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Abstract 

The COSMO-RS method, originally developed for the prediction of liquid-liquid and liquid-

vapor equilibrium constants based on quantum chemical calculations, has been extended to 

solid compounds by addition of a heuristic expression for the Gibbs free energy of fusion. By 

this addition, COSMO-RS is now capable of a priori prediction of aqueous solubilities of 

almost arbitrary neutral compounds. Only 3 parameters in the heuristic expression have been 

fitted on a data set of 150 drug-like compounds. On these data an rms deviation of 0.66 log-

units was achieved. Later the model was tested on a set of 107 pesticide solubilities, which 

have been critically selected based on 2 experimental data sources and by a crosscheck with 

an independent HQSAR model. On this data set an rms of 0.61 log-units was achieved, 

without any adjustments to the structurally extremely diverse pesticides. This result verifies 

the ability of this extended COSMO-RS to predict aqueous solubilities of drugs and pesticides 

of almost arbitrary structural classes. The new method is COSMO-RSol. 
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1 Introduction 

Aqueous solubility (Saq) is a key property for all chemical compounds considered as potential 

agents in life science, e.g. for drugs or pesticides. Saq largely determines the availability of the 

compounds in vivo, as well as the environmental behavior of the compounds if released to the 

environment. 

 

Due to its importance there have been many attempts to find reliable methods for the 

prediction of Saq of new compounds [1-5], since such methods are of great value in the 

process of finding promising candidates for new agents. But within the different properties 

considered for the characterization of absorption, distribution, metabolism, and environmental 

fate (ADME) of  agents, Saq is one of the hardest target for prediction. This is due to the fact 

that the prediction of solubility by theoretical computational models involves the chemical 

potential of a compound in its pure state, i.e. in its pure liquid or crystal. In contrast to the 

chemical potential S
X of a compound X in a given solvent S, e.g. in water, octanol, etc., 

which usually can be approximated quite well by a sum of fragment contributions, the 

chemical potential X
X of a pure compound X involves the compound as solute and as 

solvent. This causes a strong non-linearity of X
X with respect to its structural composition. 

For example, addition of an acceptor group may increase or decrease the solubility of a new 

compound compared to a similar precursor, depending on a delicate balance between donors 

and acceptors. Therefore all attempts to develop linear incremental schemes for logSaq,, 

similar to the very successful increment methods for logPow [6,7], had only limited success. 

Even linear regression methods based on more complex 'fingerprints' of the compounds 

typically are only applicable to certain substance classes. A network approaches was reported 

[3], which appears to be slightly more successful, probably due to its ability to catch some of 

the non-linearity of the problem. But due to the lack of any physical model, NN require a 

large training set, and they are always in danger to learn all the noise and error covered in the 

typically not very clean experimental data sets for Saq. 

 

On the other hand, the situation for a rigorous calculation of the chemical potentials or free 

energies of compounds in water and in their pure state appears to be rather hopeless. While 

the calculation of the free energy of a compound X in water may be possible with substantial, 

but finite effort by molecular dynamics (MD) or Monte Carlo (MC) free energy perturbation 

methods starting from an equilibrated water ensemble, the calculation of the free energy in the 



pure state of X is extremely expensive. If X is a liquid, this requires the generation and full 

equilibration of a large ensemble of molecules by MD/MC methods. But typically drugs and 

pesticides are crystalline, and hence the predictive calculation of the free energy of the pure 

compound would require simultaneous prediction of the crystal structure together with an 

accurate calculation of the corresponding total free energy. Although successful crystal 

structure predictions have been reported for a few relatively simple drug and dye compounds, 

such procedures are extremely time-consuming, and they appear to be far away from 

becoming routinely applicable methods. Finally it should be noted, that any force-field based 

MD/MC method requires a quantum chemical calculation of the compound X as initial step in 

order to yield reasonable partial charges. 

 

In this article we want to introduce a very efficient and physically well founded alternative 

approach, which involves the COSMO-RS method [8-11] as the central source of chemical 

potentials. COSMO-RS is a combination of the continuum solvation method COSMO [12] 

with a very efficient and accurate statistical thermodynamics of interacting surfaces. Starting 

from the surface polarization charge densities  from density functional (DFT) COSMO 

calculations, COSMO-RS considers all interactions in a liquid system as contact interactions 

of the molecular surfaces. The interaction energies, especially the electrostatic interactions 

and hydrogen bonding, are written as pair interactions of the respective polarization charge 

densities  and ' of  contacting surfaces. Then the ensemble of interacting molecules is 

replaced by the corresponding system of  geometrically independent, surface segments. Under 

the condition that all of these surface segments have to form pairs, i.e. that there is no free 

surface in the system, the statistical thermodynamics of this ensemble can be solved exactly 

within milliseconds, independent of the size of the system. This leads to the chemical 

potential S
X of any solvent or solute molecule X in the liquid ensemble S. Thus, given the 

DFT-COSMO calculations for a molecule X the chemical potential of X in water and in the 

pure liquid X can be calculated in milliseconds. In combination with a simple linear 

regression for the heat of crystallization (the free enthalpy of fusion Gfus) the COSMO-RS 

method can be applied to crystalline compounds. 

 

Still the COSMO-RS model is considered with some skepticism in the computational 

chemistry community, probably because most computational chemists are so much more 

educated in terms of MD/MC theory. Most of them do not know that the picture of pair-wise 



interacting surface as been successfully used by the chemical engineers over 3 decades, since 

it is the basis of models like UNIFAC, and UNIQUAC [13,14].  

 

If we accept, that at least for electronically demanding molecules the initial step for a good 

calculation has to be a quantum chemical (QC) calculation for the electrostatics, which may 

be a HF/631-G** calculation as often used in the context of force fields, or a 

DFT/TZVP/COSMO calculation for COSMO-RS, then the relation between both approaches 

becomes clearer. The second step in MD/MC is the reduction of the real quantum chemical 

system to an ensemble of pair-wise interacting spheres, having certain interaction parameters 

which are derived from the initial QC step. Instead, in COSMO-RS we represent the system 

by surface pieces, having interaction parameters from QC. Both approaches require a pair-

wise interaction functional, which typically is a force-field in the first case, and which are 

very simple interaction formulae for electrostatic misfit and hydrogen bonding in COSMO-

RS. We should be aware that in either case these interaction functionals are only an 

approximation to the real physics of interaction. MD/MC has to solve the statistical 

thermodynamics of the problem by an extremely demanding exhaustive sampling of the phase 

space of a large ensemble of molecules, taking into account periodic boundary conditions to 

avoid artifacts. Instead COSMO-RS has an exact, algebraic solution for the thermodynamics 

of such ensemble of pair-wise interacting surface segments. 

2 Theory 

2.1 General COSMO-RS Theory 

 

The theory of COSMO-RS has been described in detail in several articles [8-11]. Therefore 

we only will give a short survey of the basic concept here, and refer the interested reader to 

these articles for details. 

 

Starting point of COSMO-RS is the state of a molecule X in its ideally screened state, i.e. the 

state of X embedded in a perfect conductor. This state can be calculated with reasonable effort 

with dielectric continuum solvation methods. Apparently, the conductor-like screening model 

COSMO is optimally suited for this task, since it is just derived from the limiting case of a 

molecule in a conductor. Density functional theory (DFT) combined with COSMO allows for 

good accuracy of the relevant electrostatics. If efficiently implemented, DFT/COSMO 



calculations have less than 50% computational overhead compared to the corresponding DFT 

vacuum calculations.  

 

The only empirical parameters required in this first step are the atomic radii used in the 

construction of the cavity separating the molecular interior from the conductor outside. Within 

the framework of COSMO and COSMO-RS we operate with element-specific radii, which are 

about 17% larger than the corresponding van der Waals (vdW) radii given by Bondi [9,15]. At 

the level of dielectric continuum solvation theory [16,17], these radii are purely empirical, 

while the COSMO-RS theory has the basic requirement that the cavities should be space-

filling, which just explains an increase of the radii by about 20% relative to vdW-radii [9]. 

 

As soon as a reasonable set of radii is chosen, the state of a molecule in a conductor is well 

defined at any quantum chemical SCF level (HF or DFT). Note, that the artifacts arising from 

tails of the molecular electron density reaching outside the cavity, are quite small within the 

COSMO theory, in contrast to original dielectric continuum solvation theory. The residual 

small effects are very accurately corrected by appropriate algorithms [18]. As a result of a 

DFT/COSMO calculation we do not only yield the total energy of X in its self-consistent state 

in the conductor, but we also gain the polarization charge density , which the conductor 

places on the cavity in order to screen the electric field of the molecule. This polarization 

charge density is a very good local descriptor of the polarity on the molecular surface. 

 

In the next step we consider the molecules of a liquid as if each molecule would be swimming 

in a conductor, i.e. we do a DFT/COSMO calculation for each of the molecules. Then we 

virtually compress the ensemble in order to squeeze out the conductor between the molecules. 

Only a thin film of conductor is left at the interface of the pair-wise contacting molecules, and 

the polarization charge density on this film is just the sum of the polarization charge densities 

 and ' of the two contacting molecules. 

 

When we  remove the conductor between the molecules we replace the artificial interaction of 

the molecules with the conductor by the real interaction of the molecules. Removing the 

conductor piece by piece, the energy change resulting from removal of a certain piece of 

conductor can be interpreted as a local contact energy of the initially perfectly screened 

molecular surfaces. As shown in the previous articles, this local contact energy is very well 

approximated by the expression: 
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aeff is the area of an effectively independent thermodynamic contact. The first term represents 

the electrostatic contact interaction energy, which results from the misfit of the two contacting 

polarization charge densities. Note, that the misfit energy is zero, if the two polarization 

charge densities compensate each other, i.e. if  = -'. The coefficient ' in the misfit energy 

expression can be derived from basic electrostatics. The second term accounts or the extra 

energy of hydrogen bonding, if two very polar pieces of molecular surface with opposite sign 

interact. This empirical formula gives a reasonable description of hydrogen bond energy, if 

the two parameters chb and hb are appropriately adjusted. 

 

Based on this quantitative expression for the interaction energy of molecules in a condensed 

state as local contact energies of molecular surfaces, the thermodynamics of the liquid system 

is evaluated using a model of pair-wise interacting surface segments of size aeff. If pS() and 

pX() are the surface compositions functions with respect to the polarization charge density  

(the -profile) of a solvent X and of a solute X, respectively, then the (pseudo-) chemical 

potential S
X of X in S is given by 
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where the last term is a simple and small contribution taking into account size effects of solute 

and solvents. Chemical engineers know this term as combinatorial contribution [14]. Note, 

that the pseudo-chemical potential as introduced by Ben-Naim [19] is just the true chemical 

potential minus the trivial concentration term kTln x. We will use the notation chemical 

potential in the sense of pseudo-chemical potential throughout this article. The 

thermodynamics of molecular interactions is includes in the first part of eq. 2. This is just the 

integration of a solvent specific function S() (the -potential) over the surface of the solute 

X. The -potential expresses the free energy of a piece of surface of polarity  in an ensemble 

of composition pS(). Within the assumption of pair-wise interacting surfaces it can be 

exactly calculated from the equation 
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which has to be solved recursively due to the appearance of the unknown -potential in the 

exponent of eq. 3.  

 



The capability of COSMO-RS to predict the chemical potential S
X of any solute X in any 

pure or mixed solvent S at variable temperature T enables the calculation of any 

thermodynamic liquid-liquid equilibrium. Of specially importance for the subject of this 

article are the chemical potentials w
X of a compound X in pure water (W) and the chemical 

potential X
X of the compound in its pure liquid state.  

 

The few adjustable parameters of the COSMO-RS method have been carefully fitted to a 

large number of thermodynamic data. The accuracy of COSMO-RS is about 1.5 kJ/mol for 

large chemical potential differences like those typically involved in octanol-water partition 

coefficients or in water solubility. This corresponds to about 0.27 log-units or slightly less 

than a factor 2 for equilibrium constants at room temperature. 

2.2 Solubility  

As mentioned above the solubility SS
X of a liquid compound X in a solvent S is related to the 

difference S
X = S

X - X
X of the chemical potentials of X in S and in pure X. If SS

X is 

sufficiently small so that the solvent behavior of the X-saturated solvent S is not significantly 

influenced by the solute X, then the decadic logarithm of the solubility is given by 
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In the case of high solubility (SS
X greater than 10 mass%) eq. 4 becomes approximate and the 

true solubility would have to be derived from a detailed search for a thermodynamic 

equilibrium of a solvent-rich and a solute-rich phase. But in general, at least for the purpose of 

estimating drug solubility, eq.  4 is sufficiently accurate. Since the molecular weights MW 

and the solvent density  are known, eq. 4 thus is sufficient for the prediction of the solubility 

of compounds which are liquid at room-temperature. 

 

Unfortunately most drugs are solid at room temperature. Since the solid state of a compound 

X is related to its liquid state by the free energy difference Gfus
X which is negative in the 

case of solids, a more general expression for solubility reads 
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Since for liquids Gfus
X is positive, eq. 5 reduces to eq. 4 in this case. 

 



For the precise calculation of Gfus
X it is necessary to evaluate the free energy of a molecule 

of compound X in its crystal, i.e. the crystal structure has to be known. In general, crystal 

structure prediction for drugs has to be considered as an unsolved problem. Thus there is no 

viable way to a fundamental model. Hence we treat Gfus
X by a QSPR approach in this article. 

For a physically sound and stable QSAR model we first identified a small set of descriptors of 

potential significance for Gfus
X. From physical intuition we considered the quantities size, 

rigidity, polarity, and number of hydrogen bonds as plausible driving forces of crystallization. 

Molecular size can almost equally well be described by the molecular volume AX and by the 

volume VX. Since both are available in the framework of COSMO-RS we tried both 

descriptors in our QSAR study. Molecular rigidity of drugs to a large degree is caused by ring 

structures. Therefore we used the number of ring atoms Nringatom
X as a descriptor of rigidity. 

We also found that Nringatom
X can be replaced by the number of rotatable bonds without change 

in regression quality. From our experience with COSMO we consider the dielectric COSMO 

energy Ediel
X as a good descriptor of polarity.  The chemical potential W

X of a compound X 

in water is a combined measure of polarity and hydrogen bonding. Hence, in combination 

with Ediel
X this should be able to reflect hydrogen bonding ability of a compound X. 

 

Unfortunately a direct measurement of Gfus
X is impossible since the supercooled melt of a 

solid compound is usually inaccessible. Hence no experimental data for Gfus
X are available. 

In order to perform a QSAR with respect to Gfus
X we choose an indirect way. We took a 

reasonable experimental data set of aqueous solubilities of 150 common organic and drug 

compounds from the study published by Duffy and Jorgensen [5] for their QikProp method 

(called QikProp data set further on). We performed DFT/COSMO calculations for all 

compounds (for details of these calculations see section 3.1) followed by a COSMO-RS 

calculation using the COSMOtherm program. From these calculations we got values for the 

free energy differences S
X of the compounds in aqueous solution and in their liquid state. It 

should be noted, that for the calculation of S
X a correction of -10.5 kJ/mol was added to the 

chemical potentials W
X of 15 poly-substitued aliphatic amines in water in order to account 

for a known systematic error of COSMO-RS for secondary and tertiary amine groups. Taking 

the experimental values of  logSS
X  and the calculated values of S

X we solved eq. 5 for 

Gfus
X. Doing this we allowed for positive values of Gfus

X in the first iteration of the QSAR, 

i.e. we neglected the minimum function in eq. 5. We tested the performance of different 

combinations of descriptors in multi-linear regression. In order to account for the fact that 



positive values of Gfus
X do not show up in solubility, for each descriptor combination we did 

a second iteration, in which we omitted those compounds X yielding a positive Gfus
X. 

 

Finally it turned out, that the descriptor combination VX, Nringatom
X, and W

X is best suited for 

the regression of  Gfus
X. The polarity descriptor Ediel

X did not achieve any significance. Even 

the regression constant was insignificant, leading to the final regression equation 
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where Gfus
X and W

X are in kJ/mol and VX in nm³. Substitution of this expression into eq. 5 

for logSW
X and using all 150 compounds yields an correlation coefficient of r² = 0.90 and a 

standard deviation of s = 0.66 log-units. Although in some cases Gfus
X is as large as 20 - 25 

kJ/mol, the overall contribution of Gfus
X  to the variance of logSW

X is only about 25% of the 

variance arising from W
X. Hence Gfus

X is much less important than W
X.  

 

The COSMO-RS based solubility prediction method consisting of eqs. 5 and 6 will be refered 

to as COSMO-RSol, further on. 

3 Applications 

3.1 Computational Details 

The molecular geometries of all of the compounds in the training set and the test sets have 

been built as two-dimensional structures and subsequently converted to three dimensional 

geometries. In order to obtain the lowest energy conformations for each compound a 

molecular dynamics (MD) calculation has been done with molecular modeling program 

package Alchemy [20]. The MM3 force field has been used to obtain the potential energy 

during the MD calculation, using  an overall MD run time of 5 ps, a time step of 0.001 ps and 

a initial temperature of 293 K). From the geometries created by the MD calculation up to five 

significant lowest energy conformations have been picked for each molecule. Special care has 

been taken in choosing conformations of molecules which are able to build internal hydrogen 

bonds, since the polarization charge densities  computed in the subsequent QC-COSMO 

calculations (and thus also COSMO-RS’ chemical potentials S
X) critically depend upon the 

correct representation of such hydrogen bonds. The geometry of the chosen conformations has 

been optimized by the molecular mechanics method MM3 as implemented in Alchemy [20]. 

Subsequently, the geometries of all conformations have been optimized by the semiempirical 

AM1/COSMO method using the MOPAC2000 program [21]. Using the geometries thus 



optimized, the COSMO polarization charge densities  of the molecular surfaces have been 

computed on ab initio QC level with the Turbomole program package using B-P density 

functional theory with SVP quality basis set [22]. All of the COSMO-RS calculations have 

been done using the COSMOtherm program [23]. For each compound only the one 

conformation lowest in energy on the Turbomole-BP/SVP/COSMO QC level has been used 

in the COSMO-RS calculations - with the exception of the salicylic acid, succinic acid, 2-

acetyloxy-benzoic acid and alanine molecules of the training data set where two relevant 

conformations had to be taken into account in COSMO-RS. The relative contribution of each 

conformer was determined by an iterative procedure using the Boltzmann-weight of the free 

energies of the conformers in the liquid [24]. This iterative procedure is automated in the 

COSMOtherm program.  

3.2 The Training set 

By adjustment of only 3 parameters the QikProp data set of 150 aqueous solubilities has been 

described with an accuracy of s = 0.66 log-units. The quality of this description may be 

compared with the standard deviations of s = 0.88 and s = 0.72 log-units, which was achieved 

by Jorgensen and Duffy with the QikProp method [5] on the same data, using partly nonlinear 

models with 6 and 7 adjusted parameters, respectively, which are based on a set of 11 

molecular descriptors derived a fast, simplified force-field Monte-Carlo simulation.  

 

Calculated and experimental data for the 150 compounds are shown in figure 1. The 

corresponding table holding all experimental and calculated data together with the descriptors 

is available as supplementary material. The scatter plot clearly shows a rather homogeneous 

error distribution. The 23 compounds, which had a calculated value of Gfus
X > 0 are marked 

by open symbols. Apparently these liquids show a much smaller error. This may be due to 

due to better experimental data and due to avoidance of the ambiguities arising from the 

heuristic treatment of Gfus
X.  

 

The quality of the experimental data of drug solubilities is in general quite questionable. 

Experimental errors of 0.5 log-units or more easily arise due to problems with measurement 

of small concentrations or due to ambiguities arising from different crystal modifications or 

even from solvate crystal. In four cases we could find independently measured data. In two of 

these cases the values differed by more than half a log-unit. In both cases the calculation error 

was considerably smaller with respect to these new data (see arrows in figure 1). In addition, 



two experimental data have been included in the original data set, which clearly belong to 

miscible systems, for which no meaningful value of solubility can be assigned. If we remove 

these 4 systems with apparently questionable experimental values from the data set, the rms 

reduces to s = 0.63. Further indication for the existence of considerable experimental error is a 

correlation of r = 0.56 between the deviations of the COSMO-RS method and the QikProp 

method. Since both methods are absolutely independent, the most plausible source for such 

correlation is experimental error. Thus it appears plausible that a considerable part of the 

observed error of s = 0.66 is due to experimental inaccuracies, and that the intrinsic error of 

the COSMO-RS is s = 0.5 or less. 

3.3 Test on a high quality data set 

McFarland provided us with a data set of 24 aqueous solubilities of drugs which have been 

measured by the pSol-method [25,26,27]. The first half of the data has been validated by 

figure 1: water solubility log(xH2O) calculated COSMO-RSol : 

diamonds = QikProp training set ( filled = solid and open = liquid);

 triangles = test data set by McFarland 
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independent shake flask measurements by the FDA. Hence the first 12 values can be 

considered as a high quality data set. The quality of the second half is slightly less sure. On 

the first half we achieve an rms-deviation of s = 0.64 using COSMO-RS solubility method as 

parameterized before. On the second half we yield s = 0.86. It is remarkable, that McFarland 

et. al. [27] achieved values of rms = 0.55 and 0.70 on the two parts of the data set by a QSAR 

method (HYBOT) trained on these 24 data. Hence there is clear indication that the first part 

really is of higher quality than the second. Furthermore, for all 6 compounds of the McFarland 

data set, which were in the QikProp data set as well, the COSMO-RS result was closer to the 

McFarland data, i.e. to the data from the test set. This indicates a higher consistency of this 

test set data. Summarizing this test, the COSMO-RS solubility method achieved the same 

accuracy on an a test set of  relatively large drug molecules as it had on the training set. 

3.4 Large Pesticide Test Set 

Finally we tested the COSMO-RS solubility prediction method on a large data set of pesticide 

molecules taken from the pesticide handbook [28]. The original data set of n?? compounds 

was split into two random subsets of ntset? and 143 compounds, respectively. The first set 

was used to train a HQSAR [29] model for solubility prediction. For details of this model see 

Appendix A.  

 

The test set of 143 compounds was used to compare the performance of this specially trained 

HQSAR model with absolute predictions from COSMO-RS solubility prediction. Both 

methods have been applied to the 143 compounds. In order to remove as much of 

experimental error as possible, we first eliminated 14 compounds for which the solubilities 

from the pesticide handbook disagree by more than 0.6 log-units from those reported in the 

PhysProp database [30]. In a next step 22 compounds have been separated for which both 

prediction methods, i.e. HQSAR and COSMO-RS deviate from the experimental value by 

more than 1 log-unit in the same direction. The remainder of 107 pesticides was considered as 

final test set.  



 

The results of COSMO-RSol and of the HQSAR model on this pesticide data set are shown in 

figure 2. COSMO-RSol  has an rms error of 0.62 and a mean unsigned error of 0.46 log-units. 

The HQSAR method yields rms = 0.72 and mean unsigned error of 0.59 log-units. Thus, 

although the HQSAR method was specially trained on a large training set of the same source, 

it is significantly less accurate in prediction on the test set than the purely predictive COSMO-

RSol method which was never trained on pesticides before. It is noteworthy that a re-fit of the 

3 parameters of COSMO-RSol only yields a reduction of the rms of 0.005 log-units which is 

absolutely insignificant. Use of the PhysProp data instead of the data from the polymer 

handbook reduces the rms by 0.01 for both methods, indicating a slightly better quality of the 

PhysProp data. For the 14 compounds for which the exp. data show mayor deviations the 

PhysProp data show better agreement with both predictions than the Handbook data. This 

Figure 2: Results for pesticide data set: filled diamonds = COSMO-RSol; 

crosses = HQSAR; triangles = data excluded due to exp. dicrepancies; 

circles = data excluded due to common deviation of predictions
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indicates better quality of the PhysProp data, too. The two largest outliers of the COSMO-

RSol method are two very large pesticides of extremely complex chemical structure. Both are 

quite similar, and the relative solubility of the structures is correctly predicted (see figure 2). 

4 Summary and Outlook 

The COSMO-RSol method has been introduced as a novel prediction method for aqueous 

solubility of solid and liquid drug-like compounds. Although not being fully ab initio, 

COSMO-RSol has a rather sound physico-chemical basis compared to all presently available 

prediction methods for aqueous solubility. This enables COSMO-RSol to achieve even better 

predictions for aqueous solubility than other state-of-the-art methods on data sets used for the 

development and parameterization of the other methods. Even on a structurally most 

demanding and diverse data set of pesticides COSMO-RSol achieved a very satisfying 

predictive accuracy. 

 

The average accuracy of COSMO-RSol on the data sets considered so far is about 0.65 log-

units (rms). There is strong indication that a significant part of this error is due to 

experimental error. Thus it appears to be justified to assume an intrinsic prediction error of 0.5 

log-units for the COSMO-RSol method. Considering the average accuracy of 0.3 log-units of 

COSMO-RS for liquid compounds and the additional approximations involved in the 

estimation of Gfus it is unlikely, that the intrinsic error of COSMO-RSol is much less than 

0.5 log-units. For a definite assessment oft he intrinsic predictive error of the method a broad 

data set of high quality experimental data would be required. 

 

It should be noted, that in contrast to all other prediction methods for aqueous solubility 

COSMO-RSol is able to predict solubility in almost arbitrary solvents and solvent mixtures 

due to the capability of COSMO-RS to predict the chemical potential of a compound X in 

arbitrary liquids. A validation of COSMO-RSol on non-aqueous solubilities will be given in a 

forthcoming paper. Another advantage of this new method is that based on the same COSMO 

calculations used for aqueous solubility many other physico-chemical properties like partition 

coefficients, vapor pressures, Henry constants, etc. are easily available by COSMO-RS. Even 

physiological partition behavior can be calculated based on COSMO-RS [31,32] 

 

As all other solubility prediction methods COSMO-RSol is restricted to the solubility of pure, 

neutral, non-ionic compounds. For compounds with known pK-values correction for 



dissociation or protonation can be trivially made. Simultaneous prediction of pK-values is 

presently not routinely doable with COSMO-RS, although first promising results have been 

reported [33]. Due to the sound physical basis of COSMO-RSol an extension of the method to 

co-crystals and even to salts appears to be achievable with reasonable effort if a data set of 

good experimental solubilities can be collected. First steps in this direction are being planed. 

 

Presently the greatest disadvantage of the COSMO-RSol method compared with many other 

solubility prediction methods is its relatively high time demand of approximately 2 CPU-

hours on a 1 GHz PC processor. At reasonable turn-around times this limits the methods to 

data sets in the order of 1000 compounds and prohibits applications in high throughput 

screening (HTS), where typically several ten-thousands or hundred-thousands of compounds 

have to be treated within days. A slightly more approximate method (COSMOfrag), which 

derives the required -profiles of new compounds from a large database of about 10000 pre-

calculated COSMO-files of drug-like structures by a similarity analysis of fragments is being 

developed. This method will reduce the calculation times of COSMO-RSol to seconds, 

hopefully at a small loss of accuracy. 
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