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Introduction.

Abel's theorem states that if 2a,, is convergent, then Iim2aftse"
o o

exists as x -> 1 by real values, and is equal to 2a,t. The converse theorem,
however, that the existence of lim 1,anx

n implies the convergence of 2a,,,
>1is very far from being true; for example, either the Cesaro or the Borel

summability of 2art suffices for the existence of Abel's limit. It is known,
however, that the existence of this limit, combined tuith certain conditions
satisfied by the a's, does imply the convergence of 2art. Three such sets
of conditions, for example, are :

(a)\ the a's are all positive;
(6) the order of an has a certain upper limit;
(c) t the function 2a,, x11 is regular at the point x = 1 and an -*• 0.

In the present paper we are concerned with the problems arising out
of case (6), where the only additional restriction on the a's is an upper
limit to the order of an. The theorem of this case is due to M. Tauber.§
The result is remarkable and apparently paradoxical in view of Abel's
theorem, for it may be expressed roughly by saying that if 2an is not
actually convergent, then the more nearly convergent it is, the more un-

* The paper has been modified considerably from the form in which it was first com-
municated. It then consisted of Theorems (A), (B), and (C), with the index A,, limited to the
form nk, and the note in § 10. An introduction was added, and the title changed, at the
suggestion of the referees. I am indebted to Mr. G. H. Hardy for several important additions,
and also for directing my attention to the subject in the first place. The application of
Tauber's theorem to finitely oscillating power series, and the distinction in this respect between
Tauber's case and that considered here are due to him, as also is the application to Fourier's
series in § 9.

t Pringsheim, Milnchener Sitzungsberichte, Bd. 30, 1900, p. 37. The result, however,
was practically proved, although not explicitly stated, by Abel.

X Fatou, Th&se, Stockholm, 1906, p. 389.
§ Monatsliefte f. Math. u. Phys., Bd. 8, 1897, p. 273. Pringsheim (Milncliener Sitzungs-

berichte, Bd. 31, 1901, p. 507) has generalised the theorem by showing that 2a,» converges if
Abel's limit exists as x-*l along any path lying within any pair of straight lines which cut the
circle at finite angles, and if (a( + 2ay + ... +na,,)jn -> 0.



1910.] THE CONVERSE OF ABEL'S THEOREM ON POWER SERIES. 435

likely is it that 2a,t£" should exist.* M. Tauber's actual result is that
the existence of lim 2a,ta:n, and the relation nan -*• 0, together involve the

x->l

convergence of Han. The proof of this theorem is as follows, t

We have
v-1

0
—x) 2 n\ati\,

0

because (l-xn)l(l—x) = x>'-1 < n;

also, if Hv is the upper limit to n \ atl\, (w+1) | «,i+ii, ... to QO , we have

h...) < Hvu~lxvHX-x).

Take x = 1—v~x; we then have

2 an— < l /~ 1 2 n l c (1)

As v ~> oo , each of the terms on the right tends to zero ; and so

lim 2 an = lim 2 a,tic",

which proves the theorem.
If the restriction in this theorem on the order of | an | is the minimum

possible, we ought to be able to tind non-convergent series for which
lim nan > 0, but is finite, and for which Abel's limit exists. Now the easiest
means of constructing a non-convergent series for which Abel's limit
exists is to take a series summable by Cesaro's first mean. Mr. Hardy*
has shown, however, that wo non-convergent series for which | nan \ < K
can be summable by any one of Cesaro's means. The method therefore
fails to provide an instance of the desired kind, and we are naturally led,
as Mr. Hardy himself remarks, to ask whether Tauber's theorem also does
not hold under the wider condition I nan | < K. That it does is proved
in Theorem (B) of the present paper.

* Cp. Hardy, " On Slowly Oscillating Series," Proc. London Math. Soc., Ser. 2, Vol. S,
p. 315 (this paper will be referred to as "O.S."), where an explanation of the correspond-
ing paradox relating to summability will be found.

t I have taken the proof in Bromwich's Infinite Series, p. '251, adapting it to the case
when x -> 1 by real values.

X "O.S.,"p. 308.
2 F 2
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The proof of Tauber's theorem given above proves more than is
actually stated. It follows immediately from (1) that, if 2anx

u oscillates
finitely as x -*• 1, then the limits of oscillation, as ?i->oo, of 2a«, are
the same as the limits of oscillation of ilanx

n. Now it is a somewhat
remarkable fact that with the condition | nan | < K this result no longer
holds. To see this it is sufficient to consider the series

Sinn-1-",

The well known asymptotic formula

shows that the limits of oscillation of 2au are + a"1. On the other hand,
as x -> 1, we have*

The limits of oscillation of the function Xanx
n are therefore

+ | T(ai) | or + a~x ̂ {ira cosech ira),

and are different from those of the series.
It follows from this result that it is not always possible to find a.

relation between x and v for which the left-hand side of (1) tends to zero.
It is to be expected, therefore, that the extended theorem will require a
new and more complicated proof.

The series for which | nan | < K are much more interesting than those
for which nan-+ 0 ; the former class includes, for example, all Fourier's
series which satisfy Dirichlet's conditions. Mr. Hardy has shown t that,
in virtue of his theorem that a series for which | nan \ < K is convergent
if it is summable by Cesaro's method, Fourier's theorem with Dirichlet's
conditions becomes an immediate corollary of FejeVs theorem that the
Fourier's series for any continuous function is summable by Cesaro's first
mean. In the same way our extension of Tauber's theorem exhibits
Fourier's theorem as a corollary of the result known under the name of
" Poisson's Integral," thereby completing Poisson's attempted proof of
Fourier's theorem.

It is shown in Theorem (C) of this paper that the condition \nan\ < K
is the minimum possible restriction of its kind ; i.e., that, given any

Lindelof, Le Calcul des Bisidus, p. 139.
"O.S.,"p. 308.
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function 0(w) tending to infinity, there exists a non-convergent series for
which Abel's limit exists, while \nan\ < <f>{n).

M. Landau has proved an analogue of Tauber's theorem for Dirichlet's
series. His result is that, if 2 ^ is a divergent series of positive terms,

GO

the existence of lim 2ane~A"x and \naJM-n. -* 0, where
x—X) 1

together imply the convergence of 2aw. (Tauber's theorem is the special
case fXn = 1.) This theorem may be extended in the same way as Tauber's :
the general index Xlt will, in fact, be considered throughout the proof of
Theorem (B). No additional complication results from this procedure;
indeed, the general problem suggests a proof considerably simpler in
some details than my original proof for the case of the index n.

Theorem (C) also holds with the general index, with, however, one
very important reservation. When some unimportant conditions are satis-
fied by the /x's, when mnl^n-+Q (arestriction roughly equivalent to Arl< eta,
where e is arbitrarily small), and when <p(n) -> <x>, non-convergent series
2art exist such that

2awe~xA"-*s and | \aaHlfi*\ < 4>(n).

But when the order of Xn is comparable with or greater than that of
e?"1, the theorem breaks down entirely. I have not completely solved the
problem of these high indices, but I feel practically certain that the
existence of lim Hane~xK», by itself, implies the convergence of 2an.
For the present, therefore, I have excluded these cases from considera-
tion in connexion with Theorem (C). In Theorem (B) they are not ex-
ceptions, but they require a modified proof, and in view of the fact that
the relations of that theorem constitute only a small part of the whole
truth about them I have omitted them there also.

The paper concludes with some applications of Theorems (B) and (C),
including that mentioned above to Fourier's series, and with a note on
the converse of Abel's theorem, with summability of 2aft in the place of
convergence.

1. In the proof of Theorem (B) the following theorem is fundamental.

THEOREM (A).—If, as x-+co by real values, <p(x) -> s, and every
derivate of <p(x) is finite, then every derivate of <f>(x) tends to zero.

We may assume, without loss of generality, that <f>{x) is real.
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Suppose that <f>'(x) oscillates. Then there exists a positive constant
h such that, for arbitrarily large values xn of x, \</>'(x)\> h. Let <f>'(xn)
be, say, positive. Then, since | <f>"(x) | < K,

<l>t(x)-<f>t(xn) = f <f>"(x)dx > -K\x-xn\,

and therefore <j>'(x) > %h,

when \x—xn\ < %hK~l = c.

rxu+c

Then d>'(x)dx > ch.

PThis is incompatible with I (f>'(x)dx = s, and it follows that <f>{x) ->0.

The argument may evidently be repeated with 0', <f>", ... successively
in the place of 0, and we have

ft'Hx) -» 0 (r > 1).

COROLLARY.—If, as y -*• 0 by positive values,

yfr(y) ^ $ and j if \fSr)(y) \ is finite (r > 1),

then yr+{rHy)-*O ( r > l ) .

For, writing y = e~\ \fs(y) = <p(x),

we have (-y)r ^r)(y) = D(D-1)... (D-r+1) 0(z) (D = d/dx). (1)

By induction from (1) we have | <ftr){x) \ < K; therefore, by the theorem,
> 0, and therefore, from (1),

2. THEOREM (B).—If 2,/j.n is a series of positive terms such that

2an ?'s convergent, provided

We may assume without loss of generality that an is real.
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The first stage in the proof is to establish the following result:—

xr+l 2 sn fA"+1 tre~*dt -+r\s (r > 1), (2)
J

where sn = al-\-a2-\-...-\-an.

We observe once for all that the inequality for an involves the absolute
convergence of ^LanX

v
ne~xXn, when x > 0. For

I - \P — tt. I ^ , XT \ B - 1 — IA_

\anXv
ne "| < KfMn\v

n e n

< K/uLn\n
2 (since Xn -> oo)

and the absolute convergence of the series follows immediately from the

x~2dx. From this result, and the inequality | sn\ < KXln

may be deduced without difficulty the legitimacy of the rearrangements
and differentiations of the series 2,ane~xK» which occur in the sequel.

We note also that f*nlXn -*• 0 involves

K+xlK -*1 and Xn+i < KXn.

Let \j,{x) = 2awe-xA» = 2sw(e-aX»-e"^-0 = xlsn \ e-xtdt. (8)1 J\.

Then, since \an\ < KujXnt

| .r̂  V(r)(*) | = xr | 2anX;6-rA» | < Kx^^XT1 e~xK»

Jo
< Kxl T" t'-le-xtdt < Kx

< K.

Hence, by means of the corollary to Theorem (A),

With the second form of \}s (x) in (8) this gives

(-)'• [V+12sn f
A"*1 fe-xtdt-rxr 2sn £"*' tr-le-xtdt~] -+ 0,
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whence Vr = xr+12sn P"*1 tre~*dt = rVr-i+e, = ... (r > 1)

(4)

the desired result (2).

8. We now write sn = s+<rn; then, since

tre~xtdt = xr+1 tre~xtdt = y\

we have xr+l2<rn tre~xtdt -* 0 (r > 1).

The convergence of 2an is equivalent to o-f t->0; the proof of our
theorem consists in showing that (4) is false if <rn does not -> 0. What
we shall actually prove concerning (4) is that, if |<rn| exceeds a positive h
for arbitrarily large values of n, then, when r exceeds a certain number
depending on k, fA,,+1

xr+l2<rA tre-*dt >K~'

for a certain set of values of x tending to 0.

4. If <rn does not -> 0, there exists an h > 0 such that | cr* | >• h for
an infinite number of values of n. Let m be such a value : then, if n>wt,

0-n 2
9H+1

n fx,,
< K 2 \ x~ldx < K\og(X,JXr,d-

J "jl -1

Similarly, if m > n, | o-n—<rm \ < A' log (Xm/X,,).

Consequently

xr+1 5
1

Cr+12(<rn

00

cr+1 2

X

- J S r a j ^ " ! 1 log(Xro/Xn) (5)
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We choose z = r/Xm, and consider the limits of each of the terms
on the right-hand side of (5), as in -*• oo, i.e., as x -> 0 through a certain
set of values, (m, of course, is always an integer of a special kind.)

In the first of these terms

lim xr+1 2 f"*1 fe-*dt=zr\,

and heiice lim \crm\xr+1 2 I >+* Ver*dt > hr\. (6a)
a:-»0 1 JA,,

Tn the second term,

log(XnAm) t"+1 fe~xtdt

and therefore

iiii xr+l 2 iog(\n/xM) r f l rc-**^
m-*« m+1 ° JA(i

< iim xr+1\ log (tl\Jtre-xtdt^\ log(tt/r)ure~udu, (66)
m - * ° ° - J.Aro Jr

where we have written t = x~*u = \mur~1.

In the third term, since Xn+i/Xn -*• 1,

+l [^ tre~xtdt,

as w->oo,

T"'1 \Ka*X tre~xtdt,\
A,,

so that

lim xr+l 2 log(Xm/XJ re-**^
•m—><*> 1 . JA;,

im log^^^c-^^+lim 2 enx
r+l\ t'

—>w Jo in—><x> 1 J A , ,
< lim g

Jo

If we write, as before, t = ux~l = Xw ?̂-"1,

r
the first term becomes I log (rIu)ure udu.

Jo
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In the second term let v be the value of n after which | en | < e. Then

lim m2 €nx
r+l | ' tre~xtdt

< lim 2 7iV+1 t e~xtdt+ lim 2 exr+1 tre-*dt

r ure~udu (xt = u)
ar-H) JO

and therefore = 0,

since e is arbitrary. Hence

m - l fA,.^, fl

lim a;r+1 2 log(XHl/Au) tre~xtdt ^\ log (rIu)ure~vdu. (6c)
m->oo 1 JAl, JO

From (5) and (6a, 6, c), we have

Km I F{x) | > /*#•!—A' ff log(w/r) w r e" u ^+ f log (rlu)ure-udit\, (7)
r-H) LJr Jo -J

in which the K is the JT of (5), and is independent of r.

5. We shall now show that

Ix = (' log (rlu)ure-udu < Krre~\ (8)
Jo

I2 = f \og(ujr)ure-udti < Krre~\ (9)

where, as also in what follows, K denotes a constant independent of r.

Writing u = r(l—z), we have

Ix = rr+le~r \ [<22(1—^)]rlog[(l—z)~x\dz. (10)
Jo

As z increases from 0 to 1, er(l— z) decreases steadily from e to 0. Let c
be the value of z for which
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Then, if z > c, ez (1—*)< e"1,

and if * < c, <r (1—*) < fT4*9, and log [(1— z)-1] < Kz.

Therefore P [e*(l - a ) ] v log [(1 -z)-1] civ
Jo

< P e-f+Kedz+e-' P log[(l—s)-1]**
JO Jc

< Kr~l+Ke-r < Kr~\
o

and (8) follows from (10).

In the integral J2 we write u = r(l-\-z). Then

I9=rr+1e-r[ [{l+g)e~']rlog(l+z)dz<Krr+1e-r\ [{l+z)e-:Jzdz. (11)
Jo Jo

Now, if z < i , (1 - a ) e - < e"Js2,

[since log (1 +z) < , - ^ + J * 8 < *-J**]f

and, if a > J, (l+a)e~£ < e~"%

[since — £s+log (1-}-,?) decreases as z increases, and is negative when
z — 11. Therefore

I {(l+z)e-3]rzdz < ?e-
Jo Jo

< f (e-^+e-l") zdz < Kr~l+Kr-2 < Kr~\
Jo

and (9) follows from (11).

6. From (7), (8), and (9),

fim | F(x) I > hr\—Ke-rrr,

Now, by Stirling's theorem,

hr\l(Ke-rrr) ~ y W hK'1 r*.

Hence lim | i^ (a?) | is positive for sufficiently large values of r, and out-

theorem is proved.
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7. We proceed now to the proof that the restriction on an is the mini-
mum possible. Mr. Hardy has shown* that lim 2ane~*»x exists, if

lim sne~K«x = 0,
71—><O

when x > 0, and if 2an is summable B(l, /zn), i.e., if

lim (ftSj+Ma sa+. . . +fxnsn)/Xn

exists, t To establish our result it is therefore sufficient to show that, given
any function 0(») tending to infinity, we can find a non-convergent series
11aK which is summable .8(1, /*n), and for which

lirn^ sne-x»* = 0 and | X u a J < <j>(n)fun.

This result requires a new condition, of an unimportant nature, to be satis-
fied by the /x's.

THEOREM (C).—If

»'.. = MK/XH -*• 0, vn-ilvn < K, and \n = /x1+/i2+... +/x,t - • oo,

then, given any function <f>(n) tending to infinity, a finitely oscillating
aeries 2aft exists such that

lim (/*1s1+)Uo.s24--..+)"«Sn)/Xn and lim

exist, while \ X»a«| < ij.n<f>{n).

Let arn = (AMi + ^2S2+-

so that sn = {\n(Tn—\n-i<rn-i)ffin =

where we write A/(n) for/(;i)—f(n—1).

We shall define the series ?,an by means of the equation

A<rJVn= Ael*»/Ai/rJl=/M,

where \fsn is a real function of n which will be chosen later.

Then <rtt = 2 vnfHt e^ = 2 A^w/».

We shall suppose that \fsn -* °° i A^7l -> 0. Then e1 -̂ and hence
it

2 A^,t/,, oscillate finitely. If now Ai/rji/^-> oo steadily, it follows by
Abel's test for convergence that Lvnfn is convergent, i.e., that

<rn = Si/n/n -> a definite limit,

so that 2ort is summable J?(l, t̂w).

* "O.S.," p. 3 i i .
t This generalised method of summation is due to Riesz, Comptes Rendus, July 5th, 1909.

Cesaro's first mean has 1 in place of fin: if this mean exists we say that 2a» is summable (Cl).
The notation (Cr), R (r, fin) was introduced by Hardy.
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Again, / , = Ael+»/A>A« = «*• (1 -

~ te1*" (since A ^ n -> 0).

Hence sn = / n + o ^ - i oscillates finitely, since fn does and o-n-i-*- a limit.
Our series is now finitely oscillating and summable R(l, /j.n): we pro-

ceed to show tha t , with further assumpt ions as to \jrn, we have also

NOW an = Astt = A

«) + O i A ^ i l + O W . (12)

We can construct a function fa (n) tending steadily to infinity, and such
that fa(n) <C <f>(n), for example by choosing for fa(n) the minimum value
of <J>(m) for m ^ n. Suppose now that

A^n < fa (n) vn.

Then, from (12), | an\ < Kfa(?i)vn+Kfa(ji-1) v^ + Kv*

< Kxfa{n) vn (since i'n_iK < K).

Collecting our results we see that 2an is summable R(l, /ULV) and finitely
oscillating, while \an\< Kxfa(n)vn,

provided that (a) \jrn -> oo , (6) A\fsn -> 0, (c) A^rn/i/tt -» oo steadily,

and (d!) A^rw/j/,4 < ^ ( n ) .

We mus t now show tha t it is possible to choose \fsn so as to satisfy these
conditions. Since 2/un is divergent, it follows, by a well known result due to
Abel, tha t 2J/W is divergent. Hence (c) includes (a). Again, since un -> 0,
fa(n) can be chosen so tha t vnfa{n) -> 0, for example, by choosing for fa(n)
the min imum value of <p (m) for m ^ n, or the min imum value of v~* for
m ^ n, whichever of these values is least. Then (d) includes (b), and we
have only to choose \fsn so as to satisfy (c) and (d). This may be done by
c h o o s i n g

The series 1>a'n = ^LK^lan is now finitely oscillating and summable

BiX, un), while \an\< fa(n)Vn< </>(n)finl\n.

Also the condition that lim \s'ne~x»x I = 0 for a; > 0 is satisfied, since s'n is

finitely oscillating. The theorem is therefore established.

* The notation O [f(x)] for any function <p{x) such that | <p(x) | < K \f(x) | is due to
Landau.
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8. The conditions of Theorem (C) are satisfied when Au is any function
of less order than e'r' for all values of e, which increases in a regular
manner. When, however, \n > e*", the theorem breaks down altogether.
I have proved, for example, that if Xn = epn, n~] log |aw|-*•(), and p > a
certain numerical constant, then the convergence of San is implied by the
existence of the generalised Abel's limit. I do not, however, propose to
discuss the proof (which is quite simple) here, for I believe that no explicit
restriction on the a's is necessary when Xn ^ e?'\ and I hope to consider
this question in another paper.

9. Applications.
(i) Poisson attempted to prove Fourier's theorem by showing that, if

f(x) is a continuous function, then

lim ao-f 2 (an cos nx-\-bn sin nx) r* =/{x),
>-»i L i J

where <io+2 (a* cos nx+bn sin nx) is the Fourier's series corresponding to

f(x).* He supposed this result to involve the convergence of the Fourier
series; i.e., he assumed the converse of Abel's theorem. It is, however,
possible, by means of Theorem (B), to justify this inference in the case
when f(x) satisfies Dirichlet's conditions. It follows immediately from
Theorem (B) that if

< Kjn, (13)

then the Fourier's series is convergent and has the sum f(x). Hence, in
order to prove Fourier's theorem with Dirichlet's conditions, it is sufficient
to establish the inequality (13). This may be done without difficulty: for
example, if f(x) is monotonic the result follows immediately from the
second mean value theorem of the differential calculus.!

(ii) M. Fej6r and Mr. Hardy! have generalised as follows a well known
result due to Frobenius:

If "2an is summable (Cl) to sum s, then

lim 2anx
n = s.

Mr. Hardy shows also that this result does not necessarily hold when
the index n1: is replaced by an, or, roughly speaking, any index of still

* Journal de Vtcolepolyt., cah. 19, 1823, p. 404. Poisson's proof of this result does not
satisfy modern requirements of rigour. The first complete proof was given by Schwarz
(Math. Abh., Vol. n, pp. 144, 175).

t Cp. "O.S. ," p. 308. Patou (loc. cit.) has made the corresponding deduction from
Tauber's theorem, viz., that the Fourier series converges if the upper and lower derivates of
f(x) for 0 ^ x ^ 2ir are bounded.

X Fej«'r, Math. Ann., Vol. 58, p. 51. Hardy, Quarterly Journal, Vol. xxxvm, p. 269.
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higher order. Theorem (C), combined with Tauber's theorem,* enables
us to show that the result ceases to be true when nk is replaced by any
function of higher order than nk for every value of k.

More precisely:
If 2a,, is summable (Cl) but not convergent, and if X*, fxa satisfy tlie

conditions of Theorem (C), together with nnJX,,. -*• ao, then lim 2ane~/A

does not necessarily exist. ll~*1

For, since nnnj\n -> ao, it follows from Theorem (C) that there exists a
series 2a», non-convergent but summable (Cl), such that

\nan\ < nfijXn, or | a J < *tn/An.

If, now, lim Sa^e"3*" exists, Theorem (B) requires that Han should con-
verge, which is untrue. Hence the theorem.

It is easy to prove generalisations, relating to summability R(l, /xj, of
both the positive and the negative result.

[Added May ISth, 1911.—

(iii) The following theorem is an immediate deduction from Theorem (B).
J/l im 2a(le"m exists^ and | w1"*^! < K, where a > 0, then 2/i~aaH

is convergent.
C°

For Xn-aane~xn = 2ane-<K+t)nta-ldt.
Jo

It is not difficult to show that, with our assumptions, the right-hand side
tends to a definite limit as x -> 0 : the result then follows at once.

A similar theorem holds when n~a is replaced by any function <j>{n)
which tends to zero and can be expressed in the form

= f e-
Jo

where I e xt\fs(t)dt is absolutely convergent for x > 0. For example, a
Jo

possible form of <}> (n) is n~a (log n)pl... (logt ?i)p*.]

10. We have seen that if 2a7la;1l-> s and art-> 0, 2a,t is not necessarily
convergent. There remains, however, the possibility that 2an is necessarily
summable by one of Gesaro's means. I will add, in conclusion, a note on
this point.

The most obvious types of series for which.Abel's limit exists, and for

* We shall use, as a matter of fact, the wider Theorem (B) in the proof, but Tauber's
theorem suffices at the expense of a little further complication,

f Or, more generally, if | 2a e~*" | < Kx-a+*t v/here v > 0.
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which | On | < Knp, are summable, and, so far as I know, no one has con:

structed a non-summable series with the two former properties. It is,

however, quite easy to do this. For example, lim 2 n~1(ln)a exp [dn(l^7if]xn

x->l 2

exists, while 2,n~1(ln)aex'p[iln(lin)r\ is not summable by any one of
Cesaro's means, unless a ^ 0, in which case it is convergent

The latter part of this statement is easily verified. To establish the
existence of Abel's limit we employ the formula, easily established by
means of the theory of residues,

" = y1 {lyY sn^dy (kyf]xydy

(*+<Ot -l(ly)*exV[dy{ky) V- I
(14)

In the first integral the integration may be taken along a line lying
in the first quadrant. It is then easy to show that the limit of the right
hand side of (14), as x -> 1, is obtained by writing x = 1 in the subjects
of integration.

It appears, therefore, that 2a,ta;"->s and \nan\<K (log«)a do not
necessarily imply the summability of 2an. There is thus a very strong
presumption that whatever function <f>(n), tending to infinity, may be
chosen, Hanx" -*• s and | nan \ < <p(n) do not necessarily imply the summa-
bility of 2an. But the discussion of the lacuna seems difficult, and I do
not propose to consider the matter further at present.

[Added May 18th.—The work of §§ 1-6 may be modified so as to
establish the following theorem.

The series 2a(l is summable R(l,fxn) if it is knoion to be finitely
oscillating, if lim Xane~"Kn exists, and if the index \n satisfies the con-

dittons of Theorem (B). In particular, 2an is summable (Cl) if it is
finitely oscillating and if Abel's limit exists. This last result may also
be generalised as follows :—If AbeVs limit exists, and 2an is (t finite (Cr),"
i.e., if Cesaro's r-th mean is finite, then 2a9l is summable (Cr-\-l).

In the case of Cesaro summation, we start from the formula

x22<rne-xn ^ s,

where <r/( = s14-s2+---H-Sn. The proof then follows the lines of that of
Theorem (B), <rn and sn playing the roles of sn and an.~\


