Journal article Open Access

Big Data Adoption: Theories, Framework, Opportunities and Challenges

Ayeni Ayokunle Olusola; Faluyi Bmidele Ibitayo


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1439344</identifier>
  <creators>
    <creator>
      <creatorName>Ayeni Ayokunle Olusola</creatorName>
      <affiliation>Department of Computer Science, Federal Polytechnic, Ekiti State, Nigeria.</affiliation>
    </creator>
    <creator>
      <creatorName>Faluyi Bmidele Ibitayo</creatorName>
      <affiliation>Department of Computer Science, Federal Polytechnic, Ekiti State, Nigeria.</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Big Data Adoption: Theories, Framework, Opportunities and Challenges</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Data, Structured Data, Unstructured Data, Big Data (BD), Big Data Analytics, Traditional Data Analytics, Framework, Opportuni-ties, Challenges</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-09-30</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1439344</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">http://ibii-us.org/Journals/AJAR/V2N1/Publish/V2N1_7.pdf</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.5281/zenodo.1439344</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1439343</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ibii_aiaj</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ibii_journals</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The global volume of data is exploding and many organizations rely on its accuracy to make strategic business decisions because it serves as their lifeblood and without it, they cannot function properly. Unfortunately, most decisions are based on the smaller fraction of available data i.e. structured data while the larger part, the unstructured part, is unattended. Data is rapidly expanding, changing and coming from a variety of sources, thus making the storage, protection, handling and management of both structured and unstructured data i.e.&amp;nbsp; Big Data (&lt;em&gt;BD&lt;/em&gt;), a challenge. This paper after comprehensively discussing the theories of data in detail, proposes a feasible, conceptual framework for Big Data adoption by any organization. It gives insight to the potentials of Big Data analytics versus Traditional Data analytics and also presents various tools and techniques that can be adopted for data analysis. Importantly, this paper would help organizations define their expectations from Big Data analytics and its influence on customer&amp;rsquo;s perception. This paper also discusses the challenges and opportunities inherent in Big Data and sets a research path in solving issues arising from its analytics and adoption.&lt;/p&gt;</description>
  </descriptions>
</resource>
341
182
views
downloads
All versions This version
Views 341343
Downloads 182182
Data volume 140.6 MB140.6 MB
Unique views 316318
Unique downloads 153153

Share

Cite as