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ON THE DERIVATES OF A FUNCTION

By GRACE CHISHOLM YOUNG.
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1. Theorems relating to perfectly general functions are rare.* In the
present connexion there is the theorem, given by myself in the Acta,\
that the points, if any, at which the upper derivate on one side is less
than the lower derivate on the other side, form a countable set. In this
theorem no restriction whatever is laid on the primitive function, except
tacitly that it is everywhere finite, and the derivates may be ordinary or
taken with respect to any monotone increasing function g(x) without con-
stant stretches. 1

I propose now to enunciate and prove three fundamental theorems,
already known to be true for special classes of functions, concerning the
derivates of a function f(x), which, if not perfectly general, is nevertheless,
for mathematical purposes, practically unrestricted in character. I only
assume that

(a) f(x) is a measurable function ;•

and (b) f(x) is finite everywhere.

* I would recall the theorem communicated by my husband to the British Association at
Leicester in 1907, and, in an extended form, to the Mathematical Congress at Borne in 1908,
that, except at a countable set of points, the limits of f(x) on the right and on the left [that
is the limits of f(x + h) and/(x —7i), (0 < h)~] are the same, and/(a;) lies between the greatest

A—>o

and least of these limits (inclusive) on each side. See W. H. Young, " On the Distinction of
Right and Left at Points of Discontinuity," 1907, Quarterly Journal, Vol. 39, pp. 77 and 82.
" Sulle due funzioni a piu valori costituite dai limite d'una funzione d'una variabile reale a
destra e a sinistra di ciascun punto," 1909, Rend, delta B. Ace. dei Lincei, Ser. 5, Vol. xvn,
pp. 582-587. These surprising theorems formed the starting point of our investigations, and
suggested that similar general results could be obtained for derivates ; till now, however, we
had not been able to justify such a supposition.

t " A Note on Derivates and Differential Coefficients," 1912, Acta Math. (1914), Vol. 37,
p. 144.

\ Cp. W. H. Young, " On Integrals and Derivates with respect to a Function," 1914,
Proc. London Math. Soc, Ser. 2, Vol. 15, p. 61, footnote. I take this occasion to call atten-
tion to a misprint: this footnote (p. 61) and the following footnote (p. 62) have been
interchanged.
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The enunciations of these theorems are as follows:—

THEOREM 1. —The points at which the upper derivate on one side is
+ °° cmd the lower derivate on the other side is not — co, form a set of
content zero.*

In other words, if / + (x) = -f oo, then /_ (x) = — oo , except at a set of
content zero; and if f~(x) = + oo, then /+(&) = — <», except at a set of
content zero.

THEOREM 2.—The points at which f(x) has an infinite right-hand
(left-hand) differential coefficient form a set of content zeroA

As an immediate corollary we have the generalisation of Lusin's
theorem:—

The points, if any, at which a measurable function f(x) has an infinite
differential coefficient, form a set of zero content.

THEOREM 8.—The points at which one of the upper derivates and one
of the lower derivates of f(x) are finite and not equal form a set of content
zero.I

• In my essay on "Infinite Derivates," to which was awarded the Gamble Prize at
Girt on College, Cambridge, last year, I obtained the theorem that, when f(x) is a continuous
function, the points at which f* (x) = + co , and both f. (x) and f+ (x) different from — oo , form
a set of content zero; the reasoning was subsequently seen by me to give the theorem as it
stands above, when / (x) is continuous ; in thi3 form it is given by Denjoy for a continuous
function in his interesting memoir, " Sur les nombres derives des fonctions continues," 1915,
Jour, de Math., Ser. 7, Vol. 1, pp. 105-240, Application III, p. 195. This appeared almost
exactly at the time of the award of the Gamble Prize, for which, of course, the publication of
my result had been delayed. After perusing M. Denjoy's memoir, I was unwilling to put the
corresponding part of my prize essay into print as it stood ; with some slight alterations it is
appearing in the Quarterly Journal of Mathematics, and the present communication, in whieh
M. Denjoy's results and my own are considerably extended, is a further result. I take this
opportunity, however, to call attention to the importance of Denjoy's results; if we assume
them, the theorems of the present paper can be deduced with extreme ease by the use of the
C-property (see below, § 2).

t This theorem, given by Denjoy for a continuous function, Application I, p. 187, is an
extension of the original theorem by Lusin (1911), Rectieil de la Sociitt math, de Moscou,
Vol. xxvin, 2, in Eussian. Both Denjoy and I use a Lemma, introduced by Lusin in this
connexion. For a function of bounded variation this theorem is, of course, included in
Lebesgue's theorem quoted in the following footnote.

X The original of this theorem would seem to be Lebesgue's theorem that a continuous
function of bounded variation has summable derivates, which are accordingly finite almost
everywhere, and possesses a finite differential coefficient, except at a set of content zero (1901),
Lecons sur I'inUgration, p. 128. W. H. Young removed the re»triction as to continuity (1910),
"On Functions of Bounded Variation" (1910), Quarterly Journal, Vol. 42, §2, p. 79.
Montel, on the other hand, retaining the continuity and the finitude of the derivates almost
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In other words the four sets at which

(i) / + (a;) and /_(»), (ii) f+(x) and f+{x), (iii) f~(x) and f.(z),

f~{x) and f+(x),

have finite unequal values, are all sets of zero content.

The three main theorems enable us to state for any measurable func-
tion which is finite everywhere the striking properties enunciated for a
continuous function by Denjoy* :—

If we neglect a set of points whose content is certainly zero, the
derivates of f(x) at any point x belong to one of the three following
cases :—

(I) There is an ordinary finite differential coefficient J''(x).

(II) The upper derivates on each side are + <x> and the lower deri-
vates on each side are — 00 .

(Ill) The tipper derivate on one side is -\- 00 , the lower derivate on the
other side is — <x>, and the two remaining extreme derivates are
finite and equal.

Each of these cases may occur at points of a set of any content, as is
shown by examples, and all three cases may present themselves simul-
taneously for a single function f(x), or one or more of the cases may be
altogether absent.

From these three main theorems we can draw a number of interesting
corollaries, of which the following may be specially mentioned :—

THEOREM 4.—There is no geometrical distinction of right and left with

everywhere, removed the restriction as to bounded variation (1913), Comptes Rendus. More
generally he enunciates the theorem that the content of the set of points at which all the
derivates are finite is the same as that of the set of points where a finite differential coefficient
exists (it being tacitly assumed that the function is continuous). Montel's proof consists in an
adaptation of a method given by my husband and myself in these Proceedings, Ser. 2, Vol. 9,
p. 331, for the proof of Lebesgue's theorem. It will be seen that it is this same form of proof,
amplified but not altered, which I have used in the present paper. Montel uses, in addition,
a Lemma due to Denjoy. Finally, Denjoy, in his recent memoir, gives two theorems which
are together equivalent to the above theorem when / (x) is continuous (Applications II and V,
pp. 188 and 192). It is hardly necessary to say that no previous writer except my husband,
from whom the idea is taken, has contemplated other than ordinary derivates.

* Denjoy, loc. cit., p. 105.
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regard to the four extreme derivates f+(x), f+(x), f~{x), f-(x), except at a
set of content zero.*

Also the two following generalisations of Montel's theorems, which are
immediate corollaries from Theorem 3 :—

If the derivates of f(x) are all finite, except possibly at a set of content
zero, then f(x) has a finite differential coefficient almost everywhere.

The set of points at which the derivates off(x) are finite is the same
as the set of points at which the differential coefficient exists and is finite,
exception being possibly made of a set of content zero.

The proofs here given of the main theorems are closely modelled on
that formerly given in these Proceedings by my husband and myself for
the case of a monotone function f(x); they do not involve integration, nor
transfinite processes, nor Cantor's numbers.

In conclusion I relax the condition (b) laid on our measurable function,
and only assume that

(c) f{x) is finite at a set of points of positive content.

The three main theorems then remain unaltered, provided we always
abstract from consideration the points at which the primitive function is
infinite.

If we have the condition that

(c bis) f{x) is finite at a set of points of positive content dense every-
where

(so that the derivates are everywhere determinate), the Theorems 1 and 3,
as well as Lusin's theorem, remain true as they stand, and the second
theorem takes the following form :—

THEOREM 2 bis.—The points at which f(x) has an infinite right-hand
(left-hand) differential coefficient consist of the infinities of f(x), and
possibly also a set of content zero.

To obtain these results I require to elaborate slightly the work of
Egoroff and Lusin, used in the earlier part of this paper.

* In 1908 my husband published the theorem that there is no distinction of right and left
with respect to the derivates of a continuous function except at a set of the first category. We
suspected at that time that this set was of content zero, but failed to obtain a proof. Two
discussions were given; both require the continuity of the primitive function. This set
contains the above set of content zero, which is accordingly of the first category. See W. H.
Young, "Oscillating Successions of Continuous Functions," 1908, Proc. London Math. Soc,
Ser. 2, Vol. 6, pp. 805-7.
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2. The generality of the present results is due to the application of
Egoroffs theorem.* The enunciation of this important theorem is as
follows:—

If a succession of measurable functions converges at all the points of
an interval {a, b), except possibly at a set of content zero, it is always
possible to remove from the fundamental interval (a, b) a set of content as
small as toe please, and such that with respect to the complementary set,
the succession converges uniformly.

Hence it immediately follows that it is a necessary and sufficient con-
dition that the limiting function f(x) of a sequence of measurable functions
should be finite at every point of the fundamental interval, except possibly
at a set of content zero, that we should always be able to find a perfect
set, whose content differs from that of the fundamental segment by less
than e, with respect to which the sequence converges uniformly, e being
any chosen positive quantity.

In consequence of Egoroff's theorem, as Lusin pointed out,t every
measurable function which is finite, except possibly at a set of content
zero, has what he calls the C-property; that is to say, we can remove a
suitable set of points, of content as small as we please, from the funda-
mental segment, leaving over a complementary set, with respect to which
the function is continuous. This property is indeed almost evident for
measurable functions assuming only a finite number of values, whence it
easily follows for all bounded measurable functions, and again for all
measurable functions finite everywhere or almost everywhere, using the
theorem, easily proved, that the limit of a sequence of functions possessing
the C-property has itself the C-property.

If instead of a fundamental segment we are working only in a set of
positive content, say greater than q, the C-property still holds for a
measurable function, finite almost everywhere. For we only have to re-
move a set of content less than q from the continuum, leaving over a
complementary set with respect to which our function is continuous, and
this complementary set will be bound to have in common with the funda-
mental set a sub-set of positive content, with respect to which the function

* D. Egoroff, " Sur les suites de fonctions mesurables," 1911, Comptes Bendus, Vol. 153.
The argument is reproduced in W. H. Young's paper, " On Successions whose Oscillation is
usually Finite," 1912, Quarterly Journal of Math., Vol.44, pp. 131-133. The reader will

• observe an obvious clerical error of +oo for — oo in the enunciation and proof on p. 131, and
in the enunciations of the three following theorems, see below, § 13.

t N. Lusin, loc. cit., Summary in "Sur les propriety's des fonctions mesurables," 1912,
t. 154, see below, § 17. Conversely a function which has the C-property is easily seen to be a
measurable function finite everywhere or almost everywhere.
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is continuous. It is by means of this property that I am able to apply to
our very general function the reasoning which Lusin, Denjoy, and myself
had used in the case of a continuous function.

3. An essential part of our mathematical machinery is a Lemma in
the Theory of Sets of Points, introduced by Lusin.*

LUSIN'S LEMMA.—If S is a set of positive content, it contains a perfect
sub-set, dense noivhere,\ and throughout of positive content, that is such
that the part of it in every interval containing one of its points is of
positive content.

If the given set is not dense nowhere, we can change it into such a set
by excluding from it all the points which are internal to a set of intervals,
dense everywhere and of sufficiently small content. We shall therefore
assume that the set S is nowhere dense, so that this condition as to the
required sub-set is certainly fulfilled. If the given set is not closed, we
may replace it by its nucleus. Thus we may assume that S is closed and
dense nowhere.

Let the intervals whose end-points are the rational points be arranged
in countable order dlf d2, ..., and consider all those of these intervals
which contain points of S forming a sub-set of zero content; such intervals
we shall call zero intervals. The content of the sub-set of S inside any
finite or infinite number of the zero intervals is then zero, since the con-
tent is not greater than the sum of the contents in the separate zero
intervals. Hence the sub-set S' of S, consisting of the points of S not
internal to the zero intervals, is a sub-set of the same content as S. It is
moreover clearly a closed sub-set, since none of its limiting points can be
internal to the zero intervals, and they all belong to S, since S is closed.

Now the black intervals of S' are tiled over by the zero intervals, and
therefore each contains only a sub-set of S of content zero. Moreover the
end-points of these black intervals are not internal to zero intervals.
Hence no two of these black intervals can abut, for, if so, any one of the
intervals dv d2, ..., one of whose end-points lay in one of the two abutting
black intervals, and the other in the other, would be a zero interval, and

* Enunciated without proof in the paper quoted above on p. 361. He gave me a proof in
MS. based on Lebesgue integration. D. Mirimanoff gave me another, on the lines of his
elegant proof of the theorem of Cantor-Bendixson, " Sur quelques points de la thc'orie des en-
sembles," 1914, Enseignement Math., Vol. 16, pp. 29, 30. Denjoy sketches a proof on p. 131
of his recent memoir. All the proofs are perfectly straightforward. The one here given is
taken from my Gamble Prizs Essay.

t In the present paper the property of being dense nowhere is not required.
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would contain the common end-point, which, as we saw, is impossible.
Thus the black intervals are non-abutting, and therefore S' is a perfect
set.

Now, if P is any point of S', and d any interval containing P, there
will be one of the intervals dlt d2, ..., containing P inside d, and this will
not be a zero interval, and will therefore contain a sub-set of S of positive
content. Thus also the part of S' in d has positive content. This proves
that S' is throughout of positive content.

We have thus proved the Lemma.

4. The adaptation to our present purposes of the proof, to which
reference has already been made, requires something to take the place of
Dini's theorem that the upper and lower bounds of any derivate are the
same as those of the incrementary ratio, provided, the function itself is
continuous. Generalisations of this theorem have lately been given in a
communication to this Society,* but they are not sufficiently general for
our present purpose. The Lemmas I use are fourfold. It will, however,
only be necessary to enunciate one of them; the others are got by inter-
changing right and left.

LEMMAS {vice Dini's Theorem).—

I. If S is a perfect set, with respect to which a function] f(x) is
continuous, and at each point x of which

then we can find an interval (a, b), containing a part of the set S, such

ihat \J{x-\-h)-f{x)]lh = B(x, x + h)z^A (h > 0),

provided x and x-\-h both lie in {a, b), and x is a point of the set S.

II. If S is a perfect set, with respect to which a function f(x) is con-
tinuous, and at each point x of which

B<f+{x),

* W. H. Young, " On Integrals and Derivates with respect to a Function," 1914, Proc.
London Math. Soc, Ser. 2, Vol. 15, p. 43.

t Unrestricted in character. If we are forming the derivates of /(*) with respect to a
monotone function g (x) without constant stretches, we must assume here that both f(x) and
g (x) are continuous with respect to the set S. This means, at most, the avoidance of a count-
able set of points in assigning S, and does not therefore affect the efficiency of the Lemmas in
their application.
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then we can find an interval (a, b), containing a part of the set S, such that

[f(x) —f(x — h)]/h = B{x,x — h) > B (h>0),

provided x and x — h both lie in (a, b), and x is a point of the set S.

It will be sufficient to prove the former of these lemmas.
Suppose it is not true. Then taking any interval (alf bx) of length < e,

containing part of the set S, there must be inside it a pair of points xx

and ^1+/*!, of which xx is a point of S, such that

R(x1,x1+h1)>A, (Jh>0). (2)

Since f(x) is continuous at the point x1 with respect to the perfect set S,
there is an interval dlt with xx as one of its end-points (left or right,
according as x is or is not a right-hand end-point of a black interval of
the set S), containing part of the set S, and such that for each point x in-

S l d e ^ ' R{x,x1 + hJ>A, (3)

dt being of length less than (xv x1-\-h1^, and lying in {av bx), so that

0 < x1—x < 2e. (4)

Now in dx take an interval (a2, b2) of length less than %e, containing part
of S, and repeat the argument, and so on. We get a sequence of intervals
{ax, bx), (a2, 62), (a3, bB), ..., each contained in the preceding, and with
lengths which diminish constantly down towards zero. There is therefore
a single point X internal to all of them.

X must be a point of the perfect set S, since in the successive intervals
(ar, br) we always have a part of S. Also for each index r, we have a
point xr-\-hr such that, by the relations corresponding to (3) and (4),

>A, (5)

and 0 < xr+hr-X < 2~r+1 e. (6)

That is we have a sequence of points on the right of X with X as limiting
point, for which the incrementary ratio to the point X is greater than A.
Hence, by the definition of the right-hand upper derivate,

But this is contrary to (1), therefore our supposition is untenable, and the
statement first made is true.
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5. We shall require one more lemma, but it is well known, and need
not be proved here. We only recall the enunciation:—

YOUNG'S FIRST LEMMA.*—Ifioith each point of an interval as left-hand
end-point we are given an interval, or several intervals forming a finite
or infinite set, we can find a finite number of these, nowhere overlapping,
and such that the sum of the complementary intervals is less than any
pre-assigned positive quantity e.

6. We now go on to the enunciation and proof of the first of our main
theorems:—

THEOREM 1.—If fix) is any finite measurable function, the points at
which the upper right-hand derivate f+ (x) has the value -f-oo are identical
with the points at which the lower left-hand derivate has the value —oo,
exception being made, at most, of a set\ of content zero.

The points in question are none other than the points at which

f+(x) = + ao, f.(x)>kit (1)

for all integers i, where k1>k2> k3> ...

is a monotone decreasing sequence of constants with — co for limit.
Denoting the set of points at which (1) holds by Gi, we see that the

set Gi contains Gi-u for each integer i, and the set G, which we are going
to consider, is the outer limiting set of the sets Gi. Therefore, it will be
sufficient to prove that G% always has the content zero, since if this is true
for all the sets Gi, it is also true for the outer limiting set.

Now if we write g(x) = f(x)—JciX,

we have g+ (x) = / + (x)—h, g- (x) = /_ (x)—kt.

Therefore the set Gi is also the set of points at which

g+(x) = + a>, g_(x)>0.

Also the function g{x) is, like f(x), measurable and finite. Thus our
problem is reduced to proving that, when &» is zero, the content of Gi
is zero. We proceed therefore to prove that the points at which
f+(x) = -f °°. / - 0*0 > 0 form a set of content zero.

* "On the Existence of a Differential Coefficient," loc. cit., p. 327. Another proof is
given in "The Reduction of Sets of Intervals," 1914, Proc. London Math. Soc.,, Ser. 2,
Vol. 14, p. 121.

f This set is of course measurable.
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Assume, if possible, that these points form a set Sx of positive content.
Then since f{x) has the C-property (§ 2), we can remove a sub-set of
sufficiently small content, leaving over a complementary sub-set S2,

 w ^h
respect to which f(x) is continuous.

By Lusin's Lemma (§ 3), we can now find a perfect sub-set <S3 of S2,
which is throughout of positive content. At every point of S2, we have

/-(aO>0,

by (2); hence, by one of the lemmas, vice Dini's theorem (§ 4), we can
find an interval (a, b), containing a part E of S2 (which is accordingly- of
positive content E), such that the incrementary ratio of f(x) over any in-
terval in (a, b) whose right-hand end-point belongs to the set E is ^ 0.

We may clearly choose a and b to be points of E, then f(b) and f(a)
are finite. Now adjoin to each point x which is a left-hand end-point, or
an internal point, of a black interval of the set E, the part rx of that
black interval on the right of the point x. For each such interval rx then
the incrementary ratio of f(x) is ^ 0, and therefore also the increment of
f(x) is > 0.

To each of the remaining points of (a, b) other than b, we adjoin all
the intervals (x, x-\-h) to the right of the point x and in (a, b), such that

B(x, x+h)>Q, (1)

where Q is any chosen positive quantity, as great as we please, say

Q>2[f{b)-f(a)]IE. (2)

Now we apply Young's First Lemma. We get a finite number of the
Intervals (x, x-\-h) and rx, nowhere overlapping, and such that the sum of
the complementary intervals, say tx, is less than e, where e is any chosen
positive quantity, say <C %E.

Since a and b, as well as the left-hand end-points of each of the chosen
intervals, belong to the set E. it follows that the right-hand end-point of
each tx belongs to E ; hence the increment of f(x) over each tx is > 0.

But the intervals tx with the chosen intervals rx and (x, x-\-h) form a
finite number of abutting intervals, reaching from a to b, therefore the
sum of the increments of/(#) over them is f(b)—f (a). Omitting therefore
the increments over the intervals tx and rx, as being ^ 0, we have, by (1),

> XhB(x, x + h)>Q2h>Q(E-e)>iQE, $)
since the sum of the intervals tx is less than e, and the intervals rx contain
no point of E inside them, so that the intervals (x, x-\-h) contain a sub-set
of E of content greater than E—e, that is greater than %E.

SBB. 2. VOL. 15. NO. 1274. 2 B
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But the last inequality (3) is in contradiction to (2), and is therefore
impossible. Thus our assumption is untenable, which proves the theorem.

7. The second main theorem is an immediate result of the preceding
in conjunction with my theorem from the Ada.

THEOREM 2.—If f(x) is a measurable function which is finite, except
possibly at a set of content zero, the points, if any, at which it has an
infinite right {left) hand differential coefficient {with determinate sign),
form a set of content zero.

It is evidently sufficient to prove at length that the points at which

f+{x)=f+{x) =fl{x) = + co (1)

form a set G of content zero. The other parts of the theorem result at
once by the exchange of right and left, upper and lower, -f- °° and — oo.

Now, by my theorem in the Ada, except at a countable set S.2 of
points of G, ._. . . ,n.
F / ( * ) = + oo, (2)
since /+ {x) = -f <*>.

Hence, by (2) and the preceding theorem, except at a set Sj of content zero,

/ + ( * ) = - c o ;

but this latter relation is not true at any point of G, therefore G itself is
a set of content zero, which proves the theorem.

8. We next proceed to prove the third theorem :—

THEOREM 3.—If f{x) is a finite measurable function, the points, if any,
at which one of the upper derivates and one of the lower derivates are
finite and different from one another, form a set of content zero.

In virtue of my theorem from the Ada (§ 1), the proof is the same
in all the different cases which may occur. In fact, if the upper derivate
in question is not on the same side as the lower derivate, e.g., if we are
concerned with /_ {x) and / + {x), we only have to remove a countable set of
points, and at the remaining points we shall have

precisely as if the two derivates referred to the same side.
In the course of the proof we use the Lemmas vice Dini's Theorem,

and it will, of course, be an appropriate pair of these Lemmas which have
to be called into play.
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We shall accordingly only give the proof in the case when the two
derivates are both on the right.

Assume, if possible, that the set S of points at which / + (a) and f+(x)
are finite and distinct has positive content.

Let Sr denote the sub-set of S at whose points / + {x) and /+ (x) lie be-
tween —r and r, both bounds excluded, r being any positive integer.
Then each set Sr contains its predecessor Sr-i, and the outer limiting set
is S itself. Therefore for some value of r the content of Sr must be posi-
tive, in order that the content of S, which is Lt Sr, should be positive.

Let r denote the least integer for which this is the case.

Now write f(x) = g{x)-\-rx,

then the derivates of g(x) are got from the corresponding derivates of
f(x) by adding r; also g(x) is a function of the same character as f(x).
Therefore, replacing f(x) by g (x), and then altering the nomenclature and
denoting g (x) by f(x), we see that Sr is the set of points at which

0<f+(x)<f+(x)<A, (a)
where A = 2>\

Since f(x) possesses the C-property (§ 2), and Sr is of positive content,
we can remove a sub-set of sufficiently small content, leaving over a com-
plementary sub-set S'r, of positive content, with respect to which f(x) is
continuous.

By Lu3in's Lemma (§ 8), we can then find a perfect sub-set S" of Sr,
which is throughout of positive content.

Finally, since at each point of S" we have

f+(x)<A, and / + ( z ) > 0 ,

we can, by the Lemmas vice Dini's Theorem (§ 4), choose a fundamental
interval {a, b), so as to contain a part G of S", and such that for each pair
of points x and x-\-h in it, we have

B(x, x+h)^A ( / t>0) |

0<.R(z, x + h) (h>0)\*

provided x belongs to the set G.
We may clearly assume a and b to be points of G ; thus/(6) and/(<x)

are both finite.*

• By these preliminary reductions we have reduced the problem to precisely the same as
in the case discussed in " The Existence of ,a Differential Coefficient," Proc. London Math.
Soc, Ser. 2, Vol. 9, pp. 329, 330, when / (x) is a monotone increasing function. The remainder
of the proof may be taken, word for word, from this earlier paper, the tacit use of Dini's
theorem on p. 330, line 14, being replaced by the lemmas of § 4 of the present memoir.

2 B 2
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Let Gk denote the sub-set of G at which

f+(x)-f+(x)>k. (1>

Then, if k assumes in succession the values A, $A, \A, ..., each set Gk is
contained in the following, and the outer limiting set is G. Hence again,
in order that our assumption should be tenable Gk must, for one of these
values of k, have positive content. Let k then have the greatest such
value.

Now the set Gk is itself the sum of the finite number of sets HkiV, at
which, besides (1), we have

i ( y - l ) & < / + ( « ) < *y*. <2>

y denoting any positive integer up to tha t for which %{y—l)k = A .
Hence at least one of these sets mus t have positive con ten t ; let y have
the least of the values for which this is t rue . Then there is a perfect
sub-set of Hk, y of positive c o n t e n t ; let us call th is E.

Let e be any chosen small positive quant i ty satisfying the inequality

£fcJ57:>e[(y+i)fc4-2^]. (3)

Now divide the fundamental interval {a, b) into a finite number of
compartments, namely,

(i) Black intervals of E, so chosen that the sum of the remaining
black intervals is less than e ; and

(ii) Complementary compartments, whose sum is accordingly ^ E and
^ E-\-e, since they contain the whole set E as well as these remaining
black intervals. Let there be n of these compartments. We shall con-
sider each of these separately.

To each point x which is an end-point of a black interval of E in the
compartment considered, we adjoin that black interval as interval rx. To
each point x of the compartment considered, which is a left-hand end-
point or internal point of a black interval of the set E, we adjoin the part
rx of that black interval on the right of the point x. For each such in-
terval rx then the incrementary ratio of f{x) is >> 0 and << A, since the
right-hand end-point of rx belongs to the set E.

At each of the remaining points of the compartment, since it is a
point of E, (1) and (2) hold, therefore

(4)

and $(y+l)k<f+{x). (5)
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Therefore we can find intervals (x, z + /ti) and (a;, x-\-h2), on the right of x,
and in our compartment, such that

f{x+lh)-f{x)<hjkhv (6)

and l(y+\)klh<f{x + h%)-f{x). (7)

By Young's First Lemma we can choose out a finite number of the inter-
vals (x. x-\-hJ and rx, nowhere overlapping, and such that the sum of the
complementary intervals, say tX) i, filling up the compartment, is less than
e/n. Then the incrementary ratio of f{x) over each rx or tX) i is ^ A, since
the right-hand end-point of each such interval belongs to the set E.

Let us do this in each compartment, then the sum of the chosen in-
tervals rx is, by Qur choice of the compartments, less than e, and so is the
sum of the intervals tXi i, since there are n compartments in which they
lie, and in each the sum of these intervals is less than e/n.

Now let P l t plt and P denote respectively the sum of the increments
oif(x) over the chosen intervals (x, x-\-hx), over all the chosen intervals
rx and the intervals tXi i, and over the compartments (i). Then, since all
these intervals together form a finite number of abutting intervals reach-
ing from a to b,

But, by (6), Pi<lykUB+e),-

since the content of the chosen intervals (x, aj-f-/̂ ) is less than that of the
compartment (ii) in which they lie, that is less than E-\-e. Also

jp! < 2A e,

since, as we saw the incrementary ratio over each interval is s< A, and
the sum of the intervals is less than 2e.

Hence f(b)-f(a) < %yk(E + e) + 2Ae+P. (8)

Similarly, working with the intervals (x, x-\-h2), instead of (x, x-\-hJt and
denoting the sum of the increments of fix) over the chosen intervals
{xy x-\-h^, and over the chosen intervals rx and the intervals £,(2, respec-
tively, by P2 and p2, we have

f(b)-f(a) =

But, by (7), Uy+VME-e) < P2,

since these intervals contain all the points of E, except a sub-set of con-
tent < e.
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Also 0 < p2,

since, the right-hand end-point of each of the intervals rx and tx> 2 belong-
ing to the set E, the incrementary ratio over each of these intervals
i s < 0 . Hence Uy+l)k{E_e)+p < / ( 6 ) _ / ( a ) . (9)

Combining (8) and (9),

%(y+l)k(E-e)<%yk(E+e)+2Ae,

whence, a fortiori, \kE < e[(y+l)k+ZA],

which is in contradiction to (8).
Thus our assumption is untenable.*
This proves the theorem.

9. If we now examine the cases which may occur at any point x with
regard to the extreme derivates / + (x), /+ (x), f~ (x) and /_ (x) of a measur-
able function, which is finite almost everywhere, we may distinguish five
cases:—

(1) All the four derivates are finite : in this case either there is
an ordinary finite differential coefficient, or else, by Theorem 3, the point
x belongs to a certain set of content zero S3; in the former case there
is no distinction of right and left, since all four derivates are equal
and finite.

(2) One, and only one, of the derivates is infinite : in this case, by
Theorem 1, the point x belongs to a certain set Si of content zero.

(3) Two, and only two, of the derivates are infinite : in this case, un-
less the point x belongs to Slt it must be the upper derivate on one side
which is + QO , and the lower derivate on the other side which is — oo;
the remaining two derivates being both finite, must be equal, unless the
point x belongs to £3; we notice that, if x does not belong to Sx or S&

* As an example of the simple verbal changes required in the other cases of the enuncia-
tion, suppose it is/_ (x) and/* (x) that are to be considered. The relations (S) then become

R(x, x-h) ^ A, R(x,x + h)>0 (h > 0).

In the construction of the set of intervals (6), however, we must change right into left, and
the relation (6) becomes . . . , . , . . , , ., ,..

w f(x)-f(x-h)<$kh1 (h>0).
Thus the intervals tx, i, have their Ze/2-hand end-points belonging to the set S, and therefore,
as before, it is the former of the two inequalities (3) which applies. We get the same in-
equality (8) as before, and the rest of the argument is unaltered.
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there is again no distinction of right and left; in fact, the extreme deri-
vates on the right are represented geometrically by the vertical through
the point x, and a certain other direction, and those on the left by the
vertical and the same other direction ; on both sides the vertical is directed
upwards or downwards, as the case may be, but this gives no geometrical
distinction of right and left.

(4) Three, and only three, of the derivates are infinite : in this case
the point x belongs to Sx or a countable set S2, by Theorems 1 and 2.

(5) AII four derivates are infinite : in this case, if x does not belong
to Sx or S2, the two upper derivates are + oo, and the two lower derivates
are — oo; this latter case again presents no geometrical distinction of
right and left.

10. Disregarding the set of content zero constituted by Si, S2, and S3,
we have, by the preceding article, only three possibilities at a point x:—

(1) The upper derivates on each side are -\- oo , and the lower derivates
— oo , that is,

f+(x) = / - ( z ) = + oo, f+{x) =/_(x) = - o o .

If f(x) is a continuous function, every possible direction going out from
the point x on the right or on the left, including the upward and down-
ward verticals, will be the limiting directions of chords in the vicinity of
the point x ; such a point I call an inextricable knot or tangle on the
locus y = f(x).

(2) The upper derivate on one side is + oo, the lower derivate on the
other side is —oo, and the two remaining extreme derivates are finite and
equal; that is either

/•(«) = + », /_(*) = - « , f+(x)=f-(x) = c,
or / - ( z ) = + oo, /+(a;) = - o D , f_(x)=f+(x) = c.

If f(x) is a continuous function, the limiting directions will then on each
side fill up the angle between the upward (downward) vertical and a
certain other line ; such a point I call a partial knot or tangle on the
locus.

(3) There is an ordinary finite differential coefficient: such a point is
an ordinary point on the locus.

11. We see then also that we have the following theorem as an imme-
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diate corollary to our main theorems :—

THEOREM 4.—There is no geometrical distinction of right and left
with regard to the four extreme derivates f+ {x), f+(x), f~(x),f-(x), of a
measurable function f(x), finite almost everywhere, except possibly at a
set of content zero.

Indeed not only is there no distinction of right and left, as pointed out
in § 8, except at the points of the sets Sv S2, and S3, but at certain points
of S2 also there is no distinction of right and left; these are the points at
which both a right-hand and a left-hand differential coefficient exist, both
infinite and opposite in sign. lif(x) is continuous, such a point is a cusp
on the locus y =/(a;), with vertical tangent pointing upwards or down-
wards ; this tangent is the unique limiting direction of chords from the
point x to neighbouring points on the locus.

We notice that, when f(x) is continuous, there is no distinction of
right and left not only with respect to the extreme derivates, but also with
regard to the intermediate derivates at an ordinary point, a cusp, or an
inextricable knot, but that this is not the case at a partial knot.

12. In connexion with these general theorems I examined* anew the
well-known continuous and non-differentiable function of Weierstrass

00

y = f(x) = 2 bn cos anX7r,
n=0

where a is an odd integer, and b a positive quantity less than unity, these
two parameters being connected by the inequality

Weierstrass had indeed shown that at every point f(x) has one of its upper
derivates -f- oo and the lower derivate on the other side — oo. Thus a
proper differential coefficient, whether finite, or infinite with determinate
sign, cannot exist at any point. •

By our general theory, however, it is possible that an infinite right-
hand or left-hand differential coefficient might exist. Such a point might
be a cusp, with vertical tangent, upward or downward, but, by my theorem
in the Ada, such cusps can, at most, be countably infinite. The remain-
ing points, by Theorem 2, can only form a set of- content zero.

I proved that in point of fact such cusps do exist, and form a countably

* These results were communicated to the Societe Helvetique on the occasion of its
Centenary at Geneva last August. (See L'Enseignement Math., Vol. xvu, p. 348.) The de-
tails of the work were incorporated in my Gamble Prize Essay.
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infinite set dense everywhere ; they are given by

x = Ma~n,

where M and m are any positive integers.
I showed, moreover, that at every point except at the cusps, both the

upper derivates are + co , or both the lower derivates are — oo . The set
S3 is therefore the null set.

Now in the case when/(a) is a continuous function, W. H. Young* has
proved that the points at which the two upper derivates are not equal to
one another, and the two lower derivates not equal to one another, form a set
of the first category. This set, being in Weierstrass's case, the set Si-\-S<i,
and in the general case of a continuous f(x) the sets S!+SaH-S3, is there-
fore a set of the first category and content zero.

I showed that, in Weierstrass's case, this exceptional set is either
identical with or contained in a certain set, which is easily proved to be
of the first category and content zero. The points of this set are charac-
terised by , . r

X = JQ ,J1 . . . Jm-ijmjm+l ... CUl 111}.

when x is expressed in the scale whose base is the parameter a, when for
some integer m, depending on x, all the digits jm+i, jm+2, •- are even.

It appears from this investigation that, regarded as a curve y =f{x),
Weierstrass's curve is not really a curve loithout tangents, but has, in
every interval an infinity of cusps ivith vertical tangents.

Cellerier, on the other hand, who found independently of Weierstrass,
and possibly even before him,t a non-differentiable function, has defined
for us a curve entirely without tangents. The equation to this curve is

00

y = f{x) = 2 a~n sin an x,

where a is a large positive even integer. I

12. Now let us examine what modifications are necessary in our
theorems, if we remove from f(x) the conditions (a) and {b). We must

* See the paper quoted above in §1, and also " On the Derivates of Non-Differenti able
Functions," 1908, Messenger of Mathematics, Vol. 38, pp. 65-69.

t C. Cellerier, " Note sur les principes fondamentales d'analyse " (date uncertain, Prof.
Raoul Pictet of Geneva says, according to his memory of a conversation with Cellerier, it must
have been as early as 1860), published after the-author's death, Bull, des Sc. Math. (2), Tome
14 (1890).

I It will be seen that I had thus already solved the problem left to the reader by Denjoy
on p. 210 of his memoir, and cleared up the point he leaves in doubt as to the possession of
unilateral differential coefficients in the case of Weierstrass's function.
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then, of course, revise the definitions of the derivates, since the expression
for the mcrementary ratio has no meaning when/(a:) and f(x-\-h) are both
infinite with the same sign. I shall therefore at once put aside all func-
tions which are infinite at every point of any interval. Thus the set of
points at which f(x) is finite is supposed to be dense everyiohere.

Considering then only such pairs of points x and x-\-h for which the
mcrementary ratio B(x, x-\-h) has a definite value, the derivates may be
defined as before, and we shall still have everywhere

/+ (* )< / + ( z ) , / _ ( * ) < / - ( * ) . (1)

The discussion given by me in the Ada then only requires this modifica-
tion that the points at which f(x) is infinite form an exception. At such a
point we have evidently

/(a;) = + oo, f+(x)=f+(x) = -*>, f_(x)=f-(x)= + <x>, (2)

or f(x) = -oo, f+(x)=f+(x) = + <x>, f_(x)=f-(x) = -cc.

We have accordingly the following extended form of my theorem in the
Ada:—

THEOREM.—The set of points at tohich the upper derivate on one side
is less than the lower derivate on the other side contains the set of points
at which the primitive function f(x) is infinite ; the remaining points, if
any, form a countable set.

Thus excepting the points considered in (2), and possibly also a count-
able set of points at which f(x) is finite, we have

/ + (x) < / " (x), /_ (x) < / + (x). (3)

18. If we now examine the arguments of the present paper, it appears
that, having so defined the derivates, our three main theorems remain
unaltered, provided/(a;) is only infinite at a set of content zero. Thus,
without any further ado, we can change the condition (b) into the wider
condition that f(x) should be finite almost everywhere.

14. Now let us examine what modifications are necessary in our three
main theorems, if we further relax the condition (6) laid on our measur-
able function/(a), and only demand that

(c) /(#) should be finite at a set of positive content.
It appears on examination that we have nowhere in our reasoning used

the fact that f(x) is, except possibly at a set of content precisely zero,
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finite, except in applying the C-property. If instead of the fundamental
interval, we work with the fundamental set obtained by abstracting from
the fundamental interval the points at which f{x) is infinite, the former
reasoning would still apply, provided the C-property still held in this
fundamental set, which, by our condition (c), is a set of positive content.

It will be seen that this reasoning is perfectly valid, as our function
does really possess the C-property in this fundamental set.

Thus it appears that our three main theorems remain true in this
fundamental set.

15. To obtain these results it is necessary to adapt the work of Egoroff
and Lusin referred to in § 2. We have first of all the following auxiliary
theorem:—

THEOREM.—If fi(x), /2(z), ... is a succession of finite functions,*
which diverges properly to — oo at a set of points S {which may be the
null-set), and Gn, e denotes the set of points x at which the upper bound

^x)of fm{x)-ti{x) (»i>n),

is greater than e, then the set Gn, e contains the set Gn+\.«, for all values
of n, and the inner limiting set of the sets Gn.t e is the set S.

The set Gn, « is, in other words, the set such that, corresponding to
each of its points x, there is a value of p, such that

fn+p{x) — u(x)>e. (1)

Hence, if a; is a point of Gn+i,t> there is a value of p, such that

fn+-[+p{x)—u{x) > e,

which shows that x is a point of G-,,,e, and that the integer p-{-l serves
our purpose to prove this.

Now at a point of the set S, the left-hand side of (1) is always + oo, so
that the inequality is satisfied for all integers p. Thus the set S is
certainly contained in all the sets Gn, «• It remains therefore only to
show that every point common to all the sets Gn,« is a point of S.

Let then k be any point of all the sets Gn,«. Then for a certain in-
creasing succession of integers m, we must have

fm{x)-u{x)>e. (2)

Now let us proceed to the limit with m. By the definition of u(x), the

* Not necessarily measurable.
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upper limit of fn{x) cannot be greater than u(x). Also, by (2), it cannot
be less than u{x). Finally, by (2), it cannot be equal to ^(a;) and finite.
There only remains the possibility that it is equal to u {x) and infinite.
But in this latter case the infinite value cannot be positive, or the left-
hand side of (2) would always be negative, which is a contradiction.
Hence the infinite value must be negative, which proves that x is a point
of the set S.

This proves the theorem.
Similarly we have the alternative theorem:—

THEOREM.—If l(x) is the lower function of fx{x), /3(x), . . . ,a succession
of finite functions, which diverges properly to -\-<x> at a set of points Z
(which may be the null-set), and Hn,e denotes the set of points x at which
the upper bound of 7/ . . , , . ^ .

** l(x)—fm(x) (m>.n),

is greater than e, then the set Hn, e contains the set Hn+i,«, for all values
of n, and the inner limiting set of the sets Hn t is the set Z.

16. We can now prove the extension of Egoroff's theorem:—

THEOREM.—If a succession of finite measurable functions converges at
a set T of positive content, ice can find a sub-set of T of content as small
as we please, such that, with respect to the complementary sub-set of T,
the succession converges uniformly, this complementary sub-set being
moreover perfect.

Let u{x) and l(x) be the upper and lower functions of the succession,
which are known to be equal and finite at the points of T, and let their
common value at each such point be denoted by fix). Let S and Z denote,
as before, the sets at which u(x) = — oo and l{x) = + °° respectively.
Then S and Z have no common points, and neither of them has points
common with T.

Let Gn, e denote, as before, the set of points at which the upper bound
Mn(x) o f - , . . . , . >

fm(x)—u{x) (m^n),
ia greater than e. Then, by the first theorem of the preceding article, S
is a sub-set of Gn, <•, and, if the remaining sub-set be denoted by G«,«, each
set Gn,< contains the next G'l+i,«. and there is no point common to all the
sets Gnlt-

Now since the functions fm(x) are measurable, so is u(x), and there-

fore so is Bn{x); therefore the sets Gn,e are measurable sets. Hence the
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content* G'n,t has as limit, when n increases indefinitely, the content of
the inner limiting set of the sets G'n,«, that is zero.

Therefore if e assume in succession the values elf e2> •••> forming a
monotone descending sequence with zero as limit, we can, corresponding
to each index i, determine an integer nu so that the content

G i
ni< «i

-A- t - l

where k is as large a positive integer as we please.
Adding together all these sets G'n.t e., we get a set G, whose content! is

not greater than the sum of the content of the composing sets (?»., e,., that
is, less than 2~fc, which is as small as we please.

If x is any point not belonging to G' nor to S, it is not a point of
G'n.t e. nor of S, and is therefore not a point of Gn,,«.: that is

fm(x)—u(x) ^ d (m^rii), (i)

and this is true for all indices i.
Similarly, using the second theorem of the preceding article, we obtain

a set H' of content as small as we please, such that, if x is any point not
belonging to H' nor to Z,

l(x)-fm(x) ^ et (m>jYi), (ii)

and this is true for all indices i.
Now if & is a point not belonging to any of the sets S, Z, G', and H',

both the inequalities (i) and (ii) hold for all values of m ̂  mu where nn is
the greater of ?i» and Ni. Also if £ is a point of the set T, the succession
converges to f(x). We have therefore

—d < f(x) —/„ (x) < et (m > md, (iii)

and this is true for ail indices i. Thus the double inequality (iii) holds at
all points of T which do not belong to the sets G' and Hr, of content as
small as we please. Since T is by hypothesis of positive content, the
double inequality (iii) therefore certainly holds at a sub-set of T of positive
content, as near as we please to that of T.

Since this sub-set is of positive content, it contains a perfect sub-set
(its nucleus) of the same content. Therefore the inequality (iii) holds at
every point of this perfect sub-set.

But the double inequality (iii) expresses exactly the uniform conver-

• Qud inner content.
f Qud outer content. This and the preceding footnote show why the attempt to prove

this theorem for non-measurable functions fails.
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gence of the succession to f(x) with respect to this perfect sub-set. This
therefore proves the theorem.

17. Hence we may state the extended form of the necessary and suffi-
cient condition of Weyl-Egoroff that a succession should converge almost
everywhere.

CONDITION.—A necessary and sufficient condition that a succession of
finite measurable functions should converge except possibly at a set of
content k, less than that of the fundamental segment, is that it should be
possible to find a set of content less than k-\-e, loith respect to whose com-
plementary set the succession converges uniformly, whatever sufficiently
small positive quantity e may be.

The necessity of the condition is indeed proved in the preceding
theorem. To prove the sufficiency, suppose the condition fulfilled, and
let e^ ^> e<i >- ... be any monotone descending sequence with zero as limit.
Then we can find sets Glf G2, ..., respectively of content less than
k-\-elt k-+-e2, ..., with respect to whose complementary set the succession
converges uniformly. If E denote the set of all the points not belonging
to any of these sets, each point of E will belong to the complementary set
of at least one of them, so that the succession will converge there. On
the other hand, the content of the set complementary to E, which is a set
contained in all the sets Gx, G2, ..., is not greater than the content of each
of these sets, and is therefore < k-\-eu for all indices i, that is, it is ^ k.
This proves the sufficiency of the condition.

18. I denote by the (C, &)-property of a function f(x) that we can
remove from the fundamental segment a suitable set of content less than
k-\-e, where e is any sufficiently small positive quantity, and with respect
to the remaining set the function f{x) is continuous.

If f(x) is a measurable function, and infinite at a set of content k, less
than the content of the fundamental segment, the set of its infinities must
of course be included in the set removed, if f(x) possesses the (C, ̂ -pro-
perty. Thus for such a function the (C, &)-pn>perty is the same as the
C-property in the fundamental set obtained by removing from the con-
tinuum the infinities of/(«).

What we require, therefore, is simply to prove that such a function
f {x) possesses the (G, k)-property.

Let then/(;c) denote a measurable function, finite except possibly at a
set S of content k, less than the length of the fundamental segment (a, b).

Let fi(x) denote the function which is equal to f(x), wherever
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\f(x) \^i, and has the value -\-i or —i elsewhere, the sign being the
same as that of f(x). Then the function /*(x) is certainly measurable, for
with the exception of the values -\-i and —i, the sets of points at which it
has any value are the same as for f(x), and the sets at which it has the
value -\-i or —i are measurable, since they are the sets at which f{x) is
^ + i and <I — i respectively.

Also giving i all positive integral values, we get a sequence of bounded
measurable functions converging or diverging to f(x) everywhere. Hence
we may apply the extension of Egoroff s theorem given above (§ 16), T
being now the set of points where f(x) is finite. We can, therefore, find a
sub-set Te of T of content less than Je, where e is as small as we please,
such that with respect to the remaining sub-set of T the sequence con-
verges uniformly, this remaining set, say U, being moreover perfect.

If therefore we show (as Lusin has already done), that a bounded
measurable function has the C-property, that is the (C, 0)-property, it
follows at once that our function f(x) has the (C, Ar)-property, for ft w^j
be continuous with respect to a sub-set V of U, of content as near as we
please to that of U, with respect to which each of the functions fi{x) is
continuous. Indeed we only have to find a set Si of content less than
2~t~1e corresponding to fi(x), in accordance with the C-property, and form
the set of all the sets Si, for all indices i, and denote the sub-set of U con-
taining no point of this latter set by V.

19. It remains therefore only to give Lusin's proof of the fact that
any bounded measurable function possesses the C-property.

Now, as is well known, if f(x) is a bounded measurable function, it is
the limit of a monotone ascending sequence of measurable functions, each
having only a finite number of values. For instance, if K be the lower
and K' the upper bound of/(#), and we write

elv = (K-K')ln,

and kr = K+ren [r = 0, 1, ..., (n-1)] ,

we may define the constituent fn(x) of the required sequence as follows:—

Wherever &n_i < ; / < K', we have fn = Jfcn-i,

and so on, finally, where

It is unnecessary to discuss this further, as it is familiar.
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Hence, again, as before, it is only necessary to prove that such con-
stituent functions possess the C-property.

But a measurable function which has only a finite number of values is
evidently the sum of a finite number of functions each having only the
values 0 and 1, each multiplied by a suitable constant. Hence the pro-
perty only requires to be proved for such a simple function.

Now such a function is 1 at a measurable set Sv and 0 at the comple-
mentary measurable set SQ. In Sx take a closed set S[ of content as near
as we please to that of Sv and in So a closed set So, of content as near as
we please to that of So. Then with respect to the set Si-f-So our function
is continuous, which proves that it has the C-property.

This completes the proof of the assertion that a measurable function
f{x), which is infinite at a set of content k, less than that of the funda-
mental segment, possesses the (C, &)-property, and therefore possesses the
C-property in the set got by removing from the fundamental segment all
the infinities of f(x).

20. Using the (C, &)-property, therefore, in place of the C-property,
we get, without change in the reasoning, extensions of our three main
theorems, in which the points referred to are not points at which /(rr).is
infinite.

As, however, at a point at which f{x) = + °° (h > 0),

[f(z+h)-f(x)]lh = -*>,

and [f(x)-f(x-h)]lh = + n

[f{x~\-h) being different from + co], it follows that, supposing f(x) not to
be infinite throughout any interval, at a point where f{x) = -f oo, we
have the right-hand differential coefficient — oo, and the left-hand differ-
ential coefficient •+- GO . At a point where f(x) = — oo , the signs of these
infinities are, of course, reversed. Thus such points do not affect the
results in Theorem 1, Theorem 3, and Lusin's Theorem, which remain
true for our more general function. Theorem 2, however, takes the
following form.

THEOREM 2, bis.—The points at which f{x) has an infinite right-hand
{left-hand) differential coefficient consist of the infinities of f(x) and
possibly of an additional set of content zero.


