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Two sets of molecular descriptors, the five experimental Abraham, and the five COSMOments of 

Klamt’s COSMO-RS, have been compared for a data set of 470 compounds. Both sets are 

considered as almost complete sets of LFER. The two sets of descriptors are shown to exhibit a 

large overlap as far as their chemical content. The chemical information however is distributed 

differently in each set with the Abraham set incorporating extra information in the excess molar 

refraction descriptor E. Regression equations have been constructed to predict the experimental 

Abraham descriptors from theoretically calculated COSMOments. The chemical interpretation of 

these equations is however difficult because of the lack of clustering which characterises the 

distribution of chemical information through the two sets of descriptors. The predictability of the 

regression equations is tested successfully using a reasonably large set of data and the method is 

compared to recent attempts to calculate the Abraham descriptors from various theoretical bases. 

 

Introduction 

Quantitative structure-property relationships (QSPR) and linear free energy relationships (LFER) 

have proved to be useful tools for the analysis of solvation phenomena. These relationships 

involve the use of a number of descriptors that describe properties of a solute molecule and, as an 

extension, the behaviour of the solute molecule in solution. One general method for the 

construction of QSPRs starts with the generation of a very large number of molecular descriptors 

for each compound. Some method of descriptor reduction is then used to reduce the number of 
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descriptors typically to around 5-10. The reduced set may then be used linearly or non-linearly in 

a QSPR. For example, in the ADEPT routine of Jurs et al,1, 2, 3 4 210 molecular descriptors were 

calculated and then reduced to nine descriptors that were used to correlate aqueous solubility.3  

In the CODESSA program of Katritzky et al,5, 6 7 no less than 800 molecular descriptors were 

calculated and reduced to five or six descriptors for the correlation of a number of 

physicochemical properties.6 Not surprisingly, good correlations of training sets are invariably 

obtained. However in the latest solubility work of Katritzky et al 8 a consistent set of descriptors 

is used in all the systems studied. Validation of predictive capability through external prediction 

sets (test sets) is not always carried out, but Mitchell and Jurs 3 used a 32-compound test set in 

their study of aqueous solubility. Of course, the ‘best’ set of reduced descriptors for the 

correlation of any given property is very unlikely to be the same as the ‘best’ set for the 

correlation of any other property. This leads to one disadvantage of the ‘plethora of descriptors’ 

method, namely that it is not possible to carry out a term-by-term comparison of QSPRs for two 

systems, even if the systems are chemically closely related. 

One method that avoids the latter disadvantage is to construct QSPRs, and LFERs, 

through the use of a small number of pre-determined molecular descriptors. The same small set 

of descriptors is used for the correlation of various properties, so that an exact comparison can be 

made between correlation equations. There are a number of procedures that have been used to 

obtain small sets of descriptors. The original work of Kamlet and Taft and co-workers 9 ,10 has 

shown that it is indeed possible to define a rather small number of descriptors that could be 

combined in a linear way for the correlation of solute properties. After considerable preliminary 

work,11 12 Abraham and co-workers succeeded in constructing a new and more rigorous set of 

five solute descriptors, 13, 14, 15, 16 specified as follows, with the original nomenclature in 

parentheses. E (R2) is an excess molar refraction that is obtained from refractive index for solutes 

that are liquid at 20º C. For solids, the refractive index of the hypothetical liquid at 20ºC can be 

calculated, or E can be obtained by the summation of fragments or substructures. S (H) is the 

dipolarity/polarizability that can be obtained from gas liquid chromatographic measurements on 

polar stationary phases, or more generally from water/solvent partitions. A (H
2) and B (H

2) 

are the overall or effective hydrogen bond acidity and basicity that are most easily obtained from 

water-solvent partitions, and V (Vx) is the McGowan characteristic volume17 that can easily be 

calculated from bond and atom contributions;13 The range of solutes for which descriptors are 

currently available is now quite large, and encompasses compounds as far apart as helium, 
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hydrogen, nitrogen etc on one hand and drugs, environmental pollutants and pesticides on the 

other.  

These solute descriptors can be combined in an LFER, (Equation 1). 

 

LogSP = c + eE + sS + aA + bB +vV    Equation 1 

 

The dependent variable, log SP, is a solute property in a given system. For example, it might be 

log P for a set of solutes in a given water-solvent partition system. The coefficients in the 

equations are found by the method of multiple linear regression. Since the development of the 

five descriptors, a descriptor database (Abraham’s database) has been constructed from 

experimental data; the maximum and minimum range of these descriptors in the database are 

shown in Table 1. The descriptors represent the solute influence on various solute-solvent phase 

interactions. Hence the regression coefficients c, e, s, a, b and v correspond to the complimentary 

effect of the phases on these interactions. The coefficients can be regarded as system constants 

which characterize and contain chemical information of the phase in question. The system 

constants can be interpreted as follows. The e-coefficient shows the tendency of the phase to 

interact with solutes through  and n-electron pairs. Usually the e-coefficient is positive, but for a 

phase which contains fluorine atoms, it can be negative. The s-coefficient represents the 

tendency of the phase to interact with dipolar/polarisable solutes. The a-coefficient denotes the 

hydrogen bond basicity of the phase (because acidic solutes will interact with basic phases), and 

the b-coefficient is a measure of the hydrogen bond acidity of the phase (because basic solutes 

will interact with an acidic phase). The v-coefficient is a measure of the hydrophobicity of the 

phase. The coefficients in the solvation parameter equation are therefore not just fitting constants 

but must obey general chemical principles. An example to illustrate the chemical information 

contained in the system constants is partition of solutes between two phases. In this case, the 

system constants will reflect differences in properties of the two phases, and hence can take 

positive or negative values. The important water/octanol system is characterized by the following 

equation. 

 

V 3.814 B 3.460 -A  0.034  S 1.054-  E 0.562  0.088   logPoct     Equation 2 

n=613,  r=0.9974,  sd=0.116, F=23161.6 
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Thus octanol (actually, wet octanol) is revealed to be less able to interact with - and n-electron 

pairs than is water (positive e-coefficient), but is less dipolar/polarisable than water, hence the 

negative s-coefficient. Octanol has almost the same hydrogen-bond basicity as water (almost 

zero a-coefficient), but is a weak hydrogen-bond acid (negative b-coefficient). The large v-

coefficient means that octanol is able to interact with solutes by dispersion forces and/ or that the 

energy required to create a given sized cavity in octanol is relatively low. Octanol would be 

regarded as a hydrophobic phase.  

Any application of the general solvation equation (Equation 1) depends on the availability 

of the solute descriptors and the need to calculate descriptors for new compounds will always be 

of primary importance. As explained earlier, the descriptor V can be calculated quite simply for 

any structure from the molecular formula and the number of rings in the molecule, using the 

algorithm of Abraham for the number of bonds in the molecule.13 The E descriptor can also be 

calculated from the refractive index at 20º C, using either the observed refractive index for a 

liquid, or a calculated refractive index for the solid. This descriptor can also be estimated by the 

addition of fragment values (substructures).  

The remaining three descriptors S,  and  have to be obtained from experimental 

measurements of physicochemical properties. Traditionally, the solute descriptors are derived 

from experimental measurements such as water–solvent and gas-solvent partitions, and 

chromatographic methods including GC, GLC and HPLC. Although this approach clearly 

provides the best descriptors for most kind of molecules, it certainly has its limitations. Firstly 

the fact that one must physically obtain a sample of the compound, imposes many difficulties 

especially when equations are required for screening purposes. Secondly, certain techniques used 

for measuring these parameters might not be applicable in certain cases. For example, use of UV 

spectroscopy as an analytical tool requires a chromophore in the molecule. Thirdly some of the 

experimental methods are laborious and time-consuming and this limits their applicability 

especially in high throughput setups. Because of these difficulties in obtaining the Abraham 

physicochemical descriptors, attempts have been made to escape the reliance on experimental 

data for the determination of new S, A and B values. Such attempts include the work of Sevcik18, 

19 and co-workers who have reported an additive scheme for the estimation of the descriptor 

logL16, and the neural network approach to estimate the S parameter. The former approach adds 

contributions to logL16 from a given set of fragments, the contributions being derived from 

multivariate regression analysis (MLRA). The latter approach takes a number of structural and 
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quantum mechanical properties as input, combining them either linearly via MLRA or 

nonlinearly via a feed-forward neural network. 

Platts et al20 have introduced an additive model (UNIX method) for the estimation of 

Abraham’s molecular descriptors E, S, A, B, V and logL16. This model was developed from a set 

of 81 atom and functional group fragments and intra-molecular interactions for which an 

evaluation of their contribution to each descriptor was carried out through a process of multiple 

linear regression. They proceeded to apply this group contribution model on sets of molecules for 

which partitioning data was predicted using Abraham’s solvation equations.21 The method gives 

good results for predicting the molecular descriptors in question and partitioning data for a 

number of compounds, but as with all group contribution methods it retains the basic 

disadvantage of being unable to resolve molecular details like isomeric tautomeric and 

conformational effects and it is hard to apply on large complicated compounds with diverse 

functional groups. A commercial package has been developed recently following Platts work 

with the addition of new fragments. 

Dearden and Ghafourian22, 23 have obtained hydrogen bonding parameters comparable to 

the Abraham A and B values using alternative ways of calculation. Based on the postulation that 

hydrogen bonding is mainly electrostatic in nature, they used electrostatic interactions to model 

the hydrogen bonding ability of molecules. Atomic charges and LUMO energies (Lowest 

Unoccupied Molecular Orbitals) calculated using various semi-empirical methods such as AM1, 

PM3 and MNDO, MNDO electrostatic-potential-derived atomic charges, were correlated with 

Abraham’s hydrogen bond acicity and basicity and relationships were found to calculate 

hydrogen-bonding descriptors for QSAR correlations. 

Platts et al24, 25, 26 have recently carried out calculations on the structure and properties of 

rather small sets of compounds using ab initio and DFT calculations. The calculated properties 

for these molecules were assessed for their ability to correlate and predict experimentally derived 

values of S, A and B from Abraham’s database. Some comparisons with Platts work will be 

attempted in this paper. 

Finally the procedure of Famini and Wilson et al.27, 28 in general design is quite close to 

that of Abraham, except that the descriptors are calculated using semi-empirical quantum 

mechanical calculations with MNDO or AM1. Six calculated descriptors are used linearly to 

correlate properties, and the linear correlation equations are termed theoretical linear solvation 

energy relationships, TLSERs. It was shown that the TLSER descriptors could be used in exactly 

the same way as the experimental descriptors of Abraham, so that the five experimental 
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descriptors and the six calculated descriptors must encode nearly the same information. We shall 

not pursue this comparison, however, because a more powerful calculation procedure has 

recently been developed by Klamt et al. 29, 30, 31, 32, 33, 34 Computational methods for calculating 

the five Abraham descriptors so far have been applied on limited ranges of descriptors and rather 

small numbers of compounds. 

The aim of the present work is threefold. Firstly, to compare the information content of 

the five Abraham descriptors and the five COSMOments. Secondly, to investigate whether any 

or all of the Abraham descriptors can be obtained from those of Klamt’s and vise versa, and 

thirdly to compare methods for the calculation of the Abraham descriptors, where S, A, and B are 

considered. These are the ab initio methods of Platts et al., 24, 25, 26 the work of Sevcic19 

Dearden22, 23 and the method developed in this work under the second aim. 

 

COSMO and COSMO-RS 

COSMO-RS is a model combining quantum theory, dielectric continuum models, surface 

interactions, and statistical thermodynamics. Since a full derivation of the theory of COSMO-RS 

is beyond the scope of this article, a short summary of the essentials is given here. More details 

can be found in the references.29-34  

COSMO-RS considers a liquid system as an ensemble of molecules of different kinds, 

including solvent and solute. For each kind of molecule X a density functional (DFT) calculation 

with the dielectric continuum solvation model COSMO29 is performed in order to get the total 

energy EX
COSMO and the polarization (or screening) charge density (SCD) (sigma)  on its 

molecular surface.   is very good local descriptor for molecular surface polarity. For the 

purpose of an efficient statistical thermodynamics calculation the liquid ensemble of molecules 

now is considered as an ensemble of pair-wise interacting molecular surfaces. The most 

important parts of the specific interaction between molecular surfaces, i.e. electrostatics (es) and 

hydrogen bonding (hb), are expressed by the SCDs   and ' of the contacting surface pieces: 

2)'(
2

'
)',( 


 esE     (3) 

and  

²}',0min{)',( hbhbhb cE          (4) 

The three parameters ', chb, and hb have been adjusted to a large number of thermodynamic 

data. Since all relevant interactions depend on , the distribution functions (histograms) pX() are 
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required for the statistical thermodynamics. These "-profiles" are easily derived from the 

COSMO output. Note, that the -profiles provide a vivid picture of the molecular polarity (see 

Figure 1, and a discussion given in refs. 29,31). Furthermore we need the -profile pS() of the 

ensemble S, which is  calculated as a sum of the molecular -profiles weighted by mol-fractions. 

 

Figure 1: -profiles of different solvents 

 

Now the chemical potentials of the compounds in the solvent are calculated by a novel, exact and 

very efficient statistical thermodynamics procedure. The first step is the iterative solution of the 

equation 
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aeff denotes the size of an effectively independent piece of molecular surface area. This implicit 

equation can be solved by iteration within milliseconds on a PC. It yields the function S(), 

called -potential, which tells how much the solvent S likes surface of polarity . This is a 

characteristic function for each solvent. Examples are given in Figure 2.  
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Figure 2: -potentials of solvents 

These -potentials describe the solvent behaviour regarding electrostatics, HB-affinity, and 

hydrophobicity. In a second step, the -potential is integrated over the surface of each compound 

X, yielding the chemical potential of X in S: 

X
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In this equation the surface integral is evaluated as an -integral, making use of the -profile of 

the solute X. The combinatorial contribution X
comb,S  to  takes into account size and shape 

effects of solute and solvent. Usually it is small compared to the first term in eq. 11 which results 

from the surface interactions. It is sufficient to consider it as a solvent specific constant, here. 

As a result of this series of relatively simple steps, starting from a quantum chemical 

calculation for each compound an expression is found for the chemical potential of an almost 

arbitrary chemical compound X in an almost arbitrary solvent S, which may be a pure compound 

or a mixture. This allows the calculation of any partition coefficient as well as solubility. Based 

on density functional COSMO calculations, the few parameters required in COSMO-RS, have 

been fitted to a large set of experimental data,32 covering 215 diverse chemical compounds and 
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requires a small addendum to the steps given above that is not of interest here. However, since 

logSaq is the difference of Ghydr/RT and lnPvapor, aqueous solubility was implicitly taken into 

account in the parameterization of COSMO-RS. The initial COSMO-RS parameterization 

yielded a rms-error of 0.3 log-units for the diverse partition and solubility properties of small and 

medium sized molecules. In recent parameterizations the error has been reduced to about 0.23 

log-units.  

 

Extension of COSMO-RS to complex solutions  

COSMO-RS is a reliable method for the a priori prediction of thermophysical data and phase 

equilibria of pure liquids and liquid mixtures of well defined composition. But there exist several 

thermodynamic equilibria of industrial importance, which involve one or more phases, which are 

either chemically less defined, or which are disordered, but not really liquid, or both. Examples 

of such systems are physiological phases like blood, brain, or special tissue, structurally 

sophisticated polymers, and solid adsorbents, like activated carbon. In such phases no surface 

composition function pS() is available. Hence the -potential S() of the phase S and the 

chemical potentials S
X of solutes X in these phases cannot be directly calculated by COSMO-

RS. But an indirect treatment of such phases by COSMO-RS is enabled by the following 

extension. 

Consideration of a large number of different solvents led to the finding (see Figure 2) that 

-potentials can be described very well by a Taylor-like expansion of the form 
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The highest order of the polynomial contributions (eq. 8) required for a sufficient description of 

-potentials typically is m = 3. The hydrogen bonding contributions expressed by eq. 9 are 

necessary to describe the acceptor and donor behaviour of the solvent. As can be seen in figure 2, 

this behaviour corresponds to a linear descent in the -potentials starting from some threshold 
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hb. The functions facc() and fdon() are well capable of describing just these features of the -

potentials. Using this Taylor expansion, we may characterize each solvent (at fixed temperature, 

usually room temperature) by the set of -coefficients ci
S. Obviously any difference between the 

-potentials of two solvents is of the same kind of expansion, with coefficients ci
S,S' being just the 

difference of the coefficients of the two solvents. Partition coefficients are connected with the 

pseudo-chemical potentials by the equation 





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S
X
S

X
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KkT 
'',

ln        (10) 

Using eq. 5 for s(), we thus find that any partition coefficient between two solvents S and S' 

should be expressible in the form 
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where the combinatorial contributions have been subsumed in S'S,c~  and the -moments Mi
X of 

the solute X are defined by 

 dfpM i

XX

i )()(         (12) 

Eq. 10 implies that any logarithmic partition coefficient can be represented as a linear 

combination of -moments. As a consequence, the set of -moments Mi
X, i = 0,2,3, 

complemented by the hydrogen bond moments Macc
X (=M-2

X) and Mdon
X (=M-1

X) should be a very 

good and almost complete set of molecular descriptors for a linear regression analysis of any 

partition problem, i.e. for linear free energy regression (LFER). Note that the first moment M1
X 

usually is of no importance, because it is just the negative of the total charge of the molecule. 

Hence, for neutral compounds M1
X trivially vanishes. By definition of the -profiles, the zero-th 

moment M0
X (CSA) is identical with the molecular surface. The second moment (sig2) is an 

excellent measure of the overall electrostatic polarity of the solute, and the third moment (sig3) is 

a measure of the asymmetry of the sigma profile. The hydrogen bond moments (Hbacc3 and 

Hbdon3) are quantitative measures of the acceptor and donor capacities of the compound X, 

respectively. 
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Methodology 

We have assembled 470 compounds for which we have experimental descriptors in our existing 

database. For these compounds we calculated the five COSMOments which represent 

polarity/polarizability (sig2, sig3) and hydrogen bond acicity (Hbdon3) and basicity (Hbacc3) as 

well as a surface area descriptor (CSA). A detailed statistical analysis was carried out in order to 

determine how much of the chemical information is enclosed in each set of descriptors and how 

big is the overlapping information space. A training set of 35 compounds was selected in such a 

way as to cover a descriptor space as big as possible. Our descriptors were correlated with the 

five COSMOments using Excel and JMP statistical tools. The resulting equations have been 

applied to the remaining 435 compounds comprising our test set and the predictability of the 

model was assessed. Equations were also obtained from the total number of compounds Tables 5 

and 6. Finally comparison of our method and the method of other workers has been carried out. 

 

Results and Discussion 

 

Chemical content overlap of the two sets of descriptors 

Whilst it is informative to look at the regressions of each of the Abraham descriptors in turn on 

the Klamt descriptors, and vice versa, when considering the information held in individual 

variables, a different methodology is required to compare the two sets each considered as a 

whole. A natural approach to this question is through canonical correlation analysis. Here, the 

association between two sets of variables is measured, in the first instance, by the largest 

correlation that can be found between two new variables; one being a linear combination of the 

variables in the first set, and the other a linear combination of the variables in the second set. 

After this first pair of new variables has been constructed, further 'maximum correlation' pairs 

can be derived sequentially, under the constraint that each new variable is uncorrelated with all 

the previously-constructed variables (being correlated only with its 'partner' from the other 

space). Thus, each descriptor-space is decomposed into a new set of uncorrelated variables (or 

axes), in a manner analogous to principal components analysis, but with the aim of providing the 

'best' description of the association between two spaces, rather than (as with PCA) the best 

description of variance. The sequence of values for the correlation between the pairs of axes 

indicates the closeness of the two spaces over successive dimensions, and attempts can 

sometimes be made to give a physical interpretation to the axes by reference to the coefficients 

attached to the underlying variables. 
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Canonical correlation analysis applied to the full set of Abraham and COSMOments 

descriptors produced a correlation for the first pair of derived variables of 0.99. For both these 

new variables, the overwhelmingly dominant component was the size descriptor in each case ( 

the McGowan characteristic volume V for the Abraham set, and the surface area descriptor CSA 

for the Klamt set). Given that the simple pairwise correlation between these descriptors was also 

0.99 to two places of decimals, it is reasonable to say that the two spaces share a common 'size' 

dimension. The possibility that a power relationship (of the form y=xr)  might be a better 

representation of the relationship between V and CSA (since one is a volume and the other an 

area) was investigated, but this was found to be no better in practice than a simple linear 

relationship with non-zero intercept. Therefore, the common 'size' dimension was estimated by 

the average of V and CSA, and all the remaining descriptors orthogonalised to this, and then 

autoscaled for balance. In this way, the problem was simplified to the comparison of 4- (as 

opposed to 5-) dimensional spaces, whilst retaining all the chemical information. The correlation 

matrix of the remaining descriptors (orthogonalised to size) is given in Table 3 

It is worth noting that the above is actually very similar to the corresponding portion of 

the correlation matrix of the original data, though the interpretation of the individual pairwise 

correlations themselves is not straightforward. This is because a high correlation between two 

variables may be interpreted as due to a common correlation with a third. Whilst such effects can 

be examined to some extent by looking at the partial correlations (ie after orthogonalising to 

selected 'third variables'), they cannot be resolved purely statistically, as they depend on a 

scientific view of the causality behind the associations.  

Canonical correlation analysis applied now to the reduced (and orthogonalised to size) set 

of descriptors produced correlations for the pairs of derived variables of 0.98, 0.94, 0.76 and 0.17 

respectively. Incidentally, and reassuringly, these agree to 2 places of decimals with those for 

dimensions 2 to 5 in the canonical correlation analysis of the original data. This implies excellent 

correspondence between the spaces over 2 of their 4 dimensions, with fair agreement on a third. 

There was no immediately obvious interpretation of the first three pairs of axes with reference to 

the coefficients attached to the underlying variables. However, it is interesting that E only really 

makes a notable contribution to the 4th axis of the Abraham set. This is consistent with the 

finding that E has clearly the worst regression (judged by its R2) on the Klamt set (both when 

considering the original variables, and the reduced sets orthogonalised to size). Indeed, it would 

appear that any additional information present in the Abraham set over the Klamt set is held 



 13 

largely in E. Notably, if we re-run the canonical correlation analysis on the orthogonalised 

variables, but now omitting E, the correlations are virtually unchanged at 0.98, 0.91 and 0.76 

(only 3 can now be calculated).  

To summarize, there is considerable overlap between the set of five Abraham descriptors 

and the set of five COSMOments. There is essentially a shared size axis, and close commonality 

over 3 'chemical' dimensions orthogonal to that. No obvious interpretation of this 'chemical 

commonality' in terms of the original descriptors was found, but it does seem likely that, for the 

Abraham set, E is the main repository of any additional information present. Incidentally though, 

approaching the problem from the other end, this does not mean that E contains no information 

unique to itself within the Abraham set but shared with the Klamt set. The reason for saying this 

is that there remained a clearly statistically significant regression of E on the Klamt set, even 

after orthogonalisation of both to the other Abraham descriptors. 

 

Linear relationships between the two sets of descriptors 

A set of equations was constructed using a carefully selected training set of 35 compounds, Table 

4. These 35 compounds (Table 2) were selected in such a way to cover both the numerical spread 

and the chemical diversity of molecules with known S, A and B values. Within this training set 

the relationships, obtained using multiple linear regression, and relate each one of the Abraham 

descriptors to the five of Klamt’s, are quite reasonable with correlation factors ranging from 

0.707 to 0.975 with excess molar refraction descriptor (E) showing the smallest correlation 

coefficient. The important experimental descriptors S, A and B however, are predicted within 

this training set showing standard deviations of 0.180, 0.095 and 0.088 respectively for the three 

descriptors. The predictability of the three models was demonstrated by applying the models to 

calculate the descriptors of the remaining 435-compound test set. The three descriptors S, A and 

B were calculated with standard deviations of 0.226, 0.089 and 0.113 respectively which is very 

encouraging considering the small basis set used to train the model. 

Before we analyze the contribution of each of the five COSMOments to each of the five 

Abraham descriptors, it is of primary importance to check how representative are the different 

data sets we have used. Of course, it is not feasible to ascertain if one or another is a 

representative set, over all the possible compounds that might comprise a data set, but it is useful 

to check one set against another, and to note whether or not the descriptors in the sets cover a 

reasonable range. In the process of demonstrating the predictive capabilities of our model, it 

became clear that a comparison between the various correlation equations obtained from the 



 14 

whole set of 470 compounds and the equations obtained from smaller training set chosen was 

important. This importance stems from the fact that the whole data set of 470 compounds was 

not as well balanced as far as the distribution of descriptors in each range. As an example, we 

give in Figure 3 histograms of the distribution of the A-descriptor, for both the 470-compound 

data set and the 35-compound training set. The later data set contains far more compounds with 

large A-descriptors; such a disparity could bias the correlations.  

A summary of the correlations of the five descriptors E, S, A, B and V along with the 

statistical data are given in Table 5. Reasonable correlations have been obtained for all five 

descriptors. A problem however arises because of the big differences in the ranges of the five 

COSMOment descriptors. The range of the CSA descriptor, for example, is some twenty-fold 

larger than that of Hbdon3 and Hbacc3 (with Sig2 and Sig3 somewhere in between). As a result 

the regression coefficients for CSA are correspondingly smaller even for terms that contribute 

equally to the regressions. Therefore in Table 5 we have given CSA coefficients in two 

significant figures instead of three decimal places so that its always possible to tell if a 

coefficient is big or not in comparison to its standard error. Hydrogen bond acidity gives the best 

fit when compared to the other two correlations with a squared correlation value of 0.948 and a 

standard deviation of 0.061 and an F-statistic of 1618.7. From equation (13) the Abraham 

parameter for overall hydrogen bond acidity correlates mainly with the COSMOments 

representing donor and acceptor capacity. To check how significant the contributions of Sig2, 

Sig3 and area (CSA) COSMOments are in the correlation, the regressions where executed 

without these parameters. Sig3 was found to contribute strongly to the regression as the fitted 4-

term equation without it has an SD of 0.103. Omitting both Sig2 and CSA however, gives as 

almost as good a fit as the five-term equation with an SD of 0.075.  

 

A = 0.042 + 0.001Sig2 – 0.006Sig3 + 0.078Hbdon3 + 0.069Hbacc3 Equation (13) 

N=470  R2=0.928 SD=0.074 F=1200.139 

 

Here and elsewhere N is the number of data used in the correlation, R2 is the overall correlation 

coefficient SD is the standard deviation for the equation, and F is the Fischer’s F-statistic. 

Hydrogen bond basicity correlates well with four of the COSMOments as shown by 

equation (14), and although the coefficients of Sig2 and Sig3 are rather small they do contribute 

strongly to the regression. Leaving out each one in turn gives fitted 4-term equations with SDs of 

0.125 and 0.122 respectively. Indeed and perhaps surpassingly (especially in view of the high 
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pairwise correlation of B with Hbacc3 shown in Table 3), Hbdon3 and Hbacc3 jointly contribute 

less to the regression than do Sig2 and Sig3, in the sense that a fitted 2-term equation with only 

Sig2 and Sig3 in it has an SD of 0.103. CSA descriptor can certainly be omitted with little loss. 

Eliminating the insignificant correlating parameters Equation (14) is obtained for the B- 

descriptor. 

 

B = -0.062 +0.006 Sig2 + 0.006 Sig3 + 0.024 Hbdon3 + 0.020 Hbacc3 Equation (14) 

N=470  R2=0.880 SD=0.098 F=680.2 

 

Correlation of S polarity/polarizability descriptor gives a reasonable relationship with Klamt’s 

COSMOments, although the correlation is not as good as those for descriptors A and B. The 

polarity/polarizability descriptor correlates with all COSMOments apart from the Area descriptor 

which gives a nearly zero coefficient. A fitted 4-term equation gives an SD of 0.215. 

 

S = -0.228 + 0.023Sig2 – 0.006Sig3 - 0.157Hbdon3 - 0.037Hbacc3  Equation (15) 

N=470  R2=0.780 SD=0.214 F=328.2 

 

Molar refraction (E) descriptor does not correlate well at all with the five COSMOments. This is 

evident from the low correlation factor of 0.504 and a comparatively low F-statistic of 94.3. The 

descriptor is predicted rather poorly showing a rather large standard deviation of 0.368. 

 

E = -0.396 + 0.016Sig2 – 0.016Sig3 - 0.201Hbdon3 + 0.011Hbacc3 + 0.003CSA    Equation(16) 

N=470  R2=0.504 SD=0.368 F=94.3 

 

The volume descriptor used by Abraham (McGowan’s volume), not surprisingly correlates very 

well with the five COSMOments. The overwhelmingly important term in this equation is 

(obviously) CSA to the extent that a fitted 1-term equation with CSA only has an SD value of 

0.056. 

 

V = -0.262 – 0.001 Sig2+ 0.009 Hbdon3 + 0.004 Hbacc3 + 0.008 CSA Equation (17) 

N=470  R2=0.978 SD=0.055 F=4083.8 

 

Equation (17) shows a correlation coefficient 0.978 and standard deviation of 0.055.  
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The regression exercise was repeated only this time the reverse was done by regressing each one 

of the COSMOments against the five Abraham descriptors. Scale differences between the two 

sets of descriptors are not such a big problem here and thus the regressions obtained, shown in 

Table 6, are easier to interpret because of larger coefficients. One significant point has to be 

made however from comparing the two sets of regressions in Tables 5 and 6. The regressions 

predicting A and B are not so clear cut as far as the contributions of Hbdon3 and Hbacc3. Are 

concerned, in comparison with the regressions predicting Hbdon3 and Hbacc3 in which case 

Hbdon3 has the strongest contribution coming from A and similarly Hbacc3 from B. This 

imbalance seems to arise because of the influence of Sig2 and Sig3 in the former case. Both of 

these COSMOments contribute strongly to the regression for B, whilst Sig3 contributes strongly 

to the equation for A. Since Sig2 and Sig3 are also correlated with Hbdon3 and Hbacc3, their 

presence influences the regression coefficients attached to Hbdon3 and Hbacc3. Interpreting this 

chemically is hard and it certainly depends on the actual chemical content of Sig2 and Sig3. 

Incidentally, the simple pairwise correlations between A, B and Hbdon3, Hbacc3 are exactly as 

one would expect (Table 3). 

 

Comparison with other methods 

Finally, it is useful to compare the predictive power of our equations to give the three Abraham 

descriptors S, A and B, with other methods reported in literature. Such methods include the work 

carried out by Platts24,25, 26 Sevcic19 and Dearden.22, 23 For this purpose, we have constructed 

Table 7 which tabulates in detail the parameters and statistics for various methods. The extent to 

which these methods can predict these descriptors can be assessed by comparing the standard 

deviations obtained from calculating descriptors for various test sets. We have tried to include, 

where available, the number of compounds used in each study to train the model used and also to 

test it by means of test sets. Platts in his work carries out calculations on the structure and 

properties of compounds using ab initio and DFT calculations. The calculated properties for 

these molecules are assessed for their ability to correlate and predict experimentally derived 

values of S, A and B from Abraham’s database. The approach of Sevcic takes a number of 

structural and quantum mechanical properties as input, combining them either linearly via 

MLRA or nonlinearly via a feed-forward neural network. This work deals only with 

polarity/polarizability descriptor S. The predictability of the model is reasonable but it has to be 

noted that a cut-off point of 1.0 for S has been imposed on the data. 
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Finally, Dearden and Ghafourian have calculated atomic charges and LUMO energies 

using semi-empirical methods and correlated these with Abraham’s hydrogen bond acidity 

descriptor. Their work used a training set of 55 compounds and the correlations reported are 

quite reasonable.  

Our method deals with all three experimental descriptors S, A and B. In all cases our 

model is trained using a small number of compounds (35) but tested on a reasonably large test set 

(435). The predictability of the model is as good as any other method so far. The deviations 

obtained are 0.226 for S 0.089for A and 0.113 for B, close to the experimental error. For the S 

descriptor , the method of Platts gives rise to a lower standard deviation on his calculated test 

sets, but it has to be noted that these are rather small sets of compounds. For descriptor A, it  is 

encouraging that all methods lead to small errors in their calculations. It seems that hydrogen 

bond acidity is the best calculated property with errors in the region of 0.09. As far as B is 

concerned there is not much room for comparison with other methods because of the lack of test 

sets in other calculations. 

 

Conclusions 

The five Abraham experimental descriptors and the five COSMOments of the 470-compound set 

exhibit a large overlap as far as chemical information content. This information however is 

distributed differently in the two sets and direct comparison of descriptors is not necessarily 

beneficial, though it does appear that any additional information present in the Abraham set over 

the Klamt set is mainly incorporated in the Abraham excess molar refraction descriptor E.  

Problems of interpretation in the analyses described arise because of the high degree of 

correlation within both parameter sets. This is reflected in the relatively small eigen values 

associated with the final axes of principal components analyses carried out on the auto-scaled 

descriptors. Here, the last PC from the Abraham set and the last two PCs from the Klamt set each 

accounted for less than 5% of the total variance. Thus, on this basis, the Abraham descriptors 

provide a more stable description of the space that they span. However, how much of this 

difference depends on this particular data set is another matter.  

The regression equations constructed can be useful in predicting the experimental 

Abraham descriptors from theoretically calculated COSMOments. It is difficult to interpret the 

coefficients of these equations chemically however, because the information is not distributed in 

the same way in the two sets of descriptors. The predictability of these equations is tested 

successfully using a reasonably large set of data. Our model is shown to compare effectively with 
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recent attempts24, 25, 26 to calculate the Abraham descriptors from a theoretical basis. 

Computational methods however, used for the prediction of these parameters are generally slow 

methods, something which is evident from the small number of compounds used in each of the 

studies we have included in our discussion. Our method could be useful when looking at specific 

compounds which are difficult to profile using experimental means. Although we use equations 

with N=35 (Table 4) for direct comparison, we suggest that in general it is better to use the 

equations with the largest number of data points, that is the equations with N=470 (Tables 5 and 

6). 

The statistical analysis of the two almost complete sets of LFER descriptors, the first 

being more heuristic and resulting from a long experience in LFER and the second resulting from 

a rather theoretical approach,  and the analysis of the interrelations given in this paper, provides 

furthers evidence for the fact, that the solvent space is about five-dimensional with respect to 

partition behaviour of solutes.  

 

 

Table 1 Comparison of correlation sets of compounds used by various workers. 

Abraham 

Descriptor 

Abraham DB Dearden22, 23 Platts24, 25, 26 Sevcic18, 19 This work 

N Min/Max N Min/Max N Min/Max N Min/Max N Min/Max 

E 4167 -1.38/4.62 - - - - - - 470 -0.55/3.26 

S 3631 -1.34/5.60 - - 98 -0.25/1.58 333 0-1* 470 -0.25/2.25 

A 4375 0.00/4.33 55 0.14/0.79 54 0.08/0.95 - - 470 0.00/1.62 

B 3312 0.00/4.52 - - 50 0.04/0.68 - - 470 0.00/1.5 

V 4260 0.07/8.56 - - - - - - 470 0.11/2.84 

*
A cutoff  so that  S < 1 was used 
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Table 2 Training set of 35 compounds used 

Name sig2 Sig3 Hb don3 HB acc3 Area [CSA] E S A B Vx 

Propionic acid 69.765 -2.102 3.719 1.937 110.823 0.233 0.65 0.6 0.45 0.6057 

Ethanol 53.537 23.480 1.993 4.473 85.890 0.246 0.42 0.37 0.48 0.4491 

Methanol 53.585 20.284 2.141 4.227 66.362 0.278 0.44 0.43 0.47 0.3082 

Cyclohexane 5.713 0.400 0.000 0.000 126.003 0.305 0.1 0 0 0.8454 

Methane 4.762 -0.231 0.000 0.000 55.697 0 0 0 0 0.2495 

Cyclohexene 16.188 6.310 0.000 0.000 124.438 0.395 0.2 0 0.1 0.8024 

Piperazine 68.257 76.204 0.114 8.165 126.174 0.57 0.83 0.11 1.14 0.7632 

o-methylphenol 62.278 -21.047 3.470 0.550 148.665 0.84 0.86 0.52 0.3 0.916 

Phenol 65.252 -25.693 3.929 0.679 127.586 0.805 0.89 0.6 0.3 0.7751 

Tolune 28.583 1.514 0.000 0.000 135.789 0.601 0.52 0 0.14 0.8573 

Imidazole 85.311 13.854 3.627 5.420 101.308 0.71 0.85 0.42 0.78 0.5363 

p-bromophenol 67.615 -35.937 4.024 0.477 154.735 1.08 1.17 0.67 0.2 0.9501 

Tetrafluoromethane 5.908 -3.175 0.000 0.000 86.812 -0.55 -0.25 0 0 0.3203 

m-cyanophenol 86.733 -24.643 4.493 1.127 155.499 0.93 1.55 0.84 0.25 0.9298 

p-nitrophenol 93.699 -30.965 5.070 0.683 158.111 1.07 1.72 0.82 0.26 0.9493 

1,4-diethylbenzene 29.551 4.839 0.000 0.000 186.217 0.645 0.5 0 0.18 1.28 

Nonane 10.579 0.960 0.000 0.000 204.845 0 0 0 0 1.3767 
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2-Hexanone 47.927 36.706 0.000 2.896 153.393 0.136 0.68 0 0.51 0.9697 

Formic acid 72.256 -24.292 4.987 1.228 71.326 0.3 0.79 0.72 0.34 0.3239 

Heptan-3-ol 46.812 20.749 1.207 3.384 174.010 0.178 0.36 0.33 0.56 1.1536 

m-dihydroxybenzene 100.956 -50.624 7.821 1.312 136.232 0.98 1.11 1.09 0.52 0.8338 

1-naphthol 71.152 -34.026 4.158 0.272 170.153 1.52 1.05 0.6 0.37 1.1441 

Dibenzofuran 46.690 -5.535 0.000 0.000 191.203 1.407 1.02 0 0.17 1.2743 

1,3-Dihydroxybenzene 102.752 -55.119 8.183 1.309 136.464 0.98 1.11 1.09 0.52 0.8338 

3,5-Dichlorophenol 65.322 -52.151 4.979 0.211 165.486 1.02 1 0.91 0 1.0199 

Orthene 117.083 38.598 2.946 5.490 191.737 0.505 2.02 0.36 1.19 1.2732 

Gallic acid 153.290 -93.554 14.062 2.095 173.024 1.29 1.45 1.62 0.85 1.1078 

3-Hydroxybenzonitrile 87.572 -28.045 4.797 1.111 151.633 0.93 1.55 0.84 0.25 0.9298 

Phenazone 103.651 71.013 0.000 8.539 211.844 1.32 1.5 0 1.48 1.5502 

Succinic acid 120.847 -8.431 5.669 3.695 133.936 0.37 1.36 0.85 0.7 0.821 

2-Butene-cis 16.853 4.618 0.000 0.000 111.610 0.142 0.08 0 0.05 0.6292 

Ethylene diamine 75.950 81.492 0.074 8.637 105.772 0.462 0.17 0.04 1.29 0.59 

Dimethylamine 38.598 42.945 0.061 4.471 93.207 0.189 0.3 0.08 0.66 0.4902 

Chloropentafluoroethane 5.116 -1.799 0.000 0.000 128.851 -0.36 -0.12 0 0 0.6013 

1-propanol-2,2-dimethyl 47.889 18.340 1.466 3.203 130.435 0.22 0.36 0.37 0.53 0.8718 
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Table 3  Correlation matrix of the remaining 4 descriptors (orthogonalised to size) 

E 1        

S 0.68 1       

A 0.24 0.45 1      

B 0.06 0.47 0.26 1     

Sig2 0.34 0.78 0.71 0.73 1    

Sig3 -0.39 -0.10 -0.49 0.58 0.02 1   

Hbdon3 0.24 0.42 0.92 0.29 0.71 -0.48 1  

Hbacc3 -0.10 0.29 0.25 0.84 0.58 0.65 0.17 1 

 E S A B Sig2 Sig3 Hbdon3 Hbacc3 

 

 

 

Table 4 Correlation equations and statistics on 35 compounds 

Descriptor C Sig2 Sig3 Hbdon3 Hbacc3 CSA N R2 SD F 

S -0.263 0.029 -0.007 -0.229 -0.083 0.000 35 0.916 0.180 63.0 

 0.122 0.003 0.006 0.065 0.058 0.001     

A 0.120 0.003 -0.005 0.063 0.027 -0.001 35 0.955 0.095 125.4 

 0.065 0.002 0.003 0.035 0.031 0.001     

B -0.179 0.002 0.008 0.073 0.056 0.001 35 0.956 0.088 126.6 

 0.060 0.001 0.003 0.032 0.028 0.001     

E -0.274 0.017 -0.035 -0.373 0.219 0.002 35 0.707 0.288 14.0 

 0.196 0.005 0.010 0.105 0.092 0.002     

V -0.276 0.000 0.001 0.003 -0.001 0.008 35 0.975 0.055 221.7 

 0.038 0.001 0.002 0.020 0.018 0.000     
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Table 5 Correlation equations and statistics on 470 compounds 

Descripto

r 

C Sig2 Sig3 Hbdon3 Hbacc3 CSA N R2 SD F 

S -0.228 0.023 -0.006 -0.157 -0.037 0.00058 470 0.780 0.214 328.2 

 0.037 0.001 0.001 0.011 0.011 0.00024     

A 0.042 0.001 -0.006 0.078 0.069 -0.00025 470 0.928 0.074 1200.1 

 0.013 0.000 0.000 0.004 0.004 0.00008     

B -0.062 0.006 0.006 0.024 0.020 0.00025 470 0.880 0.098 680.2 

 0.017 0.000 0.000 0.005 0.005 0.00011     

E -0.396 0.016 -0.016 -0.201 0.011 0.00316 470 0.504 0.368 94.3 

 0.063 0.001 0.002 0.019 0.018 0.00041     

V -0.262 -0.001 0.000 0.009 0.004 0.0082 470 0.978 0.055 4083.8 

 0.009 0.000 0.000 0.003 0.003 0.00006     

 

 

 

Table 6 Equations obtained for the five COSMOments from the Abraham descriptors for 470 

compounds 

Descriptor C E S A B V N R2 SD F 

Sig2 8.438 -6.004 28.365 38.687 37.034 3.040 470 0.930 6.941 1224.2 

 0.956 1.020 1.330 1.323 1.443 0.989     

Sig3 1.001 -15.768 3.052 -56.000 64.375 0.502 470 0.862 9.002 578.5 

 1.240 1.323 1.725 1.716 1.872 1.282     

Hbdon3 -0.375 0.195 -0.257 6.079 0.474 0.171 470 0.853 0.697 538.7 

 0.096 0.102 0.133 0.133 0.145 0.099     

Hbacc3 0.154 -0.519 -0.303 0.635 5.906 -0.340 470 0.726 1.012 245.6 

 0.139 0.149 0.194 0.193 0.210 0.144     

CSA 34.969 -4.846 7.587 -0.168 -5.812 121.38 470 0.978 6.625 4209.4 

 0.913 0.974 1.269 1.263 1.377 0.944     
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Table 7 Comparison of this work with previous theoretical predictive methods of Abraham descriptors 

Descriptor Method N SD R2 No of 

descriptors 

 used 

Training/Test set Reference, Author 

A MLR 39 0.144 0.636 2 Training set 24, Platts et al 

A MLR 15   2 Test set 24, Platts et al 

A MLR 55 0.107 0.880 2 Training set 23 Dearden et al 

A MLR 35 0.180 0.916 5 Training set This work 

A MLR 435 0.089 - 5 Test set This work 

B MLR 38 - - 3 Training set 25, Platts et al 

B MLR 35 0.088 0.956 5 Training set This work 

B MLR 435 0.113 - 5 Test set This work 

S MLR 58 0.219 0.764 3, 4 Training set 26, Platts et al 

S PLS 58 0.176 0.840 4 Training set 26, Platts et al 

S MLR 32 0.178 0.787 6 Test set 26, Platts et al 

S PLS 32 0.175 0.796 2 Test set 26, Platts et al 

S MLR 8 0.175 - 4 Test set 26, Platts et al 

S MLR 67 - 0.940 17 Training 19, Sevcic et al 

S MLR 266 - 0.585 17 Test set 19, Sevcic et al 

S NN 69 - 0.908 7 Training 19, Sevcic et al 

S NN 264 - 0.537 7 Test set 19, Sevcic et al 

S MLR 35 0.180 0.916 5 Training set This work 

S MLR 435 0.226 - 5 Test set This work 

MLR = Multiple linear regression PLS = Partial Least Squares 

NN = Neural network   



 24 

 

A all Data (N=470)

0

50

100

150

200

250

300

350

0 0.405 0.81 1.215 1.62

Descriptor range

F
re

q
u

e
n

c
y

Series1

 

 

A Training set (N=35)

0

2

4

6

8

10

12

14

0 0.405 0.81 1.215 1.62

Descriptor range

F
re

q
u

e
n

c
y

Series1

 

 

Figure 3 Histograms showing the distribution of A descriptor in the whole set (N=470) and 

training set (N=35). 
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