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Abstract 

 

The classical problem of 1,3-butadiene recovery from steam cracker C4 hydrocarbons is 

reconsidered using modern tools of quantum mechanics and molecular simulation.  The 

effectiveness of n,n-dimethylformamide (DMF) and acetonitrile (ACN) to act as 

extractive-distillation solvents is explored with an emphasis on the predictive capability 

of various models.  The quantum mechanical method of interest is the COSMO-RS 

method.  The chosen molecular simulation method is the SPEADMD model.  These 

methods are compared to conventional methods such as UNIFAC and “thermodynamic 

intuition.”  The COSMO-RS method is found to predict the trends of infinite-dilution 

activity coefficients quantitatively, but requires a systematic empirical correction to 

provide accuracy comparable to UNIFAC.  It is noted that the COSMO-RS method has a 

special capability to predict subtle trends.  The SPEADMD model is found to provide 

unique qualitative insights, but requires empirical refinement of the interaction-potential 

models that is similar to the regression of UNIFAC parameters.   This work is intended to 

serve as an objective framework to evaluate tools – traditional and modern – to predict 

solution nonideality. 
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Introduction 

 

The recovery of 1,3-butadiene and other valuable products from steam cracker C4 

hydrocarbons is an important industrial problem.  The separation needs to be 

accomplished by extractive distillation using polar solvents because the boiling points of 

the hydrocarbons are very close and several azeotropes may form.  Design of separation 

schemes requires an accurate model for the liquid-phase nonideality.  In this paper we 

evaluate the data and estimation methods for the liquid-phase nonideality for processes 

employing two popular polar solvents: n,n-dimethylformamide (DMF) and acetonitrile 

(ACN).  Although this problem has been discussed previously, we are reconsidering it 
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using modern tools to show what insights the new tools can contribute. A key goal of this 

paper is to analyze the status and challenges of modern predictive methods based upon 

quantum mechanics and molecular simulation. 

 



“Butadiene Purification – Data and Estimation Methods,” Mathias, Elliott and Klamt 3 

Background 

 

1,3-butadiene (13BD) is produced mainly as a by-product from the steam cracking of 

liquid feedstocks.1,2,3,4   It is separated from the steam-cracker C4 stream by using 

extractive distillation.  Simple fractionation cannot separate 13BD from other 

components because of the closeness of their boiling points and consequent formation of 

many azeotropes.  The boiling point range of the C4 stream is about 17°C and the three 

major components (1,3-butadiene, isobutene and 1-butene) have a boiling range of less 

than 3°C. 

 

In the extractive-distillation process, the steam cracker C4 stream is distilled with a polar 

solvent to separate the paraffins and olefins from the diolefins and acetylenes, and to 

accomplish further separation of the diolefins and the acetylenes.  Commonly used 

solvents are DMF and ACN.  Other solvents used in industry are n-methylpyrrolidine 

(NMP), furfural, beta-methoxypropionitrile (BMOPN), dimethylacetamide (DMAC) and 

cuprous ammonium acetate solution. 

 

The DMF extractive process,5 which Nippon Zeon commercialized in 1965, is a typical 

13BD recovery process.  The process uses extractive distillations coupled with 

conventional distillation.  In the first extractive distillation, components in the feed that 

are less soluble in the DMF solvent than 13BD are taken overhead.  13BD and the more 

soluble compounds pass to a stripping column where they are stripped from the higher-

boiling solvent.  The 13BD and more soluble compounds then pass to a second extractive 

distillation column where 13BD is recovered overhead and the more soluble compounds 

are removed together with the solvent as bottoms.  The 13BD is finally recovered from 

minor amounts of the high- and low-boiling impurities in the conventional distillation 

section.  Effective design of these integrated process schemes requires sophisticated 

modeling technologies.3 

 

Process simulation is an important enabling technology for 13BD purification, and the 

physical-property model that describes the vapor-liquid equilibrium and other 

thermodynamic properties is the foundation of the modeling programs.6,7  Standard 

thermodynamic frameworks, for example the NRTL8 activity-coefficient model coupled 

with the Redlich-Kwong9 equation for the vapor phase, are well capable of correlating the 

thermodynamic properties.  The challenging modeling issues are data evaluation and 

filling gaps in the data, for which various analysis and estimation methods must be used. 

 

The focus of this paper is the analysis and estimation methods.  We study a range of 

approaches that use a combination of experimental data, thermodynamic knowledge and 

experience (i.e., “intuition”), group-contribution methods, and modern predictive 

methods based upon quantum mechanics and molecular simulation.  We assess the 

strengths and weaknesses of each method, and conclude that the best practical approach 

is to use a judicious combination of all available methods.  A key emphasis of this paper 

has been to analyze current and needed capability of modern methods based upon 

quantum mechanics and molecular simulation.   
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Experimental Data and Analysis Based Upon Thermodynamic Intuition 

 

Table 1 presents the chemical species considered in this work, in order of increasing 

normal boiling point (Tb).  The last four species are the solvent components.  ACN and 

DMF are the solvents highlighted here.  Water and ethanol are usually present in the 

solvent because they occur in the process or are added to improve the solvent 

characteristics.  These two additional solvent species help establish the patterns of the 

experimental data and provide a test of the estimation methods. 

 

The last column of Table 1 presents a typical C4 feed that is based upon the authors’ 

experience; these data are presented graphically in Figure 1.  The hydrocarbon feed 

components that exceed a concentration of 1 wt% are clustered in the boiling-point range 

of 261-278 K (-12 to 5ºC), a span of only 17°C.  The three major components (13BD, 

isobutene and 1-butene) have a boiling-point range of 2.4°C.  Hence, it is necessary to 

introduce a polar solvent that selectively absorbs the unsaturated hydrocarbons – or, 

perhaps more accurately, selectively rejects the saturated hydrocarbons.1,2  

 

Table 2 presents experimental data for the infinite-dilution activity coefficients of 

hydrocarbons in DMF at 40°C, which has been chosen as a representative value since it is 

typical of temperatures encountered in extraction-distillation columns.  Only the infinite-

dilution activity coefficients have been reported here since at plant conditions the 

solubility of the hydrocarbons in the liquid phase is relatively low.  The infinite-dilution 

activity coefficients have been obtained by fitting the experimental data using the NRTL-

Redlich-Kwong model8,9 and extrapolating the activity coefficients to zero concentration 

of the hydrocarbon. 

 

The results in Table 2 demonstrate that the data fall into the pattern expected from 

thermodynamic intuition.  The infinite-dilution activity coefficients fall as the degree of 

unsaturation of the hydrocarbon increases, i.e., the activity coefficients progressively 

decrease as the hydrocarbon class goes from paraffin to olefin to diolefins to triple bond 

to olefin plus triple bond.  This, of course, is the reason why DMF is chosen as an 

extractive solvent, but the fact that the activity coefficients fall into the expected pattern 

provides confidence in the experimental data and offers some capability to fill in data 

gaps. 

 

Table 3 shows analogous results for ACN as the extractive solvent.  Again, the data fall 

into the expected pattern, which increases confidence in the entire set of data and offers 

further capability to fill gaps in the data.  Figure 2 explores the relationship between the 

activity coefficients of the hydrocarbons in the two solvents, DMF and ACN, and 

demonstrates that there is a simple linear relationship between the two sets of activity 

coefficients on the logarithm scale.  This relationship provides additional ways to test the 

experimental data and to fill gaps in the data.  Further, Figure 2 suggests that DMF may 

be a better extractive agent than ACN since it provides larger selectivity between the 

saturated and unsaturated hydrocarbons. 
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Table 4 indicates that the activity coefficients of the hydrocarbons in ethanol and water 

fall into the same pattern as those shown above for DMF and ACN.  Figure 3 is an 

extension of Figure 2 and demonstrates that the activity coefficients of the hydrocarbons 

in ethanol and water are related to those in ACN analogously to the DMF-ACN 

relationship.  The dashed lines in Figure 3 are best-fit linear relationships.  The scatter in 

the water-ACN relationship suggests there is considerable uncertainty in the 

hydrocarbon-water infinite-dilution activity coefficients, but more likely is caused by the 

“limits of simple thermodynamic intuition.” 

  

The results presented in this section demonstrate that methods based upon 

thermodynamic intuition are powerful because the simple expected relationships are 

usually accurate and, importantly, a vast database of experimental measurements is 

available to support the analysis. 
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Estimation Methods: UNIFAC and COSMO-RS 

 

Methods based upon thermodynamic intuition are limited to the range of the experimental 

database.  Theoretically-based estimation methods have the potential to extend the range 

of the experimental data and even predict data for mixtures that have not been 

experimentally studied.  This section explores the capabilities of two estimation methods 

(UNIFAC and COSMO-RS) to advance process technology for the separation of C4 

hydrocarbons using extractive distillation. 

 

UNIFAC is a group-contribution method that was introduced by Fredenslund et al.,10 and 

systematically refined and improved by Gmehling and co-workers over three decades.11,12  

It has been demonstrated to be a powerful estimation tool in its domain of validity.  The 

present UNIFAC estimations use the implementation available in the Aspen Plus54 

process simulator.  

 

The Conductor-like Screening Model for Real Solvents (COSMO-RS13,14,15,16) is a 

relatively new estimation method.  The method starts from first-principles quantum-

chemical calculations of the state of the individual molecules in a virtual conductor 

(DFT/COSMO calculations16,17,18), and the resulting surface polarization charge densities 

are used to quantify the surface-interaction energies of the molecules with respect to 

electrostatics and hydrogen bonding.  These generic expressions for the surface 

interactions together with efficient, but exact, statistical thermodynamics of pair-wise 

interacting surfaces19 lead to expressions for the chemical potentials of the molecule in 

the liquid mixtures, and hence to activity coefficients and all other derivative 

thermodynamic properties.  The surface polarization charge densities are accurate to 

about 0.3 kcal/mol. 

 

COSMO-RS has a relatively small number of adjusted parameters (20-30, depending on 

the number of chemical elements involved) compared to force-field methods, and 

especially compared to group-contribution methods. A force-field covering roughly the 

same chemical space usually requires about an order of magnitude more parameters, and 

UNIFAC requires about two orders of magnitude more parameters. 

 

COSMO-RS is comparable to UNIFAC in computational efficiency.  The time-

demanding steps of COSMO-RS are the DFT/COSMO calculations for individual 

compounds.  For compounds of the size considered in this study, these calculations 

typically require about one hour on a single 3 GHz CPU.  For the present study, the 

DFT/COSMO calculations were taken from the COSMObase database,20 and hence the 

activity-coefficient calculations with COSMOtherm21 only took a few seconds of 

computational time; the standard version of COSMOtherm was used without any 

adjustments for this work. The computational time of COSMO-RS certainly does not 

limit its use in industrial practice. 

 

Table 5 and Table 6 present estimations by the UNIFAC and COSMO-RS methods for 

the infinite-dilution activity coefficients at 40°C of the hydrocarbons in the four solvent 

components (DMF, ACN, ethanol and water).  Figure 4 and Figure 5 evaluate how well 
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the UNIFAC and COSMO-RS methods predict the activity coefficients of the 

hydrocarbons in DMF and ACN, respectively.  These figures show that the predictions of 

UNIFAC are good; the average error is close to zero and the predictions are typically 

accurate to about ± 20-25%, except for the activity coefficients of the saturated 

hydrocarbons in DMF where the model under-predicts the experimental values.  

COSMO-RS shows a clear bias compared to the experimental data.  This result may be 

anticipated since COSMO-RS has far fewer fitted parameters and none fit specifically to 

the data of this study.  However, we may expect that COSMO-RS will capture the data 

trends.  In order to test this notion, we have developed an empirical relationship for the 

hydrocarbon-DMF infinite-dilution activity coefficients in terms of the COSMO-RS 

predictions as follows: 

 

  2ln2824.0ln2972.18887.0ln RSCOSMORSCOSMOCorrelated     (1) 

 

Figure 4 demonstrates that the correlated method [labeled “COSMO-RS (corr.)”], which 

combines COSMO-RS with limited experimental data, may be used to develop a better 

correlation than UNIFAC for a particular family of chemical species.  This suggests that 

COSMO-RS is able to capture the effect of subtle chemical interactions on macroscopic 

properties like activity coefficients.  Note also that UNIFAC cannot distinguish between 

isomers (e.g., 13BD and 12BD), while COSMO-RS correctly predicts the relative values. 

 

Figure 6 shows predictions of the UNIFAC and COSMO-RS methods for the infinite-

dilution activity coefficients of hydrocarbons at 40°C in ethanol.  Both methods work 

poorly.  It is not clear why ethanol systems pose such a great estimation challenge 

because the data trends appear reasonable (see Figure 3); this issue presents an 

opportunity for future researchers. 

 

Figure 7 presents predictions of the UNIFAC and COSMO-RS methods for the infinite-

dilution activity coefficients of hydrocarbons at 40°C in water.  The COSMO-RS method 

provides a good prediction of the data.  The errors are typically within a factor of two, 

and this is a good prediction especially because there may be considerable uncertainty in 

the experimental data (see Figure 3).  UNIFAC clearly underestimates the hydrocarbon-

water infinity-dilution activity coefficients.  While the UNIFAC method may be 

numerically improved by extending the method to take second-order effects into 

account,22,23  or a separate database may be developed for liquid-liquid systems,24 we 

consider such extensions to be excessively correlated for the purpose of our study. 
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Background on Molecular Simulation 

 

Molecular simulation offers the prospect of detailed quantitative insights at the molecular 

level, but it must be properly understood to appreciate what it can and cannot achieve.  In 

the C4 systems of this study, molecular simulation can provide quantitative results for the 

entropy of mixing, the energy of mixing, and the accessibility of all the interaction sites 

to polar-solvent solvation.  Molecular simulation, however, cannot independently 

determine the intermolecular forces.  The intermolecular forces must be inferred from 

experimental data or predicted from quantum mechanical calculations.  Molecular 

simulation simply applies Newton’s laws using the force field as an input.  Once the 

forces have been inferred from experimental data for one set of mixtures, they can be 

applied to other compounds and mixtures through the principle of transferability.  For 

example, transferability implies that the forces surrounding a central –CH2– site in n-

pentane would be the same as the forces surrounding a central –CH2– site in n-

pentadecane.  Transferability and Newton’s laws are the primary assumptions of 

molecular simulation, but the characterization of the transferable forces for all types of 

molecules comprises a large identification problem.  In the discussion below, we 

demonstrate what can be achieved with molecular simulation and elaborate on the range 

of capabilities of molecular simulation and its relationship to quantum mechanics. 

 

What Molecular Simulation Can Tell Us? 

 

Analyzing the polar solvents for 13BD extraction systems naturally leads to hypotheses 

about the solvation interactions between the polar solvents and the olefinic moieties in 

the hydrocarbon compounds.  One might readily observe that the presence of two olefin 

moieties in butadiene doubles the solvation, but perhaps there is more to consider.  For 

example, the moieties on the diene appear at the end of the molecule but are in the middle 

of the 2-butenes.  Molecular simulation can quantify these differences in accessibility.  

Figure 8 shows the pair distribution functions between polar solvent and olefin sites 

derived from purely repulsive (sterically hindered) simulations.  The specific polar 

solvent site considered is the carbonyl oxygen in DMF and the nitrile nitrogen in ACN.  

The terminal and central olefin sites are averaged in the case of butadiene.  Noting that 

solvation interactions are relatively short range, the primary point of interest is the region 

where the radial distance is near contact with the diameter of the site. Although there are 

small differences between polar solvents, the major difference is between 13BD and the 

2-butenes.  The terminal positions of the olefins in butadiene lead to a 50% enhancement 

of these sites relative to the 2-butenes.  One might also speculate that the cis olefins 

would be more accessible, owing to the methyl sites being pinned back from the olefin 

sites.  Figure 8 shows a very slight impact of this effect for DMF solvation, but it appears 

to be minor.   

 

In principle, similar insights could be obtained experimentally by small-angle neutron 

scattering (SANS) or small-angle x-ray scattering (SAXS).  In practice, however, one 

must note that all the sites in the fluid contribute to scattering, not just the sites of 

interest.  This leads to a very noisy signal with scattering from both intramolecular and 

intermolecular distributions convoluted together.  Isolating the intermolecular 
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interactions of interest would be subject to large variability.  In contrast, analyzing the 

distributions from molecular simulation is straightforward, and the sizes and shapes that 

affect intermolecular contacts are reliably characterized.   

 

Molecular simulation can lead to confirmation and debunking of other molecular 

speculations as well.  One manner in which this appears is when interpolating between 

state points.  In general, molecular simulations operate like experiments in the sense that 

a single temperature, pressure, and composition specify the simulation conditions.  One 

alternative is to leverage the simulated fluctuations around the ensemble average to 

connect regions between state points.25  The SPEADMD26,27 model, on the other hand, 

applies classical engineering methods for this interpolation, with the benefits that the 

results can be immediately adapted to existing engineering tools and greater insight into 

the classical equations may be gained.  For many years, researchers have speculated 

about the entropy and energy of mixing and their impacts on phase equilibria.  These 

speculations have lead to models based on local composition theory and lattice models as 

well as van der Waals mixing-like regular solutions and Flory-Huggins theory.  

Molecular simulations permit detailed examination of the fundamental bases of these 

theories.  For example, properly defined “local compositions” must be related to the pair 

distribution functions, and these are readily available as discussed above.  Lattice models 

involve many artificial assumptions about coordination number, lattice size, and packing 

fraction whereas molecular simulation obviates all of these.  Furthermore, simulations 

can be performed to analyze specific contributions to the free energy.  We examine below 

the contributions to the free energy from the athermal entropy of mixing and the disperse 

attractions independently from the solvation interactions.  Traditional models lump all of 

these influences together into one or two parameters, making it difficult to distinguish the 

chemical effects that would help to design superior polar solvents. 

 

To illustrate this effect, consider Figure 9, which analyzes the excess thermodynamic 

properties arising from repulsive and attractive dispersion forces.  Figure 9a shows that 

the athermal excess entropy of mixing is extremely small for the C4 mixtures.  In fact, it 

is so small that the signal to noise ratio is quite low, making the data appear to be 

scattered.  This is consistent with observations by Gray et al.28 that the excess entropy 

approaches zero as the molecular volume ratio approaches unity. The trend is much 

clearer in the case of the excess energy of mixing, but the conclusion is the same.  Figure 

9b shows that the same volume-ratio skewness to the curves is apparent in the first order 

energetic contribution. Note that Gray et al.28 studied a broad range of molecular volume 

ratios from 1-10.  The results of that work show that trends like those in Figure 10 can be 

easily interpolated using conventional engineering mixing rules. 

 

The solvation interactions are relatively strong and short-range.  There is an open 

question regarding whether these are best characterized by point charges representing the 

multipole moments of the molecule or by potentials like those considered by Wertheim,29 

which is essentially a chemical theory of mixing.  Solvation interactions like those 

between DMF and 13BD would usually require a polarizable potential in the point charge 

approach, increasing CPU requirements roughly 10-fold.  Similar issues arise in the 

treatment of hydrogen bonding mixtures.  Coleman and Painter30 have studied a large 
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number of mixtures with a wide range of molecular weights using both infrared (IR) 

spectroscopy and a theory that is equivalent to that of Wertheim.  On the whole, they find 

general agreement with the chemical model.  Furthermore, the chemical model is very 

efficient to apply.31,32   

 

For these reasons, we favor Wertheim’s model29 at the present time.  Wertheim’s model 

characterizes complexation with so-called blister potentials.  The complex interactions 

take the form of square-well attractions with small radii centered near the edge of the 

repulsive core.  These short-range, but strong, attractions are asymmetric because 

prospective bonding sites must approach at the correct angle for a compatible blister to 

overlap.  Otherwise, the attractive wells overlap with the repulsive core and no bond is 

formed.  This kind of potential mimics the key features of complexation.  Furthermore, 

extensive testing of Wertheim’s theory with molecular simulation shows that the theory 

provides practically quantitative accuracy when properly adapted.33,34  With Wertheim’s 

theory to quantitatively describe complex formation and second-order perturbation theory 

to describe disperse attractions, the only part of the potential that requires detailed 

molecular simulation is the repulsive reference system.  This greatly expedites the 

practical applicability of molecular simulation. 

 

The present work treats the solvation interactions between the polar solvents and the C4 

compounds with one solvation site per “–CH= or =CHx” segment.  Figure 10 presents a 

comparison of vapor-liquid equilibrium (VLE) behavior for butadiene – polar-solvent 

systems with transferable characterization of the solvation interaction energy between the 

olefinic protons and the polar-solvent base sites. The characterization begins with the 

bonding volume and energy of DMF.  Association energies of amides were characterized 

by Baskaya et al.,35 so we assume the bonding volume and energy of DMF to be the same 

as that of primary amides, despite the observation that DMF possesses no donor sites.  

For simplicity acetonitrile is treated as a pure base, despite evidence of additional weak 

acidic character.36 The bonding volume of ACN is assumed to be the same as that of 

DMF.  The bonding energy of CH2=CH– is assumed to be small (0.5 kcal/mol).  

Estimating the solvation energy between dissimilar sites requires a guideline similar to a 

combining rule.  The primary guideline corresponds to estimating the solvation energy as 

the average between the site-site energies, such that the solvation energy with DMF is 

(4.5+0.5)/2=2.5.  There are few guidelines for olefin solvation since it is so unusual.  

Solvation is clearly indicated by the VLE, however.  Positive values of solvation energy 

are required to characterize the VLE of both DMF and ACN with butadiene.  At this 

point, we have described general guidelines for establishing all the key parameters except 

the bonding volume of the olefin donors.  These were treated as adjustable parameters in 

characterizing the VLE for the 13BD+DMF system.  The same characterization of 

butadiene was applied for ACN, but the solvation energy for 13BD+ACN was treated as 

an adjustable parameter.  In both cases, the binary interaction parameter (kij) was assumed 

to be zero while optimizing the solvation energy.  

 

Figure 10 shows that the optimal solvation model is reasonably accurate over most of the 

composition range.  Solvation leads to relatively favorable interactions in the dilute 

regions.  This flattens the bubble pressure curve toward that of an ideal solution.  In dilute 
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regions, the bonding sites of the dilute component are nearly completely saturated owing 

to the overwhelming presence of the diluent.  At intermediate compositions, both 

components are similarly saturated, leading to an apparent upward bulge in the P-x 

diagram. The inferred solvation energy for 13BD+ACN (1.75 kcal/mol) is slightly lower 

than that of 13BD+DMF (2.5 kcal/mol); note that these relative solvation energies are 

consistent with the results in Figure 2. 

 

The effort to characterize the phase behavior of mixtures requires systematic adjustment 

of the molecular interaction energies to characterize the solvation behavior.  Readers will 

note that refining the model potential in this way blurs the lines between straightforward 

molecular simulation of a known potential and engineering analysis of the observed 

phase behavior.  This transition from demonstrating feasibility of the methodology to 

refining it for quantitative application is an important reason for involving engineers in 

further development of molecular simulation as a useful tool.  The adaptation of 

perturbation theory is instructive in that refining the attractive interactions can be 

performed without need for re-simulation.  Since the attractive interactions are 

perturbations, their impacts can be recomputed instantly.   

 

Given an estimate of the solvation energy for an olefin with polar solvent, we can 

proceed to predict the activities of all the species.  Table 5 and Table 6 show the 

comparison of estimated infinite dilution activity coefficients from the SPEADMD model 

to experimental data.  The comparisons are also shown graphically in Figure 4 to Figure 

7.  Since 13BD was fit to the data, the SPEADMD errors in Figure 4 and Figure 5 are 

approximately zero.  But the SPEADMD model does not capture the wide variation of 

infinite-dilution activity coefficients from saturated butane to vinyl acetylene.  For 

ethanol and water as solvents, Figure 6 and Figure 7 indicate that the COSMO-RS and 

SPEADMD results are similar for ethanol-hydrocarbon and water-hydrocarbon systems. 

Limitations of Molecular Simulation 

 

Molecular simulation is not a panacea.  On the surface, one might believe that there are 

no assumptions in molecular simulation beyond Newton’s laws of motion.  

Unfortunately, a highly multidimensional assumption is also implicit in the assumed 

forces between the interaction sites.  These forces arise from quantum mechanical 

distributions of electrons around nuclei in the presence of covalent bonds to neighboring 

atoms.  They also arise from polarizable responses of the electron distributions resulting 

from interactions with neighboring colliding molecules.  In principle, these forces can be 

computed from quantum mechanical simulations.  In practice, however, current quantum 

mechanical simulations are accurate only to within ~3,000 cal/mol37 in an absolute sense 

or 340 cal/mol for the relative difference as applied in COSMO-RS.  Our experience with 

estimating vapor pressure has shown that deviations in vapor pressure can change from 

5% error to 15% with a change in the disperse interaction of only 2 cal/mol.  For 

example, a change in the well-depth of the outer well of the CH2 site from 43.6 to 45.6 

cal/mol causes a change in the %error in vapor pressure for n-pentane from 3.4% to 

14.4% when applying a linear model of the disperse interactions. Note that the absolute 

value of 3,000 cal/mol and relative value of 340 cal/mol refers to complete molecules, not 
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to repeated sites.  Therefore, we must conclude that quantum mechanical simulations may 

serve as semi-quantitative guidelines for trends in the forces, but they cannot serve as a 

reliable basis of predicting intermolecular forces entirely on their own.  In many 

instances, quantum simulations may suggest charge distributions for characterizing the 

multipole moments,38 but experimental data must ultimately be applied to characterize 

the total energy of interaction.  The COSMO-RS approach makes the transition from 

qualitative trends to quantitative estimates by characterizing the 20-30 generalized 

parameters in the COSMO-RS model relative to experimental data.  The generalized 

parameters bring the estimates within the general range of experimental results and the 

variations in the surface charge distributions are sufficient to provide the system specific 

accuracy observed in the COSMO-RS method.  Molecular simulation incorporates 

experimental data by characterizing the transferable potentials.  Clearly, one desirable 

approach would be to merge these two perspectives, applying transferability as broadly as 

possible, but refining the potentials when indicated by the quantum mechanics.  This is a 

subject of current research. 

 

Case et al.39 provide an introduction to the role of intermolecular potentials in molecular 

simulation that should be useful to non-experts.  They describe an industrial “challenge” 

for simulation experts to predict properties based on transferable potentials.  They also 

discuss nuances that distinguish molecular simulation from other forms of molecular 

modeling.  The cited references present a range of methodologies targeted at quantitative 

property prediction.  The tradeoffs and limitations of the various methodologies are 

especially clear in this context.   

 

Conclusions 

 

This paper has studied various ways in which the liquid-phase nonideality of 

hydrocarbon-solvent systems associated with the extractive distillation of C4 

hydrocarbons may be established.  Experimental data is the most reliable and best source 

of thermodynamic properties, and this paper demonstrates that simple expected patterns 

based upon thermodynamic intuition help evaluate the data accuracy and consistency, and 

even fill gaps in the data.  Estimation methods like UNIFAC and COSMO-RS provide 

useful additional information and estimation capability.  UNIFAC is widely applicable 

and often provides good accuracy because of many years of careful data evaluation and 

correlation development.  UNIFAC is limited in its predictive capability because of its 

inability to distinguish between isomers and to predict proximity effects.  COSMO-RS 

often does not provide the same level of accuracy as UNIFAC - especially for systems 

where the group interaction parameters of UNIFAC have been optimized - but can 

capture subtle effects (as shown for the hydrocarbon-DMF systems) and sometimes 

offers better predictive capability (e.g., hydrocarbon-water systems).  Molecular 

simulations provide insights on the molecular scale (and this aspect has been examined 

extensively in this paper), but cannot yet compete with methods like UNIFAC and 

COSMO-RS for quantitative prediction of liquid nonideality. 
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Table 1 – Component List and Basic Properties 

Component 

ID 

Name Formula Tb (K) MW HC Feed 

(Weight%) 

Propene Propene C3H6 225.4 42.08 0.005 

Propane Propane C3H8 231.1 44.10 0.005 

Propadiene Propadiene C3H4 238.7 40.06 0.001 

Meth-Ac Methyl-acetylene C3H4 249.9 40.06 0.2 

Isobutane Isobutane C4H10 261.4 58.12 1.5 

Isobutene Isobutene C4H8 266.3 56.11 25.1 

1-Butene 1-Butene C4H8 266.9 56.11 9.6 

13BD 1,3-Butadiene C4H6 268.7 54.09 49.9 

n-Butane n-Butane C4H10 272.7 58.12 3.4 

t-Butene trans-2-Butene C4H8 274.0 56.11 5.5 

c-Butene cis-2-Butene C4H8 276.9 56.11 3.1 

Vinyl-Ac Vinyl-acetylene C4H4 278.3 52.08 1.2 

1-Butyne 1-Butyne C4H6 281.2 54.09 0.2 

12BD 1,2-Butadiene C4H6 284.0 54.09 0.3 

Meth-butene 2-Methyl-1-Butene C5H10 304.3 70.13 0.010 

Ethanol Ethanol C2H6O 351.4 46.07 -- 

ACN Acetonitrile C2H3N 354.8 41.05 -- 

Water Water H2O 373.2 18.02 -- 

DMF DMF C3H7NO 426.2 73.09 -- 
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Table 2 – Infinite-Dilution Activity Coefficients of Hydrocarbons in DMF at 40°C 

Compound  in DMF 

at 40C 

Data Reference Class of 

Hydrocarbon 

Vinyl-Ac 0.84 Braude et al.40 Olefin and triple bond 

Meth-Ac 1.09 Braude et al.40 Triple bond 

13BD 2.38 Wilding et al.41 Diolefin 

12BD 2.80 

Doering and 

Stoeck42 

c-Butene 4.51 

Hradetzky, et 

al.43 

Olefin 

1-Butene 4.97 Wilding et al.41 

Isobutene 5.21 

Hradetzky, et 

al.43 

t-Butene 6.46 Utzig44 

n-Butane 10.40 Gerrard45 Paraffin 

Isobutane 13.50 Knipp46 

 

 

 

Table 3 – Infinite-Dilution Activity Coefficients of Hydrocarbons in ACN at 40°C 

Compound  in ACN 

at 40C 

Data Reference Class of 

Hydrocarbon 

Vinyl-Ac 1.78 Owens et al.47 Olefin and triple bond 

Meth-Ac 1.95 Zelentsova et al.48 Triple bond 

1-Butyne 2.98 Owens et al.47 

13BD 3.73 

Laird and 

Howat49 

Diolefin 

Propylene 4.64 

Zelentsova, et 

al.48 

Olefin 

1-Butene 7.22 Jingzhou50 

c-Butene 7.44 Gorshkov, et al.51 

Isobutane 12.18 

Zhang and 

Hayduk52 

Paraffin 

n-Butane 10.36 Warowny53 
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Table 4 – Infinite-Dilution Activity Coefficients of Hydrocarbons in Ethanol and 

Water at 40°C 

Compound  at 40C Data Reference 

Ethanol Water Ethanol Water 

Vinyl-Ac  585  Aspen Plus54 

Meth-Ac  121  Aspen Plus54 

1-Butyne  587  McAuliffe56 

13BD 
4.43 1,517 Bushmakin and 

Kuchinskaya55 

McAuliffe56 

Propylene 6.85 1,146 Verazzi et al.58 McAuliffe56 

1-Butene  5,065 Rojas et al.57 McAuliffe56 

c-Butene 6.87 6,060 Verazzi et al.58 Aspen Plus54 

t-Butene 7.14  Verazzi et al.58  

Isobutane 9.45 20,521 Zabaloy et al.59 Aspen Plus54 

n-Butane 7.59 20,192 Dahlhoff et al.60 Wehe and McKetta61 

 

 

Table 5 – Estimation of Infinity-Dilution Activity Coefficients of  Hydrocarbons in 

DMF and ACN at 40°C by UNIFAC, COSMO-RS and SPEADMD Estimation 

Methods 

Component 

ID 
∞ in DMF at 40°C ∞ in ACN at 40°C 

UNIFAC COSMO-

RS 

SPEADMD UNIFAC COSMO-

RS 

SPEADMD 

Vinyl-Ac 1.02 0.32 1.1 1.59 0.87 2.0 

Meth-Ac 0.84 0.48 2.0 1.75 0.96 2.6 

1-Butyne 1.17 0.53 2.4 2.47 1.43 3.1 

13BD 3.56 1.02 2.0 3.28 2.41 3.3 

12BD -- 1.13 2.0 -- 2.99  

Propylene 3.01 1.30 2.9 3.78 3.33 4.2 

1-Butene 4.48 1.60 3.9 5.61 5.62 5.3 

c-Butene 4.71 1.62 2.8 6.39 5.56 3.6 

t-Butene 4.71 1.70 3.1 6.39 6.21 3.9 

Isobutane 6.69 2.69 5.0 11.38 14.89 11.4 

n-Butane 6.71 2.79 9.2 11.4 16.23 6.1 

 
 Used to train SPEADMD solvation parameter 
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Table 6 – Estimation of Infinity-Dilution Activity Coefficients of Hydrocarbons in 

Ethanol and Water at 40°C by UNIFAC, COSMO-RS and SPEADMD Estimation 

Methods 

Component 

ID 
∞ in Ethanol at 40°C ∞ in Water at 40°C 

 UNIFAC COSMO-

RS 

SPEADMD UNIFAC COSMO-

RS 

SPEADMD 

Vinyl-Ac 5.76 2.20 3.5 45.7 680 750 

Meth-Ac 3.08 2.29 3.0 13.6 187 194 

1-Butyne 3.99 2.44 3.4 44.1 680 393 

13BD 6.53 3.29 4.4 582 1,452 1,900 

1-Butene 4.96 3.71 5.0 616 2,596 3,900 

c-Butene 4.62 3.71 4.7 578 2,391 2,600 

t-Butene 4.62 3.87 4.7 578 3,062 2,700 

Isobutane 4.48 4.98 5.5 776 6,401 3,036 

n-Butane 4.48 5.21 5.2 775 7,909 5,400 
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Figure 1 – Hydrocarbon Feed Concentration Versus Normal Boiling Point.  The 

Data Point for 13BD is Highlighted. 
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Relationship Between Hydrocarbon Activity 

Coefficients in ACN and DMF
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Figure 2 – Relationship Between Hydrocarbon Activity Coefficients in DMF and 

ACN at 40°C.   The Solid Line is the Best-fit Straight Line.  The Dashed Line shows 

“y=x.” 
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Relationship Between Hydrocarbon Activity 

Coefficients in (DMF, Ethanol, Water) and ACN
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Figure 3 –  Correlation Between Hydrocarbon Infinite-Dilution Activity Coefficients 

in DMF, Ethanol and Water and Those in ACN.  All Activity Coefficients are at 

40°C.  The dashed Lines are Best-Fit Straight Lines. 
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Figure 4 – Estimation of Infinite-Dilution Activity Coefficients of Hydrocarbons in 

DMF by UNIFAC, COSMO-RS Estimation and SPEADMD Methods. 
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Figure 5 – Estimation of Infinite-Dilution Activity Coefficients of Hydrocarbons in 

ACN by UNIFAC, COSMO-RS and SPEADMD Estimation Methods. 
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Estimation of Infinite-Dilution Activity Coefficients of C4 
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1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1 1.5 2 2.5

ln() - Data

ln
 (


) 

- 
E

s
ti

m
a
ti

o
n

UNIFAC

COSMO-RS

SPEADMD

Dashed lines show 

factor of 2 from data

 

Figure 6 – Estimation of Infinite-Dilution Activity Coefficients of Hydrocarbons in 

Ethanol by UNIFAC, COSMO-RS and SPEADMD Estimation Methods. 
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Estimation of Infinite-Dilution Activity Coefficients of 
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Figure 7 – Estimation of Infinite-Dilution Activity Coefficients of Hydrocarbons in 

Water by UNIFAC, COSMO-RS and SPEADMD Estimation Methods. 
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Figure 8 – Pair Distribution Functions Between Polar Solvent and Olefin sites.  The 

Simulations were Performed at 0.41 Packing Fraction and Equivocal Composition 

for the Purely Repulsive Molecular Interaction Model. 
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Figure 9 – Excess Entropy (a) and Energy of Mixing (b) of t-Butene+ACN from 

Molecular Simulations Neglecting the Solvation Interactions.  The Packing 

Fractions are Indicated by the Numbers in the Legend. 
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Figure 10.  The Role of Solvation Compared to Disperse Attractions (kij) in 

Characterizing Butadiene+Entrainer Interactions. (a) Butadiene+ACN, Symbols 

Experimental data.49 (b) Butadiene+DMF, Symbols Sxperimental data. 41 
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