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Abstract 

The COSMO surface polarization charge density  resulting 

from quantum chemical calculations combined with a virtual 

conductor embedding has been widely proven to be a very 

suitable descriptor for the quantification of interactions of 

molecules in liquids. In a preceding paper, grid-based local 

histograms of  have been introduced in the COSMOsim3D 

method, resulting in a novel 3D-molecular similarity measure 

and going along with a novel property-based molecular 

alignment method. In this paper we introduce under the name 

COSMOsar3D the usage of the resulting array of local -profiles 

as a novel set of molecular interaction fields for 3D-QSAR, 

containing all information required for quantifying the virtual 

ligand-receptor interactions, including desolvation. In contrast to 

currently used molecular interaction fields, we provide a 

theoretical rationale that the logarithmic binding constants of 

ligands should be a linear function of the array of local -profiles. 

This makes them especially suitable for linear regression 

analysis methods such as PLS. We demonstrate that the usage 

of local -profiles in molecular field analysis inverts the role of 

ligands and receptor: while conventional 3D-QSAR considers 

the virtual receptor in potential energy fields provided by the 

ligands, our COSMOsar3D approach corresponds to the 

calculation of the free energy of the ligands in a virtual free 

energy field provided by the receptor. First applications of the 

COSMOsar3D method are presented which demonstrate its 

ability to yield robust and predictive models, which seem to be 

superior to the models generated based on conventionally used 

molecular fields. 

Introduction 

Since the development and introduction of the comparative 

molecular field analysis technique (CoMFA) by Cramer et al. in 

the years 1979-1988, the molecular interaction field (MIF)-based 

statistical analysis approaches (MFA) have become an important 

branch of computational drug design.
1-3

 Even though due to the 

increasing availability of good quality crystallographic structures 

of protein targets in the past decade structure-based methods 
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gained more attention, ligand-based statistical approaches are 

still of considerable importance in lead optimization, taking 

advantage of binding affinities determined by in vitro assays. 

The chances of success of a MFA project strongly depend on 

various factors, among them the amount and quality of the 

binding information used as input, the statistical analysis method 

employed, and the quality, completeness and balance of the 

MIFs used for the quantification of the interactions of the ligands 

with the virtual receptor. Conventional MIFs are based on force-

fields and take into account steric and electrostatic interactions, 

usually described by the Lennard-Jones potential and the 

molecular electrostatic potential (MEP), as resulting from the 

Coulombic field generated by atom-centered point charges. 

Besides, MIFs have also been derived from more heuristic 

descriptions of hydrophobic interactions and hydrogen bonding, 

often based on probe atom or probe group potentials. Good 

reviews of the CoMFA technique and its variations have been 

given by Kubinyi
3
 and more recently by Verma et al.

4
 

In this paper we suggest a novel set of MIFs, the local grid-

based COSMO -profiles (LSPs), as a promising alternative to 

force-field based MIFs. Our starting point is the quantum 

chemistry-based COSMO-RS method,
5,6

 which during the past 

decade has become an important method for the prediction of 

fluid phase equilibrium constants such as partition coefficients, 

solubilities, and vapor pressures in many areas of chemistry, 

biochemistry, and chemical engineering.
7
 In COSMO-RS all 

molecular interactions are quantified as local contact interactions 

of the surface polarization charge densities  which arise on a 

molecular surface, if it is virtually embedded in a conducting 

medium. These polarization charge densities can nowadays be 

calculated at moderate costs by a combination of quantum 

chemical methods with the continuum solvation model COSMO.
8
 

The COSMO-RS method initially and mostly has been applied to 

the prediction of free energies of molecules in homogeneous 

bulk liquids, which are calculated as surface integrals of solvent 

specific -potentials over the -surfaces of the solute molecules. 

The -potentials express the affinity of a solvent for molecular 

surfaces of certain polarity , which originates from electrostatic 

interactions, hydrogen bonding and hydrophobic effects, if one 

likes to consider the latter as a separate class of interactions, as 

often done in medicinal chemistry. More recently, straightforward 

extensions of COSMO-RS to inhomogeneous situations such as 

interfaces, micelles, and bio-membranes have been reported,
9
 

which are based on inhomogeneous -potentials. 

In a preceding paper
10

 we have introduced local, grid-based 

-profiles (LSPs), which are four-dimensional histograms 

describing the amount of ligand surface area within a certain 

-interval and space interval. These LSPs have been shown to 

be valuable descriptors for the assessment of molecular 

similarity and alignment. If we now consider a protein receptor 

together with its aqueous embedding as a locally slightly flexible, 

and thus locally pseudo-liquid, matrix with locally varying 

preference for certain surface polarity, i.e. with locally varying 

-potential, then the free energy of a ligand in this receptor 

matrix should be a surface integral of the locally varying receptor 

-potential over the -surface of the ligand. Approximating the 

surface integration by a grid summation, the free energy of the 

ligand in the receptor matrix turns into a linear function of the 

LSPs. Since also the free energy of the ligand in water is of such 

form, the same must be true for the difference of the free energy 

of the ligand between the receptor-bound state and its state in 
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aqueous solution. Hence, by these minimal assumptions we 

have come to the result that the free energies of binding, and 

thus the pKi values of ligands to a receptor, should be 

describable as a linear model with respect to the LSPs of the 

ligands. Therefore, the LSPs should provide an optimally suited 

set of descriptors for a linear regression analysis, e.g. with 

partial least squares (PLS),
11

 of pKi values, according to the 

3D-QSAR paradigm. To the best of our knowledge, no other set 

of molecular fields used so far in MFA can claim such a sound 

theoretical justification for the expectation of a linear pKi model. 

Our approach has additional attractive features: 

- As shown in a recent paper,
12

 the polarization charge densities 

 used in our approach are better suited for the description of 

hydrogen bonding than the electrostatic potential, which is 

usually employed in MFA. 

- The polarization charge densities  of neutral and charged 

species are in the same range, which enables the inclusion of 

compounds of varying charge states in the same model. 

- For the first time a histogram of a property is used as input for 

MFA, while in all previous approaches the properties are used 

directly as fields. The usage of smooth spatial histograms 

introduces an increased robustness of the models against 

small geometrical shifts of the ligands relative to the grid even 

at larger grid spacing. If a property has a local hotspot, the 

latter may be initially located close to a grid point and thus be 

well represented, but after a small shift it may fall in between 

the grid points and loose importance. In our histograms, such 

hotspot would be well described in any case, and its 

representation would just be smoothly partitioned over the 

neighboring grid points. 

- The recently published COSMOsim3D method
10

 enables ligand 

alignment based on the same fields as used for the MFA, i.e. 

the LSPs. 

- These theoretical considerations gave us sufficient confidence 

to expect that LSP-based MFA might be superior to currently 

employed MFA approaches.
13

 This confidence meanwhile has 

been supported by the assessment of COSMOsar3D 

performance on a number of publicly available test cases
14

 for 

3D-QSAR. 

In the next paragraphs we provide a formal derivation of the 

underlying theory, followed by a methods section describing the 

datasets and the statistical tools employed. Next, we report the 

performance of different variants of the COSMOsar3D method 

compared to publicly available results of other MFA approaches 

for the same datasets. Finally, we report the results of several 

robustness tests. 

Theory 

Within the COSMO-RS theory
5-7

 the free energy of a solute X in 

a homogeneous liquid solvent S is given as a surface integral of 

a homogeneous solvent-specific -potential  ( )S  over the 

COSMO -surface COSMO

XS  of the solute X. The latter arises from 

a quantum chemical calculation, usually at DFT level, for the 

solute X in a virtual conductor embedding, simulated by the 

conductor-like screening model COSMO: 
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On the right side of eq. 1 we have replaced the surface integral 

by a summation over all surface segments  of the COSMO 

-surface, with a and  being the surface area and polarization 

charge density of a surface segment . For a fixed solvent S and 

for solutes of about the same size the last term, the so-called 

combinatorial contribution, can be safely regarded as a constant 

c(S). Within the COSMO-RS theory the -potential of the pure or 

mixed solvent can be derived from its -profile, which is a 

histogram of the solvent surface area with respect to the 

polarization charge density . The -potential is calculated by a 

statistical treatment of all possible contacts of the solvent S with 

a surface segment of polarity , taking into account the 

electrostatic and hydrogen bond interactions between molecular 

surfaces. As a result, the -potentials include all information 

about polar, hydrogen-bond, and hydrophobic interactions of the 

solvent S. Further details can be found in previously published 

introductions to the COSMO-RS theory.
6,7

 

So far we have assumed a homogeneous solvent and hence a 

homogeneous -potential  ( )S . Extensions of COSMO-RS 

have been developed which allow its application to 

inhomogeneous systems as phase boundaries, micelles, and 

biomembranes
9
 by the introduction of a spatially varying 

-potential  ( , )S r . Due to the known inhomogeneous 

composition of these systems the local -potentials can be 

derived in a similar way as in the homogeneous case. If we now 

assume that a protein receptor R provides a position-dependent 

-potential which is evaluated on the nodes of a regular grid and 

on an equidistant set of -values, then we have for the free 

energy of a ligand L in the receptor: 

    

           
 

  

   
 

 

   



 
COSMO

2,

, ˆ ,

L

L

R R
S

R R

L L

c R r r d r

c R a r c R a r
          (2) 

where  ˆ ( , )R r denotes the linear interpolation of the 

-potential at position r and polarity  from the -potential 

values at the 2
4
 = 16 neighboring grid points. On a one-

dimensional iso-spaced grid of step size x, the weight of a grid 

point ix at position xix for the linear interpolation of a function at 

position x is 

     , max 0,1x ix xw ix x x x                     (3) 

Using such weights in all four dimensions we get for the 

interpolation of the -potential    ˆ ,R r
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Inserting this into eq. 2 we find 
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where LSP
L
(ix,iy,iz,i) is the local -profile of ligand L, i.e. the 

local histogram of the COSMO surface area of ligand L with 

respect to polarity  in the vicinity of grid point (ix,iy,iz), as it was 

recently introduced within the COSMOsim3D method.
10

 Since 

the same derivation holds for the free energy of ligand L in water 

(W), even with a position-independent -potential, we find for the 

logarithmic binding constant pKi of the ligand L from water to 

receptor R 
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i.e., the pKi is a linear functional of the LSPs. This means that 

we have exactly the kind of relation between the pKi values and 

the descriptors as it is assumed by most statistical methods 

applied in MFA, especially by the most widely employed PLS 

technique. This is an absolutely unique result for MFA, since for 

no other set of descriptors such a proof for the existence of a 

linear relationship between the set of descriptors and the pKi 

values has ever been derived. We even have a reasonable 

guess of the highest achievable accuracy: a model based on the 

last part of eq. 6 should be ideally able to describe logarithmic 

binding constants with about the same accuracy as standard 

COSMO-RS does for logarithmic partition coefficients, i.e. with 

an accuracy of about 0.35 log-units. Obviously, such high 

precision will hardly be achievable within MFA. 

In conventional MFA a number of potential energy fields are 

evaluated on a regular grid, large enough to embed an aligned 

set of ligands. For each ligand, each of the fields describes the 

potential energy of a probe particle of certain specification, e.g. a 

positive probe atom, a hydrogen bond donor/acceptor, a 

hydrophobic group, etc., in the field provided by the ligand. This 

energy is commonly evaluated by force field methods. Then, a 

relationship (usually linear) between the logarithmic binding 

constant pKi(L,R) of the ligand L in the virtual receptor R is 

assumed, as 
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where the index ip shall denote the various potential energy 

fields (PEFs). By that, the coefficients ˆ ( , , , )Rc ix iy iz if , apart from 

a factor –RTln10, represent a population probability of the grid 

points with respect to receptor atoms of the various probe types; 

alternatively, taking into account the desolvation from the bulk 

water, they need to describe a differential population probability 

between receptor and water embedding of the ligands. In other 

words, the coefficients, which finally have to be regressed by a 

statistical method such as PLS, represent a differential 3D 

composition histogram. The existence and the right choices of 

proper potential energy fields allowing for a linear description of 

the pKi values are much less obvious than the existence of an 

effective position-dependent -potential as it is assumed in the 

COSMOsar3D methodology. 

 

Figure 1. Schematic diagram illustrating the reversed roles of ligands and 

receptor in conventional MFA and in COSMOsar3D. 

It is worthwhile to note that there is an inversion of the roles of 

ligands and receptor as well as of molecular fields and 

composition variables between conventional 3D-QSAR (eq. 7) 

and the novel COSMOsar3D approach (eq. 6). In fact, as 

illustrated in Figure 1, in conventional MFA the ligands provide 

potential energy fields, and the differential receptor/water 

composition coefficients are regressed as coefficients, i.e. the 

virtual receptor is considered in the field of the ligands. 

Conversely, in COSMOsar3D composition histograms of the 

ligands are given as descriptors, and the coefficients of a 

differential receptor/water free energy functional are regressed, 

which means that the ligands are considered in the field of the 

receptor. Therefore, COSMOsar3D may literally be considered 

as a “re-volution” of 3D-QSAR, which may shed new light on the 

old problem from a very different perspective. 

Methods 

Coordinates for the datasets used in this work were taken from 

literature;
14

 the same partitioning between training and test set 

as chosen by the original authors was maintained. PLS and 

statistical analysis were performed with the Open3DQSAR 

software,
15

 which was adapted in order to read the LSP file 

format. O3QMFA descriptors (see below) were computed with 

Open3DQSAR, while LSP-based descriptors where computed 

with the COSMOsim3D program.
10

 DFT-level COSMO 

-surfaces were obtained by single point calculations with the 

quantum chemical software suite TURBOMOLE.
16,17

 The BP-

SVP-COSMO
18-22

 level of theory was used, applying infinity for 

the value of the dielectric constant. Approximate CF-COSMO 

-surfaces were generated with the COSMOfrag program.
23,24

 

Results and discussion 

In order to demonstrate the performance of our new approach 

we took the eight datasets collected by Sutherland and co-

workers,
14

 and we applied the above described procedure using 

the same conformations and alignments as in the original 

literature. As a starting point we calculated the LSP descriptor 

matrix based on -surfaces resulting from BP-SVP-COSMO 

calculations, using the same grid spacing of 2.0 Å as used by 

Sutherland to generate 3D-QSAR models, and our default 

-interval (DELSIG) of 0.1 e/nm
2
. The latter leads to partioning 

of the  range in 61 bins, and therefore results in 61 MIFs per 
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Figure 2. Dependence of the standard deviation of the training (dotted lines) 

and test set (plain lines) residuals for COSMOsar3D (black) and O3QMFA 

(gray) models upon systematic variation of the grid step size. 

grid node. We soon realized that such a high resolution is not 

required for 3D-QSAR purposes and that DELSIG may be safely 

increased up to 0.6 e/nm
2
 without impacting on model 

performance, while reducing the size of the descriptor arrays by 

roughly a factor 6; therefore, a -grid spacing of 0.6 e/nm
2
 has 

been set as the default value and used for all further analyses. 

As usual, the optimal number of PLS components was 

determined as the one yielding the minimum standard deviation 

of the error of prediction during leave-one-out (LOO) cross-

validation.
2
 

For the assessment of the performance of the COSMOsar3D 

method relative to the seven conventional 2D/3D-QSAR 

methods considered by Sutherland, we will consider as 

indicators the average standard deviations of the error of internal 

(
cv,LOOs ) and external (

tests ) predictions over the eight datasets, 

and the respective average correlation coefficients ( 2

testr  and 
2

LOOq ). Since external prediction is the ultimate purpose of QSAR 

models, we consider 
tests  as the most important among the four 

indicators. 

 

Figure 3. Dependence of the standard deviation of the training (dotted lines) 

and test set (plain lines) residuals for COSMOsar3D (black) and O3QMFA 

(gray) models upon systematic translation of the grid center position (0.5-5.0 Å 

on the three Cartesian axes). 

 

Figure 4. Sensitivity of the internal (dotted lines) and external (plain lines) 

predictive quality of COSMOsar3D (black) and O3QMFA (gray) models with 

respect to translational misalignment of individual compounds of increasing 

amplitude (randomly chosen between 0.0 and 0.25-2.5 Å on the three 

Cartesian axes). Standard deviations of the errors of prediction are computed 

with respect to the optimally aligned model. 

For comparison purposes, we also report the results obtained 

from a reimplementation of CoMFA within the Open3DQSAR 

software (O3QMFA). Some minor differences with respect to 

original CoMFA occur due to the usage of the Merck force-field 

parameters and charges,
25

 while the Tripos force field 

parameters
26

 coupled with scaled MNDO ESP-fit (Gasteiger-

Marsili for the THER dataset) charges were used by Sutherland; 

nevertheless, it overall nicely reflects the same behavior as 

CoMFA on the eight datasets. All individual and average 

statistics for the models are collected in Table 1, together with 

the corresponding data for O3QMFA and the seven QSAR 

methods considered by Sutherland. Based on 
tests  the 

COSMOsar3D models are better than all non-LSP models. The 

average advantage over the best two models obtained by 

Sutherland, i.e. over CoMSIA-extra and standard CoMFA, is 

0.10 and 0.12 log-units, respectively, and larger than the 

advantage of the latter over the other QSAR models. Hence, we 

may conclude that the LSP-based models instanter have a 

significantly higher predictivity than standard 3D-QSAR models. 

Although we consider tests  as the most relevant indicator for the 

quality of the models, it is worth noting that the LSP based 

models also are best with respect to the other three overall 

quality measures, i.e. with respect to the external 2

testr  and the 

internal 
cv,LOOs  and 2

LOOq . Furthermore, for six of the eight 

datasets the standard deviation of test set residuals achieved by 

the LSP-based models is smaller than those of all QSAR models 

considered by Sutherland. Only in two cases, i.e. for the BZR 

and DHFR datasets, HQSAR has the smallest standard 

deviation on the test set residuals. 

After having confirmed the predictive ability of LSP-based 

COSMOsar3D, we have investigated its robustness with respect 

to systematic variation of the grid resolution from 1.0 to 5.0 Å in 

0.5 Å increments. For comparison, all experiments have been 

carried out with O3QMFA as well; results are reported in Figure 

2. It can clearly be seen that O3QMFA models, in addition to 

being less predictive according to both internal and external 

indicators, show much larger fluctuations in tests ; i.e., the 

COSMOsar3D models are much more robust with respect to the 

variation of the grid step size. 
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Table 1. Performance of the LSP-based COSMOsar3D models on the eight Sutherland datasets. The data for the O3QMFA reference model and for seven 

2D/3D-QSAR methods evaluated by Sutherland et al.
14

 are reported for comparison. 

   COSMOsar3D
a
 

O3QMFA
b
 CoMFA

c
 

CoMSIA 
basic

c
 

CoMSIA 
extra

c
 EVA

c
 HQSAR

c
 2D

c
 2.5D

c
 

ACE 

2

trainr  0.93 0.75 0.80 0.76 0.73 0.84 0.84 0.76 0.82 

trains  0.60 1.16 1.04 1.15 1.22 0.93 0.95 1.15 1.00 
2

LOOq  0.71 0.65 0.68 0.65 0.66 0.70 0.72 0.68 0.72 

cv,LOOs  1.26 1.39 1.32 1.38 1.36 1.28 1.24 1.32 1.24 
2

testr  0.62 0.45 0.49 0.52 0.49 0.36 0.30 0.47 0.51 

tests  1.30 1.57 1.54 1.48 1.53 1.72 1.80 1.57 1.50 

AChE 

2

trainr  0.88 0.72 0.88 0.86 0.86 0.96 0.72 0.40 0.38 

trains  0.41 0.64 0.41 0.45 0.45 0.23 0.64 0.94 0.95 
2

LOOq  0.53 0.41 0.52 0.48 0.49 0.42 0.34 0.32 0.31 

cv,LOOs  0.83 0.93 0.84 0.87 0.86 0.92 0.98 1.00 1.00 
2

testr  0.61 0.61 0.47 0.44 0.44 0.28 0.37 0.16 0.16 

tests  0.81 0.81 0.95 0.98 0.98 1.11 1.01 1.20 1.20 

BZR 

2

trainr  0.59 0.53 0.61 0.62 0.62 0.51 0.64 0.51 0.52 

trains  0.42 0.45 0.41 0.41 0.41 0.47 0.40 0.46 0.46 
2

LOOq  0.45 0.41 0.32 0.41 0.45 0.40 0.42 0.36 0.35 

cv,LOOs  0.49 0.51 0.54 0.51 0.49 0.51 0.50 0.53 0.53 
2

testr  0.13 0.13 0.00 0.08 0.12 0.16 0.17 0.14 0.20 

tests  0.90 0.90 0.97 0.93 0.91 0.89 0.88 0.90 0.87 

COX2 

2

trainr  0.75 0.68 0.70 0.69 0.69 0.68 0.70 0.62 0.68 

trains  0.50 0.57 0.56 0.56 0.57 0.58 0.55 0.63 0.58 
2

LOOq  0.54 0.43 0.49 0.43 0.57 0.45 0.50 0.49 0.55 

cv,LOOs  0.69 0.77 0.73 0.77 0.67 0.75 0.72 0.73 0.68 
2

testr  0.43 0.37 0.29 0.03 0.37 0.17 0.27 0.25 0.27 

tests  1.10 1.16 1.24 1.44 1.17 1.33 1.26 1.27 1.25 

DHFR 

2

trainr  0.80 0.80 0.79 0.76 0.75 0.81 0.81 0.61 0.65 

trains  0.56 0.57 0.59 0.62 0.63 0.55 0.55 0.79 0.75 
2

LOOq  0.69 0.69 0.65 0.63 0.65 0.64 0.69 0.51 0.53 

cv,LOOs  0.71 0.71 0.75 0.77 0.75 0.76 0.70 0.89 0.87 
2

testr  0.58 0.59 0.59 0.52 0.53 0.57 0.63 0.47 0.49 

tests  0.89 0.88 0.89 0.96 0.95 0.90 0.84 1.00 0.99 

GPB 

2

trainr  0.95 0.76 0.84 0.78 0.92 0.89 0.77 0.55 0.70 

trains  0.25 0.52 0.43 0.50 0.30 0.36 0.52 0.72 0.59 
2

LOOq  0.61 0.30 0.42 0.43 0.61 0.58 0.66 0.31 0.46 

cv,LOOs  0.67 0.89 0.81 0.81 0.67 0.69 0.62 0.89 0.78 
2

testr  0.63 0.29 0.42 0.46 0.59 0.49 0.58 -0.06 0.04 

tests  0.73 1.02 0.94 0.90 0.79 0.88 0.80 1.27 1.20 

THER 

2

trainr  0.90 0.78 0.85 0.85 0.77 0.86 0.81 0.79 0.85 

trains  0.58 0.89 0.73 0.73 0.91 0.72 0.82 0.86 0.73 
2

LOOq  0.58 0.47 0.52 0.54 0.51 0.48 0.49 0.62 0.66 

cv,LOOs  1.21 1.37 1.30 1.27 1.31 1.35 1.34 1.16 1.09 
2

testr  0.59 0.49 0.54 0.36 0.53 0.36 0.53 0.14 0.07 

tests  1.47 1.63 1.59 1.87 1.60 1.87 1.59 2.16 2.24 

THR 

2

trainr  0.90 0.85 0.86 0.88 0.89 0.83 0.87 0.79 0.75 

trains  0.30 0.37 0.36 0.34 0.32 0.39 0.35 0.43 0.47 
2

LOOq  0.74 0.65 0.59 0.62 0.72 0.47 0.50 0.62 0.52 

cv,LOOs  0.49 0.56 0.61 0.58 0.50 0.69 0.67 0.58 0.66 
2

testr  0.66 0.60 0.63 0.55 0.63 0.11 -0.25 0.04 0.28 

tests  0.65 0.70 0.70 0.76 0.69 1.08 1.27 1.12 0.96 

AVERAGES 
OVER THE 
EIGHT 
DATASETS 

2

trainr  0.84 0.73 0.79 0.78 0.78 0.80 0.77 0.63 0.67 

trains  0.45 0.65 0.57 0.60 0.60 0.53 0.60 0.75 0.69 
2

LOOq  0.60 0.50 0.52 0.52 0.58 0.52 0.54 0.49 0.51 

cv,LOOs  0.79 0.89 0.86 0.87 0.83 0.87 0.85 0.89 0.86 
2

testr  0.53 0.44 0.43 0.37 0.46 0.31 0.33 0.20 0.25 

tests  0.98 1.08 1.10 1.17 1.08 1.22 1.18 1.31 1.28 

a 
LSP-based COSMOsar3D model (grid step size 2.0 Å, DELSIG 0.6 e/nm

2
). 

b 
Model computed with Open3DQSAR CoMFA-like descriptors (grid step size 2.0 Å). 

c 
Different 2D/3D-QSAR methods reported in the original literature.
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Then, we analyzed the sensitivity to grid positioning, while 

making sure that the grid consistently exceeded the largest 

compound by at least 5.0 Å in all directions; although this is not 

required for COSMOsar3D models (see below), it is necessary 

for a fair comparison of O3QMFA results. In Figure 3 we see the 

dependence of 
tests  on the position of the grid center; while the  

CoMFA-type method O3QMFA displays the well-known strong 

fluctuations depending on the grid position,
27,28

 LSP-based 

COSMOsar3D appears to be essentially invariant. 

As the next experiment, we applied random translations of 

increasing amplitude to each molecule, thus assessing the 

robustness of the models with respect to misalignment. The 

results are shown in Figure 4. As expected, the standard 

deviations of the errors of prediction increase with increasing 

noise amplitude for both COSMOsar3D and O3QMFA, but the 

latter appears to be much more sensitive to misalignment than 

the LSP-based COSMOsar3D. 

Subsequently, we have tested the sensitivity of LSP-based 

COSMOsar3D models upon the quality of the underlying 

COSMO -sufaces. Firstly, in the DFT calculations we replaced 

the standard BP-SVP level of theory with the higher level 

BP-TZVP method, which generally yields more accurate results 

than BP-SVP in COSMO-RS applications. We found a negligible 

performance increase of 0.003 for 
tests , which clearly does not 

justify the larger computational demands compared to the 

BP-SVP level. Next, we explored the replacement of COSMO 

-surfaces explicitly computed by DFT/COSMO calculations for 

each of the considered molecules by approximate CF-COSMO 

-surfaces, which are generated within ~ 0.5 s per compound 

with the COSMOfrag program.
23

 This replacement of the explicit 

quantum chemical calculations by COSMOfrag has been shown 

to be very efficient and almost equivalently accurate within 

COSMOsim3D similarity and alignment applications.
10

 Since 

unfortunately this approach currently is not applicable to 

compounds with nonzero net charge, we restricted this test to 

the four datasets BZR, COX2, DHFR and GPB, which involve 

mostly neutral compounds; the few ionic compounds were 

represented by the BP-SVP-COSMO files. The performance of 

the BP-SVP LSP models on these four datasets was 
tests  = 

0.91, while the models based on CF-COSMO files yield 
tests  = 

0.94. Hence we may conclude that, at least for screening 

purposes, the costly DFT/COSMO calculations can be safely 

replaced by quickly generated CF-COSMO files with negligible 

loss of accuracy. By that the computational demands of the 

descriptor generation for COSMOsar3D become on par with 

force-field based methods. It might be worth noting that also the 

sizes of the descriptor matrix and hence the PLS demands are 

not far from standard MFA approaches, because the larger 

number of ~ 11  bins compared to the two CoMFA fields 

(electrostatic and steric) is partially compensated by the fact that 

the spatial grid of CoMFA type approaches must extend ~ 5 Å 

outside the molecules, while the LSP grid just needs to include 

all COSMO cavities, i.e. extends 1.9 Å at the most for organic 

molecules. 

As a final experiment, we tested COSMOsar3D with a consistent 

field-based alignment generated with COSMOsim3D. For that 

purpose, we applied random translations and rotations to the 

molecular geometries of all compounds of the eight datasets. 

Subsequently, we used COSMOsim3D to re-align each dataset, 

using the same superposition templates as used by Sutherland. 

The alignment was done in a completely automated fashion, 

using the super-self-consistent alignment mode of 

COSMOsim3D.
10

 The resulting alignments and detailed 

COSMOsar3D results are shown in the Supporting Information. 

The overall performance of these COSMOsim3D-aligned models 

is almost identical to the performance of the models based on 

the alignment given by Sutherland. The overall standard 

deviation of test set residuals only increases by 0.02, while the 

other 3 indicators differ by 0.01 from those achieved on the 

original alignment; hence, there is no significant loss of 

performance if a fully automated COSMOsim3D alignment is 

used instead of the supervised alignment reported by 

Sutherland. Nevertheless, it must be acknowledged that our 

alignment is based on the conformational selection made by 

Sutherland and hence is not completely independent of 

Sutherland’s work. 

Conclusions 

Starting from the framework of COSMO-RS theory, the local 

-profiles have been introduced as a natural and essentially 

complete set of descriptors for 3D-QSAR and molecular field 

analysis. Application of this COSMOsar3D concept to the eight 

reference MFA datasets published by Sutherland et al. 

demonstrates a significant increase of the predictive accuracy of 

the resulting models compared to standard 3D-QSAR methods. 

Furthermore, the COSMOsar3D models turn out to be 

exceptionally robust with respect to grid step size, grid 

positioning and random misalignment. Furthermore, no cutoff 

parameters are required, neither with respect to the descriptors, 

nor with respect to the field extension outside the molecules. 

Although being originally based on quantum chemically 

calculated and hence computationally more expensive COSMO 

-surfaces, the COSMOsar3D methodology is shown to perform 

almost equally well on approximate -surfaces quickly generated 

from a database of precalculated COSMO files. Finally, it is 

shown that COSMOsar3D also performs well using a consistent 

-surface alignment with COSMOsim3D. Summarizing, the 

COSMOsar3D method introduced herein appears to be a 

promising novel tool for 3D-QSAR, overcoming many of the 

problems inherent in commonly used methods. 

As a next step, we are planning to develop an iterative workflow 

for the selection of the relevant ligand conformations, making 

use of the ability of the COSMO-RS method to quantify the free 

energies in aqueous solution, and of the capability of 

COSMOsar3D to predict the free energy differences of ligands 

between the aqueous state and the receptor bound state. 

Supporting Information 

The following material is available as supporting information: 

Table S1: Statistics of the PLS models obtained from 

COSMOsim3D alignments; Figure S1: Original Sutherland 

alignment compared to the unsupervised COSMOsim3D 

alignment for ACE, AChE, BZR and COX2 datasets; and Figure 

S2. Original Sutherland alignment compared to the unsupervised 

COSMOsim3D alignment for DHFR, GPB, THERM and THR 

datasets. 
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