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Abstract

Technological developments from last decades offer unprecedented opportunities to
monitor the Earth system. International research projects like BACI are joint efforts to
provide free-of-charge, unified and high quality Earth Observations and the development
of tools to analyze them. The ability to detect and monitor anomalous behaviour in mul-
tivariate environmental time series is crucial. These events are signals of changes in the
underlying dynamical system and their detection can be used as an early-warning system
for land ecosystems. In this study we present a methodology to detect these anomalies
in biosphere data by a combination of a multivariate autoregressive model together with
a distance measure. This work is framed within the EU-funded project BACI ’Detecting
changes in essential ecosystem and biodiversity properties - towards a Biosphere Atmo-
sphere Change Index’.
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1. Introduction

Space data archives and space-borne Earth observations play an essential role in monitor-
ing ecosystems. Their transformations and responses to human interventions or climate
extremes can now be studied in more detail than ever. This development is complemented
by an increasing availability of a wide range of ground data. They cover many aspects
of ecosystem functioning, structure, and other parameteres relevant to fully describe the
functional biogeography of ecosystems. The BACI project aims to tap into the yet-to-be
realized potential of existing and scheduled space-borne Earth observations.

The BACI consortium, formed by 10 institutions from 7 European countries consists of
terrestrial remote sensing experts, experts in ecosystems, biodiversity and socio-economical
modeling and observations of different types and experts on machine learning and big data
processing techniques. Within the 9 work packages in which is divided the project, the WP5
is dedicated to the development of anomaly detection techniques that allow for detecting
sudden events and abnormal changes in the multivariate Earth observation data streams.
Combining different machine learning methods the main goal is to detect extreme events
in historical data and therefore help defining those areas with higher amount of abnormal
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records. This challenging data-driven task faces the added issue of the lack of ground truth
events or contrasted events where it is known what happened and which were the causes.

2. Anomaly Detection in Biosphere Parameters

An abnormal event can be defined as those points within a time series that are not well
represented by a previously fitted statistical model, Chandola et al. (2009). Following this
intuitive concept, we propose a methodology based on a linear regression combined with
a distance measure to detect extreme events in biosphere parameters. More precisely, af-
ter preprocessing the data, we combine a Multivariate Autoregressive Model (MVAR) with
the Mahalanobis distance of the residuals between the model and the data to detect those
points where the model and the data significantly differ and therefore can be considered as
abnormal events.

Data from the Earth System Data Cube (ESDC) developed within the ESDL project
has been used as the primary source of biosphere data for this study. The ESDC comprises
spatiotemporal data consisting of: time, latitude, longitude and multivariate Earth Obser-
vations. The version used in this study covers the period from January 2001 to December
2012 with 8-daily observations and a spatial grid with a resolution of 0.25◦. More than 30
biosphere and atmosphere parameters are included in this database. Out of these variables,
we have used those 5 that mainly measure the terrestrial biosphere activities: Gross Pri-
mary Productivity (GPP), Latent Energy (LE), Net Ecosystem Exchange (NEE), Sensible
Heat (SH) and Terrestrial Ecosystem Respiration (TER), which were kindly provided by
the FLUXCOM initiative (Tramontana et al. (2016)). The study area comprises Africa and
Europe (see Figure 1). This area was defined as the main study area within BACI.

2.1 Preprocessing

To avoid inconsistencies later, data needs to be pre-processed. We have applied techniques
commonly used in environmental sciences. Additionally, to simplify computational load
while the models fitting process the data was regionalized.

Deseasonalization and normalization: The mean seasonal cycle has been substracted
from the variables. The remaining variables were then normalized by subtracting its mean,
µ, and dividing by its variance, σ. This was done for all the 5 variables locally at each pixel
of the grid.

Regionalization: The grid was clustered into regions of similar climate conditions ac-
cording to the climate types defined by the Köppen Climate Classification (Chen and Chen
(2013)). The Köppen Climate Classification is a widely used vegetation-based empirical
clustering that divides the world in up to 31 climate regions. From these 31 climate re-
gions, 23 are present in our study area. Figure 1 shows the climate regions with the legend
explaining the codes that define them.

2.2 Multivariate Autoregressive (MVAR) Model

Let xi, i = 1, · · · , N denote the time series ofN Earth observation variables. Each time series
xi(n), n = 1, · · · ,m is a realization of length m real valued discrete stationary stochastic
process Xi, i = 1, · · · , N . These N time series can be represented by a pth order multivariate
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Figure 1: Area of study clustered according to the Köppen Climate Classification. Gaps
represent areas where there is no data available.

autoregressive model (MVAR(p)) of the form x1(n)
...

xN (n)

 =

p∑
r=1

Ar

 x1(n− r)
...

xN (n− r)

 +

 ε1(n)
...

εN (n)

 , (1)

The residuals εi, i = 1, · · · , N constitute a white noise stationary process with an N ×N
residual covariance matrix Σ. The model parameters at time lags r = 1, · · · , p are defined
by

Ar =

 a11(r) · · · a1N (r)
...

. . .
...

aN1(r) · · · aNN (r)

 . (2)

For each climate region, a representative point that is geographically centered in the
region and hence reflects its average behaviour, has been selected. The MVAR model order
p was defined for every climate region, at each representative point, by means of a Bayesian
Criterion (Schwarz et al. (1978)). Once the model order (p) was defined for each region we
proceed with the entire grid, fitting an MVAR(p) model at each point.

2.3 Mahalanobis distance

The residual vector of the MVAR model is calculated as the difference between the model
output and the real data for the five variables. The Mahalanobis distance (Mahalanobis
(1936); Hotelling (1947)) of the residual vector is used as a measure of the deviation of the
multivariate residuals at certain time step from their joint distribution. The Mahalanobis
distance is defined in square unit as

dm(E) = (E − Ē)TΣ−1(E − Ē) (3)
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Figure 2: Heatwave in Russia, summer 2010.

where Ē and Σ are the mean and covariance matrix of the multivariate residuals vector
E respectively. The mean and the covariance were estimated considering the entire time
series. This was the best way to do so in our case due to the short length of the time series
used together with its coarse temporal resolution.

3. Results

Validating models that try to reproduce environmental processes is not a trivial task. There
are no well defined ground-truth events which can be used to compare the models’ perfor-
mance and level of accuracy. With help of experts on the topic involved in the BACI project,
some well known historical events that caused perturbations in the biosphere within the time
span of our data were selected.

Figures 2-6 show the results obtained for some of the selected known historic events.
Some events, such as the Russian heatwave in 2010 (Figure 2) and the drought in the horn of
Africa in 2006 (Figure 3) are clearly detected by the method due to its magnitude and large
temporal and spatial scale. Another particular event of interest is the volcanic eruption
in the coast of the Red Sea in June 2011. This event is clearly detected despite its small
spatial scale as shown in Figure 5. There are on the other hand some events such as the
coldwaves (Figure 6) and cyclones (Figure 4) where the threshold for detections should be
lower in winter due to the nonstationarity of the signals.

4. Conclusions

A new methodology to detect anomalies in biosphere time series has been described. Our
approach comprises two main steps after preprocessing the data: a multivariate linear re-
gression model combined with a distance measure. The combination of these techniques
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Figure 3: Drought in the horn of Africa, November 2006.

Figure 4: Cyclone in Central Europe, January 2007.

Figure 5: Volcanic eruption in the Red Sea coast, June 2011.
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Figure 6: Coldwave in Central Europe, January-February 2006.

allow for the detection of abnormal events in the time series.

The proposed methodology has been applied to a large area that covers Europe and
Africa. Results show that the method is able to detect the spatial and temporal extent of
known historic events.
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D Chen and H W Chen. Using the Köppen classification to quantify climate variation and
change: An example for 1901–2010. Environmental Development, 6:69–79, 2013.

H Hotelling. Multivariate quality control. Techniques of statistical analysis, 1947.

P Mahalanobis. On the generalised distance in statistics (vol.2, pp.49–55). Pro-
ceedings National Institute of Science, India. Retrieved from http://ir. isical. ac.
in/dspace/handle/1/1268, 1936.

G Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6(2):
461–464, 1978.

G Tramontana, M Jung, C R Schwalm, K Ichii, G Camps-Valls, B Ráduly, M Reichstein,
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