Conference paper Open Access

Qualitative and quantitative validation of drone detection systems

Doroftei, Daniela; De Cubber, Geert


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1462586</identifier>
  <creators>
    <creator>
      <creatorName>Doroftei, Daniela</creatorName>
      <givenName>Daniela</givenName>
      <familyName>Doroftei</familyName>
      <affiliation>Royal Miitary Academy</affiliation>
    </creator>
    <creator>
      <creatorName>De Cubber, Geert</creatorName>
      <givenName>Geert</givenName>
      <familyName>De Cubber</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-7772-0258</nameIdentifier>
      <affiliation>Royal Military Academy</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Qualitative and quantitative validation of drone detection systems</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Unmanned Aerial Vehicles</subject>
    <subject>Drones</subject>
    <subject>Detection systems</subject>
    <subject>Drone detection</subject>
    <subject>Test and evaluation methods</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-09-27</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1462586</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1462585</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/safeshore</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;As drones are more and more entering our world, so comes&amp;nbsp;the need to regulate the access to airspace for these systems. A necessary tool in order to do this is a means of detecting these drones. Numerous commercial and non-commercial parties have started the development of such drone detection systems. A big problem with these systems is that the evaluation of the performance of drone detection systems is a difficult operation, which requires the careful consideration of all technical and non-technical aspects of the system under test. Indeed, weather conditions and small variations in the appearance of the targets can have a huge difference on the performance of the systems. In order to provide a fair evaluation and an honest comparison between systems, it is therefore paramount that a stringent validation procedure is followed. Moreover, the validation methodology needs to find a compromise between the often contrasting requirements of end users (who want tests to be performed in operational conditions) and platform developers (who want tests to be performed that are statistically relevant). Therefore, we propose in this paper a qualitative and quantitative validation methodology for drone detection systems. The proposed validation methodology seeks to find this compromise between operationally relevant benchmarking (by providing qualitative benchmarking under varying environmental conditions) and statistically relevant evaluation (by providing quantitative score sheets under strictly described conditions).&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/700643/">700643</awardNumber>
      <awardTitle>System  for  detection of  Threat Agents in  Maritime Border  Environment</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
60
43
views
downloads
All versions This version
Views 6060
Downloads 4343
Data volume 45.0 MB45.0 MB
Unique views 5454
Unique downloads 3636

Share

Cite as