
This is a postprint of J. Phys. Chem. A, 2016, 120 (12), pp 2049–2056. The original 

article can be found under http://pubs.acs.org/doi/abs/10.1021/acs.jpca.6b00757 

COSMO-RSC: 2nd Order Quasi-Chemical Theory 

Recovering Local Surface Correlation Effects  

 

A. Klamt1,2 

 

1 COSMOlogic GmbH&CoKG, Imbacher Weg 46, D-51379 Leverkusen, Germany  

2Institute of Physical and Theoretical Chemistry, University of Regensburg, Germany 

 * Tel.: +49 2171 731681,  e-mail: klamt@cosmologic.de 

Abstract 

The conductor-like screening model for realistic solvation (COSMO-RS) was 

introduced 20 years ago and meanwhile has become an important tool for the 

prediction of fluid phase equilibrium properties. Starting from quantum chemical 

information about the surface polarity of solutes and solvents, it solves the statistical 

thermodynamics of molecules in liquid phases by the very efficient approximation of 

independently pair-wise interacting surfaces, which meanwhile was shown to be 

equivalent to Guggenheim’s quasi-chemical theory.  One of the basic limitations of 

COSMO-RS, as of any quasi-chemical model, is the neglect of neighbor information, 

i.e. of local correlations of surface types on the molecular surface.  In this paper we 

present the completely novel concept of using the first order COSMO-RS contact 

probabilities for the construction of local surface correlation functions. These are fed 

as an entropic correction for the pair interactions into a second COSMO-RS self-

consistency loop, which yields new contact probabilities, enthalpies, free energies and 

activity coefficients recovering much of the originally lost neighbor effects. By a 

novel analytic correction for concentration dependent interactions the resulting 

activity coefficients remain exactly Gibbs-Duhem consistent. The theory is 

demonstrated on the example of a lattice Monte-Carlo fluid of dimerizing pseudo-

molecules. In this showcase the strong deviations of the lattice Monte-Carlo fluid 

from quasi-chemical theory are almost perfectly reproduced by COSMO-RSC.    



Introduction 

The conductor-like screening model for realistic solvation (COSMO-RS) 1-3 

originally presented in 1995 starts from quantum-chemical calculations of molecules 

embedded in a virtual conductor, employing the conductor-like screening model 

(COSMO).4 In a second step these polarization charge densities are used for the 

quantification of the intermolecular electrostatic and hydrogen-bond interactions. In a 

final step these local surface interaction energies are turned into free energies and 

enthalpies of fluids, using a specially derived thermodynamic self-consistency 

equation, which later was published in a slightly more general form under the name 

COSMOSPACE (COSMO surface pair activity coefficient equations).5 

 COSMO-RS meanwhile has become one of the most important and accurate tools for 

the prediction of free energies of solvation and important fluid phase equilibrium 

properties as solubilities, vapor pressures, activity and partition coefficients.6 

  

A few years after the publication of COSMO-RS it was shown7  that the 

thermodynamic model of interacting surface segments derived in COSMO-RS 

directly from statistical thermodynamics, i.e. COSMOSPACE, is equivalent to an 

efficient and exact solution of Guggenheim’s quasi-chemical theory (QUAC)8, 

directly yielding Gibbs-Duhem consistent activity coefficients. Usually the QUAC 

equations are either solved by the less efficient variational optimization of all contact 

probabilities, as in GEQUAC9, or by additional approximations as in UNIQUAC10 

and UNIFAC11. In 1986 Larsen and Rasmussen12 had published an algorithm for 

solving the quasi-chemical equation systems, which is completely equivalent to the 

COSMOSPACE equations, but they did not recognize that these equations directly 

lead to free energies and activity coefficients. In 2001 Lin and Sandler re-derived the 

COSMO-RS algorithm under the name COSMO-SAC (COSMO segment activity 

coefficients)13.  

 

Despite its considerable success, one of the fundamental limitations of COSMO-RS, 

as of all quasi-chemical models, is the almost complete neglect of effects resulting 

from the spatial neighborhood of different segments on the molecular surface. For 

example, the dimerization of acetic acid diluted in non-polar solvents is out of reach 

for such models, because in the quasi-chemical approximation the hydrogen bond 

donors and acceptors of the carboxylic acid group would form individual strong 



contacts, leading to a 4th power dependence of the dimer concentration with respect to 

the concentration of the acid, while in reality the first contact between two acid 

molecules will induce a high probability for the formation of the second hydrogen 

bond, which then leads to a 2nd order concentration dependence of the dimer 

concentration. Indeed, recently an extension of COSMO-RS for dimerization, 

association, and reaction equilibria (COSMO-RS-DARE) has been presented14, which 

is able to describe such phenomena if the dimers or association species are introduced 

as special species into the COSMO-RS ensemble. But this extension requires 

considerable special parameterization and it is not extendable to less specific surface 

correlation phenomena. Other cases in which the lack of surface correlation may 

cause inaccuracies in COSMO-RS are micro phase separations, as they are observed 

in amphiphilic liquids as octanol, in which the alkyl chains and the polar groups tend 

to preferentially cluster, even before micellization occurs.  

 

In this paper we present a novel theory for taking into account local correlations of 

surface polarities in a much more systematic and almost parameter-free way. This 2nd 

order COSMO-RS, which we will denote as COSMO-RSC further on, uses the 

contact probabilities of surface segments derived in a first COSMO-RS cycle for the 

quantification of the induced local concentrations of surface types or polarization 

charge densities due to the neighbor segments of contacting neighbor segments. These 

induced local concentrations then are converted into an entropic correction for the 

pair-wise interaction of segments. Then a second COSMO-RS loop is performed, now 

utilizing the local concentration corrected interaction (free) energies, resulting in 

modified contact probabilities, which reflect the local correlations. This easily leads to 

corrected interaction enthalpies of the liquid ensemble, while more effort is required 

in order to get thermodynamically consistent free energies. This is because the use of 

concentration dependent interaction operators, as the concentration dependent 

correlation corrections, in the COSMOSPACE algorithm lead to Gibbs-Duhem 

inconsistent free energies and activity coefficients. A theoretical analysis and a 

resulting correction formula for this problem has already been developed some time 

ago. Using this correction, we end up in COSMO-RSC with exactly Gibbs-Duhem 

consistent activity coefficients.  

 



We demonstrate and test the new theory using an artificial lattice Monte-Carlo (LMC) 

liquid, which allows for a clearer analysis of the local surface correlations than real 

fluids would do. Applications to real liquids will be described in forthcoming papers.  

Theory 

 

Using the notations introduced in the COSMOSPACE paper, we consider an 

ensemble of molecules that represents an essentially incompressible liquid. We 

neglect the combinatorial free energy, since it is not of relevance for the aspects 

considered here, and only analyze the so-called "residual" contribution, which arises 

from the interactions between molecules. The basic assumption of surface pair 

interaction models is that residual - i.e., non-steric - interactions can be described by 

pairs of geometrically independent surface segments.  

 

We consider a system having  different types of surface. The total number of surface 

segments in  on a molecule i is given by 
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where iq  is the total surface area of molecule i and 


i
n   denotes the numbers of 

segments of type  on molecule i. effa  is the size of a thermodynamically independent 

segment, which in all COSMO-RS parameterizations is in the range of 7 Å².2,3,13 

 

If ii xNN   is the number of molecules of species i in the system, then the total 

number, n, of segments in the system is given by  


i
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In the same way, the number of segments of type  is given by 
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The relative number or surface fraction of segments of type  is  

n

n
            (4) 



From elementary statistical thermodynamics we know that for an incompressible 

system the Gibbs free energy of the system is 

ZTkG B ln         (5) 

where Z is the total partition function of this system. The chemical potential of 

species i in the mixture is given by 
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In view of our earlier assumption that the partition function Z  depends only on the 

segment composition we have 
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where 
  is the pseudo-chemical potential of a segment of type  in the ensemble of 

interacting surface segments. The activity coefficient, i , of species i is defined by 

iiiiBTk  ln         (8) 

where ii  denotes the chemical potential of compound i in a system with 1ix .  In 

the same way we have  

  lnTkB         (9) 

for the activity coefficient of a segment of kind , with 
  being the segment 

chemical potential at 1
. If we define i

 and i
 to be the chemical potential and 

activity coefficient of a segment  in an ensemble of pure compound i, respectively, 

and apply these definitions to Eq. 7, we obtain  
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for the activity coefficient of compound i.  By Eq. 10 we have reduced the 

thermodynamics of the system of chemical compounds to the thermodynamics of an 

ensemble of pair-wise interacting surface segments. 

 

Let  and  denote different kinds of surface segment and let  

 Tshg         (11) 



be the interaction energy of a pair . g in general may be a free energy of 

interaction of the two pairs, i.e. it may include enthalpic contributions h  and 

entropic contributions -Ts , while mostly in literature only enthalpic interactions are 

considered. We always assume symmetric interactions of the segments, i.e. g = 

g.The Boltzmann factor for the interaction energy of the segments is usually 

introduced as  
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In the COSMOSPACE paper it was shown that a general and very efficient solution 

for the complete thermodynamics of such system can be achieved by solving the set 

of equation  
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for the activity coefficients of segment types  in the ensemble. In general this has to 

be solved numerically by iteration, usually starting from  = 1 on the right hand side. 

In some cases, especially if only two different segment types are considered, analytic 

solutions can be derived. The efficiency of the COSMOSPACE equations results 

from the fact that via eq. 10 the segment activity coefficients do directly lead to the 

activity coefficients and thus to the free energies of the compounds. The contact 

probabilities of segments are given by  











  p       (14) 

Trivially the enthalpy of the system is then given as expectation value of the 

interaction enthalpy, i.e.  




 phH
2
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As proven in appendix B of the COSMOSPACE paper, Gibbs-Duhem consistency of 

the resulting activity coefficients is automatically guaranteed within COSMOSPACE. 

Nevertheless in the derivation of the COSMOSPACE equations it was implicitly 

assumed that the segment interaction energies do not depend on the composition of 

the liquid system. But for mole fraction dependent segment interaction energies g(x) 

the activity coefficients of the compounds calculated by COSMOSPACE (eq.10) are 

no longer Gibbs-Duhem consistent and hence thermodynamically wrong. This results 



from the fact that the additional composition dependence of the total free energy, 

which goes beyond the composition dependence resulting from the contact 

probabilities, and which is caused by the composition dependence of the interactions, 

is not taken into account in the variational solution of the statistical thermodynamics. 

Nevertheless, at a fixed value of x, the contact probabilities calculated within the 

COSMOSPACE framework must still be correct, because at a fixed value of x we 

have fixed interaction energies and hence no deviation from the assumptions made in 

COSMOSPACE.  

 

An exact correction for the originally thermodynamic inconsistent activity 

coefficients of COSMOSPACE in the presence of composition dependent interaction 

energies can be derived, if we write the total free energy of a quasi-chemical system 

in the fundamental way  
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as nicely described within the GEQUAC model.9 Applying the definition of the 

compound chemical potentials according to eq. 6 
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 where we have separated the contribution of G, which arises from the composition 

dependence of the interactions, into corr

i and subsumed all other parts into 0

i . 

Therefore 0

i can be calculated as usual from COSMOSPACE, and corr

i can be easily 

calculated as the expectation value of the derivatives of the interaction energies with 

respect to the particle number. Eq. 16 is by itself a considerable extension of 

COSMOPACE models, because it allows for taking into account general composition 

dependencies of the segment interactions, as long as the derivatives of the segment 

interaction energies on the composition can be calculated.  

 

With that we have the framework for working out the 2nd order COSMO-RS theory. 

Let us assume that our segments  and  have direct neighbor segments ’ and ’. 

Due to the neighborhood of the segments a contact between ’ and ’ induces an 



increased local concentration of  in the environment of   and vice versa, leading to 

an increased contact probability of   and . Any effects and energy corrections 

resulting from such neighbor induced local concentration are not taken into account in 

COSMO-RS and COSMOSPACE, nor in any quasi-chemical model so far. If the 

segments on the molecular surface would be in a planar region and of quadratic shape, 

then geometrically ¼ of the (’’)-contacts would lead to a ()-contact. If we would 

have a regular hexagonal lattice, the geometric correlation coefficient would reduce to 

1/6.  In the realistic case of segments on molecular surfaces, which have non-

vanishing and irregular curvature, an exact evaluation of the induced local 

concentration of   in the surrounding of  due to contacts of  neighbor segments ’ 

and ’ will not be possible. If we count each segment on each compound as a separate 

type of segments, approximate expressions of the form  
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can be constructed for the induced local concentration of type  in the vicinity of 

segment type , in which i() and j() denote the molecules i and j to which segments 

 and  belong. The summations are over all ‘neighbor’ segments ’ and ’ of  and 

, respectively, i.e. over all segments on the same molecules. According to 

COSMOSPACE, 




  ''

'  is the probability that segment ’ is partner of ’. The 

local correlation function 
corrf  '  should decay rapidly with the distances d(’) and 

d(’) of the segments on the two molecules, as well as with the angles )'(  and 

)'(   between the normal vectors of the segment. Furthermore, it should be a kind 

of -function of the two distances, because only neighbor segments of  and  at 

about the same distance can cause additional () contacts. Thus a plausible 

functional form for 
corrf  '  may be 
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but the detailed and optimal expression for the correlation function is not relevant for 

the purpose of this paper. It will have to be worked out based on plausible 



assumptions and fitting of a few empirical parameters. The relevant fact is that the 

induced local concentration 


~
of  in the surrounding of  is given by a sum of 

neighbor contact probabilities, which are known from the initial COSMOSPACE 

calculation, and a geometric function, which can be easily calculated from the 

segment coordinates stored in the COSMO files. Indeed, the intramolecular segment 

distances and normal vector angles can be precalculated and stored in each COSMO 

file, making the evaluation of the correlation functions more efficient. If, as usual in 

COSMO-RS, several segments, e.g. segments of similar polarization charge densities 

, are comprised to one segment type, the appropriate summations and averages of 

the induced local concentrations have to be calculated. But still the induced contact 

probabilities will be summations of COSMOSPACE contact probabilities multiplied 

by geometric correlation functions.  

 

If we now introduce the sum of all induced local concentrations at  as  
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we can define a locally corrected concentration of  in the vicinity of  as 
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assuming that the global concentration 
 of segment type  adds to the induced 

local concentrations. The denominator in eq. 20 results from normalization. Thus the 

ratio of the locally corrected concentration and the initially used global concentration 

of  in the vicinity of  is given by the ratio of 

̂  and 

 .  If we convert this into 

an entropic correction for the contact probability of  and ,  we get 
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where the factor ½ avoids double counting, because we are simultaneously correcting 

for both induced concentrations in order to get a symmetric free energy correction for 

the contacts of  and .  

 

Now we can introduce 2nd order interaction free energies  

 lccggg  *      (22) 



and solve the COSMOSPACE equations again, yielding 2nd order segment activity 

coefficients 
 * and new contact probabilities 

*

p as well as a new total enthalpy, 

which will reflect the geometry induced local correlation of segment types. Since the 

lccg include the first order contact probabilities and by that depend on the composition 

of the system, the calculation of free energies and activity coefficients of the  

compounds in the system requires the correction term as given in eq. 16. Hence we 

finally have for the free energies of compound i in the system 
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The 
lccg depend on the composition and by that on the particle number Ni only via the 

surface fractions and 1st order contact probabilities, and thus on the 1st order segment 

activity coefficients . The analytic derivatives of the latter with respect to the 

particle numbers can be easily calculated, as described in detail in appendix D of the 

COSMOSPACE paper.  

 

Thus we now have the complete 2nd order fluid phase thermodynamics of the system 

in our hands, which recovers local correlations of the surface segments on the 

molecular surfaces, which was ignored in the 1st order COSMO-RS and 

COSMOSPACE equations, as well as in any kind of quasi-chemical approach.  

Model example 

 

For the validation of the COSMO-RSC theory it is useful to consider a case in which 

the correlation effects can be clearly identified and quantified, and which is simple 

enough in order to construct the surface correlation function analytically. A rather 

realistic model systems can be provided by lattice fluids and lattice Monte-Carlo 

simulations. Such systems have already been considered during the original 

development of COSMO-RS, and later LMC calculations with cubic pseudo-

molecules have been used for validation purposes in the COSMOSPACE paper.  

 

In order to study substantial neighbor correlation effects the cubic molecules are not 

sufficient. Therefore we will consider in the following a lattice fluid consisting of Nc 

cubic pseudo-molecules, and Nt straight trimers molecules, which are just 3 cubes 



stuck together linearly. Thus the cube molecules have 6 surface segments, and the 

trimers have 14 external surface segments. In general each of the 20 segments may be 

of different type . A lattice Monte-Carlo program trimer-LMC was written, which 

allows the specification of a polarization charge density  on each segment type , 

and the interaction energies are given by the generic functional form  

  LMCLMC hg         (24) 

We consider a cubic simulation box of size L3 (default L = 20) and apply periodic 

boundary condition. Since we want to consider a densely filled box, the number of 

cube molecules is given by  

tc NLN 33          (25) 

The four types of LMC moves required in such system are quite simple: 

1) random rotation of a cube into one of its 24 possible orientations. 

2) random rotation by 90° or 180° of a trimer either around its long axis or 

rotation by 180° around one of the perpendicular axes. 

3) selection of a trimer which has a cube at one of its head faces and exchange of 

the two molecules. 

4) selection of a trimer and of three linearly neighboring cubes and exchange of 

the trimer with and the three cubes. 

These LMC moves guarantee that all arrangements of the LMC mixture can be 

achieved. We performed 2*107 LMC steps for each composition and temperature and 

used the last half of the LMC steps for the evaluation of the average interaction 

enthalpy HLMC. By the proper choice of polar and less polar surface segments, i.e. by 

the proper choice of the 20 types of polarization charge densities  on the faces of 

the cube and trimer molecules, many different systems can be mimicked, in which 

different types of neighbor correlation effects can be studied.  

 

For the analytic validation of COSMO-RSC we consider a very simple but quite 

realistic case, mimicking a mixture of methane and acetic acid, where the pseudo-

methane is represented by the cubes, with all surface segments being neutral (or 

green, if we use the standard color coding of COSMO-RS), and the acetic acid 

molecules are represented by trimer molecules, which have a strongly negatively 

polar surface segment representing a hydrogen bond acceptor (i.e. a red segment with 

positive ) in the middle of one of the long sides, and a positively polar segment 



representing a hydrogen bond donor (i.e. a blue segment with negative ) directly 

adjacent to the red acceptor segment. The cubic and trimer molecules are 

schematically visualized in figure 1. LMC simulation have been performed for this 

cube-trimer mixture over a wide range of compositions expressed as mole fractions of 

trimers xt and temperatures, expressed in units of ²/kB, where  is the polarization 

charge density of the positively polar segment on the trimer. The resulting interaction 

enthalpies HLMC(xt,T) are shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Non-polar green cube molecules and trimer molecules with adjacent 

oppositely polar surface segments. Due to their direct neighborhood the polar 

segments on the trimers can form a very favorable double interaction. 

 

Next we perform the 2nd order COSMO-RS calculation for this system. First we have 

to solve the 1st order COSMOSPACE equations. Let us denote all green, non-polar 

surface segments as type A, and the donor and acceptor segments as types B and B’. 

Since the polarities of the donor and acceptor segments are symmetric, and since their 

surface fractions are always identical, their segment activity coefficients B and B’ 

must be identical. Because the green segments have A = 0, the Boltzmann factors 

AA, AB and AB’ =1 are unity. Denoting the Boltzmann factor of a BB’ contact as  = 

BB’, the Boltzmann factors for the like contacts are BB=B’B’=1/. Then the 

COSMOSPACE equations become: 

ABBAAABBABBAA   21
2''2

   (26) 

and  



BAABBBBBAABBBBB    21221''1  (27) 

with B = B’ = (1-A)/2. Solving eq. 26 for B and inserting this into eq. 27 leads to a 

quadratic equation with respect to
2A which can be solved by standard algebraic 

methods. Thus we yield the segment activity coefficients and we calculate the 

enthalpy HCRS1(xt,T) of the system according to standard, 1st order COSMO-RS. As 

can be seen in figure 2, these first order results deviate substantially from the LMC 

results. The reason is the strong local correlation of the neighboring donor and 

acceptor segments, B and B’.  

 

While the geometry of the trimer molecules also induces some correlation between A 

type segments (green), this will be very small, because type A segments are plentiful 

at all compositions of the system. The induced correlation of BB contact due to B’B’ 

contacts can also be neglected, since like contacts of the polar segments have an 

extremely low probability. Therefore the effects of the correlation between B and B’ 

due to neighboring B’ and B contacts will clearly be dominating. For the sake of 

clarity and simplicity we will only consider the induced local concentration of this 

type. According to eq. 17, the induced local concentration of B’ in the vicinity of B is 
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Using eq. 20 and 21 we yield the local concentrations free energy corrections 
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and 

   
   2'

'

'

'

'
ln

~
1ln~

1
ln~

1
ln

2
rTkTk

Tk
g B

B

BBBB

B

B

BB

B

B

Blcc

BB 




































   (31) 

Using the shortcuts s and r defined in eqs. 29 and 30, the COSMOSPACE equations 

for the 2nd order COSMO-RS correction become: 

ABBAA r **
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The segment activity coefficients 
A

* and 
B

* can now again be calculated analytically 

from eqs. 32 and 33 by standard algebra. From this we can easily calculate the 2nd 

order enthalpy HCRS2(xt,T). This is shown in figure 2 together with the LMC enthalpy 

and the 1st order COSMO-RS result. As can be seen, HCRS2(xt,T) is in good agreement 

with the LMC results. Especially at low temperatures, where correlation effects are 

most important, deviations between 1st order COSMO-RS are largest, the 2nd order 

COSMO-RS results agree very well with the LMC simulations. At higher 

temperatures the LMC simulations are almost half way between the 1st and 2nd order 

COSMO-RS results and the agreement appears to be less good on a logarithmic scale, 

but on an absolute scale the deviations here are very small.  

 

We have added in figure 2 the results achieved by numerical COSMO-RSC 

calculations which take into account all correlations, and not just the correlation 

between the polar surface segments. These results agree perfectly with the analytical 

results at lower temperatures, while at high temperature (T = 3) these results slightly 

deviate from the simplified analytical model and are even closer to description of the 

LMC results.  



 

 

Figure 2: Comparison of molar enthalpies of the cube-trimer mixture calculated by 

lattice Monte Carlo simulations (solid symbols) and different level COSMO-RS 

simulations. The logarithmic horizontal axis denotes the negative of the molar 

enthalpy. The black crosses and dotted lines give the results of numerical COSMO-

RSC calculations, taking into account all segment correlations. 
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Figure 3: 1st order and 2nd order COSMO-RS activity coefficients for the cubes and 

trimers molecules, a) at T = 1/3, b) at T = 3. 
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Finally we need to calculate the free energies c and t of the cube and trimer 

molecules according to eq. 23. The uncorrected contributions 0

c  and 0

t  can be 

derived by summing up the logarithmic 2nd order segment activity coefficients. Since 

we have explicit analytic expressions for the 1st order segment activity coefficients, 

we can calculate the analytic derivatives of the A and B with respect to the surface 

fraction A of non-polar segments. From that we easily get the derivatives of the 

entropic local correlation corrections. Combining these with the derivatives of the A 

with respect to the particle numbers Nc and Nt, respectively, we yield the derivatives 

of the interaction energy corrections with respect to the particle numbers, and 

combining these with the second order contact probabilities we get the desired 

chemical potential corrections corr

c

* and corr

t

* and the total chemical potentials of 

both species. Figure 3 shows the chemical potentials resulting from first order 

COSMO-RS and the uncorrected and corrected chemical potentials resulting from 2nd 

order COSMO-RS of the compounds at three different temperatures. Figure 4 shows 

the corresponding Gibbs-Duhem consistency tests 
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for all three types of chemical potentials displayed in figure 3. Consistency is given if 

GD is zero. The derivatives of the chemical potentials are calculated numerically. As 

can be seen in figure 4, the 1st order chemical potentials and the corrected 2nd order 

chemical potentials are perfectly Gibbs-Duhem consistent at all temperatures, while 

the uncorrected 2nd order chemical potential are massively inconsistent. 



Figure 4: Gibbs-Duhem consistency test for the 1st and 2nd order chemical potentials 

as well as for the raw 2nd order chemical potentials before correction. The latter show 

a massive deviation from Gibbs-Duhem consistency, while the 1st order and the 

corrected 2nd order chemical potentials are perfectly Gibbs-Duhem consistent at all 

temperatures. 

 

Summary, discussion and outlook 

 

A 2nd order surface polarity correlation correction, COSMO-RSC, has been 

developed, which makes use of the contact probabilities derived from standard 1st 

order COSMO-RS calculations, derives from these local concentrations of surface 

polarities and feeds them back as entropic interaction free energy corrections into a 

second COSMO-RS loop. Utilizing a novel, thermodynamically exact correction 

method, the resulting 2nd order free energies and activity coefficients are completely 

Gibbs-Duhem consistent. As shown on the example of a lattice Monte-Carlo fluid 
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mimicking the dimerization of acetic acid in alkane solvents, the 2nd order COSMO-

RS thermodynamics recovers the initially neglected effects resulting from coordinated 

interactions of neighboring surface segments almost perfectly.  

 

In the model example considered in this paper the computational costs of COSMO-

RSC are just about 3 times the costs of simple COSMO-RS, because the 

COSMOSPACE equations have to be solved a second time and derivatives of the 

contact probabilities have to be evaluated. In COSMO-RS calculations for real 

molecules most likely the evaluation of the geometrical segment correlation functions 

will be the major computational task in COSMO-RSC, because they involve the 

evaluation of many distances and angles between segments and segment normal 

vectors, respectively. Nevertheless, much of that can be pre-calculated and stored as 

an appendix to the COSMO file, which holds the polarity and geometric information 

of each molecule. Compared to the quantum chemical calculation required for the 

generation of the COSMO file the calculation of the segment correlation functions 

will be only a small additional effort. By such techniques it can be expected that the 

increase in computational costs caused by COSMO-RSC will be in the order of a 

factor of 3 or less.  

 

Thus we can expect, while keeping the thermodynamic consistency and much of the 

efficiency of the COSMO-RS approach, COSMO-RSC will lead to improved overall 

accuracy for the prediction of thermodynamic properties, because the so far neglected 

effects of surface polarity correlation will be taken into account to a large degree. 

Furthermore, many extension of the application range can be expected, e.g. 

aggregation phenomena, hydrotropes, micro phase separation or even hydrophobic 

collapse of long alkyl or polymer chains. Improvements can also be expected for 

smaller ions, especially in their interaction with chelating solvents, because such ions 

always have strong and similar polarization charge density on neighboring surface 

segments, and especially strong interactions will arise, if a solvent molecule offers 

neighboring suitably arranged, i.e. correlated partners segments of the opposite 

polarity. 

 

If necessary, higher order COSMO-RS, i.e. using the COSMO-RSC information for 

correlation effects in a 3rd COSMO-RS loop, should be feasible. Since the 



composition derivatives of all quantities entering into the 2nd order COSMO-RS are 

available, the derivatives of the resulting contact probabilities should be available as 

well and thus even 3rd order and higher order COSMO-RS should yield 

thermodynamically consistent chemical potentials. Potentially this may be iterated to 

complete self-consistency. Nevertheless, before working on higher orders, the next 

step needs to be the development of optimal neighbor segment correlation functions 

for realistic, irregularly shaped molecular surfaces.  
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