Conference paper Open Access

BACI: Towards a Biosphere Atmosphere Change Index - Detection of extreme events in the biosphere

Yanira Guanche Garcia; Maha Shadaydeh; Miguel Mahecha; Markus Reichstein; Joachim Denzler

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.1451227</identifier>
      <creatorName>Yanira Guanche Garcia</creatorName>
      <affiliation>FSU Jena</affiliation>
      <creatorName>Maha Shadaydeh</creatorName>
      <affiliation>FSU Jena</affiliation>
      <creatorName>Miguel Mahecha</creatorName>
      <affiliation>MPI for Biogeochemistry</affiliation>
      <creatorName>Markus Reichstein</creatorName>
      <affiliation>MPI for Biogeochemistry</affiliation>
      <creatorName>Joachim Denzler</creatorName>
      <affiliation>FSU Jena</affiliation>
    <title>BACI: Towards a Biosphere Atmosphere Change Index - Detection of extreme events in the biosphere</title>
    <subject>Anomaly detection, Autoregressive model, Mahalanobis distance</subject>
    <date dateType="Issued">2018-10-08</date>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1451226</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf"></relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;Technological developments from last decades offer unprecedented opportunities to monitor the Earth system. International research projects like BACI are joint efforts to provide free-of-charge, unified and high quality Earth Observations and the development of tools to analyze them. The ability to detect and monitor anomalous behaviour in multivariate environmental time series is crucial. These events are signals of changes in the underlying dynamical system and their detection can be used as an early-warning system for land ecosystems. In this study we present a methodology to detect these anomalies in biosphere data by a combination of a multivariate autoregressive model together with a distance measure. This work is framed within the EU-funded project BACI &amp;#39;Detecting changes in essential ecosystem and biodiversity properties - towards a Biosphere Atmosphere Change Index&amp;#39;.&lt;/p&gt;</description>
All versions This version
Views 9293
Downloads 5252
Data volume 579.8 MB579.8 MB
Unique views 8283
Unique downloads 4747


Cite as