THE UNIFORM CONVERGENCE OF A CERTAIN CLASS OF' TRIGONOMETRICAL SERIES

By 'T. W. Chaundy and A. E. Jolliffe.

[Read January 13th, 1916.-Received February 16th, 1916.]

1. It is well-known that the series $\Sigma a_{n} \sin n \theta$, where $\left(a_{n}\right)$ is a seyuence of positive numbers decreasing steadily to zero, is convergent for all real values of θ. Since, moreover, by Abel's lemma,

$$
\left|a_{n} \sin n \theta+\ldots+a_{p} \sin p \theta\right|<\left|a_{n} \operatorname{cosec} \downarrow \theta\right|
$$

the series is uniformly convergent throughout any interval which does not include zero or a multiple of 2π.

We shall show that the condition $n a_{n} \rightarrow 0$ is both necessary and sufficient to secure the uniform convergence of the series throughout any interval whatever.

Since the series is unaltered, if we substitute $2 k \pi+\theta$ for θ, and changed in sign only, if we substitute $2 k \pi-\theta$ for θ, \dot{k} being any integer, we can without loss of generality suppose θ to lie in the interval $(0, \pi)$.
2. We shall prove the two following propositions:-
(1) If p is taken sutticiently great, we can find a value of θ in the interval ($0, \pi$) such that

$$
\left|a_{n} \sin n \theta+\ldots+a_{p} \sin p \theta\right|>p a_{p} / \pi
$$

(2) If $r a_{r}$, where r is greater than or equal to n, is never greater than M, then

$$
\left|a_{n} \sin n \theta+\ldots+a_{p} \sin p \theta\right|<(\pi+1) M
$$

for all values of p and θ.
The condition that the series $\Sigma a_{n} \sin n \theta$ should be uniformly conver-
gent throughout any interval is that, for any ϵ, we can find an integer N_{e}, such that.

$$
\left|a_{n} \sin n \theta+\ldots+a_{p} \sin p \theta\right|<\epsilon,
$$

for all values of θ in the interval, and for all values of p greater than n, provided ouly that $n>N$.

The first of the above propositions shows that, unless $\boldsymbol{H} a_{n} \rightarrow 0$, the interval of uniform convergence cannot inchade zero, or consequently any multiple of 2π.

The second shows that, if $n u, \rightarrow 0$, then there is uniform convergence throughout any interval whatever.
3. To prove the first proposition :-

We have

$$
\sin n \theta+\ldots+\sin p \theta=\frac{1}{2} \cdot \cos \left(n-\frac{1}{2}\right) \theta-\cos \left(p+\frac{1}{2}\right) \theta_{i}^{\prime} \operatorname{cosec} \frac{1}{2} \theta .
$$

If we give θ the value $\left.\pi /\left(2_{l}\right)+1\right)$, this sum becomes $\frac{1}{2} \cos \left(n-\frac{1}{2}\right) \theta \operatorname{cosec} \frac{1}{2} \theta$, which is greater than $; 1-\frac{1}{2}\left(n-\frac{1}{2}\right)^{2} A^{2} ; \theta$, which for this value of θ is certainly greater than p / π. if p is greater than $2 n-1$.

Since $\sin n \theta, \ldots, \sin p \theta$ are all positive, and $a_{n}>a_{n+1} \ldots>a_{i}$,

$$
a_{n} \sin n \theta+\ldots+a_{n} \sin p H>a_{1}(\sin n \theta+\ldots+\sin p \theta)>p a_{p} / \pi .
$$

Hence the first proposition is proved.
4. To prove the second proposition :-

Since $(\sin \psi): \phi$ decreases steadily as ψ increases from 0 to $\pi / 2$, it follows that, if $0<\theta<\pi$, cosec $\frac{1}{2} \theta<\pi \theta$.

By Abel's lemma,

$$
\left|a_{n} \sin n \theta+\ldots+a_{n} \sin p^{\prime} \theta\right|<a_{n} \operatorname{cosec} 2 \theta<\pi a_{n}^{\prime} \theta<n a_{n},
$$

if $\theta>\pi / n$.
If $\theta<\pi / n$, let $\theta=\pi j(m+u)$, where m is an integer $>n$, and $0<\alpha<1$.

If $p<m$, then no one of $n \theta,(n+1) \theta, \ldots, p^{\theta}$ exceeds π, so that

$$
\begin{aligned}
a_{n} \sin n \theta+\ldots+a_{p} \sin p \theta & <\theta\left(n\left(a_{n}+\ldots+p a_{p}\right)\right. \\
& <(p-n+1) M \pi /(m+\alpha)<\pi M .
\end{aligned}
$$

If $p>m$,
$\left|a_{n} \sin n \theta+\ldots+a_{p} \sin p \theta\right|$

$$
\begin{aligned}
& <\left|a_{n} \sin n \theta+\ldots+a_{m} \sin m \theta\right|+\left|a_{n+1} \sin (m+1) \theta+\ldots+a_{p} \sin p \theta\right| \\
& <\pi M+a_{m+1} \operatorname{cosec} \frac{1}{2} \theta<\pi M+(m+a) a_{m+1}<(\pi+1) M .
\end{aligned}
$$

Hence the second proposition is proved, and the result stated is established.

Note.-This paper replaces one commanicated to the Society (January 13th, 1916) by Mr. T. W. Chaundy: he then showed that $n a_{n} \rightarrow 0$ is a necessary condition for uniform convergence, and that $n a_{n} \rightarrow 0$ steadily is a sufficient condition. But, as will be seen from the foregoing investigation, the condition $n a_{n} \rightarrow 0$ is sufficient by itself.

