Conference paper Open Access

Community based influence maximization in the Independent Cascade Model

László Hajdu; Miklós Krész; András Bóta


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Community detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Infection maximization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Independent Cascade Model</subfield>
  </datafield>
  <controlfield tag="005">20191102191108.0</controlfield>
  <controlfield tag="001">1443254</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">9-12 September 2018</subfield>
    <subfield code="a">Federated Conference on Computer Science and Information Systems</subfield>
    <subfield code="c">Poznan</subfield>
    <subfield code="n">WCO18</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Innorenew CoE, University of Primorska Andrej Marušic Institute, University of Szeged Gyula Juhász Faculty of Education,</subfield>
    <subfield code="a">Miklós Krész</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Szeged Gyula Juhász Faculty of Education</subfield>
    <subfield code="a">András Bóta</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">335102</subfield>
    <subfield code="z">md5:ed25fb4673872bdaa8e7e318f5779b27</subfield>
    <subfield code="u">https://zenodo.org/record/1443254/files/201.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://fedcsis.org/2018/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-09-26</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-innorenew</subfield>
    <subfield code="o">oai:zenodo.org:1443254</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">237-243</subfield>
    <subfield code="v">15</subfield>
    <subfield code="p">Proceedings of the 2018 Federated Conference on Computer Science and Information Systems</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Szeged Institute of Informatics</subfield>
    <subfield code="0">(orcid)0000-0002-1832-6944</subfield>
    <subfield code="a">László Hajdu</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Community based influence maximization in the Independent Cascade Model</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-innorenew</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">739574</subfield>
    <subfield code="a">Renewable materials and healthy environments research and innovation centre of excellence</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Community detection is a widely discussed topic in network science which allows us to discover detailed information about the connections between members of a given group. Communities play a critical role in the spreading of viruses or the diffusion of information. In [1], [8] Kempe et al. proposed the Independent Cascade Model, defining a simple set of rules that describe how information spreads in an arbitrary network. In the same paper the influence maximization problem is defined. In this problem we are looking for the initial vertex set which maximizes the expected number of the infected vertices. The main objective of this paper is to further improve the efficiency of influence maximization by incorporating information on the community structure of the network into the optimization process. We present different community-based improvements for the infection maximization problem, and compare the results by running the greedy maximization method.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.15439/2018F201</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
217
202
views
downloads
Views 217
Downloads 202
Data volume 67.7 MB
Unique views 173
Unique downloads 186

Share

Cite as