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Abstract  
The practical need for highly efficient enzymes presents new challenges in enzyme 

engineering, in particular, the need to improve catalytic turnover (kcat) or efficiency 

(kcat/KM) by several orders of magnitude. However, optimizing catalysis demands 

navigation through complex and rugged fitness landscapes, with optimization 

trajectories often leading to strong diminishing returns and dead-ends. When no 

further improvements are observed in library screens or selections, it remains 

unclear whether the maximal catalytic efficiency of the enzyme (the catalytic ‘fitness 

peak’) has been reached; or perhaps, an alternative combination of mutations exists 

that could yield additional improvements. Here, we discuss fundamental aspects of 

the process of catalytic optimization, and offer practical solutions with respect to 

overcoming optimization plateaus.  

 
 

Highlights 
• Optimization plateaus are common when engineering enzymes for higher 

catalytic efficiency. 

• These plateaus relate to fundamental properties of evolutionary fitness 

landscapes. 

• Marginal protein stability is a common cause of plateauing that can be easily 

overcome. 

• Activity tradeoffs and epistatic effects are other causes of optimization 

plateaus.   
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Introduction 
 

It is commonly assumed that all enzymes were born poor catalysts and were 

subsequently optimized by evolution. Laboratory experiments that mimic this process 

have now become a matter of routine. In some cases, these experiments attempt to 

reproduce the evolutionary emergence of a natural enzyme from its putative 

ancestor. However, in most cases, the target of enzyme optimization is primarily 

applicative - to create a highly active and stable enzyme that can catalyze the target 

reaction in a non-biological setting. Natural enzymes present two common 

limitations: First, with few exceptions, natural enzymes exhibit low catalytic efficiency 

with non-cognate substrates that are typically application-relevant (i.e., substrates 

that differ from the enzyme’s natural substrate yet are promiscuously transformed by 

it). Second, natural enzymes exhibit low protein stability especially under applicative 

conditions. The feasibility and cost of application depend on the catalytic turnover of 

the enzymes being high. To this end, directed evolution, and other protein 

engineering methods such as computational design, are used to optimize enzymes 

for a variety of practical applications spanning from organic synthesis to therapeutics 

(for recent reviews, see Refs. [1-5].  

 

Here, we summarize several key aspects regarding the laboratory optimization of 

enzymatic traits, and specifically of catalytic efficiency (kcat/KM, or kcat for enzymes 

working under substrate saturation [6]). The last decade has seen a leap in the 

understanding of how enzymes evolve. However, several key questions still prevail, 

especially with respect to how enzymes can be optimized toward high, let alone 

maximal catalytic efficiency (in fact, what ‘high’ or ‘maximal’ means is a complex 

issue, as discussed below). We focus on optimization of catalytic efficiency, primarily 

by directed evolution. There are fundamental differences between evolution in nature 

and in the laboratory. Nonetheless, lessons from natural evolution can be 

implemented in enzyme engineering, and the latter also teaches us about the former. 

 

The optimization challenge 
The catalytic efficiencies of natural enzymes with non-cognate substrates can be 

extremely low; reported kcat/KM values as low as 1 M-1s-1 are not an exception (e.g. [7-

10]). In contrast, the average catalytic efficiency value (kcat/KM) of natural enzymes 

with their cognate substrates is ~105 M-1s-1, and some enzymes approach 109 M-1s-1 

[11]. Thus, the gap between the catalytic efficiency with a cognate substrate versus a 

promiscuous, non-cognate substrate may span several orders of magnitude. Natural 
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evolution can readily bridge such gaps. For example, xenobiotics such as the 

pesticide metabolite paraoxon are promiscuously hydrolyzed by many natural 

enzymes, although at very different rates. Bacterial lactonases known as PLLs 

exhibit promiscuous paraoxonase activities with kcat/KM values that span over 4 

orders-of-magnitude (from 0.5 up to 4x103 M-1s-1) [12]. A natural paraoxonase named 

PTE (phosphotriesterase), had diverged from an unidentified PLL. This enzyme 

evolved in soil bacteria, in a matter of few decades, to hydrolyze paraoxon with a rate 

that approaches diffusion limit (kcat/KM ~108 M-1s-1) [13]. 

 

Directed evolution and computational redesign of natural enzymes have proven 

capable of bridging equally large gaps; possibly even greater ones when applying 

starting points that exhibit no detectable activity with the target substrate (e.g. Refs. 

[14,15]). However, most publications describe only modest improvements of up to 

two orders of magnitude in kcat/KM (Figure 1). Large improvements are rare, and 

increases in kcat/KM of ≥104-fold comprise only ~5% of our literature sampling (Figure 
1). Improving an enzyme’s catalytic efficiency with a non-cognate substrate by an 

order of magnitude or two typically requires only a few rounds of directed evolution, 

especially when the initial catalytic efficiency is relatively low. In contrast, efforts to 

bridge large gaps by directed evolution are likely to encounter diminishing returns 

and optimization plateaus, and thus require many rounds of directed evolution with 

no guarantee of success. The correlation between fold-improvement and the number 

of introduced mutations is not strictly linear, but improvements of above 1,000-fold 

typically demand at least 10 mutations (Figure 2). 

 

The landscape of evolutionary optimizations 
The search for a combination of beneficial mutations that would yield an optimized 

enzyme is usually depicted as a sequential advancement in protein sequence-space, 

where each step is associated with a change in fitness. An in-depth discussion of this 

topic is beyond the scope of this review, but for the purposes of this discussion, 

fitness landscapes can be illustrated by a simplified 3D space (Box 1). In the 

simplest scenario, there exists a trajectory that is both continuous and gradual – an 

uphill climb to the ‘fitness peak’ that comprises a series of mutations, each of which 

provides a distinct fitness advantage (Box 1, trajectory A).  

 

The fitness peak represents the maximal possible catalytic efficiency of an enzyme 

for a particular reaction and substrate in a given region of sequence space. In theory, 

an unlimited exploration of protein sequence space will reveal the ‘global fitness 
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peak’, which represents the maximal kcat/KM value possible for a given enzyme, 

reaction and substrate. However, the number and heights of local fitness peaks that 

exist for a particular enzyme and substrate are unknown, and at present are also 

impossible to predict. Given the vastness of the theoretical sequence space, only a 

minute portion of it is accessible to natural evolution, let alone to laboratory evolution. 

The size of sequence-space explored by natural evolution is restricted by factors 

such as the frequency of mutations, their types and the size of the evolving 

population. Similarly, in laboratory evolution, the diversity of the applied gene library 

(i.e. the number of mutations per gene, their types, the number of variants per 

library), and the throughput of the screening/selection method and its stringency, 

dictate what fraction of sequence space will be explored per round.  

 
How catalytically efficient can a given enzyme become? 
The number of natural enzymes that have reached their maximal possible catalytic 

efficiency (i.e. the global fitness peak) is unknown. Only so-called “perfect enzymes”, 

whose kcat/KM values approach the physical limit of diffusion rate (≥ 109 M-1s-1), may 

be assumed to have done so. However, for more than 98% of natural enzymes, the 

kcat/KM are ≥10 times lower than diffusion limit [16] and the average literature kcat/KM 

value is 4 orders of magnitude lower (∼105 M-1s-1) [11]. A large number of these far-

from-perfect enzymes have probably reached their optimal catalytic efficiency in their 

natural cellular context (i.e. local fitness peaks). This is because in vivo, the catalytic 

efficiency of enzymes is restricted by various flux-balance factors [17,18] such as 

avoiding overproduction of toxic products or rapid depletion of substrates used by 

other enzymes. However, many natural enzymes are likely to be far from maximal 

performance, certainly in vitro. For example, enzymes involved in secondary 

metabolism typically show lower catalytic efficiency compared to enzymes in core 

metabolism, probably due to relatively recent emergence and weak selection 

pressures [11]. The fact that most natural enzymes are far from maximal 

performance is also evident from their configurational stability (the ability to fold and 

maintain the native fold). Numerous enzymes have been stabilized in the laboratory 

while maintaining or even increasing catalytic efficiency [19-21].  

 

The implication of the above is that during enzyme optimization, unless a diffusion-

rate limit has been reached, there is no way of telling whether a higher catalytic 

efficiency could be obtained for the evolving enzyme or not. This point is further 

discussed in the section titled Optimization landscapes - local versus global fitness 



	 5	

peaks. 

 
Diminishing returns 
The rugged shape of fitness landscapes limits sequence explorations to specific 

trajectories. Within a given trajectory, even if it is continuous and gradual (trajectory 

A Box 1), the fitness increase per mutation is rarely constant. Foremost, evolutionary 

optimizations are subject to diminishing returns – the early mutations give rise to 

relatively large improvements (typically, 5 to 10-fold increases in kcat/KM), but as the 

optimization progresses, the fold-improvement in catalytic efficiency per newly added 

mutation decreases. 

 

Diminishing returns with respect to catalytic efficiency were systematically measured 

in a trajectory leading from a bacterial phosphotriesterase (PTE) to an aryl, carboxy-

esterase [22]. An initially weak, promiscuous activity with a non-cognate aryl-ester 

substrate was improved nearly 105-fold. This demanded 18 rounds of mutagenesis 

and screening, whereby, on average, each mutation improved kcat/KM by a factor of 

~2. However, whereas the first 4 mutations gave an overall improvement of >103-fold 

(an improvement factor of ~5 per mutation), the improvement factor for the last 

mutations was ~0.18 (Figure 3). The first mutations that induce large improvements 

occurred within the active site, reshaping it to accommodate the new substrate and 

fine-tune the catalytic machinery. The late mutations were typically 2nd and 3rd shell. 

These mutations had a role in compensating the destabilizing effects of the 1st shell 

mutations and reinforcing their effects, and also in funneling the conformational 

ensemble toward the catalytically productive conformations [22,23]. While these 

latter mutations are critical, their contribution to catalytic efficiency per se is small, or 

sometimes nil [22]. Equally strong diminishing returns were similarly encountered 

when the same enzyme, PTE, was evolved toward hydrolysis of the nerve agent VX 

[24]. Overall, a ~5x103-fold improvement in kcat/KM for hydrolysis of the toxic isomer of 

VX was obtained following 13 rounds of directed evolution (combining rationally and 

computationally targeted libraries and random mutagenesis). The first 500-fold 

improvement was achieved with 5 rounds and 7 mutations (3 within the active-site, 

and 4 peripheral mutations), whereas the remaining 10-fold demanded 8 more 

rounds and 12 more mutations (4 active-site, and 8 peripheral mutations) (Figure 3). 

Most of the final 10-fold improvement was obtained only after the introduction of 7 

stabilizing mutations, which were derived using computational design [25], and 

introduced in a single step [24]. 
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Local versus global fitness peaks 
Diminishing returns result in the need for multiple rounds to achieve large 

improvements (Figure 2) and they also lead to optimization plateaus (i.e. no 

enhancements in efficiency despite the introduction of new mutations). Arrested 

improvements in catalytic efficiency may occur earlier than observed in screens or 

selections because	 improvements in other properties, such as protein folding and 

stability, may increase the observed activity without increasing kcat/KM. On the other 

hand, screens (let alone selections) exhibit considerable noise. Thus, during 

advanced rounds of directed evolution the magnitude of improvements may be within 

experimental noise, resulting in a prematurely observed plateau. Overall, plateaus in 

the optimization of catalytic efficiency are commonly encountered. The snag is that 

when improvements plateau at least three different scenarios might apply that 

demand fundamentally different courses of action.  

 

The 1st scenario is that the fitness peak has been reached, i.e., the evolved variants 

confer maximal performance given the starting enzyme, reaction, substrate, and the 

applied exploration of sequence space (as in trajectory A, Box 1). However, as 

discussed above, one rarely knows what is the maximal kcat/KM or kcat value expected 

for a given enzyme optimization. Nonetheless, if one assumes that the peak has 

been reached, yet is too low in activity relative to the desired goal, a plausible course 

of action is to explore a new starting point, i.e., another enzyme(s) exhibiting weak, 

promiscuous activity with the same reaction/substrate. Enzymes exhibiting similar 

promiscuity may significantly differ in their potential for improvement [26]. 
 

The 2nd scenario is that the evolutionary trajectory has reached a local plateau (Box 
1, trajectory B). No further improvements are observed in the screened libraries 

although, in principle, higher catalytic efficiency could be achieved via this trajectory. 

The most common cause of transient, local optimization plateaus is a loss of stability 

due to the accumulation of mutations. Accordingly, “pulling out” from such a local 

plateau demands stabilizing mutations, and often a combination of several [25,27]. At 

a minimum, a combination of two mutations is needed to “pull out”, whereby one (or 

more) of these mutations is neutral or even slightly deleterious on its own. The latter, 

so-called enabling, or permissive mutations, comprise a critical background for the 

acquisition of the mutation which enhances catalytic activity. Enabling mutations 

could be enriched by performing a ‘neutral drift’ – i.e., accumulating mutations 

despite the fact that they do not increase activity [15]. Drift, however, may not be 

effective if the fitness peak can only be reached by a rare combination of mutations 
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[28]. Alternatively, the method by which sequence space is searched could be 

modified [1]. For example, gene libraries are primarily based on amino acid 

substitutions, although backbone changes (insertions and deletions of amino acids; 

InDels) play a critical role in natural enzyme evolution [29] and can be incorporated 

into libraries [30,31]. Similarly, swapping whole secondary structural elements 

between homologous proteins may allow access to different regions of sequence 

space from which the fitness peak is more easily accessible [32]. 

 
The 3rd option is that the particular trajectory that had been followed has led to an 

isolated peak whose height is lower than the that of a nearby fitness peak (Box 1, 

trajectory C). Contrary to the transient local plateau scenario depicted in the 2nd 

scenario (trajectory B), this local peak is separated from the fitness peak by a deep 

‘valley’ of much lower fitness. If this 3rd scenario applies, the only way of reaching the 

fitness peak is going back to the starting point and initiating a new trajectory, 

preferably via an alternative library making method (see 2nd scenario).  

 

Epistasis, founder mutations and mutational leaps 
The shape of fitness landscapes and the evolutionary trajectories they enable result 

mostly from tradeoffs and epistasis. In a nutshell, epistasis means that the effects of 

mutations are non-additive, or sequence context dependent. Thus, to maintain a 

“smooth”, continuous path of improvement in fitness, mutations must occur in a 

particular order, or even, in combinations of multiple mutations. Epistasis dominates 

protein evolution (for recent reviews, see Refs [33,34]) and thus has a profound 

effect on optimization trajectories. In essence, epistasis also is the cause of 

evolutionary dead-ends, be it a transient, local plateau (2nd scenario above; 

trajectory B) or a local peak (3rd scenario; trajectory C). Local peaks usually occur 

due to sign (or reciprocal) negative epistasis, whereby two or more mutations that 

are individually beneficial, become deleterious when combined. Such mutations 

initiate orthogonal trajectories and are termed ‘founder mutations’ (Box 1). The 

molecular origins of this phenomenon have been studied with the antibiotics 

resistance enzyme TEM-1 b-lactamase [35].  

 

In extreme cases, an optimization landscape may be so rugged that the fitness peak 

can only be reached by a “leap” in sequence space, i.e., by simultaneous 

incorporation of an entire set of mutations (trajectory D, Box 1). If the required set 

includes more than a few mutations, such peaks may be practically inaccessible by 

laboratory evolution that usually banks on the gradual accumulation of single 
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mutations. In contrast, computational design may access such peaks by 

simultaneously incorporating a large number of mutations to gain a new function or 

improve an existing one (for example see Refs [32,36]). In one case, computational 

design enabled the simultaneous incorporation of 7 stabilizing mutations needed to 

‘pull out’ of an optimization plateau (Figure 3) [25]. Computational methods can also 

be used for an analysis of correlated substitutions by identifying positions that tend to 

co-evolve in protein phylogenies, as was done to facilitate protein structural 

predictions [37]. Sets of correlated substitutions can be incorporated to boost activity 

and/or stability, or to identify substitutions that were uncoupled during directed 

evolution, leading to a decrease in stability [38,39]. Restoring such pairs may help 

restore protein stability.  

 

How frequent are isolated fitness peaks that can only be reached by mutational leaps 

is largely unknown, however, enzymes redesigned for a completely new activity 

comprise a good example. One test case is the computational redesign of the active-

site of a zinc deaminase to generate a phosphotriesterase [10]. To uncover the 

minimal set of mutations required to endow phosphotriesterase activity, a library was 

constructed exploring random combinations of the 8 substitutions in the designed 

variant at the background of the wild-type deaminase. Screening of this library 

indicated that a minimal set of 4 mutations was required for the phosphotriesterase 

activity to reach a detectable level [10]. The likelihood of identifying active quadruple 

mutants from libraries is exceedingly low (certainly in random mutations libraries), 

and such a peak is therefore considered inaccessible by directed evolution. 

 

Pulling-out of optimization plateaus 
The challenge of improving enzymes past optimization plateaus has not been 

frequently addressed. For one thing, most published works describe the early stages 

of optimization and/or do not aim to meet a high-performance efficiency threshold for 

a particular application (Figure 1). It is likely that many enzymes have been evolved 

toward high catalytic efficiency for industrial applications (for recent examples, see 

Refs. [1,40-43]), but most of these cases remain unpublished. Nonetheless, a 

number of endeavors to increase catalytic efficiency by several orders of magnitude 

have been described [10,14,15,22,39,44-50] and these indicate some general 

guidelines. 

 

Stability boosts are critical in long-range optimizations. Most mutations are 

destabilizing, and mutations that alter enzymatic functions are particularly prone to 



	 9	

do so [51]. Using a highly stable starting point enzyme, either laboratory stabilized, or 

from a hyper-thermophilic organism, would typically enable a longer, continuous 

progress of improvement. Ancestral inference may also provide highly stable, 

mutation-tolerant starting points for directed evolution [52-55]. Chaperones can be 

applied to assist the folding of impaired evolving mutants [51]. However, as the 

optimization trajectory progresses further, the need for additional compensatory 

mutations is bound to arise. Compensation may be specific and local, i.e., through 

residues that are in direct contact with the active-site mutations or non-specific, 

global, i.e., via mutations that are far away from the active-site and increase the 

enzyme’s overall configurational stability [34] (for a recent examples see Refs. 

[24,27]). 

 

Local stabilizing mutations may not be easy to predict, but they may appear as 

beneficial mutations in screens owing to an increase in the levels of soluble, folded 

enzyme. They can also be introduced into libraries by diversification of 2nd-shell 

positions that are in contact with 1st shell residues in which mutations occurred in 

previous rounds (neighbor-joining strategy; [56]). Global compensatory mutations 

can be readily identified by computational methods and/or by bioinformatics (see 

Refs [25,54,57-59]). Global mutations tend to rigidify the enzyme’s scaffold, thus 

increasing its mutational tolerance. Increased scaffold rigidity does not usually have 

a negative effect on enzymatic activity, or on the potential to acquire new or 

enhanced enzymatic functions [60]. However, one obstacle is that most globally 

stabilizing mutations provide relatively modest contributions to stability. Hence, a 

combination of several, or even many mutations is often needed to provide sufficient 

global stabilization effects. Computational design seems like the best tool to predict a 

large number of stabilizing mutations. Variants carrying >50 potentially stabilizing 

mutations were readily identified by computational design, thus providing a large 

boost in stability [25]. We have recently applied this computational tool, PROSS [25], 

to continue catalytic optimization past a plateau [24] (Figure 3). Computational 

stabilization resulted not only in a large increase in stability but also in a 2-fold 

increase in kcat/KM. Crucially, the stabilized variant could be further evolved to reach 

the desired catalytic efficiency [24]. Overall, it appears that stability-boosts comprise 

an essential step for overcoming optimization plateaus, though sometimes not a 

sufficient one. 

 

Avoiding tradeoffs – simultaneously selecting for two traits may result in tradeoffs. 

This is not always the case – for example, selection for higher rate may also endow 
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higher configurational stability or higher selectivity. However, selecting for improved 

activity with two different substrates may restrict enzyme optimization since one 

activity may come at the expense of the other, especially, at advanced stages of 

optimization. For example, we attempted to select a broad-specificity neutralizing 

enzyme that would simultaneously hydrolyze two nerve agents: VX and RVX. The 

reaction is identical and the structural differences between these substrates are 

relatively small. Nonetheless, screening for variants that are improved in both 

substrates rapidly led to a plateau, and analysis of the evolving variants indicated a 

tradeoff between these substrates [24].  

 

Higher screening/selection throughput and accuracy can also help pull-out of 

plateaus (or, perhaps, avoid them altogether). Screens utilize parallel assays of 

isolated library variants (typically with a chromogenic or fluorogenic substrate) [61]. 

They provide accuracy and a systematic view of the library’s fitness landscape, but 

are limited in throughput [56]. Selections rely on a direct link between enzymatic 

activity and cell growth. They act on variant libraries in bulk and typically have higher 

throughputs than screens. They enable the exploration of a larger sequence space in 

each round, including and most crucially, combinations of several mutations at a 

time. Methods for continuous directed evolution allow to rapidly select large 

repertoires, pursue long mutational trajectories [62,63], and thus obtain large 

improvements in binding and selectivity [64,65]. On the other hand, selections are 

harder to fine-tune, and also tend to rapidly funnel and limit the diversity of improved 

variants. Accurate, high-throughput screens using, for example, microfluidics devices 

(for recent examples see [7,66]) may comprise a better solution. Such screens may 

not only explore larger regions of sequence spaces, but can also facilitate the 

identification of a greater number of slightly beneficial and even neutral mutations 

that can help traverse local plateaus.  

 
Finally, the application of neutral drift (i.e. purifying selection for the enzyme’s native 

activity) prior to selection for the new activity, may facilitate optimization past a 

plateau. Neutral drift can be performed using different selection regimes and 

promotes the accumulation of enabling or compensating mutations that are a 

prerequisite for mutations that modulate enzymatic activity [67-71]. Weak purifying 

selection can be applied to only purge inactive variants while retaining slightly 

deleterious mutations that may become beneficial with subsequent ones [72]. Thus, 

neutral drift may enable the acquisition of mutations that open novel evolutionary 

pathways in sequence space.     
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To conclude, improving catalytic efficiency by several orders of magnitude generally 

requires a long optimization trajectory. Progress is often hindered by diminishing 

returns and negative epistasis thus demanding increasingly more mutations to 

achieve diminishingly smaller improvements (Figure 2 suggests a rough estimate of 

5 mutations per 10-fold for >1000-fold improvements). Successful navigation to the 

desired fitness peak is not guaranteed, but can be facilitated by boosting protein 

stability, by avoiding activity tradeoffs, by increasing screening or selection 

throughput and by exploring alternative genetic diversity (neutral drifts, InDels, or 

exchange of secondary structural elements). Combining directed evolution and 

computational design methods may also be fruitful – the latter allows to 

simultaneously introduce an entire set of mutations while the former complements 

the latter’s partial accuracy. 
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Figure 1. Laboratory optimizations of catalytic efficiency. 
Shown are the fold-improvements in catalytic efficiency (kcat/KM) reported in the 

period of 2012-2016 for 60 natural enzymes optimized by directed evolution (red 

circles) [22,43,45,46,73-128], and for 14 enzymes that were computationally 

designed or redesigned and further optimized by directed evolution (2009-2016; blue 

squares) [7,44,50,129-139]. With few exceptions, the data describes the optimization 

of different enzymes. Indicated are the improvements for the most catalytically 

efficient variant compared to its starting point. Only studies that reported catalytic 

efficiency values of purified proteins, and described the number of directed evolution 

rounds and incorporated mutations, were included. The black, horizontal bars 

indicate the median fold improvement.    
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Figure 2. Large increases in catalytic efficiency demand multiple mutations. 
Plotted are the log10 values of the fold-increases in kcat/KM of evolved enzymes 

versus the number of non-synonymous mutations in these variants (dataset of Figure 

1). The line represents a linear fit (y =0.1931X ± 0.01461) suggesting that large 

improvements (>103-fold) demand on average 5 mutations per order-of-magnitude 

improvement in catalytic efficiency. 
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Figure 3. Enzyme optimizations are subject to diminishing returns. Plotted are 

the increases in catalytic efficiency observed in two different optimization trajectories 

of the same enzyme – a bacterial phosphotriesterase (PTE; Round 0 denotes the 

kcat/KM value for wild-type with the target substrates). Optimization toward the 

hydrolysis of a synthetic aryl-ester substrate (2-naphthyl hexanoate) via directed 

evolution (=; data from [22]). Optimization toward hydrolysis of the toxic isomer of 

VX (Sp-VX) using directed evolution and computational design (p; data from [24]). 

The red, dashed square denotes the introduction of a computationally designed 

variant containing 7 mutations that also improved kcat/KM by ~2-fold. The lines depict 

the general trends in improvement for the two trajectories.  
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Box 1 – The landscape of evolutionary enzyme optimizations 
 

In this schematic fitness landscape, the Z-axis indicates values of enzyme fitness 

that primarily relate to the enzyme’s catalytic efficiency (kcat/KM), or catalytic turnover 

rate kcat, under substrate saturation (although fitness also relates to protein folding, 

stability and solubility that dictate the amounts of soluble and active enzyme). The 

fitness peak, represented by the highest point on the Z axis, is defined per 

landscape; it represents the highest performance achievable for the trait under 

optimization given the explored sequence space. The limits of sequence exploration, 

schematically represented by the limits of the X-Y axes, are dictated by factors such 

the number and type of mutations and the throughput of the applied screen/selection. 

If the landscape represents the entire sequence space, all possible sequences are 

included. Thus, the global fitness peak (i.e., the maximal possible performance 

given the substrate and reaction) resides somewhere within the global sequence 

space (discussed in How catalytically efficient can a given enzyme become? in the 

main text). 

 

 

The simplest optimization scenario is represented by a smooth (continuous) and 

gradual climb leading to the fitness peak (trajectory A). However, trajectories may be 

rugged as illustrated in trajectory B that reaches the peak through a local plateau 
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(yellow star). Such a trajectory is characterized by a key improving mutation/s that 

can manifest their beneficial fitness effect only at the background of other mutations 

that are either neutral or deleterious on their own (see a section on epistasis in main 

text).  

Another scenario, represented by trajectory C, comprises an evolutionary ‘dead end’ 

as it leads to a local peak with much lower fitness than the fitness peak, and is 

separated from other trajectories by deep valleys of low fitness. Unlike the plateau 

depicted in trajectory B, the only way of traversing from the local peak in C to 

trajectories A or B is by reverting back to the starting point. Trajectories such as C 

are said to be orthogonal to others, as there is no way of crossing between them 

while avoiding a severe fitness loss. Orthogonal trajectories are usually initiated by 

different ‘founder mutations’ as illustrated by the different locations of their starting 

points on the X-Y plane.  

Trajectory D depicts a scenario in which the fitness peak is separated from the 

starting point by a deep, low-fitness valley. In this case, the only way to access it is 

by incorporating an entire set of mutations that mediate transition from the starting 

point to a new location in sequence space that can continuously lead to the fitness 

peak. This means that all possible subsets of these mutations would lead to loss of 

activity. The larger is the required mutational set, the more evolutionary inaccessible 

is an isolated peak. 
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