [41].

To this end, the estimated sources ŝj (with j = 1...J) are decomposed as follows:

ŝj = starget + einterf + enoise + eartif (3.1)

Where starget = f(sj) is a version of the original source sj modified by an allowed

distortion f. einterf stands for the interference coming from unwanted sources found

in the original mixture, enoise denote the sensor noise, and eartif refers to the burbling

artifacts (musical noise) which are self-generated by the separation algorithm. Then,

the objective metrics are computed as energy ratios in decibels (dB) – and higher
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values are considered to be better:

Source to Distortion Ratio (SDR) is defined as:

SDR := 10 log10

‖starget‖2

‖einterf + enoise + eartif‖2
(3.2)

Source to Interference Ratio (SIR) is defined as:

SIR := 10 log10

‖starget‖2

‖einterf‖2
(3.3)

Source to Artifacts Ratio (SAR) is defined as:

SAR := 10 log10

‖starget + einterf + enoise‖2

‖eartif‖2
(3.4)

Depending on the final application, these metrics can be useful in order to compare

several source separation algorithms. For example, SIR values are related to the

leakage coming from other sources, and SAR values give information about how the

signal is deteriorated only due to the separation algorithm.

It is worth mentioning that perceptual evaluation is always preferred over objective

evaluation – and, for example, can be carried out by asking to subjects questions

like: “rate the sound quality of the examples below relative to the reference above” or

“rate how well the instruments are isolated in the examples below relative to the full

mixture above”. The main drawback of perceptual experiments is that it is expensive

to run them. Although throughout this manuscript we do not report the results of any

perceptual experiment, we leave it for future work and provide several audio examples

together with the thesis – so that any interested reader can perceptually assess the

performance of our model.
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3.0.3 Baseline setup

Our baseline model contains 30 residual layers, and is based on the model proposed

by Rethage et al. [8]. The dilation factor in each layer ranges from 1 to 512 – in

steps of powers of 2. This pattern is repeated 3 times (3 stacks). Preceding the first

dilated convolution, the 1-channel input is linearly projected to 128 channels by a 3x1

convolution to satisfy the number of filters in each residual layer. The skip connections

are 1x1 convolutions also featuring 128 filters – a RELU is applied after summing all

skip connections. The final two 3x1 convolutional layers are not dilated, contain 2048

and 256 filters respectively, and are separated by a RELU. The output layer linearly

projects the feature map into a single-channel temporal signal by using a 1x1 filter.

This parameterization results in a receptive field of 6,139 samples (≈ 384ms) and a

target field of 1601 samples (≈ 100ms).

3.0.4 Training procedure

During training, audio fragments are sampled randomly to fit the input length

required by the model. As loss, it is used the mean absolute error (MAE) which is

computed sample-wise and averaged for each source output samples. ADAM optimizer

is adopted with a learning rate of 0.001 which is reduced to a factor of ten after five

epochs with no improvement. We set the batch size to 10, and the model is trained

during 250 epochs1 and best validation loss weights are selected.

1Provided that we randomly sample the training data, is hard to define an epoch. In our case, we
define an epoch to be 100 parameter updates.
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3.1 Experiment 1. Singing voice separation.

The baseline setup of the Wavenet for singing voice separation shows promising

results – see Table 3.1, where the results are compared with DeepConvSep (a state-of-

the-art model based on processing magnitde spectrograms [5]).

Wavenet DeepConvSep
SDR SIR SAR SDR SIR SAR

Vocals
Med 1.24 7.90 3.60 1.95 4.39 7.74
Mean 0.34 6.98 3.09 1.37 3.88 7.35

Accompaniment
Med 8.36 10.50 13.60 10.37 14.95 13.25
Mean 8.99 11.05 14.36 10.91 15.46 13.30

Table 3.1: Singing Voice Separation models comparison

After informal listening, we observe that its performance is really selective only

generating singing voice when it is prominent in the mixture signal. When it is not,

the model produces silence. However, the model struggles when generating singing

voice in a continuous manner thus introducing artifacts during the separation process.

In the following sections, we study: i) several data augmentation strategies, ii) which

is the best architectural setup, and iii) how different cost functions, losses, affect the

performance of the model – in order to investigate if it is possible to improve the source

separation capacity of the baseline model.

3.1.1 Data augmentation: circular shifting + forcing singing

voice

Deep learning models are data-driven – which means that the data presented to

the model can dramatically affect the final performance of it. For this reason, it is

a common to practice to augment the data to cover a wider range of examples when

training the network – with the idea of increasing the generalization capability of the

model.
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Circular shifting – Miron et al. [42] and Huang et al. [29] reported better results

when circularly shifting the singing voice signals and mix them with the background

music as a form of data augmentation for source separation.

Figure 3.2: Circular shifting diagram

In this work, we study the applicability of the circular shifting data augmentation

technique for training end-to-end models. Specifically, three different configurations

are considered regarding the percentage of shifted samples used during training: 0%,

50%, and 100%. Thus meaning that for 0% no circular shifting is used (only the

original mixings are used); for 50% half of the training examples are based on the

original mixing and the other half training examples are based on circular shifting (an

artificial novel mixing); and for 100% means that all training examples are based on

the artificial circular shifting mixing.

Figure 3.3: Forcing singing voice diagram

Forcing singing voice – after observing the difficulties of the model to produce

singing voice in a continuous way, we decided to control which proportion of the data

30



contains singing voice (no silence). The percentage of forced fragments containing

singing voice ranges from 0% to 90% in steps of 10% – 0% meaning that it is left at

random to select singing voice segments, and 90% meaning that our sampling strategy

ensures that nine out of ten examples contain singing voice.

Figure 3.4: Vocals results by applying circular shifting and forcing singing voice
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Results – are summarized in Figure 3.4, best SDR result is obtained when balanced

results of SIR and SAR are achieved. This happens when 50% of the sampled vocals

fragments are forced to contain no-silence. SIR metrics decreases as the vocals samples

are forced to contain singing voice. Regarding SAR metrics, they have the opposite

behaviour. A good analogy of the results obtained is to imagine a tap which controls

the amount of singing voice it let pass. If the data relationship between silence and

singing voice feeds the network with its the real proportions found in the musdb18

dataset, the network generates singing voice without almost leakage. However, it

generates singing voice in chunks and with lots of artificial artifacts. The more we

force the network to be fed without silence in the singing voice, the more the network

will generate singing voice in a continuous manner but also add leaking from other

sources. Regarding the shifting, there is not a clear influence of it in the final result.

For this reason, input fragments in the following experiments are generated by applying

shifting every time in the vocals stream – in order to virtually increase our training

set to have as many different datatpoints as possible shiftings in the dataset.

3.1.2 Data augmentation: drums reinforcement

A large proportion of the leaking comes from the drum source – e.g., when the

model confuses the snare drum sound with consonants. For this reason, we reinforce

the drums concept by superposing a shifted version of it to the original accompaniment.

Figure 3.5: Drums data augmentation process: a) Creating new accompaniment frag-
ment. b) Adding it to the vocals stream
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Vocals Accompaniment
SDR SIR SAR SDR SIR SAR

Forcing 50% singing voice 1.84 6.08 4.99 9.48 11.82 13.38
Forcing 50% singing voice + drums reinforcement 1.46 5.36 4.96 8.88 10.97 13.78
Forcing 20% singing voice 1.24 6.37 3.98 8.56 10.88 13.21
Forcing 20% singing voice + drums reinforcement 1.61 8.32 3.58 8.65 10.75 13.95

Table 3.2: Median values of the evaluation metrics

The main goal of using this type of data augmentation was to achieve less leakage

from the drums source (thus increasing SIR metric) while maintaining the same or less

amount of artifacts produced by the algorithm (thus maintaining or increasing the SAR

metric). A seen in table 3.2, using the best model from the previous configuration

plus drums reinforcement it is not achieved the expected result. On the contrary,

SIR decreases while SAR remains constant. The desired effect of applying drums

reinforcement is accomplished in the model where 20% of the fragments are forced to

contain singing voice. However, the overall performance was not better than the one

achieved before. For that reason, this type of data augmentation was no longer taken

into consideration.

3.1.3 Architecture study: deeper? wider?

In this set of experiments, we aim to investigate if it is more important to have

a deeper model (having less receptive field), or it is more important to have a larger

receptive field (at the cost of having a shallower model) – provided that, for both cases,

the GPU’s memory is limited. In short, we try to address the following question: how

wider/deeper should Wavenet-like models be?

We explore the tradeoff defined between the number of learnable parameters (the

GPU’s memory is occupied by a wide model that has many parameters per layer)

and the receptive field length of the network (the GPU’s memory is occupied with

the stored feature maps). The amount of learnable parameters is determined by the

number of convolutional filters in every layer – i.e., how wide the layer is. And the
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receptive field length of the network is given by how “deep” the model is – which, for

the Wavenet model, is determined by the number of dilations and stacks. In this case,

the number of dilations remains constant (as described in our baseline architecture)

and only the number of stacks is changed. The following models are under study:

# stacks # filters # params receptive field length (ms)
model 1 1 512 ≈ 25.7M 2047 (128)
model 2 2 256 ≈ 13.6M 4093 (256)
model 3 3 128 ≈ 6.3M 6139 (384)
model 4 4 64 ≈ 3.3M 8185 (512)
model 5 5 32 ≈ 2.2M 10231 (639)

Table 3.3: Description of the models under study. # filters – number of filters per
layer. # params – number of learnable parameters.

Results – The number of filters per layer has more importance than the number of

stacks in the final performance. This means that is more important for the model to

have a certain amount of learnable parameters than to have a bigger view of the input

fragment. Interestingly, we have observed that larger receptive fields do not contribute

into predicting a more continuous singing voice having fewer artifacts

Vocals Accompaniment
SDR SIR SAR SDR SIR SAR

model 1 1.43 5.23 5.01 9.75 12.48 13.75
model 2 1.75 5.97 5.00 9.30 11.79 13.21
model 3 1.84 6.08 5.00 9.48 11.82 13.38
model 4 1.10 4.74 5.06 8.84 11.11 12.81
model 5 0.87 4.43 5.00 8.77 10.88 13.54

Table 3.4: Architecture deepness median results

On the other hand, a certain amount of learnable parameters helps the model to be

more selective when separating sources. In fact, no more than 6.3 M parameters seem

to be needed for achieving the best performance. This results in a very parameter

efficient architecture compared to other state-of-the-art architectures [37, 32] that

have almost 20M parameters. Interestingly enough, the model that results in with

the best SDR for vocals is the original baseline system we proposed in section 3.0.3.

Finally, note that the models are trained considering the previously described data
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augmentation techniques: 100% circular shifting, and 50% forcing singing voice.

3.1.4 Changing the cost function

The settings proposed for the baseline architecture consider a single term loss –

which only cares about the quality of the extracted singing voice: L1 = L(ŝt). Where

L(ŝt) = |st − ŝt|. Given that the model predicts a single output, the accompaniment

is given by substracting the estimated singing voice from the mixture: ât = mt − ŝt

In order to see how accompaniment prediction could affect the final performance of

the singing voice prediction, we have adapted the model to predict both singing voice

and accompainement (hence the model predicts two outputs), and we reformulate the

loss as follows: L2 = L(ŝt) + L(ât) where L(ât) = |at − ât|.

To enforce energy conservation, another term that forces the sum of predicted

sources to be equal to the mixture signal is introduced. Loss becomes: L3 = L(ŝt) +

L(ât) + L(m̂t) where L(m̂t) = |mt − m̂t|. Note that m̂t = ŝt + ât. Energy conserving

loss has been found useful in source separation tasks as [5, 43].

Aforementioned losses only care about the similarity between the prediction and the

target. However, in source separation tasks is important to avoid leaking from other

sources – which means a higher signal to interference ratio (SIR). For this reason,

dissimilarity losses have been found successful in some approaches [6, 5]. Therefore,

we propose to use a loss term that also takes into account the dissimilarity between

the prediction and other sources: Ldiss =
∑J

j=1|ŷj − yĵ 6=j|. Where ŷ are the predicted

sources.

Results – The best performing model from previous analysis (50% of the sampled

vocals fragments are forced to contain no-silence and 100% circular shifting) is used

to see how the proposed losses affect the final performance.

Results show that the accompaniment prediction (L2) does not help to have a better
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Vocals Accompaniment
SDR SIR SAR SDR SIR SAR

L1 1.84 6.08 4.99 9.48 11.82 13.38
L2 1.45 4.88 5.16 9.23 11.52 13.03
L3 1.35 4.95 5.19 9.14 11.38 12.98
L1 − γLdiss 1.13 4.85 5.02 9.00 11.61 12.74
L2 − γLdiss 1.17 4.24 5.29 8.92 11.15 13.17

Table 3.5: Changing singing voice separation losses median results

singing voice separation – and the same behaviour is observed when enforcing energy

conservation by adding the mixture loss term (L3). A tentative explanation for this

fenomena can be that the model is to small (≈ 6.3M parameters) for being able to

properly model how to separate the two sources. Furthermore, the dissimilarity losses

do not help the network to be more selective. On the contrary, adding this loss term

decreases the SIR value – the value γ is set to 0.002. Finally, it is worth mentioning

that early experiments using a standard L2 loss proved to be disadvantageous.

3.1.5 Comparison with the state-of-the-art

For comparison with previous work, the time-frequency approach DeepConvSep [5]

is adopted under comparable conditions.

Wavenet DeepConvSep
SDR SIR SAR SDR SIR SAR

Vocals
Med 1.84 6.08 5.00 1.95 4.39 7.74
Mean 1.14 5.71 4.92 1.37 3.88 7.35

Accompaniment
Med 9.48 11.82 13.38 10.37 14.95 13.25
Mean 9.86 12.61 13.91 10.91 15.46 13.30

Table 3.6: Singing Voice Separation models comparison
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Objective results show that both systems achieve a similar overall performance for

singing voice source separation. The main differences are related to the SIR and SAR

metrics. Wavenet achieves a better SIR – which means that there is less distortion

coming from other sources in the predicted vocals. For example, Wavenet would be

useful when planning to use the extracted vocal track in a new context. On the

contrary, DeepConvSep offers less degradation on the signal caused by the separation

algorithm – a better SAR. Informal listening tests show that the proposed Wavenet

model struggles when predicting long vocal notes, where more artifacts are introduced.

3.2 Experiment 2. Multi-Instrument Separation.

In this section we experiment with a model capable to handle the separation of

many instruments at the same time: vocals, drums and bass. For doing so, we make

use the architecture that performed the best for the task of singing-voice separation.

Regarding which data augmentation techniques to use, the technique is only practiced

to the vocals stream using the best configuration found in experiment 1: 100% circular

shifting, and 50% forcing singing voice.

Throughout this section, we mainly experiment with several loss functions – and

then we compare our best performing model with a state-of-the-art approach based

on processing spectrograms, the DeepConvSep model [5].

3.2.1 Multi-instrument architecture

The main difference between the multi-instrument and the singing voice separation

architecture is found in the output layer which, in this case, linearly projects the last

feature map into a three-channel temporal signal by using a 1x3 filter. Then, each of

this channels is associated with an instrument category: vocals, drums or bass.
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Figure 3.6: Ensuring singing voice diagram

3.2.2 Changing the cost function

The baseline model we propose is based on a three term loss which cares only about

the quality of the extracted singing voice, drums and bass: L3 = L(ŝt)+L(d̂t)+L(b̂t),

where L(ŝt) = |st − ŝt|, L(d̂t) = |dt − d̂t|, and L(b̂t) = |bt − b̂t|

Following the same idea as in section 3.1.4, we study if the prediction of another

source helps to predict the desired ones. The loss is reformulated by taking into account

the prediction of the others (the rest of the accompaniment carried in the other audio

stream): L4 = L(ŝt) + L(d̂t) + L(b̂t) + L(ôt) where L(ôt) = |ot − ôt|.

In order to enforce energy conservation, another term that forces the sum of pre-

dicted sources to be equal to the mixture signal is introduced. Then, the loss becomes:

L5 = L(ŝt) + L(d̂t) + L(b̂t) + L(ôt) + L(m̂t) where L(m̂t) = mt − m̂t. Note that

m̂t = ŝt + d̂t + b̂t + ôt.

Finally, it is also proposed a loss term that takes into account the dissimilarity

between the prediction and the other sources. Ldiss =
∑J

j=1|ŷj − yĵ 6=j|. Where ŷ are

the predicted sources – see section 3.1.4 for more information.
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3.2.3 Results

Vocals Drums Bass
SDR SIR SAR SDR SIR SAR SDR SIR SAR

L3 0.99 12.46 1.68 2.44 10.51 4.35 1.13 8.57 3.91
L4 0.94 3.60 5.61 2.06 8.38 5.01 0.86 3.73 6.19
L5 0.67 2.24 7.62 2.51 5.72 6.57 -0.047 2.76 5.97

L3 − γLdiss 0.53 3.28 5.51 2.03 7.35 5.09 0.40 2.69 6.84

Table 3.7: Changing multi-instrument losses median results

Similarly to the results in singing voice separation, predicting more sources than

the targeted ones does not help to improve objective metrics. This is clearly ob-

served when analyzing SIR values which drop drastically when predicting also the

other source. The system is confused and it is not able to learn properly the timber

of each source. In addition, enforcing energy conservation only helps for drums pre-

diction but significantly deteriorate vocals and bass. As happened with singing voice

separation, dissimilarity losses do not help the network being discriminatory. On the

contrary: by adding this loss term, the SIR drops. The value γ is set to be 0.001. In

conclusion: better results are achieved when the loss only cares about the quality of

the targeted sources.

3.2.4 Comparison with the state-of-the-art

The objective results we got show that the performance of the model varies de-

pending on the source. DeepConvSep predicts better the vocals than the Wavenet for

Music Source Separation. However, drums and especially the bass are better sepa-

rated by the Wavenet for Music Source Separation. Furthermore, we observe that all

predicted sources the Wavenet for Music Source Separation achieves better SIR scores

than DeepConvSep while DeepConvSep achieves better SAR than the Wavenet for

Music Source Separation.

Interestingly, when we compare these results with the ones obtained with singing

voice separation Wavenet (in section 3.1.5), we observe that SIR and SAR values
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improved significantly when predicting many instruments at the same time – for the

Wavenet for Music Source Separation and DeepConvSep, respectively.

Wavenet DeepConvSep
SDR SIR SAR SDR SIR SAR

Vocals
Median 0.99 12.46 1.68 1.68 3.64 8.77
Mean 0.47 11.11 1.86 1.29 3.30 8.29
SD 4.08 6.14 2.83 4.29 4.60 2.71

Drums
Median 2.44 10.51 4.35 2.27 5.98 6.07
Mean 2.70 10.29 4.58 2.53 5.95 6.71
SD 4.10 5.83 3.38 3.80 4.38 2.69

Bass
Median 1.13 8.57 3.91 -0.13 1.15 7.54
Mean 0.69 7.66 3.35 -0.57 1.43 7.36
SD 4.12 5.63 3.22 3.52 4.45 1.85

Table 3.8: Music Source Separation models comparison
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Chapter 4

Conclusions and future work

We have proposed an end-to-end learning method for music source separation to as-

sist recording engineers, musicians, and similar end-users in the task of music remixing

and content creation. More specifically, we investigated if it is possible to approach the

problem of music source separation in an end-to-end learning fashion with a Wavenet

model.

The non-causal discriminative adaptation of Wavenet that we use for music source

separation learns in a supervised manner – via optimizing the parameters of the net-

work, following the guidance of a regression loss. By removing the autoregressive

nature of Wavenet, we are able to predict target fields (instead of a single sample at

a time) and thus overcome the time-complexity of the original Wavenet.

Initially, it was challenging for the model to extract a singing voice track that

had smooth onset transitions. For this reason, various forms of data augmentation,

architectural changes, and learning conditions were explored. In our experiments we

observed that it exists a trade-off between how selective the model is when separating

a source, and how smooth is the onset transition. If we tailor the model towards

having smoother transitions (with data augmentation, for example), the model also

introduces leakage from other sources. However, if the model is very selective (there is

not that much interference coming from other sources) then the onset transitions are

very abrupt.

After this initial investigation, we propose model that is very parameter-efficient.

The fact that is conformed by a reduced number of learnable parameters, helps in-

creasing the generalization capability of the model – which is capable to effectively

separate songs under conditions it has never been exposed to. In fact, our results sup-
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port that our end-to-end learning model is able to achieve a similar performance than

a spectrogram-based architecture – the DeepConvSep model [5]. This result confirms

that it is possible to directly approach the problem of source separation from the raw

audio instead of using magnitude spectrograms.

The implementation of the model will be soon publicly available online: github.

com/francesclluis/music-source-separation-wavenet – and several audio exam-

ples are provided to perceptually asses the performance of the model.

As future work, it would be interesting to train the proposed model with additional

data – since it has been proven to be the key for achieve better performance in data-

driven models [37]. Moreover, it might be also interesting to investigate how this

Wavenet for music source separation helps to improve other MIR tasks – which can

perform better if the separated sources are used for their analysis.
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