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Document history 
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and Publication of IPCC Reports). The Guidelines were prepared for consideration by the 
IPCC at the request of its Task Group on Data and Scenario Support for Impacts and Climate 
Analysis (TGICA). This supporting material has not been subject to the formal 
intergovernmental IPCC review processes.  
 
The first draft of the Guidelines was produced by Rob Wilby (Environment Agency of 
England and Wales) in March 2003. Subsequently, Steven Charles, Penny Whetton, and 
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2003. Revisions were made in the light of comments received from Elaine Barrow and John 
Mitchell in November 2003 – most notably the inclusion of a worked case study. Further 
comments were received from Penny Whetton and Steven Charles in February 2004. Bruce 
Hewitson, Jose Marengo, Linda Mearns, and Tim Carter reviewed the Guidelines on behalf of 
the Task Group on Data and Scenario Support for Impacts and Climate Analysis (TGICA), 
and the final version was published in August 2004. 
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Guidelines for Use of Climate Scenarios Developed from 
Statistical Downscaling Methods 
 
 
1. INTRODUCTION   
 
The climate change information required for many impact studies is of a spatial scale much 
finer than that provided by global or regional climate models. The ensuing problems for 
impact assessment have been recognised for a long time (Kim et al., 1984; Gates, 1985; 
Robinson and Finkelstein, 1989; Lamb, 1987; Smith and Tirpak, 1989; Cohen, 1990). Global 
climate models (GCMs) have resolutions of hundreds of kilometres whilst regional climate 
models (RCMs) may be as fine as tens of kilometres. However, many impact applications 
require the equivalent of point climate observations and are highly sensitive to fine-scale 
climate variations that are parameterised in coarse-scale models. This is especially true for 
regions of complex topography, coastal or island locations, and in regions of highly 
heterogeneous land-cover. 
 
The most straightforward means of obtaining higher spatial resolution scenarios is to apply 
coarse-scale climate change projections to a high resolution observed climate baseline – the 
change factor method. This method is often used when RCM output are unavailable, for 
sensitivity studies, or whenever rapid assessments of multiple climate change scenarios 
(and/or GCM experiments) are required. Fine resolution climate change information for use in 
impact studies can also be obtained via more sophisticated statistical downscaling (SD) 
methods but such studies have, to date, largely restricted themselves to the use of a single 
driving GCM. The purpose of this report is to provide background information and guidance 
on the application of SD methods for climate scenario development. Guidance material on the 
use of regional modelling for climate scenario development is provided in a companion 
document (Mearns et al., 2003). 
 
Statistical downscaling is based on the view that the regional climate is conditioned by two 
factors: the large scale climatic state, and regional/local physiographic features (e.g. 
topography, land-sea distribution and land use; von Storch, 1995, 1999). From this 
perspective, regional or local climate information is derived by first determining a statistical 
model which relates large-scale climate variables (or “predictors”) to regional and local 
variables (or “predictands”). Then the large-scale output of a GCM simulation is fed into this 
statistical model to estimate the corresponding local and regional climate characteristics. One 
of the primary advantages of these techniques is that they are computationally inexpensive, 
and thus can be easily applied to output from different GCM experiments. Another advantage 
is that they can be used to provide site-specific information, which can be critical for many 
climate change impact studies. The major theoretical weakness of SD methods is that their 
basic assumption is not verifiable, i.e., that the statistical relationships developed for the 
present day climate also hold under the different forcing conditions of possible future climates 
– a limitation that also applies to the physical parameterizations of dynamical models. 
 
To date, most of the SD approaches described in this document are practiced by 
climatologists rather than by impact analysts undertaking fully fledged, policy orientated 
impact assessments. This is because the scenarios have largely been regarded as unreliable, 
too difficult to interpret, or do not embrace the range of uncertainties in GCM projections in 
the same way that simpler interpolation methods do. This means that downscaled scenarios 
based on single GCMs or emission scenarios, when translated into an impact study, can give 
the misleading impression of increased resolution equating to increased confidence in the 
projections. However, it is increasingly recognized that comprehensive impact studies must 
be founded on multiple GCM outputs. 
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Part 2 of this guidance note provides researchers of climate impacts with background material 
and descriptions of the main SD techniques. We also outline some of the key assumptions and 
limitations applying to their usage. Part 3 continues by advising researchers to consider some 
broader questions about downscaling approaches, whether statistical downscaling or regional 
modelling.  For example, is high-resolution information really needed for the application? Is 
the effort involved in producing high-resolution climate information appropriate in the 
context of all of the uncertainties associated with the project? Many of these wider issues are 
addressed by the companion document on regional climate modelling (Mearns et al., 2003).  
They are not repeated here so we recommend that both guides be read in tandem. Rather, the 
focus of Part 3 will be on the practical aspects of statistical downscaling implementation, 
beginning with the study objectives themselves. Finally, a worked case study is provided in 
Part 4, and a summary of the key recommendations attached to the proper implementation of 
SD methods is given in Part 5. 
 
2. REVIEW OF METHODS OF STATISTICAL DOWNSCALING     
 
Statistical downscaling involves developing quantitative relationships between large–scale 
atmospheric variables (predictors) and local surface variables (predictands). The most 
common form has the predictand as a function of the predictor(s), but other types of 
relationships have been used. For example, between predictors and the statistical distribution 
parameters of the predictand  (Pfizenmayer and von Storch, 2001) or the frequencies of 
extremes of the predictand (Katz et al., 2002). Most SD work has focussed on single-site (i.e., 
point scale) daily precipitation as the predictand because it is the most important input 
variable for many natural systems models and cannot be obtained directly from climate model 
output. Predictor sets are typically derived from sea level pressure, geopotential height, wind 
fields, absolute or relative humidity, and temperature variables. These variables are archived 
at the grid resolution of operational and re-analysis climate models, with the horizontal 
resolution typically 300–500 km. However, the grid spacing of the observed climate fields 
and GCM climate change projection output do not always correspond. Therefore, driving a 
statistical downscaling model with GCM output often requires interpolation of the GCM 
fields to the grid resolution of the atmospheric predictor sets used in fitting. 
 
The following sections outline the main SD techniques under the broad headings ‘weather 
classification’, ‘regression models’, and ‘weather generators’. This categorization is similar to 
that used by IPCC TAR WG1 section 10.6 (Giorgi et al., 2001). Table 1 provides a summary 
of their relative strengths and weakness. 
 
2.1 Weather classification schemes  
 
Weather classification methods group days into a finite number of discrete weather types or 
“states” according to their synoptic similarity. Typically, weather states are defined by 
applying cluster analysis to atmospheric fields (Corte-Real et al., 1999; Huth, 2000; Kidson, 
2000; Hewitson and Crane, 2002) or using subjective circulation classification schemes 
(Bardossy and Caspary, 1990; Jones et al., 1993). In both cases, weather patterns are grouped 
according to their similarity with ‘nearest neighbours’ or a reference set. The predictand is 
then assigned to the prevailing weather state, and replicated under changed climate conditions 
by resampling or regression functions (Hay et al., 1991; Corte-Real et al., 1999). 
Classification-based methods can have limited success in reproducing the persistence 
characteristics of at–site wet and dry spells (e.g., Wilby, 1994).  Recent approaches include 
extensions to multi–site and multi–variate series (e.g., precipitation and temperature as in 
Bardossy and van Mierlo (2000) or Palutikof et al. (2002)). 
  
Analogue approaches are examples of a weather classification method in which predictands 
are chosen by matching previous (i.e., analogous situations) to the current weather-state. The 
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method was originally designed by Lorenz (1969) for weather forecasting applications but 
was abandoned due to its limited success. It has resurfaced for climate applications (Zorita et 
al., 1995; Martin et al., 1997) since longer series of predictors have emerged following the 
completion of reanalysis projects (e.g., Kalnay et al., 1996). Even so, the analogue method 
still suffers whenever the pool of training observations is limited (Timbal et al., 2003) and/or 
the number of classifying predictors is large (Van den Dool, 1989). However, it compares 
favourably with more complex regression methods (Zorita and von Storch, 1999) and is 
suitable for providing multi-site and multi-variate series (Timbal and McAvaney, 2001).  
 
Another approach is to classify spatial rainfall occurrence patterns using hidden Markov 
models, then infer corresponding synoptic weather patterns (Hughes and Guttorp, 1994; 
Hughes et al., 1999). A hidden Markov model represents a doubly stochastic process, 
involving an underlying (hidden) stochastic process that is translated into another stochastic 
process that yields the sequence of observations (Rabiner and Juang, 1986).  The observed 
process (e.g., precipitation occurrence at a network of sites) is conditional on the hidden 
process (the weather states).  Weather states evolve according to a first order Markov chain, 
in which transitions from one state to the next have fixed probabilities and depend only on the 
current state. Alternatively, non-homogeneous hidden Markov models have transition 
probabilities that are conditioned by atmospheric predictors and thus vary in time. These 
models reproduce key characteristics of precipitation such as interannual variability, 
occurrence and persistence of wet and dry spells at individual sites, and correlations between 
precipitation series for pairs of sites (Hughes and Guttorp, 1994; Charles et al., 1999a). 
 
2.2 Regression models 
 
Regression models are a conceptually simple means of representing linear or nonlinear 
relationships between predictands and the large scale atmospheric forcing. Commonly applied 
methods include multiple regression (Murphy, 1999), canonical correlation analysis (CCA) 
(von Storch et al., 1993), and artificial neural networks which are akin to nonlinear regression 
(Crane and Hewitson, 1998). von Storch (1999) and Bürger (1996) discuss the important issue 
of under prediction of variance often associated with regression approaches. The problem is 
particularly evident for daily precipitation downscaling because of the relatively low 
predictability of local amounts by large-scale forcing alone. Bürger (2002) uses an approach 
termed ‘expanded downscaling’ to increase the variance of simulated predictor series. Some 
multi-site regression-based methods are also becoming available in which the unexplained 
variance is represented by stochastic processes (e.g., Charles et al., 1999a; Wilby et al., 2003).  
 
2.3 Weather generators 
 
Weather generators (WGs) are models that replicate the statistical attributes of a local climate 
variable (such as the mean and variance) but not observed sequences of events (Wilks and 
Wilby, 1999). These models are based on representations of precipitation occurrence via 
Markov processes for wet-/ dry-day or spell transitions. Secondary variables such as wet-day 
amounts, temperatures and solar radiation are often modelled conditional on precipitation 
occurrence (e.g., dry-days in summer may have on average more sunshine than wet-days). 
WGs are adapted for statistical downscaling by conditioning their parameters on large-scale 
atmospheric predictors, weather states or rainfall properties (Katz, 1996; Semenov and 
Barrow, 1997; Wilks, 1999). However, parameter modification for future climate scenarios 
can lead to unanticipated outcomes (Wilks, 1992). For example, changes to parameters 
governing wet-/dry-spell lengths can affect simulated temperatures and solar radiation even 
before modifications are applied to the parameters governing these variables. Moreover, WGs 
based on first-order Markov chains (i.e., one-state-to-the-next transitions) often underestimate 
temporal variability and persistence of precipitation (Gregory et al., 1993; Mearns et al., 
1996; Katz and Parlange, 1998). However, conditioned WG methods are useful for temporal 
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downscaling, for instance disaggregating monthly precipitation totals and rain days into daily 
amounts, or daily totals into sub-daily components (Kilsby et al., 1998; Fowler et al., 2000). 
 

Table 1 A summary of the strengths and weaknesses of the main SD methods. 

Method Strengths Weaknesses 
Weather typing 
 (e.g. analogue method, 
hybrid approaches, 
fuzzy classification, self 
organizing maps, 
Monte Carlo methods). 

• Yields physically interpretable 
linkages to surface climate 

• Versatile (e.g., can be applied 
to surface climate, air quality, 
flooding, erosion, etc.) 

• Compositing for analysis of 
extreme events 

• Requires additional task of 
weather classification 

• Circulation-based schemes 
can be insensitive to future 
climate forcing 

• May not capture intra-type 
variations in surface climate 

Weather generators 
(e.g. Markov chains, 
stochastic models, spell 
length methods, storm 
arrival times, mixture 
modelling). 

• Production of large ensembles 
for uncertainty analysis or 
long simulations for extremes 

• Spatial interpolation of model 
parameters using landscape 

• Can generate sub-daily 
information 

• Arbitrary adjustment of 
parameters for future 
climate 

• Unanticipated effects to 
secondary variables of 
changing precipitation 
parameters 

Regression methods  
(e.g. linear regression, 
neural networks, 
canonical correlation 
analysis, kriging). 

• Relatively straightforward to 
apply 

• Employs full range of 
available predictor variables 

• ‘Off-the-shelf’ solutions and 
software available 

• Poor representation of 
observed variance 

• May assume linearity and/or 
normality of data 

• Poor representation of 
extreme events 

 
2.4 Key Assumptions 
 
It is important to be aware of several key assumptions when downscaling climate model 
output for current and projected climates (Hewitson and Crane, 1996; Giorgi et al., 2001): 
 
• Predictors relevant to the local predictand should be adequately reproduced by the host 

climate model at the spatial scales used to condition the downscaled response(s). Prior 
knowledge of climate model limitations can be advantageous when screening potential 
predictors. Therefore, predictors have to be chosen on the balance of their relevance to 
the target predictand(s) and their accurate representation by climate models (see: Wilby 
and Wigley, 2000). This necessarily places some onus on the downscaling community to 
undertake GCM verification, at least for the predictors of interest. 

• The relationship between the predictors and predictand remains valid for periods outside 
the fitting period (time invariance). This needs careful assessment for future climate 
projection as it is obviously impossible to check with observational data. A way around 
this problem is to validate the statistical downscaling model with observational data 
stemming from periods well separated from the fitting period, i.e. representing a 
“different” climate regime (e.g., Charles et al., 2004). Since projected climate change 
may lie (partly) outside the bounds of the long-term variability of the observational 
record, this is not a completely satisfactory solution (see below). Thus, there is value in 
checking equivalent statistical relationships between predictor and predictand in climate 
model simulations for future climates (Gonzalez-Rouco et al., 2000). Here the caveat is 
the limited ability of climate models to simulate the local variable, the origin of the 
whole downscaling “problem”.  

• The predictor set sufficiently incorporates the future climate change ‘signal’. Some 
approaches, for example stepwise regression, may exclude predictors based on current 
climate performance that could be important in future changed climates. In order to test 
predictor stability, Charles et al. (1999b) compared CSIRO RCM 2×CO2 grid–scale daily 
precipitation occurrence probabilities to those obtained by driving a downscaling model 
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fitted to 1×CO2 RCM grid–scale precipitation with 2×CO2 RCM atmospheric predictors. 
The downscaling model driven by 2×CO2 RCM atmospheric predictors reproduced the 
2×CO2 RCM grid–scale precipitation occurrence probabilities only when the predictor 
set included information on lower atmosphere moisture saturation. Although not 
validation in the traditional sense, this approach increases confidence in the choice of 
predictors and showed that relationships derived during fitting remained legitimate for 
the changed climate. Busuioc et al. (1999) applied a similar method to a CCA of monthly 
precipitation data for sites in Romania. 

• The predictors used for determining future local climate should not lie outside the range 
of the climatology used to calibrate the SD model. If this is the case, then technically the 
SD model is invalid. Preliminary explorations of the output of ECHAM4 suggest that the 
assumption of ‘stationarity’ is robust for geopotential heights across most of the Southern 
Hemisphere, but less so for atmospheric moisture in the tropics where up to 90% of the 
data lie outside the climatology of the control simulation (Figure 1). Further research is 
needed to establish whether these patterns are representative of the wider suite of 
predictors routinely used for statistical downscaling, as well as of other GCMs. 

 

 
Figure 1 Percentage of days that specific humidity (upper panel) and 850 geopotential heights (lower 
panel) for the climate of the 2080s under the A2 emissions scenario lie outside the range of the 1961-

1990 climatology of the ECHAM4 GCM. Source: Hewitson (2004). 
 
2.5 Inter-comparison studies 
 
A growing number of studies have compared several SD methods or compared statistical 
downscaling with dynamical (i.e., RCM–based) downscaling. For example, Wilby and 
Wigley (1997) and Wilby et al. (1998) compared six SD approaches (two neural nets, two 
weather generators, and two vorticity–based regression methods) for multiple sites across the 
USA using observed and GCM data. The vorticity–based regression methods were found to 
perform best. Performance criteria were root mean squared errors of the following 
diagnostics: wet day amount mean, median, standard deviation and 95th percentile; dry–dry 
and wet–wet day occurrence probabilities; wet day probabilities; wet and dry spell duration 
mean, standard deviation, and 90th percentile; and standard deviation of monthly precipitation 
totals. Although the GCM yielded large changes in precipitation it projected only small 
changes in the circulation–based predictors used — within the limits of modelled interannual 
variability. The various SD approaches gave significantly different future precipitation 
scenarios despite using common sets of GCM predictors. Given this ambiguity, Wilby et al. 
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(1998) suggested the need for additional atmospheric predictors such as moisture–based 
predictors to capture long-term changes in atmospheric saturation.   
 
Kidson and Thompson (1998) compared results from a RCM with a screening regression 
downscaling technique based on indices of local and regional airflow. Using data from 1980 
to 1994 for a network of 78 sites across New Zealand, the regression approach better 
explained the daily variance in precipitation anomalies. The relatively poor performance of 
the RCM was attributed to its inability to resolve orography, a result of the 50 km grid 
spacing used. It was concluded that the (linear) regression relationships would remain valid 
provided that predictors extend only slightly beyond the range of the observed data used in 
calibration. However, it was preferable to use RCMs whenever significant changes in factors 
such as atmospheric vapour content could influence storm intensity.  
 
Mearns et al. (1999) compared a circulation classification approach (k–means clustering of 
the principal components of 700 hPa geopotential height fields) to the NCAR RegCM2 RCM 
nested within the CSIRO Mk 2 GCM of Watterson et al. (1997) for 5 years of 1×CO2 and 
2×CO2 runs. The RCM reproduced monthly or seasonal precipitation for 12 sites in the 
eastern Nebraska study area quite well, partly due to compensating errors in the frequency 
(overestimated by a factor of 2 to 5) and intensity of precipitation events (underestimated by a 
factor of 2 to 14). The classification-based approach reproduced observed precipitation 
characteristics for the same sites, but this is expected as the model was calibrated and then 
validated against observed station data. The climate change projections, however, exemplify 
the problem of different results arising from different approaches. The two approaches did not 
produce mean precipitation changes of the same direction for 40% of months and locations 
investigated. The statistical downscaling yielded mainly increases in mean precipitation, 
whereas RegCM2 produced both increases and decreases for coherent subregions.  
 
Zorita and von Storch (1999) compared an analogue method (Zorita et al., 1995) to (i) a linear 
regression method based on CCA applied to monthly site precipitation totals and sea level 
pressure (SLP) fields; (ii) a method based on classification and regression trees applied to 
daily precipitation occurrence and SLP fields; and (iii) a neural network, as an example of a 
nonlinear method, applied to daily precipitation amounts and SLP anomalies for the Iberian 
Peninsula (southwest Europe). In general, the analogue method performed comparably, or 
was best at reproducing daily precipitation amounts and frequency characteristics as well as 
being technically simpler to implement.  
 
Widmann et al. (2003) have compared a Singular Value Decomposition downscaling method 
with a simpler method of local rescaling of simulated rainfall (Widmann and Bretherton, 
2000).  The simpler method performed surprising well, especially when the resampling is 
improved by dynamical corrections. They were also able to demonstrate that using model 
rainfall as a predictor improved the downscaling techniques (see Salathé, 2003). 
 
Finally, there is a growing number of statistical downscaling versus dynamical downscaling 
studies that use hydrological indices for assessing relative skill under present boundary 
forcing supplied by re-analysis data. This research has helped identify systematic biases in 
precipitation and temperature at the basin-scale, as well as the role of snowpack and soil 
moisture stores in integrating and/or canceling these errors at seasonal time-scales (e.g., Hay 
and Clark, 2003; Wilby et al., 2000; Wood et al., 2004) (Figure 2). Other work has focused 
on the reproduction of extreme events such as persistent wet- or dry-spells (e.g., Goodess et 
al., 2003) for flood frequency estimation (e.g., Reynard et al., 2004). Collectively, such 
studies indicate that SD and RCM based methods have comparable skill over both daily and 
monthly time-scales at least for present climate conditions. 
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Figure 2 Percentage of explained variance in observed daily flows modelled using station (OBS), 
statistically downscaled (SDS), reanalyis (NCEP), elevation corrected reanalyis (NCEP-ELEV), RCM 
(RegCM2) and elevation corrected RCM (RegCM2-ELEV) daily precipitation and temperature series 

for the Animas River basin, Colorado. Source: Wilby et al. (2000). 
 
2.6 Issues for statistical downscaling 
 
Choice of statistical method. The choice of statistical method is to some extent determined by 
the nature of the local predictand. A local variable that is reasonably normally distributed, 
such as monthly mean temperature, will require nothing more complicated than (multiple) 
regression, since large scale climate predictors tend to be normally distributed – assuming 
linearity of the relationship. A local variable that is highly heterogeneous and discontinuous in 
space and time, such as daily precipitation, will probably require a more complicated non-
linear approach or transformation of the raw data. Fitting such complex models often requires 
large amounts of observational data. 
 
Choice of predictors. Sometimes the best predictors identified in the statistical analysis of 
observations are not completely adequate for climate change applications. For example, daily 
rainfall may be determined by geopotential heights in the extratropical areas. But changes in 
geopotential heights caused by global warming will contain a non-dynamical signal, which 
will spuriously affect the estimation of rainfall changes. This non-dynamical component 
should be corrected, either by subtracting the average changes of the geopotential height in a 
sufficiently large area, or by using geopotential thickness, instead of geopotential heights, as 
predictors (Burkhardt, 1999). Conversely, exclusion of key predictors for future change, 
perhaps due to a high degree of covariance with another variable under current climates, may 
result in a critical loss of information about future regional response to changes in large scale 
forcing. 
 
Extremes. Statistical downscaling models are often calibrated in ways that are not particularly 
designed to handle extreme events for which fewer realisations are available. In many cases, 
the implementation of a SD technique is most successful at reproducing the mean of the 
signal. This is important to keep in mind for impact studies. [The 2003-2005 EU project 
STARDEX “Statistical and Regional dynamical Downscaling of Extremes for European 
regions” is investigating such issues, see: http://www.cru.uea.ac.uk/projects/stardex/].  
 
The tropical regions. These regions may present more complex behaviour than the mid-
latitudes. In the tropics, the strong ocean-atmosphere coupling makes the consideration of the 
role of the ocean unavoidable, thus enlarging the set of potential large-scale predictors. Also 
the relationships between large-scale predictors and local variables may vary strongly within 
the annual cycle. In the case of precipitation, statistical models especially designed for a 
particular month (start or end of rainy season) may be required (Jimoh and Webster, 1999). 
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Feedbacks 
Under weak synoptic forcing, other climate subsystems, such as vegetation, may come into 
play in a changed climate.  The role of these subsystems can be critical in feedback processes 
governing, for example, the onset date of seasonal rains, the development of extreme 
convective systems, or the reinforcement of persistent states such as dry spells.  The natural 
response of these feedback processes to global change, or anthropogenic forcing (e.g., land 
use practice) can potentially seriously compromise statistical models fitted to the 
observational record (Zheng et al., 2002).  
 
3. GUIDELINES   
 
With the above considerations in mind, the following sections should assist readers in 
deciding whether the time and resource implications of statistical downscaling are justified in 
terms of added value to the project. Before this, however, it is wise to consider whether or not 
SD techniques are appropriate for the task and needed to achieve project aims or, in fact, 
whether simpler procedures can deliver comparable results. Having made the decision to 
proceed with a SD approach, it is helpful to identify the most important technical 
considerations en route to the production of downscaled climate scenarios.  
 
3.1 Issues to consider in deciding whether SD is required for a project 
 
As noted at the outset, the most commonly cited rationale for downscaling is that GCMs 
provide only a “broad–brush” view of how climate variables, such as global temperature and 
rainfall patterns, might change in the future in response to rising concentrations of 
anthropogenic greenhouse gases. GCMs cannot resolve important processes relating to sub-
grid scale cloud and topographic effects that are of significance to many impact studies. For 
example, assessments of future river flows may require (sub-) daily precipitation scenarios at 
catchment, or even station scales. Therefore, downscaling is often justified on the grounds 
that climate information is needed at higher temporal and/or spatial resolutions than currently 
delivered by GCM output. However, it is important to recognise that increased precision of 
downscaling does not necessarily translate to increased confidence in regional scenarios. The 
following sections outline when it may or may not be appropriate to employ SD methods. 
 
3.1.1 Situations when it may be appropriate to use SD methods 
 
SD methods are particularly useful in heterogeneous environments with complex 
physiography or steep environmental gradients (as in island, mountainous or land/sea 
contexts) where there are strong relationships to synoptic scale forcing. Indeed, SD may be 
the only practicable means of generating climate scenarios for point-scale processes such as 
soil erosion (e.g. Favis-Mortlock and Boardman, 1995). A further justification for SD is the 
need for better sub- GCM grid-scale information on extreme events such as heat-waves (e.g., 
Schubert and Henderson-Sellers, 1997), heavy precipitation (e.g., Olsson et al., 2001) or 
localised flooding (e.g., Pilling and Jones, 2002). A further very real pragmatic reason is 
when there are severe limitations on computational resources, especially in developing 
nations where arguably the greatest need exists.  
 
Empirical relationships between atmospheric predictors and sub-daily climatic statistics also 
provide a framework for interpreting observed trends in extreme events, and for downscaling 
future events. For example, Bárdossy (1997) showed, using 30 years of 5 minute precipitation 
data for sites in the Ruhr valley, that the probability of a wet-hour and number of wet spells in 
a day are conditional on the season and prevailing circulation pattern. Precipitation scenarios 
at such fine temporal and spatial resolution are needed in order to improve the design and 
evaluate the future performance of urban drainage systems (see Bronstert et al., 2002). 
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Table 2 Selected examples of the use of SD for exotic predictands. Adapted from Giorgi et al. (2001). 
  
Flowering times of Galanthus nivalis L.  
Snow cover in the French Alps, snow duration in Austria 
Spawning time of North Sea fish stocks 
Slope stability and landsliding in SE France 
Storm surge statistics for Germany 
Zooplankton populations in the Netherlands 
Wave heights and salinity off the Polish coast 
Palaeo proxy records for Norwegian glaciers 
Lake stratification and water temperature profiles in Japan 
Air pollution episodes in London 
  

 
A major advantage of SD methods over RCMs is their low computational demand. This can 
allow generation of large ensembles of climate realizations and the exploration of some 
aspects of climate uncertainty (due to SD model parameters and/or natural climate 
variability). SD schemes are also very flexible in the sense that for any local variable with 
predictability, a trans-scale relationship can usually be found. For example, Figure 3 shows 
the weak but statistically significant associations that exist between an index of the intensity 
of London’s urban heat island and two regional-scale predictor variables (standardised mean 
sea level pressure and wind speed over Eastern England). Table 2 provides further examples 
of exotic predictands that are not directly supplied by either GCMs or RCMs but have been 
produced using SD methods. 
 

Figure 3 Association between London’s nocturnal urban heat-island intensity and a) mean sea level 
pressure, and b) wind speed, July to August 1995. Source: LCCP (2002). 

 
3.1.2 Situations when it may NOT be appropriate to use SD methods 
 
To date, the majority of downscaling studies have been undertaken for temperate, mid–
latitude regions of the Northern Hemisphere; relatively few have examined semi–arid or 
tropical locations. There has also been an elevational bias towards low altitude (often coastal) 
sites arising from concerns about data homogeneity and network density. In other words, 
application of SD schemes is restricted to data-rich areas; unlike RCMs, most SD methods 
can not be applied unless station data are available for model calibration. Possible exceptions 
include the distributing of weather generator parameters across landscapes using topographic 
information from digital elevation models (e.g., Kittel et al., 1995). 
 
In contrast to RCMs, the majority of SD schemes are unable to incorporate land-surface 
forcing – the regional climate response is driven entirely by the free atmosphere predictor 
variables supplied by the GCM. This means that the climate change scenarios produced by 
conventional SD methods will be insensitive to changes in land-surface feedbacks. However, 
it is increasingly recognised that local land use practices influence regional climate, 
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vegetation and runoff regimes in adjacent natural areas (Chase et al., 2001; Kalnay and Cai, 
2003; Stohlgren et al., 1998; Reynard et al., 2001). Human modified rural landscapes tend to 
have a lower albedo, and higher surface roughness and soil moisture than natural surfaces. 
The net effect of these physical changes is to partition a larger proportion of solar energy into 
latent heat (associated with evapotranspiration) and less into sensible heating of the overlying 
atmosphere. As in the case of RCMs, land-surface related changes in cloudiness due to 
elevated moisture fluxes and atmospheric instability will not be captured by SD methods 
without explicit conditioning of model parameters in line with the evolving land-use. 
 
Following from the above, it is a widely recognised that SD techniques should not be applied 
whenever statistical transfer functions are deemed to be temporally unstable. This may be a 
real consideration when faced with marked changes in atmospheric circulation regimes or 
abrupt climate changes such as a collapse of the Atlantic thermohaline circulation (Vellinga 
and Wood, 2002). Reliance upon circulation-based predictors alone will capture only this 
component of the climate change signal and, even for observed data, can fail to capture all 
aspects of multi-decadal variability (Wilby, 1997). For example, Widmann and Schär (1997) 
showed that observed trends in daily precipitation across Switzerland were not due to changes 
in the frequency of circulation patterns, but rather to changes within rain–producing weather 
types. Elsewhere, detailed analyses of circulation and humidity predictors have assisted 
explanations of abrupt climate changes. For example, the marked decline in winter 
precipitation over south-west Australia in the mid-1970s was linked to changes in the 
frequency of high pressure systems centred to the east of the region and to changes in the 
moisture content of the lower troposphere (CSIRO, 2001). This again highlights the need to 
represent all aspects of the regional forcing (not just circulation patterns), so that the SD 
model remains valid under changing climatic conditions. 
 
3.1.3 Alternatives to SD for scenario generation and impact assessment 
 
With the above factors in mind, it is acknowledged that there are many alternative techniques 
for generating high-resolution climate change scenarios other than the application of RCM 
and SD schemes. These approaches include the spatial interpolation of grid-point data to the 
required local-scale (sometimes called “unintelligent” downscaling); climate sensitivity 
analysis of impact models (also known as the “bottom-up” approach); construction of 
spatial/temporal analogues using historic climate data; and the use of simple change factors 
for strategic assessments. The latter two are discussed in more detail below. 
 
Climate change analogues are developed from climate records that may typify the future 
climate of a given region. The analogue can originate from either past climate data (temporal 
analogue) or from another region (spatial analogue). A major advantage of the analogue 
approach is that the future climate scenario and associated impacts may be described at far 
greater temporal and spatial resolutions than might otherwise be possible. For example, in the 
UK the hot/dry summers of 1976 and 1995, and the mild/wet winters of 1990/91 and 1994/95 
are thought to provide useful temporal analogues for future climate change (Subak et al., 
2000; Palutikof et al., 2004). By the 2080s, under a high emissions scenario, approximately 
one summer in three is expected to be hotter and drier than the extraordinary summer of 1995 
(Hulme et al., 2002). 
 
One of the more straightforward and popular procedures for rapid impact assessment involves 
the use of “change factors” (e.g., Arnell, 2003a;b; Arnell and Reynard, 1996; Diaz-Nieto and 
Wilby, 2004; Eckhardt and Ulbrich, 2003; Pilling and Jones, 1999; Prudhomme et al., 2002). 
Firstly, the reference climatology is established for the site or region of interest. Depending on 
the application this might be a representative long-term average such as 1961-1990, or an 
actual meteorological record such as daily maximum temperatures. Secondly, changes in the 
equivalent temperature variable for the GCM grid–box closest to the target site are calculated. 
For example, a difference of 2.5˚C might occur by subtracting the mean GCM temperatures 
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for 1961-1990 from the mean of the 2050s. Thirdly, the temperature change suggested by the 
GCM (in this case, +2.5˚C) is then simply added to each day in the reference climatology.  
 
Although the resultant scenario incorporates the detail of the station records as well as the 
areal average climate change of the specified GCM grid–box, there are problems with this 
method. The scaled and the base–line scenarios only differ in terms of their respective means, 
maxima and minima; all other properties of the data, such as the range and variability remain 
unchanged. The procedure also assumes that the spatial pattern of the present climate remains 
unchanged in the future. Furthermore, the method does not easily apply to precipitation 
records because the addition (or multiplication) of observed precipitation by GCM 
precipitation changes can affect the number of rain days, the size of extreme events, and even 
result in negative precipitation amounts! When direct scaling is applied to the baseline 
precipitation series, the temporal sequencing is unchanged, so the method may not be helpful 
in circumstances where changes in wet-/dry-spell lengths are important to the impact 
assessment, such as in semi-arid and arid hydrology where runoff response to rainfall amount 
and timing are highly non-linear. Most critically, this approach fails to recognize that values 
of single grid cells are not representative of the GCM skilful scale. Consequently, this is 
arguably a problematic approach. 
 
3.2 Technical guide on the appropriate application of SD schemes 
 
The use of SD for the development of regional climate change scenarios generally requires 
less physical reasoning than a nested RCM simulation (but in both cases ‘hidden’ parameters 
can significantly affect model outcomes). However, the value and confidence placed in SD 
scenarios is enhanced by adherence to ‘good-practice’ guidelines. The following sections 
identify some of the most important step-by-step considerations (Figure 4). 
 

 
Figure 4 Key stages in statistical downscaling. 
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3.2.1 Specify the study objectives 
 
Many technical aspects of SD hinge upon data quality and quantity, time and resources 
available, and on whether single- or multi-site information is required. A useful starting point 
for any SD investigation is a “bottom-up” assessment of the key climate sensitivities of the 
system(s) of interest (Beersma et al., 2000). For example, the reliable yield of a reservoir may 
depend upon the length of dry-spells at critical times of the year. Persistent dry-spells may, in 
turn, be linked to the occurrence of specific weather patterns over the region. This leads us to 
question the ability of the host GCM to replicate such weather patterns for the present climate, 
as well as changes in the future. Next, we must decide on the most appropriate transfer 
scheme and seasonal stratification for downscaling (dry-spells), and on how best to evaluate 
model skill. Finally, knowledge of system sensitivities or threshold states, allows us to judge 
whether projected changes in the downscaled scenario (dry-spell length) are of practical 
significance when compared to the cascade of model uncertainties. 
 
3.2.2 Assess availability and quality of archived data 
 
The viability of all SD techniques rests critically upon access to high-quality predictands and 
predictor variables at the space and time scales of intended use. It should also be recognised at 
the outset that few meteorological stations have data sets that are 100% complete and/or fully 
accurate. Therefore, handling of missing and imperfect meteorological records is necessary 
for most practical situations. 
 
Fortunately, the downscaling community is now widely consulted by the leading climate 
modelling centres concerning ‘wish-lists’ of archived predictor variables. For example, 
following a survey of user needs the UK Hadley Centre archived over 20 daily variables from 
their HadCM3SRES A2 and B2 experiments (including temperature, humidity, energy and 
dynamical variables at several levels in the atmosphere). Some groups, such as the Canadian 
Climate Impacts Scenarios (CCIS) Project have even begun supplying gridded predictor 
variables on-line (see: http://www.cics.uvic.ca/scenarios/sdsm/select.cgi), with the specific 
needs of the downscaling community in mind. In addition, a large suite of secondary variables 
such as atmospheric stability, vorticity, divergence, zonal and meridional airflows may be 
derived from standard daily variables such as mean sea level pressure or geopotential height 
(Conway et al., 1996). Nonetheless, there is a general need for better meta-data from climate 
centres to ensure appropriate and consistent usage of their products (Beersma et al., 2000). 
 
A major caveat underpinning both RCM and SD methodologies is that the GCM output(s) 
used for downscaling are realistically modelled by the GCM. The same assumption applies to 
the re-analysis products that are now widely used to calibrate SD models for the present 
climate. Verification of climate model output at the space and time scales of use is, therefore, 
a necessary precursor to all downscaling exercises because SD techniques propagate the 
uncertainty in the driving fields of the GCM, and do not improve on the base skill of the 
GCM (Hewitson and Crane, 2003). For example, evaluations of mean sea level pressures in 
the NCEP re–analysis revealed a positive bias from 1941–1967 across parts of the North 
Atlantic (Reid et al., 2001). Quantities such as temperatures or geopotential heights are better 
represented by GCMs at the regional scale than derived variables such as precipitation, but 
there is still an onus upon the downscaling community to verify the realism of inter-variable 
relationships used by multivariate SD methods.  
 
3.2.3 Specify model type and structure 
 
The range of downscaling techniques and applications has increased significantly since the 
IPCC TAR (see above). The question naturally arises as to which family of SD methods 
should be employed? The relative merits of each downscaling approach have already been 
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discussed in detail elsewhere; Table 1 summarised the key attributes of the main SD methods. 
Comparative studies indicate that the skill of SD techniques depends on the chosen 
application and region of interest. This reflects the considerable versatility of SD approaches, 
regarded by some as a distinct strength of empirical downscaling (Giorgi et al., 2001). In 
practice, the choice of model type often reflects the availability of data, ease of access to 
existing models (including supporting documentation), and the nature of the problem at hand 
(whether uni- or multi-variate, single or multi-site, etc.) 
 
Recent studies also vary with respect to the seasonal stratification of data prior to model 
calibration. Primary considerations include the time-step of the SD model (hourly, daily, 
monthly averages, etc.) and whether SD models should be developed for individual months, 
seasons or years (such as wet and dry episodes). In some instances, conventional 
climatological seasons (i.e., December-February, March-May, and so on) may not reflect 
‘natural’ seasons contained in data so alternative delimitations may be required (Winkler et 
al., 1997). Furthermore, rigid classifications of data using seasonal definitions based on 
present climate behaviour may not be valid under altered climate conditions. Under these 
circumstances model parameters should be allowed to vary at sub-seasonal time-scales. 
However, in some situations (e.g., downscaling precipitation amounts in semi-arid regions) it 
will be necessary to group data into seasons simply to ensure sufficient (wet-day) cases for 
model calibration. 
 
3.2.4 Select appropriate predictor variables 
 
The choice of predictor variable(s) is one of the most influential steps in the development of a 
SD scheme because the decision largely determines the character of the downscaled scenario. 
The selection process is complicated by the fact that the explanatory power of individual 
predictor variables may be low (especially for daily precipitation), or the power varies both 
spatially and temporally (Figure 5). Some of the earliest downscaling studies used GCM grid-
box values of the predictand (e.g., area-average temperatures) to derive station-scale values of 
the same variable (e.g., local surface temperature), or employed monthly means as the 
predictor of daily quantiles (e.g., Wigley et al., 1990; Wilks, 1989). 

 
Figure 5  Monthly variations in the strength of the correlation between daily wet–day amounts at 
Eskdalemuir (55º 19’ N, 3º 12’ W) and mean sea level pressure (MSLP), and near surface specific 

humidity (QSUR) over the Scottish Borders region, 1961–1990. Source: Wilby et al. (2003). 
 
The availability of re-analysis data sets has significantly increased the number and variety of 
candidate predictors. Unfortunately, there have been relatively few systematic assessments of 
different predictors (e.g., Charles et al., 1999b; Huth, 1999; Wilby and Wigley, 2000; Winkler 
et al., 1997). Furthermore, potentially useful predictors may be overlooked because of limited 
explanatory power for the present climate. For example, it is suspected that future changes in 
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surface temperature may be dominated by changes in the radiative properties of the 
atmosphere rather than by circulation changes (Schubert, 1998), a response accommodated by 
employing both temperature and circulation fields in the downscaling process (Huth, 1999). 
For precipitation downscaling it is known that inclusion of humidity variables can have a 
significant bearing on the outcome, not only changing the magnitude of future changes but 
also the sign of the changes (Hewitson, 1999; Charles et al., 1999b). 
  
Low frequency climate variability can be under-predicted by transfer function and weather 
typing SD methods. Some have addressed this deficiency by conditioning model parameters 
on slowly varying predictors such as large-scale pressure indices (Katz and Parlange, 1996) or 
sea surface temperatures (Wilby et al., 2002). Alternatively, the missing variability can be 
added by perturbing model parameters using a low-frequency stochastic model (Hansen and 
Mavromatis, 2001). In either event, it must be assumed that the conditioning indices are 
realistically produced by GCMs, and continue to be relevant to future regional climate forcing 
(see Osborn et al., 1999). 
 
Ultimately, the choice of downscaling predictors is constrained by the data archived from 
GCM experiments because the range of re-analysis products generally exceeds that 
retrievable for individual GCM runs. With this in mind, simple procedures such as partial 
correlation analysis, step-wise regression, or information criterion may be used to screen the 
most promising predictor variables from a candidate suite (Charles et al., 1999b; Wilby et al., 
2003). Expert judgement or local knowledge bases are also invaluable sources of information 
when choosing sensible combinations of predictors from the available data. The ideal SD 
predictor variable is strongly correlated with the target variable; makes physical sense; is 
realistically represented by the GCM; and captures multiyear variability. Most critically, the 
predictors should collectively reflect the climate change signal – meeting all other criteria yet 
missing this will lead to a seriously erroneous climate change scenario. 
 
3.2.5 Specify the downscaling domain 
 
It is necessary to specify the location and dimensions of the large-scale predictor field(s) for 
downscaling local weather variables (analogous to the choice of lateral meteorological 
boundary conditions used to drive high-resolution RCM simulations). The smaller the 
predictor domain, the more direct the influence of the host GCM on the downscaled scenario. 
The location of the downscaling domain is important because the skill of GCMs at 
reproducing observed climatology varies between models and is not uniform across space or 
time (see Lambert and Boer, 2001). The positioning of the domain should also reflect the 
dominant processes affecting the region in question (such as the trajectory of mid-latitude 
cyclones, influence of water bodies, orography, etc.). If the positioning of the downscaling 
domain is inadequate, subtle variations in present and future storm track position, for 
example, may not be captured. 
 
The optimum area of the domain depends to a certain extent on the theoretical level of 
aggregation at which the host GCM is skilful – generally held to be at least several grid-points 
(Widmann and Bretherton, 2000). Domain averages or principal components of predictor 
fields have the advantage of capturing spatial patterns of predictor variable behaviour at larger 
spatial scales but downplay the significance of local forcing. Continental-scale predictor 
domains are applicable when using slowly varying properties such as sea surface temperatures 
(Wilby et al., 2002) or atmospheric circulation indices (Katz and Parlange, 1993) to condition 
multi-year variability in downscaled scenarios. 
 
Finally, it is noted that the optimal location and dimensions of the predictor domain may vary 
by region. For example, as Figure 6 shows, daily wet-day amounts across the Sierra Nevada 
and Oklahoma are correlated with near in situ humidity variables but with mean sea level 
pressure fields located to the west of the target station(s) (Brinkmann, 2002; Wilby and 
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Wigley, 2000). Use of correlation surfaces like those in Figure 6 can be helpful in identifying 
the optimal geographic location and extent of predictor domains (Stidd, 1954), but it must 
also be recognised that the spatial pattern of predictor-predictand associations may change 
under altered climate conditions. 
 

 
Figure 6 The correlation between observed daily wet-day amounts in winter in Sierra Nevada (SNV, 
top row) and Oklahoma (OKC, bottom row) and re-analysis a) mean sea level pressure (left column); 

b) surface specific humidity (right column). Source: Wilby and Wigley (2000). 
 
3.2.6 Re-gridding and standardisation of data 
 
The assembly of a candidate predictor suite can be an involved process entailing data 
extraction, re-gridding and standardisation techniques. Re-gridding is often needed because 
the grid-spacing and/or co-ordinate systems of observed and re-analysis data sets (used for SD 
model calibration) do not always correspond to the grid-spacing and co-ordinate systems of 
the GCM output (used to develop regional climate change scenarios). For example, the 
NCEP/NCAR re-analysis (Kalnay et al., 1996) has a grid-spacing of 2.5º latitude by 2.5º 
longitude whereas the HadCM3 model has a slightly coarser resolution of 2.5º latitude by 
3.75º longitude. A popular re-gridding technique is to compute the weighted average of 
neighbouring grid-points, where the weighting decreases with separation distance following a 
gaussian curve up to a specified maximum separation distance. 
 
Standardisation is widely used prior to SD to reduce systematic biases in the mean and 
variance of GCM predictors relative to observations (or re-analysis data). The procedure 
typically involves subtraction of the mean and division by the standard deviation of the 
predictor for a predefined baseline period. The main issues here relate to the choice of the 
baseline and averaging window (whether monthly, seasonal or annual). The period 1961-1990 
is widely used as a baseline because it is of sufficient duration to establish a reliable 
climatology, yet not too long, nor too contemporary to include a strong global change signal. 
 
 
 

70

60

50

40

30

20

10

La
tit

ud
e

-175 -150 -125 -100 -75 -50
Longitude

 0
.4

 

 0
.4

 

 0
.4

 

 0
.4

  0
.3

 

 0. 3  0
.3

 

 0. 3  0.3  0
.3

  0. 2  0.2 

 0
.2

 

 0
.2

 
 0. 2 

 0
.2

 

 0
.2

 

 0.1 

 0.1 

 -0.0 

 -0.0 
 -0.0 

 -0
.0

  -0.1  -0.2 

 -0
.3

 
 -0

.4
 

 -0.5 

 -0
.6

 

SNV OBS Ri 70

60

50

40

30

20

10

La
tit

ud
e

-175 -150 -125 -100 -75 -50
Longitude

 0
.4

 

 0. 3  0.3 
 0.3  0

.3
 

 0
.2

 

 0. 2 
 0.2 

 0.2 

 0
.1

 

 0. 1 

 -0.0 

 -0.0 

 -0
.0

 

 -0.1 

 -0.1 

 -0
.2

 

 -0
.3

 
 -0

.4
 

 -0
.5

 

 -0.6 

SNV HAD Ri

70

60

50

40

30

20

10

La
tit

ud
e

-175 -150 -125 -100 -75 -50
Longitude

 0
.1

 

 0.1 

 0
.1

 

 0. 1 

 0 

 0 

 -0.1 

 -0.1 

 -0
.1

 

 -0.1  -0
.1

 

 -0
.1

 

 -0
.2

 

 -0
.3

 

OKC OBS Ri 70

60

50

40

30

20

10

La
tit

ud
e

-175 -150 -125 -100 -75 -50
Longitude

 0.2 

 0.1 

 0 

 0 

 0 

 -0.1 

 -0
.1

 

 -0.1 

 -0
.1

 

 -0
.1

 

 -0.1 

 -0
.2

 
 -0

.3
 

OKC HAD Ri

70

60

50

40

30

20

10

La
tit

ud
e

-175 -150 -125 -100 -75 -50
Longitude

 0
.4

 

 0. 3 
 0.2 
 0.1 

 0.1  0. 0 

 0.0 

 0
.0

 

 0.0 

 0.0  0. 0 

 0.0 

 -0
.1

 

 -0.1 

 -0.2 

SNV OBS Ri

70

60

50

40

30

20

10

La
tit

ud
e

-175 -150 -125 -100 -75 -50
Longitude

 0.3 

 0. 2 

 0. 1 

 0
.1

 

 0. 1 

 0. 0 

 0.0 
 0

.0
 

 0. 0  0.0 

 0.0 
 0.0  0

.0
 

 0. 0 

 0
.0

 

 -0.1 

 -0.1 

 -0.1 

 -0.1 

 -0
.1

 

 -0.1 

 -0.2 

OKC OBS Ri



18/27 

3.2.7 Evaluate model skill using independent data 
 
There is a very real danger that SD methods will be applied uncritically as “black boxes”, 
particularly when employing regression-based modelling techniques (and an equal danger 
exists with the popularisation of RCMs running on PCs). Ideally, the downscaling should be 
based upon physically sensible linkages between large-scale forcing and local meteorological 
response(s). Therefore, best practice demands rigorous evaluation of SD schemes (and 
equally of RCMs) using independent data. At the same time, we should be mindful of the fact 
that observational data used for model evaluation – such as gridded precipitation amounts – 
introduce further sources of uncertainty due to changes in the spatial and temporal coverage 
of networks, or due to the non-homogeneity of individual site records. 
 
A standard approach to model validation involves the use of split-records: one portion for 
model calibration and the remainder for testing. This method is appropriate when long (>30-
year) observation records are available. However, cross-validation techniques may be a more 
effective use of shorter records, or subsets of data (such as odd/even years) when trends are 
suspected. Alternatively, the model may be developed using data drawn from dry years and 
tested against data from wet-years, or vice versa (Wilks, 1999). A further strategy of ‘multiple 
working hypotheses’ involves the intercomparison of different statistical transfer schemes 
(e.g., Zorita and von Storch, 1999), or ‘benchmarking’ of SD model skill relative to RCMs 
(e.g., Murphy, 1999). 
 
Success of the SD under present climate conditions does not imply that the model is valid 
under future climate conditions. This is because transfer functions may become invalid or the 
weights attached to different predictors may change. For example, atmospheric moisture 
content does exert some control over present-day precipitation occurrence and amounts, but is 
expected to assume even greater significance in the future (Hewitson, 1999). Tests of the 
stationarity of statistical transfer schemes using comparable relationships in RCMs, suggest 
that the assumption of stationarity may be robust provided that the choice of predictors is 
judicious (Charles et al., 1999b). 
 
3.2.8 Generate downscaled scenarios 
 
Having calibrated and verified the SD model performance, it is then necessary to generate 
ensembles of synthetic daily weather series given standardised atmospheric predictor 
variables supplied by the GCM (representing either the present or future climate). The 
predictor variables may originate from either time-slice or transient model experiments. In the 
former case, downscaling provides higher resolution climate scenarios for discrete periods 
(e.g., 2020s, 2050s, 2080s, etc.) or for equilibrium response experiments that attach no 
explicit times to changes in greenhouse gas forcing (only differences in atmospheric 
concentrations such as 1xCO2 or 2xCO2 scenarios). Alternatively, continuous downscaling of 
regional predictands may be undertaken using the GCM output of transient experiments. This 
enables downscaling of the time-varying properties of the regional climate as they evolve 
throughout the course of the 21st century (Figure 7). 
 
Some SD techniques are capable of simultaneously delivering multiple outputs such as 
precipitation, maximum and minimum temperatures, solar radiation, relative humidity and 
wind speed (e.g., Parlange and Katz, 2000). Indeed, this is a common requirement of many 
impact studies. However, where predictors are downscaled independently it is necessary to 
verify that inter-variable relationships are realistically preserved (for instance, that the 
maximum daily temperature is always greater than the minimum). This is particularly 
important whenever analysing joint probabilities of events such as the dependence between 
sea surge, river flow and precipitation (Svensson and Jones, 2002). 
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Figure 7 Changes in the frequency of summer weather patterns favouring pollution episodes over 
eastern England downscaled from HadCM3 output from the Medium-High Emissions (left column) and 

Medium-Low Emissions (right column) SRES scenarios. All anomalies are expressed with respect to 
the 1961 to 1990 average. Source: LCCP (2002). 

 
Ideally, downscaling should be performed using output from a wide range of climate model 
experiments in order to represent the uncertainties attached to different emission scenarios, 
model structures, parameterization schemes, and climate sensitivities (Mearns et al., 2001). 
Provided that the predictor variables of different climate models have been standardised in the 
same way and that they are representing identical atmospheric phenomena (another good 
reason for high quality meta-data), repeat downscaling experiments may be undertaken using 
the same model structure/ transfer functions but different sources of driving variables. This is 
practicable for most SD methods but is seldom undertaken. For RCMs, this may be 
prohibitively costly unless achieved via pattern-scaling (as in Hulme et al., 2002) or risk 
assessment approaches (e.g., New and Hulme, 2000). 
 
3.2.9.Evaluate ‘value-added’ of downscaling 
 
Having developed a set of scenarios it is important to evaluate the extent to which the 
downscaling has contributed value to the impact assessment above and beyond the use of raw 
GCM output or simpler scaling approaches (see above). The most straightforward test is to 
assess the realism of GCM and downscaled variables relative to observed climatology under 
present climate conditions, at the temporal and spatial scale of the intended impact  (Hay et 
al., 2000). A further step involves the comparison of derived variables generated by, for 
example, water balance (Wilby et al., 2000), flood frequency (Reynard et al., 2004) or 
agricultural (Mearns et al., 1999) impact models driven by downscaled or raw GCM output. 
In this case, it is important to recognise that the impact models themselves introduce 
additional layers of uncertainty to that of the downscaling algorithm. Furthermore, if the 
impact model output depends upon the temporal or spatial integration of climate information 
(as in the case of changes in soil moisture, groundwater or snow pack volume), dependent 
model processes (such as runoff) can imply higher skill than the finer resolution inputs. For 
example, realistic time-series of daily precipitation amounts in winter may not be produced by 
the downscaling but seasonal accumulations of precipitation in the snow pack, and hence 
spring-melt, may well be. Finally, it has been suggested that seasonal forecasting may be a 
useful framework for testing downscaling because the forecasts are for hitherto unseen events, 
yet the models may be verified ‘on-line’ as new data become available (Leung et al., 2003). 
 
4. CASE STUDY 
 
The following case study describes the use of a SD procedure for the rapid assessment of 
potential changes in soil moisture deficits and groundwater recharge in two headwaters of the 
River Thames, UK (Figure 8). The national UKCIP02 scenarios (Hulme et al., 2002) suggest 
a decrease in average soil moisture both annually and in summer that is most marked in 
southeast England. In the Thames region, 55% of the effective rainfall that falls annually is 
abstracted, amounting to about 5000 Ml/d, of which 86% is used for public water supply. 
Even without climate change, the present balance of supply and demand is in deficit by some 
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180 Ml/d (Environment Agency, 2001). The example in Table 3 is used to illustrate the key 
steps described in the technical guidance (above). 

Figure 8 Changes in maximum soil moisture deficits (SMDs) and length of recharge season (days) in 
the River Kennet under A2 emissions, compared with the 1961-1990 average. Source: LCCP (2002). 

 
 

Table 3 Procedure for the rapid assessment of future changes in soil moisture and groundwater 
recharge across two tributary catchments in the River Thames basin. 

 
1. Specify the study 
objectives 

The objective of the study was determine possible changes in soil moisture 
deficits and the duration of the groundwater recharge season under the A2 and 
B2 SRES scenarios by the 2020s , 2050s and 2080s for two tributaries of the 
River Thames (the Kennet and Loddon). Only two working days were available 
for the climate change impact assessment, suggesting the need for ‘off-the-
shelf’ modelling solutions. 

2. Assess availability 
and quality of 
archived data 

Daily precipitation and runoff series, as well as monthly potential evaporation 
(PE) were available for the period 1961-2000. A fully calibrated rainfall-runoff 
model (CATCHMOD) was obtained for each river catchment. Daily predictor 
variables originated from the NCEP re-analysis for the period 1961-1990 and 
from the coupled ocean-atmosphere GCM HadCM3 for the A2 and B2 SRES 
scenarios for the period 1961-2099. All data were subject to rigorous quality 
checks. 

3. Specify model 
type and structure 

Drier soils at the end of the water year mean that more precipitation is required 
for re-wetting to saturated conditions under which groundwater recharge or 
surface runoff are assumed to occur. As a consequence, the length of the 
recharge season depends critically upon the timing and duration of dry-spells. 
This dictated that the SD method should operate on a daily time-step, produce 
realistic sequences of wet- and dry-spells, be applicable to PE as well as 
precipitation, and capture seasonality. A hybrid stochastic weather generator/ 
regression SD model was chosen. 

4. Select appropriate 
predictor variables 

Predictor variable selection was guided by stepwise regression and by ‘expert’ 
knowledge of large-scale atmospheric controls of precipitation and PE in the 
Thames basin. Several transfer functions were applied to the predictands 
(precipitation and PE) and predictors (NCEP variables). Predictor-predictand 
relationships were evaluated using multiple performance criteria against data 
for 1961-1990. Separate monthly models were built to capture the observed 
seasonality in local precipitation and PE. 

5. Specify the 
downscaling domain 

Previous analyses had indicated that the optimal predictor domains for 
downscaling precipitation across the region were the two HadCM3 grid-boxes 
located over southeast and eastern England (Goodess et al., 2003).  

6. Re-gridding and 
standardisation of 
data 

The NCEP re-analysis predictors were re-gridded to conform to the grid-
spacing of HadCM3 using the weighted average of neighbouring grid-points. 
All NCEP and HadCM3 predictors were standardised by their respective means 
and standard deviations of the baseline period 1961-1990. 

7. Evaluate model 
skill using 
independent data 

The SD model was extensively tested using a split-sample approach. The most 
robust precipitation model had five predictor variables (mean sea level 
pressure, surface vorticity, meridional flow, and specific humidity, and 850hPa 
geopotential heights). In line with previous work, it was found that the SD 
model captured precipitation occurrence better than wet-day amounts. 
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8. Generate 
downscaled 
scenarios 

The calibrated SD model was driven using HadCM3 predictors for the full 
transient run 1961-2099 under A2 and B2 emission scenarios. The resulting 
daily precipitation and PE series were used as inputs to CATCHMOD to 
compute water balance changes. The length of the recharge season reduces by 
25% in the Kennet by the 2080s under the A2 emissions scenario (Figure 8). 

9. Evaluate ‘value-
added’ of 
downscaling 

The assessment of changes in recharge would not have been plausible using 
raw GCM output because of the under representation of long dry-spells by the 
model. Experiments are ongoing to assess the relative merits of RCM and SD 
scenarios for water resource estimation at the catchment scale, as well as the 
uncertainty due to the choice of GCM used for downscaling. 

 
5. SUMMARY RECOMMENDATIONS  
 
The following recommendations capture the essence of the guidance on the use of statistical 
downscaling for climate scenarios development: 
 
• Carefully consider the objectives of the climate change impact study and the potential 

added value of higher resolution climate scenarios. Are the time and resources involved in 
the production of the statistically downscaled scenarios really justified, or can comparable 
outcomes be achieved using more straightforward procedures such as raw GCM output, 
change factors, scaling methods or interpolation to finer scales? 

• Be aware of the generic strengths and weaknesses of statistical downscaling. On the 
one hand SD methods may be helpful for impact studies in heterogeneous environments 
(e.g., islands, mountains, land/sea contrasts); whenever point-scale information is needed 
(e.g., localised flooding, soil erosion, urban drainage, etc.); for modelling exotic 
predictands (e.g., heat island indices, flowering times, wave heights, etc.); or for 
generating large ensembles and/or transient scenarios. On the other hand, SD methods can 
be data-demanding, are typically applied “off-line” (i.e., do not incorporate important 
land-surface feedbacks) and assume stationary predictor-predictand relationships over 
multi-decadal time-scales. 

• Assuming that statistical downscaling is applicable, be aware of the specific strengths 
and weaknesses attached to the various families of SD methods. Before specifying the 
SD model type and structure evaluate the data requirements in terms of local station data 
(predictands) and large-scale, archived climate model information (predictors), including 
available meta-data. Recognise that verification (and possibly re-gridding) of GCM 
predictors is a time-consuming but necessary part of SD model development. 

• When selecting the optimum set of large-scale predictors try to incorporate as much local 
knowledge of the relevant processes. Recognise that downscaling predictability and 
skill varies seasonally, as a consequence of the size and positioning of the predictor field, 
and between different periods of record. Remember that the ideal SD predictor is strongly 
correlated with the target variable, is physically sensible, well represented in the GCM 
control run, and captures multi-year variability. 

• Test the SD model using independent data. Confidence in projections for future climate 
change scenarios will be increased if it can be demonstrated that SD model parameters are 
temporally stable. Then apply the model to a wide range of climate models to evaluate the 
uncertainties associated with different emission scenarios, GCM structures, 
parameterizations and climate sensitivities. Otherwise, any resulting impact studies 
should only be regarded as sensitivity studies of the few scenarios. Where possible apply 
RCM scenarios in parallel to explore the uncertainty due to choice of downscaling 
method(s) (recognizing that a given RCM solution may be no nearer the truth).  

• Finally, apply the SD scenarios to the climate change impact assessment to inform 
strategic decision-making and policy. Constantly re-evaluate the added value or new 
insight(s) that have been gained through the use of higher resolution scenarios above 
and beyond that arising from raw GCM output. Share the outcomes and experience with 
the broader climate modelling and impacts community. 
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