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ON THE DISCONTINUITIES OF A FUNCTION OF ONE OR
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1. The modern definition of a function of one or more real variables
i of such a general nature that one is inclined at first to imagine that
there can be, in the nature of things, little or no connection between the
character of the discontinuity of the function at a point and the mode of
distribution of the discontinuities. It was with some surprise therefore
that I remarked that the points at which the upper and lower limits of a
Sfunction of single real variable can differ on the right and on the left are
n no case more than countable, so that, in particular, discontinuities of the
first kind, sometimes called “‘ordinary discontinuities,” are vrelatively
speaking exceptional, while a symmetrical discontinuity of the second kind
constitutes the normal type.*

Subsequently I perceived this result to be only a particular case of
the more general one :—the limuits of a function of a single variable at a
point, obtained by all modes of approach to the point on the right, are
identical with those obtained by all modes of approach on the left, except
at most at a countable set of points.t

One is always glad to obtain a second proof of a new theorem,
especially in the Theory of Sets of Points, where the reasoning is so
subtle that almost all who have written on it have at one time or another
stumbled. Such a second proof is furnished by the reasoning adopted in
the present Note. My main object is, however, the proof of the following
theorem, which, it will be seen, constitutes the analogous result for funec-
tions of two or more variables.

¢ W. H. Young, * Some Results in the Theory of Functions of a Real Variable *’ (1907)
Report of the British Association, p. 445 (abstract) : ‘ On the Distinction of Right and Left at
Points of Discontinuity,”’ Quart. Jour. of Math., Vol. xxx1x, pp. 67-83.

+ W: H. Young, “Sulle due funzioni a pilt valori costituite dai limiti d’una funzione
d’una variabile a destra e a sinistra di ciascun punto’’ (1908), Rend. della R. Acc. dei Linces,
T. xvii, pp. 582-587.
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The whole set of limits of a function f(z) of any number of variables,
denoted in their ensemble by z, at a point P, may be obtained by different
modes of approach to the point P confined to a completely open netghbowr-
hood of pre-assigned form with P as boundary point, except possibly at a
certain set of the first category,* depending on the particular function
and on the pre-assigned form of neighbourhood. '

That this theorem is not a mere generalisation of the corresponding
theorem for functions of a single variable will not be surprising if we
reflect on one of the fundamental distinctions between the division of a
straight line by means of segments and of the plane or higher space by
means of compartments. In the former case the end-points of the in-
tervals have the potency of the natural numbers; in the second case,
however, the analogous points fill up lines, and have therefore, as also in
higher space, the potency of the continuum. It is precisely this fact
which is responsible for the modification in the theorem as we pass from
the straight line to higher space. - That the exceptional points cousidered
in the theorem are in the one-dimensional case countable is, so to speak,
an accidental fact; the general fact is that they form a set of the first
category.

The following curious result, which seems to me not without importance
in the general theory of limits, is an immediate consequence :—Ezcepting
only at the points of a certain set of the first category, all the limits of
f (@), where there are any number of variables x, may be obtained by
means of sequences of points tangential at the point to a fized direction,
previously chosen.

In particular, of there is a fized direction tangential to which f(x) has
an untque limit at every point, the function is necessarily only pointwise
discontinuous.

It should be noticed that in all these theorems the modes of approach
are by means of regions. The main result is capable of the following
mode of expression :—There is symmetry for approach by means of regions
at every point except at a set of the first category. Here, however, it
must be remembered that the set of the first category depends not only
on the function, but also on the choice of the regions grouped round a
point.

Another immedigte result is that, except possibly at a set of the first
category, f(P) lies between its upper and lower limits for all modes of
approach to the point Pin a region of prescribed form with P as boundary

¢ For the definition of such a set see, for example, Young's Theory of Sets of Points,
Camb, Univ. Press (1906), pp. 70, 71.
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point. To obtain this from the main result, we require to assume that
[ (x) lies between the upper and lower limits of f(x) at each point ercept
at a countable set of points. A proof of this theorem valid for any num-
ber of variables z,* is accordingly given in § 8.

2. The reasoning of the present paper depends on the systematic use
of the two facts:

(A) If a number a is greater than a number b, there is a rational
number greater than b and less than a.
(B) The rational numbers are countable.

The countable order of the rational numbers may be any conveniently
chosen one ; for instance, they may be read in columns from the following
wedge :—

o 5 ) o 1 T
5 1+3 143, 144, ... . 1)
3, —14% —1+3 —14+%, .. ‘

Here the first row is the usual order of the rational numbers between 0
and 1, in which the denominators form a monotone series, and so do the
numerators corresponding to any the same denominator: the succeeding
rows are got by adding in succession the various integers, alternately
positive and negative. When arranged in this order we shall denote the
rational numbers by N, Ny, ..., N, ....

8. The principles employed are exhibited in their simplest form in the
proof of the following theorem : —

Turorem 1.—If f (x) 15 a function of any number of variables, denoted
in their ensemble by x, and ¢(x) vs its associated upper Limiting function,*
the points at which ¢ @) < /o), @)

if any, form a countable set.
Let S, denote the set of those points, if any, such that
o) < N, < f(2),

# The original statement and proof of this theorem, given in the paper first quoted, was
for one dimension.

t That is, the function whose value at each point is the upper limit of f(x)—that is, the
lower bound of the upper bound of f(z) at all points except P in an interval or region with P
as internal point.
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while no rational number of the series (1) with index less than » is greater
than ¢(z) and less than f(z). This set S, is then perfectly determined,
and any point P at which $(P) < f(P)

belongs to one, and one only, of the sets S,. Thus the whole set of points,
if any, at which 6(@) < f@) : @

is the sum S;+Sy+...48S,4..., of these sets, and is therefore countable
if S, is countable for all values of the integer »; this we shall now prove
to be the case.

Let P be any point of the set S,. Then, by the definition of ¢(P), we
can find a whole interval or region with P as internal point, such that at
every point z of it, except P, f@) < N..

so that no point of it, except P, belongs to the set S,. Thus P is an
isolated point of the set S,. Hence S, consists entirely of isolated points,
and is therefore countable,* which proves the theorem.

4. Treorex 2.—If 6(P) denote the wpper limit at a point P of a
Junction f(z) of two or more variables denoted in thewr ensemble by =, that
wpper limit being determined with respect to a certawn meighbourhood
having P as boundary point, eg., a (+, +)-aztal neighbourhood,t and
¢ (x) s the associated upper limiting function of f, then

6(z) = ¢ (=), 3
except at a set of points of the first category.

Let S. denote the set of all those points = at which (8) does not hold,
and such that N, is the first of the succession (1) of rational numbers
which is greater than 8 (z) and less than ¢(z). Then any point at which

¢ By a theorem of Cantor’s. Young's Theory of Sets of Points, p. 42.

t In the case of two independent variables we suppose the axes of coordinates to be
horizontal and vertical, with positive values of x; on the right, and positive values of z, above.
The parallels to the axes through any point P are then said to form the azial cross through P,
and divide the neighbourhood of P into four quadrants, of which the (+, +)-quadrant has P
as left-hand bottom corner. By a (+, +)-axial neighbourhood of P is meant any completely
open rectangle in this (+, +)-quadrant, bounded on the left and at the bottom by the axial
cross through P.

A similar notation enables us to distinguish axial neighbourhoods in the other quadrants.
When there are more variables, we can in like manner distinguish the various axial neighbour-
hoods at & point.
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(8) does not hold belongs to one, and only one, of the sets S,, so that the
set of points at which (3) does not hold is the sum S,4+S,+...4+S,+... of
the sets S,, and is therefore a set of the first category if S, is dense no-
where for every integer ». This we shall now prove to be the case.

Let d denote any completely open region. Then either in d there is
no point of S,, or there is such a point P. In the latter case

6(P) < N, < ¢(P).

Hence, by the definition of 6, there is a completely open region d’, with P
as one of its boundary points, sufficiently small to lie inside the region d,
and such that at every internal point of d’,

f@) < N,;
and therefore o) < N,y

go that no point internal to d' is a point of S,.

Thus, whatever region d be taken, there is a region internal to it con-
taining no points of the set S,; that is, the set S, is dense nowhere,
which proves the theorem.

Cor.—If there are two independent variables, and ¢.., ¢piy Py,
¢__, denote the associated upper limiting functions taken with respect to
the axial netghbourhoods at P, then )

Pr+ =Pr-=¢-+ =¢--= ¢,
except at a set of the first category.

5. In the case when there is only one independent variable, we can go
a step further and prove the theorem already referred to, that

¢L = ¢R’

except at a countable set of points.

For the small region d' of the preceding proof is then an interval with
P as end-point, so that P is an isolated point or only a one-sided limiting
point of the set S,. The set S, contains therefore no points which are
limiting points of the set on both sides, and is therefore a countable
set.* Hence the set S;+S;+...+8S-+..., at which (8) does not hold, is
also a countable set.

6. TeEoREM 3.—If f (r) @5 a function of two or more real variables x,
1ts limits at any point P obtained from any one of the axial neighbour.

* Young’s Theory of Sets of Points, p. 43, § 20, Cor.; the intervals of that corollary
being taken to be the black intervals of the set got by closing S,.
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hoods are the same as those obtained from any other axial neighbourhood,
unless P belongs to a certain set of the first category, depending on the
particular function f(z).

Let P be any point at which there is a limit obtained from one of the
axial neighbourhoods, say a (4, +)-limit, which is not a limit obtained
from some other, say not a (4, —)-limit. Then there is a gap in the
closed set of the (4, —)-limits at P, that is, there are two (4, —)-limits
G(P) and H(P), between which there do not lie any (4, —)-limits, while
there does lie at least one (4, -+)-limit.

This gap determines therefore a pair of integers (¢, 7), such that N; is
the first rational number of the succession (1), which is greater than G(P)
and less than H(P), and such that between it and H(P) there is at least
one (4, +)-limit ; while N; is the first rational number greater than N;
and less than H(P), and such that between it and N; there is at least one
(+, +)-limit.

Hence, if S;; denote the set of all those points P at which the
. particular pair of integers (7, 7) is so determined, every point of every one
of the sets S;,; for all integers ¢ and 7, is an unsymmetrical discontinuity
of f(z) at which there is a (4, +)-limit which is not at the same time a
(+, —)-limit. Conversely, every such unsymmetrical discontinuity be-
~ longs to at least one of the sets S; ;. Since there is precisely a countably
infinite number of the sets S; ;, it follows that these unsymmetrical dis-
continuities form a set of the first category, provided each set S;; is
dense nowhere. This we shall now prove to be the case.

For this purpose it is sufficient to shew that if a completely open
region contains any point P of S; ;, it contains & (4, —)-neighbourhood
of P free from points of S;;. This we shall prove by a reductio ad
absurdum.

Suppose there were a sequence of points P;, P, ... lying in the
(4, —)-neighbourhood of P, with P as limiting point, and each, as well
as P, belonging to the set S;;. Then there is a (+, +)-limit at P,
lying in the closed interval (N;, N;), and therefore a determinate one g(P,)
which is nearest to N; since such limits form a closed set.

Since g(P,) is a limit of f(x) at P,, there is a sequence of points along
which f(z) has at P, the unique limit g(P,), and since

N; < g(P'u) < st
we may commence this sequence at such a point that at every point of it
N;,—2™" <f($) < Nj+2_".

Moreover, since P, is a point of a (4, —)-neighbourhood of P, we muy
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take it that every point of this sequence belongs also to a (4, —)-neigh-
bourhood of P. Let this sequence be

Qn,l) Qﬂ,2: seey Qn,ry

Since P is the limiting point of the sequence P;, P,, ..., P,, ..., and
each point P, is the limiting point of the sequence

Qn,l’ Qn,Z: ey Qu,’r; ceey

we can find a point from each of these sequences, so as- to form a sequence,

Ql,rly Q?,r._," ey Qn,rns seey

having P as limiting point. As we pass along this sequence the limits of
f(x) which we obtain, being (4, —)-limits, cannot lie in the closed
interval (N;, N;). But, by the preceding inequality,

N‘i_2_n <f(Qn,’r,,) < N;'+2—n,
so that the limits in question cannot lie outside the interval (Ni, N;).
Thus the assumption that there is such a sequence P, P,, ... leads to an
tmpasse and must be abandoned.

Hence there must be a (4, —)-neighbourhood of P entirely free of
points of the set S; ;, which proves that S; ; is dense nowhere, and there-
fore that the set of points at which there is a (4, +)-limit which is not
a (4, —)-limit is a set of the first category.

Taking the axial quadrants in pairs, this shews that the points at
which the limits obtained from any one of the axial neighbourhoods are
not precisely the same as those obtained from any other, form a finite
number of sets of the first category, and therefore form a set of the first
category. Q.E.D.

7. The preceding theorem has been stated for functions of two or
more variables, and the proof has been given as if there were two variables.
It is clear, however, that the proof is valid for any number of dimensions,
only requiring a proper interpretation of the symbols (4, +) and (4, —),
or the substitution for them of other symbols.

In particular, if there is only a single independent variable we get, as
in § 5, an alternative proof of the theorem of the Lincei paper quoted in
the introduction.

Again, it was only for the sake of clearness that the neighbourhoods
used in defining the limits were taken to be axial neighbourhoods. The
argument would hold as it stands if we assumed any other law of neigh-
bourhoods by which the forms of neighbourhood at any point are non-
overlapping.
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In this case, in fact, there will be a finite or countable infinite set of
forms of neighbourhood at a point, just as there were four axial neighbour-
hoods at a point in a plane. Hence, by the preceding proof, taking the
neighbourhoods two by two, we get a countably infinite set of sets of the
first category, that is, a set of the first category, of exceptional points.

In particular, let us choose the following law of neighbourhoods :—

Let a circle be drawn with P as centre (see
figure), whose diameter in a fixed direction is XY.
Draw two other circles with the same radius,
touching XY at P. We thus determine four
neighbourhoods at P, numbered 1, 2, 8, and 4 in
the figure. Sinee the limits obtained from the
neighbourhood 4 are the same asin the neighbour-
hoods 1, 2, and 3, except at a certain set of the
first category, it follows that excepting only at the points of a certain set
of the first category, all the limits of a function of two variables at any
point may be obtained by means of sequences of points tangential at the
point to a fized direction, previously chosen.

This theorem is evidently true for functions of any number of variables,
in the case of three variables we need only rotate the accompanying figure
about the line XY to get suitably forms of neighbourhood, and similarly
we can define suitable forms of neighbourhood when there are more
variables.




