Conference paper Open Access

Using Adversarial Autoencoders for Multi-Modal Automatic Playlist Continuation

Vagliano, Iacopo; Galke, Lukas; Florian, Mai; Scherp, Ansgar


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/1455214</identifier>
  <creators>
    <creator>
      <creatorName>Vagliano, Iacopo</creatorName>
      <givenName>Iacopo</givenName>
      <familyName>Vagliano</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3066-9464</nameIdentifier>
      <affiliation>ZBW - Leibniz Information Centre for Economics</affiliation>
    </creator>
    <creator>
      <creatorName>Galke, Lukas</creatorName>
      <givenName>Lukas</givenName>
      <familyName>Galke</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6124-1092</nameIdentifier>
      <affiliation>Kiel University</affiliation>
    </creator>
    <creator>
      <creatorName>Florian, Mai</creatorName>
      <givenName>Mai</givenName>
      <familyName>Florian</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1370-9740</nameIdentifier>
      <affiliation>Kiel University</affiliation>
    </creator>
    <creator>
      <creatorName>Scherp, Ansgar</creatorName>
      <givenName>Ansgar</givenName>
      <familyName>Scherp</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2653-9245</nameIdentifier>
      <affiliation>University of Stirling</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Using Adversarial Autoencoders for Multi-Modal Automatic Playlist Continuation</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>music recommender systems</subject>
    <subject>neural networks</subject>
    <subject>adversarial autoencoders</subject>
    <subject>multi-modal recommender</subject>
    <subject>automatic playlist continuation</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-10-02</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1455214</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1145/3267471.3267476</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/moving-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;The task of automatic playlist continuation is generating a list of recommended tracks that can be added to an existing playlist. By suggesting appropriate tracks, i.e., songs to add to a playlist, a recommender system can increase the user engagement by making playlist creation easier, as well as extending listening beyond the end of the current playlist. The ACM Recommender Systems Challenge 2018 focuses on such a task. Spotify released a dataset of playlists, which includes a large number of playlists and associated track listings. Given a set of playlists from which a number of tracks have been withheld, the goal is predicting the missing tracks in those playlists. We participated in the challenge as the team &lt;em&gt;Unconscious Bias&lt;/em&gt; and, in this paper, we present our approach. We extend adversarial autoencoders to the problem of automatic playlist continuation. We show how multiple input modalities, such as the playlist titles as well as track titles, artists and albums, can be incorporated in the playlist continuation task.&lt;/p&gt;</description>
    <description descriptionType="Other">© Iacopo Vagliano | ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in RecSys Challenge '18 - Proceedings of the ACM Recommender Systems Challenge 2018, http://doi.org/10.1145/3267471.3267476.</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/693092/">693092</awardNumber>
      <awardTitle>Training towards a society of data-savvy information professionals to enable open leadership innovation</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
76
81
views
downloads
Views 76
Downloads 81
Data volume 54.6 MB
Unique views 64
Unique downloads 74

Share

Cite as