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It is proposed to investigate the behaviour of waves upon the plane
free surface of an infinite homogeneous isotropic elastic solid, their
character being such that the disturbance is confined to a superficial
region, of thickness comparable with the wave-length. The case is
thus analogous to tliat of deep-water waves, only that the potential
energy here depends upon elastic resilience instead of upon gravity.*

Denoting the displacements by a, /3, y, and the dilatation by 0, we
have the usual equations

=z(X + fl)f+^a *° (1)'
in which e = ̂  + f.+ p. (2).

ax ay dz
If a, /i3, y all vary as eip\ equations (1) become

+/*V9+Pi>
la = 0, &C (3).

* The statical problem of the deformation of an elastic solid by a harmonic appli-
cation of pressure to its surface has been treated by Prof. G. Darwin, Phil. Mag.,
Dec, 1882. [Jan. 1886.—See also Camb. Math. Trip. Ex., Jan. 20, 1875, Ques-
tion IV.]
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Differentiating equations (3) in order with respect to x, y, z, and
adding, we get

(V3 + fca)0 = O (4),

in which fc8 = ppa/(x+2/*) (5)-

Again, if we put ft2 = pp2 / f» (6),

equations (3) take the form

< * + * ) . _ ( l - * ) « fa (7).

A particular solution of (7) is*

_ 1 d8 n_ 1 dd _ 1 dd ,Q,
a-~WTx' P--T**? y-~"WTz W ;

in order to complete which it is only necessary to add complementary
terms u, v, w satisfying the system of equations

= 0 (9),

+ + 0
dx dy dz

For the purposes of the present problem we take the free surface as
the plane z = 0, and assume that, as functions of a? and y, the dis-
placements are proportional to ef/*, e<BV. Thus (4) takes the form

{£+»-/•-*)—o,
so that 0 = Pe-n+Qe+" (11),

where r3 =zf+g2-Kz (12).

In (11), r is supposed to be real; otherwise the dilatation would pene-
trate to an indefinite depth. For the same reason, we must retain
only that term (say the first) for which the exponent is negative
within the solid.f Thus Q = 0, and we will write for brevity P = 1,
or rather P = eipt eifx ei9y, but the exponential factors may often be
omitted without risk of confusion, so that we may take

0 = e"r' (13).

* Lamb on the "Vibrations of an Elastic Sphere, Math. Soc. Proc, May, 1882.
t By discarding these restrictions we may deduce the complete solution applicable

to a plate, bounded by parallel plane free surfaces ; but I have not obtained any re-
sults which seem worthy of quotation.
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At the same time the particular solution becomes

— £.-, /> = - $ . - , y - ^ . - a*).
For the complementary terms, which must also contain ev*, e<m as
factors, equations (9) become

) = ° > & c (l5) *
whence, as before, on the assumption that the disturbance is limited
to a superficial stratum,

utzAe-*, v = B&"% w = Oe— (16),

where * s9 = / 8 +0 9 - f c f (17).

In order to satisfy (10), the coefficients in (16) must be subject to
the relation

ifA+igB-8(J=Q (18).

The complete values of a, /3, y may now be written

a = - %Le-"+Ae-\ 0 = - | f e'"+Be-', y = i? e-»+Cfe- ' . , . (19),

in which A, B, 0 are subject to (18) ; and the next step is to express
the boundary conditions for the free surface. The two components
of tangential stress must vanish, when z = 0, and these are propor-

,. , , dQ . dy dy . da
tional to —• + -/-, -f- + -r-,

dz dy dx dz

respectively. Hence

sB^+igO, sA = 2j£+if0 (20).

Substituting from (20) in (18), we find

Cf(*8+/9+09)fc9+2r(/M-08)=O (21).

We have still to introduce the condition that the normal traction is
tero at the surface. We have, in general,
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or, if we express X in terms of /x, h, h,

so that the condition is

or, on substitution for r2 of its value from (12),

W-2(f+g2)-2h2sO=0 (22).

By eliminating 0 between (21) and (22), we obtain the equation by
which the time of vibration is determined as a function of the wave-
lengths and of the properties of the solid. I t is

{V-2 (f+g2)} {s2+f+g2} + 4rS(/
a+<?2) = 0,

or, by (17), {2(f+g2)-Vy=4<rs(f2+g2) (23).

If we square (23), and introduce the values of r2 and s2 from (12),
(17), we get

h*y = 16 (

As / and g occur here only in the combination (/2+</2), a quantity
homogeneous with h2 and A;2, we may conveniently replace (J2-hgi)
by unity. Thus

k*-8kli+24JGi-l61ci-lGh2l<?+l6h? = 0 (24).

Since the ratio h2: h2 is known, this equation reduces to a cubic and
determines the value of either quantity.

If the solid be incompressible (\ = oo), h2 = 0, and the equation

becomes &6-8fc*+24fc2-16 = 0 (25).

The real root of (25) is found to be '91275, and the equation may be

written (fc2- -91275)(&4- 7-08725fc2+17-5311) = 0.

The general theory of vibrations of stable systems forbids us to look
for complex values of A;2, as solutions of our problem, though it would
at first sight appear possible with them to satisfy the prescribed con-
ditions by taking such roots of (12), (17), as would make the real
parts of the exponents in e'", e~" negative. But, referring back to
(23), whioh we write in the form
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or, in the present case of incompressibility, by putting r = 1,

we see that we are not really free to choose the sign of s. In fact,
from the complex values of A;2, viz., 3*5436± 2*2301*, we find

4s = - 2 7 4 3 1 ±6-8846*;

so that the real part of s is of the opposite sign to r, and therefore
e"n, e~" do not both diminish without limit as we penetrate further
and further into the solid.

Dismissing then the complex values, we have, in the case of incom-
pressibility, the single solution

k* = P-£ = -91275 (f+g2) (26).

From (19), (20), (21), we get in general

(27),

(28),

In the case of incompressibility, we have h* given by (26), and

i*=f+9\ «* = '08725 (f+g>).

Hence h?a = if { — e"n+-5433e""} eipt eVs ein

{ } eipte*ei9V [ (30).
ipt

If we suppose the motion to be in two dimensions only, we may put
g = 0; so that /3 = 0, and

in which k = -9554/, s = -2954/. ; (32).

For a progressive wave we may take simply the real parts of (31).

Thus ^8a / / = (e-'»- •5433e-1) sin (pt+fx) }

/ i 8 y / /= (e-A-l'840e-M)cos (pt+Jx) )
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The velocity of propagation is p/f, or <9554v/(/*//o), in which
,/{ft I p) is the velocity of purely transverse plane waves. The sur-
face waves now under consideration move, therefore, rather more
slowly than these.

From (32), (33), we see that a vanishes for all values of x and t
when el"-0' = '5433, i.e., when/* = -8659. Thus, if \ ' be the wave-
length (2TT//), the horizontal motion vanishes at a depth equal to
*1378\'. On the other hand, there is no finite depth at which the
vertical motion vanishes.

To find the motion at the surface itself, we have only to put z — 0
in (33). "We may drop at the same time the constant multiplier
(A3//) which has no present significance. Accordingly,

o = '4567 sin (pt+fx)")Kr J J [ (34),
y = - ' 840cos (^+ /a j ) ) .

showing that the motion takes place in elliptio orbits, whose vertical
axis is nearly the double of the horizontal axis.

The expressions for stationary vibrations may be obtained from
(30) by addition to the similar equations obtained by changing the
sign of p, and similar operations with respect to / and g. Dropping
an arbitrary multiplier, we may write

a = —/ { —e'"4-'5433e"'i>] cos pi sin fx cos gy ")

/3 = — g { — e"" +"54336""} cosptcosfx singy f (35),

y = r { e"n—l1840e""} cospt cos fx cos gy )

in which r = </(fi+gi), s = t2954\/(/a + gr8) (36).

As before, the horizontal motion vanishes at a depth such that

z = -8659.

We will now examine how far the numerical results are affected when
we take into account the finite compressibility of all natural bodies.
The ratio of the elastic constants is often stated by means of the
number expressing the ratio of lateral contraction to longitudinal ex-
tension when a bar of the material is strained by forces applied to its
ends. According to a theory now generally discarded, this ratio (<r)
would be £; a number which, however, is not far from the truth for
a vai'iety of materials, including the principal metals. In the extreme
case of incompressibility n is £, and there seems to be no theoretical
reason why a should not have any value between this and —1.*

• Prof. Lamb, in his able paper, seems to regard all negative values of <r as exclu-



10 0?? Waves propagated along an Elastic Solid. [Nov. 12,

The accompanying table will give an idea of the progress of the
values of h2 / (f + g2) as dependent upon \ / / i , or upon a. It will be
observed that the value diminishes continuously with X, in accordance
with a general principle.*

X

00

0

(T

i
i
0

- 1

h2/tf

0

1

•9127
•8453
7640
•4746

Jc/Af+92)

•9554
•9194
•8741
•6896

As an example of finite compressibility, we will consider further the
second case of the table. From (12), (17),

r3 = -7182

fi9 = -1547 (f+g2), « = -3933v/(/9+?a).

Hence, from (27), (28), (29), in correspondence with (30), we have

h*a = if I - e -»+-5773e-a} e^e^e*9* ^

h*(3 = ig {-e-"+-5773e-s} eipt e*' ein \ (37).

h2y = •8475-/(/3+fl'a) {e-ri-l-732Oe-M} eipte*'eifV'

For a progressive wave in two dimensions, we shall have

h?alf= (e-~—*5773e-") sin (pt+fx) ")
(38).

.(39),

At the surface,

h*a/f= - |

tfy/f = - -6204 cos (pt+fx) )

so that the vertical axes of the elliptic orbits are about half as great
again as the horizontal axes.

ded a priori. But the necessary and sufficient conditions of stability are merely that
the resistance to compression (\ + f ft) and the resistance to shearing (jx) should be
positive. In the second extreme case of a medium which resists shear, ̂  but does not
resist compression, \ = — |/u, and a— — 1. The velocity of a dilatational wave is
then \ of that of a distortional plane wave. (Green, Camb. Trans., 1838.) The
general value of a is \l(2\ + 2p).

* Math. Soe. IVoe., June, 1873, Vol. rv., p. 359. " Theory of Sound," 1.1, p. 85.
Lamb, kc. eit., p. 202.
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It is proper to remark that the vibrations here considered are
covered by the general theory of spherical vibrations given by Lamb
in the paper referred to. But it would probably be as difficult, if not
more difficult, to deduce the conclusions of the present paper from the
analytical expressions of the general theory, as to obtain them inde-
pendently. It is not improbable that the surface waves here investi-
gated play an important part in earthquakes, and in the collision of
elastic solids. Diverging in two dimensions only, they must acquire
at a great distance from the source a continually increasing prepon-
derance.

On some Consequences of the Transformation Formula

y = sin (L+A+B+0+...).

By JOHN GRIFFITHS, M.A.

[Head Nov. 12th, 1886.]
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Notation.

In order to avoid repetitions, it is convenient, for the purposes of


