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Abstract 

In this article, an analytical solution, that we call COSMOSPACE, to the statistical 

thermodynamics of a model of pair-wise interacting surfaces, is presented. In an implicit 

form, this solution was initially developed for the a priori prediction model COSMO-RS. A 

comparison of COSMOSPACE with UNIQUAC and with the quasi-chemical theory of 

Guggenheim reveals the conditions under which the models yield similar results and when 

they differ very considerably. It is shown that COSMOSPACE is in extremely good 

agreement with Monte-Carlo simulations for some lattice fluids (where UNIQUAC is 

particularly poor). The ability of COSMOSPACE to provide good fits to experimental data is 

shown for 3 binary mixtures including ethanol - cyclohexane where UNIQUAC incorrectly 

predicts a liquid-liquid phase separation. 
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1. Introduction 

The accurate description of the thermodynamic behavior of liquids and liquid mixtures is of 

central importance in chemical engineering. Good thermodynamic models are of some 

economic significance since large-scale process simulation is routinely used in chemical 

process industry.  The a priori predictive model COSMO-RS (Klamt, 1995, 1998; Klamt et 

al., 1998; Klamt and Eckert, 2000) and its implementation in COSMOtherm (COSMOlogic, 

1999) permits the efficient calculation of liquid-liquid and vapor-liquid equilibria based solely 

on quantum chemical calculations for the involved chemical compounds. This model enables 

us to predict equilibrium in situations where measurements are not available, even for 

mixtures of rare, unstable and complicated chemical species.  

 

Although a priori predictive models such as COSMO-RS are starting to be used in industry, 

empirical models fitted to a small number of available experimental data are more routinely 

applied in process simulation, because such models are more accurate than the current 

generation of predictive models.  For mixtures of non-electrolyte liquids far below the critical 

region the UNIQUAC equation, introduced by Abrams and Prausnitz (1975) as a 

generalization of the quasi-chemical equation (QCE) of Guggenheim (1952) (see, for 

example, Ben Naim, 1987), is widely employed. Other models like those of Flory and 

Huggins, Wilson, Renon and Prausnitz, van Laar, Scatchard, Hamer and Hildebrand, and 

Margules (see Walas (1985) for details) can be obtained as special cases of the UNIQUAC 

equation (Abrams and Prausnitz, 1975). In addition, the group contribution model (GCM) 

UNIFAC is based on the thermodynamic model of UNIQUAC (see Walas, 1985).  

 

Only recently has the potential of COSMO-RS as a flexible GE-model become apparent, 

together with an analytical solution for the binary case. In this paper we present this model, 



referred to in what follows as COSMOSPACE (COSMO Surface Pair Activity Coefficient 

Equation). 

 

2. COSMOSPACE 

2.1 General theory of interacting surface pair models 

Consider an ensemble of molecules that represents a liquid. Assuming that there is no 

correlation between molecular interactions and geometrical restraints, the partition sum Z of 

an ensemble can be factorized into two contributions:  

RC ZZZ             (1) 

The first factor on the right hand side of Eq. 1 is called the combinatorial factor. It is the 

partition sum of the equivalent ensemble of molecules that interact only through steric 

restraints. The combinatorial factor takes into account all size and shape effects of the 

molecules. There is no exact expression for ZC, but by fitting of reasonable models to 

thermodynamic data of alkane-alkane mixtures reasonable approximations have been derived. 

The Staverman-Guggenheim (SG) expression 
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for example, is used in UNIQUAC.  The variables ix , i , and i denote the mole-, volume-, 

and surface-fractions of species i, respectively, with the volume and surface fractions defined 

in terms of the relative volume, ir , and relative area, iq , respectively.  Both ir  and iq are based 

on van der Waals cavities and normalized in a consistent way. r and q values have been 

tabulated for many molecules (see Gmehling and Onken, 1977).  The UNIFAC group 

contribution method can also be used to estimate the molecular r and q parameters (see, 

Walas, 1985; Sandler, 1999). The coordination number, z, commonly is assumed to be 10. For 

mixtures of compounds that differ by less than a factor 5 in size, the combinatorial factor 



usually is of moderate importance and the SG approximation can be considered to be 

sufficiently accurate for the purposes of this paper. 

 

The second factor, RZ , in Eq. 1 is called the "residual" contribution and it arises from the 

interactions between molecules. Despite the name, it is the more important contribution in 

most liquids. The basic assumption of surface pair interaction models is that residual - i.e., 

non-steric - interactions can be described by pairs of geometrically independent surface 

segments. The residual contribution is just the partition sum of an ensemble of pair-wise 

interacting independent surface segments.  

 

If we consider a system having  different types of surface, the total number of surface 

segments in on a molecule i is given by 
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where iq  is the total surface area of molecule i and 


i
n   denotes the numbers of segments of 

type  on molecule i. effa  is the size of the surface segments. There is no simple way to define 

effa  from first principles and it must be considered to be an adjustable parameter.  

 

If ii xNN   is the number of molecules of species i in the system, then the total number, n, of 

segments in the system is given by  


i
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In the same way, the number of segments of type  is given by 
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The relative number of segments of type  is  



n

n
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From elementary statistical thermodynamics we know that the Gibbs free energy of the 

system is 

ZkTG ln            (8) 

The chemical potential of species i in the mixture is given by 
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In view of our earlier assumption that the residual partition sum RZ  depends only on the 

segment composition we have 
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where   is the pseudo-chemical potential of a segment of type  in the ensemble of 

interacting surface segments. The activity coefficient, i , of species i is defined by 

iiiikT  ln           (11) 

where ii  denotes the chemical potential of compound i in a system with 1ix .  In the same 

way we have  

  lnkT           (12) 

for the activity coefficient of a segment of kind , with   being the segment chemical 

potential at 1
. If we define i

 and i
 to be the chemical potential and activity 

coefficient of a segment  in an ensemble of pure compound i, respectively, and apply these 

definitions to Eq. 10, we obtain  
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for the residual part of the activity coefficient of compound i.  With the development of Eq. 

13 we have reduced the thermodynamics of the system of chemical compounds to the 

thermodynamics of an ensemble of pair-wise interacting surface segments. 

 

We now consider this ensemble in more detail. Let  and  denote different kinds of surface 

segment and let u be the interaction energy of a pair . For a given total pairing, P, of the 

ensemble the total interaction energy totE  can be written as a sum of pair-wise interactions of 

segments: 
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 uPpPEtot )(          (14) 

In this equation )(Pp  is the total number of pairs of kind . The partition sum ZR of this 

ensemble is 
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where P samples all possible total pairings of the segments.  

 

2.2 The COSMOSPACE Solution 

A derivation of an analytical solution for the segment activity coefficients  resulting from 

the partition sum 
RZ of an ensemble of pair-wise interacting segments is given in Appendix 

A, resulting in the following expression:  
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where the interaction parameter  is defined by 
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For physical consistency we assume that the interaction energies of the segments are given by 

a symmetric matrix: i.e.  uu  . Thus:    . The derivation in Appendix A is simpler 

and more convenient than that of Klamt (1995) for the thermodynamics of an ensemble of 

pair-wise interacting object segments.  

 

Equations (16) are the general COSMOSPACE equations and can be solved iteratively by 

simple repeated substitution, starting with the assumption of  = 1 on the right hand side.   

The result automatically satisfies the Gibbs-Duhem relation because Eq. (16) is a solution to 

the basic thermodynamic equations. However, for completeness, we demonstrate the 

thermodynamic (Gibbs-Duhem) consistency of the solution of the general COSMOSPACE 

model in Appendix B.  In Appendix D an explicit formula for the derivatives of the activity 

coefficients with respect to any state variable (P, T, or the composition variables ) is given. 

The availability of an analytical derivative is of some practical significance if the 

COSMOSPACE model is to be used in a process simulator. 

 

2.3 COSMOSPACE Equations for a Binary 

It is helpful to consider the case of a mixture that contains only two kinds of segments (A and 

B in what follows).  Here the COSMOSPACE equations become: 
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An analytical solution can be found using standard algebraic methods as shown in Appendix 

C, with the result: 
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where 12  

AB . The activity coefficient for surface segments of kind B is found by 

interchanging indices ( BA  ) in Eq. 19. Note, that A takes the value 1/AB for A = 0. 

 

In Tables 1 and 2 we show the COSMOSPACE equations for what we refer to as a double 

binary mixture; that is a mixture of two different chemical species that involves two kinds of 

surface segment. In Table 1 we provide the COSMOSPACE equations for what we shall call 

a homogeneous double binary in which each species has only one type of surface segment. 

The numbers of each type of segment is ii qn 2 , if i = , and 0

in , if i  . The formulae 

for the limiting segment activity coefficients are particularly simple in this case (see Table 1) 

and the residual part of the species activity coefficient is just the corresponding segment 

activity coefficient. The combinatorial part is given by the combinatorial part of UNIQUAC 

(Abrams and Prausnitz, 1975; Walas, 1985). A further simplification results when the surface 

area parameters are equal in which case i

i x .  

 

A more complicated case – the non-homogeneous double binary – is summarized in Table 2. 

In this second case both species involve both different kinds of segment. Multicomponent 

mixtures that are modelled with just two different types of surface segment represent a minor 

extension of the model summarised in Table 2. It is, of course, possible to develop even more 

sophisticated models simply by incorporating even more kinds of surface segment in the 

model. It should be clear that the COSMOSPACE model is, therefore, inherently more 

flexible than any conventional activity coefficient model because, even for a binary mixture, 

the possibility exists to use more than the usual two (or three) interaction parameters per pair 

of components.  

 

 



 2.3 Comparison of COSMOSPACE with Guggenheim’s Quasi-Chemical Theory 

The quasi-chemical treatment in Guggenheim’s classic treatment of lattice fluids gives the 

(residual) activity coefficient of compound A in a binary lattice mixture of compounds 1+2 

(Equation 4.11.6 of Guggenheim, 1952): 
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where 
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In Guggenheim’s treatment the molecules are assumed to be of similar size: thus, the q’s may 

be assumed to be equal in what follows. Now, if we define the following parameters by 

analogy with the above expressions: 
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Equation (24) can be rearranged to give 
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In terms of the above parameters the homogeneous double binary COSMOSPACE equation 

in Table 1 becomes: 
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The residual activity coefficient is: 
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This means that the simplest (homogeneous double binary) COSMOSPACE model is 

equivalent to Guggenheim’s quasi-chemical treatment when Anqz 112   and when   , 

which implies: 12/ Uz  .  

 

We conclude that COSMOSPACE model is an exact model of lattice systems when 1z . 

However, the model appears to give a surprisingly good description of lattice systems and of 

real off-lattice fluids (reality) for a wide range of parameters, as we shall show in Sections 4 

and 5 below. 

  

 



3. Comparison with UNIQUAC 

Although derived from a lattice model, the QCE and the UNIQUAC model are based on the 

assumption that the interactions of molecules in the liquid state can be described by pair-wise 

interactions of segments of molecular surface. Thus, there exists a close relationship between 

COSMOSPACE and UNIQUAC that is more fully explored in this section.  

 

3.1 The UNIQUAC Approximation  

The UNIQUAC model incorporates interaction parameters of segments defined in a slightly 

different way: 
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These interaction parameters generally are not symmetric with respect to  and . The most 

severe approximation used in UNIQUAC consists of the replacement of the COSMOSPACE 

Eqns. (16) by  






 



1
          (29) 

In this approximation  is a pseudo-activity coefficient (corresponding to the ratio ii
(1)/i in 

Abrams and Prausnitz, 1975), i.e. a kind of availability coefficient that takes the part of the 

activity coefficient  in the COSMOSPACE model. Note that Eq. 29 can be considered as the 

analog of Eq. 16, in which the pseudo-activity coefficients  are set to unity on the right-

hand side. This has the advantage that
 is obtained explicitly, in contrast to  in the 

COSMOSPACE equations. This replacement of activities by concentrations is responsible for 

the inaccuracy of QCE models for strong interactions at high dilution, where the replacement 

of activity by concentration is most important. In fact, UNIQUAC was called a first 

approximation by its authors. A second order approximation could be obtained by using  



from the first order on the right hand side of Eq. 29, and so on.  This procedure would 

converge to the COSMOSPACE equations, if continued indefinitely. 

 

The pseudo-activity coefficients in Eq. 29 are not thermodynamically consistent. In 

UNIQUAC the excess Gibbs free energy of the systems is defined as  
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and the activity coefficients are derived by differentiation with respect to the numbers of 

segments: 
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In UNIQUAC compounds usually are assumed to have only one type of surface segment. In 

the notation used in this article this means 0

in , if i  . However, the thermodynamic 

model underlying UNIQUAC remains valid even if there is more than one kind of surface per 

compound. These non-homogeneous UNIQUAC equations are, in fact, used in group-

contribution methods like UNIFAC (Fredenslund et al., 1975). Different functional groups in 

UNIFAC could be considered to represent different types of surface, although from a physical 

point of view, a single fragment like -OH actually represents extremely different surface 

types.  

 

There are three further criticisms regarding the derivation of the UNIQUAC approach: 

- The factor    in Eq. 29 is intended to take into account the Boltzmann weight for the 

extra energy arising from  pairs, compared with pure  and  pairing. For the 

formation of two  pairs, we have to break one  pair and one  pair. The extra energy 

is u - (u + u)/2, and not  uu  . Hence, the definition of the interaction parameter 



in Eq. 28 is physically meaningless, and instead the definition given in Eq. 17 is more 

appropriate. Since the interaction parameters in UNIQUAC are fit to experimental data 

anyway, the only consequence of this shortcoming is that the asymmetric case of 

   , which is allowed in UNIQUAC, appears to be physically meaningless. We 

assume the interaction parameters in UNIQUAC to be identical with those of 

COSMOSPACE for the comparison below. 

 

- The second inconsistency in the derivation of UNIQUAC concerns the number of 

independent surface segments. In the beginning of their derivation, Abrams and Prausnitz 

(1975) consider the number of surface segments on a molecule to be iqz , where 10z  is 

the coordination number and iq  is the surface area parameter of compound i.  This 

corresponds to an effective contact area of 1.0effa  in the units of the UNIQUAC surface 

parameters. However, by replacing z/2 u by a new interaction energy, and by the 

corresponding reduction of the number of segments originally appearing in Eq. (9) of their 

paper Abrams and Prausnitz (1975) convert a number factor into a scaling factor of 

interaction energies. This manipulation is of no importance for the interaction enthalpy 

considered in Eqs. (9) and (9a) of their work, but it reduces the number of degrees of 

freedom of the system by a factor z/2 and, therefore, shows up in the free energy. Hence, 

the number of surface segments really taken into account in UNIQUAC is only iq2 , 

corresponding to an effective segment area of 5.0effa  area units.  

 

- Finally, Abrams and Prausnitz (1975) introduced another inconsistency into the 

calculation of the Gibbs free energy. In their Eq. (22a) the Gibbs free energy is found 

from a sum of contributions i

iq ln  for each mole of component i. This gives the 

impression that they are summing one contribution 
iln  per unit area. But due to the 



previous finding that the real coordination number used in the residual part of UNIQUAC 

is 2, they should have used a contribution of i

iq ln2  for each molecule. We conclude 

that the logarithmic partition coefficients of the segments iln  are half of the value given 

by Eq. 31. 

 

Summarizing: we find that the UNIQUAC model can be considered to be an interacting 

surface pair model with a first order approximation regarding  'local composition' effects, if 

we consider the numbers of segments on compounds to be given by Eq. 4 with ni
i = 2 qi , i.e. 

and aeff = 0.5, and ni
 = 0 for i  , and with 
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UNIQUAC is physically meaningful only in the symmetric, one-parameter case of  = 'ij = 

'ji. One may also consider the effective area of an independent surface segment aeff to be an 

additional fitting parameter because the present choice is rather arbitrary. 

 

For the following analytical and numerical comparisons of COSMOSPACE and UNIQUAC 

we consider a binary system with only two kinds of segments so that we may use Eq. 19, 

together with the settings jiij   =  and aeff = 0.5, that is necessary in order to make the 

models comparable at all. 

 

3.2 Analytic comparisons 

In the symmetric case where A = B = 0.5, we have A = B =  and Eqs. 18 and 32 reduce to 

)5.05.0ln(lnln
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Thus, we find that COSMOSPACE and UNIQUAC always coincide at A = B = 0.5. 

 



More interesting is the case of infinite dilution activity coefficients, e.g. A  = 0 and B = 1. 

In this limit we find  

)ln(ln ,1  
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for the chemical potential of compound 1 from the COSMOSPACE equation, while 

UNIQUAC yields  

))1()(ln(ln
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Since 1)ln(   for 1|1|  , both models yield similar results for weakly interacting 

systems. However, UNIQUAC underestimates the infinite dilution activity coefficients of 

strongly interacting systems. 

 

3.3 Consideration of different parameter combinations 

Figure 1 shows the behavior of COSMOPACE and UNIQUAC at differing values of the 

interaction parameter . We see here that the behavior of the two models is almost identical in 

the range 1.01 x . Only when we approach the infinite dilution region ( 01 x ) do we see 

distinct differences between the models. For values of  < 1 COSMOSPACE shows a much 

stronger curvature close to infinite dilution, while for  > 1 COSMOSPACE shows a more 

moderate behavior than UNIQUAC. Only for values of  > 2.5 do the two models appear to 

be quite different over the entire concentration range. 

 

Figure 2 shows that the choice of aeff has some influence on the ln  curves. The interaction 

energy per surface area is considered to be constant for all of the curves in Figure 2 

( 2/)5.0ln(/)ln( effa ). This corresponds to a medium interaction parameter of   = 0.5 for 

the default case of aeff = 0.5. While the starting slope near 11 x  is the same for all curves due 

to the identical interaction energy per unit area, the curves depend strongly on the choice of 

aeff in the range 0.2 < x1 < 0.5.  At infinite dilution a segment of type 1 has no alternative to 



having a partner of type 2, no matter how large are the different segments. Thus, the free 

energy in this limit is determined only by the interaction energy per unit area. Since this 

quantity is fixed, the curves should end up at the same point. Indeed, we see in Fig. 2 that all 

of the curves for the COSMOSPACE model end up in the same point at infinite dilution. 

UNIQUAC, however, shows different infinite dilution activity coefficients as a function of 

aeff. This has to be an artifact that results from the quasi-chemical approximation. 

 

As mentioned above, the value of aeff = 0.5 presently used in UNIQUAC appears to be 

accidental. The original choice of a coordination number z = 10 corresponds to a value of 

1.0effa . As can be seen in Figure 2 this change would have some influence on the shape of 

the curves. From the COSMO-RS parameterization Klamt et al. (1998) and Klamt and Eckert 

(2000) found a value of about 0.07 nm2 for aeff. By correlating the UNIQUAC surface 

parameters against the corresponding surface areas of the COSMO cavities Klamt and Eckert 

(2001) found that a UNIQUAC surface unit corresponds to about 0.46 nm2 of COSMO cavity. 

Hence, the effective segment size derived from the COSMO-RS fit is aeff = 0.07 nm2/0.46 nm2 

= 0.15 in UNIQUAC units, corresponding to about z = 6.6.  

 

The fact that UNIQUAC and COSMOSPACE appear to be in agreement under certain 

conditions should not be taken to imply that they are always in agreement, as the following 

section on lattice fluids will show. 



4. Modelling of Lattice Fluids 

Wu, Cui and Donohue (1998) compared several local composition models to Monte-Carlo 

simulations for lattice mixtures. The models tested included: UNIQUAC, the AD model for 

lattice fluids of Aranovich and Donohue (1996), and the Born-Green-Yvon (BGY) model of 

Lipson (1991). The BGY model is equivalent to UNIQUAC with a coordination number 

2z  in the Boltzmann exponent. The BGY model is, therefore, in agreement with the 

modifications of the UNIQUAC model that were discussed in Section 3 above.  

 

Following Wu et al., we calculate the internal energy and the internal energy change of 

mixing from: 
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Expressions for the internal energy for the models tested by Wu et al. are given in their paper. 

For the homogeneous COSMOSPACE model we obtain a particularly simple expression 

(with 1ii ): 
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         (36) 

The mean field internal energy, mfU , is given by: 


i j

ijjimf xx
z

U 
2

          (37) 

The (dimensionless) internal energy change of mixing ( RTU / ) is obtained by subtracting 

the ideal mixture internal energy from the internal energy calculated as given above. 

 

For a cubic lattice mixture of monomers we may set all the q’s to unity, thus forcing the 

segment fractions to equal the appropriate mole fraction ( i

i x ). The coordination number, 

the number of nearest neighbors, is 6 in such a lattice mixture. Using specified values of the 



interaction energies, 22211211 ,,   , for a number of such systems (in their notation 

RTukT ijij //   in ours), we calculate the COSMOSPACE interaction parameter from 

   RTuuu /exp 22112

1
122112  . The segment activity coefficients follow 

immediately from the expressions in Table 1 and the internal energy as given above. 

 

Figures 3 and 4 show the internal energy change of mixing for lattice mixtures of monomers 

with properties as specified in the figure captions (these correspond to the systems in Figs. 2 

and 4 of Wu et al., 1998). In addition to the results obtained with COSMOSPACE, we also 

show the results from our own Monte-Carlo simulations as well as those obtained using 

UNIQUAC (which here is identically equal to the Wilson model), the AD model and the 

BGY model. From the results shown here (which appear to be in complete agreement with 

those of Wu et al., 1998) we see that the original UNIQUAC is the worst of the models (when 

compared to the Monte Carlo simulations). The BGY method (which is the proper way to use 

UNIQUAC) is significantly better than UNIQUAC, but it is not a particularly good 

approximation to the Monte-Carlo simulations. It is impossible to distinguish between 

COSMOSPACE and the AD model in all cases shown here and both models are in extremely 

close agreement with the Monte Carlo simulations. Our results for two other systems, those in 

Figs. 1 and 3 of the paper of Wu et al. show equally good agreement between 

COSMOSPACE, the AD model and the Monte Carlo simulations. 

 

Figures 5 and 6 shows the deviation in the activity coefficients predicted by COSMOSPACE 

and the BGY model from those obtained directly from the Monte-Carlo simulations using an 

addition to our MC code that allows us to evaluate the activity coefficients of the components. 

We see from these results that COSMOSPACE is in much better agreement with the Monte-



Carlo simulations than is the BGY model. We have not calculated the activity coefficients for 

the AD model since it is not a model for the excess Gibbs energy. 

 

Figures 7 and 8 show the internal energy change of mixing for polymer/solvent mixtures, 

again with properties as specified in the figure captions (these are the systems in Figs. 7 and 9 

of Wu et al., 1998). The coordination number for the pure solvent is 6, but the coordination 

number for the polymer is 4 + 2/C, where C is the polymer chain length. The coordination 

number for the mixture is the volume fraction weighted sum of these numbers. As before, we 

see that COSMOSPACE and the AD method are in very close agreement with each other and 

are very close to the Monte Carlo simulations. The BGY model also gives reasonable 

predictions. As before. UNIQUAC is by far the worst of the models. Note here that 

COSMOSPACE (and the other analytical models) can be used to calculate the internal energy 

at any volume fraction whereas it appears that the Monte Carlo method fails at some value of 

the volume fraction above 0.8 (see Figs. 7 and 9 in Wu et al., 1998).  

 

It is worth asking the question: are COSMOSPACE and the AD model always in close 

agreement? The answer is yes, as long as the absolute values of the interaction energies 

( kTij / ) are less than unity. For interaction energies greater than unity the models can differ 

very considerably indeed, although differences begin to appear at interaction energies lower 

than one. Figure 9 shows the deviations from Monte-Carlo simulations for COSMOSPACE 

and the AD model as a function of kT/12 for a lattice mixture of monomers in which 

02211   . The mole fraction is kept constant at 0.02 for these calculations. We see in Fig. 

9 that up to 2.0/12 kT  both methods are within the statistical noise of the Monte-Carlo 

calculations. At higher interaction energies the deviation from Monte-Carlo of the AD model 

increases exponentially (a factor 2 for each 0.1 increase in interaction energy) while 



COSMOSPACE stays within the noise up to 6.0/12 kT , after which the deviations 

increase, probably due to agglomeration effects that make the appearance in the Monte-Carlo 

simulations. Phase separation occurs at 7.0/12 kT .  

 

If we calculate liquid-liquid equilibrium for a cubic lattice mixture of molecules we find that 

phase separation occurs starting at 42.0/12 kT  (this explains the difficulties with MC 

starting from 5.0/12 kT ) at 5.01 x  and we find a liquid-liquid phase boundary at 

02.01 x with 7.0/12 kT . This explains why we observe deviations from the Monte-Carlo 

method starting from that interaction energy. These results show that COSMOSPACE is more 

accurate than the AD model. Furthermore, as long as we are in the single-phase region, 

COSMOSPACE is in close agreement with the Monte-Carlo simulations for these systems. 

 

 COSMOSPACE cannot account for differences between 3D cubic lattices and 2D-hexagonal 

lattices both with 6z  because the model does not include any lattice structure information 

other than the number of faces belonging to one unit (molecule), i.e. other than z. A pair of A-

A hexagons creates two neighbouring sites that have two A-neighbours, i.e. where a third A-

hexagon can get two favourable interactions at once. The situation of correlated two-site 

interactions is not covered by COSMOSPACE and, hence, it fails earlier in such lattices than 

it does for a cubic lattice where only special triples of A-particles form a favourable double 

A-neighbour site.  

 

 



5. Application to Real Systems 

In this section we show how COSMOSPACE performs in the interpretation of experimental 

data. Results are shown for three systems:  

1. cyclohexane - ethanol 

2. chloroform –methanol 

3. benzene – acetonitrile 

 

5.1 Cyclohexane - Ethanol 

The system ethanol(1) – cyclohexane(2) is an interesting binary to study because it is one of 

the few systems that shows strong positive deviations from Raoult’s law while not exhibiting 

liquid-liquid phase separation. Binaries that show liquid-liquid phase separation make a 

comparison difficult because the finite activity coefficients in a particular concentration range 

are missing.  

 

Activity coefficients for this system at 293.15 K are shown in Figure 10.  These activity 

coefficients were calculated from the P-x-y data of Asperion et al. (1993) and Nagai and Ishii 

(1935) using the saturation pressure of ethanol (43.80 mmHg) and cyclohexane (79.80 

mmHg) from Anderson and Prausnitz (1978). Also shown in Fig. 10 are infinite dilution 

activity coefficients, determined by interpolation of other data as described later in this 

section (see Figure 11). The (interpolated) activity coefficients at infinite dilution of ethanol 

and cyclohexane at 293.15 K are: 9.76.791   and 0.19.92  . 

 

A least squares fit of the experimental activity coefficients in the ethanol concentration range 

of 85.015.0 1  x gave UNIQUAC parameters of 39.8212 A  cal/mol and 41.86121 A  

cal/mol. Activity coefficients calculated from UNIQUAC are shown in Fig. 10; the deviation 

of UNIQUAC at concentrations outside this range can clearly be seen. Furthermore, 



UNIQUAC predicts liquid-liquid phase separation between an ethanol mole fraction of 0.18 

and 0.65 that in reality does not exist. For this reason chemical engineers usually would 

choose the Wilson model for this kind of situation since the Wilson model is incapable of 

predicting liquid-liquid phase equilibrium. 

 

In order to describe the activity coefficients by COSMOSPACE the number and types of 

surface segments have to be defined. The simplest COSMOSPACE model is the 

homogeneous double binary model (in which each molecule has only one type of surface) in 

Table 1. Using the tables in Bondi (1964) and the definition of Abrams and Prausnitz (1975) 

(i.e. 5.2/ii Aq  ) we find:  

48.65.2/10.822,0,0,944.35.2/93.422 222111  qnnnqn BABA  

The combinatorial activity coefficients at infinite dilution are computed from the UNIQUAC 

model as required by COSMOSPACE and are: 

94.02,1,  

CC    

Thus, the experimental residual activity coefficients at 293.15 K are: 

5.1094.0/9.94.8494.0/6.79 2,1,  

RR   

 

The interaction parameter AB in the homogeneous double-binary model can be calculated 

directly from the activity coefficients at infinite dilution (Table 1): 
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These expressions lead to two very different estimates of the COSMOSPACE interaction 

parameter of 

61.0AB   or   7.48AB   



The large difference between these values suggests that the homogeneous COSMOSPACE 

model will give a poor fit of the experimental data. The next step then is to try the non-

homogeneous double-binary COSMOSPACE model summarized in Table 2, with ethanol 

being divided into two surface types A and B (–OH and an alkyl group), whereas cyclohexane 

consists of only the alkyl surface type.  

 

The ratio between the A and B surfaces in ethanol could be obtained from the full 

COSMOTHERM model (as will be done later in Section 5.3), or by using the UNIFAC 

surface parameters. However, we have chosen to employ an adjustable parameter, f, defined 

as the fraction of the ethanol surface that is the alkyl surface type. The value for this 

parameter ranges from 0 to 1. In the non-homogeneous double-binary model the surface 

segments become:  

48.6,0,944.3),1(944.3 2211  BABA nnfnfn  

Regression of the same activity coefficient data as used above for fitting the UNIQUAC 

parameters gives 1102.0AB  and 4322.0f . The solid lines in Fig. 10 show the goodness 

of the fit with the COSMOSPACE model using these parameters, especially outside the finite 

concentration range used to fit the parameters. The activity coefficients at infinite dilution 

from COSMOSPACE are 91.411  and 66.92  . The activity coefficient at infinite 

dilution of cyclohexane in ethanol is within the experimental error, but that of ethanol in 

cyclohexane is too small compared to the interpolated data point shown in Fig. 10. Despite 

this, the two-parameter non-homogeneous COSMOSPACE model provides a better fit to the 

experimental data than does the two-parameter UNIQUAC model. It is also important to note 

that, the non-homogeneous COSMOSPACE model does not predict any liquid-liquid phase 

separation, whereas UNIQUAC does. The upper critical solution temperature predicted using 



COSMOSPACE (and the parameters above) is 264.95 K (well below the temperature of the 

data) - at an ethanol mole fraction of 0.31. 

 

The value of AB is equivalent to an interaction energy 285.1)( 22112
1

12  UUU kcal/mol. 

The high value reflects the relative high repulsion between the alkyl surface and the hydroxyl 

surface. When ethanol is at infinite dilution, the hydroxyl group always encounters alkyl 

surfaces, and on average the interaction energy is high. On the other hand, when cyclohexane 

is at infinite dilution, it interacts in part with the alkyl group in ethanol, thereby reducing the 

(average) interaction energy, as seen in its lower infinite dilution activity coefficient.  The 

estimated fraction for the alkyl surface type, 4322.0f , is roughly equivalent to the surface 

area of a CH3 group. This could imply that the CH2 in ethanol is different from CH2 in 

cyclohexane.  

 

We now turn to an examination of the temperature dependence of the activity coefficients for 

this system. Figure 11 depicts the infinite dilution activity coefficients of ethanol  ( 

1 ) and 

cyclohexane ( 

2 ) as a function of the system temperature. Interpolation of the data in Fig. 4 

and using the values of the combinatorial contribution to the activity coefficients already 

computed ( 94.02,1,  

CC  ) gives the ratio of logarithmic residual activity coefficients: 

88.1)ln()ln(/)ln()ln()ln(/)ln( 1,22,12,1,  

CCRR   at 293.15 K  

26.1)ln(/)ln( 2,1, 

RR  at 350 K 

 

Now, the ratio of logarithmic residual infinite dilution activity coefficients in the 

homogeneous COSMOSPACE model is given by (see Table 1 again): 
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which is a constant. Using the data in Bondi (1964), the ratio of the Van der Waals surface 

areas of ethanol (A1) and cyclohexane (A2) is  49.01.8/944.3  . This lies outside the range of 

the experimental values estimated above. This is further evidence that the homogeneous 

double-binary COSMOSPACE model is not likely to provide a good fit to the experimental 

data. For the ratio of activity coefficients to be temperature dependent requires at least one of 

the molecules to have more than one type of surface. The simplest model capable of such a 

representation is the non-homogeneous double-binary COSMOSPACE model as discussed 

above. 

 

In the UNIQUAC model the ratio of logarithmic infinite dilution activity coefficients is 

temperature dependent  
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where 2112   . However, the asymmetric case has no physical meaning, as explained in 

subsection 2.3. Eq. 40 reduces to Eq. 39 in the limit of small interactions (i.e. ij-1<<1).  

 

Interpolation of the data in Fig. 11 gives values for the activity coefficients at infinite dilution 

of ethanol and cyclohexane shown in Fig. 10. 

 

A regression on all the data in Figure 10 and 11 with the non-homogeneous double-binary 

COSMOSPACE model yields at a temperature of 293.15 K 1093.0AB , which is equivalent 

to an interaction energy 289.1)( 22112
1

12  uuu kcal/mol, and 4363.0f .  These values 

are similar to those of previous regression. Again, no liquid-liquid phase separation was 

observed (as should be the case, of course). The limiting activity coefficients at 293.15 K also 



improve slightly: 54.431  and 00.102  . The temperature dependence of the limiting 

activity coefficient is quite well described by the COSMOSPACE model and above 

parameters as shown in Fig. 12. For comparison Fig 12 also shows the activity coefficients 

predicted by the group contribution model UNIFAC (Fredenslund et al., 1975, 1977). The 

results obtained with UNIQUAC are not as good as those obtained with UNIFAC in this case 

(e.g. the limiting activity coefficient for ethanol in cyclohexane and that of cyclohexane in 

ethanol were higher and lower respectively). 

 

Figure 12 also shows that the COSMOSPACE model and the original UNIFAC model yield 

almost the same results. However, the description by the original UNIFAC model requires 

two interaction energies, while COSMOSPACE needs only one. Moreover, UNIFAC predicts 

liquid-liquid phase separation below 73°C where, in reality none exists. COSMOSPACE does 

not predict phase separation.   

 

The Dortmund modified UNIFAC model (Weidlich et al. 1987, Gmehling et al. 1993) gives a 

better description of the limiting activity coefficients for the above data and predicts no 

liquid-liquid equilibrium (see Fig. 13). This is primarily a result of the 2 additional pairs of 

parameters, which make the interaction energy temperature dependent (i.e. 

2TcTbauu ijijijiiij  ). Thus, the modified UNIFAC model contains 6 adjustable 

parameters for the interaction energy and one for the division of ethanol into two main 

groups. The same approach for COSMOSPACE would require only 4 parameters; 3 

parameters for the interaction energy and one for the division of the ethanol surface into two 

types of surfaces.  

 

From Figs. 10 and 11 we see that a linear relationship should suffice to fit the interaction 

energy in order to give as good a fit to the data as is given by the Dortmund modified 



UNIFAC model. For the description in Fig. 13 the COSMOSPACE fraction of alkyl-surface 

is 442.0f  and the COSMOSPACE interaction energy in kcal/mol is found to be 

Txuuu 3

22112
1

12 100132.5935.2)(   

Now, the limiting activity coefficients at 293.15 K are 1.731  and 25.102  . These values 

are within the experimental error. 

 

Figure 13 makes clear that the non-homogeneous double-binary COSMOSPACE description 

has at least the same potential as the Dortmund modified UNIFAC model, but uses fewer 

parameters. 

 

5.2 Benzene - Acetonitrile 

Activity coefficients for the benzene – acetonitrile system at 20oC are shown in Fig. 14. The 

experimental values are computed from the data of Werner and Schuberth (1966). Here we try 

to describe the system as a homogeneous double binary system, yielding:  

448.32,0,0,8.42 222111  qnnnqn BABA  

The best fit we could achieve with this assumption yields a COSMOSPACE interaction 

parameter of 745.0AB (see the broken lines shown in Fig. 14). Apparently, this simple 

model is incapable of describing the asymmetry of the activity coefficients. This failure of the 

simplest COSMOSPACE model results from the fact, that in this model the ratio of the 

logarithmic infinite dilution activity coefficients is just the ratio of the surface areas of the 

components (see Eq. 27). In this case compound 2 is smaller than compound 1, but it has the 

higher activity coefficient. Thus, it is not possible to obtain a good fit to the data using the 

homogeneous double binary model (in which each species consists of its own surface 

segments only) and one single binary interaction parameter. It is, however, possible to obtain 

significantly improved fits if, in addition to AB , we also consider the numbers of segments as 



adjustable parameters. That is, we estimate the segment numbers from iii qsn 2 , where is are 

segment scaling parameters. Also shown in Fig. 14 (by the solid lines) are the activity 

coefficients from COSMOSPACE obtained in this way using the segment number parameters 

of s1=1 for benzene (indicating no adjustment), and s2= 1.5 for acetonitrile. It can be seen that 

the fit is significantly improved (although we recognize that an extension towards a multi-

surface kind model would be the physically more consistent way of improvement). We have 

observed that this simple extension of the COSMOSPACE approach allows us to obtain good 

fits to the activity coefficients for many binary systems using the simple, homogeneous 

double binary model of Table 1. 

 

5.3 Chloroform - Methanol 

The chloroform - methanol mixture is an example of a binary system in which the activity 

coefficients of one of the species (chloroform) appears to pass through a maximum. Not all 

conventional activity coefficient models are able to represent data from such systems (see 

Walas, 1985, page 189). Indeed, neither is COSMOSPACE if we stay within the analytic 

double-binary approach that we have employed in our previous examples. Figure 15 shows 

the activity coefficients for this system. The points are from the data of Kireev and Sitnikov 

(1941) at 49.3oC. The broken lines were obtained with COSMOSPACE after optimising the 

segment scaling parameters and a single binary interaction parameter in a homogeneous 

double binary model  ( 74.0,42.96.6,0,0,68.42 222111  qnnnqn BABA ). The fit 

over most of the concentration range is quite good, but fails in the region where the activity 

coefficient of chloroform flattens (x1 < 0.2 - approximately).  

 

To improve the fit with COSMOSPACE we turned first to the a-priori predictive model 

COSMO-RS, which suggested that the chloroform-methanol system should, perhaps be 

modelled by five different kinds of segment. The results of this approach also are shown in 



Fig. 6 and it can be seen that COSMOSPACE is indeed able to model the flattening of the 

activity coefficient of chloroform, with a small, but noticeable, improvement in its ability to 

represent the rest of the activity coefficient profile. 

The surface areas and volumes needed for this calculation were obtained using COSMO-RS 

with the following results (in Ångstrom units): 

 

Species Area Volume 

Chloroform 117.52 105.73 

Methanol 66.36 47.52 

 

The surface kinds, their characteristics, and the numbers of each kind of surface per molecule, 

also from COSMO-RS, are provided in Table 3. 

 

The segment-segment interaction parameters were computed from  

)/))((exp(
2
1 RTuuua jjiiijeffij   

The segment interaction energies were estimated using parameters from COSMO-RS (Klamt 

and Eckert, 2000) and the mean values of  given in Table 3. For example: 
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The complete set of interaction energies is provided in Table 4. 

 

The empty spaces in Table 4 indicate that the 2-5 interaction energies, i.e. the interaction 

energies of the polar hydrogen of chloroform with the polar oxygen of methanol, were treated 

as adjustable parameters, because the 2-5 interaction is influenced most by the simplification 

that results from reducing the large number of surface types in COSMO-RS to just 5 in 



COSMOSPACE. The value of aeff = 6.15, to convert the number of COSMO-RS surface 

segments into the number of COSMOSPACE surface segments, was taken from COSMO-RS 

as well. Thus, there is, in fact, only 1 free parameter that has been fit to the experimental data 

instead of 10, as might have been anticipated from the fact that we have used 5 different 

segment kinds. The interaction parameters are given in Table 5.| 

 

The flattening of the activity coefficient of chloroform at infinite dilution can mainly be 

attributed to the extremely high interaction of the segment pairs 1-5 and 2-5. We note that 

UNIFAC cannot describe this behaviour as it treats chloroform and methanol as compounds 

each with only one kind of surface. Hence, there is only one surface pair. But even in the 

approach of 5 segments UNIFAC will fail to describe the extrema correctly as it 

underestimates the surface segment activity coefficient between the strongly interacting 

surfaces 1-5 and 2-5 (See Fig. 14.). 

 

5. Conclusions 

An analytical solution to a statistical thermodynamic model of pair-wise interacting surface 

segments has been derived. The COSMOSPACE equations for homogeneous molecules are 

similar to equations of the quasi-chemical theory derived by Guggenheim (1952). Though 

similar the models have quite different starting points and they are used in a different way. 

The model of Guggenheim is that a central molecule is surrounded by a number of molecules 

(z) in a specific arrangement: e.g. when the liquid can be approximated by a lattice of cubes 

the coordination number is z = 6. In the approach developed here we divide the molecular 

surface into small pieces. The areas can be of different types, but this is not a requirement. 

The size of a surface piece is large enough to reflect differences in surface types on a 

heterogeneous molecule. In COSMO-RS the size of a surface piece is about 1 Å2. In this way 

the COSMO-RS and COSMOSPACE models do not need a coordination number; the 



interaction of surface areas is only in one dimension and is independent of most molecule 

structures (as long as the accessibility of the surface segments is not affected by the geometry 

of the molecule). Going from interacting surfaces to interacting molecules is the next step in 

our derivation of the equations for chemical potentials and activity coefficients, and this is the 

point of departure from quasi-chemical theory (although the final results appear similar for 

binary systems of homogeneous molecules). We note that our approach makes it easier to 

calculate activity coefficients in mixtures of compounds that would need different 

coordination numbers in a quasi-chemical model. 

 

The widely used UNIQUAC equation for activity coefficients has been shown to be a first 

order approximation of the COSMOSPACE model if the two interaction parameters 12 and 

21 are identical, and if some of the inconsistencies regarding the treatment of the coordination 

number in UNIQUAC are removed. If the same physical interaction energies per unit area are 

used, UNIQUAC and COSMOSPACE agree very well in the range of x > 0.1, but in the high 

dilution region x < 0.1 the COSMOSPACE equation shows a different and physically more 

consistent behavior.   

 

COSMOSPACE is in extremely good agreement with Monte-Carlo simulations for cubic 

lattice fluids where the coordination number is 6. The differences between COSMOSPACE 

and UNIQUAC for these fluids can be quite considerable indeed. COSMOSPACE is also in 

good agreement with the lattice fluid model of Aranovich and Donohue as long as we are in 

the single fluid phase region. The phase boundaries predicted with COSMOSPACE are in 

good agreement with those estimated using Monte-Carlo methods.  COSMOSPACE is unable 

to distinguish between 3D and 2D lattices with the same coordination number, and it performs 

worse for the 2D case. However, a 2D-hexagonal lattice with coordination number 6 is a less 



realistic model of a real liquid system than is a 3D-cubic lattice with the same coordination 

number. 

 

The experimental data of ethanol-cyclohexane can be described quite well with a one 

parameter COSMOSPACE model. UNIQUAC fails in the description of activity coefficient 

outside the finite concentration range, when the parameters are fitted to activity coefficients of 

finite concentrations. Moreover, UNIQUAC predicts a region of liquid-liquid phase 

separation that does not, in fact, exist. COSMOSPACE does not predict any phase separation. 

In order to describe the experimental data with a higher accuracy using the COSMOSPACE 

model, more detailed molecular information is required. The molecules could be divided into 

subgroups of a specific type of surface. This approach requires more interaction parameters. 

However, as shown here for the chloroform – methanol system, they can be estimated quite 

easily (using the a priori model COSMO-RS), and good fits to the data can be achieved using 

a very limited number of adjustable parameters. The flattening of the activity coefficient of 

chloroform at low concentrations of chloroform can be fit with COSMOSPACE using five 

kinds of surface segment, but only one adjustable interaction parameters. Another way to 

improve the results is by optimising the number of surface segments as shown in this paper 

for the benzene – acetonitrile system. This approach has also been used with UNIQUAC 

(Anderson and Prausnitz, 1978). 

 

Due to its versatility and its inherent physical consistency the COSMOSPACE model could 

become a valuable tool for empirical activity coefficient fits in binary and multi-component 

systems and, hence, become an alternative to the much more heuristic and less consistent 

models that presently are used. It must be kept in mind that a homogeneous molecule 

description is a simplification of physical reality. In real systems there usually will be a 

number of different kinds of surface segment, each having different interaction patterns. This 



wealth of interaction information presently can only be considered within the full COSMO-

RS/COSMOtherm approach, which generates the interaction information based on quantum 

chemical calculations and finally combines them with the COSMOSPACE model. 
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Nomenclature 

 

effa   Size of surface segment 

totE   Total interaction energy 

G  Gibbs free energy 

K   Boltzmann constant 

n  Number of surface segments 

N  Number of molecules 

)(Pp  Total number of pairs of kind  

r  Relative volume 

R  Gas constant 

q  Relative surface area 

u  interaction energy 

U  Internal energy 

x  Mole fraction 

z  Coordination number 

Z  Partition sum of an ensemble 

 

 

Greek letters 

 

ij  Kronecker delta (1 if i = j, 0 otherwise) 

ij  Interation energy 

  Activity coefficient

  Volume fraction 



   Pseudo activity coefficients in Eq. 16 

  Chemical potential or pseudo-chemical potential 

  Surface fraction 

  Interaction parameter 

 

Subscripts 

 

i  Pertaining to species i 

SG  Staverman – Guggenheim 

 

Superscripts 

C  Combinatorial part 

R  Residual part 

,   Segment identifiers 

A, B  Segment identifiers 
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Appendix A:  Derivation of the COSMO-RS self-consistency equation 

Consider an ensemble S of N objects, belonging to m classes (surface segment types in 

COSMOSPACE) of identical objects (surface segments in COSMOSPACE). Let Ni be the 

number of objects of class i, and NNx ii /  is the relative concentration. Let there be N sites 

that can be occupied by the N objects. Each two of these sites form a close pair.  Hence, 

occupying the N sites all objects are paired.  The interaction energy of the pairs shall be 

described by a symmetric matrix, ijE , where i and j denote two different classes of objects.  

Let Z be the partition sum of the ensemble. From statistical thermodynamics the chemical 

potential i of objects of class i is given by: 
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where Z(-i) denotes the partition sum of the ensemble with Ni reduced by one. In the same way 

we find 
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where Z(-i,-j) denotes the partition sum of the ensemble with Ni and Nj reduced by one. Let us 

now consider a second similar ensemble S' in which all objects may be distinguishable.  Let 

us denote these objects by Greek indices  and . Let the objects still fall into m classes. Let i 

be the class of object  and j the class of . Let the multiplicities Ni of the classes be the same 

as in S. Let the pair interaction energies E' depend only on the classes, i.e. E' = Eij. Due to 

the permutations of the distinguishable objects in S', each state of S corresponds to a number  
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         (A3) 



of states in S' which have the equivalent pairing of objects and hence have the same energy. 

As a consequence, we have the relation deg/' NZZ   for the partition sums of the two 

ensembles. Applying Eq. A1 to this relation we get 
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Here )deg( iN   is the degeneracy factor of the ensemble with one object of class i missing. 

According to Eq. A3 this is by a factor Ni smaller than Ndeg. 

 

As a next step we derive a relation for the chemical potentials in ensemble S'. For that let us 

first choose any object . We can sort all states of the ensemble with respect to the partner  

of . The partition sum of the system can be written as a sum over all partners , taking into 

account the Boltzmann weight )'exp( E  of the interaction of  with  multiplied by the 

partition sum Z(-,-)  of a system missing objects  and  system. A factor N/2 arises from the 

fact that a pair  can be taken away from any of the N/2 pair positions of the ensemble, and 

a factor of 2 arises from the two possible orientations of that pair on each pair position. Hence 

we have 
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where we have made use of the equivalent of equation  Eq. A2 for ensemble S'. Dividing both 

sides by Z' and )/exp( ! kT , and on taking the logarithm we have 
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The restriction   , which is caused by the fact that the object  cannot be its own 

interaction partner, can be omitted in the thermodynamic limit of large N, because the 

resulting change is infinitesimally small. Doing this, replacing ' and ' by i and j 

according to Eq. A4, using the corresponding energies Eij instead of E', and replacing the 

summation with respect to  by a summation with respect to classes j of multiplicity Nj, we 

get: 
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The activity coefficient i of an object of type i in this ensemble is defined by  

i
xkT

iiii
kT lnln           (A8) 

where ii denotes the chemical potential of class i in an ensemble with xi = 1. In this case Eq. 

A7 simply reduces to 
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An interaction parameter ij , can be defined by 
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Subtracting )ln( ixkT and ii on both sides of Eq. A7 yields, in combination with Eqs. A8-

A10: 
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Thus, we have the general result  
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Appendix B:  Proof of Gibbs-Duhem consistency 

Here, we would like to provide an independent demonstration that activity coefficients 

obeying Eq. 12 satisfy the Gibbs-Duhem equation. 

 

Multiplying Eq. A12 by xii followed by summation over the index i yields 
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Multiplying this equation by N2 and replacing N xi by Ni yields 
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If we differentiate this equation with respect to any object number Nk we obtain 
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Division by 2N leads to 
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where twice we have made use of Eq. A12. Subtracting 1 from both sides yields 
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which is the Gibbs-Duhem relation for activity coefficients. Hence activity coefficients that 

satisfy Eq. 12 must be thermodynamically consistent.  

 

Appendix C: Algebraic Solution for the Binary Case 

If we have only two kinds of segments the COSMOSPACE equations take the form 

 1222111             (C1a) 

 2112221            (C1b) 

with 2112   . Introducing the abbreviations 5.0 ii

i  we obtain 

21211             (C2a) 

21222             (C2b) 

Upon substitution of A = 12
 and B = 1/2 the above expressions take the form 

ABA  1           (C3a) 

A
B

A
 2           (C3b) 

By simple algebra using 1 + 2 = 1we obtain a quadratic equation: 
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where 12   . The solution is 





2

411 21 
A          (C5) 



From limiting cases it can be shown that A- is the physically meaningful solution to this 

quadratic equation. The final expression for the activity coefficients of the different segments 

is 
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Appendix D:  Derivatives of the COSMOSPACE activity coefficients 

For the general multi-component case, the set of equations represented by Eq. A12 can only 

be solved by an iterative method. While this calculation does not take much time, it could 

become quite expensive to calculate derivatives of the activity coefficients finite difference 

approximations. Since some process simulation packages make extensive use of these 

derivatives, it is worthwhile to present an efficient analytical formulation for them. 

 

Let i be a set of activity coefficients obeying Eq. A12 and let i be the partial differential of 

i. By multiplication of A12 with i followed by differentiation we have 
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Using A12 for the first term and making use of ln  = / we get 
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Multiplying D2 by xi
0.5 we yield 
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where 
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and 

jjijiiji xxC            (D6) 

Note, that all derivatives in the bi are directly available. If we now define the symmetric 

matrix Cij
* by Cij for ij and by Cij + 1 for i = j, then D3 reduces to the simple linear equation 

system 

j

j

iji dCb  *0           (D7) 

Thus, after we have calculated all derivatives for segments with xi > 0, we can calculate the 

remaining derivatives directly from equation D2. 

 


