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Abstract

Today deep learning is taking its rise in hydrometeorological applications, and it is critical to extensively evaluate its prediction
performance and robustness. In our study, we use deep all convolutional neural networks for radar-based precipitation nowcasting,
which has a crucial role for early warning of hazardous events at small spatiotemporal scales. Our trial and error study focuses the
particular importance of selecting and adopting suitable data preprocessing routine, network structure, and loss function regarding
input data features, and, as a result, highlights limited transferability of methods in existing studies. Results show that parsimonious
deep learning models can forecast a complex nature of a short-term precipitation field evolution and compete for the state-of-the-art
performance with well-established nowcasting models based on optical flow techniques.
c© 2018 The Authors. Published by Elsevier B.V.
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1. Introduction

Precipitation is a crucial driver for many natural hazardous events (landslides, flash-floods), and its early prediction
plays a crucial role in developing new warning systems. If operationalized, such systems can substantially reduce
economic and human losses caused by hazardous events1,2. However, the field of radar-based precipitation nowcasting
is not well-developed. For the last 20 years this field went not so far from the standard workflow which utilizes
an implementation of optical flow technique as a core of methodology3, and then coupled with numerical weather
predictions (NWP)4 and/or stochastic field perturbations4,1.

The first papers which have started the new methodological direction in the field of radar-based precipitation
nowcasting were introduced by the group from Hong-Kong Meteorological observatory in 20155 and 20176. In the
2015-th paper, authors introduced ConvLSTM model and showed that it overperforms current operational SWIRLS
system for radar-based precipitation nowcasting for lead times up to two hours. In the 2017-th paper, the same authors
introduced TrajGRU model which utilizes location-variant transformations (in comparison with location-invariant
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convLSTM) and overperforms both SWIRLS and convLSTM models. Despite their novelty, these papers are going to
be task-specific (have a limited potential for spreading over the community) because of complicated and area-specific
procedure of radar data preprocessing (smoothing, removing outliers, scaling) and non-transparent development of the
proposed networks’ architecture. As far as we know, there are the only approaches in the field to tackle precipitation
nowcasting with deep learning models.

This paper aims to provide a simplified and transparent approach to developing a research workflow around a
precipitation nowcasting problem based on using deep learning models. We establish a step-by-step hypothesis testing
about an impact of data preprocessing, loss function, and convolutional kernel size on a performance of a parsimonious
all convolutional net. The best candidate model will be used as a baseline for further work.

The paper is organized as follows. In Section 2 we describe the data we used. Section 3 describes proposed models’
architecture and features, and also introduces the experiment design, verification procedure, and research software we
use. We report obtained results and discuss them in various contexts in Section 4. Section 5 provides an overall
summary and conclusions.

2. Data

We use the so-called RY product of the German Weather Service (DWD) as input to our nowcasting models. The
RY product represents a quality-controlled rainfall depth product (in mm) that is composited from the 18 Doppler
radars operated by the DWD. The RY product has a spatial extent of 900 × 900 km and covers the whole territory of
Germany. Temporal and spatial resolution of the RY product is 1 × 1 km, and 5 min, respectively. Data is available
for the period from 2006 to 2017 and has 2013 year missing.

It is common practice in the machine and deep learning fields to perform some normalization steps before feeding
the data to a neural network7. Unfortunately, a standard data normalization workflow for images as an input data
does not fit our needs because of the different nature of photography images (RGB channels, 8-bit integers) and radar
images (one channel, 64-bit floats). In this work we tried to perform four different transformation techniques, based
on the RY data distribution features:

1. ”Scaler v.1” performs transformation proposed by Woo et. al2 with the following parameters: threshold value =

1, normalization constant = 0.5.
2. ”Scaler v.2” performs transformation proposed by Woo et. al2 with the following parameters: threshold value =

0.5, normalization constant = 0.25.
3. ”Scaler v.3” takes natural logarithm from input values added by 1.
4. ”Scaler v.4” takes natural logarithm from input values added by 0.01.

As of more than 95% of the RY data lie between 0 and 1 (mm of rainfall depth), the general idea of the implemented
converters is to pay more attention for the dominant class and make it more deployed for a neural network. Figure 1
represents implemented transformations.

3. All convolutional neural networks

3.1. Architecture and features

All convolutional neural nets were introduced by Springenberg8 and utilize an idea to replace pooling layers in
deep neural networks by sequences of convolutional layers with increased strides. These type of architecture was also
proposed by Mathieu9 as a first naive approach for the next frame video prediction task. We propose a simple all
convolutional neural net architecture (DozhdyaNet) with six subsequent 2D convolutional layers parametrized only
by kernel size used (Fig. 2).

In DozdyaNet we do not utilize strides and always use zero padding in convolutional layers’ structure for preserving
the spatial resolution of radar image for a whole net. For providing the DozhdyaNet nonlinear flexibility, we use
ReLu activation function10 followed by every convolutional layer (except the last one). Parameters of the proposed
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Fig. 1. Different transformations for mapping rainfall depth values (0-41 mm) to neural network input data
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Fig. 2. All convolutional neural net baseline architecture

architecture are the number of filters and size of a convolutional kernel used in every layer. We propose to use filters’
number of 48, 24, 12, 6, 3, and 1 from the first to the last layers in the DozhdyaNet, respectively, as a baseline.

Two last consequent radar images (t − 2, t − 1) serve as input for our models, and the model’s target output is the
radar image of the t-th time step. For one hour in advance predictions we make a nowcast consequently for every 12
time horizons (inside an hour), using the last predicted radar image as input for following calculations. This setting
declines the number of model parameters and significantly reduces a computational time in comparison with the
approach utilizes neural network structure for predicting every nowcast time horizon simultaneously.

3.2. Experiment design

One of the primary goals of this study is to find a starting point in a development deep neural networks in the
field of radar-based precipitation nowcasting. Thus, to test different preprocessing routines on candidate models’
performance (see Section 2) we also develop another two hypotheses for evaluation: how do a kernel size and a loss
function impact all convolutional net performance?

We tried to use different sizes of convolutional kernels to test the influence of increasing receptive field on network’s
performance: 3 × 3, 5 × 5, 7 × 7.

Despite the rapid growth of deep learning field, there are also no clear guidelines which loss function do we need
for its utilization in training process for our problem of vector regression and this highly sparse data. In this work
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we also tried to experiment with different loss functions: mean absolute error (MAE), mean squared error (MSE),
logcosh function (Logcosh).

We train our candidate models on the RY data from 2006 to 2015 and use 2016 and 2017 for testing. In this study
we use ”Adam” algorithm with the default parameters proposed in the corresponding paper11 for neural network
weights’ optimization. Training process utilizes mini-batches of random input data samples of size 12 and number of
training epochs is 5. Training had been running on Nvidia Tesla P100 GPUs, where one training epoch took near 2
hours in a ”single GPU” mode.

After finding the best candidate model in the space of different scalers, kernel sizes, and loss functions variants,
we fine tune this model with increased training epochs and will use it as a baseline model of this type of proposed
architecture (Dozhdya.Net v.1.0).

3.3. Verification procedure

For the analysis, we selected the ”Braunsbach event” – the hazardous event which took place in Braunsbach town
on 29 May 2016 and was triggered by torrential rainfall12.

For the verification procedure, we use two general categories of scores: continuous (based on the differences be-
tween nowcast and observed rainfall intensities) and categorical (based on standard contingency tables for calculating
matches between boolean values which reflect the exceedance of specific rainfall intensity thresholds). We use the
mean absolute error (MAE) as a continuous score:

MAE =
1
n

n∑
i=1

|Nowi − Obsi| (1)

where Nowi and Obsi are nowcast and observed rainfall rate in the i-th pixel of the corresponding radar images, and
n the number of rainfall pixels.

And we use critical success index (CSI) as a categorical score:

CS I =
hits

hits + f alsealarms + misses
(2)

where hits, misses, and f alsealarms are are defined by the contingency table (Table 1) and the corresponding thresh-
old value (1 mm/h in our study).

Table 1. Contingency table.

Nowcast Observation (Yes) Obseration (No)

Yes hit false alarm
No miss correct negative

3.4. Research software

In our research we use only open and freely available software libraries in Python programming language: wradlib
(wradlib.org13), h5py (h5py.org14), Matplotlib (matplotlib.org15), TensorFlow (tensorflow.org16), NumPy (numpy.org17),
and Keras (keras.io18).

4. Results and discussion

We have summarized all the impacts of tested hypothesis on Fig. 3.
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4.1. Data preprocessing impact

It is clear that Scaler v.4 which utilizes natural logarithm applied to our rainfall depth values with small addition
(0.01, for avoiding null values) provides better results regarding both MAE and CSI scores. This result can be ex-
plained by a particularly equal deployment of depth values under 1 mm, and over 1 mm to transformed values scale,
which provides a high attention to rainfall depth values we are most interested in. Thus this type of Scaler is of high
universality; it can be recommended for using as a first guess.

4.2. Loss function impact

Our results show that a choice of a loss function is of critical importance for nowcasting study. The most widely
used for regression problems, MSE function, showed significantly worse results in our setting in comparison with
Logcosh function. This result can be explained by the Logcosh function features which utilize both advantages
of using squared (MSE) loss for small values and absolute (MAE) loss for large values. This natural conditional
approach works here because of it enhances model’s universality, which is important for using one model for very
different rainfall events.

4.3. Kernel size impact

Our first guess was that increasing the neural network receptive field by increasing a size of convolutional kernels,
would increase the overall network’s performance because of accounting of precipitation specific changes from a
larger neighborhood. However, the results are different. It is clear that increasing model’s receptive field capacity
leads to overfitting and increasing uncertainty of predictions. For providing nowcast with the lead time of one hour,
we recommend using smaller kernel size of convolutional layers.

4.4. Comparison with optical flow and persistence models

Based on obtained results, we defined the first major version of Dozhdya.Net model (v.1.0) with the following
parameters: convolutional kernel sizes of 3× 3, Logcosh loss function, and the last scaler version (Scaler v.4) for data
preprocessing. Fig. 4 shows the reached performance in comparison with (weak) Eulerian persistence models and
state-of-the-art performance of the global optical flow based model.

Results show that our parsimonious baseline model which was build based on a clear workflow and computa-
tionally cheap experimentation with different hypotheses about model’s features significantly overperforms Eulerian
persistence model and can compete with the state-of-the-art global optical flow based model. Theoretically, there is
a distinct advantage and disadvantage of deep learning approaches under optical flow. The disadvantage is that such
simple all convolutional architectures are location-invariant, so they provide the same transformations of rainfall field
for every radar image that leads to ignoring geographical features of rainfall patterns. The advantage is that deep
learning models can directly take into consideration growth and decay processes of rainfall intensity evolution during
an event. There is much room for experimentation, and here we provide a solid baseline and starting point for further
development and evaluation results improvement.

5. Conclusions

We evaluated an impact of different data preprocessing routines, loss functions, and convolutional kernel sizes on
an evaluation performance of proposed deep learning models. Considering the results of this experimentation, we
introduced a baseline model (Dozhdya.Net v.1.0) for radar-based precipitation nowcasting based on all convolutional
neural network architecture. This parsimonious model shows a comparable efficiency in comparison with the state-
of-the-art optical flow based model and can be used as a solid baseline for further development.

We also want to underline a critical role of open source software, computational facilities, and community help for
developing such a new field in geoscientific modeling. Only being concerted these building blocks of modern science
can lead to new results.
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Fig. 3. Parameters’ impact on the verification period performance
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Fig. 4. Comparison of the Dozdya.Net baseline architecture with global optical flow and Eulerian persistence models

Our future work will be devoted to developing new and universal deep learning architectures which can be easily
transferred between different study areas and radar products.
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