Preprint Open Access
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.1438785</identifier> <creators> <creator> <creatorName>Frank Vega</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-8210-4126</nameIdentifier> <affiliation>Joysonic</affiliation> </creator> </creators> <titles> <title>UP versus NP</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2018</publicationYear> <subjects> <subject>Polynomial Time</subject> <subject>UP</subject> <subject>NP</subject> <subject>Quadratic Congruences</subject> <subject>NP-complete</subject> </subjects> <dates> <date dateType="Issued">2018-09-23</date> </dates> <resourceType resourceTypeGeneral="Text">Preprint</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1438785</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1433418</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><pre>UP versus NP P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? A precise statement of the P versus NP problem was introduced independently in 1971 by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another major complexity class is UP. Whether UP = NP is another fundamental question that it is as important as it is unresolved. To attack the UP = NP question the concept of NP-completeness is very useful. If any single NP-complete problem is in UP, then UP = NP. Quadratic Congruences is a well-known NP-complete problem. We prove Quadratic Congruences is also in UP. In this way, we demonstrate that UP = NP.</pre></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 133 | 14 |
Downloads | 88 | 9 |
Data volume | 20.9 MB | 2.1 MB |
Unique views | 75 | 14 |
Unique downloads | 57 | 8 |