Published June 5, 2018 | Version Discussion paper, Manuscript under review for the journal Atmospheric Chemistry and Physics (ACP).
Journal article Open

Aerosol water parameterization: long-term evaluation and importance

  • 1. ResearchConcepts io GmbH, Freiburg im Breisgau, Germany
  • 2. King Abdullah University of Science and Technology, Saudi Arabia
  • 3. Max Planck Institute for Chemistry, Mainz, Germany

Description

We scrutinize the importance of aerosol water for the aerosol optical depth (AOD) calculations by a long-term evaluation of the EQuilibrium Simplified Aerosol Model V4 for climate modeling, which was introduced by Metzger et al. (2016a). EQSAM4clim is based on a sin-gle solute coefficient approach that efficiently parameterizes hygroscopic growth, account- ing for aerosol water uptake from the deliquescence relative humidity up to supersaturation. EQSAM4clim extends the single solute coefficient approach to treat water uptake of multi- component mixtures. The gas-aerosol partitioning and the mixed solution water uptake can be solved analytically, preventing the need for iterations, which is computationally efficient. EQSAM4clim has been implemented in the global chemistry climate model EMAC and com- pared to ISORROPIA II (Fountoukis and Nenes, 2007) at climate time-scales. Our global modeling results show that (I) our EMAC results of the aerosol optical depth (AOD) are comparable to independent results of Pozzer et al. (2015) for the period 2000–2010, (II) the results of various aerosol properties of EQSAM4clim and ISORROPIA II are similar and in agreement with AERONET and EMEP observations for the period 2000–2013, and (III) that the underlying assumptions on the aerosol water uptake limitations are important for derived AOD calculations. Sensitivity studies of different levels of chemical aging and associated water uptake show larger effects on AOD calculations for the year 2005 compared to the differences associated with the application of the two gas-liquid-solid partitioning schemes. Altogether, our study reveals the importance of the aerosol water for climate applications.

Notes

Project: EoCoE, Energy oriented Centre of Excellence for computer applications, H2020-EINFRA-2015-1, EC | H2020 | RIA, GA number 676629.

Files

acp-2018-450-supplement.pdf

Files (19.5 MB)

Name Size Download all
md5:82bc474c971f3c62a25b05512db42071
7.3 MB Preview Download
md5:c4a63b5ed4d22fa135f66c77be6e797a
12.1 MB Preview Download

Additional details

Related works

References

  • Metzger, S., Abdelkader, M., Steil, B., and Klingmüller, K.: Aerosol water parameterization: long-term evaluation and importance, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-450, in review, 2018.