Software Open Access

Weyl Discs: theoretical prediction

Janis Erdmanis; Árpád Lukács; Yuli Nazarov


Citation Style Language JSON Export

{
  "publisher": "Zenodo", 
  "DOI": "10.5281/zenodo.1433886", 
  "language": "eng", 
  "title": "Weyl Discs: theoretical prediction", 
  "issued": {
    "date-parts": [
      [
        2018, 
        9, 
        23
      ]
    ]
  }, 
  "abstract": "<p>In this repository we show how to build and diagonalize a Weyl disc Hamiltonian used in <a href=\"https://arxiv.org/abs/1805.03678\">this paper</a> implemented in Julia programming language. For superconducting nanostructure Hamiltonian we use harmonic oscillator basis and build the Hamiltonian matrix in the loop from it&#39;s elements. Where for exciton Hamiltonian, which has special case for 2D hydrogen, we extensively use Kronecker products and solve it in coordinate space. To improve convergence Richardson extrapolation, nonuniform logarithmic grid and 5 point representation of derivatives.</p>", 
  "author": [
    {
      "family": "Janis Erdmanis"
    }, 
    {
      "family": "\u00c1rp\u00e1d Luk\u00e1cs"
    }, 
    {
      "family": "Yuli Nazarov"
    }
  ], 
  "note": "Janis Erdmanis can be considered as a corresponding author for the codes in this repository.", 
  "version": "0.1", 
  "type": "article", 
  "id": "1433886"
}
43
73
views
downloads
All versions This version
Views 4343
Downloads 7373
Data volume 2.4 MB2.4 MB
Unique views 4242
Unique downloads 1414

Share

Cite as