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1. Suppose that f(x) is an analytic function of the complex variable z,
regular for |z | < p, and that M(») denotes, as usual, the maximum of
[ f(x) | on the cirele |z | = r << p. Then it is known that M(») possesses
the following properties :—

(i) M(r) is a steadily increasing function of »;

(i) log M(r) is a convex function of log r, so that

log (ra/7) oy log(r/7y) ‘
log M(r) < Tog (raf7) log M(r)+ l_og—_—_(‘r,/rl) log M (ry),

if o< rg<rny<y.

Further, when f(z) is an integral function, so that p = ®, it is
known that

(iii) M (r) tends to infinity with (r), and, unless f(z) is a polynomial,
more rapidly than any power of r.*

It was suggested to me by Dr. H. Bohr and Prof. K. Landau, rather
more than a year ago, that the property (i) is possessed also by the mean
value of | f(z)| on the circle |z | = », i.e., by the function

n@) = 2i 5:|f(reio) I de.

ki

* The theorems (i) and (iii) are classical. Theorem (ii) was discovered independently by
Blumenthal (Jakresbericht der Deutschen Math.-Vereinigung, Vol. 16, p. 97), Faber (Math.
Annalen, Vol. 63, p. 549), and Hadamard (Bulletin de la Soc. Math. de France, Vol. 24,
p. 186). The first statement of the theorem was due to Hadamard and the first proof to
Blumenthal. The theorem is a corollary of one concerning the associaied radii of convergence
of a power series in two variables, due to Fabry (Comptes Rendus, Vol. 134, p. 1190}, and
Hartogs (Math. Annalen, Vol, 62, p. 1).
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In the attempt to prove this I have been led to prove a good deal more, in
particular that the function u(r), and the more general function

N e _1_ i oy 8
ps(r) = 5= L | fre®) i® db,
where & is any positive number, possesses all the properties (i)—(iii)
characteristic of M(r). It should be observed that this is obvious when
d =1 and 4/{f(z)} is one-valued for » << p; for then we have

Vif@} = by+bix+b2i+ ...,
say, and w(@) =11 24 | | 224 | by ]2 4. .

2. The argument of the following paragraphs depends on two lemmas
concerning conjugate functions*.

Suppose that x = £41n,
and that X==+:H

is a funection of z rvegular for all values of z under consideration. Then
= and H are real conjugate functions of £ and ».

Let 1 be a real funetion of = and H, and so of £ and 5, with eon-
tinnous second derivatives. Then the lemmas in question are expressed
by the formulse '

mo G-
aX

where M =

Tl=vi@+ G =viE) +E)

* The use of these lemmas was suggested to me by Dr. Bromwich, at a time when the
paper contained only a part of its present contents, The whole argument has been recon-
structed in consequence of this suggestion, and is mueh more concise and elegant than it was
before. I am also indebted to Dr. Bromwich and to a referee for a number of minor sugges-
tions, The lemmas themselves are given in Clerk-Maxwell’'s Flectricity and Magnetism,
Vol. 1, p. 289, and Dr. Bromwich informs me that they are due to Lamé (*‘ Mémoire sur les
Lois de I'Bquilibre du Fluide Ethéré’’, Journal de U Ecole Polytechnique, Vol. 3, cahier 28},
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The formula (A) and (B) may be proved as follows. From the equations

Y _ ey 3E W oH
bA Rl 4 + vy eeny ey
723 0= of oH UE

dX _oX __0X _om oM _ = oM
dxr ot on  of or on  om '
it is easy to deduce that
"“’ _ Z)z&_b\b)
(1) a ’m, (bE You)
b ()
@ ;E”an‘('as”;m)"'

where u = Z_a:X and u is the conjugate of u. The formula (B) follows at once by multiplica-

tion. To prove (A) we operate on (1) with the operator

and apply (2), observing that ( —0— +1 —a) u=0.

8. Suppose now that X = f(z) is regular for |z| < p, and that D is
an annular region, defined by inequalities of the form

o<n<r=lzl<n<p,

and including no zeros of f(z).

Let logz = logr +40 = ¢ = p+16,
log X = log R4+t = Z = P+i0,
where r>0, BR>0 —7<lLr, —7<OLr

Then P and © are conjugate functions of p and #, with second derivatives
continuous for all values of p and 6 which correspond to values of 2 in D.

Let us take v =F&R) = ¢(@),

where F(E) is a function with a continuous second differential coefficient.
Applying Lemma A, we obtain

Q) J’ + % 392

where .
2 ) 2
=G +5)"

@) M
Let us now suppose that log ¢(P) is a positive and convex funetion

a_ | 4z
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~2
of P, so that # logpP) >0

¢ (0¢\7,
or ? 3P = (a‘P) ;
and let

1 T

3) vip) = %52 o (P) de.
Then

dp 0P
V() = ljggg—de

o< [Elw <L [ Vie T2

and 8o, by Schwarz’s inequality,
1 2r 24 82¢
' 12 —
@ o< v [T

2w N2
But Vip) = 1 j a‘ﬂ' de

and

op

op
3 de,

Y 0 < X2 (78
a0 < %r = M2d0.

by (1). Hence

" N —1_. 21ra~2$ 2 ___}_51"-6_2_?
) Vi(p) = 27 50 opP? M*af O Jo 06P a9
2w
= j a—lﬁi M2 a9,

since ¢ is a function of P or of R only, and R is periodic in 6.
(4) and (b) it follows that

(6) v(ip) V' (p) = (V' (p)]?

or that logv is a couvex function of p.
We have thus proved

Taeorem L.—If log {¢ (log R)}

is @ convex function of log B, then

log v (log 7} = log {Q—l;r Yoﬂ ¢ (log R)dO }

From

is, throughout any interval of values of r which includes no zeros of f(x),

a convex function of log r.
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In particular, we may take
F(R) = ¢(P) = ¢ = R},

in which case ¢¢”" = ¢%. It follows that log us(r), and in particular
log «(r), is a convex function of log », throughout any interval of values of
r which includes no zeros of f(x). This case is indeed the critical case of
Theorem I, the condition that ¢(P) should be a convex function of P
being only just satisfied.

4, With Theorem I we may associate another theorem, in which less
18 postulated and less proved.

TasoreM II.—If ¢ (log R) is a convex function of log R, then v(log»)
s a convex function of log r.

For v"(p) is positive, by (5) of § 8. The eritical case of Theorem II is
that in which ¢(log R) = log R. In this case we have, by a well known
theorem of Jensen*,

cr’

1 2w
) = = [ .
v (log r) o 50 log RdO = log )

D +1 42 o0 Ap
where f@) = ca™+...,

and @ui1y Tmiz, ..., Ayn are the zeros of f(r), other than the origin, whose
moduli are not greater than ». In this case v(log7) is a linear function
of log r throughout any interval of values of » which inecludes no zeros

of f(x).

5. In order to proceed further with our investigations concerning
us (#), we must examine the behaviour of u;(») for the exceptional values
of r which correspond to zeros of f(x), and for » = 0. I shall prove that

, dus ()
dar
is continuous without exception.
Let xy = pe? (p>0)
be a zero of f(z). We have to prove that
dus (7)
dr

* Acta Mathematica, Vol. 22, p. 359.
SER. 2. VoL. 14. wo. 1238. T
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is continuous throughout an interval of values of » of the type
p— < r<< ptn

1 shall suppose, for simplicity, that z, is the only zero of modulus p.
The proof is substantially the same when there are several such zeros.
I shall prove that the integral

dustr) _ 1 52" oR?

o—a;de

dar 2

is uniformly convergent throughout the interval p—n < r < p+n, if 5 is
small enough.

We hﬁ;ve f(:l:) = (x_zo)mfl (1:);

where m is a positive integer, and f,(z) has no zeros whose modulus lies
between p—# and p-+#, so that | f;(z) | lies between positive constants H,
and H,.

Now, taking ¥ = F(R) in Lemma B, we have

G+ = (E@+GRHE

In particular, if FR=R= V(EQ+H“),

we have (%?) +( )2 l

and | %_Iri , = ~ %? +sm98(')13 V/{@gg)z-}- (%%3_)2} =
But Y — me—2g @ +e—om L,

and so %l < K|z—gzo|™,

where K 1s a constant. Hence

oR —

®) —a7|<K|:r.—zo\ 3
Algo

®) B < Hp 7 o —a |07

if §>1, and

(6') Rl—l < H:—l | z—2z, ‘m(t—l)’
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if § << 1. From (5) and (6) or (6") it follows that
@ | B SR ] < Ky Lo—ay |,
where K, is a constant. If md—1 > 0, we have
2| < x,
or
where K, is a constant, and then the integral

J B2 e

q Cr

is obviously uniformly convergent. If, on the other hand, mé—1 << 0,
we have
lz—2y| = 4/ +p*—2rp cos w),

where w = 8—¢, and so
|z—zy| > K; |sin o],

where K is a constant. The uniform convergence of the integral then
follows at once when we compare it with

Rig
j | sin 3 |1 de.
0

6. We have thus proved that log us(») i1s a convex function of log”
for all positive values of r save certain exceptional values, and that

d log s ())
dlog »
is continuous even for these values of r. It follows that logus(») is a
convex function of log » for all positive values of » without exception*.
A fortiori is us(r) a convex function of log r, and
) dus (r)
TG

an inereasing funection of r.

It remains to consider the behaviour of ,i’%g’_) ag r—>0. Suppose
that the origin is a zero of f(x) of order m. Then
R = rms Rs
1?

* A series of continuous convex arcs, fitied together so as to have the same tangents at
the points of junction, forms a single convex curve.

T 2
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where R, is positive and has continuous derivatives. Hence

d,us (’) _— nd 52” 5 mé+1 j:!rr _Els
re = mér , R:dO+ . o ae,

which plainly tends to zero as » — 0.

Thus )d—%‘;(—’) is continuous and steadily increasing for all positive

values of r, and tends to zero as r — 0. It follows that
dus (r)
r —-—’z;’( =0

for all positive values of ».
We have thus proved

TreorEM II1.—The integral

s () = 2—17r j: RO (5> 0)

is a positive, continuous, and steadily increasing function of r. The same

18 true of ) duts (r).

dar

And log us(r), and a fortiori us(r) téself, is a convex function of log r.

7. The last theorem contains inter alia the answer to the question
raised by Bohr and Landau. It should, however, be observed that the
most appropriate measure of the ‘ average increase’ of f(z) is not the
mean value of R, or of any power of R, but of log R; for the former
means are not adequately affected by the occurrence of zeros of f(x), or
of ares on which R is small.

8. It remains to discuss the analogues for wms;(») of the property (iil)
of § 1. \

We may suppose without loss of generality that f(r) has infinitely
many zeros. If it has not, it is of the form

P(m) e (’7)’
where P(z) is a polynomial and g(z) an integral function. Now

D = b b x+ by’ + ...,
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say ; and

w0y = oo [T1001 80 = (1174 13,1224 15,10 P

certainly tends to infinity more rapidly than any power of ». It follows
immediately that the same is true of u;(»).

Suppose, then, that f(r) has an infinity of zeros, and that
Pmaly Tmeg, ooy ¥u are the moduli of those, other than the origin, whose
moduli do not exceed ». Then, if g(6) is any continuous function of 8, we
have 1

27 Jo

m

et &
and s0  wus(r) = 2—17'_5 R3d0 = e j s )—::;—h ,
by Jensen’s theorem. It follows at once that u;(#) tends to infinity with
r more rapidly than any power of ». We can indeed go further, and
establish relations between the rate of inerease of 7, considered as a funec-
tion of n, and us(r), considered as a function of », in every way analogous
to those given by Jensen’s theorem for M(»).* For example, if the * real
order ”’ of f(x) is p, we have

ms(r) >

for every positive ¢ and values of » surpassing all limit.

* Lindelof, Acta Societatis Fennicae, Vol. 31, No. 1; see also Borel, Legons sur les
fonctions méromorphes, p. 105.





