Poster Open Access

Ontology-based Design of Experiments on Big Data Solutions

Zocholl, Maximilian; Camossi, Elena; Jousselme, Anne-Laure; Ray, Cyril


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/4a5b853f-ef72-41e8-a758-eebe0655827f/ISWS2018-poster.pdf"
      }, 
      "checksum": "md5:505f188f6d576d4b412f5e622315ed84", 
      "bucket": "4a5b853f-ef72-41e8-a758-eebe0655827f", 
      "key": "ISWS2018-poster.pdf", 
      "type": "pdf", 
      "size": 1866105
    }
  ], 
  "owners": [
    27421
  ], 
  "doi": "10.5281/zenodo.1441324", 
  "stats": {
    "version_unique_downloads": 24.0, 
    "unique_views": 32.0, 
    "views": 40.0, 
    "downloads": 27.0, 
    "unique_downloads": 24.0, 
    "version_unique_views": 32.0, 
    "volume": 50384835.0, 
    "version_downloads": 27.0, 
    "version_views": 40.0, 
    "version_volume": 50384835.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.1441324", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.1441323", 
    "bucket": "https://zenodo.org/api/files/4a5b853f-ef72-41e8-a758-eebe0655827f", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.1441323.svg", 
    "html": "https://zenodo.org/record/1441324", 
    "latest_html": "https://zenodo.org/record/1441324", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.1441324.svg", 
    "latest": "https://zenodo.org/api/records/1441324"
  }, 
  "conceptdoi": "10.5281/zenodo.1441323", 
  "created": "2018-10-01T13:10:21.917861+00:00", 
  "updated": "2019-11-02T19:11:09.827637+00:00", 
  "conceptrecid": "1441323", 
  "revision": 15, 
  "id": 1441324, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.1441324", 
    "description": "<p>Design of Experiments for Big Data Solutions in datAcron. Poster presented at the 2018&nbsp;<em>International Semantic Web</em>&nbsp;Research&nbsp;<em>Summer School</em>.</p>", 
    "contributors": [], 
    "title": "Ontology-based Design of Experiments on Big Data Solutions", 
    "language": "eng", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1441323"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1441324"
          }
        }
      ]
    }, 
    "access_right": "open", 
    "communities": [
      {
        "id": "h2020_datacron"
      }
    ], 
    "grants": [
      {
        "code": "687591", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::687591"
        }, 
        "title": "Big Data Analytics for Time Critical Mobility Forecasting", 
        "acronym": "datACRON", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [
            "EC"
          ], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Design of Experiments", 
      "Big Data Solutions", 
      "Big Data Variations"
    ], 
    "publication_date": "2018-07-01", 
    "creators": [
      {
        "affiliation": "NATO STO CMRE. La Spezia, Italy", 
        "name": "Zocholl, Maximilian"
      }, 
      {
        "affiliation": "NATO STO CMRE, La Spezia, Italy", 
        "name": "Camossi, Elena"
      }, 
      {
        "affiliation": "NATO STO CMRE, La Spezia, Italy", 
        "name": "Jousselme, Anne-Laure"
      }, 
      {
        "affiliation": "Institut de Recherche de l'Ecole Navale (IRENav), Brest, France", 
        "name": "Ray, Cyril"
      }
    ], 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "resource_type": {
      "type": "poster", 
      "title": "Poster"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.1441323", 
        "relation": "isVersionOf"
      }
    ]
  }
}
40
27
views
downloads
All versions This version
Views 4040
Downloads 2727
Data volume 50.4 MB50.4 MB
Unique views 3232
Unique downloads 2424

Share

Cite as