
BigSkyEarth conference: AstroGeoInformatics, Tenerife, Spain, December 17-19, 2018

Introducing AXS: A framework for large-scale analysis of
astronomical data

Petar Zečević petar.zecevic@fer.hr
Faculty of Electrical Engineering
University of Zagreb
Unska 3, Zagreb, Croatia

Colin T. Slater, Ph.D. ctslater@uw.edu
Astronomy Department
University of Washington
Box 351580, Seattle, WA 98195, USA

Sven Lončarić, Ph.D. sven.loncaric@fer.hr
Faculty of Electrical Engineering
University of Zagreb
Unska 3, Zagreb, Croatia

Mario Jurić, Ph.D. mjuric@uw.edu

Astronomy Department

University of Washington

Box 351580, Seattle, WA 98195, USA

Abstract

Astronomy eXtensions for Spark, or AXS, is a framework for large-scale astronomical
data analysis based on Apache Spark, cutting-edge open-source engine for processing large
amounts of data. The ever expanding scale of today’s astronomical surveys demand scal-
able and stable tools to help extract scientific information from the resulting data sets.
However, astronomical software support is lacking in this regard. AXS aims to fill this void
by providing easy-to-use Spark-based APIs with features such as on-line cross-matching
and spatial selection. AXS has so far been used at University of Washington’s DIRAC In-
stitute for analysis of Zwicky Transient Facility (ZTF) and other datasets. AXS is capable
of cross-matching Gaia DR2 (1.7 billion rows) and ZTF (2.9 billion rows) in 25 seconds
(with data cached in filesystem) while users can further analyze results with custom Python
code, within the same framework. AXS’ long-term goal is to become a preferred tool for
individual researchers or groups when they need to analyze astronomical datasets, whether
small or at petabyte scales.

Keywords: astronomy, cross-matching, framework, astronomical data analysis

1. Introduction

Astronomy today requires processing of huge amounts of data. Each new astronomical
survey produces larger amounts of data than those that came before it. For example, Data
Release 14 (the latest release) of the Sloan Digital Sky Survey (SDSS), whose mission started
back in 2003, contains about 150 GB of data and 1.2 billion objects. Large Synoptic Survey
Telescope (LSST), starting in 2022, will observe approximately 20 billion objects, 1000 times
each, and will generate about 50 PB of data in the 10 years of its planned activity period.

However, software tools commonly used in astronomy aren’t ready for such large volumes
of data. Astronomers typically use SQL interfaces to select, preprocess and download
smaller data sets as FITS files and then use custom programs and scripts, often written in

COST Action TD1403 1 www.bigskyearth.eu

BigSkyEarth conference: AstroGeoInformatics, Tenerife, Spain, December 17-19, 2018

Python, to further analyze those data. One of the operations astronomers often need to do
is a cross-match, where objects from one catalog are matched to the corresponding objects
from a different catalog, based on their coordinates in the sky. This is a computationally
very demanding operation when the two catalogs contain large numbers of objects.

Astronomical data is often organized in the so-called light-curves, corresponding to mul-
tiple measurements (observations) of a single object. LSST will, for example, observe each
object about 1000 times on average, in the 10 years of its planned operation period (Collab-
oration et al., 2009). For ground-based surveys these observations are taken with different
filters, but astronomers are mostly interested in analyzing light-curves belonging to the
same filter. Therefore, any tool for processing astronomical data has to allow for efficient
light-curve data queries on a per-filter basis.

The goal of AXS is to provide astronomers with a simple, easy-to-use, efficient and
scalable tool for cross-matching, processing and analyzing large amounts of astronomical
data.

AXS is based on Apache Spark (Zaharia et al., 2016), a general-purpose framework for
large-scale data processing. Spark offers Scala, Java, Python, R and SQL interfaces to
its rich APIs comprising unstructured and structured data processing, streams processing,
graph analytics and machine learning. It is also extremely scalable, tolerant to failures of
individual components and implements advanced performance optimizations. Because of
its general applicability, Spark is widely used in projects in various industries and academic
settings. It is actively developed and enjoys a large user base.

This all makes Spark an excellent base for building a tool for analyzing and processing
data from large astronomical catalogs.

2. Using AXS

AXS API is meant to make manipulating and cross-matching astronomical catalogs straight-
forward and easy to use; flexible so that astronomers can extend it with their custom func-
tions; and sufficiently high-level so that users don’t have to deal with the underlying data
partitioning details.

AxsCatalog is the starting point for loading data with AXS API. It is a replacement
for Spark’s Catalog object, but a Spark session needs to be initialized before constructing
an AxsCatalog instance because AxsCatalog relies on Spark for reading and writing table
data. So, a SparkSession object needs to be provided for AxsCatalog object construction:

create a SparkSession object

spark = SparkSession.getOrCreate()

create an AxsCatalog object

from axs import AxsCatalog

AxsCatalog = AxsCatalog(spark)

An AxsCatalog instance is then used for loading data from tables, like in the following
example:

AxsCatalog.list_tables()

... list of tables ...

sdss = AxsCatalog.load("sdss")

gaia = AxsCatalog.load("gaia")

Existing Spark or AXS tables can be imported into an AXS catalog using method
import existing table. A partial data increment containing additional data with the

COST Action TD1403 2 www.bigskyearth.eu

BigSkyEarth conference: AstroGeoInformatics, Tenerife, Spain, December 17-19, 2018

same schema can be added to an existing table using method add increment(table name,

increment dataframe).
Table data in AXS are represented by the AXSFrame class, which extends Spark’s

DataFrame functionalities adding several functions useful to astronomers. One of those
is the crossmatch method for cross-matching two AXSFrames:

from axs import Constants

gaia_sdss_cm = gaia.crossmatch(sdss, 2*Constants.ONE_ASEC)

gaia_sdss_cm.select("ra", "dec", "r").save_axs_table("gaia_sdss_r")

The last command (save axs table) saves the cross-matched data on disk and parti-
tions the data so that future queries and cross-matching operations run quickly.

region and cone methods allow users to select subsets of data based on a rectangle
defined by two points, and by a circle defined by the central point and a radius (respectively).
histogram and histogram2d methods allow for binning data in one or two dimensions based
on custom criteria. add column and add primitive column aim to make it easier for users
to define new columns in an AXSFrame using Spark’s udf and pandas udf mechanisms.

Light-curve data in AXS are stored as array columns. To enable all operations on
light-curve data columns, we extend Spark’s API with two additional functions:

array allpositions, which returns an array of indexes of all occurrences of an element
array select, which returns all elements indexed by an array of indices.
These two functions, together with the rest of AXS and Spark APIs, enable full range

of light-curve data operations.

3. Implementation details

Efficiency of AXS in data cross-matching and querying is based on its special data parti-
tioning scheme, the underlying Spark API and its sort-merge join optimizations. We will
not go into details of Spark API here, but describe the most important features that make
AXS fast.

3.1 AXS data partitioning

AXS data partitioning is based on the zones algorithm (Gray et al., 2007) well-known in
the astronomy community, but adapted for a distributed, shared-nothing architecture. AXS
partitions the sky into horizontal stripes called zones of a fixed height (one arc-minute by
default, which gives 10800 zones). All objects within the same Dec (declination) coordinate
range get assigned the same zone, according to the following simple formula (where Z is
zone height and dec is the declination coordinate in range [−90, 90]):

zone = b(dec + 90)/Zc

AXS then places zones in buckets, which are implemented as Parquet files on a dis-
tributed filesystem, so that each subsequent zone gets placed in a different bucket. In other
words: bucket = zone%N . Default number of buckets is 500. Figure 1 shows this concept
graphically (for a much smaller number of buckets and zones than what is used in reality).

3.2 Fast distributed catalog cross-matching

For fast cross-matching AXS uses Spark’s sort-merge join implementation with a contribu-
tion of an epsilon-join optimization. Epsilon-join (Silva et al., 2010) uses range conditions

COST Action TD1403 3 www.bigskyearth.eu

BigSkyEarth conference: AstroGeoInformatics, Tenerife, Spain, December 17-19, 2018

Figure 1: Partition of sky into 20 zones and placement of zones into 4 buckets. In reality,
a much larger numbers are used.

on secondary columns to restrict the number of rows considered during the sort-merge join.
This results in a moving window going across rows of the right table as the left row changes.

Concretely for AXS, data inside buckets are sorted by zone and ra columns and a query
such as the following one can take advantage of these optimizations.

select * from gaia, sdss where gaia.zone = sdss.zone AND

gaia.ra BETWEEN (sdss.ra + DELTA, sdss.ra - DELTA) AND

distance(gaia.ra, gaia.dec, sdss.ra, sdss.dec) < DELTA;

The preceding query results in one task per bucket (the number of tasks executed in parallel
depends on Spark configuration). Each task goes sequentially through rows in a gaia table’s
bucket and maintains a list of matching rows from the sdss table’s bucket that satisfy the
condition gaia.zone = sdss.zone and whose ra columns fall into the specified range. In
this way, the distance function is evaluated only for those rows in the moving window, the
data need to be read only once, and the amount of memory used in the process is minimal.

3.3 Data skew

Astronomical data are often highly skewed because some parts of the sky are much more
densely populated than the others and because many surveys particularly concentrate on
specific regions. Skewed data can pose a problem for distributed data processing because
some tasks might take much longer time to complete than the others. Data partitioning
scheme presented previously elegantly solves data skew because it evenly distributes narrow
strips of data across many buckets. This results in evenly-sized buckets.

4. Performance evaluation

We have tested cross-matching Gaia DR2 catalog (containing 1.7 billion objects) against
ZTF catalog (containing 2.9 billion objects) on a single machine. The cross-match algorithm
used for tests only considered distance based on RA and Dec coordinates. A more complex
distance function can also be used (calculating cross-match likelihood, for example). The

COST Action TD1403 4 www.bigskyearth.eu

BigSkyEarth conference: AstroGeoInformatics, Tenerife, Spain, December 17-19, 2018

Figure 2: Cross-matching Gaia DR2 and ZTF catalogs with varying numbers of Spark ex-
ecutors. The results on y-axis is time in seconds. The two curves correspond to
data obtained with filesystem caching turned on or off. Each data point is an
average of three tests.

cross-match algorithm in this case results in 270 million rows. The resulting rows were only
counted during the test and no further processing on them was performed.

We varied the number of Spark executors (degree of parallelism) and obtained the results
shown in Figure 2. The two lines in the graph in the figure show tests with filesystem cache
turned on and off. Each point is an average of three tests. Spark executors had 12 GB of
memory.

The best result we obtained, running on a single machine, is 25 seconds when the data
was cached in the filesystem, and 205 seconds when data was not cached. It is apparent
from the tests that adding more than 22 executors cannot speed-up the computation any
further.

5. Conclusion and future work

In this paper we introduced AXS, a flexible and fast system for cross-matching and analyzing
data from astronomical catalogs based on Spark and offering Python APIs. The goal of
AXS is to be easy to use for an average astronomer and to enable them to perform most of
their data analysis within a single framework, with various catalogs at their disposal. We
performed basic usability and performance testing. In the near future we plan to further
refine the AXS API, perform more extensive performance tests and further optimizations,
and make AXS available to the wider astronomy community.

References

LSST Science Collaboration, Paul A. Abell, Julius Allison, Scott F. Anderson, John R.
Andrew, J. Roger P. Angel, Lee Armus, David Arnett, S. J. Asztalos, Tim S. Axel-
rod, Stephen Bailey, D. R. Ballantyne, Justin R. Bankert, Wayne A. Barkhouse, Jef-

COST Action TD1403 5 www.bigskyearth.eu

BigSkyEarth conference: AstroGeoInformatics, Tenerife, Spain, December 17-19, 2018

frey D. Barr, L. Felipe Barrientos, Aaron J. Barth, James G. Bartlett, Andrew C. Becker,
Jacek Becla, Timothy C. Beers, Joseph P. Bernstein, Rahul Biswas, Michael R. Blanton,
Joshua S. Bloom, John J. Bochanski, Pat Boeshaar, Kirk D. Borne, Marusa Bradac,
W. N. Brandt, Carrie R. Bridge, Michael E. Brown, Robert J. Brunner, James S. Bullock,
Adam J. Burgasser, James H. Burge, David L. Burke, Phillip A. Cargile, Srinivasan Chan-
drasekharan, George Chartas, Steven R. Chesley, You-Hua Chu, David Cinabro, Mark W.
Claire, Charles F. Claver, Douglas Clowe, A. J. Connolly, Kem H. Cook, Jeff Cooke, Asan-
tha Cooray, Kevin R. Covey, Christopher S. Culliton, Roelof de Jong, Willem H. de Vries,
Victor P. Debattista, Francisco Delgado, Ian P. Dell’Antonio, Saurav Dhital, Rosanne Di
Stefano, Mark Dickinson, Benjamin Dilday, S. G. Djorgovski, Gregory Dobler, Ciro
Donalek, Gregory Dubois-Felsmann, Josef Durech, Ardis Eliasdottir, Michael Eracleous,
Laurent Eyer, Emilio E. Falco, Xiaohui Fan, Christopher D. Fassnacht, Harry C. Fer-
guson, Yanga R. Fernandez, Brian D. Fields, Douglas Finkbeiner, Eduardo E. Figueroa,
Derek B. Fox, Harold Francke, James S. Frank, Josh Frieman, Sebastien Fromenteau,
Muhammad Furqan, Gaspar Galaz, A. Gal-Yam, Peter Garnavich, Eric Gawiser, John
Geary, Perry Gee, Robert R. Gibson, Kirk Gilmore, Emily A. Grace, Richard F. Green,
William J. Gressler, Carl J. Grillmair, Salman Habib, J. S. Haggerty, Mario Hamuy,
Alan W. Harris, Suzanne L. Hawley, Alan F. Heavens, Leslie Hebb, Todd J. Henry, Ed-
ward Hileman, Eric J. Hilton, Keri Hoadley, J. B. Holberg, Matt J. Holman, Steve B.
Howell, Leopoldo Infante, Zeljko Ivezic, Suzanne H. Jacoby, Bhuvnesh Jain, R, Jedicke,
M. James Jee, J. Garrett Jernigan, Saurabh W. Jha, Kathryn V. Johnston, R. Lynne
Jones, Mario Juric, Mikko Kaasalainen, Styliani, Kafka, Steven M. Kahn, Nathan A.
Kaib, Jason Kalirai, Jeff Kantor, Mansi M. Kasliwal, Charles R. Keeton, Richard Kessler,
Zoran Knezevic, Adam Kowalski, Victor L. Krabbendam, K. Simon Krughoff, Shrini-
vas Kulkarni, Stephen Kuhlman, Mark Lacy, Sebastien Lepine, Ming Liang, Amy Lien,
Paulina Lira, Knox S. Long, Suzanne Lorenz, Jennifer M. Lotz, R. H. Lupton, Julie
Lutz, Lucas M. Macri, Ashish A. Mahabal, Rachel Mandelbaum, Phil Marshall, Morgan
May, Peregrine M. McGehee, Brian T. Meadows, Alan Meert, Andrea Milani, Christo-
pher J. Miller, Michelle Miller, David Mills, Dante Minniti, David Monet, Anjum S.
Mukadam, Ehud Nakar, Douglas R. Neill, Jeffrey A. Newman, Sergei Nikolaev, Martin
Nordby, Paul O’Connor, Masamune Oguri, John Oliver, Scot S. Olivier, Julia K. Olsen,
Knut Olsen, Edward W. Olszewski, Hakeem Oluseyi, Nelson D. Padilla, Alex Parker,
Joshua Pepper, John R. Peterson, Catherine Petry, Philip A. Pinto, James L. Pizagno,
Bogdan Popescu, Andrej Prsa, Veljko Radcka, M. Jordan Raddick, Andrew Rasmussen,
Arne Rau, Jeonghee Rho, James E. Rhoads, Gordon T. Richards, Stephen T. Ridg-
way, Brant E. Robertson, Rok Roskar, Abhijit Saha, Ata Sarajedini, Evan Scannapieco,
Terry Schalk, Rafe Schindler, Samuel Schmidt, Sarah Schmidt, Donald P. Schneider,
German Schumacher, Ryan Scranton, Jacques Sebag, Lynn G. Seppala, Ohad Shemmer,
Joshua D. Simon, M. Sivertz, Howard A. Smith, J. Allyn Smith, Nathan Smith, Anna H.
Spitz, Adam Stanford, Keivan G. Stassun, Jay Strader, Michael A. Strauss, Christo-
pher W. Stubbs, Donald W. Sweeney, Alex Szalay, Paula Szkody, Masahiro Takada,
Paul Thorman, David E. Trilling, Virginia Trimble, Anthony Tyson, Richard Van Berg,
Daniel Vanden Berk, Jake VanderPlas, Licia Verde, Bojan Vrsnak, Lucianne M. Walkow-
icz, Benjamin D. Wandelt, Sheng Wang, Yun Wang, Michael Warner, Risa H. Wechsler,
Andrew A. West, Oliver Wiecha, Benjamin F. Williams, Beth Willman, David Wittman,
Sidney C. Wolff, W. Michael Wood-Vasey, Przemek Wozniak, Patrick Young, Andrew
Zentner, and Hu Zhan. Lsst science book, version 2.0, 2009.

COST Action TD1403 6 www.bigskyearth.eu

BigSkyEarth conference: AstroGeoInformatics, Tenerife, Spain, December 17-19, 2018

Jim Gray, Maria A. Nieto-Santisteban, and Alexander Szaay. The zones algorithm for
finding points-near-a-point or cross-matching spatial datasets. 02 2007.

Y. N. Silva, W. G. Aref, and M. H. Ali. The similarity join database operator. In 2010
IEEE 26th International Conference on Data Engineering (ICDE 2010), pages 892–903,
March 2010. doi: 10.1109/ICDE.2010.5447873.

Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali
Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache spark: A unified engine
for big data processing. Commun. ACM, 59(11):56–65, October 2016. ISSN 0001-0782.
doi: 10.1145/2934664. URL http://doi.acm.org/10.1145/2934664.

COST Action TD1403 7 www.bigskyearth.eu

http://doi.acm.org/10.1145/2934664

	Introduction
	Using AXS
	Implementation details
	AXS data partitioning
	Fast distributed catalog cross-matching
	Data skew

	Performance evaluation
	Conclusion and future work

