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ABSTRACT: It is demonstrated that the fluid phase thermodynamics theory COSMO-RS as 

implemented in the COSMOtherm software can be used for accurate and efficient screening of 

coformers for API co-crystallization. The excess enthalpy, Hex, between an API-coformer 

mixture relative to the pure components reflects the tendency of those two compounds to co-

crystallize. Thus, predictive calculations may be performed with decent effort on a large set of 

molecular data in order to identify potentially new co-crystal systems. In addition it is 

demonstrated that COSMO-RS theory allows reasonable ranking of coformers for API solubility 

improvement. As a result, experiments may be focused on those coformers which have an 

increased probability of co-crystallization leading to the largest improvement of the API 

solubility.  

In a similar way as potential coformers are identified for co-crystallization, solvents which do 

not tend to form solvates may be determined based on the highest excess enthalpies with the 

API. The approach was successfully tested on tyrosine kinase inhibitor axitinib which has a 

propensity to form relatively stable solvated structures with the majority of common solvents, as 

well as on thiophanate-methyl and thiophanate-ethyl benzimidazole fungicides, which form 

channel solvates. 

 

KEYWORDS: cocrystals; solvates; desolvation; crystallization; in silico modeling; crystal 

engineering; solubility; COSMO-RS; excess enthalpy 
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INTRODUCTION 

Co-crystals can be defined as homogeneous solid phases containing two or more neutral 

compounds in a crystal lattice with defined stoichiometry, which are solids in their pure form at 

ambient conditions.
1
 The transformation of active pharmaceutical ingredients (APIs) from their 

pure crystalline form into co-crystals has experienced increasing interest recently. A co-crystal of 

the API and an additional compound may show modified properties (such as solubility, 

dissolution rate, physical and chemical stability) as compared to the pure compounds.
2,3

 The 

possibility to improve the bioavailability
4,5

 of the API and to create patentable intellectual 

property
6,7

 constitutes a new and highly attractive route for drug development.  

 

   Various experimental methodologies are currently employed for co-crystallization including 

grinding,
8,9  

crystallization from melt,
10

 traditional solution crystallization approaches, such as 

solvent evaporation,
11

 cooling or antisolvent addition, and slurry crystallization.
12

 These 

experimental techniques are typically time-consuming and expensive. Therefore the ability to 

predict the propensity of different coformers to form a co-crystal with the given API is 

important. 

 

From general consideration a likelihood of co-crystal formation is related to the miscibility of 

API and coformer in the solid state. For a crystalline material miscibility should be defined by 

the co-crystal lattice energy. In fact, it was demonstrated previously that rationalization of co-

crystal formation in certain cases may be achieved by crystal structure prediction 
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techniques.
13,14,15,16

 However these methods are time consuming and cannot be applied for virtual 

coformer screening. The effectiveness of the current crystal structure prediction methods quickly 

decreases with an increase in system complexity (number of molecules in the asymmetric unit 

and their conformational flexibility). Therefore the majority of the current computational 

approaches to virtual coformer screening neglect stabilizing long-order packing contributions to 

the coformers miscibility.  

 

In practice rationalization of co-crystal formation is typically based on consideration of only 

dominant contributions to the miscibility. Intermolecular hydrogen bonding interaction is the 

most common focus due to its high strength and directionality.  For example, the rational design 

of co-crystallization is typically performed by a crystal engineering approach which is based on a 

hierarchy of hydrogen-bonded supramolecular synthons.
17,18,19

  A theoretical model was recently 

proposed for virtual screening based on hydrogen bonding propensities of co-crystal formers 

derived from molecular electrostatic potential surfaces calculations.
20

 Alternatively statistical 

analysis of Cambridge Structural Database (CSD)
21

 was performed and a model of molecular 

complementary in co-crystals was suggested for virtual coformer screening, which was based 

predominantly on shape and polarity of co-crystal formers.
22

 Hydrogen bond donor and acceptor 

counts showed no obvious statistical relationship. A potential drawback of the model is that it 

was trained on co-crystal observations in the CSD database ignoring potential failures in realistic 

co-crystal screenings. Babu et al. have calculated H-bond energies of amide and N-oxide 

synthons at the HF/6-31G* level in order to compute cocrystal formation.
23

 In addition, Hansen 

solubility parameters were recently applied to describe miscibility of API and coformer to 

predict co-crystal formation to guide co-crystal screening.
24
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In the current study we demonstrate how COSMO-RS
25

 fluid phase thermodynamics 

computations describing miscibility of co-crystal formers in a super-cooled liquid (melt) phase 

can be applied to virtual coformer screening. It is assumed that the supercooled liquid phase 

mimics the co-crystal solid state neglecting long order packing contributions (an amorphous 

solid state). An extensive testing of the approach on multiple experimental screening 

observations, including pharmaceutical APIs paracetamol, bicalutamide, itraconazole, 

nicotinamide, meloxicam, carbamazepine and indomethacine is reported. Concerning the 

predictivity of the approach, it should be taken into account that a negative experimental result of 

co-crystallization of an API with a coformer does not completely exclude the possibility that 

such co-crystal exists. There are many reasons why it just may not have been observed in the 

specific experimental setup.  

 

In a similar way as potential coformers are identified, solvents which do not tend to form 

solid solvates (sometimes called pseudopolymorphs) with the API may be found by COSMO-RS 

fluid phase thermodynamics computations.  The main difference between solvates and co-

crystals is the physical state of the isolated pure components: if one component is a liquid at 

room temperature, the crystals are designated as solvates. While co-crystal formulation can bring 

advantages by increasing dissolution rate and bioavailability of the API, solvate formation is 

typically undesirable. Solvates might be subsequently desolvated in a final drying step of 

formulation process.  In such a situation the final polymorph could be metastable and undergo 

solid-solid transition during its shelf-life. In addition, residual solvent levels in the API must be 

compatible with ICH guidelines (http://www.ich.org)  in case of incomplete desolvation. 

http://www.ich.org/
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Therefore selection of the solvent system for crystallization which has the lowest probability of 

forming solvates with the API is important. Such solvent systems in general may be used directly 

for slurry crystallization of the stable form or for desolvation of the solvated forms by reslurry 

experiments to facilitate solvent-mediated transformation and conversion to a stable anhydrous 

non-solvated form. 
 

 

In the current study we demonstrated how fluid phase thermodynamics calculations allow 

selecting solvents which do not form solvates with a tyrosine kinase inhibitor axitinib (trade 

name Inlyta), and with fungicides thiophanate-methyl and thiophanate-ethyl. 

 

Previously such an idea was suggested
26 

but never attempted for the solvent selection 

using the Fábián model.
22  

 

APPROACH AND METHODS 

Approach 

COSMO-RS (COnductor like Screening MOdel for Real Solvents) is a universal theory to 

predict the thermodynamic equilibrium properties of liquids, which was originally developed by 

A. Klamt.
25,27 

COSMO-RS thermodynamics is based on the statistical physics of interacting 

molecular surface segments. The polar and hydrogen bond interaction energies are quantified 

based on the surface screening charge densities, which result from a quantum chemical 

continuum solvation calculation. Due to its ability to treat mixtures at variable temperatures and 

to compute accurate solvation energies based on first-principles, it has become very useful in 

chemical engineering and in wide areas of physical and medicinal chemistry.  
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A complete computational modeling and prediction of the co-crystallization process is 

currently out of reach due to the complexity of the involved steps like nucleation and crystal 

growth. However, with COSMO-RS being a fluid phase thermodynamics model, it is possible to 

compute a virtually supercooled liquid mixture of the co-crystallization components and obtain 

the excess enthalpy of stoichiometric m:n mixtures created out of the pure components A and B:  

BpurenApuremABex HxHxHH ,,   

Hpure and HAB represent the molar enthalpies in the pure reference state and in the m:n mixture, 

with mole fractions xm= m/(m+n) and xn = n/(m+n). Hex contains all enthalpic contributions and 

is not limited to hydrogen bonding interactions, though those may be separated from the overall 

enthalpy by COSMOtherm software.
28

 We found that the excess enthalpy Hex is a superior 

descriptor to the pure hydrogen bonding interaction.  Compounds with Hex<0 are strongly 

attractively interacting in solution (super-cooled liquid) and prefer the mixture enthalpically over 

their pure liquids. In an extensive set of test calculations presented below we demonstrated that 

coformers miscibility as measured by Hex corresponds nicely with an increased probability of 

forming co-crystals. Since it is reasonable to assume, that enthalpic preference of such super-

cooled liquid phase will also pertain in a mixed crystal, it is plausible to use the liquid phase 

excess enthalpy as a guide for co-crystal screening.  

 

Methods  

Excess enthalpies, Hex, were calculated by the COSMOtherm software.
28

 The screening charge 

densities for COSMOtherm calculations were generated by the Turbomole package
29

, using the 

BP86 density functional
30,31

 with a TZVP
32

 basis set  (BP-TZVP-COSMO level of theory). The 

COSMOfrag 3.3 module
33 

was adopted for increased screening performance of large dataset of 
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coformers. Multiple conformations of APIs and coformers were generated by COSMOconf 2.1
34 

or OMEGA
35

 (YAA) softwares and adopted for the Hex calculations.  

 

RESULTS AND DISCUSSION 

Rational Coformer Selection for Co-crystallization 

Test of the Approach  

For an extensive testing experimental results of co-crystal screening for multiple APIs were 

taken from literature sources.
19,20,24,36,37,39,40,41,42

  Results of virtual coformer selections are 

compared with the experimental observations in Tables 1 and 2 for the selected cases (see 

Supplementary materials for all other cases considered in this study).  

 

Overall performance of the COSMO-RS model for coformer selection was estimated by 

ROC (Receiver Operator Characteristic) curves (Figure 1).   A ROC curve plots the sensitivity 

(number of true positive predictions/total number of positive observations) vs. 1-specificity 

(number of false positive predictions/total number of negative observations), for a binary 

classifier system (co-crystal screening results) as its discrimination threshold (Hex cut-off) is 

varied from small to higher values.  The area under the curve (AUC) measures the overall 

performance of the model.  Predictions with higher AUCs are generally better and should always 

be higher than 0.5, indicating the model is better than random selection. 

 

Sometimes the goal of solid crystalline formulation is to find at least one co-crystal 

former. That is why in addition to the ROC curves, which measure the overall performance of 

the model, we used enrichment factor (EF) criteria, which measures the probability of getting the 
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first hit (co-crystal) based on Hex ranking relative to the random selection. EF in this case is 

defined as: EF=(1/Nfh)/(nh/N). Here Nfh is the number of coformers screened to get the first hit; 

nh – total number of hits (coformers forming co-crystal(s)) in the screening set); N – total number 

of coformers in the screening set. The maximum enrichment factor, EFmax (Nfh=1), is equal to 

N/nh. 

  

As an example we present here details of a rational coformer selection for itracanozole co-

crystallization. Results of crystal engineering of co-crystals of antifungal drug itracanozole with 

1,4-dicarboxylic acids were recently reported.
36

 The co-crystals dissolution behavior was shown 

to be more similar to commercial Sporanox beads (amorphous) than to micronized crystalline 

itraconazole. The COSMO-RS selection of the coformers based on the excess enthalpies 

displayed an excellent performance (Table 1).  All experimentally observed co-crystals are 

ranked at the top of the list with no false negative outliers. The enrichment factor displayed the 

maximum value of 2. Please note also that even the difference towards co-crystal formation 

between the trans- and cis-isomers (see discussion in the next section), fumaric and maleic acid, 

respectively are predicted correctly at the BP-TZVP-COSMO parameterization. 

 

 

The performance of coformer screening based on the excess enthalpy as computed with the 

COSMOtherm program at the BP-TZVP-COSMO level is presented by ROC curves for all the 

test cases considered in the current study in Fig.1. The corresponding AUC and EF values are 

summarized in Table 2. 

The overall performance of the proposed model is quite good.  In seven out of twelve virtual 

coformer screenings the AUC was equal or higher than 0.7. Enrichment factors for eight 
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coformer selections displayed the maximum values, EFmax. A poor performance was observed 

for reproduction of indomethacin experimental screening observations. That probably can be 

accounted for by relatively strong contributions of lattice packing effects in the indomethacin co-

crystals, which are ignored by the COSMO-RS calculations. Furthermore, most of the co-crystals 

observed in reference 37 were obtained by transformation from the solvate with dioxane (Hex=-

1.3 kcal/mol). It cannot be completely ruled out that using a different, less strongly bound 

solvent would yield additional co-crystals. 

 

Exploring Limitations of the Approach 

The proposed method is based on the miscibility of co-crystal formers in a super-cooled liquid 

phase as measured by Hex, ignoring the crystal packing effects.  Therefore optimal screening of 

coformers should be expected in case differences in Hex contributions exceed variations due to 

the packing effects.  

 

The above considerations suggest that prediction of differences in the cocrystal forming 

ability between isomeric compounds may be a challenging task. The surface screening charge 

densities of isomers are typically almost identical leading to very close Hex values with a given 

cocrystal former.  If in such a case the packing in the cocrystalline phases is energetically very 

different, as it may be the case for isomers having differently directed H-bonding groups, 

resulting in a different H-bonding pattern, a prediction solely based on the mixing behavior will 

fail.  

 

An illustration of such a case is the cocrystallization screening of isonicotinamide and 
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nicotinamide with 4-hydroxybenzoic acid, clofibric acid and diclofenac (Table 3) based on a 

experimental study recently carried out by Báthori et al.
38

  It can be seen that the method is 

getting an ideal enrichment of coformer selection for nicotinamide cocrystallization. However, 

the obtained Hex results fail to provide any insights into experimentally observed difference in 

cocrystal forming ability between nicotinamide and isonicotinamide.    

 

      
Coformer Ranking for Solubility Improvement  

 

Apart from coformer screening for co-crystallization, the COSMOtherm software suite may be 

applied to coformer ranking for co-crystal solubility improvement.  The underlying equations for 

such calculations were presented previously and are summarized below. 

 

In case of neutral API and acidic coformer a co-crystal solubility at a given pH may be  

calculated according to the following equations (see Supplementary material):
43,44  

 

               

where  

 

 

Here SAmBn is a solubility of AmBn co-crystal, defined by a mass balance as AmBn =[A]/m = 

[B]/n;  Gfus is the free energy of fusion of the co-crystal; pKa is the dissociation  constant of an 

acidic coformer B; µ
*
 is a pseudo-chemical potential of the co-crystal components in solvent 

(water) or in the pure supercooled liquid state as defined by Ben-Naim.
45

 These pseudo-chemical 

potentials are evaluated with the COSMOtherm software. Typically the co-crystal free energy of 
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fusion is unknown and currently cannot be predicted. Therefore for the solubility ranking we 

neglected this contribution, assuming Gfus=0. 

 

In Figure 3 the predicted solubility ranking of carbamazepine cocrystals in water is compared 

with experimental observations.
43 There is a reasonable agreement with experimental data which 

would allow, for example, selecting nicotinamide coformer for the largest solubility 

improvement of the drug. The slope between experimental observations and predictions is close 

to unity within the estimated standard deviation. 

 

High Throughput Computational Co-crystal-Screening from Molecular Libraries  

The computation of excess enthalpies can be done comparatively easy for a large set of 

compounds in order to identify possibly new API-coformer pairs.  In the following we test such a 

screening approach for the well-investigated drugs paracetamol and meloxicam by mingling a set 

of experimentally known coformers with a large list of FDA approved compounds from a 

database called EAFUS (Everything Added to Food in the US).
46,47

 To increase the screening 

performance we used the COSMOfrag module, which allows for the rapid generation of an 

approximate σ-profile for the molecules just starting from a SMILES string based on comparison 

with a database of already existing σ-profiles.
33

 In other words, this approach allows generating 

instantaneously data of nearly quantum chemical accuracy without performing any such explicit 

and costly calculation. Thus, a screening is done for several hundred compounds within minutes. 

Figure 3 shows an enrichment plot (rocking plot) for both drugs which have been screened 

against this list including known coformers of paracetamol
42,48,49,50,51

 and meloxicam.
40,52,53

  The 

plot has been generated just by ordering the results according to the excess enthalpy Hex of each 

API conformer pair. 
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 For both drugs we find nearly all to our best knowledge known coformers within the first 

third of the screened list. The only exception is the paracetamol coformer naphthalene 

whichshows up very late, after about 90%; indeed it is quite surprising that such an unpolar 

compound forms a co-crystal with paracetamol anyway. Its enthalpic interaction with this drug is 

rather small and therefore this is a case where crystallization is dominated by efficient packing. 

Concerning meloxicam the screening obtained sulfuric acid as the compound with the lowest 

excess enthalpy. Although sulfuric acid itself is not known so far to co-crystallize with this API, 

interestingly, a literature research revealed that meloxicam hydrogen sulphate is known as a 

salt.
54

 There is also a somewhat extended plateau in Figure 2, at about 2% to 5% of the sampled 

compounds, which is mainly due to all kind of different nitrogen heterocyclic compounds like 

pyridines, pyrazines and oxazoles. A negative excess enthalpy of meloxicam with those 

compounds is caused by the interactions of the meloxicam alcohol group with the aromatic 

nitrogen according to the contact statistics of the COSMOtherm calculations. Those compounds 

could be interesting targets as alternatives to the acidic compounds used so far in experimental 

trials. 

Of course such a coarse screening will have to be refined by manual selection of the most 

promising systems by an experienced crystal engineer, but anyway we believe that this is a 

promising approach to enrich the standard conformer portfolio of drug developers with novel and 

perhaps unexpected compounds. 

 

Application to Solvent Selection to Avoid Solvate Crystallization 

Axitinib  

Axitinib is a small molecule tyrosine kinase inhibitor developed by Pfizer (Figure 4 a).  This 

active pharmaceutical ingredient targets the vascular endothelial growth factor (VEGF) to 

http://en.wikipedia.org/wiki/Tyrosine_kinase_inhibitor
http://en.wikipedia.org/wiki/Pfizer
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prevent the growth and proliferation of cancer cells via interruption of tumor angiogenesis 

(formation of vascular supply tissue). Axitinib has shown to be a polymorphically complex API, 

with 5 anhydrous forms and 66 solvated forms known.
55,56  

 

Axitinib has a propensity to form relatively stable solvated structures, as a majority of 

these solvates were characterized as possessing relatively high temperatures of desolvation 

(desolvation temperatures significantly higher than the normal boiling point of the corresponding 

solvent), suggesting strong bonding within the crystal.
55,26

 These solvates are thermodynamically 

stable in their corresponding mother liquor and may resist further solvent-mediated 

transformation to an anhydrous form. From crystallographic consideration depending on 

molecular size and hydrogen-bonding features, the solvent can either occupy pockets between 

axitinib dimers forming pocket solvates or link these dimers together by hydrogen bonding with 

the pyridine or the pyrazole acceptor and the amide donor.
56 

Majority of solvates displaying 

higher desolvation temperatures than the boiling point appeared to be pocket solvates.
56,26  

 

     The excess enthalpy calculations were performed for 1:1 liquid mixtures of axitinib with 46 

pure solvents, described by Campeta et al (Table 4).
55

  Slurry crystallization in all of these 

solvents except for heptane resulted in solvate formation.
55

 Positive Hex values were predicted 

for 24 solvents, 23 of which form solid solvates with axitinib. That indicates that low miscibility 

of axitinib with these 23 solvents in the supercooled liquid phase is counterbalanced by lattice 

packing (3D order) contributions in the solid state, which are ignored in the current calculations. 

Nevertheless as in the case of coformer selection for co-crystallization we assume that 
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miscibility in supercooled liquid as measured by Hex can be sufficient for ranking solvents 

propensity to form solid solvates. 

 

   Heptane was found to have the highest excess enthalpy value among all considered solvents 

(Table 4). That corresponds to the lowest miscibility with axitinib in the supercooled liquid 

mixture.   Heptane indeed was one of the few solvents that did not solvate with axitinib and 

would be expected to be partially miscible with most solvents at high temperature to facilitate 

desolvation.  In fact heptane was adopted for solvent-mediated desolvation experiments through 

solvates reslurry at  105 °C.
55

 The resulting enrichment factor provided by Hex ranking is 46. 

 

  Thiophanate-methyl and Thiophanate-ethyl   

Polymorph and solvate formation studies were recently reported for two fungicidal compounds:  

thiophanate-methyl, TM (dimethyl 4,4’-(o-phenylene)bis(3-thioallophanate)  and thiophanate- 

ethyl, TE (diethyl 4,4’-(o-phenylene)bis(3-thioallophanate) (Figure 4 b and c).
57,58

  Though  the 

two molecules are close analogues and differ only by two CH2 groups they display varying 

combination of hydrogen bonding arrangment and molecular conformations in solid state.   

 

Both molecules willingly form polymorphs and solvates: TM has two conformational 

polymorphs and at least fourteen solvates,
 57,58

  while four polymorphs and seven solvates were 

reported for TE.
58

  The solvent molecules occupy channels running through the crystal 

structures, displaying hydrogen bonding and/or van der Waals interactions with the host 

molecules. Due to the additional CH2 groups TE molecules allow formation of larger channels 

than those observed in the crystal structures of the TM solvates. As a result majority of the 
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studied solvents do not engage in hydrogen bonding with the TE molecules in contrast to 

predominance of the hydrogen bonded TM solvates.    

 

Due to a higher mobility of the solvent molecule and the presence of geometric 

constraintsimposedby the cavity size, channel solvate formation seems to be a challenging test to 

the application based on the excess enthalpy calculations only.  

 

Virtual solvent screening results based on the Hex calculations for liquid mixtures of TM 

and TE with pure solvents are presented Tables 4 and 5, respectively. Water was found to have 

the highest excess enthalpy value among all considered solvents, supporting lack of the 

experimental observation of TM and TE pure hydrates.  Toluene solvent was correctly ranked as 

the second top solvent, which does not form solvates with TM (Tabe 5). Methanol, ethanol and 

1,2-DCE solvents which do not form TE solvates are ranked at the top of the solvent list with 

toluene as a false positive prediction (Table 6). Strong false negative predictions were given to 

DMA and DMSO solvents for which TM and TE solvates, respectively, were not observed.  

 

In spite of the complexity of the test, a reasonably good overall performance of the 

proposed method in application to TM and TE channel solvates is reflected in the maximum 

enrichment factors of 17 and 12 and AUC values of 0.63 and 0.67, respectively.  

 

 

CONCLUSIONS 

 

It is demonstrated that COSMO-RS theory as implemented in the COSMOtherm software offers 

a highly efficient way to preselect co-crystal coformers by computational screening. This is 
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achieved by the calculation of the excess enthalpy Hex which may be interpreted as the tendency 

of the two components to associate in the mixture prior to co-crystallization. Most likely due to 

its detailed and accurate description of all intermolecular interactions, COSMOtherm appears to 

be more accurate in coformer ranking than some other specially developed procedures, which are 

focused on intermolecular hydrogen bonding. In addition it is demonstrated that COSMOtherm 

allows reasonable ranking of coformers for API solubility improvement. As a result, experiments 

may be focused on those coformers which have an increased probability of co-crystallization 

leading to the largest improvement of the API solubility.  

In a similar way as potential coformers are identified for co-crystallization, solvents 

which have the lowest probability to form solid solvates may be determined based on the highest 

values of the excess enthalpies with the API. Such solvent systems may be used directly for 

slurry crystallization of the stable form as well as for desolvation of the solvated forms by 

reslurry experiments to facilitate solvent-mediated transformation and conversion to a stable 

anhydrous non-solvated form . 
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Tables 

 

Table 1. Virtual coformer screening for itracanozole cocrystallization in 2:1 stoichiometry.
36

 

Experimentally observed cocrystals are highlighted in green. Enthalpies Hex are calculated at the 

BP-TZVP-COSMO level of theory and are presented in kcal/mol. 

  

 

Coformer Hex 

tartaric acid -4.71 

fumaric acid -4.30 

succinic acid -2.85 

malic acid -2.72 

glutaric acid -2.71 

malonic acid -2.62 

adipic acid -2.59 

maleic acid -2.28 
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Table 2. Summary of performance results of virtual coformer screenings. 

Compound AUC EF EFmax 

itracanozole36 1.00 2 2 

3-cyanophenol19 0.98 6.0 6.0 

4-cyanophenol19 1.00 4.5 4.5 

3-cyanopyridine19 - 6.0 18 

4-cyanopyridine19 0.96 6.0 6.0 

bicalutamide19 0.94 4.5 9.0 

nicotinamide39 0.92 1.8 1.8 

paracetamol42 0.61 3.3 3.3 

meloxicam40 0.67 1.1 1.1 

benzamide41 0.71 0.9 1.9 

indomethacin24 0.49 5.3 5.3 

indomethacin37 0.54 1.3 9.0 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

 

 

 

 

 

 

 

 

 

 

Table 3. Predictions of cocrystallization of isonicotinamide and nicotinamide with 4-

hydroxybenzoic acid, clofibric acid and diclofenac. Experimentally observed cocrystals are 

highlighted in green.
38

 Enthalpies Hex are calculated at the BP-TZVP-COSMO level of theory 

and are presented in kcal/mol. 1:1 stoichiometries were used in the calculations. 

 

Coformer 
Hex, 

isonicotinamide 
Hex, 

nicotinamide 
4-hydroxybenzoic 
acid 

-2.47 -2.59 

diclofenac -1.97 -2.05 

clofibric acid -1.69 -1.77 
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Table 4. Virtual solvent screening to avoid axitinib solvate crystallization and to facilitate  

desolvation of  existing solid solvates. Experimentally observed solvents which do not form 

axitinib solvates are highlighted in green.
55

 Enthalpies Hex are calculated at the BP-TZVP-

COSMO level of theory and are presented in kcal/mol. 1:1 stoichiometries were used in the 

calculations. 

 

Solvent Hex  
heptane 0.73 
methylcyclohexane 0.67 

1-octanol 0.43 
1,2,3,4-   
    Tetrahydronaphthalene 0.4 
nitromethane 0.39 
p-Xylene 0.33 
1-pentanol 0.28 
3-Methyl-1-butanol 0.27 
toluene 0.27 
cyclohexanol 0.24 
1,2-dichlorobenzene 0.24 

1,2-dichloroethane 0.24 

isobutanol 0.23 
1-butanol 0.23 
ACN 0.21 
2-butanol 0.21 
tert-butanol 0.2 
IPA 0.17 
trichloro-ethene 0.17 
ethanol 0.13 
methanol 0.08 

methyl benzoate 0.03 
allyl alcohol 0.03 
water 0.01 
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benzyl alcohol -0.04 
isoamyl acetate -0.05 
DCM -0.06 
n-butyl acetate -0.09 
MIBK -0.14 
tetramethylene sulfone -0.15 
isopropyl acetate -0.16 
methyl acetate -0.2 
ethyl acetate -0.22 
chloroform -0.26 

2-pentanone -0.28 
MEK -0.32 
dimethoxymethane -0.32 
cyclohexanone -0.37 
acetone -0.38 
THF -0.61 
pyridine -0.68 
propionic acid -0.88 
acetic acid -0.89 
DMF -1.09 
N-methylpyrrolidone  
(NMP) -1.34 
DMSO -1.8 
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Table 5. Virtual solvent screening to avoid TM solvate crystallization. Experimentally observed 

solvents which do not form TM solvates are highlighted in green.
57

 Enthalpies Hex are calculated 

at the BP-TZVP-COSMO level of theory and are presented in kcal/mol. Experimental 

stoichiometries were used in the calculations whenever available, otherwise 1:1 mixtures were 

considered. 

Solvent Hex

water 0.49

toluene 0.25

1,2-DCB 0.22

benzene 0.16

ethanol 0.12

methanol 0.10

1,2-DCE 0.07

chloroform 0.02

DCM -0.07

acetonitrile -0.36

cycloxehanone -0.80

acetone -0.85

dioxane -1.16

THF -1.20

pyridine -1.35

DMA -2.29

DMSO -2.84  
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Table 6. Virtual solvent screening to avoid TE solvate crystallization. Experimentally observed 

solvents which do not form TE solvates are highlighted in green.
58

 Enthalpies Hex are calculated 

at the BP-TZVP-COSMO level of theory and are presented in kcal/mol. Experimental 

stoichiometries were used in the calculations whenever available, otherwise 1:1 mixtures were 

considered. 

 

Solvent Hex

water 0.50

toluene 0.12

methanol 0.10

ethanol 0.09

1,2-DCE 0.03

chloroform -0.08

DCM -0.11

acetonitrile -0.27

acetone -1.00

dioxane -1.15

pyridine -1.32

DMSO -2.73  
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Figure Captions 

 

Figure 1.  ROC curves of virtual coformer screenings based on Hex for  a) 3-cyanophenol,
19

 b) 4- 

cyanophenol,
19

 c) 4-cyanopyridine, 
19

d) bicalutamide,
19 

e) itracanazole,
36

 f) nicotinamide,
 39

 

g) indomethacin,
24 

h) indomethacin,
37  

k) benzamide,
41 

l) meloxicam,
40 

m) paracetamol.
42 

Enthalpies Hex are calculated at the BP-TZVP-COSMO level of theory. 

 

Figure 2. COSMO-RS ranking of the carbamazepine solubility improvement by 

cocrystallization relative to the solubility of free drug. The experimental observation are taken 

from Good and Rodríguez-Hornedo.
43 

Here NCT- nicotinamide, MLN - malonic acid, GTA- 

glutaric acid, OXA - oxalic acid, SAC - saccharin, SUC - succininc acid and SLC - salicylic acid. 

The calculations are performed at the BP-TZVP-COSMO level of theory.  

 

Figure 3. Computational cocrystal screening of paracetamol and meloxicam against a subset of 

the EAFUS list. Compounds have been sorted according to their excess enthalpy Hex. The 

straight line corresponds to a hypothetical random trial. 

  

Figure 4. Molecular structures of a) axitinib, b) thiophanate-methyl (TM) and c) thiophanate-

ethyl (TE), 
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