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1. The differential equation of the hypergeometric series may be written

[©+a,)©+aa)- -i SO+p-1)] y = 0,

where 9 = x—, or
dx

P—(l-\-al+a2)x dji _
x) dx x(l—x)

It is known to be satisfied by the hypergeometric series

F(a a - o - x ) -Jf ( a l f a2, P , x ) -

_ 0
J

^ ^ ^ T{p+n) x ,

which is convergent when \x\ < 1.
This series was first discussed in detail by Gauss'11 in 1812. Kummer'2', in 1836, obtained

the twenty-four solutions of the hypergeometric equation usually given in the text-books by
a process which can be traced back to Euler.'3) These twenty-four solutions are reducible to
six sets of four, each four being identical functions differently expressed. The six sets can be
divided into pairs Ylt Y«; Y3t Y4; Yb, Y6, each pair corresponding respectively to one of the
three singularities 0, 1, co of the differential equation.

Riemann,(4> in 1857, extended the theory by introducing his P-function, and discussed the
general theory of transformation of the variable. Riemann did not connect his theory directly
with that of Rummer, and it was reserved for Thomae,(5; in 1879, to work out in detail from, the
theory of linear differential equations the relations which connect any one of the twenty-four
.solutions of the hypergeometric equation with the two essentially different solutions which are
valid in the neighbourhood of either of the singularities not associated with, the particular
solution chosen.

The differential equation for Riemann's P-function was first given by Papperitz,(6J in 1S85,
in the form

^1L + \ lnJL—?'. + i -f l -f l ' + l-y-y')dy
dx* I x — a x — b x-c \ dx

1 x — a

wherein a + a' + B + 3' + y + y — 1.

x — b
y

] (x — a){x — b)(x— c)
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In the supplement(7) to Riemann's collected works published in 1902, some brief extracts
from a course of lectures delivered by Riemann in 1858-1859 are given. In these lectures
Riemann worked from integrals of the type

sa(l-s)b(l-zs)eds

and commenced the development of the theory of polyhedral and elliptic-modular functions.
A synopsis of the lectures is'given in the volume (pp. 109, 110), and it is a matter for grave
regret that they have not been published in extenso.

Klein'8 contribution'^ to the theory with which the present paper is immediately concerned
consists in taking Pochhammer's circuit(9) (which seems itself to have been found among
Riemann's manuscripts) and giving a very elegant form to integrals of the type

x' (1 -x)fi J *" (1 - «)* (1 -xs)cds (1)

by means of homogeneous variables.

2. It might be thought that, when the theory had been discussed with such vigour, there
was no room for a new development.

But anyone who has long worked with integrals of the type (1) taken round Pochhammer's!
circuits is well acquainted with the labour which is involved in an accurate determination of the
many-valued functions which occur. Moreover, Riemann's P-function was only denned by him
after the singularities a, b, c had been transformed to 0, 1, and co and for the region of the plane
for which I(x) is positive. [Throughout this paper l{x) will be used to denote the imaginary
part of x and H(x) the real part of a;.] It is obviously of importance to give a definition
which will hold for all values of x when the singularities have their most general position.

In this paper I shew that it is possible to meet both these objections or requirements and
to simplify substantially the whole theory by means of contour integrals involving gamma functions
of the variable of integration. I t is possible to write down twenty-four contour integrals wlu'ch
satisfy the hypergeometric equation. A typical integral is

- _L f r h + "1 rj5?+i)J^Zf) 1-vYds
2m} rip + t) v '

wherein |arg(-a;) |* < ir, and the contour of the integral is parallel to the imaginary axis
with loops, if necessary to ensure that the points 0, 1, 2, ... are to the right and the points
' - O ] , - a i - 1 , - O j - 2 , ... are to the left of the contour. This integral is a valid solution
I — a 2 , — a n — 1 , — 0 2 — 2 , . . .

tor general values of \x\ whether greater than, equal to, or less than unity.

The complete set of integrals I denote by / , , J2, ..., In; l{, ..., I\>- Substantially
[r = l'r, and from the set / , , ..., JT12 we can derive six sets of pairs which are substantially
equal. We thus get four times over the fundamental solutions

expressed as contour integrals of the specified type.
Now, by connecting any of these solutions Y with the two solutions which arise at one of

the two singularities not associated with Y, we have obviously twelve linear relations between
Yu Y2, ..., Y6.

* In this way we propose to write briefly the modulus of the argument (or amplitude)
of —x.
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Denoting a linear relation between a, b, c by (a, b, c) •• 0, these twelve relations will be

(*i, Y5,

(Yt, r5.

(Yl} Y»

(Yu Yt,

(Yit rs,

(j- Y,,

Y6) = 0,

Y6) - 0,

Ys) - 0,

Y6) = 0,

y«) = o,

Y6) = 0,

L ;

II.;

III.;

IV.;

V.;

VI.;

(Yz,

(Ya,

(Yu

(Yit

(Yu

(Yu

YA,

Y4,

Y3,

Y3,

Y»

Y»

Yt)

Y6)

Yt)

Y4)

Y3)

Y4)

= 0,

= 0,

= 0,

-o,
= 0,

= o,

VIL ;
VIII.;

IX.;

X.;

XL;

XII.;

Now the advantage of the contour integrals which I have introduced is, that the contour
integral Is or the alternative contour integral 1 R gives at once, by an almost obvious trans-
formation, the relation (It). The relations I. , ..., XI I . thus arise almost intuitively.

3. "We can apply the same process to Biemann's P-function.
Since Papperitz's equation can be transformed into Rummer's, we can, from any contour

integral which satisfies the latter equation, deduce a contour integral which satisfies Papperitz's
equation for all values of | x | on a suitably dissected plane.

A typical integral obtained in this way is

2m\x — a b-cj J T(l— a'—y + s) \ c — ax — bi—a'—y + s)

wherein &rg( — ^ ^ t^—
\ c—a x—b

and the contour of the integral is parallel to the imaginary axis with loops if necessary to ensure
that o + 7, 0 + 7 + 1 , ... are to the right and / — 0, —$ — l, ... are to the left of the contour.

1 - 0 ' , -ff-l, ...
This integral, by an obvious interchange of / a, b, c, can take tweuty-four different

'a ' , P', y'
forms. The twenty-four solutions of Papperitz's equation are thus in evidence. And the
relations between them and Riemann's functions Pa, Pa>; Pe, Pp; Py, PY; and Riemann's
relations between the latter, arise with complete symmetry.*

4. The idea of taking contour integrals involving gamma functions in the subject of in-

tegration appears to be due to Pincherle,(10) who has been followed by Mellin,'10 though the type

of contour and its use can be traced back to Riemann.'1'' The author has made the method

fundamental in several recent investigations/1^
In conclusion, it may be observed that the contour integrals introduced in this paper are

valid when any of the quantities a1( a2, p are integers or differ by integers, and in the case of
Riemann's P-function, when a—a', 0 - /3 ' , or 7 — 7' are integers. The corresponding solutions,
even when they involve logarithmic terms, are readily obtained. The results, in general, agree

* Some of the relations I . -XII . are given in Chapter vi. of Forsyth's Treatise on Differential
Equations (Third Edition, London, 1903); but the forms there given are not in complete accord with
the forms obtained in this paper. The twenty-four solutions of Papperitz's equation are given in
Whittaker's Course of Modern Analysis, but the forms which he gives are not in complete accord
with the forms given by Thomae (loc. cit., p. 329). The fact that many-valued functions are
involved in the expressions which Whittaker gives would be an obstacle in the way of determining
Riemann's coefficients ay, cy by the method which he suggests.



144 DR. E. W. BARNES [Sept. 16,

with those of Lindelof.lU) As an example of this particularization, the differential equation of
the quarter-periods of the Jacobian elliptic functions is discussed in Part IIL

(1) Gauss, Gbttinger Commmtationes Recentiores (1812), T. n . ; Ges. Werke, T. in., pp. 123-163.
(2) Kummer, Crelle (1836), T. xv., pp. 39-83 and 127-172.
(3) Euler. Nova Acta Acad. Petropol, T. XII. (1778), p. 58.
(4) Riemann, Abh. d. Ges. d. Wiss. zu Gottingen, T. vn. (1857) ; Mathematische Werke (2te

Auf.), (18921, pp. 67 ct seq.
(5) Thomae, Crelle, T. LXXXVII. (1879), pp. 222-349, especially pp. 306-333.
(6) Papperitz, Mathematische Annalen, T. xxv. (1885), p. 213.
(7) Riemaun, Mathematische Werke : Nachtriige, Edited by Noether and Wirtinger (1902),

pp. 69-94.
(8) Klein, Vorlesungen iiber die hypergeometrische Funktion (lithographed), G-ottingen (1894);

Mathematische Annalen (1891), T. xxxvin., pp. 144-152.
(9) Pochhammer, Mathematische Annalen, T. xxxv. (1890), pp. 470-494.
(10) Pincherle, Atti d. R. Accademia del Lincei, Series iv., Rendiconti, Vol. iv., pp. 694-700

and 792-799.
(11) Mellin, Acta Societatis Scieniiarum Fe-nnicae (1895), T. xx., No. 12, p. 78.
(12) Riemann, Mathematische Werke (1892), pp. 145-147, or (Euvres Mathematiques (1898),

pp. 166, 167.
(13) Barnes, Proceedings of the London Mathematical Society (1905), Ser. 2, Vol. 3, pp. 253-272 ;

Philosophical Transactions of the Royal Society, (A) (1906), Vol. ccvi., pp. 249-297 ; Quarterly
Journal of Mathematics (1907), Vol. xxxvin., pp. 108-116 and pp. 116-140.

(14) Lindelof, Acta Societatis Scientiarum Fennicae (1893), T. xix., No. 1, pp. 1-31.

PART I.

The ordinary Hypergeometric Equation.
5. We take the differential equation of the ordinary hypergeometric

functions in the form

O + p ] / = 0,
x J

where x — = B. We shall refer to this as Kummer's equation. It may

be written d?y . p — (a1-t-a2-f-l)a; dy _ atct^ ft

dx2 x(l—x) dx x(l-x)V ~ '

Suppose now that x has any value, real or complex, such that
| arg (—a;) | < TT.

Then I say that the integrals

+ s ) r ( + g ) / w Yd
( K > '~ 27T.J T{p+8)

_ _ 1 [ !*(«!+«) T(a2+s) T(l-p-s) .
~ 27, J TO+^j ( x)

ra-«2-S)
)T{\-p-s)
ra-ai-.s)
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exist and are solutions of Kummer's equation. Each integral is taken
along a contour which is parallel to the imaginary axis with loops if
necessary to ensure that those sequences of poles of the respective sub-
jects of integration which are ultimately positive are to the right of the
contour, while those sequences which are ultimately negative lie to the
left.

In the first place, the integrals exist. For, when s tends to infinity
along a parallel to the imaginary axis in the finite part of the plane

tends uniformly to zero if s = u-\-iv, where u and v are real and e > 0.
The integrals therefore exist if | arg (—x)\ < TT.

In the second place, the integrals satisfy Kummer's equation. Take,
for instance, the integral Ix. We may obviously differentiate it with
regard to x by differentiating under the sign of integration.

Hence

= - ^ J
_ _ i f Tbi+s) rfa+g) rg-8)
" 2^J T{p+8-l)

taken along a contour which is derived from the former by moving it
through a distance unity in a positive direction parallel to the real axis.

The original contour was evidently so chosen that we may take the
last integral along the original contour: we may therefore write it

i r
27TI J T(p-\-s) ax

Thus the integral satisfies Kummer's equation.
Evidently an almost identical proof will apply to the other integrals

^2> -*3> - M '

6. Let us denote the hypergeometric series

ai«2 « i ai(ai+l)a2(«a+l) _a .
l./o 1.2./0. + 1

by F{a1,ai; p; x).
The series is convergent when | x \ < 1. When | x \ > 1,

F {av a2; p ; x}

represents the continuation of the function represented by the series
when \x \ < 1.

SEB. 2. VOL. 6. NO. 984.
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We may now shew that, when \x\ < 1, F\alf a2; p; x\ is a solution
of Kummer's equation and that, when \x | > 1, the function F\al, a2; p; x]
can be expressed in the form

- a , ; l/x\

a a - a i ; I/a}, (I.)
— a2)

provided |arg(—z)| < 7r. This proviso uniquely prescribes (—z)~ai and
(—x)~az, and indicates that F\alt a2; p; x\ outside the circle |a;| = l
needs a cross-cut from 1 to + °° along the real axis to make it one-valued.

Take the integral

( x)d8t

wherein |arg(—x)\ < IT, and suppose that \x\ < 1. Then we may bend
the contour of the integral round until it embraces the positive half of
the real axis and encloses the poles of T(—s) but no other poles of the
subject of integration. And by the asymptotic expansion of the gamma
function this alteration of the contour will not affect the value of the
integral, provided \x \ < 1.

But, by Cauchy's theorem, the value of the new integral is given by
the sum of the residues within the contour. The residue of T(—s) at
s = n is (—)n~xln\. We therefore have

n) ( - r , >«
nT{ )}

Return to the original integral Ix and suppose that | r c | > l . Then
we may bend the contour of the integral round till it becomes a contour
which encloses the poles of rVi+s ) and r(a2-f-s), but not those of F(—s).

By Cauchy's theory of residues we get, if | x \ > 1,

ix = £ £ ffi^ r(
=o n\ l (p—a1—n)

+ a similar series obtained by interchanging ax and a2

= (_a.)-air(a,-a1)r(a1) ^ R 1 + l + a . -a , ; 1/x
1 (p — ax)

) p {

— a2)

By equating the two values of Ix we obtain the given theorem.
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7. We may evidently apply the previous method to the integrals
J2, Is, I4 of § 5.

Prom 72
 w e s e e t h ^ ^ne series which represents

(-x)l-PF\l + ai-p, l + a2-p; 2-p; x\

is a solution of Rummer's equation, when |x | < 1, and that this function
can, when \x\ > 1 and |arg(—x)\ < ir, be expressed in the form

a2—p)

: ^ a2-aa; l\x\. (II.)

From J3 we see that the series which represents

(—x)-aiF{av l + at—p; 1 + ^ — a2 ; 1/x}
is a solution of Rummer's equation when | x \ >• 1, and that this function

can, when \x\ < 1 and |arg(—x)\ < ir, be expressed in the form

- /> ; 2 - p ; «(. (III.)

From J4 we see that the series which represents

(—x)~aiF{ a2, l + a2—p; l + a2—aiJ l/*[

is a solution of Rummer's equation when \x\ > 1, and that this function
<jan, when \x\ <. 1 and |arg(—x)\ < ir, be expressed in the form

8. We may similarly shew that the integrals

i - _ i
5 " 2 -

^ J " ( } '
1)ds'

- x f T(p-ai-a2-s) T(ai+8) T(-s)

— 1 f r(p —at—aa—s)
— ~ o— FT

g) , ..,. ,

27r< J .1 (1 — a{ — s)
2 L
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which exist when |arg (x — 1) | < ir for all values of \x\, are solutions of
Rummer's equation. These integrals, when, treated in the manner of
§ 6, lead to the relations

F {av a2; l-f-aj+ag—p; l—x\

— a2>
(aa) 1 (1 - | -a 2 —p) { 1—a;

-ai— a2;

— r ( a 2 — a ^ r C l + p —ai—a3) / 1N_ai ^ f

(x-l)-aiF\p—a2, al5 1—aa+aj; - M

F(p — ai—a

\U/ ~~ X)

(VI.)

and ( V I L )

1—X)

3
(vnr.)

Each of the series which represents any one of the four hypergeometric
functions involved in these formulae is, when it is convergent, a solution
of Rummer's equation. The many-valued functions involved are limited
by the cross-cut denned by | arg (re—1) | < TT.

9. In a similar manner we see that the integrals

T - L.(i _* ) - . ! f
i 9 ~ 2 ( 1 X) )

(
T(p + s) \l-x

[
J ra+«)
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2xt J r(l—/0-N2—s) \1—as/

7 - * n rw, [r(

are solutions of Kummer's equation which exist for all values of | x \
when |arg \xj{l—x)\\ <; ir. These integrals are therefore defined for the
whole plane with a cross-cut along the entire real axis except between
0 and 1. These integrals, when treated in the manner of § 6, lead to
the relations

Tip—«i—a2)r(/o) _a i 7 ?( -, , i _j_ _i_ x —
1 (p—aJLip—as) •. i;

, r ( a 1 + a 2 f̂i) r(/0) .- _ xp-ax-ao ra2-p
rCcti) I (a.2)

X.F-1 — a2, p—a.2; l+/o—<*!—a.,; , (IX.)
\ X )

- a * 1 + a ! - / , ; 2—/,;

F ( p — a , — a o ) r ( 2 — p ) _a, 7,-7(1
r /1 "vrn —\ * 1 F - , 1 — / + ! , j ; p + ^ K1(1—a!)l(l — atf ( x )

XF-p—a2, 1—a2; L-hp—«i—a-2

f r > » — u
(1 ^r(a1)T(a2)

, (XL)

\l~a.2, p-a2; l\p-^1-^ti; *-±l

- r q — p ) H 1 2 ) n tt,Fn_rt.n.
1 (1—ax) 1(1 — 0.2) t J: — 1)

• T(p1) r q h p a ! ^ , r\p-«i-i
l ( a ) l ( p )

—p-K*!, l - a 2 ; ' 2 — p ; - ^ [ . (XII.)
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10. We have now given twelve integrals which are solutions of
Kummer's equation.

If we consider the integrals Ix and I9, we see that they both give
rise to hypergeometric series convergent near x = 0 of the same (zero)
exponent. By adjustment of the constant multiplier, we therefore see that

— a^ = Z9r(a2)

or F[alt a3; p; x) = (1 — x)~<*F a1? p — a2; p; —— -. (1)

Similarly we obtain other relations set forth in § 13 infra.

11. All the twenty-four solutions of Kummer's equation can now be
displayed as six sets of four equivalent solutions.

For, from the relation (1) of § 10, we have

(1—a)—'FJO!, p — aj; p; ^ L j - = F {av a2; p; x\•:

and therefore by symmetry each is equal to

Take now the equality

and in it put x for x/(x—l), a2 for p —a2, and we get

F\ai, a.>; p', x\ = (1—x)p~a i~a-F\p — a ,̂ /? — a.^', p\ ic, .

We therefore have the first set of four equivalent solutions :

Yx = F\alf a2; p; x\ = (1— xy~ay~aiF{p — alt p — a2; p; x\

= (1— x)-^F^alt p — a2; p; ^-j}

= (1—v)-a'F\a2, p—a,; p; —^r, • (A)
I x — 1'

Change ax into l+ax—p, a2 into l+a 2 —p; p into 2—p, and we get the
second set

Y2 = x^'FU + ai-p, 1+aa-p; 2-p; *[

; 2—p; _

(B)

: —1)
i

' x-ii*
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Thus Yt and Ya are the two linearly independent solutions of Kummer's
equation valid near x =-0.

If Ya and. Y4 are the two linearly independent solutions valid near
x = \> we have from (A), by obvious transformations,

Ya = F{alt a2; l-^-a^cui—p;

x-1)

(C)

— (1—«r-ai—»jFj/>—aj, /t>—«2; l+-p—a2 — a2; 1—a}

-^-ai; l-x\

-az, 1—03; ^ ^

^-aa ; ^ p } . (D)

And, finally, if Y5 and Y6 are the two linearly independent solutions valid
near x = oo , we have

Y5 =-x~aiF{a1, l+«i—p; 1-Ni—og; l/x\

= (x—l)-*>F\a1,
l ; 1+a,—a,; j ^ } , (E)

Y6 = x-°2Fja

=>(ar—I)"0* F ] 03, p—«!;

—/>; 1 + 03—«iJ

We assume that in each case the principal values (whose argument lies
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between, i m r ) of n-th powers of x and (x — 1) are taken, where n is any
quantity.

12. An examination of the transformation formulae I., ..., XII. shews
us that these formulae are precisely the relations between the solutions
Ylt ..., 76 set forth in §2.

Thus the relation (I.) may be written

Y
2 1 " T{aJT(p-ai)

also
y eT«(l-p) = F(q2—ai)F(2-p) ±nai

r ( i ) r a + ) e

±mat Y . r(/))r(a1—og) ±iria2

II.
i^x _. rq—p) rq+a!—03) y , r(/>—i) rq—

2 ^ T(ai)T(P-aj
ra.

.i^x _. r q p ) rq+a!03) y , r(/>i) rqg 2 +q i ) .T^a-^y
6 r q - t x ^ r q + a ^ ) 2 1 ^ T(a)T(Paj

y fi±irux2 _
6 . T(l-a1)T(l-{-a2-p) T(ajT(p-ai)

IV.
y _ r(a2—at) rCat+ag—p) y • Tfa—aJ r(a1 + aB—p) y v

3 ~ r(«2)rq+a2-p) 5 "̂ 're

—qt—a2) y , Tfa
) 2B"1"

VI.
y _ F(p—ai—0-2) F(l —aa-h»1) y , F(p—aj Y(l— a2+a1) .±wi(p-ai-a2)y
2 5 r c ^ r q ^ ^ ^ r c ^ r q + p - a i - a , ) 6 x»

VIE
—a2) 17(1 —y

~ r(p-a1)rq-«1) x»^ r(«2)
VIII.

_ F(p—ai—a2)r(p) y , r(q14-q2—p)T(p) y TY

_ r q—p) r (i —p -hq! +<*2) y , r(i—p+Qi+qg) r (p—p v Y T
Xl* T(a) r(a)

y — r(p—a! —qg) F(2—p) y , r(q1+q2—p) F(2—p)
l 2~ r a o r a ) 2 8 " r r q + ) r q +

V — F(l—p) r q + /o—ax — a^ y • F(p —y y
a,) ^ ^ F(p-« 1 )F(p-a 2 ) 2a-

In each case the upper or lower sign is taken as I(x) is positive or negative.
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We have, however, hitherto only written down the integrals which lead
directly to twelve of the twenty-four solutions of Kummer's equation.

We now proceed, to give the other set of twelve, and we number them
in such a way that TR, when treated in the manner of § 6, leads to the
relation CR). The integrals are

) r ( p a + 5 ) r ( p a + S )
/ ; = ( i a ; r (

2xt J 1 (p+s)

2

J r ( + ) ( ] '

( X) St

1 (/o —a2—s)

i r i - f l f r (—g) rg—p+a f l 4 - s ) r (pa !aa6) , i y ,
—— x \ = y \x x.) as,
2TTI J 1 (p — ax—s)

-rt

10

I'n

12

1
ATTI

JLiri

1 ..

- a , f
J

x _ f

f
1 ^)

rg+«)
-a, [T(-s)T(a!i+s)T(l-p-s) I x

x y
i^/

rg-a2-s) \1—x

13. By considering the hypergeometric series to which the integrals
give rise, we obtain an extension of the equalities indicated in § 10.



154 DR. E. W. BARNES [Sept_16,

Thus, if Jv ..., J6 be suitable multiples of Ylt ..., Y6 respectively, we
have

— aJ T(p—a2) =

J9 =

-a,) T(p-aj =^I\

J5 =

In each case the upper or lower sign is taken as I(x) is +-: when x
is real we have a point on one of the various, systems of cross-cuts by
which the integrals Ilt ..., lVi; I[, ..., I[2, are limited, and therefore some
of the formulae are illusory.

14. We have now obtained the twenty-four solutions of Kummer's
equation, and we have found.the relations, between each, of the six sets of
four which are substantially the same-,, and also the relations connecting.
any three of the six. fundamental solutions. Our transformations (I.), •- ,
(XII.) are all, however, transformations by which, substantially the variabla
is changed into its reciprocal. We now proceed to shew that the con-
tour integrals can be so modified as to give directly the change of
x into 1 —x ; and, in fact, any other of the six transformations

x, I/as, 1-x, 1/(1—tc), xl(x-l), (x-l)/x.

And, further, we will obtain directly from the theory of the contour
integrals the relations given in § 13.

For this purpose we need a lemma which proves to be of fundamental
importance in the theory.

15. LEMMA.—If alf a%, /3V /32 be any complex quantities of finite
modulus, certain special cases excepted, and if the contour of the integral
be parallel to the imaginary axis with loops if necessary to ensure that
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positive sequences of poles of the subject of integration lie to the right of
the contour and negative sequences to the left,

- - L j T(ai+s) r(a2+s) r(/3x-s) T(fa-

It is evident from the asymptotic expansion of the gamma function
that, unless <xv a2, /31} /32 have such relations that the contour cannot be
drawn, the integral will exist and have a definite finite value.

When alt a2, (3V /32 are such that JB(1—ax—a2—fa—(3%) > 0, the
contour of the integral can be bent round so as to include negative
sequences of poles of the subject of integration* and by Cauchy's theorem
it will be equal to

» ( )•'• ^

•it=o n!
00 (

_1_ y* i
11=0 n

" ' ' ' ' •« ! — a.2; 1 •

By Gauss's theorem this is equal to

-|- a similar expression obtained by interchanging ax and

{simrCagH-/?!) sin ̂ (^4-^2) — sin ir^+p^ sin TT(UI-\-/3^ \
7T Sin TT t̂t! —

— T(l—Cbx — C&2 — fa —

s i n
x

We have limited ourselves by the restriction that

—(*!—a2— /31—jSa) > 0.

But the original integral and the final expression are, except for isolated
points, analytic functions of alt 02, fiv and (32. The theorem is there-
fore true in general.
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16. We now proceed to shew that, if Jx denote the integral

- <r- \ T(-s) Tip-^-^-s) r(a1+s) T(a2+s)a-x)sds,
ATTl Jc

wherein | arg (1—a;) | < 2TT, and the contour G is parallel to the imaginary
axis and passes between the sequences of positive and negative poles of
the subject of integration, then

wliere Jj is the integral defined in § 5.
I have previously shewn* that, if D be a contour parallel to the

imaginary axis with, loops leaving the positive sequence of poles 0, 1, 2 , . . .
on the right and the negative sequence s, s—1, s—2,— on the left,

wherein. | arg(—a;) | < ir,

We therefore have

| arg(l—x) \ <

X T(<p— s) T(

Now we may invert the order of integration, for
each integraL is absolutely and uniformly con-
vergent. We may conveniently take the contours
as in the figure. Hence we have

— x f d<f>.

X—-i-f T(p-a1-a.,-s)r(<l>-s)
£TTt JC

f
JD

_

(by the lemma, of § 15) .

In the investigation we have assumed that

| arg (—x) | < ir

which gives the cross-cut necessary to define lv

Quarterly Journal of Mathematics, Vol. xxxvnr., pp. 108-116.
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This includes the condition | arg(l—x)\ < 7r. We notice that the
integral Jx represents the function over the extended range

|arg(l— x)\ < 2TT.

17. Suppose now that | l—x\ < 1. We may bend round the contour
of the integral J1 so as to include the positive sequences of poles of the
subject of integration, and we therefore obtain, by Cauchy's theorem,

-P 1 al> <h > P y x \

- p ; l-x\

-aJ T(p-*2)

or F{alfa2; p;x\

This is a direct transformation from argument a; to argument {1—x). It
is equivalent to our old relation (IX.) of § 12.

Suppose that similarly 11 —x \ > 1 and we bend the contour of the
integral Jx round to the left so as to include the negative sequences of
poles of the subject of integration^ we obtain

F\ava2; p ; x \

)}•

This is equivalent to our old relation. (L) of §
The formula thus gives a direct transformation from x to 1/(1—a;).

18. We can now shew that the integral Jx gives rise directly to the
set of equalities obtained indirectly in § 13 between J1} 79, I[, 1 .̂ We
have already seen that Jx =• T(p—ax) T(p—a^Iv

Again, if in the integral we write s—a!—ct%-\-p for s, it becomes

X

This is the same integral as the former when ax is replaced by p—ax and
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«a by p—a2. The transformation of § 16 therefore gives us

Similarly, by an obvious change of the variable, Jx may be written

- ^ - s ) r(ax-f s) r f o -

and, by symmetry, J^ = Tia^ T(p—ac,)I'9.

We thus have by direct transformation the first set of equalities of § 13,

or, if we prefer so to regard it, the equalities (A) of § 11.

19. We can similarly obtain by direct transformation the other five
sets of equalities of § 13, and all possible transformations and relations
between three integrals of the system by means of the analogous integrals

-h = ~ ̂  (-a)1

= -^rt\ r(-s) T(l-p-s

•i\ =•- ~t (x-iy-*— j T(-s) TQ-p-8) Tip-^+s) T(p-aa+s)3e'd8,

(-s) T(P-a1-a2-s)

<h =-<T- (-^)~a2 f T(-s) T(p-al-a.i-s)

The general theory of the hypergeometric solutions of Kummer's
equation is evidently complete. When the quantities alf 03, p or their
differences are integers, the integrals are still valid representations of the
solutions even though the hypergeometric series degenerate into different
forms involving logarithmic terms. The case when p = 1, ^ = a2 = ^
is discussed later : it gives rise to the quarter-periods of the Jacobian
elliptic functions.
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We now proceed to an analogous development of the Riemann
P-functions, where the greater symmetry of the theory shews the
elegance of Riemann's generalisation.

PART II.

The Riemann P-Functions.

20. The differential equation for Riemann's P-function is, in the form
due to Papperitz,*

^ f 1 -q -q ' l - ]8-)8 ' j l - y - y ' | dy
dxl I x—a x—b x—c ) dx

, {aa'{a-b){a-c) , /3(3'(b-c)(b-a) , yy'(c-a)(c-b)\
{ x — a x — b x — c j

JL
(x—a)(x— 6) (x—c)

where a+a'+j3+/3'+y+y' = 1.

Put z = x-ac-b
x—bc—a

and we obtain

= 0,

Take now ax =

a2 =

/a = 1 + a—a',

SO that axa2 = j8j8'-+(a+y)(l —a'—y'),

since a+a'+)8+i8'+y+y' = 1,

and we have j ^ + c—v T, x \ ^ i-2—. = 0.
d^ z{\—z) dz z(l—z)

This is the ordinary equation of the hypergeometric function, and we
have seen that a solution is

L f r(a1+s)r(aa+s)
T(P+s)

when | arg (—z) \ < TT.

* Papperitz, Mathemalische Aunalen, T; xxv., p . U13.
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Hence a solution of Papperitz's equation is

L (x~c b-ay [r(a+y-s)T(l3+s)T(/3r+s) ( x-a c-bV ,
ZinKx-ab-c) J r(l-a'-y+s) V c-a x-b) '

x—a c—b
when arg — c—a x—b

< TV.

21. Leaving for the present the question of the precise determination
- ,, - ,. /x—cb—a\y , / x—ac—bV , , .

of the functions I -, and r we can, by making
\x—a b—cl \ c—a x—b/ J 6

all possible symmetrical interchanges in this solution, obtain the twenty-
four integrals which satisfy Papperitz's equation. These we now proceed
to indicate, denoting them by K with such suffixes and accents as corre-
spond in order to the twenty-four solutions (A),..., (F) (§ 11) of Rummer's
equation when a = 0, 6 = o o , c = 1, and when av a2, p are connected
with a, /3, y, a', /?', y' by the relations of the previous paragraph, coupled
with a = 0, y = 0. Thus we have a = 0, a' = 1—p, /3 = a1} /3' = a2,
y = 0, y' = p—aj—a2. We thus write down the integrals in groups of
four, each of which will be subsequently proved to be substantially the
same functions of x. And in brackets we indicate the corresponding solu-
tion I of the more special case.

Kl = - - L ('•=z£=2Y \ r(a+y
2-7rt \x—a b—c/ J i ( l — a ' — y+s)

c—a x—b)

2TTI \x — a b — c) J i ( l — a' — y -\-s)

bc—a\p[ T(a-\-fi—s)
ac — b) jT(l — a'—p-\-s)

c—a x — bj
• (A)

i /«=»«!=•) ' f r .^
( a+^'-^ .r(Y+«)r(y+5)

4 2Tri\x — ac — b) J F(l —a'—p'+s)

If we interchange a and a' in this set we get in order K5, K6, 2T7, KB>
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which correspond respectively to I2,12,11Q, /Jo and form a set (B) of four
integrals.

Interchange in (A) y and a, y' and a', b and c, and we get a set (C) of
four integrals Kg, K1Q, Ku, K12 which correspond to I5, To, In, I'n re-
spectively.

Interchange y and y' in the set (C) and we get the set (D) of four
integrals K13, Ku, K15, K16 which correspond to J6, F6, J12, I'n-

Interchange in (A) a and b, a and /3, a' and /3\ and we get the set (E)
of four integrals Klv K18, K19, i£20 which correspond to I3, T$, Ilt Ii>

Finally, interchanging /3 and /3' in (E) we get the set (F) of four
integrals K21, K^, K&, K^ which correspond to I4, Ii, I8, T8.

22. We have now to give an accurate definition of the many-valued
functions which occur in the previous integrals Klt ..., K2±-

Represent the three quantities a, b, c by points A, B, G by the usual
Argand diagram, and, as in Riemann's memoir, let us assume that these
points are so placed that, when we go round the circle through A, B, and C
in a positive counter-clockwise direction, we pass from A to G to B.

We now define \(x—c)/(x—a)\y by a cross-cut along the arc AC. (By
this we mean the arc which excludes the point B: the other arc will be
denoted by ABC.) When x lies within the circle, arg {{x—c)/(x—a) \ is
taken,to lie between TT-\-B, its value just inside the arc AC, and B, its
value on the arc ABC. Whenx lies outside the circle, arg \{x—c)/(x—a)}
is taken to lie between B, its value on the arc ABC, and B—TT, its value
just outside the arc^C.

The argument of -, is thus B. Hence -, has a cross-cut
0 o—a 0—c x—a

along AC. Its argument ranges from IT just within AC to zero on ABCy

and to —7r just outside AC.

Similarly —r has a cross-cut along BA, and its argument

ranges from ir just within BA to zero on BGA and to —ir just outside

BA. And j has a cross-cut along CB, and its argument ranges
a—b x—c

from 7r just within CB to zero on CAB and to —TT just outside GB.
Further, in the preceding integrals we always take such values of

( X^~~OL C^~b\s

r I and similar terms as have arguments less than TT. Hence
c—a x — bj °
/ x—a c—b\ x—a c—b —TT ,. within ,, . ,

a r » ( \ = a rg _ as x lies ... , the circle.
\ c — ax — bj ° c — a x — b -\-ir without

SKR. 2. VOL. 6. NO. 985. M
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Hence ; has a cross-cut along the arc ACB, and the value of
c—a x — b °

its argument ranges from —x just Nvithin ACB to zero on AB, and to ir
just outside AGB. The argument of the reciprocal of this expression is
minus the argument of the expression. Similar definitions apply to the
other similar terms which intervene in the integrals defined in the
previous paragraph.

We see that, with such definitions,

x — a , x— b , x—c 2-7T within ) ,, . ,
arg r + a r g harg = the circle;

x — b x—c x—a 0 without J
, , (x—ac—bY(x — ba—c\a( x — cb—a\a

 t
and also =•) : I — - = 1,

\c—a x — b) \a—b x—c/ \ b — c x—a/
whether x be within or without the circle, for the three terms in order
have cross-cuts along AB, BC, and ABC, and these cross-cuts neutralise
one another.

For brevity we shall write
x — b a—c x — c b — a x — a c—b

u = , , v = z , w =a—b x — c b—c x—a c—a x—b

The Functions Pa, Pa; ..., Py.

23. By § 21 it is evident that there is a solution of Papperitz' equation
which near x = a admits an expansion of the form

This solution when | arg w \ < ir we denote by Pa. Thus Pa is defined
with respect to a cross-cut along the arc AB : on the inside of this arc
arg w = 7T, on the outside it is — 7r, and on the arc ACB it is zero.

From the theory of the differential equation we know that equally Pa

must admit near x = a an expansion in powers of

- . x—ab—c
l/» = 1 .

b—ax—c
with index a at x = a. Now va has a cross-cut along AC and arg?; ranges
from IT just within AC to zero on ABC, and then to it just outside AC.
Hence, if |arg(—1/v) \ < -K, (—1/v)0- has a cross-cut along ABC, and
arg(—1/y) ranges from IT just within ABC to zero on^C, and then to —TT
just outside ABC. Hence the arguments of wa and (—l/v)a have the
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same range, and near x = a they have the same cross-cut. Also

(—l/v)a _ (c—ax — b\a

wa \c—x a—b/

and this ratio is unity at x = a. Therefore Pa may be equally expressed
in the form ,

wherein | arg (—1/v) \ < . ir. By writing a! for a we derive Po< from Po.
Similarly Pp near x = b has a cross-cut along the arc BC and may be

expressed in either of the forms

ifi {l-\-E1u-\-E2u
2-\-...{-, wherein | arg^ | < ir;

or (— 1/wf {1+FJio+FJtu2+...), wherein | arg (—l/io) \ < w.

And Py has a cross-cut near x = c along the arc CA, and may be
expressed in either of the forms

vy {l-\-G1v-{-G2V2-\-...\, wherein | arg v \ < -K ;

or (—1/u)* {l+HJu+HJu2-)-... [, wherein | arg (—1/w) | < TT.

24. We proceed now to shew that

p — / a ~ c a—&\Y (x — a c — b
\a—c x — b) \c—a x—b

the upper or lower sign being taken as x lies within or without the
circle. We have

l = -±vy f rn ( a 4;y~
2TTI J 1 (I — a—yy+s)

with the previous specification of vy and (—w)s.
When | w |. < 1, we may bend round the contour so as to include the

positive sequence of poles of the subject of integration, and we have, by
Cauchy's theorem,

Kl = v (- w r >r <°
— a' + a)

XF\a+P+y, a+/3'+y; l - a ' + o; w\.
M 2
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Now, by §22, v*(—w)y = {l/u)\ and (—io)a = w ' e™.

Hence

A', =
— a' + a)

a + | 8 ' + y ; 1—a'+a; «>[.

Now, at x = a, (l/u)y approaches the value unity.

Hence, by the definition of § 23,

We thus have the equalities given.

25. If we treat the integral K2 in the same way, we get

{y y'; l - a ' + a; ^( .

Similarlv K - r(a+/3+y)r(a+^+Y0 p

Po = ^(- l /v)a^{a+^+y, a+£+y' ; l - a ' + a; 1/v).

= r(a+/3'+y)r(q+/3'+y') p

4 - r(l—a'+a) a '

Pa=f^(- l / t , ) -F |a+/8 '+y f a+iS'+y'; l - a ' + a; l/w|.

We have thus deduced from the theory of the differential equation the
equalities

These equalities shew that the group of integrals (A) of § 21 are sub-
stantially equivalent to Pa. Similarly (B), (C), (D), (E), (F) respectively are
equivalent to Pa>, Py, Py>, Pp, Pp.
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26. We can verify the relations just found by direct transformation.
Apply the result of § 16 to the function

We find

— a -jra)

{ , a+/3' + y; l - a '

r(o+y+«) ro8-

the direction of integration of the contour being downwards.

Interchanging /3 and y, ft' and y , 6 and c, we find

{-vY T(a+/3' + y') T(a+/3'+y),

so that X1e
±'"ttr(a+/3+y) = if3r(a+/3'+7),

since «?aMa(—•u)a = 1 (§ 22).

The other relations can be obtained in like manner.
We note that incidentally we have shewn that

wherein | avgu\<.ir. This and analogous expressions constitute the
best definitions of the fundamental solutions Pa, Pa-f Pfi, Pp, Py, Py .

27. We know from the theory of linear differential equations that a
linear relation connects any three independent solutions. Adopting
Riemann's notation we must therefore have relations of the form*

where ĉ  and a^ are constants.

• Such relations are of course part of Riemann's definition. He did not define hie P-func-
tiona as solutions of Papperitz'e equation.
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We may easily establish this relation directly, and shew that

=

fl = r ( l a + a)r(|8/80 ima
* r(a+/8 + y)r(a+/8+y')

Me upper or Zower sigw ftewigr, as usual, taken as x lies within or without
the circle.

We have

If | ?o I > 1 we may bend round the contour so as to include the negative
sequences of poles of the subject of integration, and we have by Cauchy's
theorem

, a ' + y + / 3 ; l - / 3 ' + j 8 ; 1/

+ a similar expression obtained by interchanging /3 and

Hence, from § 23, since

p • r(«+/3+y)r(/3
^ r(a+/3+y')

We thus have the given values of ap and ap.

Similarly we have the relation

Pa = fl^ + OyPy,

wherem ay =
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These values of Oy, ay are not symmetrical with those just obtained
for ap, a?, and this may be expected a priori, since Py, Py have a cross-cut
along CA, while Pp, Pp> have a cross-cut along BC.

The new result is easily obtained. We have

p T(a+P+y)T(a+0+y')
•La. T M ' 4 - ^

' I — = -L l^/^-.S) I ("V —̂ cW— 1 /•MV fi<t

; l - y ' + y ; «|-

+a similar expression obtained by interchanging y and yr

r(a+/3' + y') - ^ • r

We thus have the given values of ay, ay.
We can now write down by cyclical interchange the values of (3y, /3y, . . . .

28. The preceding results verify Eiemann's manuscript* relations be-
tween the ratios of the coefficients, and we can immediately obtain the
relations given by him in his memoir, t

We have

,±»io'

T(a'+p+y) r(of+j8'+y')

Therefore ^fr^+M^
a? sin 7T (a'

a; â  sin (a'+^ + y') TT e**'*1 a? sin (a'+)S'+y')7r eTo'wl

* Note (1), p . 84, Riemann, (Euvres Mathematiques (PariH, 1898), or Mathemali&che Werkt.
(1892), p. 86. TheBe relations are found in several places among Riemann'8 manuscripts, but
they are not in the first German edition of his collected works.

f Loc. eit., p. 70.
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This is equivalent to Riemann's result, for he takes the case when a = 0,
b = oo, c = 1, and I(x) is positive, which corresponds to the case when
x lies within the circle ABC in our more general investigation.

29. It is an obvious investigation to try to obtain for Pa an expansion
near x = a in ascending powers of x—a, our previous expansions having
been in ascending powers of

w —
x—a c—b
c—a x — o

1or — = x—a b—c
.

b—a x—c
This investigation leads to hypergeometric functions of two variables of
the type first introduced into analysis by Appell,* and is, in fact, equi-
valent to a theorem given by him.

We will briefly indicate a proof that when | x—a\ < |b—a | or | c—a|,

a-b c-ay/a-by (a-cY* T(a+/3+y')
) ) )

(a-b c-ay/a-by (a-c
\x-ac-b) \x-b) \x-c)

T(a+j3'+y)

= 2 2
m=0 ii=O m\ n\ ra-a '

c—a b — a

We take for simplicity the case when x does not lie within or on the
sides of the smaller angle whose vertex is A and whose sides are AB and
AC produced indefinitely in the directions AB and AC respectively. In
this case, as may be readily verified by reference to a figure,

\c—ax—b) \ c—a b —
(£=£)' (*=
\a—cj \a—

where

Also

where

arg
x—c

a—c
and arg

x—b
a—b

< IT.

x—c - , x—a
a—c a—c

x — b _ -I i x—a
a-b~ ^ a-b1

arg x—a
a—c

< 7r, and arg x—a
a—b

< IT.

* Appell, Lxouville (1882), Ser. 3, T. vm., pp. 173-216. Previous notes had appeared in
the Comptet Rendtu.
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Therefore, by § 26 and the theorem, quoted in. § 16,

a r d ' + )

a—c/ \a—bJ

— a

The order of integration may be inverted, and we get, by § 15,

x

2 2
111 = 0 71 = 0

a—cj \a — bl T T

a/ \6—a) 'm\n\ l'U-a' + a+m-Hi) \c

We thus have the given result if that value of (- r) is taken
\x—a c—b)

which is equal to w~a ( , J , where w has a cross-cut along the arc AB,
and | arg w | < nr. Pa is thus defined with respect to a cross-cut along the
arc AB, and the result is therefore, by § 23, valid for all values of x for
which the series is convergent.

Appell would denote the double series, with unity for its first term, by

( ^ ^ r / 7 - r n )

Fx a+yO+y; a+p '+y , a+/3 + y'; 1 —a' + a; , 7 -.

And the preceding result is equivalent to his theorem that

F{alta2; p ; g+y\ = ( I - * / ) " 0 1 F± \ai; a2, p — a 2 ; p ; -£- ; ^ - \ .

The theory of the transformation of Appell's series can be developed
entirely by the contour integrals introduced in the present paragraph.
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PART III.

The Jacobian Elliptic Integrals K and K' as Functions of k2.

30. It has been stated that the contour integrals introduced into the
preceding theory are valid even when degenerate cases of the hyper-
geometric series arise which involve a logarithmic term. As an example
we will take the important case when ax = a2 = £, p = 1, when Rummer's
equation becomes the differential equation for Jacobi's elliptic integrals K
and K' considered as functions of x = k2.

The equation has been often considered, among others by Fuchs* and
Tannery.4 But the theory is invariably complicated, and most writers,
have, explicitly or implicitly, confined themselves to the case when I (z) is
positive. Tannery's investigation, which is given in Forsyth's treatise,!
is cumbrous, and the investigation given by Schlesinger§ is difficult to
follow, and not altogether accurate. The fundamental relation

is, in fact, difficult to obtain from the Jacobian elliptic integrals. There
appears to be an error in Forsyth's formula, || and in his corresponding
substitution for iK'/K corresponding to x = oo. The complete investiga-
tion, whether I{x) is + , is given in § 36 of the present paper.

81. The differential equation of the quarter-periods of the Jacobian
elliptic functions is

It corresponds to Rummer's equation with ĉ  = a2 = £, p = 1.
From the general theory, or by direct substitution, we readily see-

that a solution is -

The integral is convergent if | arg(l—x) | < 2x, if we assume as usual
that the contour of integration is parallel to the imaginary axis with loops

* Fuchs, Crelle, T. LXXI. (1870), pp. 121-127.
f Tannery, Annales de I' Eeole Noiinale Superieure, Ser. 2, T. vin. (1879), pp. 169-194.
X Forayth, Theory of Differential Equation*, Part I I I . , Vol. iv. (1902), pp. 12U-13&.
{ Schleainger, Lxnearen Differential Gleichungen, Bd. I I . , pp. 476-484.
|| Forsyth, Theory of Functions (2nd edition, 1900), p. 731.
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if necessary to ensure that the positive sequence of poles of the subject of
integration lies to the right, and the negative sequence to the left of the
contour. We uniquely prescribe the integral as a function of x by the
condition |arg(l—x)\ < ir, and then we say that it defines 27rK(x).
Thus K(x) has a cross-cut along the real axis from + 1 to -foo.

Since the equation is unaltered when we write 1—re for x, we see that
similarly 1

is a solution. When | arg x | < TT, we denote this solution by lirK' (X).
Thus K'(x) has.a cross-cut along the real axis from — oo to 0.

32. These definitions at once lead to a number of relations between K
and K' of arguments belonging to the set x, 1/JC, 1— x, 1/(1—x), x/{x—l)r

(x-D/x.
We have at once

K(x) = K'(l-x), if | arg (1-x) | < TT j

K(l-x)=K'(x), if | a r g r c | < 7 r )

Again, in the integral defining K(x) write —s—£ for s. Then the direc-
tion of the contour as always being downwards, we have

-s)\* (l- -^-.y ds

or

therefore

, if | a r g ( l - z ) | < 7 r

(B)

if | arg x | < 7r

Applying the same process to the integral which defines K'(x), we have

K'(x) = x~*K'(I/a;), if | argx \ <

From (A), we have

(C)

if

if

arg

arg

a;—1
X

x <

<

TV

IT

(D)



. (E)
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Finally, from (B) and (C) by changing x into 1/x,

K' l^1—) = (1 ~ Hx)~*K' M77), if I arg (1 —:

These relations may be summed up in the equalities

Yx = K(x) = K'(l-x) = ( 1 - :

i s — •£

and Y2 = K(l-x) = K'(x) =

though when written in this form we have no indication of the system of
cross-cuts by which our equalities are limited. Such limitations must be
those which have just been specified.

33. The three functions Yv Y2, Y3 are evidently solutions of the
differential equation. They include all functions that can be obtained
from K(x), K'(x) by the fundamental homographic transformations. It
remains to find the linear relation connecting these three quantities, and
explicit expansions for K (x), K'(x), when | x | < 1.

In the first place, by § 16,

JJ j {T(8) r(i+«) \(l-xYds

when | arg (—x) \ < x.
From the last integral we see, by applying Cauchy's theorem in the

usual manner, that, when | x | < 1,

n!!}2

f 1-3... (2^-1)
l 2 .4 . . . 2n

This is the explicit expansion for K(x).
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34. Again,

'(z) = - - ^ j \T(-s) r(i+a) \2x* ds,

and when | x | < 1, we may take the contour to include the positive
sequence of poles 0, 1, 2, ..., co.

Now, when s = n-\-e, and e is small,

(—e)(—e—1)...(—e—n)

n! e I L 1 11J j

Hence the residue of — |r(—s) T(^-\-s)\2xs at s =• n-{-€ is the co-
efficient of 1/e in the expansion in ascending powers of e of

X \T(i+n)}' (1 + 2^(4+).)+...( x" '

Now ^

Also r(2a;) = ^ T(x) T(x+%),

so that 2\/r(2x) = 2 log 2+>/r (̂ >

and therefore ^{l)—\fr(^) — 2 log 2.

Hence -^H-...+ — 1
J- »»—I

Hence, when | x \ < 1 and | arg x \ < 7r,
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n = 0 1 2 .4 ...

This is the explicit expansion for K'{x).

35. We can now shew that*

Y1=7B± iY2,

the upper or loiver sign being taken as I(x) is positive or negative.

When | x | > 1, we may take the contour of the integral

to include the sequence of negative poles of the subject of integration.
Now the residue of

;r(j+s)[2r(s)
l x)ra+5)

at s = —n—

is the coefficient of 1/e in the expansion in ascending powers of e of

and is therefore

Therefore

4

2 .4

or 7f(ar) = + * {-z)-iK(llx)+{-x)-*K'(llx),

when | arg (—x) \ < TT, the upper or lower sign being taken as I(x) is

• Cf. Tannery et Molk, Fonctions Elliptiques, T. m. , p. 205.
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positive or negative. Now

Hence

or

K(x) = ± ix-

36. From the preceding we may at once obtain the fundamental sub-
stitutions which lead to the theory of elliptic modular functions.

First we recall that near x = 0 K(x) is uniform and K'{x) has a cross-
cut from —oo to 0; near x = 1 K{x) has a cross-cut from + 1 to + oc,
and K'(x) is uniform, and near x = oo K{x) has a cross-cut from -f GO
to + 1 , K'(x) has a cross-cut from —oo to 0.

We wish to obtain for the three points such substitutions that the
product of all three will be equivalent to a circuit round a point of no
singularity—that is to say, to unity.

The first figure represents a possible combination of circuits when I(x)
*s positive, the second figure when I(x) is negative. The third figure
shews that when I(x) is negative, the positive circuits possible in the first
case, when I(x) is positive, are no longer available.
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We therefore define a possible circuit as one which is positive or nega-
tive as I(x) is positive or negative.

And now after a possible circuit round the origin

K(x) becomes K{x),

K'(x) „ K'(x) + 2cK(x),

the upper or lower sign, being taken as I(x) is positive or negative.
Putting x = 1 — £ we see-that a possible circuit round re = 1 is equi-

valent to the reverse description of a possible circuit round £ = 0 .
Therefore after a possible circuit round x = l,

K(x) becomes K(x)^2iK'(x),

K'{x) „ K'(x).

Putting x = lit, we see that a possible circuit round x =^oo is equivalent
to the reverse description, of a possible circuit round t = 0. Hence, after
a possible circuit round x = co,

becomes —flK{f) +"<£*]#'(£) =F2dI(*)[

= — SftK(t) + i#K'(t) = — §K(x) ± { ) ,

a n d K'(x)=&K'(t)

becomes —#\K'(t) + 2iK(f)\ =.K'(x) ± 2iK(x).

Hence, corresponding to possible circuits round 0, 1, a>, the corresponding
substitutions for K(x), +iK'(x) are

0\ B _ (1 - 2 \ c _ / - 3 2

agreeing with. Schlesinger.*

If io •=. +^ and S
h. \x)

possible circuit for to round the point a,

If io •=. +^ and Sa (w) be the substitution corresponding to a
h. \x)

W

—3'

Schlesinger, Linearen Differentialgleichungeu, Bd. u. (2), p. 46.
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37. We may readily verify that the result o£ a possible circuit round
0, 1, oo in succession is a unit substitution.

For, if in S0Slf So operates after Sx so that S0Si represents a circuit
round 0 and 1 successively,

The theory of elliptic modular functions can now be developed in the
usual way.
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