There is a newer version of this record available.

Dataset Open Access

Nbody 3D Histograms dataset

Janis Fluri; Nathanael Perraudin

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>Janis Fluri</dc:creator>
  <dc:creator>Nathanael Perraudin</dc:creator>
This is the N-body simulations 3D images dataset used in the following paper:
Scalable Generative Adversarial Networks for Multi-dimensional Images
Ankit Srivastava, Nathanaël Perraudin, Aurelien Lucchi, Tomasz Kacprzak, Thomas Hofmann, Alexandre Refregier, Adam Amara

  title = {Cosmological N-body simulations: a challenge for scalable generative models},
  author = {Nathana\"el, Perraudin and Ankit, Srivastava and Kacprzak, Tomasz and Lucchi, Aurelien and Hofmann, Thomas and R{\'e}fr{\'e}gier, Alexandre},
  year = {2019},
  archivePrefix = {arXiv},
  eprint = {1908.05519},
  url = {},

The dataset does not contain the Nbody simulations as they have a very large size. Instead, we sliced the space into 256 x 256 x 256 cubical areas and counted the number of particules in each area. The result are 3D histograms, where the number of particles is a proxy for matter density.

If you work with this dataset, you might be interested in this code as well

Note that a the same Nbody simulation were used in this paper, but with a different way of building the histogram.
Fast Cosmic Web Simulations with Generative Adversarial Networks
Andres C Rodriguez, Tomasz Kacprzak, Aurelien Lucchi, Adam Amara, Raphael Sgier, Janis Fluri, Thomas Hofmann, Alexandre Réfrégier

N-body simulation evolves a cosmological matter distribution over time, starting from soon after the big bang.
It represents matter density distribution as a finite set of massive particles, typically order of trillions.
The positions of these particles are modified due to gravitational forces and expansion of the cosmological volume due to cosmic acceleration.
N-body simulations use periodic boundary condition, where particles leaving the volume on one face enter it back from the opposite side.

## Short description of the data generation from Rordiguez et al. 2018:

We created N-body simulations of cosmic structures in boxes of size 100 Mpc and 500 Mpc with 512^3 and 1,024^3 particles respectively.
We used L-PICOLA [21] to create 10 and 30 independent simulation boxes for both box sizes.
The cosmological model used was ΛCDM (Cold Dark Matter) with Hubble constant H0 = 100, h = 70 km s−1 Mpc−1,
dark energy density Omega_Lambda = 0.72 and matter density Omega_m = 0.28.
We used the particle distribution at redshift z = 0.

For additional information, please check the</dc:description>
  <dc:title>Nbody 3D Histograms dataset</dc:title>
All versions This version
Views 258171
Downloads 14774
Data volume 78.2 GB41.7 GB
Unique views 236164
Unique downloads 8349


Cite as