viduals and pluralities of which he conceives that subject-matter to consist, we seem to be within measurable distance of a reply to our question-What is mathematics?

It is notoriously daugerons to attempt to formulato definitions; but, on the other hand, it must not be forgotton that a bad definition may provoke a good one. I would therefore venture provisionally to suggest that:-

Mathematics is the science by which we investigate those characteristics of any sulject-matter of thonght which are due to the conception that it consists of a number of differing and non-differing individuals and plaralities.

If the result of this attempt be only to elicit conclusive pioof that mathematics is something elso, and an indication of what it really is, my main object in this brief address will have beon attained.

I'hird Memoir on the EAtpansion of certain Infinite Products. By L. J. Roamis. Roceived October 31st, 189.4. Read November 8th, 1894.

Abimeviations used in time foldowing Memoir.
(1) $(i) \equiv(1-x)\left(1-x_{y}\right)\left(1-x_{y}\right) \ldots$.
(2) $P^{\prime}(x) \equiv 1 /\left(x x^{(i)}\right)\left(x e^{-\theta i}\right) \equiv 1+\frac{\mathcal{A}_{1}(\theta)}{\eta_{1}} x+\frac{\mathcal{A}_{2}(\theta)}{q_{2}!} x^{2}+\ldots$, whero

$$
q_{r} \equiv 1-q^{r}, \quad \text { and } \quad q_{r}!\equiv(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{r}\right) .
$$

(3) $\left(-x q c^{\varepsilon^{i}}\right)\left(-x q_{0}^{-0 i}\right) \equiv 1+\frac{B_{1}(\theta)}{q_{1}} x+\frac{l_{y}(\theta)}{q_{!}!} x^{2}+\ldots$.
(4) $P(x \lambda) / P(x) \cong 1+\frac{I_{1} \cdot(\theta)}{q_{1}} x+\ldots$.
(5) $\lambda_{r} \equiv 1-\lambda_{q^{r-1}}, \mu_{r} \equiv 1-\mu q^{r-1} ; \quad \lambda_{r}!\equiv \lambda_{1} \lambda_{2} \ldots \lambda_{r}, \mu_{r}!\equiv \mu_{1} \mu_{2} \ldots \mu_{r}$, nad $\lambda_{r}^{2}!\equiv\left(1-\lambda^{8}\right)\left(1-\lambda^{8} q\right) \ldots\left(1-\lambda^{2} q^{r-1}\right)$, \&o.
(G) $I I_{r}(a, b, \ldots / a, \beta, \ldots) \equiv$ cocflicient of x^{r} ị $(a x)(b x) \ldots /(a x)(\beta x) \ldots$
(7) $\Phi\{a, b, c, q, x\}=1+\frac{a_{1} b_{1}}{q_{1} c_{1}} x+\frac{a_{n}!b_{n}!}{q_{2}!c_{2}!}, x^{2}+\ldots$.
(8) $f_{r} \equiv 1-2 q^{r-1} \cos 2 \phi+q^{2 r-1}$.

1. In investiguting the properties of the function $A_{r}(\theta)$, we have bitherto beon concerned in establishing relations comnecting the coefficients in a supposed identity of the form

$$
\begin{equation*}
a_{0}+a_{1} A_{1}(\theta)+a_{2} A_{2}(\theta)+\ldots=b_{0}+2 b_{1} \cos \theta+2 b_{2} \cos 2 \theta+\ldots \tag{1}
\end{equation*}
$$

and applying such relations in a mannor so as to obtain various identities involving a single quantity q.

It is casily seeu that the method of application ($\$ 7$ of the Second Momoir) implies an identity
(q) $\left\{1+\frac{q A_{2}(\theta)}{q_{2}!}+\frac{q^{4} A_{4}(\theta)}{q_{4}!}+\ldots\right\}=1+2 q \cos 2 \theta+2 q^{4} \cos 4 \theta+\ldots$
and that all the deductions from the subsequent "examples" could have been derived from such an identity.

It is the object of the present memoir to prove identities of type (1) to which we may apply relations of the type

$$
a_{0}+n_{1} a_{1}+m_{2} a_{2}+\ldots=b_{0}+n_{1} b_{1}+n_{2} b_{2}+\ldots
$$

always remembering that we may separate into independent identities those terms which contain even suffixes from those which contain odd.

For this purpose we shall investigate some of the properties of a generalized function similar to $A_{r}(\theta)$, obtained by expanding the quotient $P(\lambda x) / P^{\prime}(x)$ in powers of x.

Suppose this expansion denoted by

$$
1+\frac{I_{1}(\theta)}{I_{1}} x+\frac{I_{4}(\theta)}{\mu_{2}!} x^{2}+\ldots
$$

or by

$$
1+\sum_{q_{r}!}^{I_{r}!} x^{r},
$$

when the omission of θ involvos no ambiguity.
Now, since

$$
\frac{P(\lambda x)}{P^{\prime}(: x)}\left(1-2 x \cos \theta+x^{2}\right)=\frac{P(\lambda x q)}{P^{\prime}(x q)}\left(1-2 \lambda x \cos \theta+\lambda^{2} x^{2}\right),
$$

it is eary to seo that

$$
L_{r}-2 \cos \theta \cdot L_{r-1}\left(1-\lambda q^{r-1}\right)+L_{r-2}\left(1-q^{r-1}\right)\left(1-\lambda^{9} q^{r-3}\right)=0 \ldots(3) .
$$

We may, moreover, notico a fuw olvious properties of L_{r}.

Since, by definition,

$$
\begin{aligned}
\lambda_{1}+\frac{\lambda_{2}}{q_{1}!}: x+\frac{\lambda_{8} L_{2}}{q_{2}!} x^{2}+\ldots & =\frac{P^{\prime}(x \lambda)}{P(a)}-\lambda \frac{P(x q \lambda)}{I^{\prime}(a)} \\
& =(1-\lambda)\left(1-x^{2} \lambda\right) \frac{P(x q \lambda)}{P^{2}(x)}
\end{aligned}
$$

\qquad
we may expross L_{r} in terms of similar cocflicients in which λq replaces λ.

The following values of L_{r} for special values of λ neo also worthy of notice.

If $\quad \lambda=0, \quad I_{r} \quad$ becomes A_{r},

$$
\lambda=q, \frac{P\left(\lambda_{i z}\right)}{P(x)} \quad \text { becomes } \quad \frac{1}{1-2 a \cos \theta+x^{2}},
$$

so that

$$
L_{r}=\frac{\sin (r+1) \theta}{\sin \theta} q_{r}!;
$$

if

$$
\begin{aligned}
& \lambda=1, \frac{\lambda_{r t 1} I_{r}}{\lambda_{1}} \text { becomos } 2 \cos r 0 \cdot q_{r}!\text {, by (4), } \\
& \lambda=\infty, \frac{L_{r}}{(-\lambda)^{r}} \text { becomes } \frac{B_{r}}{q_{r}^{r}}
\end{aligned}
$$

Moreover, if $\lambda=q^{n}$, and q is made equal to unity, then $\frac{L_{r}}{q_{r}!}$ is the coefficiont of $x^{\prime \prime}$ in the expansion of $\left(1-2 x \cos 0+x^{2}\right)^{-n}$.

It is easy to obtain the values of L_{r} by multiplying together the scries for $\frac{\left(\lambda a a^{0 i}\right)}{\left(a c^{i i}\right)}$ and $\frac{\left(\lambda a e^{-u l}\right)}{\left(2 e^{-v i}\right)}$, and collecting tho coefficients of $\frac{x_{r}}{q_{r}!}$.

It will be seen that $L_{\text {r }}$ can be expressed linearly in terms of $\cos r \boldsymbol{\theta}$, $\cos (r-2) \theta, \& e$., tho last being $\cos \theta$, or $\cos 0$, according as θ is odd or even.
2. Suppose now that

$$
P(\mu x:) / P(x) \equiv 1+\Sigma \frac{M M_{r}}{q_{r}} x^{r},
$$

so that M_{r}, is the same function of μ as L_{r} is of λ. Then it is clear that M_{r} may bo linearly expressel in terms of L_{r}, L_{r-2}, \ldots.
'Thus, sinco

$$
I_{1}=\lambda_{1} \cdot \because \cos \theta, \quad \text { and } \quad L_{2}=-\lambda_{1} \lambda_{2} \cdot 2 \cos 2 \theta+\frac{q_{2}}{q_{1}} \lambda_{1}^{3}
$$

VOL. XXVI.-NO. 501.

by direct calculation,

$$
\begin{aligned}
& \frac{I_{1}}{\underline{q}_{1}}=\frac{M_{1}}{q_{1}} \frac{\lambda_{1}}{\mu_{1}} \\
& \frac{I_{4}}{q_{2}!}=\frac{M_{1}}{q_{2}!} \frac{\lambda_{3}}{\mu_{2}!}+\frac{(\mu-\lambda) \lambda_{1}}{\mu_{1} q_{1}} .
\end{aligned}
$$

We may terive the goneral formula for L_{r} ly induction.
Assume

$$
\begin{align*}
& I_{r}=M_{r} \mu_{r+1} \quad \lambda_{r}! \\
& \eta_{r}!+M_{r-2} \mu_{r-1}!(\mu-\lambda) \lambda_{r+1}! \tag{1}\\
& \mu_{r-2}! \mu_{1}!\mu_{r}!
\end{align*}
$$

the general term being

$$
\underset{q_{r-u}}{M_{r-n} \mu_{r} n_{t}+1}(n-\lambda)\left(\mu-\lambda_{q}\right) \ldots\left(n-\lambda q^{n-1}\right)_{\lambda_{--1}!}
$$

Using a similar formulit for $t_{\text {ri-l }}$, mal combining it with that above. in the expression

$$
2 \cos 0 \cdot L_{r} \lambda_{r+1}-L_{r-1} I_{r+1}\left(1-\lambda^{2} I^{r-1}\right)
$$

which, liy $\$ 2(1)$, is erpal lis L_{r+1}, wo shlall obtain a sorios of M 's and $A P^{\prime}$ multiplies by $2 \cos 0$. JTowover, $2 \cos \theta$. L_{r-1} may also bo transformed by $\S 2$ (1), and wo shall finally roduco L_{i+1} to a sories of $A \Gamma_{i+1}$.
The coefliciemt of $M_{r \ldots+1}$ in ${ }_{L_{r+1}} I_{r}$ is then fomed to consist in genoral of thece terms, theye thice redueing to two whon

$$
r-2 x+1=0
$$

These will be fomm, after some reduetions and dividing ly q_{r+1}, to reduco to the same function of $r+1$ as the ahove coefliciont of M_{r-2} is of r, thus estathlishing the idemtity.
'Tho formula (1) is of grevat pemerality, and will ho frome to bo of Hpecial inumbence when the paricular values $0,4,1$ are given to λ or μ, sime wo then whain expressions for $A_{r}(\theta), \begin{array}{r}\sin (r+1) \theta \\ \text { sint } 0\end{array}$,

As n general case, let us expmed $P(\lambda x) / P(x)$ in terms of ascending ordels of A 's. Replacing the L 's in $1+\Sigma \frac{L_{r}}{q_{r}!} a^{\prime \prime}$ by their equivalent series, wo get

$$
\begin{aligned}
& \begin{aligned}
\uparrow\left\{\frac{\lambda}{\mu}, \lambda, \mu q, q, \mu x^{2}\right\} & +\frac{M_{1}}{q_{1}} \frac{\lambda_{1}!}{\mu_{2}!}!x \phi\left\{\frac{\lambda}{\mu}, \lambda q, \mu q^{2}, q, \mu x^{2}\right\} \\
& +\frac{M_{3}}{q_{2}!} \frac{\lambda_{4}!}{\mu_{2}!}!x^{2} \psi\left\{\frac{\lambda}{\mu}, \lambda q^{2}, \mu q^{3}, q, \mu v^{2}\right\}+\ldots
\end{aligned} \\
& \text { If } \quad \lambda^{2}: v^{2}=\mu q,
\end{aligned}
$$

the enofieiont series may all be expressed as products by lleine's formula
so that, finally,

$$
\begin{aligned}
& \left.+\frac{r_{s} \mu_{3}}{q_{9}!} \frac{(x-\sqrt{\mu q})\left(n-\sqrt{ } \mu q^{3}\right)}{(1-r \mu \sqrt{\mu q})\left(1-n \mu \sqrt{\mu q^{6}}\right)}+\ldots\right\} .
\end{aligned}
$$

$$
\begin{align*}
& \text { Agrin, if } \quad \lambda_{i m}{ }^{3}=-q, \tag{2}
\end{align*}
$$

 sion for $l^{\prime}(-q / a) / l^{\prime}(a)$, which, being independent of M, gives us
 A-series which is equal to a cosine series, and comserpently we have a means of employing the formula in the secomd memoir.

We shatl, however, make use of a mone genemal formula comeeting an A-series with a cosine series, which we now promed to estahimh.
3. By pulting $\lambda=0$ in $\S 2$, we gretion expression for A, in toms of. NF. Replauing these in the servies
and collecting the coefficients of the several M 's, we have

$$
\begin{aligned}
& \phi\left\{\frac{q^{4}}{u}, \frac{q_{-}^{4}}{v}, \mu q, q, \mu u v\right\}+\frac{\left(u-q^{4}\right)\left(v-q^{4}\right)}{q_{2}!\mu_{3}!} \phi\left\{\frac{q^{\frac{2}{2}}}{u}, \frac{q^{\frac{3}{2}}}{v}, \mu q^{3}, q, \mu u v\right\} M_{s} \\
& \left.+\frac{\left(u-q^{4}\right)\left(u-q^{\frac{1}{2}}\right)\left(v-q^{\frac{4}{2}}\right)\left(v-q^{\frac{1}{2}}\right)}{q_{4}!\mu_{5}!} \cdot \frac{q^{\frac{3}{2}}}{u}, \frac{q^{4}}{v}, \mu q^{5}, q, \mu u v\right\} M_{4}+\ldots .
\end{aligned}
$$

All these IIcinean series are of the form
which

$$
\begin{aligned}
& \phi\{a, b, a l n, q, n\}, \\
& =(a r r)(b: r) /(a b x)(n),
\end{aligned}
$$

so that (1) finally hecomes

If.we put $\mu=1$, this latter expression becomes

$$
\frac{\left(q^{\frac{1}{4}} u\right)\left(\eta^{4} v\right)}{(q)(u v)}\left\{1+2 \cos 20 \frac{\left(v-q^{4}\right)\left(v-q^{4}\right)}{\left(1-u q^{4}\right)\left(1-v q^{4}\right)}+\ldots\right\}
$$

Equating tho series (1) and (3) together, we have an identity of great generality, to which the formule of the second memoir may be applied.

If

$$
u=v=0,
$$

we have the formula $\S 1$ (1), from which the q-identities were obtained. It is also interesting to noto that a large number of elliptic functions may be expanded in nsecemting orders of M, or more particularly A.

If we put $\mu=q$, wo hisve
$\frac{\left(q^{4}, n\right)\left(q^{8}, n\right)}{(q)(q u \eta)} \frac{1}{\sin \theta}\left\{(1-q) \sin \theta+\frac{\left(n-q^{4}\right)\left(v-q^{4}\right)}{\left(1-n q^{1}\right)\left(i-v q^{1}\right)}\left(1-q^{8}\right) \sin 3 \theta+\ldots\right\}$

$$
\text { Now, if } \begin{align*}
a_{0}+a_{2} A_{2}(\theta)+\ldots & =h_{0}+2 h_{2} \cos 2 \theta+\ldots \tag{4}\\
& =\frac{1}{\sin \theta}\left(\beta_{n} \sin \theta+\beta_{2} \sin 30+\ldots\right),
\end{align*}
$$

and any such series as

$$
a_{0}+m_{2} a_{2}+m_{4} a_{4}+\ldots
$$

has an equivalent b-series which can be thrown into the form

$$
\left(b_{0}-b_{2}\right)+\left(b_{2}-b_{4}\right) \mu_{2}+\ldots
$$

we obviously get

$$
\begin{equation*}
a_{0}+m_{9} a_{2}+m_{4} a_{4}+\ldots=\beta_{0}+\mu_{2} \beta_{2}+\mu_{4} \beta_{4}+\ldots \tag{5}
\end{equation*}
$$

From the equality of (1) and (4) we therefore have

$$
\begin{align*}
& 1+m_{2} \frac{\left(u-q^{4}\right)\left(v-q^{4}\right)}{q_{1} q_{2}}+m_{4} \frac{\left(u-q^{4}\right)\left(u-q^{i}\right)\left(v-q^{4}\right)\left(v-q^{\frac{1}{2}}\right)}{q_{4}!}+\ldots \\
& =\frac{\left(q^{3} u\right)\left(q^{\left.\frac{1}{v} v\right)}\right.}{(q)\left(q^{v} v\right)}\left\{q_{1}+\mu_{2} \frac{\left(u-q^{4}\right)\left(v-q^{4}\right)}{\left(1-u q^{3}\right)\left(\overline{1}-v q^{3}\right)} q_{3}+\ldots\right\} \tag{6}
\end{align*}
$$

Let

$$
u=e^{24 i} \text { and } v=e^{-24 i} ;
$$

then, if we write f, for $1-2 q^{r-1} \cos 2 \phi+q^{2 r-1}$, we get
$1+m_{2} \frac{f_{1}}{q_{2}!}+m_{4} \frac{f_{1} f_{2}}{q_{4}!}+\ldots=\frac{P\left(q^{2}, 2 \phi\right)}{(q)^{2}}\left\{\frac{q_{1}}{f_{1}}+\mu_{2} \frac{q_{3}}{f_{3}}+\mu_{4} \frac{q_{5}}{f_{5}}+\ldots\right\}$
As specimens of this identity we may quote the following: from p. 322 (12), we have

$$
1=\frac{P\left(q^{4}, 2 \phi\right)}{(q)^{2}}\left\{\frac{q_{1}}{f_{1}}-q \frac{g_{3}}{f_{5}}+q^{8} \frac{g_{5}}{f_{5}}-\ldots\right\} ;
$$

as is shown by Jacobi, from p. 325 (9), we have

$$
1+\Sigma \cdot \frac{f_{1}!q^{r}}{q_{2 r}!}=\frac{P\left(q^{1}, 2 \phi\right)}{(q)^{2}}\left\{\frac{q_{1}}{f_{1}}-q^{4} \frac{q_{5}}{f_{0}^{2}}+q^{8} \frac{q_{7}}{f_{7}}-q^{20} \frac{q_{11}}{f_{11}}+\ldots\right\} ;
$$

from p. 338 , Hx. 1 , we have

$$
1+\Sigma \frac{f_{r}!q^{\prime 2}}{q_{2 r}!}=\frac{P\left(q^{4}, 2 \varphi\right)}{(q)^{2}}\left\{\frac{q_{1}}{f_{1}}-q^{2} \frac{g_{5}}{f_{5}}+q^{4} \frac{g_{7}}{f_{7}}-q^{10} q_{q_{11}}^{f_{11}}+\ldots\right\} ;
$$

from p. 342 , we have

$$
1+\Sigma \frac{f_{1}!q^{r}}{q_{r}!}=\frac{P\left(q^{4}, 2 \phi\right)}{(q)^{2}}\left\{\frac{q_{1}}{f_{1}}-q^{3} \frac{q_{3}}{f_{3}}+q^{0} \frac{q_{5}}{f_{5}}-q^{18} \frac{q_{7}^{1}}{f_{7}}+\ldots\right\}
$$

In a simila way we may establish the relations

$$
\begin{align*}
& \frac{A_{1}(0)}{q_{1}}+\frac{(n-\eta)(\eta \cdots--\eta)}{\eta_{3}!} A_{3}(0)+(n-q)\left(n-q^{2}\right)(\eta-q)\left(v-q^{2}\right) A_{q_{5}}(\theta)+\ldots \\
& =\frac{(u q)(m)}{(q)(u v)}\left\{2 \operatorname{acos} \theta+\frac{(u-q)(v-q)}{(1-n q)(1-\eta q)} 2 \cos 3 \theta\right. \\
& \left.+\underset{(i-m q)\left(1-\mu q^{2}\right)(i-\eta)(n-\eta)\left(i-q^{2}\right)}{\left(i-q^{2}\right)} 2 \cos 5 \theta+\ldots\right\} \tag{8}
\end{align*}
$$

and dednee many itentities from the examples given in the second memoir: which comnect series ol' a's and l's with odil snlfixes.
4. It will he neessany, in order to establish further proporties of $A(\theta)$, to expund the quotient $\psi\{n, l, c, \eta, x\} /\left(\frac{n l, r}{c}\right)$ in powers of x, which may be theown into a very simple form.

If

$$
\phi\{n, l, c, q, n\} \equiv 1+u_{1} ?+u_{2} n^{2}+\ldots
$$

then we know that

$$
\left(1-q^{n}\right)\left(1-c q^{r-1}\right) u_{n}=\left(1 \cdots \mu q^{r-1}\right)\left(1-l q^{r-1}\right) u_{n-1},
$$

whence, denoting the Heincan series liy ϕ (a), we have

$$
\begin{aligned}
& (1-x) \phi(x)-\left(1-n x-b x+\frac{c}{q}\right) \phi(x q)+\left(\frac{c}{q}-a x^{2} x\right) \phi\left(x q^{2}\right)=0 . \\
& \text { Let } \quad \phi(x) /\left(\frac{a l x}{c}\right) \equiv H(x) \equiv 1+\beta_{1} x+\beta_{2} x^{3}+\ldots,
\end{aligned}
$$

so that

$$
(1-x)\left(1-\frac{a n, q}{c}\right) F^{\prime}(x)-\left(1-a x-l x+\frac{\sigma}{q}\right) F^{\prime}(x q)+\frac{c F^{\prime}}{q}\left(x q^{2}\right)=0,
$$

and by equating the coefficient of x^{r} to zero

$$
\begin{aligned}
& \quad\left(1-q^{r}\right)\left(1-c q^{r-1}\right) \beta_{r}-\left(1-a q^{r-1}-l q_{q}^{r-1}+\frac{n l l}{c}\right) \beta_{r-1}+\frac{n l l}{c} \beta_{r-2}=0 . \\
& \text { Letet } \quad \beta_{r}=\gamma_{r} /(1-c)(1-c q) \ldots\left(1-c q^{r-1}\right) . \\
& \text { Then }\left(1-q^{r}\right) \gamma_{r}-\left(1-a q^{r-1}-b q^{r-1}+\frac{a l}{c}\right) \gamma_{r-1}+\frac{a l l}{c}\left(1-c q^{r-2}\right) \gamma_{r-2}=0,
\end{aligned}
$$

so that

$$
1+\gamma_{1} x+\gamma_{2} x^{2}+\ldots
$$

is easily seen to

$$
=\frac{(a x)(b x)}{(x)\left(\frac{a l x}{c}\right)}
$$

Hence

$$
\phi\{a, b, c, q, x\} /\left(\frac{a b x}{c}\right)=1+\Sigma 1 I_{r}\left(a, b / 1, \frac{a b}{c}\right) \frac{x^{r}}{(1-c q)^{r-1}!} .
$$

5. We have scen by § 3 in the first memoir, Vol. xxiv., p. 341, that $1+\Sigma I I_{r}\left(x, \lambda e^{\theta i}, \lambda e^{-\theta i}\right) A_{r}(\theta)$

$$
\begin{align*}
& =\frac{\left(\lambda^{2}\right)}{(\lambda)^{2} I^{\prime}(\lambda, 2 \theta)} \frac{1}{\left(x e^{u i}\right)} \phi\left\{\lambda e^{20 i}, \lambda, \lambda^{2}, q, x e^{-\theta i} \text { [which, by } \S 4\right] \\
& =\frac{\left(\lambda^{2}\right)}{(\lambda)^{2} P(\lambda, 2 \theta)}\left\{1+\Sigma \frac{I_{r}(\theta)}{q_{r}!\left(1-\lambda q^{r-1}\right)!} x^{r}\right\} \quad \ldots \ldots \ldots \ldots . .(1) . \tag{1}
\end{align*}
$$

But

$$
1+\Sigma I I_{r}\left(x, \lambda c^{6 i}, \lambda e^{-\theta i}\right) y^{r}=1 \div(x y) P(\lambda y)
$$

by the definition of I,

$$
=\left(1+\frac{x y}{1-q}+\frac{x^{2} y^{2}}{q_{1} q_{2}}+\ldots\right)\left\{1+\frac{\Lambda_{1}(\theta)}{1-q} \lambda y+\ldots\right\} .
$$

Substituting for $I_{r}\left(x, \lambda e^{\theta}, \lambda e^{-0 i}\right)$, from this identity the left side of (1) becomes

$$
\begin{align*}
& 1+\frac{\Lambda_{1}(\theta)^{2}}{1-q} \lambda+\frac{\Lambda_{2}(\theta)^{2}}{q_{1} q_{2}} \lambda^{2}+\ldots \\
& +\frac{x}{1-q}\left\{A_{1}(\theta)+\frac{\Lambda_{2}(\theta) \Lambda_{1}(\theta)}{1-q} \lambda+\frac{\Lambda_{3}(\theta) \Lambda_{2}(\theta)}{q_{2}!} \lambda^{2}+\ldots\right\} \\
& +\ldots \tag{2}
\end{align*}
$$

the coefficient of $\frac{x_{r}^{r}}{q_{r}!}$ being

$$
\begin{equation*}
\Lambda_{r}(\theta)+\frac{\Lambda_{r+1}(\theta) \Lambda_{1}(\theta)}{1-q} \lambda+\frac{\Lambda_{r+2}(\theta) \Lambda_{2}(\theta)}{q_{2}!} \lambda^{2}+\ldots \tag{3}
\end{equation*}
$$

This series may be expanded according to ascending orders of Λ 's by means of Vol. xxvr., p. 343, which states that the cocflicient of $\Lambda_{r+2 n}(\theta)$ in $\frac{\Lambda_{r+1}(\theta)}{q_{!}!} A_{1}(\theta)$, whero $n \nless 0$, is

$$
q_{r+\infty}!/ q_{r-n}!q_{r+n}!q_{n}!
$$

Hence the coefficient of $\Lambda_{r+2 n}(\theta)$ in the whole series (3) is

$$
\Sigma \frac{\lambda^{*} q_{r+n}!}{q_{s-n}!q_{r+n}!q_{n}!}
$$

Taking r and n as constant and giving s all integral values from n upwards, this becomes

$$
\begin{aligned}
& \frac{1}{q_{n}!q_{r+n}!}\left\{\lambda^{n} q_{n+r}!+\lambda^{n+1} \frac{q_{n+r+1}!}{q_{1}}+\lambda^{n+2} \frac{q_{n+r+2}!}{q_{2}!}+\ldots\right\} \\
&=\lambda^{n} / q_{n}!(1-\lambda)(1-\lambda q) \ldots\left(1-\lambda q^{n+r}\right)
\end{aligned}
$$

Hence the series (3) becomes (with the notation at the beginning of this memoir)

$$
\begin{equation*}
\frac{\Lambda_{r}}{\lambda_{r+1}!}+\frac{\Lambda_{r+2}}{q_{1} \lambda_{r+2}!} \lambda+\frac{\Lambda_{r+4}}{q_{2}!\lambda_{r+3}!} \lambda^{2}+\ldots \tag{3}
\end{equation*}
$$

which, by (1),.. $=\frac{\left(\lambda^{2}\right)}{(\lambda)^{2} P(\lambda, 2 \theta)} \frac{I_{r}(\theta)}{\left(1-\lambda^{2} q^{2-1}\right)!}$
We may notice, as a particular case, that

$$
=\frac{1}{1-\lambda}+\frac{\cdots A_{1}(\theta) \lambda}{(1-q)(1-\lambda)(1-\lambda q)}+\frac{\left(\lambda^{2}\right)}{(\lambda)^{2} P^{\prime}(\lambda, 2 \theta)}-\cdots \frac{A_{4}(\theta) \lambda^{2}}{q_{2}!(1-\lambda)(1-\lambda q)\left(1-\lambda q^{2}\right)}+\ldots .
$$

6. 'Ihese results will now enable us to find an L-expansion of the serics

$$
\begin{equation*}
1+\frac{\Lambda_{1}(\theta) A_{1}(\phi)}{1-q} x+\frac{\Lambda_{2}(\theta) A_{2}(\phi)}{\eta_{2}!} x^{2}+\ldots \tag{1}
\end{equation*}
$$

For, by $\S 2(1)$, putting $\lambda=0$, and writing λ for μ, wo have

$$
\underset{q_{r}!}{\Lambda_{r}(\theta)} \underset{q_{r}!}{I_{r} \lambda_{r+1}} \dot{\lambda}_{r+1}^{1}+\underset{q_{r-2}!}{I_{r-2} \lambda_{r-1}} \frac{\lambda}{q_{1} \lambda_{r}!}+\frac{I_{r-1} T_{r-3}}{q_{r-4}!} \frac{\lambda^{2}}{q_{2}!\lambda_{r-1}!}+\ldots
$$

Substituting in (1) and rearranging according to ascending orders of $L(\theta)$'s, we have

$$
\begin{aligned}
& \lambda_{1}\left\{\frac{1}{\lambda_{1}}+\frac{\Lambda_{2}}{q_{1}}(\phi) \lambda_{2}!x^{2}+\frac{\Lambda_{4}(\phi)}{q_{2}!\lambda_{3}!} \lambda^{2} x^{4}+\ldots\right\} \\
& +\underset{q_{1}}{\eta_{1}!} \frac{\lambda_{1}(\theta)}{q_{2}} x\left\{\frac{\Lambda_{1}(\phi)}{\lambda_{2}!}+\frac{A_{3}(\theta)}{q_{1} \lambda_{3}!} \lambda^{2}+\frac{\Lambda_{5}(\theta)}{q_{2}!\lambda_{4}!} \lambda^{2} x^{4}+\ldots\right\} \\
& +\ldots,
\end{aligned}
$$

the coefficient of $\frac{\lambda_{r} L_{r}(\theta)}{q_{r}!} x^{r}$ being

$$
\begin{equation*}
\frac{A_{r}(\ddot{\phi})}{\lambda_{r+1}!}+\frac{A_{r+1}(\phi)}{q_{1} \lambda_{r+2}!} \lambda x^{3}+\frac{A_{r+4}(\phi)}{q_{3}!\lambda_{r+1}!} \lambda^{2} x^{4}+\ldots \tag{2}
\end{equation*}
$$

Now, if x were equal to unity, this secies would be equal to that on the left side of $\S 5$ (3), but we should obtain a nugatory result, since in this case (1) would be divergent.

We sec, however, that (2) will be equal to

$$
\frac{\left(\lambda^{2}\right)}{(\lambda)^{2}} \frac{\lambda^{\prime}}{l^{\prime}(\lambda, 2 \phi)} \frac{L_{r}(\phi)}{\left(1-\lambda^{2} q^{r-1}\right)!}+\pi \text { multiple of }\left(x^{2}-1\right),
$$

so that wo may say that

$$
\begin{gather*}
1+\Sigma \frac{\Lambda_{r}(\theta) \Lambda_{r}(\phi)}{q_{r}!} x^{r}=\text { some multiple of }\left(x^{2}-1\right) \\
+\frac{\left(\lambda^{2}\right)}{(\lambda)^{2} P^{\prime}(\lambda, 2 \varphi)}\left\{\lambda_{1}+\frac{\lambda_{2} I_{1}(\theta) I_{1}(\phi)}{q_{1}\left(1-\lambda^{2}\right)} x+\frac{\lambda_{8} I_{8}(\theta) I_{2}(\phi)}{q_{2}!\left(1-\lambda^{2}\right)\left(1-\lambda^{2} q\right)} x^{2}+\ldots\right\} \tag{3}
\end{gather*}
$$

Since (1) is independent of λ, we get n now form for the right side of (3) by putting $\lambda=q$, which side then becomes, by $\S 1$,

$$
\begin{gathered}
\frac{1}{(q) \sin \phi \cdot P^{\prime}(q, 2 \varphi)} \frac{1}{\sin \theta}\left(\sin \theta \sin \phi+x \sin 2 \theta \sin 2 \phi+x^{2} \sin 3 \theta \sin 3 \phi+\ldots\right) \\
+ \text { some multiple of }\left(x^{2}-1\right) .
\end{gathered}
$$

Although the latter terms are not determined, it is easy to sec that, if wo apply such examples from the second memoir ns were used in § 3 to the relation just obtained, we shall obtain results which are convergent even when $x=1$, and into which these unknown terms will not enter.

We may virtually say then, for tho purpose of utilizing those results of the second memoir which are applicable as in § 3 to a given relation

$$
a_{0}+a_{2} \Lambda_{2}(\theta)+\ldots=\frac{\cdot 1}{\sin \theta}\left(\beta_{0} \sin \theta+\beta_{2} \sin 3 \theta+\ldots\right),
$$

or

$$
a_{1} A_{1}(\theta)+a_{3} A_{3}(\theta)+\ldots=\frac{1}{\sin \theta}\left(\beta_{1} \sin 2 \theta+\beta_{3} \sin 1 \theta+\ldots\right)
$$

that we have such a relation in the equation

$$
\begin{gather*}
1+\frac{\Lambda_{1}(\theta) \Lambda_{1}(\phi)}{q_{1}}+\frac{\Lambda_{2}(\theta) A_{2}(\phi)}{q_{2}!}+\ldots \\
=\frac{1}{(q) \sin \phi \cdot P(q, 2 \phi)} \frac{1}{\sin \theta}(\sin \theta \sin \phi+\sin 2 \theta \sin 2 \varphi+\ldots) \\
=\frac{1}{\sin \theta} \frac{\sin \theta \sin \phi+\sin 2 \theta \sin 2 \phi+\ldots}{\sin \phi-q} \frac{\sin 3 \phi+q^{3} \sin 5 \phi-\ldots \ldots \ldots \ldots \ldots \ldots}{} \ldots \ldots \ldots \ldots \tag{4}
\end{gather*}
$$

since $\quad 2 q^{k}(q) \sin \phi . P(q, 2 \phi)=\dot{\vartheta}_{1}\left(\phi, q^{\left.\frac{1}{2}\right)}\right.$.
From p. 338, Rx. 1, we have

$$
\begin{align*}
1+\frac{q A_{0}(\phi)}{q_{2}!} & +\frac{q^{4} \Lambda_{1}(\phi)}{q_{s}!}+\ldots \\
& =\frac{\sin \phi-q^{2} \sin 5 \phi+q^{4} \sin 7 \phi-q^{10} \sin 11 \phi+\ldots}{\sin \phi-q \sin 3 \phi+q^{5} \sin 5 \varphi-\ldots} \tag{5}
\end{align*}
$$

But we have ultrenly seen in § 3 that this A-series

$$
=\frac{1}{(i)} \vartheta_{3}(q) .
$$

Hence $\quad 2 q^{1}\left(\sin \varphi-q^{2} \sin 5 \phi+q^{4} \sin 7 \phi-q^{10} \sin 11 \phi+\ldots\right)$

$$
=\frac{1}{(q)} \vartheta_{3}(\phi) \vartheta_{1}\left(\phi, q^{4}\right) .
$$

From the alternate terms in the samo identity, wo have

$$
\frac{\Lambda_{1}(\phi)}{q_{1}}+\frac{q^{2} A_{3}(\phi)}{q_{3}!}+\frac{q^{n} \Lambda_{5}(\phi)}{q_{0}!}+\ldots=\frac{\sin 2 \phi-q \sin 4 \phi+q^{6} \sin 6 \phi-\ldots}{\sin \varphi-q \sin 3 \phi+q^{3} \sin 5 \phi-\ldots} .
$$

But, by puiting $u=v=0$ in § 3 (8), this left sille is seen to be

$$
\frac{1}{(q)}\left\{2 \cos \phi+2 q^{2} \cos 3 \phi+2 q^{6} \cos 5 \varphi+\ldots\right\} ;
$$

therefore

$$
2 q_{q^{3}}^{3}\left(\sin 2 \phi-q \sin 4 \phi+q^{k} \sin 6 \phi-\ldots\right)=\frac{1}{(q)} \vartheta_{2}(\phi) \vartheta_{1}\left(\phi, q^{\mathbf{1}}\right) .
$$

From p. 337, 1x. 4,

$$
1+\frac{q A_{2}(\underline{q})}{q_{2}}+\frac{q^{2} I_{4}(\phi)}{I_{2} \eta_{4}}+\ldots=\frac{\sin \phi-q^{2} \sin 3 \varphi+q^{n} \sin 5 \phi-\ldots}{\sin \varphi-q \sin 3 p+q^{3} \sin 5 p-\ldots} .
$$

From p. 342,

$$
1+\frac{q A_{3}(\varphi)}{q_{1}}+\frac{q^{8} A_{4}(\phi)}{q_{3}!}+\ldots=\frac{\sin \phi-q^{8} \sin 3 \phi+q^{0} \sin 5 \phi-\ldots}{\sin \phi-q \sin 3 \phi+q^{8} \sin 5 \phi-\ldots},
$$

and

$$
\begin{gathered}
1+\frac{q\left(1-q^{4}\right) A_{y}(\phi)}{q_{y}!}+\frac{q^{q}\left(1-q^{4}\right)\left(1-q^{q}\right)}{q_{4}!} A_{4}(\phi)+\ldots \\
=\frac{\sin \phi-q^{2} \sin 3 \phi+q^{2} \sin 5 \varphi-\ldots}{\sin \psi-q \sin 3 \varphi+q^{6} \sin 5 \psi-\ldots}
\end{gathered}
$$

From p. 339, Dx. 2,

$$
\begin{gathered}
1-\frac{q^{\frac{q}{2}}\left(1-q^{4}\right)}{q_{2}!} A_{2}(\phi)+\frac{q^{2}\left(1-q^{6}\right)\left(1-q^{\frac{1}{2}}\right)}{q_{4}!} A_{4}(\phi)-\ldots \\
=\frac{\sin \phi-q^{4} \sin 3 \phi+q^{\frac{3}{2}} \sin 5 \phi-\ldots}{\sin \phi-q \sin 3 \varphi+q^{3} \sin 5 \psi-\ldots}
\end{gathered}
$$

7. Tho formula $\S 2$ (2) yields, on patting $x=q^{n+1}$, and changing θ into ω_{φ};

$$
f_{1} f_{8} \ldots f_{f_{n-1}}=\frac{q_{n}!}{q_{n}!} q_{n}!\left\{1-\frac{q_{n}}{q_{n+1}} 2 q^{4} \cos 2 \varphi+\frac{q_{n} q_{n-1}}{q_{n+1} q_{n+2}} 2 q^{2} \cos 4 \varphi-\ldots\right\} .
$$

But, since

$$
A_{2 n}(\theta)=\frac{q_{2 n}!}{q_{n}!q_{n}!}\left\{1+\frac{q_{n}}{q_{n+1}} 2 \cos 2 \theta+\frac{q_{n} q_{n-1}}{q_{n+1} q_{n+2}} 2 \cos 4 \theta+\ldots\right\}
$$

we see that the ahove product of the $n f^{\prime} s$ is obtnined from $A_{24}(\theta)$, by writing $2 q^{\text {tre }}(-1)^{r} \cos 2 r \psi$ instead of $2 \cos 2 r(0$. Honce, if

$$
a_{0}+a_{3} A_{2}(0)+\ldots=b_{0}+2 b_{2} \cos 20+\ldots
$$

we have $a_{0}+a_{4} f_{1}+a_{4} f_{1} f_{8}+\ldots=b_{0}-2 l_{2} q^{b} \cos 2 \phi+2 b_{4} q^{3} \cos 4 \varphi-\ldots$;
which is a formula of the type invostigatedin the second memoir, and from which many there obtained may be easily derived by giving ϕ special valaes.

For instance, if $\cos { }^{\prime} \varphi=0$, wo have Ex. 4 on p. 341 ;

$$
\begin{array}{lll}
\text { if } \quad \varphi=0, & " & \text { Ex. } 3 \text { on } 1 \mathrm{p} \cdot 339 \text {; } \\
\text { if } e^{: 84}=q^{4}, & " & \text { (12) on } \mathrm{p} \cdot 322 .
\end{array}
$$

Moreover, from $\S \S 3$ and 6 in the present memoir, we have from formule in the second memoir altered as in $\S 3$ to the form

$$
a_{0}+m_{2} a_{2}+\ldots=\beta_{0}+\mu_{2} \beta_{2}+\mu_{4} \beta_{4}+\ldots
$$

obtained relations of the type

$$
1+\frac{m n_{2} f_{1}}{q_{2}!}+\frac{m_{4} f_{1} f_{4}}{q_{4}!}+\ldots=\frac{P\left(q^{4}, \phi\right)}{(q)^{2}}\left\{\frac{q_{1}}{f_{1}}+\mu_{2} \frac{q_{5}}{f_{3}}+\ldots\right\}
$$

and $1+\frac{m_{2} A_{2}(\phi)}{q_{2}!}+\frac{m_{4} A_{4}(\phi)}{q_{4}!}+\ldots=\frac{\sin \phi+\mu_{2} \sin 3 \phi+\ldots}{\sin \varphi-q \sin 3 \varphi+q^{8} \sin 5 \varphi-\ldots}$.
Hence, by (1), we seo that, if

$$
\begin{gathered}
\left(\sin \phi-q \sin 3 \phi+\eta^{3} \sin 5 \phi-\ldots\right)\left(1+2 c_{2} \cos 2 \phi+2 c_{4} \cos 4 \varphi+\ldots\right) \\
=\sin \phi+\mu_{2} \sin 3 \phi+\mu_{4} \sin 5 \phi+\ldots
\end{gathered}
$$

then the coefficients c and μ are so related that we also hi e

$$
\begin{aligned}
& 1-2 c_{2} q^{i} \cos 2 \phi+2 c_{4} q^{2} \cos 4 \phi-\ldots \\
& =\frac{(q)^{2}}{1^{\prime}\left(q^{4}, \overline{2 \varphi}\right)}\left\{\frac{q_{\mathrm{i}}}{f_{1}}+\mu_{2} \frac{q_{\mathrm{s}}}{f_{\mathrm{s}}}+\mu_{4} \frac{q_{\mathrm{s}}}{f_{5}}+\ldots\right\}
\end{aligned}
$$

We may note, morcover, that, ly § 3 (3), and by (1) in the present section,

$$
\begin{aligned}
& 1+\frac{\left(u-q^{4}\right)\left(v-q^{d}\right)\left(1-2 q^{4} \cos 2 \phi+q\right)}{q_{9}!}+\ldots \\
& \\
& =\frac{\left(q^{d} u\right)\left(q^{4} v\right)}{(q)(u v)}\left\{1-2 q^{4} \cos 2 \phi \frac{\left(u-q^{\text {d }} \text {) }\left(v-q^{d}\right)\right.}{\left(1-u q^{\text {d }}\right)\left(1-v q^{d}\right)}+\ldots\right\}
\end{aligned}
$$

If $u=0, v=1$, wo have

$$
\begin{aligned}
1-\frac{q^{4}\left(1-q^{4}\right) f_{1}}{q_{2}!}+q^{9}\left(1-q^{4}\right) f_{1} f_{4} & q_{4}! \\
& =\frac{\left(q_{1}^{3}\right)}{(q)}\left(1-2 q \cos 2 \phi+2 q^{4} \cos 4 \phi-\ldots\right)
\end{aligned}
$$

In addition to the above formulio, it is worth whilo mentioning that we may obtain a very similar set of identities by considering terms which contain odd sullixes in $u, A, m, l, \& c$. , but it is scancely necessary to enter fully into these relations.

$$
\text { 8. If } I_{0}+l_{1} I_{1}(\theta)+l_{1} I_{2}(\theta)+\ldots=m_{0}+m_{1} M_{1}(\theta)+m_{2} M I_{2}(\theta)+\ldots,
$$ we can casily obtain n_{0} in torms of the l 's, by substituting for the

L's by § 2, and equating coefficients of the various M^{\prime} 's. Thus

$$
\frac{m_{0}}{\mu_{1}}=\frac{l_{0}}{\mu_{1}}+q_{2}!\frac{(\mu-\lambda) \lambda_{1}}{\mu_{2}!q_{1}} l_{2}+q_{4}!\frac{(\mu-\lambda)(\mu-\lambda q) \lambda_{2}!}{\mu_{3}!q_{2}!} l_{4}+\ldots
$$

Applying this to §3(2), which is, of courso, equal to the same function of λ 's and L 's, we get

$$
\begin{aligned}
& \frac{\left(q^{4} \mu u\right)\left(q^{4} \mu v\right)(\lambda)(\lambda u v)}{\left(q^{\top} \lambda u\right)\left(q^{4} \lambda v\right)(\mu)(\mu v v)}=\frac{\lambda_{1}}{\mu_{1}}+\underset{\left(1-u q^{4}\right)\left(v-q^{4}\right)}{\left(u-q^{4}\right)\left(v-q^{4}\right)} \frac{(\mu-\lambda) \lambda_{1}}{\mu_{2}!q_{1}} \lambda_{3} \\
& \quad+\frac{\left(u-q^{4}\right)\left(u-q^{8}\right)\left(v-q^{4}\right)\left(v-q^{8}\right)}{\left(1-u q^{4}\right)\left(1-u q^{\frac{2}{2}}\right)\left(1-v q^{4}\right)\left(1-v q^{\left.\frac{4}{4}\right)}\right.} \frac{(\mu-\lambda)(\mu-\lambda q) \lambda_{2}!}{\mu_{3}!q_{2}!}+\ldots,
\end{aligned}
$$

while, from § 6 (3), we get

$$
\begin{aligned}
\frac{\left(\mu^{2}\right)(\lambda)^{2} P}{(\mu)^{\frac{3}{3}}\left(\lambda^{3}\right) P^{\prime}}\left(\frac{\lambda, 2 \phi)}{(\mu, 2 \phi)}=\frac{\lambda_{1}}{\mu_{1}}\right. & +\frac{\lambda_{3} I_{3}(\phi)}{\left(1-\lambda^{3}\right)\left(1-\lambda^{3} q\right)} \frac{(\mu-\lambda) \lambda_{1}!}{\mu_{2}!q_{1}} \\
& +\frac{\lambda_{5} I_{4}(\psi)}{\left(1-\lambda^{2} q^{y}\right)!} \frac{(\mu-\lambda)(\mu-\lambda q) \lambda_{2}!}{\mu_{3}!q_{2}!}+\ldots
\end{aligned}
$$

9. In conclusion, it is interesting to show that there is a formula giving an expression for the product of $L_{r}(\theta)$ and $L_{t}(\theta)$, corresponding to and including that given in Vol. xxiv., p. 343, for the product of $A_{r}(\theta) A_{\mathbf{c}}(\theta)$. I'his formula is
$\frac{L_{s}}{q_{0}!} \frac{L_{r}}{q_{r}!}=\frac{\lambda_{r+n+1} L_{r+s}}{\lambda_{r+!}^{2}!} \frac{\lambda_{r}!\lambda_{r++}^{2}!}{q_{r}!\lambda_{r+\infty}!}+\frac{\lambda_{r+a-1} L_{r+t-2}}{\lambda_{r+\infty-2}^{2}!} \frac{\lambda_{1}!\lambda_{t-1}!\lambda_{r-1}!\lambda_{r+\infty-1}^{2}!}{q_{1}!q_{\theta-1}!} \frac{g_{r-1}!\lambda_{r+\infty}!}{q_{1}}+\ldots$,
the general term being

$$
\begin{equation*}
\frac{\lambda_{r+0-2 t+1} L_{r+t-2 t}}{\lambda_{r+t-2!}^{2}!} \frac{\lambda_{t-t}!\lambda_{1}!\lambda_{r-t}!\lambda_{r+s-t}^{3}!}{q_{t-t}!} . \tag{1}
\end{equation*}
$$

where

$$
t=0,1,2, \ldots s, \quad \text { and } \quad s \ngtr r .
$$

This may be proved by induction, though the process is somewhat tedious. The formula is easily seen to be true when $s=11$, reducing in fact morely to the relation (3) in § 1.

Assuming (1) above, we may deduce the corresponding formula for $L_{6+1} L_{r}$ by multiplying each side of (l) by I_{1}, and replacing $L_{1} I_{4}$ on the left side, and $L_{1} L_{r+1-2 t}$ on the right, by terms containing single $I_{\text {'s. }}$ In this way the products $L_{r_{t+1}} I_{r}$ and $L_{t-1} L_{r}$ remain on the left, and, when the later has been replaced by the formala
similar to (1), we get after considerable reduction a now similar formula for $L_{t+1} L_{r}$.

In this way, from the known formula for $L_{0} L_{r}$ and $L_{1} L_{r}$, wo may obtain all the required formulio up to L_{i}^{3}, and thas obtain the general result. This will, of comse, give A-product and B-product formulio by putting $\lambda=0$ and $\lambda=\infty$. Tho purely trigonomotrical formula got from $\lambda=1$ or q requiro no special notico. Tho most interesting application of tho formula, however, is to zomal harmonics, sinco it gives a goneral formula for expressing the product of two zonal hamonics as a linear function of the samo.

Let $\lambda=q^{\prime}$, and afterwards put $q=1$. Then

$$
\underset{(\lambda x)}{I^{\prime}(a)}=\left(1-2 a \cos \theta+x^{2}\right)^{-1}
$$

where primarily n is Ω positive integer,

$$
\frac{\lambda_{r}!}{q_{r}!}=\frac{l^{(r)}}{r!},
$$

where

$$
l^{(r)} \equiv l(l+1) \ldots(l+r-1)
$$

$$
\frac{\lambda_{!}^{2}!}{q_{r}!}=\frac{(2 l)^{(r)}}{r!} .
$$

By putting $\mu=q^{m}, \quad \Gamma(\mu x) / \Gamma(x)$ becomes ($\left.1-2 x \cos \theta+x^{2}\right)^{-n}$, where m is a positivo interer, mid tho formula § $2(1)$ comects tho coelficients of a^{r} in $\left(1-2 a \cos \theta+a^{2}\right)^{-t}$ with those of x^{r}, a^{r-3}, \ldots in ($\left.1-2: 2 \cos \theta+x^{2}\right)^{-m}$. Sust as in the binominl theorem, however, it is not necossary to restrict the valnes of l and m to positive integrors, and wo may therefore suppose the resulting formula to hold good for all real values of l and m.

In the case where $m=\frac{1}{2}$, the latter expansion is

$$
1+P_{1}(1) x+P_{2}^{\prime}(1) x^{2}+\ldots
$$

where l^{\prime}, ((θ) is the eonal harmonic of order r, so that wo have hereby a moms of expmanding (1 - 2ancons $\left.0+x^{2}\right)^{-1}$ in zomal hammonics. Sinco, whon $q=1$, tho Heincan series $\psi\{a, b, c, q, a\}$ beemes tho hypergoometric series $l^{\prime}\{a, \beta, \gamma, a\}$, by writing $a=q^{*}, b=q^{f}, c=q^{\prime}$, and ovaluating, wo see that the coedicient of $l_{r}^{\prime}(1)$ in the expansion of $\left(1-2: x \cos (1)+i u^{3}\right)^{-4}$ is
10. The formula $\S 9$ (1), will nlso afford $几$ means of expanding the product $P(\lambda y) P^{\prime}(\lambda z) / I^{\prime}(y) P^{\prime}(z)$ according to asconding ordors of $L^{\prime} \mathrm{s}$.

We have, in fact, to find the cocfficient of $L_{n}(\theta)$ in the product of

$$
\left(1+\frac{L_{1}}{\varphi_{1}} y+\ldots\right)\left(1+\frac{L_{1}}{\varphi_{1}} z+\ldots\right)
$$

after reducing any term $\frac{L_{4}, L_{s}}{q_{r}!}{ }_{q_{s}}!y^{v} z^{s}$ by $\S!$ (1).
Now, $I_{n}(\theta)$ can ouly be derived from such products as

$$
y^{\prime \prime \prime} z^{m} \frac{I_{m+n}}{q_{m+n}!I_{m}!} \eta_{m}!y^{n}, \quad y^{m \prime \prime} z^{m} \frac{L_{m+n-1} I_{m+1}}{q_{m+n-1}!q_{m+1}!} y^{n-1} z, \ldots
$$

and in goneral

$$
y^{m \times z^{\prime \prime}} \frac{L_{m+n+p}}{!_{m+n+\mu}!} \frac{L_{m!+p}!y_{m+p}!}{y_{m-p}^{n-1} z^{n},}
$$

whore

$$
p=0,1, \ldots u ;
$$

it occurring as the $(p+1)^{\text {th }}$ term from the end in the expansion of this general expression by § 9 (1).

Wo will first kcop m constant whilo p runs through all its values.
The coefliciont of L_{Λ} in $\frac{L_{m+n=y}}{g_{m+n-p}!} \frac{L_{m+n}}{q_{m+p}!}$! is got by writing

$$
\begin{aligned}
& s=m+n-p \\
& r=n+p \\
& r+s-2 t=n
\end{aligned}
$$

so that

$$
\begin{aligned}
r+s-t & =m+u \\
t & =m
\end{aligned}
$$

whilo the coofficient takes the form

Honce, giving p its $(n+1)$ valnes, wo seo that this group of torms containing $l_{1 ،}$ maty lo writen

$$
y^{\prime \prime \prime} z^{m \prime} L_{u}(0) \begin{aligned}
& \lambda_{n+1} \lambda_{m}!\lambda_{m+n}^{m}! \\
& \lambda_{n}^{\prime \prime}!\lambda_{m!n+1}!\eta_{m}!
\end{aligned}\left\{\begin{array}{l}
\lambda_{n}! \\
\eta_{n}!
\end{array} y^{n}+\frac{\lambda_{4, \ldots}!\lambda_{1}, y_{n-1}}{\eta_{n-1}!y_{1}} y^{n+\ldots}\right\}
$$

The bracketed series may be simplified by writing

$$
y=x e^{\phi i}, \quad z=x e^{-\phi i},
$$

in which case it evidently becomes

$$
x^{n} \frac{L_{n}(\phi)}{q_{n}!}
$$

We now have to give m all values from 0 to ∞, and we easily se that the whole term containing $L_{n}(\theta)$ is

$$
\begin{aligned}
& x^{n} \frac{L_{n}(\theta) L_{n}(\varphi)}{q_{n}!} \sum_{\infty}^{m=0}\left\{\frac{\lambda_{n+1} \lambda_{m}!\lambda_{m+n}^{2}!}{\lambda_{n}^{2!}!\lambda_{m+n+1}!q_{m}!} x^{2 m}\right\} \\
& =x^{n} \frac{L_{u}(\theta) L_{n}(\phi)}{q_{n}!\lambda_{n}!} \varphi\left\{\lambda, \lambda^{9} q^{n}, \lambda q^{n+1}, q, x^{2}\right\} .
\end{aligned}
$$

Thus

$$
P\left(\lambda_{x} x e^{\phi i}\right) P\left(\lambda x e^{-* i}\right) / P\left(x e^{* i}\right) P\left(x e^{-* i}\right)
$$

$$
\begin{aligned}
=\phi\left\{\lambda, \lambda^{2}, \lambda q, q, x^{8}\right\} & +x \frac{L_{1}(\theta) L_{1}(\phi)}{q_{1} \lambda_{1}} \phi\left\{\lambda, \lambda^{8} q, \lambda q^{9}, q, x^{8}\right\} \\
& +x^{8} \frac{L_{9}(\theta) L_{3}(\phi)}{q_{2}!\lambda_{2}!} \phi\left\{\lambda, \lambda^{8} q^{2}, \lambda q^{3}, q, x^{8}\right\} \\
& +\ldots
\end{aligned}
$$

By the methods of the last section, we get the following zona harmonic expansion:-

$$
\begin{gathered}
\left\{1-2 x \cos (\theta-\phi)+x^{2}\right\}-1\left\{1-2 x \cos (\theta+\phi)+x^{2}\right\}-1 \\
=F\left\{\frac{1}{2}, 1, \frac{3}{2}, x^{2}\right\}+x P_{1}(\theta) P_{1}(\phi) \frac{2}{1} F\left\{\frac{1}{2}, 2, \frac{5}{2}, x^{2}\right\} \\
+x^{2} P_{2}(\theta) P_{2}(\phi) \frac{2.4}{1.3} F\left\{\frac{1}{3}, 3, \frac{1}{2}, x^{2}\right\} \\
+\ldots
\end{gathered}
$$

