THE UNIFORM CONVERGENCE OF A CERTAIN CLASS OF TRIGONOMETRICAL SERIES

By T. W. CHAUNDY and A. E. JOLLIFFE.

[Read January 13th, 1916.—Received February 16th, 1916.]

1. It is well-known that the series $\sum a_n \sin n\theta$, where (a_n) is a sequence of positive numbers decreasing steadily to zero, is convergent for all real values of θ . Since, moreover, by Abel's lemma,

$$|a_n \sin n\theta + \ldots + a_p \sin p\theta| < |a_n \operatorname{cosec} \frac{1}{2}\theta|,$$

the series is uniformly convergent throughout any interval which does not include zero or a multiple of 2π .

We shall show that the condition $na_n \rightarrow 0$ is both necessary and sufficient to secure the uniform convergence of the series throughout any interval whatever.

Since the series is unaltered, if we substitute $2k\pi + \theta$ for θ , and changed in sign only, if we substitute $2k\pi - \theta$ for θ , k being any integer, we can without loss of generality suppose θ to lie in the interval $(0, \pi)$.

2. We shall prove the two following propositions :-

(1) If p is taken sufficiently great, we can find a value of θ in the interval (0, π) such that

$$|a_n \sin n\theta + \ldots + a_p \sin p\theta| > pa_p/\pi.$$

(2) If ra_r , where r is greater than or equal to n, is never greater than M, then $|a_n \sin n\theta + \ldots + a_n \sin p\theta| < (\pi + 1)M,$

for all values of p and θ .

The condition that the series $\sum a_n \sin n\theta$ should be uniformly conver-

gent throughout any interval is that, for any ϵ , we can find an integer N_{ϵ} , such that $|a_n \sin n\theta + ... + a_n \sin n\theta| < \epsilon$.

for all values of θ in the interval, and for all values of p greater than n, provided only that $n \ge N_n$.

The first of the above propositions shows that, unless $na_n \rightarrow 0$, the interval of uniform convergence cannot include zero, or consequently any multiple of 2π .

The second shows that, if $na_n \rightarrow 0$, then there is uniform convergence throughout any interval whatever.

3. To prove the first proposition :--

We have

$$\sin n\theta + \ldots + \sin p\theta = \frac{1}{2} \left(\cos(n - \frac{1}{2})\theta - \cos(p + \frac{1}{2})\theta \right) \left(\operatorname{cosec} \frac{1}{2}\theta \right)$$

If we give θ the value $\pi/(2p+1)$, this sum becomes $\frac{1}{2} \cos(n-\frac{1}{2}) \theta \csc \frac{1}{2}\theta$, which is greater than $(1-\frac{1}{2}(n-\frac{1}{2})^2\theta^2)^2\theta$, which for this value of θ is certainly greater than p/π , if p is greater than 2n-1.

Since sin $n\theta$, ..., sin $p\theta$ are all positive, and $a_n \ge a_{n+1} \dots \ge a_p$,

 $a_n \sin n\theta + \ldots + a_n \sin p\theta > a_n (\sin n\theta + \ldots + \sin p\theta) > pa_n/\pi$

Hence the first proposition is proved.

4. To prove the second proposition :---

Since $(\sin \phi) \phi$ decreases steadily as ϕ increases from 0 to $\pi/2$, it follows that, if $0 < \theta < \pi$, cosec $\frac{1}{2}\theta < \pi \theta$.

By Abel's lemma,

$$|a_n \sin n\theta + \ldots + a_p \sin p\theta| < a_n \operatorname{cosec} \frac{1}{2}\theta < \pi a_n \theta < na_n,$$

if
$$\theta \gg \pi/n$$
.

If $\theta < \pi/n$, let $\theta = \pi/(m+a)$, where *m* is an integer > n, and 0 < a < 1.

If $p \ll m$, then no one of $n\theta$, $(n+1)\theta$, ..., $p\theta$ exceeds π , so that

$$a_n \sin n\theta + \dots + a_p \sin p\theta < \theta (na_n + \dots + pa_p)$$

$$< (p-n+1)M\pi/(m+\alpha) < \pi M.$$

If p > m,

 $|a_n \sin n\theta + \ldots + a_p \sin p\theta|$

 $\ll |a_n \sin n\theta + \ldots + a_m \sin m\theta| + |a_{m+1} \sin (m+1)\theta + \ldots + a_p \sin p\theta|$

 $< \pi M + a_{m+1} \operatorname{cosec} \frac{1}{2}\theta < \pi M + (m+\alpha) a_{m+1} < (\pi+1) M.$

Hence the second proposition is proved, and the result stated is established.

Note.—This paper replaces one communicated to the Society (January 13th, 1916) by Mr. T. W. Chaundy: he then showed that $na_n \rightarrow 0$ is a necessary condition for uniform convergence, and that $na_n \rightarrow 0$ steadily is a sufficient condition. But, as will be seen from the foregoing investigation, the condition $na_n \rightarrow 0$ is sufficient by itself.