There is a newer version of this record available.

Dataset Open Access

Nbody 3D Histograms dataset

Janis Fluri; Nathanael Perraudin


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1464832</identifier>
  <creators>
    <creator>
      <creatorName>Janis Fluri</creatorName>
      <affiliation>Cosmology Research Group - ETHZ</affiliation>
    </creator>
    <creator>
      <creatorName>Nathanael Perraudin</creatorName>
      <affiliation>Swiss Data Science Center - ETHZ</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Nbody 3D Histograms dataset</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <dates>
    <date dateType="Issued">2018-10-17</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1464832</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1464831</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;&lt;br&gt;
This is the N-body simulations 3D images dataset used in the following paper:&lt;br&gt;
&lt;strong&gt;Scalable Generative Adversarial Networks for Multi-dimensional Images&lt;/strong&gt;&lt;br&gt;
&lt;em&gt;Ankit Srivastava, Nathana&amp;euml;l Perraudin, Aurelien Lucchi, Tomasz Kacprzak, Thomas Hofmann, Alexandre Refregier, Adam Amara&lt;/em&gt;&lt;br&gt;
&lt;a href="https://arxiv.org/abs/1908.05519"&gt;https://arxiv.org/abs/1908.05519&lt;/a&gt;&lt;/p&gt;

&lt;blockquote&gt;
&lt;p&gt;@inproceedings{perraudin2019cosmological,&lt;br&gt;
&amp;nbsp; title = {Cosmological N-body simulations: a challenge for scalable generative models},&lt;br&gt;
&amp;nbsp; author = {Nathana\&amp;quot;el, Perraudin and Ankit, Srivastava and Kacprzak, Tomasz and Lucchi, Aurelien and Hofmann, Thomas and R{\&amp;#39;e}fr{\&amp;#39;e}gier, Alexandre},&lt;br&gt;
&amp;nbsp; year = {2019},&lt;br&gt;
&amp;nbsp; archivePrefix = {arXiv},&lt;br&gt;
&amp;nbsp; eprint = {1908.05519},&lt;br&gt;
&amp;nbsp; url = {https://arxiv.org/abs/1908.05519},&lt;br&gt;
}&lt;/p&gt;
&lt;/blockquote&gt;

&lt;p&gt;The dataset does not contain the Nbody simulations as they have a very large size. Instead, we sliced the space into 256 x 256 x 256 cubical areas and counted the number of particules in each area. The result are 3D histograms, where the number of particles is a proxy for matter density.&lt;/p&gt;

&lt;p&gt;If you work with this dataset, you might be interested in this code as well &lt;a href="https://github.com/nperraud/3DcosmoGAN"&gt;https://github.com/nperraud/3DcosmoGAN&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;Note that a the same Nbody simulation were used in this paper, but with a different way of building the histogram.&lt;br&gt;
&lt;strong&gt;Fast Cosmic Web Simulations with Generative Adversarial Networks&lt;/strong&gt;&lt;br&gt;
&lt;em&gt;Andres C Rodriguez, Tomasz Kacprzak, Aurelien Lucchi, Adam Amara, Raphael Sgier, Janis Fluri, Thomas Hofmann, Alexandre R&amp;eacute;fr&amp;eacute;gier&lt;/em&gt;&lt;br&gt;
&lt;a href="https://arxiv.org/abs/1801.09070v1"&gt;https://arxiv.org/abs/1801.09070v1&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;&lt;br&gt;
N-body simulation evolves a cosmological matter distribution over time, starting from soon after the big bang.&lt;br&gt;
It represents matter density distribution as a finite set of massive particles, typically order of trillions.&lt;br&gt;
The positions of these particles are modified due to gravitational forces and expansion of the cosmological volume due to cosmic acceleration.&lt;br&gt;
N-body simulations use periodic boundary condition, where particles leaving the volume on one face enter it back from the opposite side.&lt;/p&gt;

&lt;p&gt;## Short description of the data generation from Rordiguez et al. 2018:&lt;/p&gt;

&lt;p&gt;We created N-body simulations of cosmic structures in boxes of size 100 Mpc and 500 Mpc with 512^3 and 1,024^3 particles respectively.&lt;br&gt;
We used L-PICOLA [21] to create 10 and 30 independent simulation boxes for both box sizes.&lt;br&gt;
The cosmological model used was &amp;Lambda;CDM (Cold Dark Matter) with Hubble constant H0 = 100, h = 70 km s&amp;minus;1 Mpc&amp;minus;1,&lt;br&gt;
dark energy density Omega_Lambda = 0.72 and matter density Omega_m = 0.28.&lt;br&gt;
We used the particle distribution at redshift z = 0.&lt;/p&gt;

&lt;p&gt;&lt;br&gt;
For additional information, please check the README.md&lt;/p&gt;</description>
  </descriptions>
</resource>
158
103
views
downloads
All versions This version
Views 158103
Downloads 10356
Data volume 57.8 GB34.0 GB
Unique views 14497
Unique downloads 5636

Share

Cite as