Dataset Open Access

Wind tunnel experiment of a micro wind farm model

Bossuyt Juliaan; Meneveau Charles; Meyers Johan


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Bossuyt, J., Meneveau, C., &amp; Meyers, J. (2018). Effect of layout on asymptotic boundary layer regime in deep wind farms. Physical Review Fluids.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Bossuyt, J., Howland, M. F., Meneveau, C., &amp; Meyers, J. (2017). Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel. Experiments in Fluids, 58(1), 1. http://doi.org/10.1007/s00348-016-2278-6</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Bossuyt, J., Meneveau, C., &amp; Meyers, J. (2017). Wind farm power fluctuations and spatial sampling of turbulent boundary layers. Journal of Fluid Mechanics, 823, 329-344. http://doi.org/10.1017/jfm.2017.328</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">wind tunnel experiment, wind farm, porous disk, strain gage, layout</subfield>
  </datafield>
  <controlfield tag="005">20190409142238.0</controlfield>
  <controlfield tag="001">1467411</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Johns Hopkins University</subfield>
    <subfield code="0">(orcid)0000-0001-6947-3605</subfield>
    <subfield code="a">Meneveau Charles</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">KU Leuven</subfield>
    <subfield code="0">(orcid)0000-0002-2828-4397</subfield>
    <subfield code="a">Meyers Johan</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">261702864</subfield>
    <subfield code="z">md5:2b901a89e74ef8010dd586306d34892f</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C1_10.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">272341104</subfield>
    <subfield code="z">md5:4b9d56551174364a2d3f533a9ecc1520</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C1_11.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">148936944</subfield>
    <subfield code="z">md5:9ed83cd52832358b1aa2092a7619504a</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C1_1.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">693617424</subfield>
    <subfield code="z">md5:9800a778e0f4620200782915c35063a8</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C1_2.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">680851824</subfield>
    <subfield code="z">md5:8522cff30353a6c859782c1c1fb149d6</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C1_3.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">238298544</subfield>
    <subfield code="z">md5:6a1ac8199d1c56c7206dde3c96125a9e</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C1_4.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">191489904</subfield>
    <subfield code="z">md5:8126ba793ae94e072854f4427231dfc5</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C1_5.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">221277264</subfield>
    <subfield code="z">md5:729a17f2bd0d8032196036f3941740be</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C1_6.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">197872944</subfield>
    <subfield code="z">md5:c065714645ea38ff3617eb845c2b6f01</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C1_7.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">191489904</subfield>
    <subfield code="z">md5:df010a64170a4919bad03c9756f3674f</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C1_8.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">182979504</subfield>
    <subfield code="z">md5:984c6ec7a7e7bbef3c650e7262f29132</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C1_9.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">691490064</subfield>
    <subfield code="z">md5:53c36b62accbcdcafadece027ce9c159</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C2_1.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">188936784</subfield>
    <subfield code="z">md5:aa61ac08729ab29d179bfb4c288adeb0</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C2_2.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">171064464</subfield>
    <subfield code="z">md5:545b26713cb8415d90189aae81ba821d</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C2_3.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">255319824</subfield>
    <subfield code="z">md5:59083e036aab8c2c284d273ac5793635</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C2_4.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">234043344</subfield>
    <subfield code="z">md5:c450266fdba392ef35096daa4279f7c8</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C2_5.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">182979504</subfield>
    <subfield code="z">md5:a3355c891f5c593f3ad032b7f66f8207</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C2_6.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">212766384</subfield>
    <subfield code="z">md5:434c812df2a407f5bc6219a4d25ca223</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C2_7.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">234043344</subfield>
    <subfield code="z">md5:d0967748225a896c7de1357d337ec5fd</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU1_C2_8.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">170213424</subfield>
    <subfield code="z">md5:5f1cffeaaaedc2c2347a17ca4829ee2d</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C1_10.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">306383664</subfield>
    <subfield code="z">md5:92ad7d5513a475d21b166f8b3860d5cd</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C1_11.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">208511184</subfield>
    <subfield code="z">md5:2ad4c93218fb73a195b3015a9c372374</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C1_1.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">218724144</subfield>
    <subfield code="z">md5:73cef7d5bf07a098598b10dbea1fd5bb</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C1_2.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">185957904</subfield>
    <subfield code="z">md5:ce4c36393c6f15becb3a3fe5dbdc4be6</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C1_3.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">170213424</subfield>
    <subfield code="z">md5:bfd014311f286ffd3b19e51d834fe3d7</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C1_4.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">212766384</subfield>
    <subfield code="z">md5:b275866bf98486c895dd735bd749afb9</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C1_5.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">191489904</subfield>
    <subfield code="z">md5:c10f285960932c6c9d32ba2140d9201e</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C1_6.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">212766384</subfield>
    <subfield code="z">md5:5455ad376fc9a2abdc3dac8126d18926</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C1_7.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">251064624</subfield>
    <subfield code="z">md5:f92a10234923feb8751db31610ffe0fd</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C1_8.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">191489904</subfield>
    <subfield code="z">md5:df04f085abab3804bf39933f4e58a058</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C1_9.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">178723824</subfield>
    <subfield code="z">md5:c93a3097a33add6704cdff9b013ae082</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C2_1.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">178723824</subfield>
    <subfield code="z">md5:a16e04df84b2796b7c852737cfc31192</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C2_3.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">161702544</subfield>
    <subfield code="z">md5:00376cb7c6b275e330279308df4bbdc8</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C2_4.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">195745104</subfield>
    <subfield code="z">md5:acba6df4f214a009585b4159c8191c9f</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C2_5.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">170213424</subfield>
    <subfield code="z">md5:29b61d5fec8d315e406fc93c990d598b</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C2_6.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">202128144</subfield>
    <subfield code="z">md5:d51392a279f8a31f5495f23f37e06f64</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C2_7.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">170213424</subfield>
    <subfield code="z">md5:8caee33450c05acc6e31fa0f4f0421ff</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C3_1.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">171489744</subfield>
    <subfield code="z">md5:19818f1398f171dae0438af5a30fa3b3</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C3_2.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">223830384</subfield>
    <subfield code="z">md5:5d8f3d829b2af73b2258775a9c41378d</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C3_3.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">172341264</subfield>
    <subfield code="z">md5:4e7be45e427a0e313f58463e142201a8</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C3_4.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">187234704</subfield>
    <subfield code="z">md5:6d4786cf7bcf7febcb54be1e3f5b01ea</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C3_5.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">203404944</subfield>
    <subfield code="z">md5:2ae5eb9e9b892fd2b1fa206dafabcc27</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C3_6.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">127647024</subfield>
    <subfield code="z">md5:23ec2317b25653448f6ad3022373d836</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C1_1.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">127659984</subfield>
    <subfield code="z">md5:fb344c6643719271e1c3f6761e364033</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C1_2.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">170213424</subfield>
    <subfield code="z">md5:324d66e6798b614ac0b58c1ab36c2723</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C1_3.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">170213424</subfield>
    <subfield code="z">md5:84ee590b3190893e46927df311a3f1f9</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C1_4.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">148936944</subfield>
    <subfield code="z">md5:abe4adcff1a2455c15928c81c491fba6</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C1_5.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">340426224</subfield>
    <subfield code="z">md5:114f71f5d6d67f9120748e6bdfc76c63</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C1_6.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">170213424</subfield>
    <subfield code="z">md5:fb099ac8a07b4d153e9bb632896b4506</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C2_1.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">161702544</subfield>
    <subfield code="z">md5:4ca341743443f73e9fdc69aa2a5edc48</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C2_2.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">157447344</subfield>
    <subfield code="z">md5:f6841e928d2f598efe62607ed82f52ae</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C2_3.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">302979504</subfield>
    <subfield code="z">md5:0479c48968b475f83b469315f4577b3c</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C2_4.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">340426224</subfield>
    <subfield code="z">md5:9bcbdf6a4c8a81db001f04f5a84985c5</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C2_5.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">447660144</subfield>
    <subfield code="z">md5:26aa14717521f55d410c98c5ed365d3f</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C2_6.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">340426224</subfield>
    <subfield code="z">md5:3521e5748e0fcba8cb3d4fb268c8479e</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/U_C2_7.h5</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">157447344</subfield>
    <subfield code="z">md5:2e5b878748b2512f00d9d47aec97bd2f</subfield>
    <subfield code="u">https://zenodo.org/record/1467411/files/NU2_C2_2.h5</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-10-19</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="p">user-wind_energy</subfield>
    <subfield code="o">oai:zenodo.org:1467411</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">KU Leuven</subfield>
    <subfield code="0">(orcid)0000-0001-8787-1877</subfield>
    <subfield code="a">Bossuyt Juliaan</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Wind tunnel experiment of a micro wind farm model</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-wind_energy</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">306471</subfield>
    <subfield code="a">Active Wind Farms: Optimization and Control of Atmospheric Energy Extraction in Gigawatt Wind Farms</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">1243482</subfield>
    <subfield code="a">PIRE: USA/Europe Partnership for Integrated Research and Education in Wind Energy Intermittency: From Wind Farm Turbulence to Economic Management</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by-nc/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Simultaneous strain gage measurements of sixty porous disk models, in a scaled wind farm with one hundred models, and for fifty-six different layouts.&amp;nbsp;&lt;/p&gt;

&lt;p&gt;For detailed information about the experimental setup and wind farm layouts see:&amp;nbsp;&lt;/p&gt;

&lt;p&gt;Bossuyt, J., Meneveau, C., &amp;amp; Meyers, J. (2018). Effect of layout on asymptotic boundary layer regime in deep wind farms. &lt;em&gt;Physical Review Fluids. See also:&lt;/em&gt;&amp;nbsp;https://arxiv.org/abs/1808.09579 .&lt;/p&gt;

&lt;p&gt;For more information about the experimental design of the porous disk models, see also:&lt;/p&gt;

&lt;p&gt;Bossuyt, J., Howland, M. F., Meneveau, C., &amp;amp; Meyers, J. (2017). Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel.&amp;nbsp;&lt;em&gt;Experiments in Fluids&lt;/em&gt;,&amp;nbsp;&lt;em&gt;58&lt;/em&gt;(1), 1.&amp;nbsp;http://doi.org/10.1007/s00348-016-2278-6&lt;/p&gt;

&lt;p&gt;&amp;nbsp;Bossuyt, J., Meneveau, C., &amp;amp; Meyers, J. (2017). Wind farm power fluctuations and spatial sampling of turbulent boundary layers.&amp;nbsp;&lt;em&gt;Journal of Fluid Mechanics&lt;/em&gt;,&amp;nbsp;&lt;em&gt;823&lt;/em&gt;, 329-344.&amp;nbsp;http://doi.org/10.1017/jfm.2017.328&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;The data contains matrices &amp;#39;WF_U&amp;#39;, &amp;#39;x&amp;#39;, and &amp;#39;y&amp;#39;, and variable &amp;#39;fs&amp;#39; for each layout.&amp;nbsp;&lt;br&gt;
The matrix &amp;#39;WF_U&amp;#39; contains the reconstructed velocity signal in m/s measured by each porous disk, and has size ( 20 , 3 , number of time samples), with 20 the number of porous disk rows, and 3 the number of streamwise aligned porous disk columns in the wind farm. Matrices &amp;#39;x&amp;#39;, and &amp;#39;y&amp;#39; have size (20,3) and contain the locations of each instrumented porous disk in units of disk diameter D = 0.03m. It is important to note that the wind farm has one extra column of non-instrumented porous disk models on each side, for a total of 20x5=100 porous disk models.The variable &amp;#39;fs&amp;#39; contains the sampling frequency in Hz, at which all 60 porous disks are simultaneously sampled.&lt;/p&gt;

&lt;p&gt;--------------------------------------------------------&lt;br&gt;
Example code to load data in Matlab :&lt;br&gt;
--------------------------------------------------------&lt;br&gt;
filename = &amp;nbsp;&amp;#39;U_C1_1.h5&amp;#39;;&lt;br&gt;
fileID = H5F.open(filename,&amp;#39;H5F_ACC_RDONLY&amp;#39;,&amp;#39;H5P_DEFAULT&amp;#39;);&lt;/p&gt;

&lt;p&gt;datasetID = H5D.open(fileID,&amp;#39;WF_U&amp;#39;);&lt;br&gt;
WF_U = H5D.read(datasetID,&amp;#39;H5ML_DEFAULT&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5P_DEFAULT&amp;#39;);&lt;br&gt;
H5D.close(datasetID);&lt;/p&gt;

&lt;p&gt;datasetID = H5D.open(fileID,&amp;#39;fs&amp;#39;);&lt;br&gt;
fs = H5D.read(datasetID,&amp;#39;H5ML_DEFAULT&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5P_DEFAULT&amp;#39;);&lt;br&gt;
H5D.close(datasetID);&lt;/p&gt;

&lt;p&gt;datasetID = H5D.open(fileID,&amp;#39;x&amp;#39;);&lt;br&gt;
x = H5D.read(datasetID,&amp;#39;H5ML_DEFAULT&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5P_DEFAULT&amp;#39;);&lt;br&gt;
H5D.close(datasetID);&lt;/p&gt;

&lt;p&gt;datasetID = H5D.open(fileID,&amp;#39;y&amp;#39;);&lt;br&gt;
y = H5D.read(datasetID,&amp;#39;H5ML_DEFAULT&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5P_DEFAULT&amp;#39;);&lt;br&gt;
H5D.close(datasetID);&lt;/p&gt;

&lt;p&gt;H5F.close(fileID);&lt;/p&gt;

&lt;p&gt;--------------------------------------------------------&lt;br&gt;
Example code to load data in Python:&lt;br&gt;
--------------------------------------------------------&lt;br&gt;
import h5py&lt;br&gt;
filename = &amp;#39;U_C1_1.h5&amp;#39;&lt;br&gt;
f = h5py.File(filename, &amp;#39;r&amp;#39;)&lt;/p&gt;

&lt;p&gt;U = f[&amp;#39;WF_U&amp;#39;][()]&lt;br&gt;
x = f[&amp;#39;x&amp;#39;][()]&lt;br&gt;
y = f[&amp;#39;y&amp;#39;][()]&lt;br&gt;
fs = f[&amp;#39;fs&amp;#39;][0][0]&lt;br&gt;
f.close()&lt;/p&gt;

&lt;p&gt;--------------------------------------------------------&lt;br&gt;
Example code to generate figures 15 and 16 of Bossuyt et al. (2018). Effect of layout on asymptotic boundary layer regime in deep wind farms. Physical Review Fluids, in Matlab&lt;br&gt;
--------------------------------------------------------&lt;br&gt;
WF_cases_selected = 1:7;&lt;/p&gt;

&lt;p&gt;folder = &amp;#39;/&amp;#39;;% folder with files&lt;/p&gt;

&lt;p&gt;WF_cases_l = {&amp;#39;U_C1&amp;#39;;&amp;#39;U_C2&amp;#39;;&amp;#39;NU1_C1&amp;#39;;&amp;#39;NU1_C2&amp;#39;;&amp;#39;NU2_C1&amp;#39;;&amp;#39;NU2_C2&amp;#39;;&amp;#39;NU2_C3&amp;#39;};% name of layout variations&lt;br&gt;
WF_cases_n = [6, 7, 11, 8, 11, 7, 6]; % &amp;#39;number of layout variations for each case&lt;/p&gt;

&lt;p&gt;WF_data.x = cell( length(WF_cases_selected) , 1);% x - coordinates of porous disk locations&lt;br&gt;
WF_data.y = cell( length(WF_cases_selected) , 1);% y - coordinates of porous disk locations&lt;br&gt;
WF_data.shift = cell( length(WF_cases_selected) , 1);% spanwise shift of layout series&lt;br&gt;
WF_data.fs = cell( length(WF_cases_selected) , 1);&lt;br&gt;
WF_data.WF_Pm = cell( length(WF_cases_selected) , 1);&lt;br&gt;
WF_data.WF_Um = cell( length(WF_cases_selected) , 1);&lt;br&gt;
WF_data.WF_U_rms = cell( length(WF_cases_selected) , 1);&lt;/p&gt;

&lt;p&gt;&lt;br&gt;
for i = 1 : length(WF_cases_selected)&lt;br&gt;
&amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data_case = struct;&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data_case.x = &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;cell( WF_cases_n(i) , 1);&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data_case.y = &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;cell( WF_cases_n(i) , 1);&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data_case.shift = &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;cell( WF_cases_n(i) , 1);&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data_case.fs = &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; cell( WF_cases_n(i) , 1);&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data_case.WF_Pm = &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;cell( WF_cases_n(i) , 1);&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data_case.WF_Um = &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;cell( WF_cases_n(i) , 1);&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data_case.WF_U_rms = &amp;nbsp; &amp;nbsp; &amp;nbsp; cell( WF_cases_n(i) , 1);&lt;br&gt;
&amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = 1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; clc&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; i&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; j&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; WF_data_var = struct;&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; %read the file&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; filename = [folder WF_cases_l{i} &amp;#39;_&amp;#39; num2str(j) &amp;#39;.h5&amp;#39;];&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; fileID = H5F.open(filename,&amp;#39;H5F_ACC_RDONLY&amp;#39;,&amp;#39;H5P_DEFAULT&amp;#39;);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; datasetID = H5D.open(fileID,&amp;#39;WF_U&amp;#39;);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; WF_data_var.WF_U = H5D.read(datasetID,&amp;#39;H5ML_DEFAULT&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5P_DEFAULT&amp;#39;);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; H5D.close(datasetID);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; datasetID = H5D.open(fileID,&amp;#39;fs&amp;#39;);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; WF_data_case.fs{j} = H5D.read(datasetID,&amp;#39;H5ML_DEFAULT&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5P_DEFAULT&amp;#39;);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; H5D.close(datasetID);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; datasetID = H5D.open(fileID,&amp;#39;x&amp;#39;);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; WF_data_case.x{j} = H5D.read(datasetID,&amp;#39;H5ML_DEFAULT&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5P_DEFAULT&amp;#39;);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; H5D.close(datasetID);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; datasetID = H5D.open(fileID,&amp;#39;y&amp;#39;);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; WF_data_case.y{j} = H5D.read(datasetID,&amp;#39;H5ML_DEFAULT&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5S_ALL&amp;#39;,&amp;#39;H5P_DEFAULT&amp;#39;);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; H5D.close(datasetID);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; H5F.close(fileID);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; WF_data_var.WF_P = WF_data_var.WF_U.^3;&lt;/p&gt;

&lt;p&gt;&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; % Time averaged power&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; WF_data_case.WF_Pm{j} = mean(WF_data_var.WF_P,3);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; % normalize by power in first row: Pi/P1&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; WF_data_case.WF_Pm{j} = WF_data_case.WF_Pm{j}./mean(WF_data_case.WF_Pm{j}(1,:));&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; % Time averaged velocity&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; WF_data_case.WF_Um{j} = mean(WF_data_var.WF_U,3);&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; % u_rms --&amp;gt; TI&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; WF_data_case.WF_U_rms{j} = std(WF_data_var.WF_U,[],3);&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
&amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data.x{i} &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;= WF_data_case.x;&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data.y{i} &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;= WF_data_case.y;&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data.fs{i} &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; = WF_data_case.fs;&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data.WF_Pm{i} &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;= WF_data_case.WF_Pm;&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data.WF_Um{i} &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;= WF_data_case.WF_Um;&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data.WF_U_rms{i} &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; = WF_data_case.WF_U_rms;&lt;br&gt;
&amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; %determine spanwise shift for plot legends&lt;br&gt;
&amp;nbsp; &amp;nbsp; tmp1 = WF_data.y{i}{j-1};&lt;br&gt;
&amp;nbsp; &amp;nbsp; tmp2 = WF_data.y{i}{j};&lt;br&gt;
&amp;nbsp; &amp;nbsp; dy = diff( [tmp1(:,1) &amp;nbsp;tmp2(:,1)] ,1,2);&lt;br&gt;
&amp;nbsp; &amp;nbsp; dy = max(dy(abs(dy)&amp;gt;0));&lt;br&gt;
&amp;nbsp; &amp;nbsp; WF_data.shift{i} &amp;nbsp; = 0:dy:(WF_cases_n(i)-1)*dy;&lt;br&gt;
&amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;br&gt;
end&lt;/p&gt;

&lt;p&gt;%%&lt;br&gt;
line_tick = {&amp;#39;o-&amp;#39;,&amp;#39;*-&amp;#39;,&amp;#39;+-&amp;#39;,&amp;#39;d-&amp;#39;,&amp;#39;s-&amp;#39;,&amp;#39;^-&amp;#39;,&amp;#39;v-&amp;#39;,&amp;#39;&amp;lt;-&amp;#39;,&amp;#39;&amp;gt;-&amp;#39;,&amp;#39;p-&amp;#39;,&amp;#39;h-&amp;#39;};&lt;br&gt;
line_color = [51,160,44; 141,211,199; 31,120,180; 106,61,154; 227,26,28; 177,89,40; 255,127,0; 166,206,227]./255;&lt;/p&gt;

&lt;p&gt;legend_items = cell(size(WF_cases_selected));&lt;br&gt;
for i = 1:length(legend_items)&lt;br&gt;
&amp;nbsp; &amp;nbsp; legend_items{i} = strrep(WF_cases_l{i},&amp;#39;_&amp;#39;,&amp;#39;-&amp;#39;);&lt;br&gt;
end&lt;/p&gt;

&lt;p&gt;%% average power entire farm&lt;br&gt;
row_start = 1;&lt;br&gt;
row_end = 19;&lt;br&gt;
f1 = figure;&lt;br&gt;
set(gcf,&amp;#39;paperposition&amp;#39;,[0,0,8.4,4.9])&lt;br&gt;
hold on&lt;/p&gt;

&lt;p&gt;for i = 1 : length(WF_cases_selected)&lt;br&gt;
&amp;nbsp; &amp;nbsp; tmp_P = zeros(size(WF_data.shift{i}));&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = &amp;nbsp;1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; tmp_P(j) = mean(mean( WF_data.WF_Pm{i}{j}(row_start:row_end,:)));&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
&amp;nbsp; &amp;nbsp; plot( WF_data.shift{i} , tmp_P, line_tick{i} ,&amp;#39;Color&amp;#39;, line_color(i,:) ,&amp;#39;MarkerFaceColor&amp;#39;, line_color(i,:) )&lt;br&gt;
end&lt;/p&gt;

&lt;p&gt;% manualy plot errorbars&lt;br&gt;
for i = 1:length(WF_cases_selected)&lt;br&gt;
&amp;nbsp; &amp;nbsp; tmp_P = zeros(size(WF_data.shift{i}));&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = &amp;nbsp;1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; tmp_P(j) = mean(mean( WF_data.WF_Pm{i}{j}(row_start:row_end,:)));&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
&amp;nbsp; &amp;nbsp; px = WF_data.shift{i} ;&lt;br&gt;
&amp;nbsp; &amp;nbsp; py = tmp_P;&lt;br&gt;
&amp;nbsp; &amp;nbsp; pw = 0.05;&lt;br&gt;
&amp;nbsp; &amp;nbsp; pe = zeros(size(px))+0.01;%for uncertainty value see Bossuyt et al. (2018) Physical Review Fluids.&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = &amp;nbsp;1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; plot( &amp;nbsp;[px(j)-pw/2 &amp;nbsp;px(j)+pw/2] , [py(j)+pe(j) &amp;nbsp;py(j)+pe(j)],&amp;#39;-&amp;#39;, &amp;#39;Color&amp;#39;, line_color(i,:),&amp;#39;LineWidth&amp;#39;,0.5)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; plot( &amp;nbsp;[px(j)-pw/2 &amp;nbsp;px(j)+pw/2] , [py(j)-pe(j) &amp;nbsp;py(j)-pe(j)],&amp;#39;-&amp;#39;, &amp;#39;Color&amp;#39;, line_color(i,:),&amp;#39;LineWidth&amp;#39;,0.5)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; plot( &amp;nbsp;[px(j) &amp;nbsp;px(j)],[py(j)-pe(j) &amp;nbsp;py(j)+pe(j)],&amp;#39;:&amp;#39;, &amp;#39;Color&amp;#39;, line_color(i,:),&amp;#39;LineWidth&amp;#39;,0.5)&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
end&lt;br&gt;
xlabel(&amp;#39;\Delta_y [D]&amp;#39;)&lt;br&gt;
ylabel(&amp;#39;$\langle P_i &amp;nbsp;/P_1\rangle_{1}^{19}$&amp;#39;,&amp;#39;Interpreter&amp;#39;,&amp;#39;Latex&amp;#39;)&lt;br&gt;
box(&amp;#39;on&amp;#39;)&lt;br&gt;
ylim([0.35 0.66])&lt;br&gt;
xlim([-0.1 2.6])&lt;br&gt;
legend1 = legend(legend_items&amp;#39;);&lt;br&gt;
set(legend1,&amp;#39;Location&amp;#39;,&amp;#39;southeast&amp;#39;);&lt;br&gt;
print(f1, &amp;#39;WF_Pm_all&amp;#39;,&amp;#39;-dpng&amp;#39;,&amp;#39;-r300&amp;#39;)&lt;/p&gt;

&lt;p&gt;%% &amp;nbsp;average power end of farm&lt;br&gt;
row_start = 16;&lt;br&gt;
row_end = 19;&lt;br&gt;
f2 = figure;&lt;br&gt;
set(gcf,&amp;#39;paperposition&amp;#39;,[0,0,8.4,4.9])&lt;br&gt;
hold on&lt;/p&gt;

&lt;p&gt;for i = 1 : length(WF_cases_selected)&lt;br&gt;
&amp;nbsp; &amp;nbsp; tmp_P = zeros(size(WF_data.shift{i}));&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = &amp;nbsp;1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; tmp_P(j) = mean(mean( WF_data.WF_Pm{i}{j}(row_start:row_end,:)));&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
&amp;nbsp; &amp;nbsp; plot( WF_data.shift{i} , tmp_P, line_tick{i} ,&amp;#39;Color&amp;#39;, line_color(i,:) ,&amp;#39;MarkerFaceColor&amp;#39;, line_color(i,:) )&lt;br&gt;
end&lt;/p&gt;

&lt;p&gt;% manualy plot errorbars&lt;br&gt;
for i = 1:length(WF_cases_selected)&lt;br&gt;
&amp;nbsp; &amp;nbsp; tmp_P = zeros(size(WF_data.shift{i}));&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = &amp;nbsp;1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; tmp_P(j) = mean(mean( WF_data.WF_Pm{i}{j}(row_start:row_end,:)));&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
&amp;nbsp; &amp;nbsp; px = WF_data.shift{i} ;&lt;br&gt;
&amp;nbsp; &amp;nbsp; py = tmp_P;&lt;br&gt;
&amp;nbsp; &amp;nbsp; pw = 0.05;&lt;br&gt;
&amp;nbsp; &amp;nbsp; pe = zeros(size(px))+0.02; %for uncertainty value see Bossuyt et al. (2018) Physical Review Fluids.&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = &amp;nbsp;1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; plot( &amp;nbsp;[px(j)-pw/2 &amp;nbsp;px(j)+pw/2] , [py(j)+pe(j) &amp;nbsp;py(j)+pe(j)],&amp;#39;-&amp;#39;, &amp;#39;Color&amp;#39;, line_color(i,:),&amp;#39;LineWidth&amp;#39;,0.5)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; plot( &amp;nbsp;[px(j)-pw/2 &amp;nbsp;px(j)+pw/2] , [py(j)-pe(j) &amp;nbsp;py(j)-pe(j)],&amp;#39;-&amp;#39;, &amp;#39;Color&amp;#39;, line_color(i,:),&amp;#39;LineWidth&amp;#39;,0.5)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; plot( &amp;nbsp;[px(j) &amp;nbsp;px(j)],[py(j)-pe(j) &amp;nbsp;py(j)+pe(j)],&amp;#39;:&amp;#39;, &amp;#39;Color&amp;#39;, line_color(i,:),&amp;#39;LineWidth&amp;#39;,0.5)&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
end&lt;br&gt;
xlabel(&amp;#39;\Delta_y [D]&amp;#39;)&lt;br&gt;
ylabel(&amp;#39;$\langle P_i &amp;nbsp;/P_1\rangle_{16}^{19}$&amp;#39;,&amp;#39;Interpreter&amp;#39;,&amp;#39;Latex&amp;#39;)&lt;br&gt;
box(&amp;#39;on&amp;#39;)&lt;br&gt;
ylim([0.27 0.52])&lt;br&gt;
xlim([-0.1 2.6])&lt;br&gt;
legend1 = legend(legend_items&amp;#39;);&lt;br&gt;
set(legend1,&amp;#39;Location&amp;#39;,&amp;#39;southeast&amp;#39;);&lt;br&gt;
print(f2, &amp;#39;WF_Pm_end&amp;#39;, &amp;#39;-dpng&amp;#39;,&amp;#39;-r300&amp;#39;)&lt;/p&gt;

&lt;p&gt;%% plot average unsteady loading total farm&lt;br&gt;
row_start = 1;&lt;br&gt;
row_end = 19;&lt;br&gt;
f3 = figure;&lt;br&gt;
set(gcf,&amp;#39;paperposition&amp;#39;,[0,0,8.4,4.9])&lt;br&gt;
hold on&lt;br&gt;
for i = 1 : length(WF_cases_selected)&lt;br&gt;
&amp;nbsp; &amp;nbsp; tmp_TI = zeros(size(WF_data.shift{i}));&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = &amp;nbsp;1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; tmp_TI(j) = &amp;nbsp;mean(mean(WF_data.WF_U_rms{i}{j}(row_start:row_end,:)./WF_data.WF_Um{i}{j}(row_start:row_end,:)))*100;&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
&amp;nbsp; &amp;nbsp; plot( WF_data.shift{i} , tmp_TI , line_tick{i} ,&amp;#39;Color&amp;#39;, line_color(i,:) &amp;nbsp;,&amp;#39;MarkerFaceColor&amp;#39;, line_color(i,:))&lt;br&gt;
end&lt;/p&gt;

&lt;p&gt;% manualy plot errorbars&lt;br&gt;
for i = 1:length(WF_cases_selected)&lt;br&gt;
&amp;nbsp; &amp;nbsp; tmp_TI = zeros(size(WF_data.shift{i}));&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = &amp;nbsp;1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; tmp_TI(j) = &amp;nbsp;mean(mean(WF_data.WF_U_rms{i}{j}(row_start:row_end,:)./WF_data.WF_Um{i}{j}(row_start:row_end,:)))*100;&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
&amp;nbsp; &amp;nbsp; px = WF_data.shift{i} ;&lt;br&gt;
&amp;nbsp; &amp;nbsp; py = tmp_TI;&lt;br&gt;
&amp;nbsp; &amp;nbsp; pw = 0.05;&lt;br&gt;
&amp;nbsp; &amp;nbsp; pe = zeros(size(px))+ 0.004*tmp_TI;%for uncertainty value see Bossuyt et al. (2018) Physical Review Fluids.&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = &amp;nbsp;1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; plot( &amp;nbsp;[px(j)-pw/2 &amp;nbsp;px(j)+pw/2] , [py(j)+pe(j) &amp;nbsp;py(j)+pe(j)],&amp;#39;-&amp;#39;, &amp;#39;Color&amp;#39;, line_color(i,:),&amp;#39;LineWidth&amp;#39;,0.5)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; plot( &amp;nbsp;[px(j)-pw/2 &amp;nbsp;px(j)+pw/2] , [py(j)-pe(j) &amp;nbsp;py(j)-pe(j)],&amp;#39;-&amp;#39;, &amp;#39;Color&amp;#39;, line_color(i,:),&amp;#39;LineWidth&amp;#39;,0.5)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; plot( &amp;nbsp;[px(j) &amp;nbsp;px(j)],[py(j)-pe(j) &amp;nbsp;py(j)+pe(j)],&amp;#39;:&amp;#39;, &amp;#39;Color&amp;#39;, line_color(i,:),&amp;#39;LineWidth&amp;#39;,0.5)&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
end&lt;br&gt;
xlabel(&amp;#39;\Delta_y [D]&amp;#39;)&lt;br&gt;
ylabel(&amp;#39;$ \langle TI \rangle_{1}^{19} [\%]$&amp;#39;,&amp;#39;Interpreter&amp;#39;,&amp;#39;Latex&amp;#39;)&lt;br&gt;
box(&amp;#39;on&amp;#39;)&lt;br&gt;
xlim([-0.1 2.6])&lt;br&gt;
legend1 = legend(legend_items&amp;#39;);&lt;br&gt;
set(legend1,&amp;#39;Location&amp;#39;,&amp;#39;northeast&amp;#39;);&lt;br&gt;
print(f3, &amp;#39;WF_TI_all&amp;#39;,&amp;#39;-dpng&amp;#39;,&amp;#39;-r300&amp;#39;)&lt;/p&gt;

&lt;p&gt;%% plot average unsteady loading end of farm&lt;br&gt;
row_start = 16;&lt;br&gt;
row_end = 19;&lt;br&gt;
f4 = figure;&lt;br&gt;
set(gcf,&amp;#39;paperposition&amp;#39;,[0,0,8.4,4.9])&lt;br&gt;
hold on&lt;br&gt;
for i = 1 : length(WF_cases_selected)&lt;br&gt;
&amp;nbsp; &amp;nbsp; tmp_TI = zeros(size(WF_data.shift{i}));&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = &amp;nbsp;1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; tmp_TI(j) = &amp;nbsp;mean(mean(WF_data.WF_U_rms{i}{j}(row_start:row_end,:)./WF_data.WF_Um{i}{j}(row_start:row_end,:)))*100;&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
&amp;nbsp; &amp;nbsp; plot( WF_data.shift{i} , tmp_TI , line_tick{i} ,&amp;#39;Color&amp;#39;, line_color(i,:) &amp;nbsp;,&amp;#39;MarkerFaceColor&amp;#39;, line_color(i,:))&lt;br&gt;
end&lt;/p&gt;

&lt;p&gt;% manualy plot errorbars&lt;br&gt;
for i = 1:length(WF_cases_selected)&lt;br&gt;
&amp;nbsp; &amp;nbsp; tmp_TI = zeros(size(WF_data.shift{i}));&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = &amp;nbsp;1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; tmp_TI(j) = &amp;nbsp;mean(mean(WF_data.WF_U_rms{i}{j}(row_start:row_end,:)./WF_data.WF_Um{i}{j}(row_start:row_end,:)))*100;&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
&amp;nbsp; &amp;nbsp; px = WF_data.shift{i} ;&lt;br&gt;
&amp;nbsp; &amp;nbsp; py = tmp_TI;&lt;br&gt;
&amp;nbsp; &amp;nbsp; pw = 0.05;&lt;br&gt;
&amp;nbsp; &amp;nbsp; pe = zeros(size(px))+ 0.01*tmp_TI;%for uncertainty value see Bossuyt et al. (2018) Physical Review Fluids.&amp;nbsp;&lt;br&gt;
&amp;nbsp; &amp;nbsp; for j = &amp;nbsp;1:WF_cases_n(i)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; plot( &amp;nbsp;[px(j)-pw/2 &amp;nbsp;px(j)+pw/2] , [py(j)+pe(j) &amp;nbsp;py(j)+pe(j)],&amp;#39;-&amp;#39;, &amp;#39;Color&amp;#39;, line_color(i,:),&amp;#39;LineWidth&amp;#39;,0.5)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; plot( &amp;nbsp;[px(j)-pw/2 &amp;nbsp;px(j)+pw/2] , [py(j)-pe(j) &amp;nbsp;py(j)-pe(j)],&amp;#39;-&amp;#39;, &amp;#39;Color&amp;#39;, line_color(i,:),&amp;#39;LineWidth&amp;#39;,0.5)&lt;br&gt;
&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; plot( &amp;nbsp;[px(j) &amp;nbsp;px(j)],[py(j)-pe(j) &amp;nbsp;py(j)+pe(j)],&amp;#39;:&amp;#39;, &amp;#39;Color&amp;#39;, line_color(i,:),&amp;#39;LineWidth&amp;#39;,0.5)&lt;br&gt;
&amp;nbsp; &amp;nbsp; end&lt;br&gt;
end&lt;br&gt;
xlabel(&amp;#39;\Delta_y [D]&amp;#39;)&lt;br&gt;
ylabel(&amp;#39;$ \langle TI \rangle_{16}^{19} [\%]$&amp;#39;,&amp;#39;Interpreter&amp;#39;,&amp;#39;Latex&amp;#39;)&lt;br&gt;
box(&amp;#39;on&amp;#39;)&lt;br&gt;
xlim([-0.1 2.6])&lt;br&gt;
legend1 = legend(legend_items&amp;#39;);&lt;br&gt;
set(legend1,&amp;#39;Location&amp;#39;,&amp;#39;northeast&amp;#39;);&lt;br&gt;
print(f4, &amp;#39;WF_TI_end&amp;#39;,&amp;#39;-dpng&amp;#39;,&amp;#39;-r300&amp;#39;)&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1467410</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1467411</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
266
279
views
downloads
All versions This version
Views 266266
Downloads 279279
Data volume 66.8 GB66.8 GB
Unique views 244244
Unique downloads 2525

Share

Cite as