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ON GROUPS OF ORDER p%q*
By W. BurnsiDE.

[Received and Read January 14th, 1904.]

It may be convenient to the reader to summarize the results hitherto
obtained with regard to groups of order p°q® other than those relating to
particular values of p, ¢, @, and 8. If m is the index to which p belongs,
mod. g, the first result arrived at was that, if a € m, the group is soluble.*

In my book on the Theory of Groups (1897) I extended this result,
showing that, if a < 2m, the group is soluble. In the same place I proved
that, if the sub-groups of orders p* and ¢” are both Abelian, the group is
soluble ; and that all groups of order p°¢® are soluble.

Of the last result another proof was given by Jordan (Liouville’s
Journal, Ser. 5, Vol. 1v., 1898). . Finally, in a memoir “ Uber Gruppen der
Ordnung p°¢®" (Acta Mathematica, Vol. xxvi, p. 189, 1902), Herr
Frobenius bas shown that when a € 2m the group is soluble, and also
that when the group contains only p™ sub-groups of order ¢f it is
soluble.

In the present paper I have attacked the question of the solubility of
a group of order p°¢® by a consideration of certain properties of the group-
characteristics of such a group ; and I have succeeded in showing that all

groups of order p°g® are soluble.
The first section of the paper is concerned with a property of the

characteristics of certain operations in an irreducible group of linear sub-
stitutions in p™ variables, where p is prime; and it has bearings on other
questions beside those with which the remainder of the paper is con-
cerned.

My paper “On Group-Characteristics ” (Proc. London Math. Soc.,
Vol. xxxmr., p. 146) is referred to by the initials G.-C.

1. From the relations (G.-C., p. 151),
]l,; hjxix,- = Xl% Cﬁk thI.:;

* Frobenius, Berliner Sitzungsberichte (1595), p. 190 ; and Burnside, Proc. London Math. Soc.,
Vol. xxvr. (1895), p. 209.
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for a given suffix ¢ and each suffix j in turn, by eliminating the ratios of
the quantities A;y;, there results

IL,;X,' = 0.
tn———, Cira, cees Cirr
X1
]l,' X,‘,
Ciz1, Cigp— ) Ciay
Xv
hixi
Cirly Cir2y veey  Cppp— ZiXi
X1

Hence, since the ¢’s are positive integers or zeros, h;x;/x, is an algebraic
integer.*

Suppose that x; is the power of a prime, p™, so that the order
of the group is divisible by p™. Let p* be the highest power of p which
divides the order of the group, and let P be a self-conjugate operation of a
sub-group of order p*. Then kp is relatively prime to p, and xp is the
sum of p™ powers of w, if w is a primitive p®-th root of unity, p® being the
order of P.

From hpxp/x, form the p"~'(p—1) conjugate expressions obtained on
replacing o by each primitive p“th root of unity. The elementary
symmetric functions of these expressions will be algebraic integers, and,
since they are rational, they must be rational integers. Now A, and p™
(or x,) are relatively prime. Hence the elementary symmetric functions
of xp/x, and its conjugates are rational integers; and therefore x,/x; is
an algebraic integer. From this it follows at once that either (i) x, must
be zero, or (ii) the p™ powers of w, whose sum make up xp, must all be the
same. In fact, if x» is not zero, (mod. x,)/x, is (from its graphical repre-
sentation) a proper fraction, except when x, = p™«®, where z is some
integer. But, if (mod. x#)/x; is a proper fraction, so also is the product
IT (mod. xp)/x;, formed from all the conjugates, and this is the same as
I xp/x1, which has been proved to be an integer. The result thus proved
may be stated as the following :—

Theorem I.—If a group G of order p°s (s relatively prime to p) can be
represented as an irreducible group of linear substitutions in p™ variables,
then a self-conjugate operation P of a sub-group of ovder p* of G has for
its characteristic in this representation either zero or p"w, where o isa
root of unity. In the latter case the substitution corresponding to P in
the irreducible group is a self-conjugate substitution, and G has a self-
conjugate sub-group containing P.

* This result is given by Herr Frobenius.
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If P, of order p*, is a self-conjugate operation of a sub-group of
order p* of G, so also are PP, P, ..., P*""'. The characteristic of each
of these operations is therefore either zero or p™ times a root of unity.
If each of them is zero, so that no one of them is a self-conjugate opera-
tion of the irreducible group in p™ variables, the p™ roots of unity which
make up xp must clearly be the different p°-th roots of unity, each
repeated p"~* times. This is only possible when a < m; and, if a>m,
the p*~"-th power of P must be a self-conjugate operation of the irre-
ducible group.

Consider in particular an irreducible group g of linear substitutions in
2 variables, and let p* be the highest power of p which divides the order
of g. If a sub-group of ¢ of order p* is not Abelian, it must be irreducible
and will necessarily contain self-conjugate operations which are self-
conjugate operations of g. If the sub-group of order p* is Abelian, and if
a > 1, the characteristics of all of its operations cannot be zero,* and
therefore some must be self-conjugate operations of g. Hence:

Theorem II.—An irreducible group of linear substitutions in a prime
number of variables p must either (i) contain self-conjugate operations
whose orders are powers of p, or (ii) have no sub-group of order p

2. Consider a group G of order p°¢®. Let H and K be sub-groups of
G of orders p* and ¢® respectively, and let P be a self-conjugate operation
of H, and @ a self-conjugate operation of K, other than identity.

All the operations conjugate to P are obtained on transforming P by
all the operations of K, or of any sub-group conjugate to K ; and all those
conjugate to @ on transforming @ by the operations of H. Hence, if
P be transformed by any operation of H, it becomes PQ)j;, where @; may
be any one of the operations conjugate to @ ; and, if P@); be transformed
by any operation of the sub-group conjugate to X which contains @) self-
conjugately, it becomes P;@);, where P; may be any one of the operations
conjugate to P. '

Hence the set of operations formed by multiplying any one of the
operations of the conjugate set to which P belongs (say the ¢-th set) by
any one of the operations of the conjugate set to which @ belongs (say
the j-th set) all belong to one and the same conjugate set (say the &-th).

. ’ U /
* Thus, if 2 = 2y, Ty = wly, .., Tp =Pl

and Ty = w@, Ty = Wy .eey z; = Wy
be two of its operations, say P and P, of order p, P not being a power of P, then at least one of

the operations P°P' (z =0, 1,2, ..., p—1) has a characteristic different from zero. The case in
which the group contains operations of order p2comes under the head considered immediately above.
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This is represented by the equation (G.-C., p. 1486)

) ) C; Cj = Ciji Cx,
involving the relations

h; hj = Cijx hk, Cijt = 0 (l =+ k).

If xi xi» xv are the characteristics of the three sets in any irreducible
representation of G, the relation (G.-C., p. 151)

h; h}Xin = X1 § Cijs thL
reduces to hih xixi = Cijlus Xy Xus
1.€., XiXi = X1 Xk

8. In every irreducible representation of G, x, is a factor of the order
of G (G.-C., p. 156), and must therefore be either unity, a power of p, a
power of ¢, or a product of powers of p and q. For the identical repre-
sentation x, is unity, and (G.-C., p. 158) ’

2 (xp) = p°¢,
where the sum is extended to the » distinet irreducible representations
of G. Hence every x,, except the first, cannot be divisible by p, nor can
every one be divisible by ¢. It follows that either (i) other x,’s besides
the first must be unity, in which case the group can be represented as a
cyclical group, and is therefore composite, or (ii) some x,’s must be powers
of p and others powers of g.

Consider an irreducible representation of G in which x; is a power of
p, say p™. In this representation x;, the characteristic of the operation P
considered in § 2 is either zero or p™w, where w is a p“-th root of unity.
In the former case xi, the characteristic of P@, is, by the final equation
of § 2, zero. In the latter case the substitution corresponding to P is a
self-conjngate substitution of the irreducible representation of G in p"
variables, and G itself is composite. Similarly, in any irreducible repre-
sentation of G in ¢" variables, either y; is zero or G is composite.

Suppose now, if possible, that G has no representation, except the
identical one, for which x, is unity, and that x; is zero for every irreducible
representation of G in which x, is either a power of p or a power of g.
Then the relation (G.-C., p. 158)

Zxix, =0
becomes 142 xix, = 0,

where Z' is limited to those representations for which x, is divisible by
pq. Since each xi is an algebraic integer, this equation may be written
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in the form 1/pg+a =0, a being an algebraic integer; and no such
equation is true.

Hence either x; must be unity for some representation other than the
identical one, or x; must be different from zero in some representations
in which x, is a power of p or a power of ¢. In either case G must be
composite ; and, since the same reasoning applies to the factor groups and
the sub-groups of G, G must be soluble. Hence :—

Theorem III.—Every group whose order is of the form p°g? is
soluble.

ADDITION TO THE PRECEDING PAPER. February 9th, 1904.

Since the above was communicated to the Society I have arrived at a
materially simpler manner of establishing a rather more general result.

Suppose that in a group G of finite order the number of operations
which constitute one conjugate set (say the ¢-th) is the power of a prime,
so that & = p“. If x; is the corresponding characteristic in an irreducible
representation of G, then %;x:/x; is an algebraic integer; and therefors, if
h; and ¥, are relatively prime, z.e., if X, 1s not divisible by p, xi/x, is an
algebraic integer. Hence, as above, either x; is zero or x; = x; @, where w
is a root of unity. In the latter case every operation of the ¢-th conjugate
set 1s a self-conjugate substitution in the irreducible representation under
consideration and G is therefore composite.

Now consider the relation 2 x{x; = 0,

where the summation extends to the » distinct irreducible representations
of G. If no x;, except the first, is unity, and if x; is zero whenever x, is
not divisible by p, this equation is of the form 14-pa = 0, where a is an
algebraic integer, which is impossible. Hence either (i) some x;, other
than the first, is unity, in which case G is isomorphic with a cyclical group,
or (i) some x; is equal to x,w, in which case G has a self-conjugate sub-
group containing the ¢-th set. In either case G is composite. Hence:—

Theorem.—If in a group of finite order the number of operations in
any one conjugate set is the power of a prime, the group is composite.

From this the previous result follows immediately. For in a group of
order p*g® there are necessarily conjugate sets, the numbers of operations
in which are powers of primes. In faci the self-conjugate operations of a
sub-group of order p* (or ¢f) belong to such sets.



